T

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Identification of Cross-Blockchain Transactions:
A Feasibility Study

Patrick Nieves

T

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems
Identification of Cross-Blockchain Transactions:
A Feasibility Study

Identifizierung von Blockchain-iibergreifenden
Transaktionen: Eine Machbarkeitsstudie

Author: Patrick Nieves
Supervisor: Prof. Dr. Florian Matthes
Advisor: Patrick Holl,

Ulrich Gallersdorfer

Submission Date: 15. May 2018

[confirm that this master’s thesis in information systems is my own work and I have

documented all sources and material used.

Munich, 15. May 2018

Signature

Abstract

Since the interest in blockchain technology has risen in recent years, the number of
cryptocurrencies has increased. Due to this, there is an increasing need to exchange
currencies. Several companies offer services that solve this problem in different ways. The
transfers they execute are called cross-blockchain transactions. This kind of exchanges
occasionally produce two single transactions, which are saved on the blockchains of the
involved cryptocurrencies. As these ledgers are distributed over public peer-to-peer
networks, the transaction data can easily be retrieved and analyzed. However, exchange
information linking two transactions to each other is not publicly visible.

This thesis aims to identify cross-blockchain transactions, by matching single transactions
saved on the different blockchains. First, we analyze in detail the processes taken by an
exchange service when executing a trade. Based on this, we determine heuristics and
design a recognition algorithm. We implement this algorithm within a tool and evaluate
its output. Finally, we show to what extent the identification of cross-blockchain
transactions is feasible.

Keywords:

Cryptocurrency, Blockchain, Bitcoin, Ethereum, Currency Exchange, Cross-Blockchain
Transactions, Atomic Swap, Trading Platform, Instant Cryptocurrency Exchange, Data
Analysis Tool, Process Analysis, Data Scraping, Heuristic Definition, Data Matching, Data
Evaluation

Contents

ADSEFACE .. ————————————————————— 111
LiSt Of Figures......cmmmmnsmssmsmsssssssssssssssssssssssssssssssssssssns VI
List of ADbreviations ... VII
1 INtroducCtioNu...css s ————————_————— 1
1.1 MOtIVAION s 1
1.2 Research QUESHIONS ... 2
1.3 ReSearch APPIroach ... ssssssssssssssnses 3
B 0 1) 74 1 4

2 BacKground........sssssssssssssssssssssssssssssasssssss 6
P20 S 256l B Vo VoI <) o4 (ol P 6
2.1.1 Trading PlatfOrImS ... ssessesssssesssssesssssesssssesssssesssssessesnes 6
2.1.2 Over-The-Counter Markets (OTC) ...coumerenerensenmenesesssessssssssssssssssssessssssesssssssesnes 7
2.1.3 Instant Cryptocurrency EXChanges ... 8
2.1.4 Services without Centralized Intermediaries.........cuenrnenersenneesennns 9

2.2 Examples for Instant Cryptocurrency EXchanges ... 11
2.3 Blockchain ANalysis TOOLS ..c.oerrereeeereereereeseeseesessesesseesessesssssesssssesssssssssssssssssssssssssssssns 15
2.3.1 Blockchain Data Retrieval........sessessssessssssssssessssssssssssennes 15
2.3.2 Open Source ANAlysis TOOIS ... sesssssssssssssesass 17
2.3.3 Commercial ANalysis TOOLS ... sessesessessessessessessenns 17

2 S =) 9410 000 (0] 2 PP 18

KO0 4 U] 0 1 0 L0 4 21
3.1 APPIOACH cocrtres e e s 21
3.2 Scraping of EXChange Data ... sssssssss s sssssssssssssas 21
3.2.1 Analysis 0f Data EXPOSUIEccouererirneemrienensessessessessssssssssssessssssssesssssssssssssssssssessesass 21
3.2.2 Algorithm for Scraping Data from Shapeshift..........ccconninnennenennesseneenenne. 24

3.3 Analysis and FINAINGS.....corenereeereeneeneeseeseesseseesessessssseessssssssssesssssessssssssssssssssssssssssssssssass 28
3.3.1 Analysis Of SCraped Datacocveereereereereeneenerneeneeseesessessesssssesssssesssssssssssessssssssssssssssssssens 29
3.3.2 Analysis of Ethereum TranSactions ... seseesssssssssessssseens 32
3.3.3 Analysis of Bitcoin TranSactions ... sessssssssssssesssssseens 35

3.4 Heuristics for Cross-Blockchain Transaction Recognitionoeenceneeseeneencens 40
3.4.1 Time COMPATISOI coucuiuriierirrieeressisssessesssessesssessas s sss bbb 40

3.4.2 EXChanGe RAte ...ttt sssss sttt 40
3.4.3 Address RECOGNILION .. sssaseens 41
3.4.4 Recognition ProCeSs ... sssssass 45

3.5 Conception of the EVAlUation ... sssssssssssssns 47
3.6 Conception of the Data ProviSion ... 49
4 Implementation......m s ————————————————— 51
0 N 20 0120 0] 0D 00 =) oL PP 51
4.2 Database SCREMA ...t 51
4.3 Implementation DetailS.....uns s 53
4.3.1 External Services and Helper ClasSes......cmnnnnennnnensnssssssssessssessssssnens 53
4.3.2 Implementation of the Shapeshift SCraper.......nn 57
4.3.3 Implementation of the Recognition ToOl ... 60
4.3.4 Implementation of the Evaluation Process ... 63
4.3.,5 Implementation of the REST APL.....nsssessssssesssssssessssessssssesssssnens 64

5 Evaluation....cmmsssssssssssssssssssssssssssasssans 66
CETE 070 1 Lo 11T 1) o U 72
0.1 FINAINGS oo st s 72
0.2 OULLOOK ettt bbb 72

7 Bibliography.....sss———————————— 74

List of Figures

Figure 1: Design Science Research - Process Model (adapted from Vaishnavi, Kuechler, &

) A S 4
Figure 2: Instant Cryptocurrency Exchangers - Exchange Process (Adapted from

(00 0= o7 o= U N) PP 11
Figure 3: Changelly Exchange Details (Changelly, 2018) ... 12
Figure 4: Shapeshift quick exchange (left) and precise exchange (right) (Shapeshift,

7 0 2) T PP 14
Figure 5: Shapeshift Statistics (24.03.2018) (Shapeshift, 2018)cccourrrrerrerreererseesseereeseenns 22
Figure 6: “Market Info” JSON Response Excerpt (shapeshift.io/marketinfo/)cceuuuunee 23
Figure 7: “Recent Transaction List” JSON Response Excerpt
(shapeshift.io/recenttxX/[MAX]) .o sssssssssesssssssssssssssssssssssens 23
Figure 8: “Status of deposit to address” JSON Response (shapeshift.io/txStat/[address])
... 24
Figure 9: Retrieving Shapeshift Exchanges - Process FIOW........cccounneninennnessensnssenenne. 25
Figure 10: Comparison of two Shapeshift RESPONSES ... 26
Figure 11: Finding Blockchain Data - Process FIOW........cnncncncneneereeeseeseeseeseeseeseesenees 28
Figure 12: Shapeshift Exchange - Process FIOW ... 31
Figure 13: Incoming Shapeshift Transaction for Ether ... 33
Figure 14: Outgoing Shapeshift Transaction for Ether........es 34
Figure 15: Incoming Shapeshift Transaction for BitCOIN ... 35
Figure 16: Shapeshifts main deposit address - Balance Overview (BitInfoCharts, 2018)
... 36
Figure 17: Outgoing Shapeshift Transaction for BitCOIN ... 37
Figure 18: Shapeshift Deposit Address for Bitfinex — Balance Overview (BitInfoCharts,

7 0 2) PP 38
Figure 19: Shapeshift Address for Storage — Balance Overview (BitInfoCharts, 2018)....39
Figure 20: Address Recognition Process for Ethereum.........cooennnensinnesenssenessens 42
Figure 21: Address recognition Process for BitCOINooenercenrereeneenceneeseeneseeseesessesseesessensenees 44
Figure 22: Cross-Blockchain Recognition Tool - Process FIOWcccvnnceneneenseneensenns 47
Figure 23: File Structure of the Project. ... ereeereeeeeeesesesesesesesesessessesessessessesseaes 51
Figure 24: Method for changing the IP AddIess........ueenncenesssessesessesssessessessessens 53
Figure 25: Scraper - Class DIa@rammcveenerernemneenersesssessesssessssssssesssssssssesssssssssssssesssssssssesssssees 58
Figure 26: Recognition Tool - Main Method ... sseesesseesesees 60
Figure 27: Recognition Tool - Class DIa@ramcc.ceeneesenmnneenesesssssessesssssssssessssssesssssesns 61
Figure 28: Scraped Data - Time DiStriDUtiON ... seesesessessessesseesesees 66
Figure 29: Scraped Data - CUITENCY OCCUITEICEvuueuiremrerersressesseessessssssssesssesssssessssssssssessesssesns 67
Figure 30: Scraped Data — Currency PairS OCCUITENCE.........ocwueereercereereeseeseeseesesssesessessesssssessssees 67
Figure 31: Tool Data - Currency Pairs OCCUITENCE........ccueeereereeeereeseeseeessessssesssssesssssessssssssssees 68
Figure 32: Evaluation - RESUIL ...ttt 68
Figure 33: Evaluation of CUrrency ASSIZNIMENTccccuerereeeereeeeseesesessessssssesssssssssssssssssssssees 71

VI

file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578064
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578064
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578065
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578065
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578066
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578067
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578067
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578068
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578069
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578070
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578070
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578071
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578071
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578072
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578073
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578074
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578075
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578076
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578077
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578078
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578079
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578079
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578080
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578081
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578081
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578082
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578083
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578084
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578085
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578086
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578087
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578088
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578089
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578090
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578091
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578092
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578093
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578094
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578095
file:///C:/Users/Patrick/Documents/TUM/13.%20Semester/Masterarbeit/Arbeit/Master_thesis_Patrick_Nieves.docx%23_Toc513578096

List of Abbreviations

API Application Programming Interface
BTC Bitcoin

DDos Denial of Service

ETH Ether

HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
JSON JavaScript Object Notation

LTC Litecoin

OTC Over-The-Counter

P2SH Pay to Script Hash

REST Representational State Transfer
RPC Remote Procedure Call

URL Uniform Resource Locator

USD US Dollar

UTXO Unspent Transaction Output

Vil

Introduction

1 Introduction

1.1 Motivation

Since Bitcoin was introduced as the first digital currency in 2009, which provides a
decentralized peer-to-peer system, the interest in this field has been increasing
continuously (Nakamoto, 2008). Today this can especially be seen in the enormous rise
of the market capitalization of Bitcoin in recent years and the number of different
cryptocurrencies, which either just copy the Bitcoin protocol or try to improve it. Some
have a structure that is technically similar to the Bitcoin system. For instance, Litecoin,
which was launched in 2011, differs from Bitcoin in block creation time and the hashing
function it uses (Narayanan, Bonneau, Felten, Miller, & Goldfeder, 2016). Other currencies
like Ethereum, launched in 2013, offer new functionalities like the possibility of
implementing smart contracts (Buterin, 2014). Every year many other cryptocurrencies
are introduced. An analysis that was executed on 1,278 cryptocurrencies from 2013 to
2016 showed that more than the half are now extinct. Usually, the longer a cryptocurrency
exists, the more unlikely it is to disappear (Lansky, 2016). The currently leading
cryptocurrencies are Bitcoin with a market capitalization of more than 110 Billion USD
and Ethereum with more than 38 Billion USD (Coinmarketcap, 2018). There are over 900
currencies listed on coinmarketcap.com, and the number is increasing (Coinmarketcap,
2018). Also, the interest in the technology behind the cryptocurrencies raised. The
blockchain saves all ever-made transactions, and as it is decentralized, everybody can
access the data written on it by joining the peer-to-peer network. Several explorer
websites also offer a service to execute queries over the blockchain, without having to
enter the network and give the user the possibility to perform simple queries. Although
this data is public, the cryptocurrency systems aim to keep the user pseudonymous, e.g.,
by generating new addresses for every transaction (Moeser, 2013). Nevertheless, many
tools have been developed in recent years, which use different algorithms and heuristics
to not only generate general information about all transactions, like provided by the
mentioned explorer websites but to get detailed information about the users of the system
as well. Due to the popularity and massive usage of blockchains, especially for investment,
the data hidden on the blockchain has become highly valuable to different stakeholders,
such as state institution and banks, who want to uncover criminal activities, such as tax
evasion. Therefore, many companies have specialized their business models to this field
of research and offer analyses of the blockchain data, conducted by their specialized tools.

With the increasing number of cryptocurrencies, the demand for exchanging among them
has also raised. Websites, like Bittrex or Bitfinex, offer their customers the possibility to
exchange money between several currencies. These platforms are specially intended for
trading. In the past years, new exchanger services have been introduced to offer a more
comfortable and faster way for exchanging cryptocurrencies. These services are called
instant cryptocurrency exchanges and are provided by companies like Shapeshift and
Changelly. They don’t execute trades on a closed system, like on trading platforms, which
conduct transfers off-blockchain. Instead, they perform the transactions directly on the
cryptocurrency networks. The data for every exchange is therefore written to the ledgers
and can be retrieved from them. Every exchange generates two ordinary transactions on

1

Introduction

two different blockchains: the deposit transaction realized by the customer and the
withdrawal transaction sent by the exchange service. Although the data for both
transactions can be retrieved from the corresponding ledgers, only the stakeholders,
involved in the exchange, know about the link between these data.

1.2 Research Questions

Mostly, analysis of blockchain data is carried out over one specific blockchain. As interest
in exchanging money between multiple currencies is rising, the aim of this thesis is the
analysis and recognition of transactions involved in exchanges. Such transfers, which deal
with transactions on different blockchains are also called cross-blockchain transactions.

First, we must analyze the processes of cross-blockchain transactions in detail. Based on
this, we can build heuristics, which make it is possible to detect such transactions. After
that, we implement a tool that analyzes the blockchain data of multiple cryptocurrencies
and matches corresponding transactions. We then evaluate the outcome of this tool and
finally provide it as an external service.

This thesis addresses three research questions, which guide through the implementation
of the analysis tool:

RQ 1: What is the Current State of the Art regarding Cryptocurrency Exchange?

The first research question is dedicated to the literature research and helps to get an
overview of the environment connected to the cryptocurrency exchanges. First, we must
specify the available services related to these currencies. This listing includes the explorer
platforms, the APIs for querying blockchain data and other services that interact with the
blockchain. Furthermore, we categorize the different exchange platforms and explain
their functionalities in detail. Also, we show which new ideas and prototypes regarding
cross-blockchain transactions are currently developed and could be the future of cross-
blockchain exchanges.

RQ2: How can Cross-Blockchain Transactions be recognized?

The second research question targets the design of the tools underlying algorithm. We
must create heuristics, which make it possible to detect cross-blockchain transactions.
The process requires to analyze the transfers of different exchange services in detail and
to recognize patterns. Then it can be defined which parameters the algorithm needs to
look at to detect these exchanges. These parameters can be for instance the time required
for exchanging the currencies or the exchange rate. For this, we must also identify which
data we can retrieve from the blockchain and which from external services off-blockchain.
The underlying protocols and blockchain structures differ from currency to currency. The
algorithm should take this into account and so be adaptable to different environments.
Every exchange platform has a different exchange process and different parameters
connected to it, e.g., transaction times, exchange rates and fees. Therefore, the recognition
algorithm must be flexible and adjustable for different types of exchanges as well.

Introduction

After the design of the algorithm, we can start the implementation process of the
recognition tool, which also includes the connection to the required external services that
provide the needed data.

RQ3: How accurate is the implemented Solution? What are the Limits?

The last research question takes a look at the quality of the implemented algorithm. We
realize this evaluation by comparing the output with a set of data, which contains
transactions that are correctly matched to an exchange. As there is no exchange data
publicly accessible, the retrieval of such information is also part of this step. On the basis
of the evaluation, we finally show the gains and limitations of the tool.

Possible applications for the implemented tool are the usage
e as an extern service for tracking single exchanges

e for analysis on top of the found data to generate general statistics about cross-
blockchain transactions and to get transparency over the trading behavior

o for sophisticated analysis on top of the detected data, e.g., linking addresses over
multiple blockchains to one user

1.3 Research Approach

We conduct this thesis as a design science research (Vaishnavi, Kuechler, & Petter, 2017).
Therefore, we design and develop artifacts through the process and analyze their
performance to improve them iteratively. The work will follow the steps suggested by the
Design Science Research Process Model:

1. Problem awareness: A particular research field is examined to identify an
unsolved problem, which can create valuable output if solved and leads to new
knowledge. A proposal for the work is then realized. We mainly did this before
starting the thesis to assert that the conduction of this work has additional value
to the current knowledge base.

2. Suggestion: In this phase, a possible solution for the given problem is suggested.
This includes designing new functionalities by creatively composing existing and
new elements. In this work, this means building heuristics, with which we can
recognize cross-blockchain transactions. Beforehand, we must determine multiple
sources and methods to be able to declare correct heuristics.

3. Development: On top of the previously created algorithm, artifacts are developed,
which execute the process for solving the research problem. The primary artifact
in this thesis is the software program that implements the defined heuristics. We
will show two different artifacts in this thesis which uncover exchanges in different
ways differ in the external services they use.

4. Evaluation: The next step is to evaluate the artifact and the output of its execution
according to previously defined criteria. For this, hypotheses about the outcoming

3

Introduction

of the process are constructed. It must be proven if they are confirmed by the
analysis and unexpected outcomes must be stated. In this work, the main aim is to
evaluate if the implemented tool uncovers exchange data correctly. The knowledge
and information gained in this process are then gathered and can be used in the
suggestion phase of a new cycle to improve the artifacts design and its result. This
is a valuable method for the implementation of the tool, as results gained from each
execution of the tool help to improve it further.

5. Conclusion: Finally, the results of the conducted work and the knowledge gained
from the process are recorded and shared. The aim is to improve the knowledge
base and provide it to the environment, which consists of people, organizational
and technical systems (Hevner, March, Park, & Ram, 2004). We will include in this
result the degree of accuracy of the stated tool and the deviation from the expected
outcome. The work can then be executed again or used for future research and
improvements. The final outcoming of this phase is this thesis.

Knowledge Process

Flows Steps Outputs
Awareness Proposal

« Knowledge of Problem
Contribution ‘
A A Suggestion Heuristics
Development Tool

Evaluation Comparison results
Conclusion Thesis

Figure 1: Design Science Research - Process Model (adapted from Vaishnavi,
Kuechler, & Petter, 2017)

1.4 Overview

The structure of the thesis complies with the previously presented research questions and
research method.

First, we answer the first research question in the second chapter by presenting and
comparing different existing exchange services. In addition, we list and explain available
tools and services for blockchain analysis. Furthermore, we introduce the terminology
needed for a proper understanding of the explanations given in the conception.

The third chapter addresses the second research question. A part of the conception is the
design of a scraper algorithm to retrieve exchange data from an exchange service that we
need for the final evaluation. The other part deals with the design of the cross-blockchain

Introduction

transactions identification algorithm. Here we explain which findings we retrieved from
manual analysis of data from explorer platforms and the scraped data. Based on this, we
construct and justify the heuristics.

The fourth chapter is a linking point between the second and third research question and
shows how we implement the recognition algorithm. We explain the architecture and take
a detailed look at the code of the tool.

We answer the last research question in the fifth chapter, which describes the outcome of
the comparison of the tools data with the data retrieved by the scraper algorithm.

Finally, we summarize the work and outcome in the sixth chapter and draw a conclusion.
In addition, we give an outlook for further development of the recognition tool.

Background

2 Background

Throughout the years an ecosystem of services around the cryptocurrencies has arisen.
Nevertheless, in this thesis, we will focus on two types of service groups. Firstly, we will
show the available exchange services on the market, classify them and analyze their
exchange processes in detail. The understanding of the process will be necessary for
creating heuristics for the recognition algorithm. Moreover, we will look at the services
and tools available for analyzing the transaction data on the blockchains.

2.1 Exchange Services

The high interest in exchanging different cryptocurrencies is satisfied by many different
exchange services. These companies enable trade between several digital currencies.
Some also include exchanging conventional fiat money. The exchange services can be
divided into three different categories. Firstly, there are trading platforms, in which users
can register and transfer money through a central authority. This authority mostly makes
profits by charging fees. As trades are executed on a closed platform and no transaction is
sent to the blockchain networks, there is no data saved on the ledgers. The uncovering
and matching of customer addresses are therefore not possible. Furthermore, there are
over-the-counter markets, which do not use a centralized mechanism to match bids with
offers. Instead, exchanges are performed directly between two parties. A third party is
only involved in helping to find corresponding partners, which want to exchange the
currencies at a self-defined rate both agreed upon. The last category contains the instant
cryptocurrency exchanges, which are similar to the OTC exchanges, but in which the
exchanger takes the role of the counterparty. In the following, we will examine this kind
of exchange services in detail and compare them with each other. Finally, we will show
how exchanges might be handled in future in a decentralized manner. (Galitskiy, Shpin, &
Virk, 2015)

211 Trading Platforms
Overview

Currently, there are over 200 trading platforms listed on Coinmarketcap (April 2018).
Exchanges with one of the highest market volumes are Binance, Bitfinex and Bittrex, all
with a trading volume exceeding multiple million USD per day. Every platform allows
trading with a limited number of currencies, including cryptocurrencies as well as fiat
money. Coinmarketcap also lists the most traded currencies on these platforms. These are
among others Bitcoin and Ethereum, Bitcoin Cash and Litecoin (Coinmarketcap, 2018).

Characteristics

Trading platforms are websites, to which users can get access by logging in. Mostly this
requires identification with an identification card or passport, the verification of a credit

Background

card and provision of personal data. This process can take time and creates a barrier for
those who want to do single exchanges and don’t have the intention of trading frequently.

Moreover, the user interface of a trading platform is aligned to the needs of people that
trade and therefore offers many possibilities of interaction. It might be unsuitable for
doing a single or a small number of exchanges, as the platform includes complex diagrams,
bid/ask orders and other features.

In the beginning, the user must transfer money to his account or wallet to be able to trade.
This means the trading service holds all funds of their customers. On the one hand, this is
an advantage as the centralized mediator erase the risk of fraud by the counterparty. The
user can be sure to get the exchanged money back and trust to the counterparty is not
needed. On the other hand, this can be a risk for the users as their assets can get lost in
case the company goes bankrupt or gets hacked. An example of such an incident is the
bankruptcy of the Bitcoin exchange Mt. Gox in 2014, after over 700,000 Bitcoins were
stolen. Back then this was the leading exchanger, responsible for more than 70% of all
Bitcoin transactions (Frunza, 2015). The probability of failure is extraordinary high. From
2010 to 2013, 45% of bitcoin currency exchanges were closed. (Moore, & Christin, 2013)

Trading fees are very low reaching from 0% to 1% depending on the chosen platform
(Bitcoinwiki, 2018). Additionally, the customer must pay fees when transferring money
to or out of the trading platform wallet.

All in all, these platforms are intended for people that trade and execute exchanges
frequently. Although they offer low fees and minimize the risk of fraud, they are not
suitable for simple, one-time transfers as the user must go through many steps to finally
receive the exchanged amount on his cryptocurrency wallet.

2.1.2 Over-The-Counter Markets (OTC)
Overview

In comparison to trading platforms, OTC transactions are not performed on a closed
platform. The exchange itself happens between two parties, and since it is executed
directly, transfers are written to the blockchains. A third party is only involved in finding
appropriate partners for exchange. Therefore, the third party mostly doesn’t hold the
assets of the traders on their accounts. Over-the-counter transactions are made either on
such peer-to-peer marketplaces or directly between two people without any
intermediary.

Examples of peer-to-peer marketplaces are services like Bitcoin-otc (Bitcoin-otc, 2018)
and ItBit (ItBit, 2018). Traders can make offers on this platforms and search for
appropriate buyers.

Characteristics

Background

According to (Galitskiy, Shpin, & Virk, 2015), there are several advantages compared to
trading platforms using OTC transactions. These are stated in the following.

First, the exchange of a high amount of money on a trading platform can lead to a price
slippage at this specific exchange. As OTC transactions are not executed on a closed
platform, this risk can be bypassed. Due to this, high-volume exchanges are preferably
performed as OTC exchanges in case the volume of a trading market is relatively small
(Galitskiy, Shpin, & Virk, 2015).

As mentioned, trading platforms require a lot of personal information from the user for
registration. Some OTC exchanges, which help to find a partner for trading, don’t have
such regulations and offer a better choice for people that want to stay anonymous.

In contrast to trading platforms, OTC markets don’t hold assets of their users at all.
Therefore, there is no risk for the customer of losing a significant amount of money in case
a company holding funds goes bankrupt or gets hacked.

But there are also some downsides of OTC markets. These also can be different at every
OTC market.

At first, there is a risk of fraud by the counterparty. As there is no centralized authority, a
trader can never be sure to get back the agreed exchange money. On some peer-to-peer
markets, the marketplace supplier tries to solve this problem by offering a reputation
system and so creating trust between the counterparties.

Another downside of OTC markets is that some providers might not have enough liquidity.
Hence, exchange with high amounts can'’t be fulfilled.

There are services which claim to be an OTC market but don’t fulfill all of these
characteristics. Services like LocalBitcoin (LocalBitcoin, 2018) and Bitquick (Bitquick,
2018) match two suitable traders, which are willing to exchange assets with each other,
just the same way as on an OTC market. The difference is that they hold assets to
guarantee the customers more security. Nevertheless, the money is only deposited by the
customer for a short time for a single transaction. LocalBitcoin, e.g., forces one trader to
store his Bitcoins needed for the exchange to the account of the company. Then, the other
trader sends the corresponding asset directly to the counterparty. When this transaction
is confirmed the service finally transfers the stored Bitcoins to the other trader.

2.1.3 Instant Cryptocurrency Exchanges
Overview

A new form of service exists that provides a fast and easy exchange process: the instant
cryptocurrency exchange. Just as at the OTC markets, instant cryptocurrency exchanges
are not executed on a centralized platform and transactions involved in the exchanges are
directly saved on the blockchains. Also, the transfers are done between two parties. The
difference is that the service takes the role of the counterparty. Examples are Shapeshift,
Changelly, Evercoin, Blocktrades, and CoinSwitch. The most popular instant exchange

Background

services currently are Shapeshift and Changelly. Therefore, we analyze them more in
detail later.

Characteristics

Just as the OTC markets, these services do not require strict identity verification when
exchanging cryptocurrencies. They provide a fast and short exchange process without
having to reveal one’s own identity.

Similar to the trading platforms, the service holds client funds on their accounts, as the
user must deposit money to start an exchange. Nevertheless, this applies only to single
transactions and for the time the trade is executed. Hence, the risk of losing high amounts
of money in case the company losses funds is very low for the customer.

Instant cryptocurrency exchanges furthermore provide competitive exchange rates, as
the best price is retrieved comparing several trading platforms.

Also, they usually allow more different currencies for exchanging than trading platforms,
which have a limited offer and don't include some coins at all. The offerings on instant
cryptocurrency exchanges are wider spread as they interact with multiple trading
platforms. Therefore, the user doesn’t have to register himself on many different trading
platforms.

Since the transaction data of exchanges executed by an instant cryptocurrency exchange
is directly saved on the blockchains and is publicly accessible, this kind of service is
suitable for the cross-blockchain transaction analysis. Moreover, they have a high
transaction volume and are visibly growing in number. Therefore, our analysis focuses on
exchanges of these services.

2.1.4 Services without Centralized Intermediaries

Currently, there are many solutions in development to improve cross-blockchain
transactions and which may be the future step for exchanging cryptocurrencies.
Nowadays, exchanging digital currencies is slow, requires trusting a counterparty and has
high costs. In the following, we briefly present some concepts, which try to solve the given
problems.

Atomic Swaps

A promising concept for exchanging currencies between different blockchains without the
need of trusting an intermediary is called atomic swap. The main feature of this is the
security that either both transactions of an exchange happen or neither of them. First, the
two parties, which are involved in the trade, must agree upon an exchange rate. Then both
submit their transactions using hashed time-locked contracts (HTLC). These contracts
guarantee that both partners can claim a refund in case something has gone wrong during

9

Background

the exchange. The underlying algorithm contains multiple steps which must be executed
manually by the exchange partners. That is why various organizations have started
implementing protocols to facilitate this process. The most known ones are listed below.
(Herlihy, 2018)

Lightning Network

The Lightning Network is a decentralized network in which peers can instantly execute
payments among each other and in which off-chain smart contracts guarantee transaction
security. Currently, the implementation is adaptable to Bitcoin and Litecoin blockchains.
This network was specially designed to decrease the transaction load on blockchain
networks, to allow faster payments and decline transaction fees. As it is handled off-
blockchain, the number of transactions is not limited by the blockchain protocol (Bitcoin
blocksize is 1 MB) and so millions of transactions can be executed at the same time.
Furthermore, no block creation times (for Bitcoin approximately 10 minutes) must be
keptin mind and transactions are fulfilled in seconds. Furthermore, transfers can be made
at low costs, as blockchain network fees don’t have to be paid for every transaction. This
feature allows the user to send small amounts of money. To make this possible, the
protocol creates a ledger entry between two peers, which holds a given amount of money
from both parties. All transactions between two peers are documented on this 2-of-2
multisig address, which means that both participants must sign every change in balance
with their private key. The history of transactions is therefore recorded off-blockchain.
Either of the peers can write this entry to the ledger and release the funds at any time,
which then creates a single transaction on the blockchain. As the protocol creates a whole
network consisting of such addresses a payment channel doesn’t have to be created
between every peer. Instead, payments can be passed through multiple peers on this
network. As long as blockchains use similar hash functions, the Lightning Network can
execute cross-blockchain transactions between them, allowing a participant to send
money to destinations on other ledgers. This feature was yet tested transferring money
between the Bitcoin and the Litecoin network. (Poon, & Dryja, 2016)

Interledger

The Interledger protocol aims to make payments across different systems possible. Just
as in the Lightning Network, money is sent through multiple peers. In the case of
Interledger, this allows a participant to send and receive money from different ledgers
without having to create accounts for each of them. The Interledger protocol is an open
architecture and therefore allows to integrate any payment system, e.g., distributed
ledgers or banks. Participants can send any kind of asset through the network, including
cryptocurrencies, stocks, and commodities. For this, the ledgers are connected by hubs,
which receive payments from one or multiple ledgers and send an amount of the desired
asset to one or multiple other systems. If the transaction doesn’t happen within one single
system, the connector can determine an own exchange rate for exchanging an asset to a
different one and so generate revenue from the exchange difference. As the participant
can request and compare the exchange rate of multiple connectors, the fee for exchanging

10

Background

is low. The protocol also ensures that the money sent cannot be stolen during the
transaction process.

COMIT Network

The COMIT (Cryptographically-secure Off-chain Multi-asset Instant Transaction)
Network has a similar concept as the Interledger protocol. It compares itself with the
TCP/IP protocol which once connected multiple local networks to a single network, the
internet. COMIT has the aim to implement a protocol for exchanging assets between
various blockchains, just as the internet did it for transferring information. The cross-
chain routing protocol (CRP) provides a secure, low cost and fast network for cross-
blockchain transactions using off-blockchain smart contracts to build a cryptographically
secure and trustless network. The connectors between multiple blockchains are called
liquidity providers. They provide the assets needed for transferring the money from one
participant to another one. Anyone can take over the role of a liquidity provider, such as
banks, exchanges or private persons. (Hosp, Hoenisch, & Kittiwongsunthorn, 2018)

2.2 Examples for Instant Cryptocurrency Exchanges

In this chapter, we will take a closer look at the process and the conditions of two instant
cryptocurrency exchanges to get an initial understanding of their exchange process.

The two exchange services we will focus on (Changelly and Shapeshift) have similar
exchange process, which we show in Figure 2. First, the user sends the currency he wants
to exchange from his cryptocurrency wallet to the wallet of the exchanger, paying
transaction fees on the involved blockchain. The exchanger then determines an exchange
rate and an exchange fee he will charge and calculates a final amount of the currency the
user inquired. He sends this amount from his wallet to the wallet of the user, also paying
transaction fees on the blockchain network of the withdrawal currency. We see that an
exchange generates two transactions on two different blockchains. In Figure 2 for
instance, the first transaction transfers 1 BTC from the user to the service and the second
the corresponding amount of 14.6 ETH from the service to the user. In the following, we
describe the procedures of each service more in detail.

>

4

1BTC 14.6 ETH
+ Network Fee m— + Network Fee
-* Cryé)tocurrency ——*
xchange
BTC Crypto BTC Crypto ETH Crypto ETH Crypto
Wallet Wallet Best Exchange Rate alet Wallet

Exchange Fee

Figure 2: Instant Cryptocurrency Exchangers - Exchange Process (Adapted from Changelly, 2018)

11

Background

Changelly

The Bitcoin mining pool MinerGate founded the exchange service Changelly, and released
it in 2015. It counts more than 3 million users on the website every month. Currently
(April 2018), it is possible to exchange over 50 different currencies, including fiat money
(USD and Euro), which requires the usage of a credit card. The service can be used directly
on the website or externally by other services, as it provides an API for executing
exchanges. For instance, cryptocurrency wallet providers like Jaxx or Coinami integrated
it to allow their customers to shift money between different cryptocurrency wallets.
(Changelly, 2018)

The exchange process works as follows:

First, the user must login or create an account, which includes specifying an email. The
account allows the users to see a history of all exchanges made on the platform. Protecting
the account with a 2-factor authentication is possible.

Next, the user can choose which two currencies out of the available ones he wants to
exchange and sets the desired amount (Figure 3). This amount must be high enough to
cover transaction fees of the blockchains. A maximal amount is not existent. The expected
outcome is immediately shown, as well as additional transaction information that
includes:

e The exchange rate, which is generated by searching for the best rate from different
trading platforms like Poloniex, and Bittrex.

e The exchange fee, which is 0.5% of the amount of the withdrawal currency. The
network transaction fee, which the exchanger must pay to send the money, is
additionally subtracted from the final amount. The user must be aware that he also
must pay a transaction fee by sending the money to the exchanger and this should
be counted as costs for the exchange too.

e The time the transfer will take. Changelly states that most exchanges take 5 to 30
minutes. This mainly depends on the time it takes to confirm the transactions on
both blockchains. The confirmation time is influenced by factors like the general
block creation time, the height of transaction fees set and the current blockchain
load. DDoS attacks and updates on the website of the exchanger can additionally
enlarge the waiting time.

You HAVE 1 BTC 1 BTC = 14674 ETH
0.07337 ETH
YOU GET 14.60063 ETH ~5-30 minutes

Figure 3: Changelly Exchange Details (Changelly, 2018)

The next step is to specify the wallet address of the recipient of the exchanged money and
confirm the exchange, which generates a transaction id. This id allows tracking the status

12

Background

of the exchange. Then the wallet address of the exchanger is shown, to which the customer
must send the defined amount of money. For every trade, a Changelly generates a new
address. Nevertheless, it is also possible to reuse an address. So, if money is sent again to
this address, a new exchange is executed, and the output is sent to the same output wallet
as in the previous exchange. After depositing the money, the exchanger waits to receive
it. This happens when the corresponding transaction is added to a block and saved on the
blockchain. Changelly then calculates the exchange outcome again, as cryptocurrencies
are very volatile and rates probably changed in the bygone time. After sending the
withdrawal to the user, details of the exchange are provided, which include the outcome
and the hash of the transaction executed by the exchanger. This information serves as a
proof that the trade was completed successfully.

Shapeshift

The Shapeshift exchange service is available since August 2014 and allows exchanging
between more than 40 different cryptocurrencies. Transactions with fiat money are not
possible and won'’t be provided in future, according to the Shapeshifts policy. Due to
several attacks and loss of money, the infrastructure of the service has been changed in
2016 (Leung, 2016). The service can be used on the main website or externally through
an API. Cryptocurrency wallet providers like Exodus, Jaxx, Coinoni, and myEtherWallet
include the service in their applications. The company is more open regarding showing
data of exchanges executed on their platform. They, e.g., provide general information in
real time on its official website. Therefore, it is possible to extract the number of
transactions per day and the daily trading volume. In April 2018 this value mostly lied
under 1,000 BTC. It is low in comparison to conventional trading platforms. Leading ones
had a trading volume of over 100,000 BTC daily in April 2018 (Coinmarketcap.com). The
statistics also show that the most popular exchange is between Bitcoin and Ethereum.
Furthermore, it is possible to get anonymized data of single exchanges from the API. This
circumstance will be exploited later to build a scraper that retrieves data from Shapeshift.
(Shapeshift, 2018)

The exact exchange process follows these steps:

At the beginning, the user can choose if he wants to execute a quick or a precise exchange
(Figure 4). For the quick exchange, no exchange amount must be specified. The user can
send any amount to the exchanger as long as it is in the defined deposit limits.
Furthermore, it is possible to set the option allowing a deposit address to be reusable. A
precise exchange doesn’t have this option and requires defining an exact amount. This can
be either the amount the user wants to send or the amount he wants to receive. The
corresponding amount is calculated immediately. Having the possibility of setting the
outcome amount (which is not possible in Changelly) is especially convenient if the user
doesn’t want to swap and send the money to his wallet, but to someone else’s wallet and
has to pay an exact amount. He can then send money in a specific currency for which he
doesn’t even own a wallet. The company states that it provides a better exchange rate and
a higher deposit limit for a precise exchange. While setting up an exchange, additional
information is provided, which includes:

13

Background

| agree to Terms Reusable Address?

The exchange rate, which is influenced by different values. For instance, the rates
of external exchange platforms, from which Shapeshift retrieves its money, and the
current property of cryptocurrencies of Shapeshift.

The minimum and the maximum limit of the deposit. If the user sends amounts
beyond these limits, the money is sent back to him subtracting the transaction fee.
The lower bound guarantees that transactions are above the transaction fee paid
to the network and the upper bound prevents too big exchanges, which could cause
price slippage at extern exchanges and so diminish the rate. These limits allow
Shapeshift to offer constant rates for different exchange amounts.

The “miner fee” is the only fee Shapeshift takes for providing their service.
Therefore, for every exchange, this fee is subtracted from the outgoing amount,
which was calculated with the best rate. For every currency, the service claims a
different miner fee, which applies for every exchange, regardless of the amount
involved. The company occasionally adjusts this fee according to the current
market conditions. As Shapeshift still pays the transaction fee to the blockchain
network for sending the money to the user, their total profit can be calculated by
subtracting this transaction fee from the “miner fee”.

Instant Rate 1 BTC = 15.80320984 ETH Your Rate: 1 BTC =15.84697717 ETH

. Deposit Max
e — 036466246 BTC

036643540 BTC

| agree to Terms

St emacen

Figure 4: Shapeshift quick exchange (left) and precise exchange (right) (Shapeshift, 2018)

In both types of exchanges, the user must specify the address where he wants to get the
exchanged money to and a refund address in case something goes wrong, and the deposit
must be sent back. After agreeing to the terms, the user can start the transaction.

The address where the user must deposit the money is shown. For the precise exchange,
the deposit must be sent to the network within the time of 5 minutes, but not be confirmed
yet. For small amounts, Shapeshift only waits until the transaction is written to the
blockchain within a block. For larger amounts, it waits for one or more confirmations.
After receiving the money, the exchange rate is calculated again. Therefore, the outcome
can differ from the first prediction. After the exchanged amount is sent to the user, he can
see detailed information about the exchange, including the final rate and a hash of the
transaction.

14

Background

Other Instant Exchange Services

Besides from Shapeshift and Changelly, which are currently the most used instant
cryptocurrency exchanges, other new companies are providing a similar service. These
will be briefly described below.

Blocktrades.us, for instance, allows instant exchanges between 7 different
cryptocurrencies and finds the best rate by analyzing more than hundred market paths.
An account is not needed, and an API for integration in external applications is provided.
Fees are not transparent but are included directly in the outcoming amount. A deposit
limit must also be considered. (Blocktrades.us, 2018)

The exchange service from Silicon Valley named Evercoin provides their service on a
website, as well as on mobile platforms (I0S and Android). Additionally, it can be used
through an API. Exchanges are executed instantly between 20 different cryptocurrencies
without having to log in. All fees are already included in the estimated outcome that is
shown when a trade is requested. Exchanges can only be done within certain limits. One
confirmation is required to process a deposit and exchange the currency. (Evercoin, 2018)

Coinswitch compares different exchange services on their website. They include trading
platforms like Cryptopia and Bittrex, and instant cryptocurrency exchangers like
Shapeshift, Changelly, Blocktrades and their own exchange service. For every requested
exchange, the user gets an overview, showing which platforms provide the desired
currencies and which rate they offer. He can then choose the best option and execute the
exchange without leaving the website, as requests for all platforms are integrated using
the available APIs. CoinSwitch itself doesn’t provide any API. More than 275
cryptocurrencies are available for exchange. Apart from the fees from the external
exchangers, CoinSwitch charges no additional fee using the instant exchangers and
0.25% - 0.98% using the trading platforms. (Coinswitch, 2018)

2.3 Blockchain Analysis Tools

In this chapter, we present tools used for blockchain analysis. We categorize them in basic
tools for retrieving blockchain data, open source analysis tools, and paid analysis services.
As stated before, Bitcoin and Ethereum currently have the highest market capitalization,
are two of the most traded currencies on the trading platforms, and the exchange between
these currencies is the most popular at the Shapeshift exchange. Therefore, we will focus
on tools for analyzing these two cryptocurrencies.

2.3.1 Blockchain Data Retrieval
Full Nodes

Due to the distributed character of the blockchain, it is possible to access all ever-done
transactions by downloading the whole ledger. This is achieved by instantiating a node,

15

Background

which communicates with the network. Light versions of nodes are provided, if
participants only need a limited set of interactions with the network, such as sending
transactions. This kind of nodes only requires downloading a part of the blockchain
(Duong, Chepurnoy, & Zhou, 2018). Nevertheless, for the analysis of every single
transaction, a node containing all blockchain data is needed. For Bitcoin, this would be a
full node, currently requiring more than 160 GB (April 2018) of free disk space
(Blockchain.io Statistics, 2018). An Ethereum node synchronized with the Geth client,
which downloads the entire blockchain data but prunes old states, needs almost 70 GB
(April 2018) of disk space (Etherscan.io, 2018). Such nodes guarantee that all downloaded
blocks and transaction are valid and follow the blockchains consensus rules. The local
node provides an API, allowing interactions with the network over JSON-RPC calls.
Besides the methods needed for performing transactions, also requests can be made to
get information about the data on the blockchain and from the network. For instance, we
can query blocks, transactions, and addresses. There are various clients provided that
implement this protocol and make it possible to interact with the network using different
programming languages. Both blockchains, e.g., offer client implementations in Python,
Javascript, Go, C++ and other languages (Ethereum Github, 2018). Also, blockchain data is
stored locally on files and can be retrieved from these directly. For Bitcoin, for instance,
concatenated raw blocks are stored in .dat files in the main directory (Algassem, &
Svetinovic, 2014). As many API clients are available, the programming language for
building an analysis tool is flexible.

Cryptocurrency Explorers & APIs

Setting up a full node requires much disk space and time. Therefore, many third parties
offer a service to do the queries on their full node. The so-called cryptocurrency explorer
websites show information about blocks, transactions, and addresses of different
currencies. Some also provide additional data, e.g., about the network, known addresses,
and general statistics. Besides of only making requests on their websites, many of these
explorers also offer an API In this way, the data can be retrieved via HTTP calls
programmatically. The downside is that some of these services have request limits and
retrieving data over HTTP request is slower than reading it from an own node.
Nevertheless, it can be suitable for analysis on a limited number of blocks and allow more
extensive analysis by exposing additional data not retrievable from a node.

One of the most popular explorers for Bitcoin is blockchain.info. The Website provides
information about all blocks and addresses, shows charts and statistics, and offers a
bitcoin wallet. Data can be retrieved in JSON format through an API. The additional data
is valuable for the exploration of exchanges. For instance, the API returns the time a
transaction was sent to the network. Whereas the response of a full node only contains
the time the block, in which the transaction is included, was written to the blockchain.
(Blockchain.io, 2018)

Popular explorers for Ethereum are etherscan.io and etherchain.org. All blockchain data
can be retrieved through the web interface. Nevertheless, they offer APIs with a low
request limit. A better solution is Infura, a service which provides a scalable blockchain

16

Background

infrastructure and fast access to the Ethereum transaction data. The service is not an
explorer but is specialized in providing access to the Ethereum network without having
to set up an own node. It can handle a high number of requests, currently more than 2
billion per day. Therefore, it is also suitable for use in the analysis field. The API can be
addressed through simple HTTP calls. (Infura.io, 2018)

2.3.2 Open Source Analysis Tools

Many open source tools related to blockchain data analysis, analyze and visualize general
market data of different cryptocurrencies. More sophisticated tools, which execute
complex queries and algorithms, are rare and mostly outdated. Examples are tools like
BitcoinVisualizer (BitcoinVisualizer, 2018), BTCSpark (BTCSpark, 2018) and Bitlodine
(Bitlodine, 2018), which weren’t updated for several years. They allowed running
complex processes on the Bitcoin blockchain, like, e.g., clustering addresses and revealing
connections between users.

A recent open source project is BlockSci. This tool was published by the Princeton
University and is specialized on analysis of Bitcoin blockchain data. Also, it supports the
Bitcoin Cash, Litecoin, Namecoin, Dash and ZCash blockchains. It was specially designed
for analysis and proves to be faster than tools implemented so far, also due to a parser
which restructures blockchain data and saves it to an analytical in-memory database.
Additionally, it retrieves exchange rates and records data from the blockchain network
and so allows a wide range of different queries. The use of the tool is mainly realized in
Python, but C++ can also be utilized to get better performance. With this tool sophisticated
analysis tasks can be performed, such as assessing the privacy of cryptocurrency
transaction by linking and clustering addresses. (Kalodner, Goldfeder, Chator, Moser, &
Narayanan, 2017)

Besides BlockSci, no comparable tools for blockchain data analysis are provided on open
source. Especially in the field of cross-blockchain transactions, which include multiple
blockchains, no analysis effort was done yet.

2.3.3 Commercial Analysis Tools

It is visible that analysis of blockchain data is more present in the business field. The
growing interest of blockchain-based technologies led to its expansion into many
different industries and areas. Because of this increase of usage, more organizations have
the interest in accessing and analyzing the data saved on the ledger. Therefore, companies
specialized in such kind of services have been established in the past few years.

One of the leading companies in this field is Chainalysis, which was founded in 2014. The
analysis is exclusively executed on the Bitcoin blockchain. The company offers its service
to three different customer fields, which are financial institutions, businesses doing
Bitcoin transactions and law enforcement agencies fighting against cyber threats.
Chainalysis provides reports and visualizations of customer activities to make the
assessment of business risks possible. Furthermore, it tracks activities of addresses and

17

Background

provides the data through a real-time API. The activity tracking is also used to convict
criminals, which extort or launder money. (Chainalysis, 2018)

Another company providing services in this field is Ellitic. Its blockchain analysis tools are
also limited to Bitcoin data and offered to law enforcement agencies and financial
institutions. The primary task of the company is the sophisticated analysis of Bitcoin
transactions, with which it is possible to uncover criminal activities and link addresses to
real identities. This additional information gives companies transparency over Bitcoin
accounts and allows them to reduce their risk when handling with specific customers.
(Elliptic, 2018)

2.4 Terminology

In this chapter, we will take a closer look at the structure of blockchain protocols and the
process of doing a cryptocurrency transaction. This terminology is needed to understand
cross-blockchain transactions in detail, as well as the methods used to recognize them. As
the focus in this thesis is on exchanges between Ether and Bitcoin, these technologies will
be explained.

Cross-blockchain Transaction

First, we want to define what exactly a cross-blockchain transaction is. It is an exchange
between two participants, which involves multiple cryptocurrencies. For this kind of
transfers, we must differentiate, if they are executed off-blockchain or on-blockchain.

On-chain exchanges always involve two normal blockchain transactions on two different
blockchain networks. We assume that participant A wants to exchange 10 ETH for 1 BTC
with participant B. A then sends 10 ETH from his Ethereum address to Bs Ethereum
address, and B sends 1 BTC from his Bitcoin wallet to the Bitcoin wallet of A. OTC, instant
cryptocurrency exchanges and atomic swaps follow this structure and are conducted on-
chain. The benefit of on-chain transactions for analysis is that both are written to the
blockchain and are publicly visible. Nevertheless, only the involved participants are aware
of the connection between these two transactions.

Exchanges, involving off-chain transactions, happen on external platforms and are only
tracked there, thus are not visible on the blockchain. Trades that are executed on trading
platforms have this characteristic. All the customer money is held on the accounts of the
trading platform. All funds on the platform are a representation of this money. Hence,
participants can execute multiple exchanges without saving any data on the blockchains.
This principle also applies to the previously presented protocols, which create payment
channels between users, and thus allow to execute exchanges off-chain. Nevertheless,
every off-chain transaction is connected to on-chain transactions, as every channel,
containing multiple off-chain transactions, is initiated with a deposit, which is an on-chain
transaction, and closed by a withdrawal, represented by another on-chain transaction.

18

Background

Blocks

A blockchain consists of multiple blocks which are linked to each other over one-way
hashes. Every block has only one predecessor and contains a hash, which is generated
from the transactions included in the previous block. The chain can’t be modified
unnoticedly and therefore is immutable. Every block contains multiple transactions.
These transactions, which are sent by different participants of the network, are collected
by various miners, who populate blocks with these transactions and try to append their
block to the chain. (Narayanan, Bonneau, Felten, Miller, & Goldfeder, 2016)

In the Bitcoin network, a new block is generated approximately every 10 minutes. The
size of a block is limited to 1 MB and can contain up to 1,978 transactions, assuming the
average transaction size of 530 Bytes. So, 3.3 transactions are confirmed per second.
(Ploom, 2016)

In the Ethereum network blocks are generated much faster. They are appended about
every 14 seconds (“Ethereum Average Block Time”, 2018). An Ethereum block has no size
limitation, but a maximum Gas limit per block, which is adjusted over time. Gas is the fee
paid for every transaction. The gas paid for all transactions contained in a block can’t
exceed the defined limit. The current Gas block limit is around 8 Million (“Ethereum
Average Gas Limit”, 2018). Considering the standard Gas limit for a transaction of 21,000
(Wood, 2014), a block can contain up to about 380 transactions. This corresponds to
about 31.7 transactions per second.

Transactions

Transactions on a blockchain represent the transfer of value between addresses, which
belong to different owners. Each transaction has one or multiple inputs and one or
multiple outputs, each showing the addresses involved.

A Bitcoin transaction can contain multiple inputs, as well as multiple outputs. Inputs are
always unspent transaction outputs (UTXO). They are values, which were received by an
address and were not spent yet. An UTXO must be spent entirely in only one transaction.
If a user wants to send an amount of money, which is smaller than the value of his UTXO,
the desired amount of this UTXO is sent to the recipient and the rest to a change address,
which is owned by the sender. To transfer high amounts, multiple UTXO can be combined.
As soon as a UTXO is used in a transaction, it can’t be used anymore in other ones. All
outputs become UTXO, which can be spent on future transfers. The sender must pay a fee
for each transaction. The height of the fee influences how fast the transaction will be
included in a block. (Buterin, 2014)

In Ethereum there is no concept of UTXOs. Therefore, no change addresses are needed.
Every transaction has one input address and one output address. An address can be seen
as an account. It stores all values sent to it, and output values can be defined
independently from the received inputs. For each transaction, the sender must pay a fee,
which is calculated by multiplying the set gas with the gas price. If the fee is too small, the
transaction may be not included in a block. (Buterin, 2014)

19

Background

Summarizing, the difference between both currencies is that in Bitcoin there are no
accounts and users can spend the money from multiple addresses at once in one
transaction. In Ethereum one address represents one account and thus only the funds of
one address can be involved in one transaction. This fact will be necessary for the analysis
of the processes the exchangers perform on these two networks.

Another important differentiation for the analysis is the existence of two timestamps
involved in every transaction. First, there is the transaction time, which is the time a
transaction was sent to the network by the corresponding sender. As nodes on the
network don’t receive this transaction at exactly the same time the transaction time of
different nodes can slightly differ. Secondly, there is the block confirmation time that is
the time the block, which includes a transaction, was appended to the blockchain (“Bitcoin
confirmation”, 2018). Transaction time and block confirmation time can lay wide apart,
depending on the height of the set fee or the network utilization. Especially for Bitcoin
transactions, this can be a high range, as blocks are confirmed only about every 10
minutes. For Ethereum transactions this is not as relevant, because blocks are confirmed
every couple of seconds, and the throughput is significantly higher than on the Bitcoin
network.

20

Conception

3 Conception
3.1 Approach

In this chapter, we go step by step through the process, which was taken to develop a tool
that can recognize cross-blockchain transactions. First, we look at the possibilities that
are given to retrieve data from exchange services. This data is needed to understand the
exchange process in detail. Based on this, it is possible to define heuristics that allow us
to implement a recognition algorithm. After this, we explain how we can evaluate the
output. Finally, we describe how the tool can be provided as a service.

3.2 Scraping of Exchange Data

In the beginning, we encounter the problem that we need a set of exchange data from
exchange platforms, with which we can evaluate the output of the implemented
recognition tool. Established trading platforms like Bitfinex (“Bitfinex API”, 2018) and
Bittrex (“Bittrex API”, 2018) mostly offer an API with which it is possible to retrieve
exchange data. The set includes detailed information, like the quantity of exchanged
currencies, the exact exchange price and the exchange time. Also, general statistics like
the transferred volume in a certain period are public. Coinmarketcap.com sums up such
information for a big number of traders on their website (“Exchange Volumes”, 2018).
Instant exchange platforms in comparison, only offer a limited view into their processes.
There is no detailed exchange data available on the internet. The attempt of requesting
data by directly contacting the companies was also unsuccessful. The reason could be that
instant exchange services want to keep the data of their customers as private as possible,
which is also one of the advantages they claim to have in comparison to traditional trading
platforms. Furthermore, exchanges of trading platforms happen off-blockchain and
therefore cannot be connected to blockchain addresses or even identities by using the
available data. This is not the case for instant exchanges, as the involved transactions are
directly visible on the blockchains. Revealing data like currencies and amounts of an
exchange would make it possible to link exchanges to accounts.

3.21 Analysis of Data Exposure

The first step is to check if the exchange services expose data at all and which exchange
data can be made visible. Therefore, we analyze every service in detail.

Changelly

The only way to get data from Changelly is from their Instant exchange API (“Changelly
API”, 2018). An API key is required to use it. The requests are categorized into three
different classes: requests for quotation, generating transaction and providing
transaction status and history. We are only interested in the first and last categories, as
these could expose exchange data. The first class includes methods for retrieving general

21

Conception

data like getting a list of all available currencies, the minimum exchange amount for a
given currency and the estimated outcome for a given amount of money. The other
request class includes a method for getting transaction data by a Changelly related
transaction ID which is returned after generating an exchange and a method for showing
a list of all transactions. The history only includes the transactions related to the account,
with which the API key was created. Therefore, there is no possibility to get a general set
of exchange data from Changelly.

Shapeshift

Shapeshift offers more insights into their service. This is already visible on the main page,
on which the most recent exchanges are shown, with the corresponding currencies and
amount transferred. Additionally, statistics for the last 24 hours are presented, including
the number of transactions, the exchange volume in Bitcoin, the average processing time
and the most popular exchange (Figure 5). Just as Changelly, an API is offered to interact
with the service (“Shapeshift API”, 2018). The API allows GET and POST requests. The
POST calls are used to create and cancel transactions or for requesting an email receipt.
With the GET calls, general data including the supported currencies, rates, fees and
exchange limits can be retrieved. Furthermore, exchange information is exposed. Thus,
the time left for sending the money or the status of a transaction can be checked passing
only the deposit address to the call. It is also possible to create a private API key and
request a list of own exchanges. Finally, the recently executed exchanges, which are also
shown on the main page can be retrieved. As most of the requests don’t require a private
API key, data can be scraped to some extent. Three requests were identified to be useful
for the scraping and are described in detail.

24 Hour Statistics

Transactions Bitcoin Volume Equivalent ‘

Average Processing Time Most Popular Trade

¢
Figure 5: Shapeshift Statistics (24.03.2018) (Shapeshift, 2018)

First, the fixed Shapeshift exchange fee, called “miner fee”, can be retrieved for all
currency by the “Market Info” request. The response lists all currency pairs and the fees
the service asks for each of these. Unlike Changelly, Shapeshift charges the same amount
of fees regardless of the amount transferred and adapts it only from time to time.
Querying this API frequently allows us to get an overview of the changes for all currencies.
Additionally, the response includes the expected exchange rate and the deposit limits,
which give us more insights into the service. Nevertheless, we won't need these values for
the analysis process and therefore won'’t save them.

22

Conception

1. {

2. "rate": "©.06857227",
3. "limit": 9.745281e6,
4. "pair": "ETH_BTC",

5. "maxLimit": 9.74528106,
6. "min": ©.ee196114,

7. "minerFee": ©.00006

8. }

Figure 6: “Market Info” JSON Response Excerpt (shapeshift.io/marketinfo/)

The second useful API call is the “Recent Transaction List” request. This call returns a
maximum number of 50 exchanges most recently executed by the service. For every trade,
the incoming and outgoing currency, a timestamp, the deposit amount and an intern
transaction ID (which changes if the request is sent once again) are revealed. The
information is general, and as no addresses or hashes are included we cannot connect it
to data on the blockchains. Furthermore, we cannot calculate the exact exchange rate for
a given trade, because the withdrawal amount is missing. Nevertheless, this API call
provides us with a starting point for scraping a large number of exchanges with partial
data.

1. {

2. “curIn": “ETH",

3. “curout™: "BTC",

4. "timestamp™: 1521914986.889,
5. "amount": ©.01274087,

6. "txid": 414815

7.0}

Figure 7: “Recent Transaction List” JSON Response Excerpt (shapeshift.io/recenttx/[max])

The last API request (“Status of deposit to address”) returns the most detailed data. It is
possible to get status information about an exchange by passing Shapeshifts deposit
address to it. If the transmitted address is a real Shapeshift deposit address, the JSON
response always consists at least of the submitted deposit address and the status the
exchange is currently in. The status can be either “no_deposit” (waiting for deposit),
“received” (deposit was received, but the exchange is still processed), “complete” or
“failed” (containing a failure message). In case an exchange is completed more
information is attached to the response. This information includes the currency symbols
and the amount of the incoming and the outgoing transactions, which makes it possible to
calculate the exact exchange rate for a given transfer. Furthermore, the withdrawal
address, which is the address the customer receives the exchanged money to, and the
transaction hash of the withdrawal are returned. This data makes it possible to link two
corresponding transactions on two different blockchains and identify them as a cross-
blockchain transaction.

23

Conception

1. {
2. "status": "complete”,
3. "address"™: "8x5507f17dbcdf556cb38cabcbdde4805b950838aBe”,
4. "withdraw": "16teePmRa9fNd6éyhGmUPb2H2phznqtVpxg"”,
5. "incomingCoin™: 1,
6. "incomingType™: "ETH",
7. "outgoingCoin™: "©.85991562",
8. "outgoingType™: "BTC",
9. "transaction": "983901b25b72@2666e1d72bb579944542?b4369331aa?a8625:‘?’31’82:723eb6da" B
10. "transactionURL": "https://blockchain.info/tx/e830db25b7202666e1d722b5700445427b43693810a7a8625cf3f82c723ebbda™
1. }
Figure 8: “Status of deposit to address” JSON Response (shapeshift.io/txStat/[address])
Others

All other OTC services do not offer any REST API. Customers can only track their
exchanges via the website. On Blocktrades.us, this can be done by creating an account,
executing transfers through this and later retrieving the history (Blocktrades.us, 2018).
On Evercoin (Evercoin, 2018) and Coinswitch (Coinswitch, 2018) customers can track
their exchanges by saving the intern transaction ID after creating a new exchange. Then
they can retrieve the exchange details by passing this ID to a search on the website.

Conclusion

The analysis leads to the conclusion that most instant cryptocurrency exchanges avoid
revealing any information about their trades. Only Shapeshift offers few API calls that
make it possible to obtain a set of transactions executed on this platform. Therefore, in
the following, we will concentrate on retrieving data from this service.

3.2.2 Algorithm for Scraping Data from Shapeshift

Using the three previously presented Shapeshift API calls, it is possible to scrape an entire
set of exchange data continuously. Such a scraping process consists of three main steps:

1. Retrieving general information of the last 50 exchanges (Figure 9). First, we
must the request 50 most recent exchanges and save them continuously. The goal
is to construct an array of exchanges which are sorted by timestamp. The
timestamp of each entry represents the time of this particular exchange. The time
is given in Greenwich Mean Time (GMT). The timestamp of the last transfer lies
approximately three minutes before the time of acquisition of the dataset. The time
range between the first and last exchange reaches from four to ten minutes
depending on the current utilization of the service. This observation leads to the
assumption that we should send a new request every at most four minutes to
guarantee a complete data set. Nevertheless, requesting data every 30 seconds
shows that in a new set of exchanges, which also contains exchanges that were in
the previous set, new entries are added in between the already known entries. This
phenomenon can be explained by the assumption that Shapeshift handles
exchanges involved in different blockchains separately and confirms each group in

24

Conception

different time periods. Groups of exchanges with the same incoming currency are
therefore added to the set of recent transactions lately. The example in Figure 10
shows the excerpt of two API responses. The right one was requested 30 seconds
after the left one. The new exchanges in the second response are marked and show
that transfers are added in groups having the same deposit currency. In the
example, exchanges involving Bitcoin Cash (BCH) and ZCash (ZEC) are added
delayed. Therefore, responses must be retrieved and aggregated continuously in a
short period (in the final implementation every 30 seconds) to make sure no
exchanges are missed out. Nevertheless, as we don't know in which time intervals
Shapeshift updates recent exchanges of each currency, some exchanges might
never be included in the response. Thus, a complete data set cannot be guaranteed.
For every newly retrieved response, we add yet unknown entries to the previously
retrieved ones. Then, we save all exchanges having a smaller timestamp than the
smallest timestamp of the last retrieved set, as no future entry will precede it.

Retrieve last 50 exchanges Wait 30 seconds

No

While exchange x
in last 50 exchanges

While exchange y
in current exchanges

Y

A

No Yes Yes No

y exceeded time bound

Yes Yes

Add to current exchanges Save in DB

Remove from current
exchanges

Figure 9: Retrieving Shapeshift Exchanges - Process Flow

25

Conception

EOS ETH 290.5774432 16:01:55

DOGE RDD 80 16:02:08
EOS ETH 290.5774432 16:01:55 BCH EOS 0.03063387 16:02:20
DOGE RDD 80 16:02:08 LTC DASH 1 16:03:00
LTC DASH 1 16:03:00 ZEC ETH 0.19934099 16:03:17
ETH BTC 03 16:03:17 ETH BTC 0.3 16:03:17
ETH BTC 0.49588416 16:03:19

ETH BTC 0.49588416 16:03:19
|:> LTC BTC 353895632 16:03:21
LTC BTC 353895632 16:03:21 ETH DASH 0.02594596 16:03:39
ETH DASH 0.02594596 16:03:39 LTC ETH 35.41664163 16:04:19
LTC ETH 35.41664163 16:04:19 BCH ETH 0.32546433 16:04:20
RDD BTG 26717.25537 16:04:23 ZEC POT 0.0012092 16:04:20
LTC SALT 3 16:0436 ZEC DOGE 0.02 16:04:22
RDD BTG 26717.25537 16:04:23
LTC SALT 3 16:04:36

Figure 10: Comparison of two Shapeshift Responses

2. Retrieving additional data. In the next step, we want to enhance each exchange
with more data. For this purpose, the Shapeshift “miner fee” for every currency
must be retrieved in short time intervals from the “Market Info” API and saved
with the corresponding exchanges. Also, the current rates in USD for every
currency should be requested from a suitable extern provider and attached to each
entry, to check if the real rate is comparable to an external rate. If both are similar,
it should be possible to estimate the withdrawal amount from the deposit amount.

3. Finding transactions on the blockchains (Figure 11). In the last step, we create
a connection between the scraped data and data on the blockchains. This process
is repeatedly run after a fixed amount of time (in the final version of the scraper
every 30 minutes) for exchanges, which were still not analyzed or not found. We
can divide the process into three parts.

First, we want to find the transaction the customer did on the blockchain of the
deposit currency. For this, we get the block with the current block number of the
corresponding blockchain, as the exchange was executed no longer than few
minutes before retrieving it. We then iterate over the transactions in this block.
The amounts given in the JSON response are exact. Therefore, we can compare if
the value of a deposit is the same as the value of one of the outputs of a transaction.
It should be beard in mind that inputs are the money sent by the customer, but as
also fees must be paid to the network, only the output can correspond to the
deposit amount. If we can't find the corresponding amount the next block is
retrieved and analyzed. We execute this process until we find a matching
transaction or a limit is surpassed.

In case of a match a request with the address to which the found output was sent,
is forwarded to the “Status of deposit to address“ API. If this is a real Shapeshift
exchange, the API should return the detailed information about this transfer, with
which we can enlarge the data of the entry. In case the APl doesn’t return exchange
details, the found transaction is not the right one, and we must continue searching.
It can also happen that exchange details are returned, but don’t belong to the found

26

Conception

transaction. There are two reasons this can happen. First, the currency of the
response in the first step does not fit the one returned from this API call. We
encounter this problem with tokens implemented on Ethereum. In the first
response, the currency is stated as Ether, because Ether must be sent to Shapeshift
to cover the fees for executing the Smart Contract which transfers the tokens,
whereas the second response returns the currency and the amount of the token.
We can solve this problem by checking if the deposit amount and symbol are still
the same. The second reason is if a customer uses a deposit address multiple times.
In that case, the API only returns the information about the last of these exchanges.
So, if the customer executes various trades with the same deposit address in a
short time interval which is smaller than the time interval of this process, we
cannot find additional information for all exchanges anymore. Nevertheless, the
possibility for this to happen is very low and we can prevent adding wrong
information by checking if the incoming amount is the same.

Finally, we must find missing data for the withdrawal transaction, like the
transaction fee and the block number. As we already get the transaction hash of
this transaction from the API response in the previous step, we can easily query all
details by searching by this hash. It can also occur that no transaction hash is
shown in the answer. This happens if an exchange was canceled, due to a wrong
deposit amount, the late arrival of the deposit or other reasons stated in a message
included in the response. In this case, the exchange wasn’t successful and doesn’t
have to be tracked.

With the outcome of this process, a significant record of exchanges with detailed data can
be generated, which helps us to analyze the transfer processes of Shapeshift in detail and
is useful for the evaluation of the outcome of the implemented tool.

27

Conception

—No

Get not found
exchanges from database

Wait 30 minutes

not found exchanges
not empty

Yes

Block number in range No-

Get next block b

o.amount equals e.amount

While transaction tx in b

A

Yes No

While exchange e in
not found exchanges

Get data from Shapeshift API
for o.address

Yes

tx and e in time range

No

Yes

While output 0 in tx

Yes No

Response data fits

Add found data to DB

!

Delete tx from not found
exchanges

Retrieve withdrawal transaction
and add data to DB

Figure 11: Finding Blockchain Data - Process Flow

3.3

Analysis and Findings

We can assume that Shapeshift uses standardized and automatized processes to handle
the high number of requests. In the first place, this includes receiving and sending of
money on all blockchains networks, which are involved in the service. Additionally, the
appropriate distribution of funds on different addresses must be handled, to guarantee

28

Conception

liquidity and be able to operate customer requests in short time. In this chapter, we want
to analyze this complex structure of transaction flows.

3.3.1 Analysis of Scraped Data

In the following, we take a closer look at the scraped data to find patterns. For this two
sets of scraped data are analyzed. The first one includes exchanges scraped on the 14. of
December 2017 in a time range of 5 hours. It has 1,742 entries in total, of which 318 are
exchanges from Bitcoin to Ether and vice versa. This data was scraped with a first version
of the scraping algorithm and didn’t track all exchanges provided by the Shapeshift API.
Nevertheless, it is valuable for analysis. The second set was scraped over a time range of
approximately two weeks between the 1. and the 14. of February 2018. It consists of over
105,000 entries, of which over 21,000 are exchanges between Bitcoin and Ether. The
analysis will take account of every attribute of the data sets.

Currencies

The sets show that most of the retrieved exchanges transfer Ether to Bitcoin. For the first
set this concerns all trades except two, and for the second set, it is almost 80%. Reasons
for this distribution will be analyzed and explained after the implementation of the
recognition tool.

Amount

The range of the incoming exchange amount in both data sets is similar. The highest
exchanges are 0.83 BTC and 8.71 ETH. This result also matches with the limits of the
service exchange set by the service.

Transaction Fee

As Shapeshift defines the exchange fees before the exchange, it could maximize its profit
by setting a small transaction fee when sending the withdrawal. Nevertheless, the scraped
data shows that the fees paid by Shapeshift are in a normal range. For Bitcoin, e.g., they
were between 0.0007 and 0.0017 BTC in the data set from December. This leads to the
assumption that transaction fees are calculated considering the current average
transaction fees, to guarantee that a transaction is confirmed quickly.

Exchange Fee

Shapeshifts fee is adapted over time to be in line with the development of the transaction
fees on the blockchain networks. The scraped data shows this precisely. In December the
fee was 0.00175 BTC (ca. 29%) for exchanges to Bitcoin and 0.01 ETH (ca. 6$) for

29

Conception

exchanges to Ether. In the first week of February, the fees lied between 0.00065 BTC -
0.0011 BTC (5-10$%) for exchanges to Bitcoin and 0.002 - 0.003 ETH (1 - 3$) for exchanges
to Ether. The fee was much higher in December due to the higher network fees caused by
the high demand for cryptocurrencies at the end of the year 2017.

Another finding regarding the exchange fee is that Shapeshift tries to lower it by doing
multiple withdrawal transactions within one transaction. Therefore, the exchange fee for
one exchange can be even lower than the fee paid by Shapeshift for executing the
withdrawal transaction. This is possible as the Bitcoin protocol allows to have multiple
outputs to different addresses in one transaction. This method can’t be applied for
Ethereum withdrawals as transactions only have one output.

Address

The found data shows that all deposit addresses for receiving Bitcoin start with a “3”. Such
addresses are classified as P2SH (Pay to script hash) addresses. Behind this hash, a script
is implemented, which secures the spending of deposits. It can, e.g., be a multi-signature
script, which requires the signing of a transaction by multiple people or a password
(Tschorsch, & Scheuermann, 2016). Apart from that, no patterns or multiple occurrences
of a single address can be recognized. This is due to the fact, that Shapeshift generates a
new address for each deposit, except the user requests to use an address multiple times.
The found addresses will be useful for tracking money flows and recognizing the process
structure. We describe this work in the next chapter.

Times/ Time Differences

For the scraping process, we use the API of Blockchain.info to get Bitcoin blockchain data,
as it has the advantage that apart from the block confirmation time, it also returns the
transaction time. As explained before, this is important for the analysis, because these two
times can significantly differ from each other. For Ethereum, we use the Infura service,
which returns the same output as arequest to an own full node. Therefore, it only contains
the confirmation time of the block. As the average time for adding a new block to the
public ledger is short, mostly taking just a few seconds, it can be assumed that the
difference between receiving the transaction and confirming the block is so small that no
attention must be paid to it in this analysis.

The scraped data reveals the order a transaction is processed. The process flow is
presented in Figure 12. The scraped data shows that Shapeshifts exchange timestamp
mostly lies only a few seconds after the time the deposit transaction was received in the
network. Outliers, where the transaction time lies just a few seconds after the exchange
time, can be explained by the fact that Blockchain.info and Shapeshift don’t receive a
transaction at the same time from the network. Due to this, the recognition of the same
transaction can slightly differ in time. Nevertheless, we can conclude that Shapeshift waits
for a customer transaction to appear in the network to set the timestamp which can be
retrieved from the API later. Then, Shapeshift waits that the deposit is confirmed within

30

Conception

a block and then send the withdrawal transaction. The time the withdrawal is received in
the network is in average approximately two minutes after the time the deposit was
confirmed. In this time the rate for the exchange is recalculated again, as some time has
passed. Therefore, the outgoing amount slightly differs from the estimated amount at the
beginning of the process. The whole exchange ends when the withdrawal transaction is
confirmed as well. The average time for the entire trade from sending the deposit
transaction to the confirmation of the withdrawal transaction takes around 10 minutes.
The average exchange time shown on the main Shapeshift page is mostly lower, as we
only consider exchanges involving Ethereum and Bitcoin. Most of the other
cryptocurrency networks proceed transactions faster than the Bitcoin network, which
also leads to a faster trade.

Exchange documented as started

Customer sends deposit
transaction

Deposit transaction is confirmed

Deposit is received
in the network in the allowed
fime range

No— l

Shapeshift sends withdrawal
fransaction

Cancel /
send back

Yes

Deposit amount is in range

Withdrawal transaction is
confirmed

End

Figure 12: Shapeshift Exchange - Process Flow

Exchange Rate

As we simultaneously scraped the Shapeshift fee and the actual dollar values for all
cryptocurrencies, we can check by which percentage a calculated expected outcome based
on these parameters would differ from the real outcome. For this we use following
calculation:

expected amount = (deposit amount * exchange rate) — exchange fee

value of deposit currency (in USD)

h te =
exchange rate value of withdrawal currency (in USD)

31

Conception

On average the expected amount is 9% higher than the real outcome in the data set
retrieved in December and only 0.5% higher at the beginning of February. We can see that
there are some outliers, mostly when the exchanged amount is very small. The smaller
the amount is, the bigger is the difference, as the exchange fee can nearly be as high as the
real output amount. Without an exact rate prediction, the approximation is impossible. To
see how our estimation would be without those small values we calculate the average
difference again after filtering those exchanges. In December the exchange fee was
ordinary high. Transfers to Bitcoin were charged with approximately 30$ of Shapeshift
fee. Filtering exchanges with a lower output than 35$ we get an average difference from
the real value of -0,6%. At the beginning of February, the demanded fee was up to almost
10$. Filtering all exchanges below this amount shows that the expected amount lies 0,8%
under the real output. This result indicates that a good approximation can be reached with
an externally retrieved exchange rate. Only exchange amounts that are nearly as big as
the exchange fee can’t be surely found without the exact rate used for the exchange.

Conclusion

The only parameters from the raw block data that are useful for recognizing if two
transactions on different blockchain are connected to each other are the timestamps,
which can be matched to each other by an expected time difference, and the amounts
involved, which can be matched using an external exchange rate.

The next step is to analyze the transaction processes of Shapeshift manually with the help
of the scraped addresses, using blockchain explorers with which transactions can be
followed step by step. This process is performed separately for Bitcoin and Ethereum.
Within this analysis, multiple addresses connected to Shapeshift were found and
categorized.

3.3.2 Analysis of Ethereum Transactions

Main Address

Etherscan.io is an explorer for the Ethereum blockchain, with which it is possible to search
data by address or transaction hash. It also offers the feature to label known addresses of
companies and services. The main address of Shapeshift is also marked and therefore easy
to find.

NAME ADDRESS
Shapeshifts Main Address ‘ 0x70faa28a6b8d6829a4ble649d26ec9aZ2a39ba413

This address was created in October 2016 is used as a central point for distributing Ethers,
therefore receiving money from different sources and sending it to different recipients.

32

Conception

Until February 2018 this address was used for more than 1.4 million of transactions. We
will analyze incoming and outgoing transactions separately.

Incoming Transactions

¢

>
O - 0 _ 4

Customer Deposit Address Main Address

Figure 13: Incoming Shapeshift Transaction for Ether

We can observe from the scraped data that every deposit address forwards the whole
received amount of money to the main Shapeshift address after a certain time. Mostly this
is done shortly after receiving the deposit, but outliers also could be detected, in which a
deposit was sent more than a month after receiving it. As the customer doesn’t have to
specify the address he will send the money from, Shapeshift must generate new addresses
for every user, to be able to recognize which deposit belongs to which exchange.
Sometimes the customer uses the same address for multiple exchanges. In that case, the
deposits are forwarded to the main address either stepwise or in one output transaction.

Additionally, other incoming transaction to the main address could be recognized which
originate from different sources. For instance, inputs from different trading platform
services, whose address were also labeled by Etherscan.io. Four of these services could
be detected: Bitfinex, Poloniex, Bittrex, and Binance. The labeled addresses are shown in
the table below.

OWNER ADDRESS

Bitfinex \ 0x876EabF441B2EE5B5b0554Fd502a8E0600950cFa
Poloniex \ 0x32Be343B94f860124dC4fEe278FDCBD38C102D88
Bittrex 0xFBb1b73C4f0BDa4f67dcA266ce6Ef42f520fBB98
Binance 0x3f5CE5FBFe3E9af3971dD833D26bA9b5C936f0bE

Outgoing Transactions

The scraped data reveals that all withdrawal transactions are send from exactly four
different addresses:

NAME ADDRESS

Withdrawal Address 1 ‘ 0xd3273eba07248020bf98a8b560ec1576a612102f
Withdrawal Address 2 0x3b0bc51ab9dele5b7b6e34e5b960285805¢41736
Withdrawal Address 3 Oxeed16856d551569d134530ee3967ec79995e2051
Withdrawal Address 4 ‘ 0x563b377a956c80d77a7c613a9343699ad6123911

33

Conception

These addresses are not labeled on Etherscan.io. Each of them is used since June 2017,
was involved in more than 250,000 transactions (until February 2018) and mainly has
outputs. The only input is a periodic payment from Shapeshifts main address, which
guarantees that these addresses can continuously send money to the customers. The
input is always a payment of around 400 Ether and is sent roughly every day. As the total
number of transactions is comparable and all addresses continuously send money, we can
assume that Shapeshift distributes all withdrawal transactions on these four addresses
equally. The scraped data also reveals that the address used for a particular exchange
output doesn’t depend on the incoming currency of the exchange.

Customer 1
Ak

Customer 2

ZA\

Main Address

I\
_ O

Sending Address

~
$
)
>
~
A
Customer 3

Figure 14: Outgoing Shapeshift Transaction for Ether

Exchanges, which involve tokens based on Ethereum, are handled by Shapeshift over
special Ethereum addresses. Each of these addresses is responsible for transactions of a
certain token. An amount of around 2 Ether is send to each of these addresses frequently.
This money is used for paying the fees required for calling the smart contract, which
executes a token transfer. Just as for the four forwarding addresses stated before, this
amount is always sent before the address runs out of money. Following token addresses
could be identified (for some tokens there are multiple addresses):

TOKEN

ADDRESS

OmiseGo (OMG)
EOS (EOS)
Golem (GNT)

Status Network (SNT)
Aragon (ANT):

Basic Attention (BAT):

Funfair (FUN)
DistrictOx (DNT)
Salt Lending (SALT)
Matchpool (GUP):

0xA7170FBEBace7F13D0BB82FA04eA6A36c0A576b7
0x5E44c3E467a49C9Ca0296a9F130fc433041aAa28
0x59f1e1C1EFe5D1350287862Ba53A61f1dC3B78FD
0x692DA4782d996DAC7D66B5822f3c504f67dA8493
0x7fe2b88f2e4858de375832fbf54ac7cfla78ca51
0x2E46956565CEbDcBbB39EcD22aF02E1916a2FE37
Oxebfea9697bc8fde56b142c57de59136481785fal
0x73295d3c0ca46113ca226222c81c79adabfof391
0xdf04eaf5fe642ab9fce3a9bb4957361f514bc657
0x412ce78c6cb4c227e1d1522ba484b4cc8c051b13
0xb7Bd981cAC9f087177fE90FC4D6439d3F2782061
0x54638372273d424121485eE14376EC341c0294c7

34

Conception

Furthermore, also outputs to trading platforms could be identified. These are realized
over specific addresses as well. These addresses receive high and even amounts of Ether
and forward them to the addresses of the trading platforms. Shapeshifts forwarding
addresses are shown in the table below.

OWNER ADDRESS

Bittrex \ 0xE9319eBA87Af7C2fc1F55ccDe9d10eA8efbd592d

Bitfinex \ 0xDalE5D4Cc9873963f788562354b55A772253b92f
Poloniex \ 0xe8ed915E208B28c617d20F3F8Ca8e11455933aDf
Binance \ 0xb36eFd48c9912Bd9fd58b67b65f7438F6364a256

3.3.3 Analysis of Bitcoin Transactions

In contrast to Ethereum, Bitcoin transactions can contain multiple inputs and multiple
outputs. As explained in the second chapter a received input can’t be divided and must be
spent entirely. Nevertheless, inputs mostly don’t correspond exactly to the amount the
sender wants to transfer. That is why transactions don’t only contain outputs which
belong to the desired recipients, but also other addresses belonging to the sender, to
which the rest is sent back. These addresses are called change addresses. So, apart from
identifying which transactions are related to Shapeshift, it will also be required to
understand which inputs and which outputs of this transaction belong to which party.

Incoming Transactions

Deposit Address

Customer \

Customer
(Address 2)

Figure 15: Incoming Shapeshift Transaction for Bitcoin

As stated before customer deposits are exclusively sent to P2SH addresses. Furthermore,
the analysis of the Shapeshift transactions showed, that this kind of addresses are only
used for receiving money from the customer. Therefore, if a transaction can be identified
as related to Shapeshift, it can also be easily categorized as a deposit. The service uses the
deposited money in an outgoing transaction. In case a deposit address is used multiple
times, each input is spent separately in different output transactions. Shapeshift mostly
forwards the deposit within a day. However, in some cases, it can also take more time.

Conception

For all other incoming transactions, Shapeshift owns a separate Bitcoin address. Here, it
receives more significant amounts of money and then uses it for sending it to the
customers. Inputs include payments from trading platforms. Shapeshift uses this address
since April 2017 and has received and forwarded over 107,000 BTC since then
(BicoinInfoCharts, 2018).

NAME ADDRESS
Shapeshifts Main Deposit INSc6zAdG2NGbjPLQwWAjAuqjHSoq5KECT7
Address

With the help of the services bitcoinwhoswho.com and blocktrail.com, it was possible to
identify incoming amounts from the same four trading platforms, as used for exchanging
Ether. These are their Bitcoin address:

OWNER ADDRESS

Bittrex IN52wHoVR79PMDishab2XmRHsbekCdGquK
14cQRmViAzVKa277gZznByGZtnrVPQc8Lr

Bitfinex 1Kr6QSydW9bFQG1mXiPNNu6Wp]JGmUa9ilg

Poloniex 12cgpFdJViXbwHbhrA3TuW1EGnL25Zqc3P

Binance INDyJtNTjmwk5xPNhjgAMu4HDHigtobuls

1TNSc6zAdG2NGhPLQWAJAUQiHSogSKECTT balance chart

— Balance in BTC — Balance in USD
450 5.54M
400 4.92M
350 4.31M
300 3.69M

250

200
150

|
100

B ‘_!_‘II III! il Hu. ‘. ! l'!l : .HIl!.lL"x.j : 1 ‘; il “ii “ | 1=

May 2017 Jun 2017 Jul 2017 Aug 2017 Sep 2017 Oct 2017 Nov 2017 Dec 2017 Jan 2018 Feb 2018

3.08M

2.46M

Balance in BTC
asn ureauejeg

| |1.85M

1.23M

615.43k

o

Lr— -

Figure 16: Shapeshifts main deposit address - Balance Overview (BitInfoCharts, 2018)

Outgoing Transactions

In comparison to the processes on the Ethereum network, Shapeshift has no particular
withdrawal addresses that handle all outgoing transactions for Bitcoin. A customer
withdrawal is derived either directly from an incoming or another outgoing transaction.

There are two ways Shapeshift handles the inputs of such a withdrawal transaction. Either
many small UTXOs, especially those received from the customer as a deposit, are
combined to satisfy a high enough amount for realizing an output. In case a Shapeshift
address holds an UTXO with a high number of Bitcoins no UTXOs must be combined. To
accomplish such a high-value UTXO, Shapeshift either sends a high-value output from its
main deposit address or uses temporary addresses in which small value UTXO are

36

Conception

inputted, and high-value UTXO are created. An example is the address listed below which
was used for summing up UTXO within a day.

NAME ADDRESS
Shapeshifts Temporary 1B6MUdDVNZU5tEWoLLcqVVk6GU2GgUiHQg6
Address

We can see that a transaction can either contain just one output being a withdrawal or
have multiple of such outputs handling multiple exchanges at the same time. Mostly these
transactions contain one output address, which is a change address and therefore belongs
to Shapeshift. This output is used again as an UTXO in another outgoing transaction.

The payments are therefore not handled by just one main address, but by a chain of single
addresses. The difference in the underlying protocol can explain the difference in
processing between Ethereum and Bitcoin. As described in chapter 2, addresses are seen
as separate accounts in Ethereum. Thus, it is not possible to send one transaction from
multiple addresses. That is why Shapeshift must bring together all deposits, which mostly
are small amounts of Ether. Then it is possible to send payments of any height from this
address. For Bitcoin transaction, multiple UTXO of different addresses can be added
together and so a main address is not needed. Moreover, the sending to a main address
would cause additional transaction fees, which are much higher in comparison to
Ethereum transaction fees.

Withdrawal
Address

Shapeshift
(Address 1)

o I AR
—~—

Shapeshift

(Address 2)

Figure 17: Outgoing Shapeshift Transaction for Bitcoin

External Deposit Addresses

In comparison to Ethereum, there is no blockchain explorer, which labels a Bitcoin
address as related to Shapeshift. As stated before Shapeshift doesn’t have a main Bitcoin
address. Nevertheless, addresses, continuously receiving a high number of Bitcoins from
Shapeshift related addresses, could be identified by following the transaction flow which
originates from the scraped addresses. Almost all customer deposits end up in one of
these addresses, either directly or through a series of outgoing transaction.

37

Conception

Firstly, we could uncover four addresses that belong to trading platforms and to which
Shapeshift sends deposits continuously. These addresses are exclusively for Shapeshift
and only get inputs from it. The four trading platforms are the same as identified for the
incoming transactions.

OWNER ADDRESS USER AMOUNT
SINCE RECEIVED

Bittrex 1NoHmhqw90oTh7nNKsa5Dprjt3dva3kF1ZG January >27,000
2015 BTC

Poloniex | 1BvTQTP5PJVCEz7dCU2YxgMskMxxikSruM March >99,000
2015 BTC

Bitfinex | 1LASN6ra8dwR2EjAfCPcghXDxtME7a89Hk August >58,000
2016 BTC

Binance | 17NqGW6HY3f2LY7wWFKEDn9yXpq8LWMRMEQ February >1,700 BTC
2018

1LASNGrag8dwR2EJATCPcghXDxtME7a88Hk balance chart

800 — Balance in BTC — Balance in USD 15.05M
700 4.42M
600 |3.79M
500 {3.16M
400 |2.53M

300 | [1.9M

Balance in BTC
asn ui souejeg

200 1 l | ‘ {1.26M

[h | L ‘l.l [M.

L 5 J
Oct 2016 Jan 2017 Apr 2017 Jul 2017 Oct 2017 Jan 2018

100

" 631.7K

Figure 18: Shapeshift Deposit Address for Bitfinex - Balance Overview (BitInfoCharts, 2018)

Furthermore, we found a deposit address, which mainly has inputs and holds a high
number of Bitcoins (over 2,600 BTC in February 2018). These characteristics lead to the
assumption that this is one of the Bitcoin addresses on which Shapeshift stores money not
used in the exchange process anymore. Therefore, this could also be one of Shapeshifts
cold wallet addresses. This address has a small amount compared with the cold wallets of
the trading platforms Bitfinex and Bittrex, which hold more than 150,000 BTC (March
2017) and are two of the wealthiest Bitcoin addresses (Richest Bitcoin Addresses, 2018).
Bitfinex states that their cold wallet contains 99.5% of all user funds (Bitfinex Cold Wallet,
2018). The wallet structure of Shapeshift must be different, as user funds are processed
within a couple of minutes and not kept over a long term. Nevertheless, we can assume
that the service holds their profits on offline storages as well. Except for this address, no
transactions to other cold wallets could be identified on neither of both presented
networks. Shapeshift could also realize this, e.g., by transferring the money intended for
storing directly from its trading platform accounts to its cold wallet accounts, what would
have no connection to the scraped data and so be untraceable for us.

38

Conception

OWNER ADDRESS
Storage Address 3K9Xd9kPskEc]k9YyZk1cbHr2jthrcN79B

3KIXdOkPskECJkIYyZk1chHr2jthreN79B balance chart

3k |- — Balance in BTC — Balance in USD

2.5k —_—

) ™~
2k o 20.33M
1.5k [15.25M

500 5.08M

Balance in BTC
asn ur edueleg

24 Dec 31 Dec 07 Jan 14 Jan 21 Jan 28 Jan 04 Feb 11 Feb

Figure 19: Shapeshift Address for Storage - Balance Overview (BitInfoCharts, 2018)

Finally, we could identify addresses, which first receive multiple deposits from Shapeshift
during a short period - similarly to the temporary addresses. Then they send a high
amount to unknown addresses, which can’t be identified as Shapeshift addresses. The
amounts are not forwarded anymore and therefore end the chain of outgoing
transactions.

OWNER ADDRESS

Unknown 1 \ 1NE6snFBUQD2aExH8KZdzEbDiNCyAN;jfVg

Unknown 2 ‘ 1GJkx984EHyR5dCPvVisE9Y7p18MKalixs
Conclusion

Shapeshift distributes its money by sending it through multiple flows of transactions.
Such a flow originates from a deposit transaction or a transaction sent by Shapeshifts
main deposit address. Then the money is forwarded over one or multiple outgoing
transactions. Finally, the transaction flow ends in one of the external deposit addresses.
Flows are often merged, e.g., by combining various deposit UTXO.

Note

All addresses presented were lastly checked at the end of April. Transaction done
afterward are therefore not included in this analysis.

For both, the Bitcoin and Ethereum transaction processes, single transactions were found
which couldn’t be assigned to any of the address categories presented in this chapter.
Nevertheless, these are mostly transactions with a small value. All transactions including
high-value transfers and those related to customer exchanges could be identified here.
Therefore, we can use these findings to construct heuristics for recognizing cross-
blockchain transactions.

39

Conception

3.4 Heuristics for Cross-Blockchain Transaction Recognition

In this chapter, we want to construct heuristics with which it is possible to recognize
cross-chain transactions initiated by the Shapeshift service using only data publicly
available on the blockchains or other public services. From the previous analysis, three
parameters could be identified as useful for such a recognition algorithm.

3.4.1 Time Comparison

The first step for matching transactions from two blockchains to each other is to check if
they were created in a specific time range and so can be candidates for building a possible
exchange. To minimize the number of matching transactions, the shortest time difference
between these two transactions must be calculated. As previously explained, this is the
range between the block confirmation time of the deposit transaction and the transaction
time of the withdrawal transaction. The average duration is 2 minutes, but an appropriate
interval should be set to find as many correct pairs as possible. For the lower range, we
can just set the difference to 0, as Shapeshift can send the withdrawal within a few seconds
after receiving the deposit. We found exchanges, which had a long processing time (up to
45 minutes) in the scraped data. Setting such a high upper bound however would
dramatically raise the number of wrongly matched pairs. The analysis of over 20,000
scraped exchanges in February shows that setting the upper bound to 15 minutes includes
99,6% of all found exchanges and therefore is an appropriate limit.

3.4.2 Exchange Rate

The next step is to check if the transaction pairs also match regarding their values. We
saw that the real exchange rate could be approximated adequately with an external
exchange rate, except for tiny amounts. Therefore, we must retrieve the exchange rate for
the two currencies and check if any of the output values of the transactions match using
this rate, considering the exchange fees as well. A match is found when the withdrawal
amount is in a specific range around the calculated expected outcome. We must select this
range in such a way that we minimize the number of wrong pairs. Analysis of the scraped
data of February showed that setting the range between -10% and +10% includes 99% of
the found exchanges. The publicly available historical rates can only be retrieved in an
hourly range and therefore won'’t be as precise as the rate that is continuously actualized
by the scraper in a shorter time range. Setting a higher range would guarantee to find a
higher number of right pairs, but also would increase the number of false pairs noticeably.

For the calculation of the expected output Shapeshifts fee is needed. As there is no
historical data for this rate, we will have to estimate it. We can do this estimation by
calculating it based on the fees Shapeshift paid for the withdrawal transaction. As
mentioned before, the exchange service claims a lower fee if multiple withdrawals can be
handled in only one transfer. For Bitcoin transactions which involve only one or two
withdrawals and for all Ethereum transactions which can only transfer one withdrawal

40

Conception

due to the protocol definition, the exchange fee is higher than the network fee of the
transaction. The scraped data reveals that the ratio in average is +60% for Bitcoin and
+80% for Ethereum transaction. For Bitcoin transactions handling more than two
withdrawals, the exchange fee is significantly lower than the fee paid for doing the
transfer. In average the exchange fee is 30% of the transaction fee. We use these values to
estimate the Shapeshifts fee.

3.4.3 Address Recognition

Running the tool comparing only the times and values showed that the number of wrong
pairs is exceptionally high, as many transactions with a similar or even the same amount
are executed at almost the same time on the blockchains. Therefore, we must reduce the
found set by an additional heuristic. The main problem is that all transactions from the
blockchains are involved in the comparison algorithm. To get a better result, we should
reduce the transactions compared exclusively to transfers related to Shapeshift.
Therefore, we want to design an algorithm which recognizes deposit and withdrawal
transactions for Ethereum and Bitcoin. For this purpose, we use the findings about
Shapeshifts processes previously presented.

Ethereum

Since deposits, as well as withdrawals, are connected to the labeled main address of
Shapeshift over one additional hub, the classification of a given transaction to one of this
two classes can be realized straightforward. Figure 20 shows the recognition process for
one block.

Ethereum deposits of a customer are always forwarded after a certain amount of time to
the main address of Shapeshift. That’s why a transaction can be recognized as a deposit
transaction to Shapeshift if there is another subsequent transaction that sends money to
the main address and whose input address equals the output address of the deposit
transaction, respectively the deposit address. To be able to make such a check we must
retrieve an array with all transactions to the main address, which were made a certain
time after the transaction under investigation. As the scraped data showed, we would
have to get all transaction within the coming month to be sure to verify all deposit
addresses correctly. Nevertheless, to check every transaction with all Shapeshift
transactions of a whole month would noticeably reduce the performance of the tool so
that a lower limit should be set. A range of 1.5 days guarantees that 99% of all deposit
transactions will be found. The retrieving of the transactions of the Shapeshift main
address can be done in two different ways. Either it can be retrieved using the API of
Etherscan.io, which allows getting all transactions of a given address in a given time range.
On the other hand, we could also retrieve all Shapeshift related transactions without using
the Etherscan.io API. For this, all subsequent blocks in the range of 1.5 days should be
retrieved and for all contained transactions it must be checked if the Shapeshift main
address is involved as output address. Assuming the average block creation time of 15

41

Conception

seconds, 8,640 blocks (4 blocks/minute * 60 minutes * 24 hours * 1.5 days) have to be
checked before starting the analysis.

Withdrawal transactions can be recognized in two different ways. As showed before,
larger amounts of money are sent to forwarding addresses frequently, which then execute
the withdrawal transactions. Since June 2017 four of such addresses are used. Therefore,
for transactions done after this date, we only must check if an Ethereum transaction has
one of these four addresses as an input to identify it as a Shapeshift withdrawal. Another
heuristic would be to check if the input address of a transaction corresponds to an address
to which the main Shapeshift address sent a larger amount of money in the past period.
The analysis showed that this happens mostly within a day. Therefore, the check of a
specific address should be done with all transactions of the main address which were
executed at most one day before this transaction. The retrieving of the main address
transactions can be done in the same two ways proposed for the recognition of a deposit.
It would be required to load 5,760 blocks (4 blocks/minute * 60 minutes * 24 hours * 1
day) before the block where the transaction being checked is contained. The second
method can be used without the knowledge of the addresses used by Shapeshift for paying
out exchanges. Assuming that Shapeshift used the same structure for forwarding
addresses before June 2017, the second heuristic can be applied for a more flexible
recognition of withdrawals.

Get block b

While fransaction tx in b

Yes

output_address equals
hapeshift main addre:

tx.output_address in
deposit addresses

tx.input_address in
sending addresses

Yes Yes Yes

Add tx.input_address fo

deposit addresses Mark as deposit Mark as withdrawal

l

Figure 20: Address Recognition Process for Ethereum

42

Conception

Bitcoin

As there is no main Bitcoin address standing in the middle of deposit and withdrawal
transfers, the classification must be realized by iterating over each hub of a flow of
transactions, as explained in the chapter 3.3.3. We found out that such a flow starts with
a deposit transaction of a customer or by a transfer from Shapeshifts main deposit
address. Then, none, one or multiple outgoing transactions follow each another and so
create a transaction chain. Thereby, several of these chains can come together and build
a new single chain. Also, after aggregation they can be split up into multiple chains with
high UTXOs, what is done in temporary addresses for merging small UTXOs. Each of these
chains ends in a transaction to one of the previously identified deposit addresses to
external services or cold storages. Transactions in between can’t be recognized as related
to Shapeshift without having the knowledge that they are contained in a Shapeshift
transaction flow. So, to identify all members of a chain, we need to find each transaction
step by step by starting at one of the ends of the chain. The problem by starting at the
beginning of the chain is that we cannot say which P2SH transactions are related to
Shapeshift without using its API. Also, assuming we could identify the starting customer
deposit transaction, we would need to pass through the blocks in rising number and thus
should be able to say which one of the outputs of each transaction is an address that
belongs to Shapeshift and which one belongs to the customer. We can't fulfill a secure
classification only having the output values as parameters. We can only identify a single
Shapeshift related transaction certainly if one of the deposit addresses to the external
services is involved. Therefore, these kinds of transactions can be used as a starting point
for the recognition of a transaction flow. That means the recognition process starts at the
end of every chain and other members of it are found by going through the blocks in
decreasing number. The process follows these steps:

1. First, we create different buckets to which we assign addresses related to
Shapeshift. In the beginning, we only have one filled bucket, which contains all
external deposit addresses. Additionally, we have two more buckets which will be
filled with the addresses involved in customer exchanges later in the process.

2. We now iterate over all Bitcoin transactions of a block and check the output
addresses of each of them. If one equals the address contained in one of the
buckets, we can identify the transaction as an exchange transaction.

3. Then we have to differentiate whether the transaction including the matching
output is a deposit or a withdrawal:

a. Ifthe output address is not a P2SH address, we can label it as a withdrawal.
Then, we can delete this output, as for the further process we only need the
other outputs, which contain the amount and address of the withdrawal to
the customer. Now that we know that this is a transaction done by
Shapeshift, it is sure that all input addresses contained also belong to the
exchange service. Therefore, all inputs of the transaction are saved. This is
not done if one of the addresses is Shapeshifts main deposit address or an
address of a trading platform. It is important to classify the new addresses
into two different categories and so fill the two buckets described in step 1.

43

Conception

The first category includes single used addresses, which are used only for
forwarding money once. They just have one incoming and one outgoing
transaction. The second category contains multiple used addresses which
are created by Shapeshift to merge UTXOs and have various incoming and
outgoing transactions. So, if, e.g., after finding an outgoing transaction to an
address identified as Shapeshift related, another outgoing transaction to
the same address is found, it is classified as multiply used.

b. In case the output address is a P2SH address it is marked as a customer
deposit. All outputs except the found one are removed, as they are not
transactions to Shapeshift and won’t be needed later.

4. Finally, we must delete the matching output address from the single address
bucketin case it is contained in it. It won’t be needed anymore as it is only one time
used. In comparison, we never delete addresses from the other two buckets.

Get block b

While transaction tx in b

No Yes

While oufput o in tx - dd is P25H address

Yes No Yes

fes Mo

o.address in
known addresses

Mark as deposit Mark as withdrawal

Add tx.inputs to
known addresses

{

Delete o.address from
known addresses

Figure 21: Address recognition Process for Bitcoin

This process is conducted for every transaction and guarantees that all exchange related
transactions are found, in case they are connected to one of the external deposit
addresses. To be sure that a particular trade is identified, the recognition process must
start with the block where the transaction flow ends, more specifically where a

44

Conception

transaction to one of the external deposit addresses is made. As a transaction flow can
expand over days, a high number of blocks should be proven beforehand. Figure 21 shows
a simplified process flow of the recognition process for one block.

3.4.4 Recognition Process

Now we have defined multiple heuristics and will merge them into a single process.
Checking every pair of transactions if they fit regarding the time difference and the
exchange rate requires a high amount of comparisons and would be very inefficient.
Therefore, it is more suitable first to reduce all transactions only to Shapeshift related
ones. For this, we must retrieve blocks from the Ethereum and Bitcoin network and pass
the transactions through the previously defined recognition algorithms. As seen, the
algorithms, especially the one for Bitcoin, require passing through blocks in descending
order. Therefore, the whole process must run the blockchains backward. At the beginning
a fixed preparation range of blocks should be processed, only checking and saving
Shapeshift related addresses and not considering the classification of transactions. This
preparation is done until the blocks numbers with which the algorithm should start are
reached. After this, the recognition algorithm can start. A simplified process flow is shown
in Figure 22. The process can be subdivided as follows:

1. Blocks for a defined period are loaded from the Ethereum and Bitcoin blockchains.
The number of blocks for Ethereum is much higher, as blocks are confirmed faster.
For one day this would be 5,760 blocks (4 blocks/minute * 60 minutes * 24 hours)
for Ethereum, assuming an average block confirmation time of 15 seconds, and
144 blocks (6 blocks/minute * 24 hours) for Bitcoin, taking an average
confirmation time of 10 minutes. The process should start with blocks with the
same confirmation time on both blockchains. Thus, it either can start with the
current block numbers, but also can take earlier blocks. The second approach is
recommended, as the recognition of addresses is only possible running the
preparation process for multiple future blocks beforehand.

2. We now pass all transactions through the address recognition algorithm, gather
all transactions which are Shapeshift related and classify them either as deposit
or withdrawal. It has to be kept in mind that the found transactions are surely
related to the exchange service, butitis not determined which cryptocurrency was
involved in the deposit transaction.

3. For the comparison now, we need to separate the two given classes into two
different arrays. Deposit transactions are loaded within their corresponding block
to the first array. The blocks are then sorted by the block confirmation time, as we
only need this time for the comparison. For withdrawals, we need the receiving
time of the withdrawal transaction, which has the shortest time range to the
confirmation time of the deposit. Therefore, the withdrawals are included in the
second array separately and sorted by their transaction time.

45

Conception

4. Now, the deposit blocks are run in descending order and each is compared with
the single withdrawal transactions. The time comparison can lead to three
different behaviors:

a. In case the timestamp for the block confirmation is higher than the
timestamp for the receiving of the withdrawal, it is certain that this cannot
be an exchange pair, as withdrawals can’t happen before deposits weren'’t
received. Since the blockchain is processed backwards the following
withdrawals will have a smaller timestamp. Hence, the block with all
contained transactions can be skipped, and the next block is checked.

b. If the time difference is within a declared time range, said that all
withdrawals are executed after the corresponding deposit is received and
taking an upper bound into account, each transaction in the block is
processed to be analyzed more in detail regarding the connection to the
withdrawal.

c. The last case left is when the difference between the confirmation time of
a block and the time of a withdrawal surpasses the declared upper bound.
The timestamps of the blocks will only get smaller due to the backward
running process. Thus, the withdrawal transaction surely won’t be
matched with any other deposit and can be deleted. The time comparison
of the block can then continue with the next withdrawal.

5. After a match is found in step 4b, all transactions in the deposit block can be
compared with the withdrawal transaction regarding their values. First, the
corresponding exchange rate between both currencies is calculated by retrieving
their values in USD for the time the exchange was made. With this rate and an
estimated Shapeshift fee, the expected height of the withdrawal for a given deposit
amount is computed. This estimated value is then compared with each output of
the withdrawal transaction. In case the value lies within the defined range, the two
transactions are matched as a possible exchange pair and saved. The process
allows either the deposit, as well as the withdrawal, to be included in multiple
exchanges, as multiple Shapeshift related transactions can match to each other
regarding time difference and exchange rate.

6. Finally, the block can be deleted, and the process can continue with the next one.
After all blocks for the defined range of time has been analyzed, new previous
blocks are loaded for the same range of time. This process is repeated until a set
time limit is reached.

46

Conception

Analysis time range
not surpassed

Yes

Get blocks for the next time While depositd in b
range
Yes No
No Filter blocks
While withdrawal w in

ithdrawal transaction

Yes
Split blocks into deposit blocks
and withdrawal transactions

Calculate expected outcome

While block b in
deposit blocks

While output 0 in w <
Yes
* Yes No
Calculate time range No Yes
between band w o.amount equals

expected outcome

Yes

time range fits

Save pair as exchange in DB

Figure 22: Cross-Blockchain Recognition Tool - Process Flow

3.5 Conception of the Evaluation

After running the previously defined algorithm, processes must be defined to evaluate
how accurate the result is. We analyze the set of found exchanges in two different ways.

47

Conception

Comparison with Scraped Data

First, we compare the data for a given time range with the data, which was retrieved by
the scraping algorithm for the same period. As aresult, we can assign each exchange found
by the recognition algorithm to one of the following four classes:

e True positive: A correct exchange was found by the algorithm, as well as by the
scraper. As we can'’t assess if the scraped data contains all exchanges of a period,
this category could also include real exchanges, which were found by the
algorithm, but not by the scraper.

e False positive: A wrong exchange that was found by the algorithm, but not by the
scraper.

e False negative: A correct exchange that was not found by the algorithm, but by the
scraper. As we can’t assess if the scraped data contains all exchanges of a period,
this category could also include correct exchanges, which were neither found by
the algorithm, nor by the scraper.

e True negative: This is a wrong exchange which was neither found by the algorithm,
nor by the scraper and therefore is not visible in the output.

Our primary goal is to find all correct exchanges. This means having a high percentage of
true positives and a low percentage of false negatives. Furthermore, it is also essential, to
have high accuracy. Therefore, we want to have at best only the true corresponding
withdrawal for one deposit and no other matching false withdrawals. This requires having
a low percentage of false positives. After classification, we must further analyze why
exchanges, found by the scraper, couldn’t be found by the defined algorithm. Also, we
must identify reasons, why transactions were wrongly matched.

Check with Shapeshift API

As explained before, it is not determined if the scraped data contains all exchanges done
in the given time range. Because of this uncertainty, we should check each exchange that
was found by the algorithm but not by the scraper, more in detail. Therefore, we send the
deposit address of every exchange to the API of Shapeshift. The output returns which
cryptocurrencies were involved in the exchange with this deposit address. If an exchange
was made between Ethereum and Bitcoin, this represents an exchange, which was not
found by the scraper. We then check if the corresponding withdrawal transaction was
found by the tool. This could change the classification of exchanges after the first
evaluation step. Some of the exchanges, which were classified as false positives, are
therefore true positives, although they are not contained in the scraped data.
Furthermore, after having more detailed information from the API response, like the
currencies and the amounts involved, we can find out more in detail which reasons cause
wrong matching.

48

Conception

3.6 Conception of the Data Provision
Requests

The last step will be to provide the found data through an API. We realize this by creating
a REST API which handles different GET requests. Exchanges can be found using following
parameters:

e input address of deposit transaction

e input address of withdrawal transaction

e deposit address

e withdrawal address

e hash of deposit transaction

e hash of withdrawal transaction

e block number and currency of the deposit transaction

e block number and currency of the withdrawal transaction
e range of time

We encounter a problem with the search for exchanges by input address. As we don’t save
input addresses of the transaction pairs, the transaction hashes in which this address was
involved must be retrieved from an external service. Then it can be searched if any of the
hashes is contained in the found exchanges. Depending on the sent input address, many
transaction hashes might be found, e.g, if the input address is one of Shapeshifts four
forwarding addresses for Ethereum. Therefore, the response must be limited. For the
other GET requests involving addresses or hashes, the found data is checked regarding
their existence. All matching exchanges are then returned. In the best case, there is only
one pair in the response. In case there are multiple matching exchanges found for an
address, the entries are ranked by the difference between the estimated outcome value
and the output value of the withdrawal transaction. The last GET request returns all found
exchange pairs in the requested range of time. The search is realized by looking at the
block confirmation time of the deposit transaction, as this is the time that comes the
closest to Shapeshifts timestamp.

Concept

To make such a REST API possible the requested data must already be saved in the
database. Running the algorithm after every request would only allow searching for
exchanges by providing a specific time of interest, but not by providing addresses or
hashes. Furthermore, this would be slow and inefficient as the preparation requires
passing through a high number of blocks first. Therefore, we load the exchanges before
providing the REST API. To get historical exchange data the algorithm will run and analyze
the given blockchains backward starting at a defined point in time. For future exchange

49

Conception

data, the scraper can be used, as well as the algorithm, which should analyze the earliest
range of time periodically. The upside of using the scraper is that all found pairs are surely
true. The downside is that we depend on the availability of the Shapeshift APIs. This is not
the case for the recognition algorithm. Nevertheless, current exchanges can’t be found
immediately by the recognition algorithm due to the preparation range of the address
recognition. A certain amount of time should pass by to be able to identify those
exchanges. This can also require waiting a couple of days. Therefore, using the scraping
algorithm for finding current exchanges seems more suitable.

All in all, the concept of the tool can be realized by running the scraper for getting current
and future exchanges, while the recognizer algorithm can find all historical exchanges
before the time the scraping started. The REST API can then be used to request both data
sets at the same time.

50

Implementation

4 Implementation
4.1 Environment

The implementation was realized with the programming language Python 2.7 and
executed on an Ubuntu 17.10 server with four vCPUs and 16 GB RAM. All tool classes can
be found in the main folder. The scraper specific classes are in the scraper folder and the
implementation of the evaluation in the analysis folder. The file structure is shown in
Figure 23. The contents of each file will be described in this chapter.

7 main

Main.py
Exchange_finder.py
Address_manager.py
Address_tracker_btc.py
Address_tracker_eth.py
async_requests.py
Currency_apis.py
Currency_data.py
Database_manager.py
rest_endpoints.py
Settings.py
Shapeshift_api.py
Tor.py

» scraper
Scraper.py
Shapeshift.py
Data_retriever.py
Coinmarketcap.py
Shapeshift_fee.py
» analysis
| Evaluation.py

Figure 23: File Structure of the Project

Within the project following external services were used:

SERVICE NAME USAGE
Shapeshift Used for scraping data and evaluation
Infura Procurement of Ethereum blockchain data
Blockchain.info Procurement of Bitcoin blockchain data
Etherscan.lo Procurement of the transaction history for
the main Shapeshift address (Ethereum)

Cryptocompare Procurement of historical exchange rates
Coinmarketcap Procurement of actual exchange rates

4.2 Database Schema

Scraped Data

The data scraped by the scraping program is saved in a MySQL database with following
columns:

51

Implementation

COLUMN NAME DESCRIPTION

id Intern ID

currency_from The input currency of the exchange

currency_to The output currency of the exchange

amount_from The amount of the input currency (deposit)

amount_to The amount of the output currency (withdrawal)

fee_from Transaction fee paid by the user for the input
transaction

fee_to Transaction fee paid by Shapeshift for the output

fee_exchange
address_from

address_to
hash_from
hash_to

time_from

time_block_from
time__exchange

time_to
time_block_to
block_nr_from
block_nr_to
dollarvalue_from

dollarvalue_to

transaction

Exchange fee paid by the customer to Shapeshift
Shapeshift address to which the customer sends the
deposit (deposit address)

Customer address to which Shapeshift sends the
withdrawal amount (withdrawal address)

Hash of the deposit transaction

Hash of the withdrawal transaction

Time the deposit transaction was received in the
network of the input currency

Time the deposit transaction was confirmed in a block
Time the transaction was tagged by Shapeshift as
started

Time the withdrawal transaction was received at the
network of the output currency

Time the withdrawal transaction was confirmed in a
block

Number of the block the deposit transaction was
contained in

Number of the block the withdrawal transaction was
contained in

Corresponding value of the input currency in US Dollar
at the time of the exchange

Corresponding value of the output currency in US Dollar
at the time of the exchange

All exchanges are saved in the database regardless of their currency and are filled with
the available data returned from the API and external services (currency_from,
currency_to, amount_from, fee_exchange, dollarvalue_from, dollarvalue_to). Exchanges that
have Bitcoin or Ether as input currency, furthermore contain the data retrieved from the
blockchain and the Shapeshift API. These are all data points except fee_to, time_to,
time_block_to and block nr_to, which are only retrieved if also the output currency is
either Bitcoin or Ether. For this work, we just focus on these two currencies. Anyways,
with the scraped data, it is also possible to add additional data to the exchanges containing
other cryptocurrencies by searching through the respective blockchain, just the same way
it is done for the two currencies in this thesis.

52

Implementation

Recognition Tool

The MySQL database schema for the data saved by the tool has almost the same structure
as the scraper data. Only the Shapeshift exchange time (time_exchange) is not existent, as
we lack this information. Furthermore, the column stating the exchanger fee does not
contain the real Shapeshift fee, but the estimated one.

4.3 Implementation Details
4.3.1 External Services and Helper Classes

Multiple helper classes are responsible for a particular function within the search process.
Some of them are used by both, the tool and the scraper.

Tor

We use APIs from different extern suppliers, and the problem arises that some of these
services only allow a limited number of requests for a certain time range. To bypass this
limitation, we use a Tor control library named stem to change our IP when required. For
this, we must first enable the Control Port in the torrc (etc/tor/torrc) file and therefore
set following parameters:

e ControlPort 9051: Port to be used by Tor

e CookieAuthentication 1: Authentication through generating a cookie. Users having
permission to read the cookie file are allowed to use Tor. The file can be found at
/var/run/tor/control.authcookie.

Then the IP can be changed by calling the change_ip method (Figure 24) implemented in
Tor.py which sends a signal to change the circuit.

def change ip():

1
2. with Controller.from_port(port = 9051) as controller:
3 controller.authenticate()

4 controller.signal(Signal.NEWNYM)

Figure 24: Method for changing the IP Address

Transaction and Block Retriever

All methods used for retrieving data from the blockchains can be found in
Currency_apis.py and are listed in the following table.

53

Implementation

METHOD NAME

DESCRIPTION

get_last_block_number

get_block_by_number

standardize

get_transactions_for_address

With this method, the current block number can be
requested for a given cryptocurrency. For Bitcoin, we use
the Blockchain.info service, and for Ether, we request the
Infura service. In case a request fails the IP is changed,
and a new request is sent again a minute later.

Here, a block, with all the corresponding transactions, is
loaded for a given currency and a given block number.
For this purpose, we again use Blockchain.info and
Infura. As blocks with Bitcoin transitions are returned
without order, we sort them by the time they were
received. In case of a request failure, the IP is changed
and the request is repeated. Before a block is returned, it
is standardized.

Used to put the information of a block into a
standardized structure regardless of the currency. This
standardization allows creating a recognition process
that can be applied to every cryptocurrency. If new
currencies should be integrated, we only must translate
the given block data into this format.

Used to get transactions of a specified address needed
for the tools API. For this, the Etherscan.io and
Blockchain.info services are used.

The standardization results in a dictionary with following keys:

KEY DESCRIPTION

symbol Unique abbreviation of the cryptocurrency name, e.g.
“BTC” for Bitcoin and “ETH” for Ether.

time Time the transaction was received in the network.

blocktime Time the transaction was confirmed in a block.

fee Height of the fee paid for doing the transaction.

hash Hash of the transaction.

block_nr Number of the block the transaction was contained in.

inputs Array containing all inputs of the transaction.

input.amount Height of an input.

input.address Address from which the transaction input originates.

outputs Array containing all outputs of the transaction.

output.amount Height of the output.

output.address Address to which the transaction output was sent.

is_exchange_deposit Boolean showing if the transaction is a deposit.

is_exchange_withdrawal Boolean showing if the transaction is a withdrawal.

Currency Rate Retriever
To get exchange rates, we use two different extern services for the scraper and the tool.

54

Implementation

For the scraping algorithm, we use the API of Coinmarketcap. The implementation can be
found in the Coinmarketcap.py file. This service returns the current price in USD of all
cryptocurrencies listed on the website. To avoid a high request load, the response with all
prices is saved and can be then retrieved by the scraper by requesting the price for the
needed currency. A new request to Coinmarketcap is sent every 10 minutes to keep the
rates up to date.

For the recognition algorithm, we need historical data. For this, we use the service of
Cryptocompare. It allows to retrieve price information for the last seven days minutely
and all prices before that hourly. Therefore, in the implementation, the hourly API is used.
Just as with the previous service, the retrieved data is saved and provided to the tool when
needed. As we run the blockchains backward, the price data is also requested for
descending timestamps. The API allows getting the last 2,000 data points before a given
time. Thus, when the tool starts searching for historical exchanges the time for the first
transaction is passed to this API, retrieving the price data for the time of the given
transaction, as well as the prices for the last 2,000 hours. The algorithm uses this data for
the following transactions which lie within this range. When this limit is surpassed, new
data is retrieved again. Every time the saved price data for a given time is requested by
the tool, different checks are made. First, all saved price data that lies more than one hour
in the future from the time the tool is currently analyzing is deleted, as it won’t be needed
anymore. If the deleting process leads to an empty data set, new data is loaded. After that,
the data point for the requested time is retrieved, and the price is calculated, by getting
the mean between the highest recorded and the lowest recorded value in the given hour.

Shapeshift Data Retriever

The file Shapeshift_api.py contains all requests used to get data from the public Shapeshift
API. Following methods are used:

METHOD NAME DESCRIPTION

get_exchange Method to get detail information about an exchange
passing the deposit address as input.

get_fees_shapeshift Returns the Shapeshift exchange fees for all

cryptocurrencies traded on the platform.
get_exchanges_shapeshift | Returns the last 50 exchanges executed by the service.

As the scraper uses this APIs often, the IP address is changed before each of these
requests.

Database Manager

The Database Manager, which can be found in the Database_manager.py file, handles all
communication with the MySQL database. The Manager includes following methods:

55

Implementation

METHOD NAME

DESCRIPTION

initialize_db

create_database
create_table_exchanges
create_table_scraper
insert_exchange
insert_multiple_exchanges
insert_shapeshift_exchange
get_shapeshift_exchanges
_by_currency
update_shapeshift_exchange
update_shapeshift_exchange
_corresponding_tx

delete_all_data
delete_all_scraper_data

Settings

Used at the start time of the tool. First, the database
which will contain the found exchanges is created. This
is done over the create_database-method. After that, a
static class is created which connects to this database
and is responsible for handling requests to it. Therefore,
it provides methods for executing queries and
committing changes to the database. As problems were
encountered due to losing connection to the database
after a certain amount of time, all calls run through a
process which reestablishes the connection in case it
was lost.

Connects to the MySQL server and creates the database.

Creates the database table for the data found by the tool
according to the model presented in 4.2.

Creates the database table for the scraped data
according to the model presented in 4.2.

Inserts and commits the data of one found exchange
into the database.

Inserts and commits the data of multiple found
exchanges into the database within one command.
Inserts the scraped data retrieved from the Shapeshift
API. Here, only the initial data is set before searching
through the blockchains.

Returns all exchanges for a given currency for which no
additional data from a blockchain was found yet.
Updates a certain exchange entry for which additional
data was found on the blockchain.

Updates a certain exchange entry for which additional
data for the outgoing transaction was found.

Deletes all data found by the recognition algorithm.
Deletes all data found by the scraper.

There are different values for the scraper, as well as for the recognition algorithm, which
can be adapted before running and influence the precision of the programs. These
parameters can be found in Settings.py. As the parameters depend on which
cryptocurrency is analyzed they are handled over methods which return different values
regarding of the currency inputted. The methods include:

56

Implementation

METHOD NAME

DESCRIPTION

get_rate_lower_bound

get_rate_upper_bound

get_exchange_time
_lower_bound

get_exchange_time
_upper_bound

get_preparation_range

get_exchanger_fee
get_scraper_offset

get_scraper._offset
_last_block

get_scraper._offset_
for_first_iteration
get_block_number
_for_hour

The percentage a withdrawal transaction amount at
least must have from the expected amount to be
matched to a deposit transaction. The default value is
90%.

The maximal percentage a withdrawal transaction
amount can have from the expected amount to be
matched to a deposit transaction. The default value is
110%

The minimum value the time interval between the block
confirmation time of the deposit and the transaction
time of the withdrawal is allowed to have to put the pair
into further analysis. The default value is 0 (minutes).
The maximum value the time interval between the
block confirmation time of the deposit and the
transaction time of the withdrawal is allowed to have to
put the pair into further analysis. The default value is 15
(minutes).

The number of blocks to be checked before starting the
search process in order to build up a dataset of address
needed for the address recognition.

The estimated Shapeshift fee for a given transaction
The number of blocks to be skipped when beginning a
new search loop in the scraping algorithm.

The number of blocks to be analyzed after a given limit
in the search loop of the scraping algorithm. The limit is
always the starting block number of the previous search
loop.

The number of blocks to be analyzed in the first search
loop of the scraping algorithm, as no limit was set yet.
The average number of blocks confirmed within an hour
for a certain currency. We assume an average
confirmation time of 10 minutes for Bitcoin and 15
seconds for Ethereum. Therefore, six blocks are set for
Bitcoin and 240 for Ethereum.

4.3.2 Implementation of the Shapeshift Scraper

The Scraper structure is shown in Figure 25. It can be divided into three main parts.

Scraper Main

The starting point for running the scraper is the Scraper.py file. From here the main
method is called, which first creates the database, established the connection and creates
the table in which the exchanges will be saved. After that, two processes are run in
parallel. The main process is the retrieving of the 50 last transactions from Shapeshift. For
this, the Shapeshift class is created and executed every 30 seconds. For the second process,

57

Implementation

a new thread is created, in which the Finder class is involved, that handles the finding of
the additional information.

Scraper

+ main(): void

+ setup_db(): void

+ get_shapeshifi_exchanges(). void
+ find_blockchain_data(). void

‘,Use"'

Data_retriever
+ currency: string \J
+ exchanges: List
+ current_block_number: int Shapeshift

+ last_block_checked: int Il h List
+ all_exchanges: Lis

+ prepare(): void
+ find_exchanges(): void
+ compare(transaction: Dict): void

+ search_withdrawal_data
(exchange_details: Dict, exchange: Dict): void

+ get_new_exchanges(): void

+ shapeshift_fee_data + currency_data
Shapeshift_fee Coinmarketcap
+ shapeshift_fee_data: List + coinmarketcap_data: List
+ last_update_time: int + last_update_time: int
+ get_shapeshift_fees(currency: string): double + get_dollarvalue(currency: string): double

+ get_rates(): List

Figure 25: Scraper - Class Diagram
Retrieving New Shapeshift Exchanges

The Shapeshift class in Shapeshift.py holds an array with all exchanges retrieved from the
Shapeshift API, which were not saved to the database yet. Every time the main method
get_new_exchanges is called, two processes are executed sequentially.

First, the newest 50 exchanges are retrieved sending a request to the Shapeshift API. It is
checked if the exchanges were already retrieved before, by comparing them to the
previously mentioned array. New exchanges are added to this array. Finally, all exchanges
are sorted by their timestamp.

Then, it is checked if there are exchanges in the array which are over one minute older
than the oldest exchange of the last 50 retrieved exchanges. These won’t be needed for a
later comparison anymore. Therefore, they are saved to the database, together with the
value of the involved currencies in US Dollar and the Shapeshift fee, and deleted from the
array. For the database, the order of the exchanges is reversed so that they are sorted in
ascending order of their timestamp. The values in USD are retrieved by using the
Coinmarketcap class, previously described. The Shapeshift fees are retrieved from the
Shapeshift_fee class (located in Shapeshift.py), which requests and saves the fees for all
currencies every 30 minutes.

58

Implementation

Finding Additional Data

The find method creates a Data_retriever class for every currency and runs them every 30
minutes. Each of these classes is responsible for searching for additional data for
exchanges with incoming transactions of the given currency.

First, all exchanges, which were not found yet, are retrieved from the database, as well as
the current block number for the given currency. This is done in the prepare method.

After this preparation, the searching process starts by calling the method find_exchanges.
For this, blocks are retrieved for a given range. This range starts few blocks before the
current block number. This offset is used, as the exchanges to be analyzed are not current,
but happened a few minutes ago and so some blocks can be skipped. The offset height is
defined in the settings for every cryptocurrency. The end of the range is the starting block
number of the previous analysis loop minus another offset also determined for every
currency in the settings. Here the offset is needed, as new exchanges might have been
added lately by Shapeshift and be included in blocks, which were already checked.

In the compare method, we iterate over all contained transactions of a block and compare
each with every exchange from the list. Both lists are passed through in reversed order,
meaning going back in time. Two timeframes are calculated for each pair:

e The interval between the confirmation of the block and the Shapeshift timestamp

e The timespan between the time the transaction was received in the network and
the Shapeshift timestamp

With these calculated intervals, different checks are run. The second defined timespan is
expected to be very small, as Shapeshift sets its timestamp shortly after receiving the
transaction in the network. This means the time span should be positive and low.
Therefore, we should stop checking a blockchain transaction when this interval gets
negative. As Infura doesn’t return the time an Ethereum transaction was received, the
range is allowed to be negative going down to 10 minutes of difference, to prevent the
case an exchange would not be recognized if the confirmation took long. If the timespan
is higher than this lower bound and smaller than 6 minutes, the pair is taken to further
analysis. The last case uses the interval involving the block confirmation time. If this is
higher than 10 minutes the currently analyzed exchange can be removed from the list, as
the range is too high to declare this pair as an exchange and the blocks to follow will make
this interval even higher.

After this comparison, the possible exchange pairs are analyzed further. If the amount of
any output matches the amount of the exchange, we check if passing the address to the
Shapeshift API returns additional information. If the response has the exchange status
“complete” and the currencies and the amount matches the ones of the exchange, the
exchange can be considered as found. Therefore, the exchange is updated with the
additional data, the corresponding transaction is searched, and the exchange is removed
from the list. The search for additional data of the outgoing transaction is done in the
search_withdrawal_data method. Just as in the main process, the data is retrieved from

59

Implementation

Infura or Blockchain.info. The exchange is then updated again with this additional
information.

4.3.3 Implementation of the Recognition Tool
Main

A class diagram for the tool implementation is shown in Figure 27. The recognition
process starts in Main.py. In the main method, the database with all tables is set up, and
all cryptocurrencies which should be involved are declared together with their starting
block numbers. Then the parameters are passed to the Exchange._finder class, and the
search is started.

Finder

The main process of the Exchange_finder class is executed in the find_exchanges method
(Figure 26). After initializing all needed parameters and helper classes, the class starts the
preparation algorithm of the Address Manager and then loads the first block for every
currency to be analyzed. This is done to get the historical time from which the search will
be executed, as at the beginning only block numbers are available. The smallest timestamp
is defined as the start point.

def find_exchanges(self):

#Preparation
self.address_manager.prepare(self.current_block_number_dict)
self.load_first_blocks()

range_to_analyze = self.hours_whole_analysis * (6@ * 6@)
analysis_time_range = self.hours_single loop * (68 * 6@)
start_time = self.get min_blocktime()

current_search_time = start_time

[=- I NI - IV, R - VU S I

[l
o .

#Search
while start time - current search time < range to analyze:
current_search_time = current_search_time - analysis_time_range
self.load blocks(current search time)
for block_from in list(self.blocks_from):
current block time = block from[e]["blocktime™]
newest transaction time = self.transactions to[@]["time"]
if current block time < datetime.datetime.utcfromtimestamp(current search time):
break
elif current block time > newest transaction time:
self.blocks from.remove(block from)
else:
self.delete_old withdrawals(block_ from)
self.async_comparing(block_from)
self.blocks_from.remove(block_ from)
self.save_tound_exchanges()

NN NNRNRNR R R B 2R e
OV AR WNRP® ORNOWN_WNER

Figure 26: Recognition Tool - Main method

After this, a time limit is set until which the analysis will proceed. Until the reaching of this
point loops, with a fixed time range to be analyzed, are sequentially run. In each loop,
blocks are loaded for both currencies until a block is retrieved, which surpassed the given
time range. To speed up the process, the requests are sent asynchronously, which is
realized in the load_blocks method. Here, for every currency, an estimated number of
blocks for the set time range is requested. It is then checked again if more block must the
loaded, in case the range wasn’t surpassed yet. Within this process, all transactions are

60

Implementation

passed to the Address_manager class, which filters them and only returns Shapeshift
related transactions. The filtering is handled in different threads for each currency in the

+ main(). None

u !se Async_requester

A + all_blocks: List
Exchange_finder + request_data: List
+ queue: Queue

+ currencies_list List
+ current_block_numbers: Dict

N i) + do_work(stop_eveni: Event): void
+ Erﬁ;;eksnt__fre;rc;‘r?i?sgtes_found_ LEt + async_requester + add_request (currency: string,

N] Y start_block, int, number_of_blocks: int): void
transactions_to- List + get_multiple_blocks(): List

+ find_exchanges(): void

+ load_first_blocks(): void

+ get_min_blockitime(). Datetime

+ gave_found_exchanges(): void

+ delete_old_withdrawals{): void

+ load_blocks(current_search_time: int): void

+ async_compare{block_from: List). void

+ compare({block_from: List, dollarvalue_from. float): void
+ sort_blocks_and_transactions(): void

+ async_filter_and_save(new_blocks: List): void Currency_data

+ filter_and_save{new_blocks: List): void

+ get_current_block_numbers(): void + currency_data: + currency_data: List
Dict=string, Currency_data= | + currency_from: siring

+ currency_to: siring

+ get_value
+ address_manager (iransaction_time: Datefime): float
Address_manager
+ prepare(current_block_numbers: Dict): void
+ filter_block_and_save_addresses(block: List): List
+ address_tracker_bic
+ address_tracker_eth
Address_tracker_eth Address_tracker_btc
+ shapeshift_transactions: List + shapeshift_main_addresses: List
+ possible_deposit_addresses: Set + shapeshifi_middle_addresses: Set
+ shapeshift_withdrawal_addresses: List + shapeshift_single_addresses: Set
+ shapeshift_deposit_stop_addresses: List + shapeshiﬂ:stgp_addressesj List
+ filter_block{new_transactions: List): List +filter_block(new_transactions: List): List
+ prepare_addresses(current_block_nr: int): void + prepare_addresses(current_block_nr: inf): void
+ delete_old_deposit_addresses + recognize_and_categorize
[current_exchange_time: Datetime): void (exchange_transaction: Dict): Dict
+get_transactions_for_address) + recognize(exchange_transaction: Dict): void
(start_block_nr: int, end_block_nr: int): List

Figure 27: Recognition Tool - Class Diagram

filter_all method. Finally, the marked transactions are split up into two separate arrays
depending on their classification. Deposits are appended within their block to the
blocks_from array and withdrawals separately to the transactions_to array.

Now that we have all data from the blockchains, the comparison starts. First, we iterate
over the sorted blocks in blocks_from, containing the deposit transactions. For each, it is
checked if its timestamp surpassed the time range. In this case, the comparison would

61

Implementation

stop, and new blocks would be retrieved for the next time range. Furthermore, we check
if the block confirmation time is higher than the time of the newest withdrawal. As it is
not possible that the deposit was made after this withdrawal the block can be deleted, and
we can proceed to the next one. If a block passed these two checks, the transactions it
holds are compared with the withdrawal transactions. First, all withdrawals, which
happened a certain amount of time after the confirmation time of the block, are deleted,
as they won’t be needed anymore (delete_old withdrawals). Then, each deposit is
compared with the possible withdrawal transactions. This is done asynchronously in the
async_comparing method. After the comparison, the block is deleted, and the next one is
checked. After all blocks of the current analyzed time range were screened, the found
possible exchanges are saved to the database at the same time (save_found_exchanges),
and the process can continue with the following loop.

The previously mentioned comparison of one deposit with all withdrawals is made in the
compare method. First, the time difference for the possible exchange is calculated
sequentially for every withdrawal. As long as this timespan doesn’t fall below the lower
bound declared in the settings, the exchange rate is calculated for the two involved
currencies using the US Dollar value retrieved from the Currency_data class. After also
getting the Shapeshift fee from the settings the expected outcome resulting from the
deposit amount can be stated. The last step then is to iterate over all outputs of the
withdrawal transaction and check if the amount is within the declared range around the
expected outcome. In case of a match, the data for the found pair is stored in the
current_exchanges_found list.

Address Manager

The Address_manager class creates the specific address recognition classes for each
currency and offers the two methods prepare, used at the very beginning of the
recognition algorithm in order to build up the address data set, and
filter_block_and_save_addresses, which categorizes transactions as Shapeshift related and
builds up the address data set with help of the given block. Both methods pass the values
to the corresponding class depending on the currency of the given block.

The filtering of Ethereum blocks is realized in the Address_tracker_eth class. Here the
prepare_addresses method implements the retrieval of all Shapeshift transactions done
1.5 days after the starting point by using the Etherscan.io API. This way we don’t have to
retrieve blocks which wouldn’t be analyzed any further and speed up the process. First,
the initial Ethereum block is requested to get its block confirmation time. With this, we
then retrieve all transactions where Shapeshift was involved as a receiver and do this until
the defined time limit is reached. After the preparation is done and the address data set
was built up, the filter_block method can be used for every newly downloaded block. Here,
first, all Shapeshift addresses, which surpassed the time limit of 1,5 days and won'’t be
used anymore, are deleted from the address list. Then each transaction from the received
block goes through some checks. First, the output address is compared with the
Shapeshift main address. If these values match, the transaction is added to the address
data set. Otherwise, it is checked if the transaction is a deposit or a withdrawal. A deposit

62

Implementation

is recognized by finding its output address in the list of saved addresses
(possible_deposit_addresses) and a withdrawal by checking if the input address is one of
the four known sending addresses of Shapeshift (shapeshift withdrawal addresses). The
marked Shapeshift transactions are then returned as a block.

The Address_tracker_btc class handles the filtering of all Bitcoin blocks. It also has two
main methods. Firstly, the prepare_addresses method, which builds up the Shapeshift
address data set for Bitcoin. Here, we retrieve all blocks, starting with the block which is
the defined number of blocks higher than the initial block number. For every block, we
check if the transactions can be connected to Shapeshift. We do this until the initial block
is reached again. The recognition follows the same pattern as described in chapter 3.4.3.
For this, multiple lists are used. The shapeshift main_addresses list contains all external
deposit addresses, shapeshift_ middle_addresses lists all addresses which are used multiple
times by the exchange service and shapeshift single_addresses saves all Shapeshift
addresses used only once. The shapeshift stop_addresses list furthermore contains
Shapeshifts main deposit address. The second main method is the filter_block method,
which iterates over all transaction of a received block and checks if the transaction is
related to the exchange service by going through the same procedure as in the recognition
process of the preparation. The only difference is that the found transactions are marked
either as deposit or withdrawal, as this will be needed later for the comparison.

Asynchronous Requests

As mentioned before we retrieve multiple blocks at the same time to speed up the process.
For this, the Async_requester class is used. It holds the request_data_list, which contains
the information of which blocks have to be retrieved. It is filled through calling the
add_request_data method, which adds a dictionary to the list, containing the currency, a
block number, and the number of blocks that should be download starting from the given
block number. The requests are sent when the get_ multiple_blocks method is called. Here
a defined number of threads are started at the same time, which then retrieve values from
a queue. In the next step, this queue is filled with all data added to list, and all requests are
sent asynchronously by the different threads. Each retrieved block is saved in the
all_blocks list. Finally, we wait until all threads are done, sort the final list of blocks and
return it.

4.3.4 Implementation of the Evaluation Process

The Evaluation of the implemented algorithm happens in the Evaluation.py file. Before
starting, the output data must be downloaded from the database in Excel file format. The
same must be done for the scraped data. Now, having these two files, the
run_whole_analysis method is triggered, to start the evaluation. First, the entries from the
two files are loaded into data frames, and the entries of the dataset of the recognition
algorithm (df found_data) are filtered to have the same time range as the scraped data

63

Implementation

(df scraped_data). With this, the two evaluation methods, described in the conception are
executed.

First, the two data frames are compared with each other to find entries with the same
values. For this, we examine if the addresses and hashes match. If they do, this is marked
in both data frames by setting a Boolean value to true. After analyzing all entries, the
marked data is written into new Excel files, and the marked data frame containing the tool
data is returned for further analysis.

With the returned data frame, the find_with_shapeshift_api method is called, which
evaluates if the found exchanges are right although the scraper didn't recognize them. For
this, two new columns are created in the data frame. One column documents the real
output currency of the exchange, which is returned from the Shapeshift API. With this, we
can later check which currency was the corresponding output for a deposit of a wrongly
marked exchange. Also, if no output currency is returned, it can be assumed that the trade
with the given deposit address was unsuccessful and no withdrawal transaction was
executed. The second column is a Boolean value which marks an exchange pair that was
correctly found by the tool but not by the scraper. The evaluation process now iterates
over all entries, which are grouped by their deposit addresses. Throughout the process,
all entries with the same deposit address are saved into a list. This procedure is done until
an entry with a different deposit address is encountered. In case there is no entry which
was already found by the scraper the group is further checked. For this, the deposit
address is sent to the Shapeshift API. We expect to get back a result as we know the
deposit address is a real Shapeshift address. As there may be unsuccessful exchanges, we
check if the result contains an output currency. If given, the output currency is added to
all entries of the group. If the currency is Ether or Bitcoin, we know that the deposit
address is involved in an exchange between these two currencies. Therefore, we can check
if any of the entries contains the data of the correct withdrawal transactions, by
comparing the address and the hash. A match is marked, and the analysis continues the
evaluation for all the following groups. At the end, the data frame is exported as Excel file
again.

4.3.5 Implementation of the REST API

The implementation of the REST API can be found in the rest_endpoints.py file. The
interface is realized using the Flask web framework. We defined multiple routes, which
offer the request possibilities described in the conception. The routes are listed in the
table below.

SEARCH BY ROUTE

Deposit address /address_from/$address
Withdrawal address /address_to/$address
Deposit transaction hash /hash_from/$hash
Withdrawal transaction hash /hash_to/$hash
Customer sending address /input_from/$address
Shapeshift sending address /input_to/$address

64

Implementation

Block numbers & incoming
currency

Block numbers & outgoing
currency

Block confirmation time

/block_nr_from?
currency=$currency
&start=$blocknumber
&end=$blocknumber
/block_nr_to?
currency=$currency
&start=$blocknumber
&end=$blocknumber
/time_range?
start=$datetime
&end=$datetime

All queries are executed through the method query_db, which gets the desired result from
the database and defines the structure of the returned JSON string. This structure contains
all parameters from the database and the additional field diff from_expected_outcome,
which contains the amount the found exchange differentiates from the expected value.
With this, the result list can be sorted. The smaller the amount is, the more probable it is

that the exchange is correct.

65

Evaluation

5 Evaluation

The evaluation of the accuracy of the tool was conducted for exchange data within a time
range of one week (23.02.2018 00:00 - 01.03.2018 23:59). First, general information
about the scraped and the tool data are presented. Afterward, the comparison of both sets
is fulfilled.

Scraped Data

For the given time range we could scrape data with following general information:

PARAMETER VALUE

TOTAL EXCHANGES ‘ 64,688 Exchanges
VALUE RECEIVED ‘ 48,039,179.40 $
TOTAL FEES RECEIVED 70,346,89 $

AVERAGE FEE PAID PER EXCHANGE 1.09 $

Figure 28 shows the hourly number of exchanges over this week.

800
700
600
500
400
300
200

100

uu
mm

Figure 28: Scraped Data - Time Distribution

We take a closer look at which currencies were involved in the exchanges. Figure 29
shows the most popular currencies to send and the most popular to receive. The scraped
data contains 49 different deposit and 50 different withdrawal currencies.

66

Evaluation

Deposit currencies Withdrawal currencies

WETH mETC

W Others mOthers

ELTC WETH

mETC e

mETC WBCH

W DOGE mETC

mIEC WECS

Figure 29: Scraped Data - Currency Occurrence

Figure 30 presents the most popular exchange pairs in the analyzed time range. In total,
1,228 different pairs were counted. The two most frequently executed exchanges were
between Ether and Bitcoin.

W Others

METH =>BTC
WEBTC ->ETH
WLTC -»BTC
WETH > LTC
WLTC -»ETH

M BTC->BCH

Figure 30: Scraped Data - Currency Pairs Occurrence

The dataset contains 9,972 exchanges from Ether to Bitcoin and 3,689 from Bitcoin to
Ether. This corresponds 21% of all scraped exchanges. For all these exchanges, the
scraper searched for additional data on the blockchains. For 647 Exchanges (around
4.7%) no data could be found. A reason could be, e.g.,, that an address was multiple times
used by the customer and thus it is not possible anymore to check if data found on the
blockchain is the right one. This means we have 13,014 exchanges executed between
Ether and Bitcoin in the defined time range, which we try to find by using the recognition
algorithm.

67

Evaluation

Tool Data

We ran the recognition tool assuming a Shapeshift processing time of maximally 15
minutes and allowing a deviation of the withdrawal amount from an expected amount by
10%. This had an output of 76,271 possible exchanges. In total, 28,138 different deposit
addresses were matched. This means each deposit was matched to 2.7 withdrawals in
average. The output data furthermore contains 20,569 different withdrawal addresses.
As shown in Figure 31, more exchanges from Ether to Bitcoin were found than vice versa.

HETH->BTC
WBTC->ETH

Figure 31: Tool Data - Currency Pairs Occurrence
Comparison

The comparison of both data sets showed that the tool could find 11,936 exchanges (true
positives) out of the 13,014 exchanges documented by the scraper. This means 1,078
exchanges were not found (false negatives). Furthermore, 64,335 additional transaction
pairs were matched, which are not contained in the scraper dataset (false positives).
Therefore, the tools rate for correct matches is 91,7%, while its accuracy lies by around
15,6%. These rates are also visualized in Figure 32.

Classification of Classification of
scraped exchanges Exchanges found by tool

8%

92%

mFound mNotfound HTrue MFalse
Figure 32: Evaluation - Result
We could identify multiple reasons that explain why some exchanges couldn’t be found:

First, this can be due to the small amount involved in the exchange. As explained before,
the probability of calculating a proper expected amount for a small deposit gets lower the

68

Evaluation

smaller a deposit is. Bitcoin deposits smaller than 0.0005 BTC were mainly not found, as
the Shapeshift fee is almost as high as the withdrawal amount. Thus, not having the exact
exchange rate and the real Shapeshift fee height, the expected amount can lie far away
from the actual withdrawal amount. Furthermore, we can observe that small Ether
deposits, which lie under 0.01, are mostly not forwarded to Shapeshifts main address, and
therefore weren’t found.

This observation is part of the next identified problem. Deposits are sometimes not
forwarded, or this is done very late. Thus, the address recognition won’t determine a
deposit address as Shapeshift related. For the Bitcoin address recognition this problem is
also encountered for withdrawals. They can be only recognized if they are contained in a
flow of transactions ending in one of the external deposit addresses. A detailed analysis
of the tool data showed that this problem affects most of the exchanges which couldn’t be
found. There are two reasons the involved Bitcoin addresses were not recognized as
Shapeshift related.

On the one hand, this happens because the flow didn’t end in an external deposit address
at the time the analysis had started. The here evaluated data resulted from the execution
of the tool with a preparation range of 5,000 Block for the Bitcoin address recognition.
Setting a lower preparation range results in a decreased amount of found real exchanges,
as many flows end after a high number of blocks. This means that the larger the
preparation range is, the more exchanges can be found. So, some of the exchanges might
not have been found as the transaction flow they are contained in didn’t end in the defined
5,000 blocks.

On the other hand, the flows ended in addresses, which weren’t identified before, such as
new generated storage or unknown external deposit addresses. Transactions contained
in a transaction flow ending in such a temporary address can’t be found, as long as this
address is not known. In the manual analysis of Shapeshifts transaction flows on the
Bitcoin network we identified two addresses, which couldn’t be classified to a specific
owner. Not knowing these addresses would reduce the accuracy of the tool. We can
assume that other similar addresses exist that couldn’t be identified, and this lack of
knowledge leads to the inability of finding exchange related addresses.

Furthermore, we want to show where the high amount of false exchange pairs comes
from. This result can be explained by the fact that Shapeshift executes many transactions
with similar values in a short time range on each blockchain. Each of these transactions is
connected to a deposit or withdrawal transaction on a different blockchain. As we can’t
determine which currencies were involved, this results in a high number of matches.

The result could be improved by setting the range for the expected value lower.
Nevertheless, this would decline the number of real exchanges found. The table below
shows the results for different ranges and proves that a smaller range leads to a higher
percentage of true exchanges, but also reduces the amount of these.

69

Evaluation

range TOTAL FOUND TRUE
-10% to 10% 176,271 91.7% 15.6%
-5% to 5% 52,693 90.4% 22.3%
-2% to 2% 35,530 79.0% 28.9%
-1% to 1% 122,114 56.4% 33.2%

Another factor influencing the number of correctly matched exchanges is the defined
range for the processing time. The default range reaches from 0 to 15 minutes. Setting a
higher scale would lead to more correct matches, as the scraped data shows that there are
exchanges over the default limit. Nevertheless, it would also increase the number of false
positives. The table below shows the results for different ranges.

LIMIT TOTAL FOUND TRUE
15 minutes 176,271 91.72% 15.6%
10 minutes 160,289 91,68% 19.8%
5 minutes 41,645 76.71% 24.0%
2 minutes 123,631 25.95% 14.3%

Check by API

In the second step, all deposit addresses were sent to the Shapeshift API to assess the
outcome more in detail.

The evaluation showed that the tool found 2,616 correct matches, which were not
recognized by the scraper. This finding improves the percentage of real exchanges found
to 19.1%. The reason why the scraper did not detect these exchanges is the high
confirmation time of the deposit. The additionally found trades have an average deposit
confirmation time of almost 28 minutes. Apparently, Shapeshift adds exchanges to the list
of last executed exchanges after a deposit was confirmed. The timestamp Shapeshift
assigns to an exchange corresponds the time shortly after receiving the deposit
transaction in the network. The additionally found exchanges have such a high range
between these two times that at the time they could have been added by Shapeshift to the
last executed exchanges, the intern Shapeshift timestamp already had surpassed other 50
exchanges with a more recent timestamp. Therefore, this data was never provided
through the public API and couldn’t be scrapped. This problem concerns mostly Bitcoin
deposits, as this currency has a high average confirmation time.

The evaluation through the Shapeshift API furthermore allowed us to check the real
withdrawal currency for every deposit. The result showed that the deposit address of
60.7% of all found exchanges was really involved in exchanges between Ether and Bitcoin.
37.0% of the exchanges had a different withdrawal currency involved. The remaining
2.3% were involved in unsuccessful exchanges. These are, e.g., deposits which surpass the
allowed exchange amount range. Mostly they were marked as “resolved”. These are

70

Evaluation

deposits which could be refunded to the customer. Several were also marked as “failed”,
as no refund could be sent due to a missing refund address.

W 'Wrong currency
W Failed

M Right currency

Figure 33: Evaluation of Currency Assignment
Conclusion of the Evaluation

The designed algorithm found most of the exchanges that were documented by the
scraper. Regarding the not found exchanges, the biggest issue was encountered by the
recognition of Shapeshift related addresses on the Bitcoin network. The complex and
unstructured transaction structure makes it difficult to uncover all relevant addresses.
For Ether transactions, Shapeshift uses a more simple and transparent money proceeding
structure. Therefore, almost all addresses can be found here. If two Shapeshift
transactions belonging to one exchange were identified, they very likely get matched, as
most of the transaction pairs fulfill the previously described ranges for time and rate. The
dimensions of the ranges influence how many correct exchanges will be identified, as well
as the number of matches in total, including wrong ones. Therefore, appropriate ranges
must be set.

Additionally, we detected exchanges, which were not provided by Shapeshift through
their APIL. These were mostly exchanges containing a Bitcoin deposit which took a long
time to be confirmed. Due to the in average large block confirmation time of 10 minutes
on the Bitcoin network, this currency is mainly affected.

Lastly, we want to discuss the accuracy of the tool. All transactions involved in the
algorithm are surely deposit or withdrawal transactions of a Shapeshift exchange.
Nevertheless, a high number of wrong exchanges are composed. The reason for this is that
many transactions are part of exchanges involving other cryptocurrencies. As we are not
able to detect the real currencies involved, these transactions are also matched.
Furthermore, many deposits and withdrawals with similar amounts of money are
transferred at almost the same time. Without having the real exchange rate and Shapeshift
fee, a deposit can’t be assigned to a withdrawal for sure.

As the tool matches multiple deposits to multiple withdrawals, no assurance can be given
about the validity of a found exchange. Nevertheless, the tool aims to help to recognize
the right transaction pair by ranking the exchanges.

71

Conclusion

6 Conclusion

6.1 Findings

Finally, we want to outline all findings of this thesis and shortly sum up the outcome of
the three research questions presented at the beginning.

RQ 1: What is the Current State of the Art regarding Cryptocurrency Exchange?

First, we categorized cryptocurrency exchanges into trading platforms and over-the-
counter markets and instant cryptocurrency exchanges. The characteristics of these
services were explained in detail and compared with each other. Then the general process
of instant cryptocurrency exchanges was analyzed using Shapeshift and Changelly as an
example. Additionally, we took a look at current projects aiming to improve the exchange
process by removing the intermediary.

RQ2: How can Cross-Blockchain Transactions be recognized?

After giving an overview of the available blockchain data analysis tools and explaining the
terminology needed for understanding the exchange processes, we started with the
conception of the recognition tool. Firstly, we showed how data can be retrieved by
exploiting Shapeshifts API. Based on these data we identified different parameters with
which we established heuristics. For this purpose, also the transaction flows of Shapeshift
on the Bitcoin and Ethereum network were analyzed in detail, determining addresses
related to the service. All heuristics were brought together to implement a tool, which can
identify cross-blockchain transactions.

RQ3: How accurate is the implemented Solution? What are the Limits?

After the implementation of the designed algorithm, we evaluated the result of the tool.
We compared real exchange data retrieved by the scraper with the exchanges matched by
the recognition algorithm. The output showed that most of the scraped exchanges could
be found by the tool. We stated the possible reasons why we couldn't identify all trades
and explained why additional exchanges, which were not found by the scraper, were
discovered. Finally, we described why transactions were matched wrongly by the tool. All
in all, the evaluation depicted that the implemented recognition algorithm is able to find
cross-blockchain transactions, but also includes the matching of wrong transaction pairs.

6.2 Outlook

We showed in this work which processes must be taken to establish heuristics and
implement an analysis tool based on these. Further implementations are possible to
improve the tools outcome. Such an improvement can, e.g., be the integration of data from
more blockchains allowing the recognition of exchanges between more cryptocurrencies.
For this purpose, the block data of each blockchain must be transformed to the defined
structure in the tool, and an address recognition for the given blockchain must be
implemented.

72

Conclusion

Many intents have been done to combine multiple addresses on one cryptocurrency
network to one user. The data retrieved in this work gives a base to fulfill such matching
of addresses over various blockchains. Nevertheless, we cannot determine that the sender
of an exchange is the same person as the receiver, because the customer can also send the
exchanged amount to the wallet of another person. Therefore, more investigation must
be taken to guarantee a reliable algorithm.

As blockchain-based technologies will continue to expand into different areas, more
stakeholders will have interest in analyzing the data stored on the ledger. This will also
concern data related to cross-blockchain transactions, especially as there are many
different efforts to improve this kind of trades currently. The process in this thesis showed
how the recognition of such transactions can be realized and can be used to implement
comparable algorithms for the identification of cross-blockchain of other services.

73

Bibliography

7 Bibliography

Algassem, I, & Svetinovic, D. (2014). Towards reference architecture for
cryptocurrencies: Bitcoin architectural analysis. In Internet of Things (iThings), 2014
IEEE International Conference on, and Green Computing and Communications
(GreenCom), IEEE and Cyber, Physical and Social Computing (CPSCom), [EEE (pp. 436-
443). IEEE.

Bitcoin average confirmation time (2018). Retrieved 15 04, 2018, from:
https://blockchain.info/de/charts/median-confirmation-time

Bitcoin confirmation (2018). Retrieved 15 04, 2018, from:
https://en.bitcoin.it/wiki/Confirmation

Bitcoin-otc (2018). Main Page. Retrieved 15 04, 2018, from: https://bitcoin-otc.com/

BitcoinVisualizer (2018). BitcoinVisualizer Github Project. Retrieved 15 04, 2018, from:
https://github.com/thallium205/BitcoinVisualizer

Bitcoinwiki (2018). Comparison of exchanges. Retrieved 15 04, 2018, from:
https://en.bitcoin.it/wiki/Comparison_of_exchanges

Bitfinex API (2018). Retrieved 15 04, 2018, from:
https://docs.bitfinex.com/v1/reference

Bitfinex Cold Wallet (2018). Retrieved 15 04, 2018, from:
https://support.bitfinex.com/hc/en-us/articles/213892469-How-secure-is-Bitfinex-

BitInfoCharts (2018). Retrieved 15 04, 2018, from: https://bitinfocharts.com/bitcoin/

Bitlodine (2018). Bitlodine Github Project. Retrieved 15 04, 2018, from:
https://github.com/mikispag/bitiodine

Bitquick (2018). How-To. Retrieved 15 04, 2018, from: https://www.bitquick.co/how-to
Bittrex API (2018). Retrieved 15 04, 2018, from: https://bittrex.com/home/api

Blockchain.io (2018). Main Website. Retrieved 15 04, 2018, from:
https://blockchain.info/

Blockchain.io Statistics (2018). Blockchain Size. Retrieved 15 04, 2018, from:
https://blockchain.info/de/charts/blocks-size

Blocktrades.us (2018). Main Website. Retrieved 15 04, 2018, from:
https://blocktrades.us/

BTCSpark (2018). BTCSpark Github Project. Retrieved 15 04, 2018, from:
https://github.com/JeremyRubin/BTCSpark

74

https://blockchain.info/de/charts/median-confirmation-time
https://en.bitcoin.it/wiki/Confirmation
https://github.com/thallium205/BitcoinVisualizer
https://en.bitcoin.it/wiki/Comparison_of_exchanges
https://docs.bitfinex.com/v1/reference
https://bitinfocharts.com/bitcoin/address/1NSc6zAdG2NGbjPLQwAjAuqjHSoq5KECT7
https://www.bitquick.co/how-to
https://blockchain.info/
https://blockchain.info/de/charts/blocks-size
https://github.com/JeremyRubin/BTCSpark

Bibliography

Buterin, V. (2014). Ethereum: A next-generation smart contract and decentralized
application platform.

Chainalysis (2018). Main Website. Retrieved 15 04, 2018, from:
https://www.chainalysis.com/

Changelly (2018). Main Website. Retrieved 15 04, 2018, from:
https://changelly.com/about

Changelly API (2018). Retrieved 15 04, 2018, from: https://changelly.com/developers

Coinmarketcap (2018). Cryptocurrency Market Capitalizations. Retrieved 15 04, 2018,
from https://coinmarketcap.com

Coinswitch (2018). Main Website. Retrieved 15 04, 2018, from: https://coinswitch.co/

Coinswitch (2018). Track Order. Retrieved 15 04, 2018, from:
https://www.coinswitch.co/app/track

Duong, T., Chepurnoy, A., & Zhou, H. S. (2018). Multi-mode Cryptocurrency Systems.
Elliptic (2018). Main Website. Retrieved 15 04, 2018, from: https://www.elliptic.co/

Ethereum Avarage Gas Limit (2018). Retrieved 15 04, 2018, from:
https://etherscan.io/chart/gaslimit

Ethereum Average Block Time (2018). Retrieved 15 04, 2018, from:
https://etherscan.io/chart/blocktime

Ethereum Github (2018). Ethereum Clients. Retrieved 15 04, 2018, from:
https://github.com/ethereum/wiki/wiki/Clients

Etherscan.io (2018). Ethereum ChainData size. Retrieved 15 04, 2018, from:
https://etherscan.io/chart2/chaindatasizefast

Evercoin (2018). FAQ. Retrieved 15 04, 2018, from: https://evercoin.com/faq
Evercoin (2018). Main Website. Retrieved 15 04, 2018, from: https://evercoin.com/

Exchanges Volumes. Retrieved 15 04, 2018, from:
https://coinmarketcap.com/exchanges/volume/24-hour/

Frunza, M. (2015). Solving Modern Crime in Financial Markets: Analytics and Case
Studies.

Galitskiy, V., Shpin, P., & Virk, R. (2015). Online Automatic Auctions for Bitcoin Over-The-
Counter Trading, White paper.

Herlihy, M. (2018). Atomic Cross-Chain Swaps.

75

https://changelly.com/about
https://coinmarketcap.com/
https://coinswitch.co/
https://www.elliptic.co/
https://etherscan.io/chart/gaslimit
https://etherscan.io/chart/blocktime
https://github.com/ethereum/wiki/wiki/Clients
https://etherscan.io/chart2/chaindatasizefast
https://evercoin.com/
https://coinmarketcap.com/exchanges/volume/24-hour/

Bibliography

Hevner, A., March, S.T., Park, ., & Ram, S. (2004). Design Science in Information Systems
Research. In: MIS Quarterly, (28)1, 75-105.

Hosp, J., Hoenisch, T., & Kittiwongsunthorn, P. (2018). COMIT. Cryptographically-secure
Off-chain Multi-asset Instant Transaction network. Making global payments as cheap,
fast and easy as sending a text message, v1.0.2

Infura.io (2018). Documentation. Retrieved 15 04, 2018, from: https://infura.io/docs

[tBit (2018). OTC exchanges. Retrieved 15 04, 2018, from:
https://www.itbit.com/otc#starttrading

Kalodner, H., Goldfeder, S., Chator, A., Moser, M., & Narayanan, A. (2017). BlockSci:
Design and applications of a blockchain analysis platform.

Lansky, J. (2016). Analysis of Cryptocurrencies Price Development. In: Acta Informatica
Pragensia, 5(2), 118-137.

Leung, A. (2016). Shapeshift Rebuilds After Losing $230,000, Promised to Be Back
Wednesday. Retrieved 15 04, 2018, from: https://cointelegraph.com/news/shapeshift-
rebuilds-after-losing-230000-promised-to-be-back-wednesday

LocalBitcoin (2018). How-To-Use. Retrieved 15 04, 2018, from:
https://localbitcoins.com/guides/how-to-sell-bitcoins-online

Moeser, M. (2013). Anonymity of Bitcoin Transactions. An Analysis of Mixing Services

Moore, T., & Christin, M. (2013). Beware the Middleman: Empirical Analysis of Bitcoin-
Exchange Risk

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.

Narayanan, A., Bonneauy, |, Felten, E., Miller, A., & Goldfeder, S. (2016). Bitcoin and
Cryptocurrency Technologies. Princeton University Press

Ploom, T. (2016). Blockchains-wichtige Fragen aus IT-Sicht. Blockchain Technology (S.
123-147). Berlin, Deutschland: De Gruyter Oldenburg.

Poon, J., & Dryja, T. (2016). The Bitcoin Lightning Network: Scalable Off-Chain Instant
Payments

Richest Bitcoin Addresses (2018). Retrieved 15 04, 2018, from:
https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html

Shapeshift (2018). Main Website. Retrieved 15 04, 2018, from: https://info.shapeshift.io

Shapeshift API (2018). Retrieved 15 04, 2018, from: https://info.shapeshift.io/api

76

https://infura.io/docs
https://cointelegraph.com/news/shapeshift-rebuilds-after-losing-230000-promised-to-be-back-wednesday
https://cointelegraph.com/news/shapeshift-rebuilds-after-losing-230000-promised-to-be-back-wednesday
https://bitinfocharts.com/top-100-richest-bitcoin-addresses.html
https://info.shapeshift.io/api

Bibliography

Tschorsch, F., & Scheuermann, B. (2016). Bitcoin and beyond: A technical survey on
decentralized digital currencies. IEEE Communications Surveys & Tutorials, 18(3),
2084-2123.

Vaishnavi, V., Kuechler, W., and Petter, S. (2017). Design Science research in Information
Systems.

Wood, G. (2014). Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, 151, 1-32.

77

