
FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatik

Participating in the API
Economy: An API Lifecycle

Analysis

B.Sc. Joan Disho

FAKULTÄT FÜR INFORMATIK

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatik

Participating in the API Economy: An API
Lifecycle Analysis

Partizipation in der API Economy: Eine
Analyse des API Lebenszyklus

Author: B.Sc. Joan Disho

Supervisor: Prof. Dr. rer. nat. Florian Matthes

Advisor: M.Sc. Gloria Bondel

Date: 11 June 2018

I confirm that this master’s thesis is my own work and I have documented
all sources and material used.

Munich, 11 June 2018 B.Sc. Joan Disho

Abstract

Application programming interfaces (APIs) are an essential tool, and the
market around them is thriving. Opening up APIs has led to a range of new
business models, which in turn created a new market with complex relations.
This new market is summarized under the term API Economy. The API
Economy plays a vital role in the digitalization of today’s world since APIs
are transformed into digital products, affecting the way organizations coop-
erate.
In this thesis, I analyze the API lifecycle in the API Economy, which is sup-
posed to help companies to participate in the API Economy network and
include examples from companies that already thrive in it.
First, I do systematic literature research to gather information regarding
APIs, API Economy, their growth, and trends. Additionally, I analyze the
business strategies, monetization models and legal considerations that com-
panies need to use when they plan to have an API. Furthermore, the design
techniques and technologies to design, build and deploy an API. Moreover,
the marketing and engagement strategies to boost the API traffic in the
market and the performance metrics to measure the API growth and suc-
cess. Last but not least, the reasons and preparations for retirement to keep
an excellent reputation in the API community.
Based on this information, I create a thorough lifecycle analysis of the API
participating in the API Economy.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem . 1

1.3 Goal . 1

1.4 Objectives . 2

1.4.1 RQ1: What is an API and API Economy? 2

1.4.2 RQ2: Which are the lifecycle phases of an API partic-
ipating in the API Economy? 2

1.4.3 RQ3: What are the components of each API lifecycle
phase? . 2

1.5 Outline . 2

2 Systematic literature review in API Economy 3

2.1 Systematic Literature Review 3

2.2 Review Method and Conduct 4

2.2.1 Research questions . 5

2.2.2 Search process . 5

2.2.3 Inclusion and exclusion criteria 7

2.2.4 Information collection 7

3 API and API Economy 8

3.1 Definition of API . 8

3.2 Elements of API Value Chain 9

3.3 From API to API Economy 10

3.4 Pioneers of API Economy . 11

3.5 Growth of API Economy and its trends 12

3.6 Software, Platform and Infrastructure as a service 17

4 API Lifecycle in the API Economy 19

ii

I Planning Phase 22

5 API Business Strategies 23
5.1 Private API model . 24

5.1.1 Business Benefits of Private APIs 24
5.1.2 Challenges and Disadvantages of a Private APIs 25

5.2 Partner API model . 26
5.2.1 Business benefits of Partner APIs 26
5.2.2 Challenges and Disadvantages of Partner APIs 27

5.3 Public API model . 28
5.3.1 Business benefits of Public APIs 28
5.3.2 Disadvantages and Challenges of Public APIs 29

5.4 Wrap up . 30

6 Monetization Models 31
6.1 Charge directly for API calls 31
6.2 Tiered Licence . 31
6.3 Charge based on the subscription model 32
6.4 Charge based on units . 32
6.5 Revenue share . 32
6.6 Cost savings . 32
6.7 Premium upsell opportunity 32
6.8 Content Acquisition . 33
6.9 Content Syndication . 33
6.10 Wrap up . 34

7 Legal considerations 36
7.1 Contracts and Terms of use 36
7.2 Privacy policies . 37
7.3 Data retention policies . 37
7.4 Attribution of Content and Branding 38
7.5 Service-Level Agreements . 38
7.6 Wrap up . 39

II Design Phase 40

8 API Design 41
8.1 Visibility of system status . 41
8.2 Match Between the System and the Real World 43
8.3 Consistency and Standards . 44

iii

8.4 Error Prevention . 46
8.5 Flexibility and efficiency of use 46
8.6 Help Users Recognize, Diagnose, and Recover from Errors . . 52
8.7 Help and Documentation . 54
8.8 REST vs. GraphQL . 57
8.9 The GitHub GraphQL API 59
8.10 Wrap up . 60

III Build Phase 61

9 API Driven Technologies 62
9.1 DevOps practices . 63
9.2 Types of Continuous Integration 64

9.2.1 Traditional CI . 64
9.2.2 Cloud CI . 64

9.3 API Management Services . 64
9.3.1 API Design Services 65
9.3.2 API Development Services 65
9.3.3 First group of CI Tools 66
9.3.4 Second group of CI Tools 66
9.3.5 API Deployment Services 67
9.3.6 Full API Lifecycle Services 68

9.4 Wrap up . 70

IV Operational Phase 71

10 Marketing & Engagement Strategies 72
10.1 Evangelizing the API . 72
10.2 Hackathons . 72
10.3 Integrations . 73
10.4 Engaging developers . 73
10.5 API Branding . 74
10.6 Wrap up . 75

11 Metrics 76
11.1 Usage metrics . 76

11.1.1 Request and Response metric 77
11.1.2 Impressions . 77

11.2 Operational metrics . 77

iv

11.2.1 Effectiveness metrics 78
11.2.2 Performance metrics 78

11.3 Wrap up . 80

V Retiring Phase 81

12 Retiring 82
12.1 Lack of third party developer innovation 82
12.2 Opposing financial incentive, competition 83
12.3 Changes in technology & consolidating internal services 83
12.4 Versioning . 83
12.5 Security issues . 84
12.6 Preparations for retirement . 84

12.6.1 Schedule a retirement plan 85
12.6.2 Make changes in stages 85
12.6.3 Public announcements 85
12.6.4 Ease the transition . 85
12.6.5 Blackout testing . 85
12.6.6 Make sure not to validate the Terms of Service 86
12.6.7 Include a deprecation message in the Sunset HTTP

response . 86
12.7 Wrap up . 86

13 Conclusion 87
13.1 Wrap-up of Findings . 87
13.2 Limitations & Future work . 89

v

Chapter 1

Introduction

1.1 Motivation

Nowadays, a company without an application program interface (API), which
is an intermediary, that allows applications or software programs to interact
with each other, is like the Internet without the World Wide Web. APIs
are allowing companies to grow businesses at unprecedented rates by sharing
services with external firms. The demands are changing, and every company
is under pressure to move quickly toward APIs because competition comes
from anywhere, a startup, an established player, a traditional competitor or
someone entirely outside the field.

1.2 Problem

I often see two things today when it comes to APIs, either the closed partner-
to-partner API model, where a company announces that is sharing data with
another one, but not usable unless you are an official partner. Alternatively,
the other situation where a company launches a technically great API but
does so with no developer business model. There is no clear way, as a guide-
line, which helps companies participating in the API Economy.

1.3 Goal

By having an API lifecycle analysis in the API Economy, I want to help
companies to participate and succeed in the API Economy network.

1

CHAPTER 1. INTRODUCTION

1.4 Objectives

I aim to answer three research questions (RQs).

1.4.1 RQ1: What is an API and API Economy?

With this research question, I want to to give a short introduction about
APIs, their growth in the last 20 years and define the term API Economy.

1.4.2 RQ2: Which are the lifecycle phases of an API
participating in the API Economy?

From conception to depreciation, an API part of the API Economy is prone
to constant evolution. With this research question, I will show the phases of
the API lifecycle and how it appears to be in a top level design.

1.4.3 RQ3: What are the components of each API life-
cycle phase?

With this research question, I will do a thorough lifecycle analysis of the API
participating in the API Economy and analyzing its components in details
in a dedicated chapter.

1.5 Outline

First, I start introducing how I do systematic literature research, to gather
information about APIs, API Economy and their growth for the last 20 years.
Additionally extracting information that helps me to find out the lifecycle
phases of the API which participates in the API Economy, together with the
its components. Moreover, in a dedicated chapter analyzing each in details.
At the end stating my conclusion and the limitations of this thesis.

2

Chapter 2

Systematic literature review in
API Economy

In this chapter, we will explain how I do systematic literature review (SLR)
to find out what are the business strategies, monetization models and legal
considerations that companies need to use when they plan to have an API.
Moreover, what are the design techniques and technologies to design and
build an API? Additionally, what are marketing and engagement strategies to
boost the API traffic in the market and the performance metrics to measure
the API growth and success? Lastly, what are the reasons for retirement and
the preparations to keep an excellent reputation in the API community?
The review will be based on the guidelines provided by Kitchenham. [BK09]

2.1 Systematic Literature Review

SLR stands for Systematic literature review, which is a subclass of literature
reviews that collects and rigorously analyzes multiple research results, by
identifying and formulating the research questions, critically evaluating the
studies that are related to those questions and collecting the relevant infor-
mation. 1

The first step in conducting a systematic literature review is to create the
research questions that will guide the review. The second step is to perform
a thorough manual search of journals, conferences, in certain digital libraries
such as ACM Digital Library, Scopus, IEEE Xplore. The third step is
about the unbiased inclusion and exclusion criteria in which will allow me to
address the research question(s) we are posing. It is important that these in-
clusion and exclusion criteria are applied consistently throughout the review.

1Systematic Review: http://getitglossary.org/term/systematic+review

3

CHAPTER 2. SYSTEMATIC LITERATURE REVIEW IN API
ECONOMY

Lastly, I collect the information from the sources that we selected.[BK09]

2.2 Review Method and Conduct

We will explain each activity in detail and describe how we approach it.

Figure 2.1: Systematic literature review process

4

2.2. REVIEW METHOD AND CONDUCT

2.2.1 Research questions

Any systematic literature review begins with a series of questions which di-
rect the review. The questions addressed for SRL are as follows:

Q1 What are the aspects that a company should consider when planning
to have an API?

Q2 What are the design techniques and technologies to design and build
an API?

Q3 What are the marketing and engagement strategies to boost the API
traffic in the market?

Q4 What are the metrics to measure the API growth and success?

Q5 What are the retirement reasons and the preparations which can help a
company to keep an excellent reputation in the API community?

2.2.2 Search process

The search process will be a manual search for specific conferences, papers,
journals, highly cited blog sites and API providers. I include blog sites and
API providers because APIs are dynamically changing, new technologies are
introduced, new business models are applied, new design implementations
are adapted, and those sources can provide the information, faster.
The selected sources where our review will be based is presented in the table
2.1.

ACM Digital Library is chosen because is the world’s largest scientific and
educational computing society and hosts many scientific papers in software
engineering. DBLP, because it has more than 3.66 million journal articles,
conference papers, and other publications on computer science. The IEEE
Xplore provides access to more than 3.5 million documents from some of the
world’s most highly cited publications also in computer science and software
engineering. Scopus, Google Scholar, is also an important source because
they include the results of other major research databases.
ProgrammableWeb, because it is known as the most important registry of the
API Economy and also as the world’s leading source of news and information
about APIs. ProgrammableWeb is also the most widely-cited source of data
when it comes to the inclusion of API-related statistics in the mainstream

5

CHAPTER 2. SYSTEMATIC LITERATURE REVIEW IN API
ECONOMY

ID Sources Source Type

S1 ACM Digital Library Digital Library

S2 DBLP Computer Science Bibliography, The Digital Library

S3 IEEE Xplore / Electronic Library Online (IEL) Digital Library

S4 Scopus Digital Library

S5 Google Schoolar Digital Library

S6 ProgrammableWeb Conference + Journal

S7 NordicAPI Conference

S8 IBM API Economy Blog

S9 API Evangelist Blog

S10 APIGee API Provider

S11 RedHat API Provider

S12 Mulesoft API Provider

Table 2.1: Sources of information

media, conferences, white-papers, and other forms of research. 2

Nordic APIs, as the largest community for API practitioners and enthusiasts.
Through the global reach of Nordic APIs blog and their conferences held
around the world, they help companies make smarter tech decisions using
APIs and inspiring better API solutions.
The other sources that are listed in the table are chosen because they are
highly cited and are well received by the API community.

2About ProgrammableWeb: https://www.programmableweb.com/about

6

2.2. REVIEW METHOD AND CONDUCT

2.2.3 Inclusion and exclusion criteria

The inclusion criteria are as follows:

1. The search results are in English language.

2. The search results are a direct focus in relation to the raised questions.

3. The search results from Digital Databases are the full papers, including
the abstract.

4. The search results from conferences and journals are dedicated articles
in relation to our research question.

The exclusion criteria are as follows:

1. The search results provide too general information.

2. The search results don’t focus specifically on Web API. Our research
questions are related only to Web APIs.

3. Duplicated results.

2.2.4 Information collection

After the inclusion/exclusion criteria, I have to define what kind of infor-
mation are we extracting from our sources. First, I am considering all the
articles which are not part of the exclusion criteria. Furthermore, I consider
collecting the sources for each article. This will hopefully help me finding
useful materials that can better answer our research questions.

7

Chapter 3

API and API Economy

Before analyzing the lifecycle of APIs participating in the API Economy, I
will introduce the concepts of API and API Economy.

3.1 Definition of API

API stands for application programming interface. In a technical sense,
API is a machine-readable interface through which software applications
make their functionality or data accessible to another authorized applica-
tion [Kep14]. In other words, API exposes some of the application’s internal
functions to outside world through a defined interface. In this way, the out-
side world can use the functionality without knowing how the internals of
the application work. The goal of the API is to ease and accelerate the de-
velopment of software applications by providing a part of its functionality to
the outside world, so developers don’t lose time implementing the solution
themselves. There are different types of APIs, but in this thesis, I will focus
on a particular kind of API, the Web API.
An API is a type of interface where the communication takes place on the
Internet using specific Web protocols like HTTP. The API defines a set of
endpoints that receive requests and send responses in defined rules by SOAP
(Simple Object Access Protocol) protocols or REST (Representational State
Transfer) or GraphQL (Graph Query Language). The communicated data
usually are in XML or JSON format.
An excellent example of an API is the Twitter API 1, where developers can
engage with the Twitter platform without any GUI. Twitter gives to develop-
ers through its API the possibility to post, retrieve and engage with tweets,
access direct messages, upload media content and more. The API has made

1Twitter API: https://developer.twitter.com/en/docs.html

8

3.2. ELEMENTS OF API VALUE CHAIN

possible to develop multiple different Twitter software applications, mobile
and desktops like Tweetbot and Twitterrific. The software applications offer
different user experience, but they target the same audience as Twitter does,
using the same underlying data provided by the Twitter API.
Simplifying it, an API is a “digital glue” that connects different systems
and companies while creating new application and partnerships. Now APIs
are a big part of the web. In January 2018 there were over 19,000 APIs
published by companies for usage in ProgrammableWeb, which is the most
widely-cited source of data when it comes to the inclusion of API-related
statistics [Pro13a]. That is 19 times the number available in 2010 [Pro11].
However, there are some things that APIs are not: [Jen15].

• A piece of software: Software is not an API, but it may use an API
to provide services.

• A user interface: An API is not a user interface, but it may be build
on top of that.

• A server: Server is not an API, but can host and provide it.

3.2 Elements of API Value Chain

Figure 3.1: The API value chain. [DW11]

9

CHAPTER 3. API AND API ECONOMY

When companies are managing the API, they should take into consid-
eration business assets that it has, goals that want to accomplish and the
interest of the stakeholders. [DW11]
The value chain starts which business assets, something that a business wants
to allow others to use. Business assets can be a variety of things, like prod-
uct catalogs, weather data, media content, maps, Twitter posts. If there is
nothing in the business assets of a company, the API will not succeed. [DW11]
The next step is to create an API to expose these business assets. The API
is designed and built by the API provider, and it is responsible for its
availability. It must allocate the resources to API design, development, and
maintenance. Furthermore, the API provider is responsible for documenting
the API, so internal and external developers understand its functionalities.
Moreover, creating incentives which push the developers to use the API which
leads to awareness and increase of usage. [DW11]
Once the API is successfully published, and awareness is created, by evan-
gelizing the API, hackathons, some traffic will hopefully put the API in
production for building software applications. Developers are an excellent
source of feedback, potential improvements, and new ideas. Therefore, the
API provider should be in touch with them and provide support as much as
possible. [DW11]
Furthermore, once created, the applications must find its way into the hands
of end users. To find its way means that the application must be discov-
erable and reachable by the end users. Developers often use platforms like
AppStore, PlayStore or other marketing channels to market their product
and making them more discoverable. [DW11]
Finally, the value chain ends with the end users. End users are the ones
who use the application, providing value to the developers, API provider and
the owner of the business assets. [DW11]

3.3 From API to API Economy

APIs being part of products, are part of an agile business methodology, help-
ing a company to create new revenue streams, by selling data on demand or
by attracting investors, partners, producing an economy around itself, called
API Economy.
The API Economy is the economy where companies expose their business
assets or services in the form of APIs to third parties – partners, external
developers – with the goal of unlocking additional business value, accelerat-
ing loyalty, and customer growth through the creation of new asset classes.
[MB13, KH14]

10

3.4. PIONEERS OF API ECONOMY

3.4 Pioneers of API Economy

APIs have played a crucial role in the sector of Commerce, Social, Business,
Cloud Computing, Mapping, Traveling, Weather and Mobile in the past two
decades.
In the sector of commerce, for example, Salesforce.com which was officially
launched in 2000 was a pioneer in the software-as-a-service area, being the
first cloud provider. Using web-based APIs, they help customers integrating
Salesforce services into their businesses, eliminating the need for expensive
upfront costs, implementations that could take months and for the ongoing
complexities of maintenance and upgrades. [Lan16]
In the year 2000, eBay launched the eBay API, along with the eBay Devel-
opers Program. At that time eBay stated:
“Our new API has tremendous potential to revolutionize the way people do
business on eBay and increase the amount of business transacted on the site,
by openly providing the tools that developers need to create applications based
on eBay technology, we believe eBay will eventually be tightly woven into
many existing sites as well as future e-commerce ventures.”
The eBay API aimed to standardize how software applications integrated
with eBay, making it easier for partners and developers to build services
around the eBay ecosystem. [Lan16]
In 2006, Google launched Google Maps API, allowing developers to put
Google Maps on their own sites using JavaScript, creating mashups with
other data sources. It is reported by Google that more than a million active
sites and software applications use the Maps API [Goo13].
In the same year, Facebook introduced Facebook Platform, which features
the API at its core, allowing developers to access Facebook friends, photos,
events and profile information. Immediately developers began to build social
applications, games, and mashups with the Facebook API. [Lan16]
Later on, Twitter introduced Twitter API to the world, and in four years it
had become the center of many desktops, mobile, web and business clients,
engaging more users than the Twitter app itself. [Lan16]
In Cloud Computing field, Amazon saw the potential of a RESTfull approach
to business and made APIs changing the way we compute now. In 2006 they
launched Amazon S3 or Simple Storage Service, providing an interface that
can be used to store and retrieve any amount of data, at any time from any-
where on the web. Initially, S3 was just an API, no web interface or mobile
app. It was just a REST API allowing users fetching and putting data in
cloud storage. Users were charged 0.15 dollars a gigabyte per month for stor-
ing the data in the cloud, generating new revenue streams. [Lan16]
In the traveling industry, Expedia opened a rich API to increase traffic and

11

CHAPTER 3. API AND API ECONOMY

to provide broader order values for its partners, including airlines and travel
agencies. The API allows customers to access booking, photos, reviews di-
rectly on third-party websites and mobile applications. Based on that, Ex-
pedia generated 90 percent of its revenue through its API. [Lan16]
As these examples show, there are many ways APIs can accelerate growth
for companies.

3.5 Growth of API Economy and its trends

Figure 3.2: APIs added to ProgrammableWeb until August 2017. [Pro13b]

APIs are enjoying the mass exposure. The ProgrammableWeb directory
at the first quarter of 2018 has more than 19,000 APIs, and this gives us a
chance to look at what the data can tell us about the API Economy. Since
the year 2000, APIs grow from a curiosity to a trend, and now to the point
where APIs are core to many businesses, providing value to many compa-
nies and developers. But how does this growth compared with forecasts a
few years ago? Is it sustainable? And why exactly has the space grown so
rapidly? In January 2018, ProgrammableWeb saw more than 2000 new APIs
added, and since 2014, an average of nearly 2000 APIs have been added per
year.

12

3.5. GROWTH OF API ECONOMY AND ITS TRENDS

Total new APIs added since 2014 8010
Average new APIs added yearly 1,982
Average new APIs added monthly 165

Note that these numbers may be deceptive because none of these take
into account private or partner APIs that exist, which it is estimated to out-
number the public APIs. Some companies give access to their APIs through
a premium account, making them less visible.[Pro13b]
Besides ProgrammableWeb data, I can also see statistics by some dominant
APIs how they are growing in the recent years.

MailChimp which is a marketing automation platform and an email mar-
keting service, in 2011 was grown from roughly 1.5 million calls per day to
9.5 million, peaked over 10 million and in 2016 they reached more than 29
million API calls. [Mai11]

Figure 3.3: MailChimp API calls from 2010 to 2011.

Another case is Netflix which is an entertainment company streaming
media and video-on-demand online that in 2008 launched the Netflix API,
grow its API call in the beginning of 2011, 37 times more since the beginning.
Netflix in 2014 discontinued its public API program and there are no fresh
data to compare. [Net11]

13

CHAPTER 3. API AND API ECONOMY

Figure 3.4: Growing the Netflix API by about 37 times in 13 months.

I could say that API Economy has been grown not because of a single
sector, but by multiple factors emerging all on APIs to some degree. Based
on the study by SmartBear, various areas impacted by the API revolution
[Sma16].
Mobile, especially with the rise of Social Networks. As they appear to grow
and evolve, APIs will play a vital role in the process of expansion via mobile
devices. Internet of Things, because billions of devices are connected to APIs
to fully unleash their extraordinary capabilities. Enterprise Integration is
also an area in which APIs have a significant impact. For example, Salesforce
allows integration through APIs only to Enterprise and Unlimited customers.
They generate 50 percent of their revenue through APIs.

14

3.5. GROWTH OF API ECONOMY AND ITS TRENDS

Figure 3.5: Technology areas that most APIs are growing

While many organizations have been developing and integrating with
APIs for more than a decade, a significant number of them began providing
APIs in the last couple of years. 42.1% of API providers have been pro-
viding/developing APIs for six years or more, while 51.5% began developing
APIs in the last five years. 20% only began developing APIs within the last
two years.

15

CHAPTER 3. API AND API ECONOMY

Figure 3.6: One in five API providers began providing APIs within the last
two years

Moreover, looking to the future, two technologies are expected to drive
the most growth for the API industry in the coming years, Mobile and the
Internet of Things (IoT). Currently, Web and Mobile are top platforms sup-
ported by the APIs, while smaller in size compared to Web and Mobile. IoT
is also being supported by 1 in 5 API Providers, showing that the newer
technology is playing a sizable role in API Industry.

16

3.6. SOFTWARE, PLATFORM AND INFRASTRUCTURE AS A
SERVICE

Figure 3.7: Nearly two-third of API providers support mobile.

3.6 Software, Platform and Infrastructure as

a service

Within API space, cloud computing is accessible.
In this section, I will explain the cloud computing stack and its three layers
SaaS, PaaS, and IaaS. In the world of IT, a stack is a series of interconnected
systems that transport data between each other. The elements in a stack
are called layers and are independent of each other. Moreover, the data in a
stack flow from one end to another in sequential order without skipping any
layer. [San16a]
For example, the OSI model is a stack where each layer handles a specific
case and is independent of the others and is similar when it comes to cloud
computing. Starting with the top layer, SaaS which stands for Software-as-
a-service and is the most common form of service in the API space. In SaaS,
the owner of the business assets licenses the use of the software and allows the
other to use it based on a subscription model. A great example is Dropbox,
which is a file hosting service that offers cloud storage, file synchronization,
and personal cloud through a paid subscription model. [San16a]

Next, PaaS, which stands for Platform-as-a-Service, which provides a devel-

17

CHAPTER 3. API AND API ECONOMY

Figure 3.8: Cloud Computing Stack. [San16a]

opment platform remotely to a client. In comparison to SaaS, where remotely
hosted applications are accessed via the API, PaaS supplies the entire devel-
opment as a platform for the client. Offering servers, storage, networking,
middleware, development tools, business intelligence and more.
For example, a company has services that manipulate data through a REST-
full API. As an API provider, you would need server space to store the data,
processing power to compress the data, services to provide good compression
and decompression algorithms. While using Microsoft Azure, you do not
need to spend time and resources in building these things by yourself.
PaaS allows avoiding the expense and complexity of creating and manag-
ing the underlying application platform or the development of these tools.
[San16a]

Also, IaaS, which stands for Infrastructure-as-a-Service and it’s focused more
on physical properties of the system rather than the platform or applications.
IaaS makes it possible to avoid the expense and complexity of buying and
managing your physical servers and other data center infrastructures. Whereas
PaaS provides added benefit through a platform and SaaS though accessing
the remote system to work within.
For example, a company needs storage space, fiber optics and extreme pro-
cessing which is provided by Amazon Web Services (AWS) in remote. [San16a]

18

Chapter 4

API Lifecycle in the API
Economy

Based on the information provided by the Systematic Literature Review, I
am presenting an overview of the API lifecycle in Figure 4.1.

A crucial pre-step for the API provider, before deciding which business strat-
egy will be used for the API, is validating why the company needs an API
and who is going to use it. To enter in the API Economy network, the API
provider should formulate answers for the following questions. Why does the
company needs an API?, What functions will the API accomplish?, What is
the API value proposition?, Who is the audience?, Does and why my audience
wants to consume an API?, Does the company has the resources required to
develop and maintain the API?
While answering these questions, the API provider measures the interest
from target audience, performs market research, forecasts the trends while
taking into account the internal resources. [Doe15]

1. Planning Phase
An API is not just a part of the server that receives requests and sends
responses. An API is also a business model. This is a new way of oper-
ation for companies about how are they going to engage with partners
and developers. An API has to be seen as a product that needs to be
developed with some business strategies in mind. Furthermore, it is
essential to consider how the API will return the investments, boosting
the revenue, and additionally the legal considerations for distributing
the API data and protecting their work.

2. Designing Phase
After planning and before choosing which technologies should be ap-

19

CHAPTER 4. API LIFECYCLE IN THE API ECONOMY

Figure 4.1: API lifecycle in the API Economy overview

plied to an API, a company should think about the API design. The
design of an API is important and not easy. An API can be an advan-
tage or a significant disadvantage for a company. A good API design
improves the usability of it, resulting in higher adaption, higher user
satisfaction and an overall better chance of success. While on the other
side, a bad user experience while using the API may lead to a bad
reputation. It is crucial to introduce and analyze different usability
heuristics that can be implemented, giving a direction of how to craft
an API.

3. Building Phase
A key action in the API lifecycle is to develop the API and bring it
to life while deploying it. At this point, the company should have a
well-defined API business strategies, together with monetization model,
legal considerations, and design.

20

I will introduce and shortly analyze the methodologies and tools that
can be used to develop, test and deploy an API.

4. Operational Phase
After designing, building and deploying an API, a company should
think how to market and engage developers with it. To obtain best
possible results, marketing an API should be done across different chan-
nels. Each channel has a cost and a long way the cost of the channel has
to be measured, understanding which channel fits best and which one
should be abandoned. While engaging developers with the API, the
developers can be a great source of feedback, helping the company to
improve the API and hopefully, some traffic will come from the market.
As a result, the company would need metrics for a variety of reasons,
to measure the growth and success of the API.

5. Retiring Phase
Retirement is part of API Economy lifecycle. In this phase, the owner
of the business assets may decide to retire the API.
Retirement can come from many things, for example, due to limited
use, lack of third-party integrations or financial issues.

Each component of these phases will be analyzed in details in a dedicated
chapter.

21

Part I

Planning Phase

22

Chapter 5

API Business Strategies

APIs are not just created to meet technical requirements. Every API is cre-
ated with a business model behind. To ease the internal development, to
attract developers, investors or partners.
Before launching or maybe before creating an API the company should think
about the mindset of the API concerning the company. Should the API be
only for internal usage? Should the API be publicly used by the developers?
Should we create the API to attract partners or investors? or maybe a mix
of all of these?
In this chapter, we will focus on API Business Strategies.
To begin, in a top level view, there are three main API models: Private
APIs – internal or enterprise APIs, Open APIs – publicly released and
ready for use by developers, and Partner APIs – integration between a busi-
ness and their partners. Later on we will discuss on the monetization models
that can give the Return of Investment (ROI) to a company.[Pro14]

Figure 5.1: Three main API types [Pro14]

23

CHAPTER 5. API BUSINESS STRATEGIES

5.1 Private API model

Private API is to ensure that is tightly controlled and will restrict access only
to internal users.
In private APIs, companies have no right or interest exposing their business
assets outside the company or a tightly controlled domain.
In this case, the API provider is often the same as the owner of the busi-
ness assets. Developers using the private API are often employees of the
company or part of a restricted domain. Applications which are build on
top of a private API can be used internally or publicly.
For example, private APIs can be used internally to create applications or to
implement integration services. Also, it can be used as a way to more effi-
ciently build apps for internal use in a company. For example, companies use
their internal APIs to enable developers to build dashboards for distribution
on tablet devices. [DW11]

5.1.1 Business Benefits of Private APIs

1. Start the API Strategy
Some companies can start their API journey by being private first.
They can experiment, learn, make mistakes and changes behind the
doors, having less pressure from the community – investors, potential
partners, and developers. In this way, the companies can learn from
their mistakes and improve their strategy by being private first.

2. Change internal structure of companies
While using private APIs, companies discover the opportunity to re-
structure their business to enable the composable enterprise. Compos-
able enterprise is where people can support the changing demands of
the organization by assembling and reassembling modular components.
[Blo]

3. Improve communication and collaboration:
A private API improves communication and collaboration between dif-
ferent teams and also their team members. A study by McKinsey
[McK16] shows that companies can increase their productivity up to
25 percent by improving the internal collaboration and communication.
One way to do that is the use of APIs. Using a private API allows for
shared awareness of the internal data model. As the developers are
working, communication will be more direct, and therefore they should
be able to work more cohesively in a group or team.

24

5.1. PRIVATE API MODEL

4. Accelerate Time-to-Market
Private APIs can accelerate Time-to-Market of new features and ser-
vices. While having an API internal resources can be allocated more
efficiently to create new features quickly.

5. Internal analytics
Private APIs allow companies to identify better where there are prob-
lems in their workflow. Giving a better overview of what parts of our
system might slow down.

An interesting use case is the Amazon internal APIs around 2002-2003. Ama-
zon from an online bookseller company became the leader in eCommerce,
IaaS and cloud computing. One of the secrets of becoming a leader is how
the internal APIs were and are treated. Jeff Bezos the CEO of Amazon, issues
that all teams will expose their data and functionality through application
interfaces. All teams must communicate with each other through those in-
terfaces, no direct linking, no shared-memory model. Furthermore, all the
service interfaces, without exception, must be designed from the ground up
to be externalizable. The team must plan and design to be able to expose
the interface to developers in the outside world. If anyone who did not apply
those rules was fired. Based on that, everyone worked for a couple of years,
transforming Amazon to what it is nowadays. [Lan12]

5.1.2 Challenges and Disadvantages of a Private APIs

1. Reverse Engineering
There is a fine line between public and private APIs, the security layer.
Without appropriate security, the private API is a public API. There
are several tools to deal with a private, undocumented API. Wireshark
and Charles Proxy are two tools that can capture all the traffic send to.
By using this kind of tools, the external (unauthorized) developers can
analyze the traffic and interaction with the private API as if it were
public. In this way, undesired data may be publicly available. [API15]

A good example is Niantic, the company behind Pokemon GO. The
developers or hackers, in this use case, reversed engineered their API,
open source the solution and gave the end users the possibility of cheat-
ing the game.

25

CHAPTER 5. API BUSINESS STRATEGIES

2. Being closed
While operating only internally inside a certain company, potential
revenue streams may not be accessible because developers, investors,
and potential partners are not aware that the API exists. [API15]

3. Not focusing on usability
Often there is the case that API usability and code quality is not a
priority in private APIs. By doing this, the productivity is decreased
because is harder to understand the API’s components and if API tends
to go public or partner with another API, there is a high possibility to
go first in technical debt. [API15]

5.2 Partner API model

In partner API model, an API provider is using its API to attract and inte-
grate with potential partners.
This case is common among businesses operating in a business-to-business
market. Use cases for partner API are automated invoicing, ordering and
payment systems, products and price catalogs.
In partnering API model, the API providers are the owners of business
assets. The developers that consume the API are employees of both com-
panies, and the end users are the ones that are using the application if it
is publicly released. In the partner environment, API development has to be
conducted in a way that new features and changes do no break the existing
integrations of the partner. [API15, Lan14],

5.2.1 Business benefits of Partner APIs

1. Build trust with business partners
Providing a partner data so they can better manage their workflow via
the API, is a great starting point to increase the trust.

2. Increase profits
Using other company’s API can help a company to increase their profits
by buying data and services. Moreover, the ROI timeline is decreased
faster because partners are willing to pay directly.

3. Drive Innovation
While the partner is providing the resources to have a better workflow
and focus directly on the business model without spending time on
something that the partner is giving, can boost the productivity and

26

5.2. PARTNER API MODEL

guide to innovation.
Amazon Web Services (AWS) is a good example that provides to their
clients and partners computing power, database storage, content de-
livery. Also has the services to help the company build sophisticated
applications with increased flexibility, scalability and reliability. Net-
flix on the other side does not have to spend time and resources caring
about these services as long as they are built on top of AWS.

4. Access new customer markets
When collaborating with another company and sharing data with each
other, one can access markets that couldn’t access before without it.
For example, Twitter collaborates with news sources to provide users’
information quickly and reliably. In this was Twitter has access new
markets, like news market, besides social networking.

5. Identify commercial API opportunities
In many cases, monitoring partner’s use of business information can
help identifying new commercial opportunities. Becoming apparent in
some ways, helping to facilitate products faster.

One good example is Twitter, which established Twitter Partners Market-
place, helping businesses to thrive on Twitter. Twitter, focused on develop-
ing product partners with superior apps build on Twitter API and marketing
partners that can deliver the services that Twitter needs [Rig15].

5.2.2 Challenges and Disadvantages of Partner APIs

1. Increased bureaucracy
Generally, while partnering, administrated procedures are more com-
plicated because of negotiations and consultations between partners to
jointly take decisions.

2. Increased time for decision making
When decisions inside a company may affect partners, it excessively
increases the time for decision making because the partner’s business
model must be taken into account.

3. Partnering when hiring is not possible
Sometimes partnering with another company is not necessary, espe-
cially when the budget is not enough and the resources to hire new
developers to integrate the functions that the potential partner may
provide. This may be a killer from the start. In this way, decisions will
be obligated by the partner/s under the partnership agreement.

27

CHAPTER 5. API BUSINESS STRATEGIES

In the example of Twitter, the challenge is that before becoming a partner
you must swear to be a good partner, follow the guidelines, rules which for
Twitter are acceptable [Rig15].

5.3 Public API model

A public API has been designed to be easily accessible to a broader audience
of the web and software development. This means that the API can be used
internally and externally. In this way, companies are turning themselves into
service providers that enable other companies and free-agent developers to
create the value that they want by using or paying for the data directly.
This can stimulate new ideas and ease development and decrease its costs.
[API15]
For example, DarkSky 1 is a company that is specialized in weather and
forecasting visualizations, offers a public API which gives down to the minute
weather predictions. Other companies that want to integrate some weather
prediction services in their services can use DarkSky without putting much
effort to create their weather forecasting service.

5.3.1 Business benefits of Public APIs

1. New revenue streams
A company providing a public API can create new revenue streams if
the developers are willing to pay for the data and services.

2. Increase reach and traffic
Opening an API to the public can increase reach mostly by the third-
party developers and other companies. If the API provides useful ser-
vices, the company behind the API the has a good reputation inside
this community. The APIs increase the user-satisfaction and overall
better chance of success in the market among the competitors.

3. Increase customer lifetime value
Public APIs build customer loyalty, in this case, developers. When an
API is integrated into a 3rd party developer’s value chain, they remain
as customers for a long period. For many API users, a Public API
integration can be a “set and forget” experience. Once the integration
is established and any initial issues are resolved, the API can be used
consistently in an end customer’s workflow. This can create an ongoing
revenue stream for the provider.

1Dark Sky Documentation: https://darksky.net/dev/docs

28

5.3. PUBLIC API MODEL

4. Ease of development
Using Public APIs can help a company to ease the development and
make better decision making work-flows. For example, a company can
use Twilio public API for messaging services to reach their customers
without spending time and resources in developing it.

5. Improving without spending time on research:
While providing the API to the public, the developer community can
give feedback on how to improve and what can be done better to the
API. In this way, the developers are contributing to the API without the
company spending time and money on experimentation and research.

5.3.2 Disadvantages and Challenges of Public APIs

While public APIs have many advantages, give companies new revenue streams
and opportunities, but on the other hand, they also provide challenges and
disadvantages that may bring a company to a bad reputation. [Mah14]

1. Risk of exposing internal data
Going public leads to more attention also by hackers that want to gain
access to private data through the API. The API is used as a gateway
to gain access to internal data.

2. ROI timeline is increased
In public APIs, ROI timeline can be longer compared to partner APIs,
because of two main reasons. First, the API provider should establish
an active community of developers integrating the API into new ap-
plications and services. Second, developers are looking to create new
revenue streams first for themselves and then returning some part of it
to the provider.

3. Server overload and quality of service
It is a significant problem when the user waits too much to get the API’s
data even if they are valuable. If the API provider wants to increase the
customer satisfaction and API usability, it should increase the number
of servers capacity, efficiency and speed, compared to the case when the
API is private or shared with a partner. Nowadays, thanks to cloud
computing, the API providers are pushing their services to the cloud
[Ped14].

4. The need of a better API design quality
When releasing an API to the public, the provider should spend time

29

CHAPTER 5. API BUSINESS STRATEGIES

beforehand to improve the API quality. By API quality, it is meant
that the API should be user-friendly, provide documentation, tests,
examples how to use and what to expect by the API calls [Ped14].

5. Conflict on interest
Conflict of interest happens when the third-party applications compete
for the applications of the API provider. For example, if a company is a
heavily ad-based application and not interested in charging developers
for using the API, like Twitter, then yes it is an issue that someone
can make a good application without ads [Ped14].

5.4 Wrap up

Some companies may start with a private API and then make them public.
Others may start with a partner API, and then when they have learned how
to implement and manage the API with some partners, they can move to
the challenge of opening the API to the public. Also if feeling confident the
company can start directly creating public APIs.
Even though private APIs are not considered part of the API Economy based
on the API Economy definition, which is the economy where companies ex-
pose their (internal) business assets or services in the form of (Web) APIs
to third parties with the goal of unlocking additional business value through
the creation of new asset classes [MB13], it is good strategy to start with
private API and then join the API Economy with a partner or public API.
Before taking the road path, it is important to know what are the benefits,
challenges, disadvantages of each model and see if they fit with the company’s
business model.

30

Chapter 6

Monetization Models

Before developing an API, it is essential to consider how the API will return
the investment, boosting the revenue. In this chapter will explain how to
monetize the API.
According to Rob Zazueta, who is the director of a platform strategy at Intel,
“The success of an API program is measured by how well it moves a business
toward its goal.” [Rig15, Ped14, Mus13]

6.1 Charge directly for API calls

One way to monetize the API is by charging directly for every API call. This
model is easily measurable, if the API is returning some investments or not,
but not necessarily successful. The model pays off when the data have the
kind of value that developers or end users want to pay.
Before diving in, spend some time asking the developers – internal or/and
external – or end users if they are willing to pay for the data and services
and if they can, get an approximation on how much can they pay.

6.2 Tiered Licence

The most common one is the freemium model. Charging developers/end-
users to use the API/data is strange because they do not know if it is worth
spending money. Freemium model is a common solution to the API providers.
They allow the developers/end-users to use the API/data for free up to a
certain number of calls has been reached and after that they are automatically
charged for API calls or cannot use the API/data until the fee is paid.
This is great for developers/end-users because it allows them to try something
out before committing to it.

31

CHAPTER 6. MONETIZATION MODELS

6.3 Charge based on the subscription model

The API provider offers access to a service or data for a weekly/month-
ly/yearly rate no matter the usage.

6.4 Charge based on units

In this model, the developer/end-users are charged every time they reach a
certain number of API calls. Google Ad-words bills the end-users 0.25 euros
per 1000 API calls.

6.5 Revenue share

In this model, the developer is paid by the provider when the API token that
it is being used has reached a certain number of calls. Besides the developers,
also the end-users can be paid. For example, YouTube pays the users if they
reach a certain number of subscribers or Uber and Lyft pays the driver for
every new rider.

6.6 Cost savings

In this model, the developer gets a discount when he/she puts more traffic
than the threshold on the API. For example, Twilio’s pricing model which is
a mix of charge-directly, subscription, and cost savings. We would imagine
for their enterprise deals looking like a tiered license might occur. Also,
AWS’s tiered pricing, per unit of infrastructure, or duration, charge-directly
by the millions. Whatever method is chosen, consider mixing things up with
a couple of different monetization methods to increase the chances for a faster
ROI.

6.7 Premium upsell opportunity

This is a model used in the SaaS world a lot. Adding API access to a
premium subscription of their services offers substantial incentives to upgrade
to a higher option, as it allows end users to customize their experience and
workflow more easily.

32

6.8. CONTENT ACQUISITION

6.8 Content Acquisition

In this model, the end-user is paid directly and the provider indirectly. Com-
panies that are based on user-generated content find ways to increase the
quality of the content by rewarding the end-users every time they publish
additional content. In this way, the end-users generate revenue streams for
the provider indirectly. A good example is eBay Selling API. Third-party
developers can easily use this API to list items programmatically, helping
eBay increasing their revenue.

6.9 Content Syndication

In this model, the goal is to open the content as widely as possible putting
more traffic from the consumers and more interaction with the product.
Amazon is one example of a company that uses content syndication to dis-
tribute their inventory on as many third-party apps as possible. They do this
with their Product Advertising API which provides programmatic access to
their product selection-and-discovery functionality. Third-party developers
can use this API to offer product search and detailed information, including
product reviews and recommendations. As an added plus, developers also
receive a share of the revenue generated from sales.

33

CHAPTER 6. MONETIZATION MODELS

6.10 Wrap up

Nine monetization models can be categorized in 3 different groups, devel-
oper pays, developer gets paid and indirect.

Figure 6.1: Monetization Categories

34

6.10. WRAP UP

Figure 6.2: Developer pays

Figure 6.3: Developer gets paid and Indirect monetization model

35

Chapter 7

Legal considerations

Not understanding the ownership of the content an API provider is trying to
publish publicly or between partners, like tweets, hypermedia content, mar-
ket data and other information, can bring serious legal implications for the
company.
Before designing an API take into consideration the rights for distributing
the content to others and the rights that want to be granted to others who
want to consume the API.
The first consideration is associated with legal rights and contractual rela-
tionships between a company and the others, while the other one is handled
through direct contracts with partners and “Terms of use” contracts for the
public.

7.1 Contracts and Terms of use

Terms of use differ for an API across target audiences because a public API
and a partner API will have different contracts managing the relationships
with the end users or developers.
Within the terms of use, it is important to incorporate trademarks, copy-
rights and branding requirements. For example, the Unsplash API, restrict
the developers who consume the API from using “Unsplash” as the name of
an application. 1

Terms of use are often presented at the end users of the API and to develop-
ers that integrate the API into mashups and applications. When these are
directed at the end users, the API infrastructure must include a mechanism
to prevent API access until a particular end user is eligible for the terms of

1Unsplash API Guidelines: https://medium.com/unsplash/unsplash-api-guidelines-
28e0216e6daa

36

7.2. PRIVACY POLICIES

use. Furthermore, when these change, the API infrastructure must ensure
that the user is eligible for the new terms before letting them continue.
This sort of mechanism works well when combined with the OAuth, security
model. To obtain an OAuth token, users usually provide their security cre-
dentials to the API provider using a web-based form. This login form asks
the user for consent and not allow the login to succeed until it is granted.
When the terms of service change, the API provider can revoke the OAuth
tokens, causing them to automatically go through the authentication pro-
cess, including granting consent, again. If a company has terms of use for a
website, it is important to incorporate the API terms into the overarching
terms applied to the site and/or other digital properties. [DW11]

7.2 Privacy policies

When a company handles sensitive data, privacy policies come into play. A
privacy policy is a statement or legal document that discloses some or all the
ways a party gathers, uses, discloses and manages client’s data.2

The same principle applies when it comes to APIs, but is important that
these policies be modified time by time to cover the growing needs that the
API creates.
For example, if the privacy policy for a website ensures that any end user data
will only be used on the website, then if the company plans to use the API
for any mobile strategy, it is likely that the company will need to broaden the
policy to allow the end user data to be used on all of the digital properties.
On the other hand, if the company plans to offer a public API, it is possible
that such user data will need to be restricted to the public audience. As a
result, the privacy policy is not necessary to be changed. [DW11]

7.3 Data retention policies

Data retention policies are company’s policies regarding the saving of data
for regulatory or compliance purposes, or the disposes of it when no longer
are needed. The policies emphasize how data or records need to be format-
ted, what storage devices or system to use and how to log these.3

Regarding APIs, data retention policies are designed to make sure that data
used from the API do not grow stale, misinterpret, compromise the company
and its users.

2Privacy policy: https://en.wikipedia.org/wiki/Privacy policy
3Data retention policy: https://en.wikipedia.org/wiki/Data retention#Data retention policy

37

CHAPTER 7. LEGAL CONSIDERATIONS

For example, Facebook has a 24-hour data retention policy, meaning that
developers are to retain user data 24 hours or less. Facebook wants to re-
strict retention to a relatively narrow window because its users are active in
updating their content. Moreover, Facebook wants to restrict the time that
this user data can be used to provide some degree of protection for their
users. [DW11]

7.4 Attribution of Content and Branding

Brand awareness refers to the extent to which customers or end users can
recall or recognize a brand, and it is a key business because it makes the end
users or developers aware of the product.4

The same principle applies to APIs. When external developers use an API,
the API provider must ensure that branding is shown and protected for every
content in the API. [DW11]
The API provider should also show how the brand wants to be handled by the
developers. For example, DarkSky which is a weather forecasting provider,
states clearly in terms of service that applications or services which incorpo-
rates data should display the message “Powered by DarkSky”, together with
the copyright symbol and logo. 5

7.5 Service-Level Agreements

A Service-Level Agreement (SLA), is a contract between a service provider
and the consumer that defines the level of service expected from the provider.
SLAs specify what customers will receive, but not how the service is provided.
6

SLAs are used in different ways, depending on the business strategy of the
API. Regarding public API with a freemium monetization model, SLAs are
quite weak. They make sure that the performance is excellent coupled with
weak promises about service levels.
When it comes to partner APIs and public APIs where the consumer is pay-
ing, failing to have an SLA has greater consequences. SLAs need to include
explicit documentation of remedies for outages, interruptions of service, se-
curity events, and the like. [DW11] Before starting the API Design, is impor-

4Brand awareness: https://en.wikipedia.org/wiki/Brand awareness
5Dark Sky Terms: https://darksky.net/dev/docs/terms
6What is a Service Level Agreement: https://www.paloaltonetworks.com/cyberpedia/what-

is-a-service-level-agreement-sla

38

7.6. WRAP UP

tant to answer some fundamental questions regarding legal considerations.
[DW11]

1. As an API provider, what are your rights regarding to the content you
will provide though the API?

2. As an API provider, what are the rights that you can grant to con-
sumers of the API?

3. As an API provider, are you talking into consideration other parts of
the company that could impact the API?

7.6 Wrap up

Legal aspects should be taken in consideration to avoid implications for the
company.
Terms of use are often presented at the end-users, developers, and are rules
by which one must agree in order to use the API.
Furthermore, when companies handle sensitive data, privacy policies must
be introduced. Privacy policies disclose all the ways a party gathers, uses
and manages the client’s data.
Additionally, data retention policies are designed to ensure that data which
is consumed by the API are not misinterpreted and does not compromise the
provider.
Moreover, branding is a key business, because it makes end-users to be aware
of the product and the provider must make sure that branding policies are
clear and how to brand wants to be handled by third-parties.
Last by not least, service-level agreements, which are contracts between the
provider and consumer, defining the level of expected service, needs to be
very specific in order to avoid misconception of the service and provide trans-
parency to the consumers.

39

Part II

Design Phase

40

Chapter 8

API Design

To design a great API, it should be realized that APIs are in fact products and
its customers are the developers. This means that when creating an excellent
customer experience, it needs to create a great developer experience.
A good API design improves the usability, resulting in the higher adaption,
higher customer satisfaction and in an overall better chance of success in the
market. On the other side, a bad API design will lead to endless support calls
and emails, followed by a bad reputation, which can make all the services
unreliable.
During the year of 1995, Jakob Nielsen and Rolf Molich created a set of design
heuristics for evaluating the usability of user interfaces. They are called 10
usability heuristics for user interface design, are broad rules of thumb
and not specific usability guidelines. [Nie95]

8.1 Visibility of system status

“The system should always keep users informed about what is going on,
through appropriate feedback within reasonable time.” — Nielsen [Nie95]

While using a software application, there are cases when the user can get
easily confused when the software does not provide any relevant feedback.
For example, when a user presses the button to upload an image and not
getting any response from the application, would leave the user wondering if
the button was pressed correctly or the image was uploaded with success or
not.
The same principle should also be applied to APIs. Providing better infor-
mation while calling the API, will help developers to understand what is

41

CHAPTER 8. API DESIGN

going on with the API, leading to a better development experience. Better
information means the kind of information that is concise, understandable
without going much into technical details.
From the developer’s perspective, the interface is the concern, not what is
going on in the underlying implementation. In an API takes longer to be
executed successfully, the developer should get a meaningful, easy to under-
stand the message.
In the case of Web APIs, the HTTP status codes provide concise, meaningful
information about the system status. HTTP status codes are divided into
five groups: 1xx, 2xx, 3xx, 4xx, 5xx. [Who]

1. 1xx include informational status codes that are intended to be used
while the server continuous to process the request.

2. 2xx include status codes that are used when an API request is suc-
cessful, informing the caller that things went well.

3. 3xx include redirection status codes that tells the caller to look for
the requested resource somewhere else.

4. 4xx include status codes that help the caller to understand what went
wrong by his/her side.

5. 5xx include status codes that shows the caller that something on the
server side is not working as expected, no user fault.

Providing just 202 and 404 gives information that is understandable from
the developers on what happened with the API call, but API designers can
go beyond that and providing additional information in the message bodies,
incorporating problem details. By increasing the system status information
should increase the usability of the API.
When evaluating APIs answer the following the questions and look for cases
where a lack of status visibility makes the interface harder to understand.
[Mit]

1. Is it difficult to learn when something has gone wrong in the system?

2. Does the interface tell us the result of invocations and requests?

3. Should the system describe any relevant side-effects that may have
occurred?

42

8.2. MATCH BETWEEN THE SYSTEM AND THE REAL WORLD

8.2 Match Between the System and the Real

World

“The system should speak the users’ language, with words, phrases and con-
cepts familiar to the user, rather than system-oriented terms. Follow real-
world conventions, making information appear in a natural and logical order.”
— Nielsen [Nie95]

A user-friendly user interface is that kind of interface that matches the user’s
model of the real world and interfaces that feel familiar are easier to learn
and use.
When it comes to API usability, the user we care about is the developer that
will use the interface. This means that the language and conventions of the
API should match the user’s world as closely as possible.
Mapping this heuristic to a concrete use case, let us mention some terms
related to RESTfull APIs as part of the example [Hal]:

1. Resource, is an object or representation of something from the real
world. This object has some attributes and a set of operations that can
be applied on it. For example, “Movie”, “Episode” are resources with
a certain meaning in the real world and “create”, “read”, “update”,
“delete” are operations that can be applied on.

2. Collection, is a set of resources of the same type. For example, a
collection of “Movies” or “Episodes”.

3. URL (Uniform Resource Locator), is the path that a resource or col-
lection of resources can be located and some operations can be attached
on it.

Based on these terms some conventions that match the real world should be
applied.
The resource should always be plural in the API endpoint, and if we want to
access a resource, we can specify the operation and pass the ID in the URL.
The actions should come with a set of standard verbs that can be applied to
noun-based resources available via APIs, like:

1. GET method requests a representation of the specified resource. Re-
quests using GET should only retrieve data and should have no other
effect.
For example in RESTfull APIs, /episodes/123/actors returns list of
all actions from episode with ID 123.

43

CHAPTER 8. API DESIGN

2. POST method requests that the server accepts the entity enclosed
in the request as a new subordinate of the web resource identified by
the URI. The data POSTed might be, for example, an annotation for
existing resources; a block of data that is the result of submitting a
web form to a data-handling process; or an item to add to a database.
For example in RESTfull APIs, /episodes/123/actors creates a new
actor in episode with ID 123.

When evaluating APIs, answer the following questions to see if they match
the real world examples. [Mit]

1. Does the language match the developer’s real world?

2. Is the vocabulary understandable?

3. Does the API behaves like the APIs that developers are used to con-
sume?

8.3 Consistency and Standards

“Users should not have to wonder whether different words, situations, or ac-
tions mean the same thing.” — Nielsen [Nie95]

Consistency is an important part when it comes to user interfaces, and fre-
quent changes can lead to unpleasant surprises and frustration, making the
interface challenging to learn — as soon as developers got used to the previ-
ous version — and less usable.
The same thing also applies to APIs. When a developer learns how to use
an API, really means learning the rules for using the interface of it. This in-
cludes every part of the API, from the error messages, authorization headers,
query parameters of resources, resource attributes to the presentation style
of the documentation.
Every frequent change in this scope establishes new rules that should be
learned and tested by developers.
Of course, there are cases when change is inevitable and a good thing. When
an API has reached a certain point, and it is expanding beyond its original
intent, it is time to consider the next version of the API.
It is essential to consider the advantages and disadvantages of how to let the
developers know about it. API versioning can have complex implications for
developers and products where it is being used.

44

8.3. CONSISTENCY AND STANDARDS

Once start taking things away or dramatically changing what’s in place, it is
time to consider another version. To do that, there are different ways:

1. Traditional way v+1 indicates significant changes to API consump-
tion. It can tell a radical change, a minor change or just a bugfix. In
each case, the developer should refactor the code in products to adapt
to the new version because they are not usable anymore.

2. One URI to rule all, is another way for API versioning. The purpose
is not to change to URI for every upgrade. If the API structure changes,
resources are modified, the API is relaunched with the same URI. This
way will push developers in code adaption and refactoring in the same
way as in the Traditional way.

3. Backward compatibility is another way for API versioning. In this
way API clients that still try to point to an old API should be informed
to use the latest API version with 30x HTTP status codes, which
indicated redirection. The products that use the old version of the API
will not be crashed at runtime, but developers are pushed to adopt new
API changes because the old versions are not technically supported.

Before evaluating an API, look for cases where the developers would be sur-
prised and confused by the way a particular part of the API looks differently
from the conventions that are established in design.
When it comes to versioning, it is a multi-faced conversation and not just a
technical problem. The new version needs documentation to transition suc-
cessfully. Furthermore, the requirements for supporting multiple versions of
an API can be very high regarding development support and management re-
sources. However, in the end, it is essential to answer the following questions
before taking any action:

1. Is the API consistent across its scope?

2. Is the vocabulary consistent and do the words have the same meaning?

3. Does the API implementation match the documentation?

4. Is it necessary to apply changes and version the API?

5. Do I have the resources to version and support old version of the API?

45

CHAPTER 8. API DESIGN

8.4 Error Prevention

“Even better than good error messages is a careful design which prevents a
problem from occurring in the first place. Either eliminate error-prone con-
ditions or check for them and present users with a confirmation option before
they commit to the action.” — Nielsen [Nie95]

Communicating errors is important, however, is even more important and
even better to prevent users from making errors in the first place. The solu-
tion is to redesign a system to be less error-prone.
The term “user error” implies that is the fault of the user for having done
something wrong, while actually, the design is the fault for making it too
easy for the user to make an error. [Lau]
The same idea is also applicable to APIs. API errors include problems that
can happen in client side, like typos, misspelling, syntax errors, also errors
that can happen after the application is shipped for production. While pre-
venting errors, the API provider can greatly improve usability.
To do so, as an API provider, provide examples how to use and test each
API endpoint, document well what are the inputs for a resource and what
outputs are expected back from it. Make sure that the design is not overly
complex and does not have a high learning curve for developers to avoid
misunderstandings and misuses.
When reviewing an API, look for these cases by answering the following
questions. [Mit]

1. Does the documentation provide examples how to use the API?

2. Are the examples correct and not misleading?

3. Is the interface of the API overly complex and easier to be learned by
the developers?

4. If complex, how can it be simplified?

8.5 Flexibility and efficiency of use

“Accelerators — unseen by the novice user — may often speed up the interac-
tion for the expert user such that the system can cater to both inexperienced
and experienced users. Allow users to tailor frequent actions.” — Nielsen
[Nie95]

46

8.5. FLEXIBILITY AND EFFICIENCY OF USE

An interface which provides flexibility helps different types of users to be
more efficient to the system. One common example is the keyboard shortcut
for copy-paste. Probably for novice users, this is unseen, but after trying,
it can be seen that remains an option that increases efficiency no matter in
what context the user is using it.
Flexibility and efficiency of use are also applicable when it comes to APIs.
An API that offers flexibility and efficiency of use to developers is easy to be
consumed by novice developers and for more experienced ones, improves the
efficiency. [Mit]
Cases that are worth mentioning are support of multiple API styles and
formats, pagination, sorting, searching, filtering and different content types.

1. Pagination
Many application that are powered by APIs, return pages and pages
of data. Pagination provides efficiency when the dataset is too large, is
divided into portions of data called pages, which improves the perfor-
mance and is easier to handle performance. There are three primary
pagination types: [Doe18]

(a) Limit/Offset, uses a limit in the number of results returned and
the position of the first result(offset) to determine the result re-
turned.

URL Description

. . . /episodes Returns the first 50 episodes (the de-
fault limit is 50).

. . . /episodes?limit=10 Returns the first 10 episodes.

. . . /episodes?offset=20&limit=80 Returns episodes in range 20..80.

. . . /episodes?offset=10 Returns defects in range 11..61 (the
default number of the returned
episodes is 50).

Table 8.1: Example: Limit/Offset Pagination in RESTfull APIs

47

CHAPTER 8. API DESIGN

(b) Page/Page Size, uses Page Size to indicate how many results
should be returned, while the Page tells which set of results to
return.

URL Description

. . . /episodes?page=1 Returns the episodes in page 1.

. . . /episodes?page=3& per page=20 Returns the episodes in page 2 and 20
episodes in that page.

Table 8.2: Example: Page/Page Size Pagination in RESTfull APIs

(c) Cursor based paging returns a token value or URL that is pro-
vided with the following call to retrieve the next set of results.
The cursor token is usually combined with a value to determine
the max results to return.

URL Description

. . . /episodes?since id=12&max id=34 Returns the episodes that are between
these 2 IDs.

Table 8.3: Example: Cursor Based Pagination in RESTfull APIs

2. Searching & Filtering
Exposing resources through a single URI can lead the client requesting
a significant amount of data, when sometimes only a part of the data
is necessary and usefully.
For example, a developer working on an application to include a list of
episodes that have a rating higher than a certain threshold. Without
the possibility to search/filter the URI, the developer has to implement
all the logic in client side, which results to be inefficient and inconve-
nient. Furthermore, the network bandwidth is wasted, together with
the processing power of the server where the API is hosted.
Instead, the API can allow the developer to pass some parameters in the
query string of the URI such as “. . . /episodes?minRating=9.5”. In
this way the result is transmitted faster and in a more efficient way to
the user. [mic16]

3. Sorting
Similar principle as for searching & filtering applies to sorting. Develop-
ing sorting algorithms in client side takes extra time for the developers.

48

8.5. FLEXIBILITY AND EFFICIENCY OF USE

Moreover, the developers should know how to design an efficient algo-
rithm, because when it comes to big data, the algorithms may suffer.
Furthermore, as I said it before, the processing power of the server is
wasted for not being taken into consideration.
Instead allow the client to pass parameters in the query string of the
URL like “. . . /episodes?sort=name&rating”

4. Content Types
When designing an API, one of the most important things to consider
is data formats or saying it differently, content types.
The bridge between the client and the content must be created in a
way that is usable by the client and recognizable by the server.
An API with well-crafted architecture and implementation is not usable
if the supported content types are limited, that is why is essential to
support many of them.
Content types can be separated into four general categories. Direct
data, feed data and database data formats. [San16b]

(a) Direct data formats are designed to handle data between ma-
chines. Three most common direct data formats are JSON (JavaScript
Object Notation), XML (EXtensible Markup Language) and YAML
(Yet Another Markup Language)

Figure 8.1: JSON data format example

49

CHAPTER 8. API DESIGN

Figure 8.2: XML data format example

Figure 8.3: YAML data format example

(b) Feed data formats are tied more to user entity rather than ma-
chine usability. Formats in this category are: RSS (Rich Site
Summary), Atom and SUP (Simple Update Protocol). Feed
data formats are typically used to serialize updates from differ-
ent servers, sites or front-end interfaces and alert users in these
changes.

50

8.5. FLEXIBILITY AND EFFICIENCY OF USE

Figure 8.4: Atom data format example

Figure 8.5: SUP data format example

(c) Database data formats are used to handle communication be-
tween users and databases. While direct data formats generate
data upon request, database data formats take generated data
and archive it for later use. Formats in this category are CSV
and SQL.

While an API provider could spend a lot from the budget in develop-
ment to expand the content type support, it can end up with an API
that requires more support than usual and can lead to failure if certain
content types are not used. This is a risk of supporting many content
types in an API.

51

CHAPTER 8. API DESIGN

When reviewing an API, look for these cases by answering the following
questions. [Mit]

1. Does the API provides shortcuts to boost the efficiency like pagination,
searching & filtering and sorting?

2. Does the API supports at least the most popular content types like
JSON, XML and CSV?

3. Are there opportunities to optimize any repetitive or unnecessary steps?

8.6 Help Users Recognize, Diagnose, and Re-

cover from Errors

“Error messages should be expressed in plain language (no codes), precisely
indicate the problem, and constructively suggest a solution.” — Nielsen
[Nie95]

API error messages have two audiences: The machine-driven client that
acts programmably on what it receives and the developer that is responsi-
ble for writing applications that use the API. In this section we care about
error messages that target the developers. [Mit]
Based on Error Message Guidelines by Nielsen, good error messages should
include:

1. Explicit indication that something has wrong, because when devel-
opers make mistakes and get not feedback from the API, they are
confused and completely lost.

2. Human readable language instead of codes, otherwise the develop-
ers will not understand well what exactly went wrong.

3. Polite messages, that does not blame the developers doing something
wrong.

4. Precise descriptions, that describe the exact problem that happened
while calling an API endpoint, rather that vague messages like “syntax
error”.

5. Constructive advice in error messages that helps the developers how
to fix the problem.

52

8.6. HELP USERS RECOGNIZE, DIAGNOSE, AND RECOVER FROM
ERRORS

A great example is Twitter API, which provides descriptive error messages
that helps the developers to understand the problem and how to recover from
it. [San17a]

Figure 8.6: Twitter API error message

First, by looking at the data, we can see that we have submitted a 400 Bad
Request, which leads us to know that the problem is in our request.
We can see, however, that we are receiving a unique error code that Twitter
has called it “215” with an attached message “Bad Authentication Data”.
This error message gives an explicit indication that something went wrong.
Also, it is human readable and understandable. Furthermore, it does not
blame the developer for doing something wrong. It is precise because it
describes the problem that occurred. Moreover, it gives constructive advice,
because our error lies in the fact that we did not pass any authentication
data.
When reviewing an API, look for these cases by answering the following
questions. [Mit]

1. Is the error information correct?

2. Is the machine readable information provided?

3. Does it describe the error in a way that the human use can understand
it?

4. Is enough information provided to correct the error?

53

CHAPTER 8. API DESIGN

5. Does the error messages conform to “Error Message Guidelines” by
Nielsen?

8.7 Help and Documentation

“Even though it is better if the system can be used without documentation, it
may be necessary to provide help and documentation. Any such information
should be easy to search, focused on the user’s task, list concrete steps to be
carried out, and not be too large.” — Nielsen [Nie95]

API documentation is a technical deliverable containing instructions about
how to effectively use and integrate an API to a certain software application
and is the main interface through which the new developers interact with the
interface.
Developers, novice or experienced, use the documentation to initially under-
stand the functionalities of the API. Furthermore, due to errors that can
happen while execution, the documentation can guide the developer to han-
dle these errors.
In one hand, having proper API documentation, allows new developers to
understand the functionalities behind an API solution effectively. However,
on the other hand, not having good documentation could overly complex the
API.
To start with, it is important to assume nothing about the developer ex-
perience when writing the documentation. The language should be easy to
understand without distracting the readers. Moreover, by eliminating as-
sumptions, will force the team to classify terminologies and therefore relate
concepts more clearly to developers.
To continue with, most documentation describes the functionality of an API
in a static and theoretical way. This kind of documentation merely changes
unless new features are implemented. In this way, the functionality is ex-
plained without having the possibility to experiment directly.
To make the documentation dynamic rather than static is by introducing
sandboxes. Sandboxing is a controlled, known environment where develop-
ers can test API calls and their functionalities against the resources [San17b].
Sandboxing plays a major role in API documentation by giving the possibil-
ity to truly learn the API rather than memorizing it.
In static documentation, the developer has to memorize or constantly refer-
ence the documentation.

54

8.7. HELP AND DOCUMENTATION

With time, the developers will gain more knowledge and better under-
stand the API, but the learning curve from beginning to end is high.
In a sandbox, the developer manipulates data in real time and experiment
with the API endpoints in a way that is not possible in the static documen-
tation. A great example of sandboxing merged with documentation is the
GraphQL API Explorer from GitHub and Slack API Documentation. Both
of them allows the developer to test functionality within the sandbox envi-
ronment and demonstrates the ease by which a developer can learn through
experimentation rather than memorization.
Despite having or not sandbox implementation in the documentation, there
are four essentials that every API should have in its documentation. [San18]

1. Authentication scheme
Authentication is the process of recognizing a user’s identity that tends
to use an interface, and it is the key to manage the user’s rights over
the interface.1

An API may offer many actions to modify the data, and some of them
may require some specific rights which are specified during the authen-
tication process.
There are many authentication schemes, but the most common are:

(a) HTTP Basic Auth is an approach in which the user provides
a username and password in HTTP Header when making the re-
quest.

(b) API Keys is another approach in which a unique generated value
is assigned to each first time user, meaning that the user is known
or unknown for the system.

(c) OAuth is an approach that combines authentication and autho-
rization in its process. When the user logs in into a system, the
system will request authentication in a token form. The authen-
tication server where the request is forwarded will reject or allow
the request. Such a token will give the user the rights across the
interface. Figure8.7.

Failure to document the authentication method transparently, will not
only make the discovery of API data much more difficult, but it can
also push the first time developers not to use the API because of the
complexity that the documentation perceives.

1Authentication: https://searchsecurity.techtarget.com/definition/authentication

55

CHAPTER 8. API DESIGN

Figure 8.7: OAuth authorization process.

2. HTTP Call Methods
Developers interact with API resources with various HTTP call meth-
ods and documenting which and how methods are used for every re-
source is very important for the API usability. If the HTTP call meth-
ods are not part of the documentation, it is not transparent for the
developer how to access the resource’s data.

3. Requests and Examples
Just stating in the documentation that the API call exist means noth-
ing unless it is explained its functionality, its limitations and how to
access the data.
This not only will help the developer to understand the API in greater
level but will also allow contextualizing the functions of the API as a
whole. Not showing example API calls that turn the technical infor-
mation into actionable data, makes the documentation incomplete.
Furthermore, examples help the developer to onboard faster and learn
more thoroughly about the resource functionality by doing.
Also, providing examples can help the developer to recover and pre-
vent errors while looking at their failed requests and compare them
with what it should be.

56

8.8. REST VS. GRAPHQL

4. Expected Responses
Having the expected response for every resource, part of the documen-
tation is critical. When the developer builds a software application on
top of an API, it is valuable to know how the resource’s data look like
before calling and manipulating them.

API documentation can be evaluated in the same way as any technical writ-
ing. Before evaluating it, try to answer the following questions:

1. How well the documentation map the problems that a developer will
try to solve?

2. Is the language and vocabulary understandable?

3. Does it provide information that helps the developer to understand the
functionalities behind the system?

4. Does it include the four basic essentials that were explained above?

Even though the Nielsen’s heuristics give strong fundamentals about API
design and usability, a specific API architecture can help the developers to
solve problems efficiently and provide more opportunities. For that, I want
to write about two most popular API architectures: REST and GraphQL, a
comparison between them and why companies like Github are changing their
API from REST to GraphQL.

8.8 REST vs. GraphQL

REST is an architectural concept, with no official set of tools, no specifica-
tion and is designed to decouple an API from the client. REST focuses on
making APIs last for decades, instead of optimizing the performance.
GraphQL is a query language, with a list of specifications and tools, designed
to operate over a single endpoint. GraphQL focuses on optimization for per-
formance and flexibility.

REST and GraphQL, both of these architectures exchange data over HTTP,
but GraphQL has some small changes to make a big difference to the devel-
oper experience of building and consuming APIs.
The core part of REST is the resource. The URL identifies the resource, and
the developer interacts with it through built-in HTTP verbs.
Due to this nature, there are some issues with REST that GraphQL fixes.[San17c]

57

CHAPTER 8. API DESIGN

Figure 8.8: Interpretation of fetching resources with multiple REST round
trips vs. one GraphQL request [Stu17]

1. Round trips and repeat times
In most cases, in production APIs, the problem is that these resources
are complicated and relational to each other.
Fetching these requires round trips between the client and the server
to retrieve the data. Also, in some cases repeated trips are necessary.
This is a big downside for REST because as more as relational the
resource is, the slower is to retrieve its data.
One of the benefits of GraphQL over REST is the fact that GraphQL
has fewer round trips than REST, which makes it more efficient.
GraphQL has a single endpoint, and it unifies the data that would exist
in multiple endpoints, like in REST, and creates packages.
By packing the data, its delivery is more efficient and the amount of
resources for round trips and repeated times is decreased.

2. Over/Under-fetching
Over-fetching happens when more data is fetched than necessary from
the client, while under-fetching happens when not enough data is fetched
upon request.
For example, in REST, if a developer requested a list of products and
their prices, the result would have product descriptions and images. If
prices were quoted in another resource, the developer would have to

58

8.9. THE GITHUB GRAPHQL API

make another request to retrieve them.
GraphQL is build to take care of this problem. In there, the developer
can make data query, specifying what to retrieve. These results are
delivered through shifting the data definition in client side, rather than
in server side, like in REST.
Over/Under-fetching is a common problem in REST because the server
defines which data to return, while in GraphQL the server declares the
available data and the client specifies what should be returned.

3. Dynamic typing and poor metadata
REST suffers from dynamic typing.
Dynamic typing means that the values are checked during executing,
and a poorly typed operation might cause a halt in the system or sig-
nal an error during runtime. On the other side, GraphQL uses static
typing, which means that the operations are checked before being exe-
cuted, and the system might reject before it starts.

To summarize, both REST and GraphQL are just ways to call functions over
a network. If building a REST API is familiar, implementing a GraphQL API
will not feel much different. However, GraphQL has some advantages because
it calls several resources without multiple round trips, requests and retrieves
the exact data that is needed and moreover the operations are checked during
compile time.

8.9 The GitHub GraphQL API

One and a half years ago, GitHub announced the fourth version of their
API, which supports GraphQL. GitHub changes the API focus from REST
to GraphQL to solve two problems.
The first problem to solve was scalability. The REST API that now is part
of version 3 was responsible for over 60 percent of the requests.
GitHub uses a lot of hypermedia content, and because of that, hypermedia
navigation requires a client to repeatedly communicate with the server to get
all the information that it needs. API responses were filled with all sort of
URL hints in the JSON responses to help users navigate through the API,
and this was not a flexible way.
Sometimes, it was required to do two or three API calls to create a complete
view of a resource. Furthermore, API responses sent too much data and did
not include the data that the users needed.

59

CHAPTER 8. API DESIGN

The second problem was encountered when GitHub was auditing its end-
points. Then wanted to collect meta-information about endpoints, they
wanted to be smart about how the resources could be paginated, and they
wanted to ensure type safety. Because of these reasons, they support GraphQL
in their fourth API version. [Tea16]

8.10 Wrap up

From 10 heuristics, only 7 of them are applicable to API design, because 3
others: “User control and freedom”, “Recognize rather than recall”, “Aes-
thetic and minimal design” are relevant only to user interface design.
Even though these heuristics are 23 years old, they are still relevant today,
also applicable in the API design, giving strong fundamentals no matter
the architecture.
By working through each heuristic, think critically an in details about the
API and furthermore, how can be improved.
In spite of the fact these heuristics give strong fundamentals, a specific API
architecture can help developers to solve problems efficiently, providing fea-
sibilities and more opportunities. Based on this reason, I did a comparison
between REST and GraphQL and why companies are migrating to GraphQL.

60

Part III

Build Phase

61

Chapter 9

API Driven Technologies

More than a decade ago, software applications were physically shipped in
CD-ROMs and being unused until the user’s initial installation. Nowadays,
most of the code is shipped over the Internet, which means that continuous
software update is not only achievable but also expected by developer and
end-users and DevOps play a big role in this shift.
DevOps stands for Development and Operations, which is a combination of
teams, tools and best practices that increase the ability of a company to
deliver services and applications faster. By delivering faster, companies can
innovate and improve products faster. The quicker the release of new fea-
tures and bug fixes, the faster the response to the customers’ needs.
Furthermore, with the help of DevOps, a company ensures the quality of ser-
vice/application updates and infrastructure changes. In this way, a company
can reliably deliver at a faster pace while maintaining positive feedback from
developer and end-users. [Ama18]
Transitioning to DevOps requires changing the internal culture and mindset.
DevOps helps because it removes the barriers between two teams, develop-
ment, and operations, in which they work together to optimize the produc-
tivity of developers and reliability of operations. Both teams communicate
more frequently, increase productivity and improve the quality of services
they provide. Besides development and operational teams, quality assurance
and security teams may also become tightly integrated with those teams.
Companies should use a DevOps model, regardless of their internal structure
and have teams that view the development and infrastructure lifecycle as
part of their responsibilities. [Ama18]

62

9.1. DEVOPS PRACTICES

9.1 DevOps practices

Automating and streamlining the software development and infrastructure
processes are key principles that help organizations innovating faster.
Accomplishing these practices proper tooling is needed. [Ama18]

1. Frequent with small updates
One practice is to perform very frequent with small updates, to inno-
vate faster for the customers. Frequent with small updates makes each
deployment less risky. In this way, teams identify bugs faster because
the last deployment that caused the error can be identified easily and
fixed.

2. Microservice Architecture
Companies can also use microservice architecture to make their applica-
tions more flexible. Microservice architecture decouples large, complex
systems into simple, independent project. Applications are broken into
many individual components with each component being responsible
for a single purpose and operating autonomously of its peer compo-
nents. This architecture reduces the coordinator overhead of updating
the applications. For example, Netflix uses microservice architecture
to manage their services all around the globe.

3. Continuous Integration
Continuous Integration is a DevOps development practice where de-
velopers regularly merge their code changes into a central repository,
after which automated builds and tests run. The key goals of con-
tinuous integration are to find and address bugs quickly, improving
software quality and reducing the time it takes to validate and release
new software updates.

4. Continuous Delivery
Continuous delivery is a DevOps development practice where code
changes are automatically built, tested, and prepared for a release
to production. With continuous delivery, every code change is built,
tested, and then pushed to a non-production testing or staging envi-
ronment. There can be multiple, parallel test stages before production
deployment. In the last step, the developer approves the update to pro-
duction when they are ready. This is different from continuous deploy-
ment, where the push to production happens automatically without
explicit approval.

63

CHAPTER 9. API DRIVEN TECHNOLOGIES

9.2 Types of Continuous Integration

9.2.1 Traditional CI

Jenkins was the first to gain widespread adaption. Build by Sun Microsys-
tems in Java and open sources in 2004. In Jenkins developers can set up
a workflow to get their code from Subversion, Git, Mercurial and trigger
code builds, run tests and deploy every time builds and tests are successfully
passed.
Initially, Jenkins was meant to support Java, but developers created plugins
to support many other languages. Jenkins is only available as on-premise,
but some cloud providers have created solutions based on Jenkins.
Similar to Jenkins, is TeamCity by JetBrains, which is another on-premise
Java-based tool and Bamboo by Atlassian which can be either on-premise or
hosted on Amazon EC2.
Tests in a CI workflow have evolved. In the beginning, only unit tests were
included. Testing objects and components in isolation. Later on, automated
integration testing was born, in which individual software modules are com-
bined and tested as groups. [API16]

9.2.2 Cloud CI

Many development teams were tired of self-hosting their CI system. Config-
uring it often proved to be consuming in time, money and resources.
TravisCI is a cloud-hosted CI service build on top of the GitHub API. Devel-
opers build any projects that are hosted on GitHub. Travis starts building
and running tests for every commit or merge request.
Development teams use this kind of cloud-based solutions to no longer face
the problem and do extra work for managing those tools. [API16]

Nowadays, most developers would not consider working on a project with-
out setting up a CI workflow. APIs are becoming a cornerstone of internet
communication, and its stability is crucial and caring about, so CI is playing
and will play an important role in the API development.

9.3 API Management Services

Unaware that there are service providers that can help plan, deploy, launch
and manage the API infrastructure, companies often choose to do all the

64

9.3. API MANAGEMENT SERVICES

work by themselves.
Below I will do a short analysis of some vendors in the API Management
market. The analysis below is based on the study ”Magic Quadrant for Full
Life Cycle API Management” by Gartner. [PM16]

9.3.1 API Design Services

1. Apiary offers a platform for the API design life cycle and is the spon-
sor of API Blueprint, an open source markdown language for describing
APIs. It is offerings mainly apply to the design, implementation stages
and also includes versioning functionality, but does not directly offers
an API Gateway or developer portal. Moreover, the platform encour-
ages and guides API providers though iterative API design lifecycle.
However, if the API is already designed, Apiary is not relevant to the
case. [PM16]

2. Oracle has a long tradition in the infrastructure market. To fulfill
API Management requirements in its client base, Oracle had an agree-
ment for Vordel API Gateway which is integrated and sold as Ora-
cle API Gateway. Its full product line is generally market as Oracle
API Platform Cloud Service which offers API Manager, API Manager
Cloud Service, Oracle API Catalog, and Oracle Communications Ser-
vices Gatekeeper. However, Oracle’s offering is still young, and its
functionality in policy management and the developers’ portal need to
be enriched to be comparable with competing products in API man-
agement. [PM16]

9.3.2 API Development Services

Continuous Integration has become the cornerstone of software development
and is a fundamental part of agile development.
In the API community, continuous integration tools are part of two groups.
In the first group, there are tools like Jenkins, TravisCI, CircleCI, Bitrise,
BuddyBuild and Bamboo that help drive the build processes, allowing
automated builds and execution of tests.
The second group contains tools that help companies implement continuous
integration for the API they are creating. These tools execute tests and other
performance metrics related to the running processes. In this way, this kind
of tools allows companies to introduce a higher degree of automation.
Even without these tools, testing is possible using just shell scripts and cURL,
but this takes more time and effort which may not be available. [API16]

65

CHAPTER 9. API DRIVEN TECHNOLOGIES

9.3.3 First group of CI Tools

1. Jenkins
Jenkins is an open source platform for project automation. It works
as a standalone continuous integration server with a web interface that
can be used to configure the server quickly. Jenkins supports com-
mon use cases like building projects, execution of tests, bug detection,
code analysis and project deployment. Moreover, Jenkins is cost-free.
[Sta17]

2. Travis
Travis is a continuous integration platform that automates the process
of software testing and deployment of applications. Travis CI is free
for all open source projects hosted on the GitHub and for the first 100
builds. There are a few pricing plans that can be chosen and the main
difference is in the number of concurrent builds it can run. [Sta17]

3. Circle

Circle is a continuous integration platform that helps developers to
release their code through build automation, test execution and de-
ployment processes. Circle CI is different from other tools by the way
they offer services. The main pricing block is the container. One con-
tainer is offered for free, and in there it can be added as many projects
as needed, but once it starts getting more containers and the levels of
paralyzations per build are chosen, you start paying. [Sta17]

4. Bamboo
Bamboo is a CI platform that is used by software developers to auto-
mate the process of release management for applications and services.
Bamboo gives developers a way to automate their builds, tests, can also
support different stacks like Docker and AWS and works with different
programming languages. Bamboo is not offered for free. It costs 10
euros for small teams and 800 euros for growing teams. [Sta17]

9.3.4 Second group of CI Tools

1. Abao
Abao is a Node.js package that allows developers to test their Rest-
ful API Modeling Language - RAML - against server where the API
is located. To test the API, ”abao” command should be executed on

66

9.3. API MANAGEMENT SERVICES

command line tool, passing the RAML file and API endpoints as pa-
rameters. [API16]

2. Dredd
Apiary introduced continuous integration tools into their platform, en-
abling developers to automatically test their API with test definitions
generated from their API Blueprint description. [API16]

3. Postman
Postman is an API testing client tool with support from importing API
descriptions in RAML and Swagger. API developers can create tests
using Javascript. The Javascript code can be put into collections from
being executed by automated tests. [API16]

4. Swagger Diff
Swagger Diff is a command line tool to test backward compatibility be-
tween two versions of a Swagger description for a given API. On finding
a breaking change, the tool will return an error, providing details of the
diff that highlights the source of the incompatibility. [API16]

The continuous integration tools that help developers to maintain and keep
the API consistent easily, highlight the fact that these tools are a growing
presence in the API Economy, with a mixture of open source and commer-
cial solutions. The mentioned tools are not intended to be a product review,
rather more highlighting the tools that are highly used by the API commu-
nity.

9.3.5 API Deployment Services

It is a significant problem when users wait for an extended period to get the
API’s data even if they are valuable. If the API provider wants to increase
the customer satisfaction and API usability, it should increase the number
of servers capacity, efficiency and speed, compared to the case when the API
is private or shared with a partner. Nowadays, thanks to cloud computing,
the API providers are deploying their services to the cloud without setting
up the servers and maintaining them for their API by themselves. [Ped14].
API deployment technologies let companies to securely deploy their APIs
to API Management platforms like AWS API Gateway, AWS Lambda, or
Microsoft Azure.

67

CHAPTER 9. API DRIVEN TECHNOLOGIES

1. AWS API Gateway is a fully managed service that makes it easy for
developers to create, publish, maintain, monitor, and secure APIs at
any scale. The AWS Management Console gives the possibility to create
an API that acts as a front door for applications to access data, business
logic, or functionality from your back-end services, such as workloads
running on Amazon Elastic Compute Cloud, code running on AWS
Lambda, or any Web application. Amazon API Gateway handles all the
tasks involved in accepting and processing up to hundreds of thousands
of concurrent API calls, including traffic management, authorization
and access control, monitoring, and API version management. Amazon
API Gateway has no minimum fees or startup costs. Pay only for the
received API calls and the amount of data transferred out. 1

2. AWS Lambda is a zero-administration compute platform for back-
end web developers that run your code for you in the AWS cloud and
provides you with a fine-grained pricing structure. AWS Lambda runs
back-end code on its own AWS compute fleet of Amazon Elastic Com-
pute Cloud (Amazon EC2) instances across multiple Availability Zones
in a region, which provides the high availability, security, performance,
and scalability of the AWS infrastructure. 2

3. Microsoft Azure is a cloud computing platform and infrastructure
created by Microsoft for building, deploying, and managing applica-
tions and services through a global network of Microsoft-managed data-
centers. It provides both PaaS and IaaS services and supports many dif-
ferent programming languages, tools, and frameworks, including both
Microsoft-specific and third-party software and systems 3

9.3.6 Full API Lifecycle Services

1. Apigee is one of the leaders in the API Management and a loud ad-
vocate of APIs. Apigee Edge is the code Apigee management platform
which is available both on-premises and in the cloud. Apigee also pro-
vides Apigee Insights, Edge Exchange, and IoT server. Furthermore,
Apigee provides cloud-based bot detection and protection. For exam-
ple, if an API is found under automated attack, it can be proactively
defended. [PM16]

1Amazon API Gateway: https://aws.amazon.com/api-gateway/
2AWS Lambda: https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
3Microsoft Azure: https://azure.microsoft.com/en-us/

68

9.3. API MANAGEMENT SERVICES

2. Axway, also another leader in API Management. It provides a full
range offer like API Gateway which includes a policy design tool, also
API Manager which contains the API catalog and registry of API con-
sumers. However, Axway harnesses its power as long as its customers
need to go through a learning curve which may struggle the developers
to keep up to pace with the requirements. [PM16]

3. CA Technologies comes from the acquisition of Layer 7. CA has CA
Live API creator that allows developers to build APIs quickly. Besides
this, CA offers API Gateway, Mobile API Gateway and API Developer
portal. The solution is offered on-premises, cloud, and hybrid. How-
ever, CA should improve the ability to innovate faster to new market
trends. [PM16]

4. Cloud Elements is a niche player when it comes to API Management,
which focuses on solving the problem of organizing existing APIs for
easy consumption. The platform allows APIs to be grouped into cate-
gories called API Hubs which combines multiple API into a single inter-
face. The solution is available on-cloud and on-premises. Furthermore,
it provides advanced security and analytics. One advantage of Cloud
Elements is the pricing model. The platform is based on the number
of API consumers, not on the number of API calls, which means that
customers can take advantage of unlimited API calls. [PM16]

5. Dell Boomi is a business unit that is part of Dell, which provides API
Management. It supports two deployment models, a cloud model for
when all endpoints are a cloud-based and on-premises model for when
any of the endpoints are within a corporate framework. However, the
solution lacks to provide an external developer portal. Also, Dell Boomi
lacks support for helping organizations plan their overall API strategy.
[PM16]

6. IBM’s API Management offering is IBM API Connect. It is avail-
able both on-premises and on-cloud. IBM API Connect is available at
three levels: Essentials which is free for developers, Professional, which
is for small business and prices according to API calls and Enterprise,
which is higher call volumes and has the flexibility to shift from on-
premises to on-cloud. Part of Professional and Enterprise are the two
API Gateways: Micro Gateway based on Node.js and Enterprise API
Gateway. IBM has an established and influential market position, a
solid customer base and it has worldwide support and diversified geo-
graphical strategies. [PM16]

69

CHAPTER 9. API DRIVEN TECHNOLOGIES

7. Mashape, was found in 2010 and launched the API Marketplace in
2012 with the goal of becoming a giant API Hub and marketplace.
In 2015 Mashape introduced Kong, which initially was built to secure
and manage the marketplace. Today it consists of tens of thousands of
private and public APIs, as well as many active developers, generating
billions of request per month. The solution is offered both on-cloud
and on-premises. [PM16]

8. MuleSoft is a provider of cloud and on-premises integrations. The
solution is made up by API Designer, API Developer Portal, API An-
alytics and API Gateway. MuleSoft has shown effective marketing and
leadership in the API Management market. By MuleSoft there is an as-
sumption that is an entirely open source, and a lot of API related com-
ponents are, but API Gateway and developer’s portal are not. [PM16]

9. RedHat has become a highly successful open source provider who gives
a broad spectrum of solutions like IaaS, PaaS, visualizations, contain-
ers, and tools to manage all these. [PM16]
Recently RedHat acquired 3scale which is a mature API Management
provider. The solutions can be on-premises or on-cloud. 3scale gives
RedHat a fully functional API Management platform, including also
a developer’s portal. Furthermore, it brings RedHat a strong founda-
tion of understating the market needs and customer’s main priorities.
[PM16]

9.4 Wrap up

During this phase, companies should develop and bring the API into life
while deploying it. I wrote shortly about the DevOps methodology and its
practices. Additionally, about types of continuous integration and API man-
agement services.
The providers behind the management services are mentioned because they
market any subset of API management, both on-premises, and on-cloud.
Furthermore, they provide a comprehensive, general purpose offering a full
lifecycle API management that covers API lifecycle stages – designing, de-
veloping and deploying. Moreover, the providers include a developer portal,
and all mentioned providers generate revenue of at least 10 million euros per
year. All of these can be used to develop and deploy an API.

70

Part IV

Operational Phase

71

Chapter 10

Marketing & Engagement
Strategies

10.1 Evangelizing the API

Evangelizing is one of the methods to market an API. Usually, evangelizing
is done by gathering and meeting developers that are interested and have
knowledge about building APIs, sharing stories and experiences about how
an API can be used. The API evangelists are used to promote the API
thought social media and their blogs. Usually, evangelizing an API is cost-
free, especially if the provider does it, but there are cases when it can become
costly when a group of API evangelists is paid to review the API.

10.2 Hackathons

Hackathons are events, typically lasting several days, in which a large number
of people meet to engage in collaborative computer programming 1. When
it comes to API promotion, Hackathons are a popular method, because API
providers have indisposition a large number of developers that can use and
test the API for certain prototypes. Also, the developers can furthermore
promote the API through word of mouth to other developers. In this way,
though a hackathon, an API provider have higher changes for discoverability
and API usage. Usually, hackathons are geared toward a specific industry
and are location-based, allowing a certain company to target specific demo-
graphics.

1Hackathon: https://en.wikipedia.org/wiki/Hackathon

72

10.3. INTEGRATIONS

10.3 Integrations

Another method to gain attraction is by attaching the API to mashups. It
can be done by creating integrations that will make the API easily available
and consumable by developers who use other products. In this case, the cost
will mostly be associated with software development activities and also about
maintaining and supporting the integrations after it goes live.

10.4 Engaging developers

Developers have lots of options to choose in the API market. ProgrammableWeb
in May 2018 lists around 20.000 public APIs. To reach developers, the API
provider should understand what motivates them to choose the API among
the others.
First of all, the API provider must provide a solid API and communicate
how the API is different from the others that might be similar across differ-
ent channels.
Furthermore, developers should be able to try the API with some success-
ful results, quickly. Even if the API requires a formal partnership, the API
provider can still provide at least some operations that do not require reg-
istration and partnership agreements. For example, Twitter offers without
any registration to fetch public tweets.
Derek Gottfried from New York Times says that while lowering the bar for
the developer to get involved with the API, the better responses the API
provider can get. For example, New York Times offers code samples and
mashup examples highlighting the best use case for the API. [DW11]
While offering this kind of feasibilities, the API provider gets traction from
the developer community.
Moreover, developers expect clear and accurate documentation for the API.
Good documentation can be viewed as strong point why the API should be
used.
In addition to API documentation, the API provider can offer a developer
gallery with examples of application and code that can be copied and pasted
from the sample gallery into the development application.
Also, one of the most effective things the API provider can do is to drive
awareness of the API where the developers hang out. ProgrammableWeb,
GitHub, and other developer sites often have listings, app galleries, and fo-
rums where the provider can post the news about the API.
Once these communities have been identified, the API provider must identify
the developers that have the respect and admiration of their peer and the

73

CHAPTER 10. MARKETING & ENGAGEMENT STRATEGIES

ability to rally other developers. While spending some time in these commu-
nities, it will not be hard to identify these developers. They are the ones that
post the most and respond often. While reaching them, the API provider gets
help to improve the product with their programming experience. [DW11]

10.5 API Branding

Branding is a marketing practice of creating a name and meaning to mar-
ket that identifies and differentiates a product from another 2. The brand
communicates its business value and reflects the value of a company. The
same principle can be applied to API Branding. Based on a research by
IBM Institute of Business Value [Cor16], a strong pattern for branding in-
cludes consistency, clarity, and constancy with developers and end customers
in mind.

1. Consistency
Companies that thrive in the API Economy emphasizes the brand con-
sistency. They stress that their APIs retains the original look, feel and
functionality across other companies products and services. If a com-
pany makes changes to the overall look, it is likely to break down and
being lost.

2. Clarity
Communities are a great source where API evangelists get the infor-
mation about a certain API and the company behind it. So many API
producers must be clear in communicating API features and functions
while making it easy to find them among APIs. Some things that API
providers should address are the functionalities provided by the API,
the technical requirements and the steps to get started.

3. Constancy API developers perceptions and expectations about an
API and the capabilities that an API can offer should be aligned to-
gether. Brand constancy is important due to the risk of brand delusion.
So, to sustain brand constancy, an API should be easy to understand,
have precise terms and conditions regarding expected levels of service
and acceptable forms of usage.

2Branding: https://www.entrepreneur.com/encyclopedia/branding

74

10.6. WRAP UP

10.6 Wrap up

Having an API does not matter if nobody is using it. To obtain best possible
results, marketing about the API should be done across different channels.
Each channel has a cost and a long way the API provider should measure
the cost of it, understanding which channel fits best and which one should
be abandoned.

75

Chapter 11

Metrics

Hopefully, some traffic will come from the market. As a result, the API
provider would need metrics for a variety of reasons to measure the growth,
success and performance of the API. The more the API provider knows, the
better it will be able to see and demonstrate what is going on.
There any many types of metrics that can be captured analyzed and used to
develop more effective APIs.

11.1 Usage metrics

Usage metrics are metrics that help the API provider to understand how
the consumers, in this case, developers and end users interact with products,
services, content which is served by the API. [DW11]
For example, The Guardian, which is a media company, provides a public
API, through which developer can create a variety of applications where end
users can get the content. With the API, The Guardian tracks usage patterns
on end users using the application powered by its API, including which news
or topics are more popular among which devices, what time of the day or
night and so on.
By capturing usage metrics, the API provider knows what was requested and
by whom?, what did the API delivered for the respected request?, what content
was shown to the end user? and what did the end user did with the content
that was shown? While answering these questions, the API provider can
make better and more accurate decisions for the target audience. [DW11]

76

11.2. OPERATIONAL METRICS

11.1.1 Request and Response metric

Requests and response metric is used to understand how the API works.
From this, the API provider understands what trends are emerging, what is
being requested more and what is being delivered.
Although this is a useful metrics, they do not tell how this is being translated
into a value for the end users. To know what end users are doing with the
provided data through the API, the API provider needs to map this metric
to data that is captured by client applications. [DW11]

11.1.2 Impressions

Impressions are metrics that capture actual consumption of the content that
is being delivered. Impressions would be the number of times the provided
content is displayed, no matter if the end user interacted or not.
For example, suppose you have 100 followers on Twitter, and you tweet
something twice. The reach is 100 because the number of followers did not
change. However, you have 200 impressions because every single follower
would see both tweets.
As a result, the impression numbers could be higher or lower than the request
and response data. This metric is relevant and useful for APIs that are driven
by what is displayed not what is requested.
A way to capture this metric is by adding a callback function that returns
the information to the API from the calling client. Also by placing an image
beacon in the content. In this way the beacon signals from the server when
the calling client presents it.[DW11]

11.2 Operational metrics

Unlike a website which can run JavaScript inside the browser to analyze
the gathered data and to get more in-depth insights about its users, API
analytics have to generate on the server. On the server, it is possible to
insert tools at any layer which can determine the traffic through the API
and what does it mean for the API provider. Rather than having system
files with IP addresses, URIs and error codes, the API provider can create a
database with this information. Furthermore, metrics using this information,
improve the ability to better support the API consumers – developers and
end users. When developers complain about the API functionalities, the API
provider can capture the payload, debug it and identify the issue. [DW11]

77

CHAPTER 11. METRICS

11.2.1 Effectiveness metrics

If the metric is measuring how well the API is contributing to the desired
result, it is related to effectiveness metric. Effectiveness is about achieving
the goal or following the right path. Effectiveness metrics can help the API
provider to realize how to make the API more useful for confirming the busi-
ness strategies. An excellent example is a case that happened at Netflix.
Netflix realizes that it was receiving around 30 billion requests per month
and some of the interfaces that were powered by the Netflix API were com-
plaining. The reason was that the API was not providing sufficient API calls,
useful for the clients. This issue slowed down each client and resulted in more
load in server systems. The raised problem was a good indication that the
API was not serving its clients as efficiently as it could. Understanding the
problem, Netflix improved the API in the following versions which led to
improvements in performance and client satisfaction. [DW11]

11.2.2 Performance metrics

Metrics that track overall API performance include error rates, types of er-
rors, system performance, latencies in request handling, and timeouts. Such
metrics should be monitored over time. Additions to the API should not
slow it down. These kinds of metrics often tie in directly to the Service Level
Agreements and monitoring systems that are in place for real-time responses
when thresholds are met. Particular attention should be paid to the impact
of code and system changes, by monitoring the effects on internal servers as
well as the experience on the developer side. [DW11]

Availability and uptime

One important metric when it comes to something as high demand as an API
is availability and uptime. Uptime tells the API provider the amount of time
in which the resource is technically unreachable, which means that describes
whether the service is on or off. While on the other side, availability cares
more about whether or not the access was full, unrestricted and unhampered.
Availability tracks how often the API has failed until now and the reason why.
Together these metrics must work together. Uptime is not everything, and
without uptime, availability cannot be determined.[San17d]

Responsiveness and latency

Tracking responsiveness and latency add another layer to the concept of
availability, by considering whether or not data was easily interactable and

78

11.2. OPERATIONAL METRICS

was surely responsive to requests within a reasonable, specifically defined
time set. [San17d]
For example, the API provider could have 99% uptime and 99% active API
call service, but if each call takes 2 hours to respond, leads to a poor user
experience and questionable usability.
Availability and uptime tell if there’s a problem while responsiveness and
latency are cued into identifying why problems exist.

Endpoint evaluation

Endpoint evaluation metrics take care of what is going on with the endpoints.
In more details, this metric, answers the following questions:

1. Frequency: Does the endpoints that are used more often than others?
At what rate are they used?

2. Utilization: What are the least used endpoints?

3. Traffic: What endpoints are hit the most with malicious traffic?

4. Vulnerabilities: When data breach does occur, or when penetration
testing has shown vulnerability, what endpoints are responsible?

Answering these questions can inform API providers about the health of
an API in general, including platform insights such as the following.

1. Bloat: If the API provider has a significant number of available end-
points, it suggests that the provider is supporting large portions of a
codebase that is no longer needed.

2. Service Efficiency: If the API provider has one or two endpoints
that are always hit, those should have a look. If these endpoints cover
multiple services, these services should be broken into their endpoints
for a correct microservice approach.

3. Security: If the API provider has vulnerable endpoints, it is an issue
with the codebase allowing for vulnerabilities to be easily detected and
exploited.

4. Vulnerabilities: When data breach does occur, or when penetration
testing has shown vulnerability, what endpoints are responsible?

79

CHAPTER 11. METRICS

While issues might be at any step in the API system, identifying the
symptoms at the endpoint level informs and helps the provider to solve the
issues. [San17d]

11.3 Wrap up

To measure the success of the API, the provider should use a variety of met-
rics.
Usage metrics, are metrics that help the provider to better know how the
API consumers are interacting with it, including, request and response met-
ric, which tells the emerging trends, what is being requested and delivered
and impressions metric, which capture the actual consumption of the deliv-
ered content.
Additionally, operational metrics, including effectiveness metric, which mea-
sures how well the API is contributing to the desired result, helping the
provider to realize how to make the API more useful regarding the business
strategies. Also, performance metrics that track the overall API performance,
including error rates, error types, system performance, latencies and time-
outs.

80

Part V

Retiring Phase

81

Chapter 12

Retiring

In this chapter, I will examine the retirement state of the API lifecycle in
participating in the API Economy. In API lifecycle, retirement does not have
a single meaning. An API version may be scheduled for depreciation or the
API is still functional in limited formats with restricted access control. There
are five common causes that will push APIs towards retirement.

12.1 Lack of third party developer innovation

Lack of third-party developer innovation is a scenario that may cause the
retirement of the API, which means that the API is still receiving limited
or unmeaningful use by developer or end-users. However, this could be due
to poor marketing, or the API is not giving any value to the community.
[Doe17]
A great example of this case is Netflix API. In 2009, Netflix released its
API program with the reason for new third-party integrations by external
developers. However, in 2014, Netflix stopped issuing new API tokens to
developers and later on that year they shut it down for public use. The
reason was that Netflix public API received for 5 years 0,3% of the total API
traffic. In other words, 11 years of traffic in public API are equal to 1 day of
private API traffic. [Jac14] From this case, we can learn that when a brand
name and its native platforms are powerful, creating an ecosystem with the
community is not necessary and will lead to retirement.

82

12.2. OPPOSING FINANCIAL INCENTIVE, COMPETITION

12.2 Opposing financial incentive, competi-

tion

An API may be retired if the API conflicts with the business goals of the
company. While exposing data for anyone to consume, API providers run
the risk of losing a market advantage, especially if this is taking business
away from native distribution channels. [Doe17]
A great example is Strava. Strava offers fitness software with an API to ex-
tend their brand. Since the version 3 of the API, Strava restricted developers,
giving them a limited access program. These new requirements ban “applica-
tions that encourage competition with Strava” as well those that “Replicate
Strava functionality.” A considerable API retirement can occur when devel-
opers are incorporating monetization techniques into third-party applications
that break the original terms of the agreement and start a competition with
the API provider. [Doe17]

12.3 Changes in technology & consolidating

internal services

Technology is continually changing, evolving and these evolvements have the
potential to make APIs out-of-date. Often happens during internal redesigns,
acquisitions, or external industry advancements. API retirement could arise
from evolving protocol trends, such as GraphQL replacing REST, or REST
replacing SOAP, or changes in end-user experiences, such as Netflix changing
its business model from DVD distribution to media streaming, or Fedex which
updated its APIs to Fedex Web Services, replacing XML based tracking
applications with a large update. [Doe17]

12.4 Versioning

Versioning is a common practice to retire an API and can arise when sig-
nificant alternations to the API are required. Any evolving API will require
versioning sooner or later. When and how versioning will occur is based on
the expectations of the API consumers. [Doe17]
Even though versioning strategy may vary based on the API consumers, I
recommend an API versioning strategy based the information from the lit-
erature research. When an API is is a pre-release, the API provider should
gain some feedback from developers, to establish expectations that the API
could change. At this phase, the API will remain at version 1 for a period.

83

CHAPTER 12. RETIRING

The API will be volatile for the consumers, and they should expect that.
Once the API provider decided to release the API, it will be as a contract be-
tween the provider and consumer that the API cannot contain changes that
break the application, powered by it, without new version releases. API ver-
sions are major, minor and non-breaking. Breaking changes occur in a major
version. Developers must manually migrate to this major version and update
the application to confirm the changes. While for minor and non-breaking
changes, developers are automatically migrated to the latest version.
Two great examples about versioning are the case of Youtube and Twitter.
When Youtube released version 3 of the API, it surprised the developers
when they found that it was not possible to create Youtube applications for
SmartTVs. [Doe17]
Furthermore, Twitter API version 1 was retired in 2013. The new version up-
date added OAuth. This means that performing the necessary act of reading
a public timeline will, first of all, require an application to be created with
Twitter, that application is configured with a secret client key, and the ap-
plication is completing the OAuth handshake before using the API. Twitter
did this to enforce call rate limiting with less liberal access, reducing the
system load, decreasing API vulnerability and promoting their embeddable
tweet program. [Mom13]

12.5 Security issues

API providers may choose to discontinue the public API because of security
concerns associated with making internal data public. Like the example
of Twitter which added OAuth in the new version of the API to decrease
vulnerability issues, Google Earth API was discontinued because it relied on
outdated technology like NPAPI framework, which had become a security
concern for Google. [Doe17]

12.6 Preparations for retirement

A software ecosystem is a collection of software systems which are developed
and co-evolve in the same environment. An ecosystem like this which can
be powered by APIs can be easily destroyed when an API is deprecated.
[Lun12] Developers are depended on the service which the API provides, to
support their products. A complete deprecation can cause adverse reactions
and lower the company’s reputation if the retirement is not managed well.
To keep an excellent reputation in the community, it is recommended for the

84

12.6. PREPARATIONS FOR RETIREMENT

API provider to be transparent using the following techniques to prepare the
API for retirement or complete shutdown.

12.6.1 Schedule a retirement plan

The API provider should announce at least six months in advance about a
deprecation. This announcement will hopefully give developers enough time
for new integrations or partnerships. If individual teams of developers are
struggling to adopt the change, the API provider should consider extending
the time frame. Google usually for Maps and Youtube API follow one year
in advance to announce. Sadly, Twitter uses only three months. [Doe17]

12.6.2 Make changes in stages

If the API is still operating, shut down earlier, older versions that receive
limited use. [Doe17]

12.6.3 Public announcements

Announce explicitly into a blog post the API changes. Outline when the
changes will go into effect, who will be affected and any other information
that the community needs to know. Moreover, the announcement should be
promoted into different channels to reach the target audience. [Doe17]

12.6.4 Ease the transition

If the API has been versioned or merged into another service or API, explain
the process of transition. If the transition process is not transparent, the
developer can have some hard time to transit. [Doe17]

12.6.5 Blackout testing

A blackout test can be defined as a planned, timebox event when the API
provider will turn off a particular API to help developers better understand
the implications of the eventual retirement. Hopefully, a blackout test will
help developers to have a clear idea of how the retirement will affect their
applications. Youtube and Twitter have used blackout testing in the past.
[And14]

85

CHAPTER 12. RETIRING

12.6.6 Make sure not to validate the Terms of Service

Before retiring, the Terms of Service should be reviewed to make sure that
no binding contracts are violated between partners or the provider and con-
sumers. A way is to plan to write a deprecation policy whenever a new
version of the API is created. [Doe17]

12.6.7 Include a deprecation message in the Sunset
HTTP response

The Sunset HTTP response header field allows a server to communicate the
fact that a resource is expected to become unresponsive at a specific point
in time. It provides information for clients which they can use to control
their usage of the resource. The Sunset header contains a single timestamp
which advertises the point in time when the resource is expected to become
unresponsive. [Wil16] While applying this, developers will expect that a
particular resource will become obsolete in the near future. [Doe17]

12.7 Wrap up

Retirement can come from many reasons. Lack of third-party integrations,
which means that the API is receiving unmeaningful traffic from third-party
integrations. Also from competitions, which means the API conflict with
the business goals of the company. Additionally from changes in technology
which can make the API out-of-date. Moreover from versioning, which is a
common practice to retire when a significant alternations are required, and
also from security issues, associated with making internal data public.
Even though some developers quickly adopt the changes, some others may
be unaware of API changes. They will not respond quickly to update their
applications to be compatible with new changes. That is why is essential to
prepare the developers for deprecation or retirement before actually doing
it. Planning the retirement of an API may be a significant advance toward
restructuring how the developers will receive the data.

86

Chapter 13

Conclusion

13.1 Wrap-up of Findings

In this section, I want to condense the information regarding to the research
questions, in which my thesis is build upon. I wrap-up the findings separately.

RQ1: What is API and API Economy?

API stands for application programming interface and is a machine-readable
interface through which software applications make their functionality or
data accessible to another authorized application. API exposes some of the
application’s internal functions to the outside world through a defined in-
terface. In this way, the outside world can use the functionality without
knowing how the internals of the application work. The goal of APIs is to
ease and accelerate the development of software applications by providing a
part of its functionality to the outside world, so developers do not lose time
implementing the solution themselves.
APIs being part of products, are part of an agile business methodology, help-
ing companies to create new revenue streams, by selling data on demand or
by attracting investors, partners, producing an economy around itself, called
API Economy. The API Economy is the economy where companies expose
their internal business assets or services in the form of APIs to third parties,
which ca be partners or external developers, with the goal of unlocking addi-
tional business value, accelerating loyalty, and customer growth through the
creation of new asset classes.

87

CHAPTER 13. CONCLUSION

RQ2: Which are the lifecycle phases of an API participating in the
API Economy?

The answers regarding this research question are combined with the following
subsection.

RQ3: What are the components of each API lifecycle phase?

Based on systematic literature review, manual searching in specific confer-
ences, papers, journals and highly cited blog posts, like ACM Digital library,
DBLD, IEE Xplore, Google Schoolar, Nordic API, API Evangelist and books
related to Web APIs, I found out the lifecycle phases of APIs participating
in the API Economy. The lifecycle phases are not explicitly defined in the
information sources, rather than my perception based on these sources of
information.

Starting with the planning phase, in which the company has to see the
API as a product that needs to be develop with some business strategies in
mind, and to move the business toward its goal, together with some legal con-
siderations in mind for distributing the API data. I introduced and analyzed
the business strategies: private, partner and public models, together with
their business benefits, disadvantages and challenges. Even though private
APIs are not considered part of the API Economy based on the API Economy
definition, it is an excellent strategy to start with a private API and then
transit to partner or public. Additionally, I introduced nine monetization
models that are categorized in three groups: developer pays, developer
gets payed and indirect. These are essential to consider how the API will
return the investment and boost the revenue. Moreover, I introduced the
legal aspects that should be considered when planning to expose the busi-
ness assets and data through the API. Not understanding the ownership of
the content that an API is providing, can bring legal implications for the
company.

Continuing with the design phase, in which the company should think
about the API design. The design of an API is important and not easy. A
good API design improves the usability of it, resulting in higher adaption,
higher user satisfaction and an overall better chance of success. While on
the other side, a bad user experience while using the API may lead to a bad
reputation.
I introduced and analyzed different usability heuristics that can be imple-
mented based on Nielsen’s 10 heuristics, giving a direction of how to craft an

88

13.2. LIMITATIONS & FUTURE WORK

API.

Furthermore, with the build phase, in which the company should develop
and bring the API into life while deploying it. I introduced and shortly an-
alyzed the methodologies and tools that can be used to develop and deploy
an API.

Moreover, with the operational phase, in which the company thinks how to
market, engage developers and measure the success of the API using a variety
of metrics. I introduced and analyzed marketing and engagement strategies
to obtain best possible results and also a variety of metrics, like request
and response metrics, impressions, effectiveness and performance metrics, to
measure the growth and success of the API.

Lastly, the retirement phase, in which the company decides to retire the
API. There are many reasons for API to retire. Lack of third-party inte-
grations, competition, changes in technology, versioning and security issues.
Furthermore, to keep an excellent reputation in the community, some prepa-
rations for retirement are necessary, because in an ecosystem like this, which
is powered by APIs, can be easily destroyed when an API is deprecated. Re-
tirement can cause adverse reactions and lower the company’s reputation if
it is not managed well.

13.2 Limitations & Future work

This master thesis presents an API lifecycle analysis for participating in the
API Economy network. The analysis of each lifecycle phase, together with its
components, is supposed to help companies in participating and succeeding
in the API Economy.
However, this master thesis is based only on the manual search for informa-
tion using systematic literature review approach. Due to a lack of detailed
information, besides the developer documentation, from APIs that already
thrive in the API Economy, it is not possible to compare my findings of
API lifecycle with theirs. More detailed information from companies or en-
terprises regarding how they manage the lifecycle of the API would have
helped to improve the analysis of the API lifecycle, making it more accurate.
Furthermore, in each lifecycle phase, I have used examples only from pub-
licly available APIs, because information regarding APIs under a partnership
strategy is not disclosed and could not be found.

89

Bibliography

[Ama18] Amazon. What is devops, 2018.

[And14] Callum Anderson. Mendeley api – blackout testing, 2014.

[API15] Nordic APIs. Developing the API Mindset. Preparing Your Busi-
ness for Private, Partner, and Public APIs. 2015.

[API16] Nordic APIs. API Driven DevOps. 2016.

[BK09] David Budgen Mark Turner John Bailey Stephen Linkman Bar-
bara Kitchenham, O. Pearl Brereton. Systematic literature reviews
in software engineering – a systematic literature review. ELSE-
VIER, 2009.

[Blo] Jason Bloomberg. Architecting the composable enterprise. Mule-
Soft.

[Cor16] IBM Corporation. Innovation in the api economy. building winning
experiences and new capabilities to compete. IBM Institute for
Business Value, 2016.

[Doe15] Bill Doerrfeld. Api lifecycle analysis stage: Preparing your
prelaunch api strategy, 2015.

[Doe17] Bill Doerrfeld. Api lifecycle retirement stage: A history of major
public api retirements, 2017.

[Doe18] Chase Doelling. Scalable apis are built from consistency, 2018.

[DW11] Daniel Jacobson Dan Woods, Greg Brail. APIs: A Strategy Guide.
O’Reilly Media, Inc., 2011.

[Goo13] Google. Google, a fresh new look for the maps api, for all one
million sites, 2013.

90

BIBLIOGRAPHY

[Hal] Mahesh Haldar. Api designing guidelines.

[Jac14] Daniel Jacobson. Top 10 lessons learned from the netflix api - oscon
2014, 2014.

[Jen15] Claus T. Jensen. API for Dummies. John Wiley & Sons, Inc.,
2015.

[Kep14] Ben Kepes. Software may be eating the world but apis are giving
it teeth. Diversity Limited, 2014.

[KH14] Dr. Ali Arsanjani Kerrie Holley, Samuel Antoun. The power of the
api economy. stimulate innovation, increase productivity, develop
new channels, and reach new markets. IBM Institute for Business
Value, 2014.

[Lan12] Kin Lane. The secret to amazons success internal apis, 2012.

[Lan14] Kin Lane. Taking a quick look at the leading api partner programs,
2014.

[Lan16] Kin Lane. History of apis, 2016.

[Lau] Page Laubheimer. Preventing user errors: Avoiding unconscious
slips.

[Lun12] Mircea Lungu. How do developers react to api deprecation? the
case of a smalltalk ecosystem, 2012.

[Mah14] Michael Mahemoff. Don’t api all the things . . . the downside of
public apis, 2014.

[Mai11] MailChimp. 10m+ api calls per day and more, 2011.

[MB13] Dinesh Venkateswaran Manfred Bortenschlager, Graham Thomas.
Leveraging apis as part of digital strategy. Wired, 2013.

[McK16] McKinsey. The social economy: Unlocking value and productivity
through social technologies. Technical report, 2016.

[mic16] microsoft. Api design, 2016.

[Mit] Ronnie Mitra. Improve your api design with 7 guiding principles.

[Mom13] Matthew Mombrea. The death of the twitter api or a new begin-
ning?, 2013.

91

BIBLIOGRAPHY

[Mus13] John Musser. Api business models, 2013.

[Net11] Netflix. Redesigning the netflix api, 2011.

[Nie95] Jakob Nielsen. 10 usability heuristics for user interface design,
1995.

[Ped14] Bruno Pedro. How to release a free api and get paid indirectly,
2014.

[PM16] Mark O’Neill Paolo Malinverno. Magic quadrant for full life cycle
api management. Gartner, 2016.

[Pro11] ProgrammableWeb. Api growth doubles in 2010, social and mobile
are trends, 2011.

[Pro13a] ProgrammableWeb. Programmable web’s directory hits 10,000
apis. and counting, 2013.

[Pro13b] ProgrammableWeb. Programmableweb api directory eclipses
17,000 as api economy continues surge, 2013.

[Pro14] ProgrammableWeb. Private, partner or public: Which api strategy
is best for business?, 2014.

[Rig15] Jennifer Riggins. Top 5 api monetization models, 2015.

[San16a] Kristopher Sandoval. Living in the cloud stack – understanding
saas, paas, and iaas apis, 2016.

[San16b] Kristopher Sandoval. What data formats should my api support?,
2016.

[San17a] Kristopher Sandoval. Best practices for api error handling, 2017.

[San17b] Kristopher Sandoval. The end of api documentation as we know
it, 2017.

[San17c] Kristopher Sandoval. Is graphql the end of rest style apis?, 2017.

[San17d] Kristopher Sandoval. Using api analytics to empower the platform,
2017.

[San18] Kristopher Sandoval. 7 items no api documentation can live with-
out, 2018.

92

BIBLIOGRAPHY

[Sma16] Smartbear. A global survey looking at the growth, opportunities,
challenges and processes for the api industry in 2016. Technical
report, 2016.

[Sta17] Stackify. Ci tools, 2017.

[Stu17] Sashko Stubailo. Graphql vs. rest, 2017.

[Tea16] Github Engineering Team. The github graphql api, 2016.

[Who] WhoIsHostingThis. Http status codes: The complete list.

[Wil16] E. Wilde. The sunset http header. IETF, 2016.

93

	Introduction
	Motivation
	Problem
	Goal
	Objectives
	RQ1: What is an API and API Economy?
	RQ2: Which are the lifecycle phases of an API participating in the API Economy?
	RQ3: What are the components of each API lifecycle phase?

	Outline

	Systematic literature review in API Economy
	Systematic Literature Review
	Review Method and Conduct
	Research questions
	Search process
	Inclusion and exclusion criteria
	Information collection

	API and API Economy
	Definition of API
	Elements of API Value Chain
	From API to API Economy
	Pioneers of API Economy
	Growth of API Economy and its trends
	Software, Platform and Infrastructure as a service

	API Lifecycle in the API Economy
	I Planning Phase
	API Business Strategies
	Private API model
	Business Benefits of Private APIs
	Challenges and Disadvantages of a Private APIs

	Partner API model
	Business benefits of Partner APIs
	Challenges and Disadvantages of Partner APIs

	Public API model
	Business benefits of Public APIs
	Disadvantages and Challenges of Public APIs

	Wrap up

	Monetization Models
	Charge directly for API calls
	Tiered Licence
	Charge based on the subscription model
	Charge based on units
	Revenue share
	Cost savings
	Premium upsell opportunity
	Content Acquisition
	Content Syndication
	Wrap up

	Legal considerations
	Contracts and Terms of use
	Privacy policies
	Data retention policies
	Attribution of Content and Branding
	Service-Level Agreements
	Wrap up

	II Design Phase
	API Design
	Visibility of system status
	Match Between the System and the Real World
	Consistency and Standards
	Error Prevention
	Flexibility and efficiency of use
	Help Users Recognize, Diagnose, and Recover from Errors
	Help and Documentation
	REST vs. GraphQL
	The GitHub GraphQL API
	Wrap up

	III Build Phase
	API Driven Technologies
	DevOps practices
	Types of Continuous Integration
	Traditional CI
	Cloud CI

	API Management Services
	API Design Services
	API Development Services
	First group of CI Tools
	Second group of CI Tools
	API Deployment Services
	Full API Lifecycle Services

	Wrap up

	IV Operational Phase
	Marketing & Engagement Strategies
	Evangelizing the API
	Hackathons
	Integrations
	Engaging developers
	API Branding
	Wrap up

	Metrics
	Usage metrics
	Request and Response metric
	Impressions

	Operational metrics
	Effectiveness metrics
	Performance metrics

	Wrap up

	V Retiring Phase
	Retiring
	Lack of third party developer innovation
	Opposing financial incentive, competition
	Changes in technology & consolidating internal services
	Versioning
	Security issues
	Preparations for retirement
	Schedule a retirement plan
	Make changes in stages
	Public announcements
	Ease the transition
	Blackout testing
	Make sure not to validate the Terms of Service
	Include a deprecation message in the Sunset HTTP response

	Wrap up

	Conclusion
	Wrap-up of Findings
	Limitations & Future work

