
#### 1. Introduction / Motivation

- 2. Research Questions
- 3. Methods
  - 1. State-of-the-art Analysis
  - 2. Empirical Research
  - 3. Modeling as Optimization Problem
  - 4. Software Implementation and Evaluation
- 4. Rough Timeline
- Questions / Feedback

#### Introduction



- "Ride-sharing" == "Carpooling"
  - != "Carsharing" (*DriveNow*)
  - != "Transportation Service" (*Uber*)
  - != "Long-distance Carpooling" (BlaBlaCar) [1]
- Real-time (dynamic) vs. pre-organized



#### Motivation

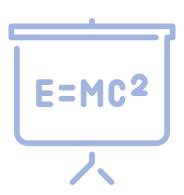


- The impact of congestion is rising in metropolitan areas
- Commuters travel from outer regions into city centers or business parks
- The majority of vehicles in Germany have a capacity of 5 seatss
  - 1.5 of them are used on an average trip [2]
  - Commute rides to work: 1.2 passengers on average [2]
- A matching platform for commuters creates win-win-win situation:
  - ✓ Passengers can save travel time
  - Drivers can split the fare and might share their driving effort
  - ✓ Institutions / companies benefit from decreased infrastructure and car usage as well as from networking effect between passengers



- Introduction / Motivation
- 2. Research Questions
- 3. Methods
  - 1. State-of-the-art Analysis
  - 2. Empirical Research
  - 3. Modeling as Optimization Problem
  - 4. Software Implementation and Evaluation
- 4. Rough Timeline
- Questions / Feedback

#### **Research Questions**




1. What are the existing strategies and approaches to solve real-time ride-sharing?

2. How to formalize the commuter matching problem for the TUM Garching Campus?

3. How to design and implement a platform for daily ride-sharing at TUM Garching Campus?









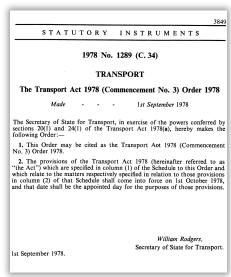
- 1. Introduction / Motivation
- 2. Research Questions
- 3. Methods
  - 1. State-of-the-art Analysis
  - 2. Empirical Research
  - 3. Modeling as Optimization Problem
  - 4. Software Implementation and Evaluation
- 4. Rough Timeline
- Questions / Feedback

#### Methods: State-of-the-art Literature Review



- Five stages of ride-sharing<sup>[4]</sup> starting in US:
  - 1. World War II car-sharing (or carpooling) clubs<sup>[5]</sup>
  - 2. Responses to the 1970s energy crises driven by High-Occupancy-Vehicle lanes<sup>[6,7]</sup>
  - 3. Ride-sharing schemes organized by cities and municipalities<sup>[8]</sup>
  - 4. Reliable ride-sharing systems having prearrange and static rides<sup>[10]</sup>
  - 5. Technology-enabled ride-matching: GPS, mobile computing, platform technology<sup>[11]</sup>




Poster in the US during WWII to promote Carpooling<sup>[3]</sup>

- [3] www.upload.wikimedia.org
- [4] Ridesharing in North America: Past, Present, and Future, Nelson D. Chan 2012
- [5] Columbia Law Review, 1942
- [6] Regional structural elements in Northwest Germany, JC Pratsch 1979
- [7] Casual carpooling-enhanced, KL Kelly 2007
- [8] Impacts of Employer-Based Trip Reduction Programs and Vanpools on Passenger Vehicle Use and Greenhouse Gas Emissions, Marlon G. Boarnet 2014
- [10] Ridematching online: an evolution in service delivery, D Bower 2004
- [11] Seattle smart traveler: dynamic ridematching on the World Wide Web, D.J.Dailey D.Loseff D.Meyers 1999

#### Methods: State-of-the-art Literature Review



- The 1978 Transport Act changed legal situation in UK<sup>[15,16]</sup>
  - Increased number of allowed fare-paying passengers from 4 to 7
  - Allowed official advertisement to promote private ride-sharing
- Major considerations for solutions to reach "critical mass" [4]:
  - Regional and large employer partnerships<sup>[12]</sup>
  - Financial incentives<sup>[13,14]</sup>
  - Social networking with younger populations
  - Real-time mobile services with automated ride-matching software<sup>[7]</sup>



1978 Act of Transportaion<sup>[15]</sup>

[4] Ridesharing in North America: Past, Present, and Future, Nelson D. Chan 2012

[7] Casual carpooling-enhanced, KL Kelly 2007

[12] Innovative public-private partnership models for road pricing/BRT initiatives, P DeCorla-Souza, WG Barker 2005

[13] Ridesharing on timetabled transport services: A multiagent planning approach, J Hrnčíř 2015

[14] Proposed Methodology for Estimating Rideshare Viability Within an Organization: Application to the MIT Community, A Amey 2015

[15] 1978 Transport Act, House of Commons 1978

[16] Pooling for the journey to work: The outlook in Great Britain, PAK Greening 1984

## Methods: State-of-the-art Analysis of Existing Approaches TITT







- 1. Introduction / Motivation
- 2. Research Questions
- 3. Methods
  - 1. State-of-the-art Analysis
  - 2. Empirical Research
  - 3. Modeling as Optimization Problem
  - 4. Software Implementation and Evaluation
- 4. Rough Timeline
- 5. Questions / Feedback



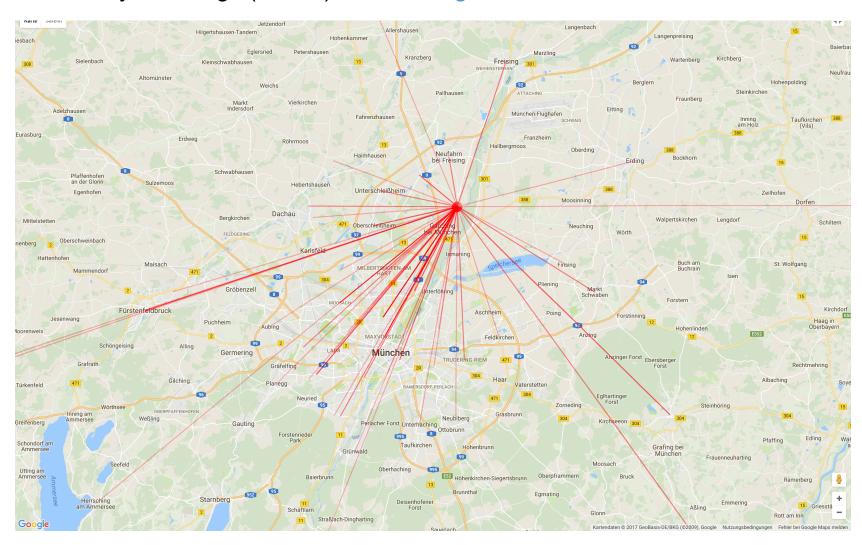
Survey Designs

Random Students: **Exploration** @Magistrale N = 113

**—** Only Drivers: Attitude S @Parking space N = 24 + X

**=** Businesses: Attitude OCCOPOR @General Electric / **UTUM** 

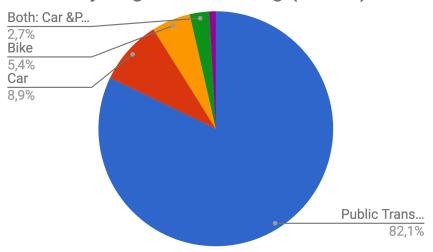




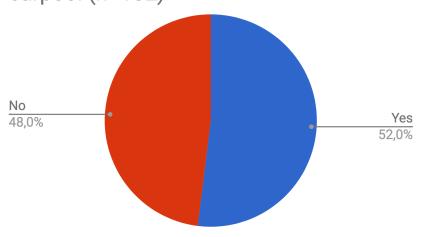



12



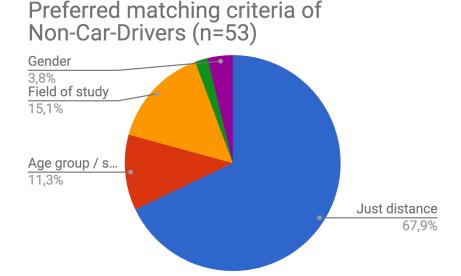

Survey I Findings (n=113): Commuting Directions

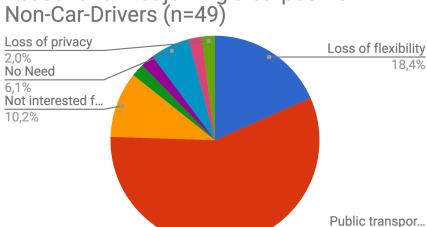





Survey I Findings (n=113): Overall Attitude







# Willingsness of Non-Car-Drivers to join a carpool (n=102)





Survey I Findings (n=113): Overall Attitude





Reasons for not joining a carpool for

15

57.1%

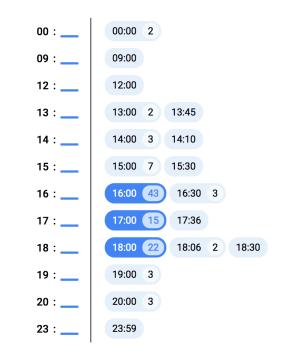


Survey I Findings (n=113 + 24): Price Elasticity





Survey I Findings (n=113): Arrival and Departure Time

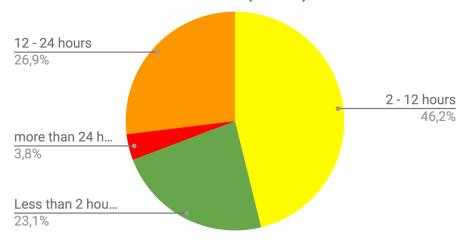

#### At what time do you usually arrive in Garching on weekdays?

113 responses

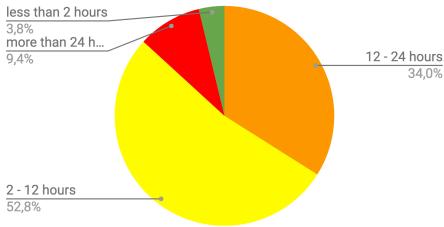


At what time do you usually leave Garching on weekdays?

113 responses




17



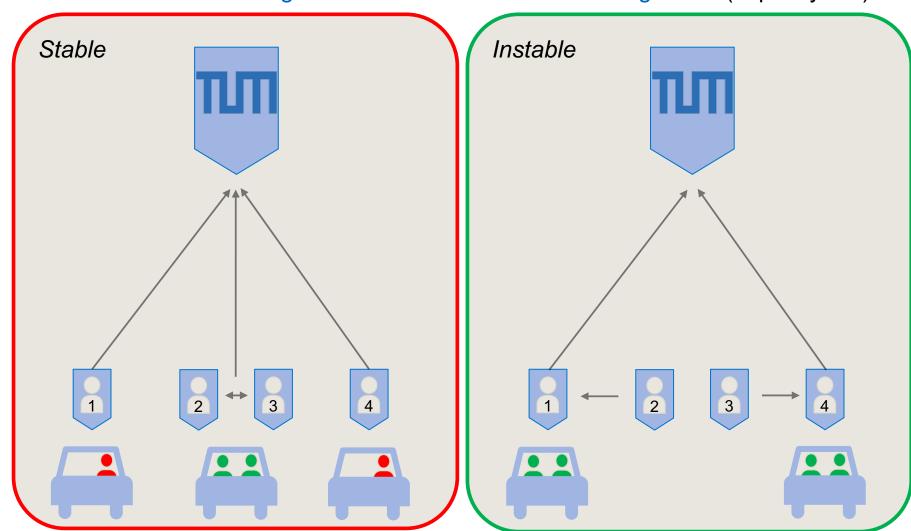

Survey I + II Findings (n=113 + 24): Time Flexibility

# Required timeframe ride has to be fixed in advance of Car-Drivers (n=26)



# Required timeframe ride has to be fixed in advance of Non-Car-Drivers (n=53)






- Introduction / Motivation
- 2. Research Questions
- 3. Methods
  - 1. State-of-the-art Analysis
  - 2. Empirical Research
  - 3. Modeling as Optimization Problem
  - 4. Software Implementation and Evaluation
- 4. Rough Timeline
- 5. Questions / Feedback

## Methods: Modeling as an Optimization Problem



Basic Differentiation: Agent-based vs. Central-Assignment (capacity = 2)



## Methods: Modeling as an Optimization Problem



- Formalizing the ride-matching problem as a combinatorial optimization problem
- Find the best matching solution out of the set of all feasible solutions
  - optimizing the Target function:

$$Minimize \left( \sum number\ of\ cars\ used + traveled\ distance + waiting\ time + \cdots \right)$$

Maintaining the Constraints:

$$\sum_{p \in Passangers} travels \ with_{p,c} \leq capacity_c \quad \forall c \in Cars$$



- Introduction / Motivation
- 2. Research Questions
- 3. Methods
  - 1. State-of-the-art Analysis
  - 2. Empirical Research
  - Modeling as Optimization Problem
  - 4. Software Implementation and Evaluation
- 4. Rough Timeline
- Questions / Feedback

## Methods: Software Implementation and Evaluation



Technology Stack



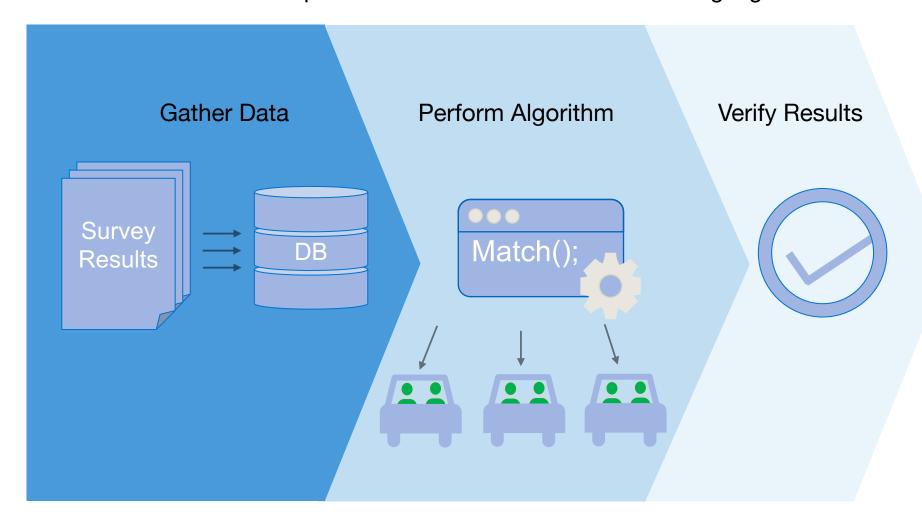
express





NoSQL Database

Web Server


Frontend Framework

Server-side Run-time Environment

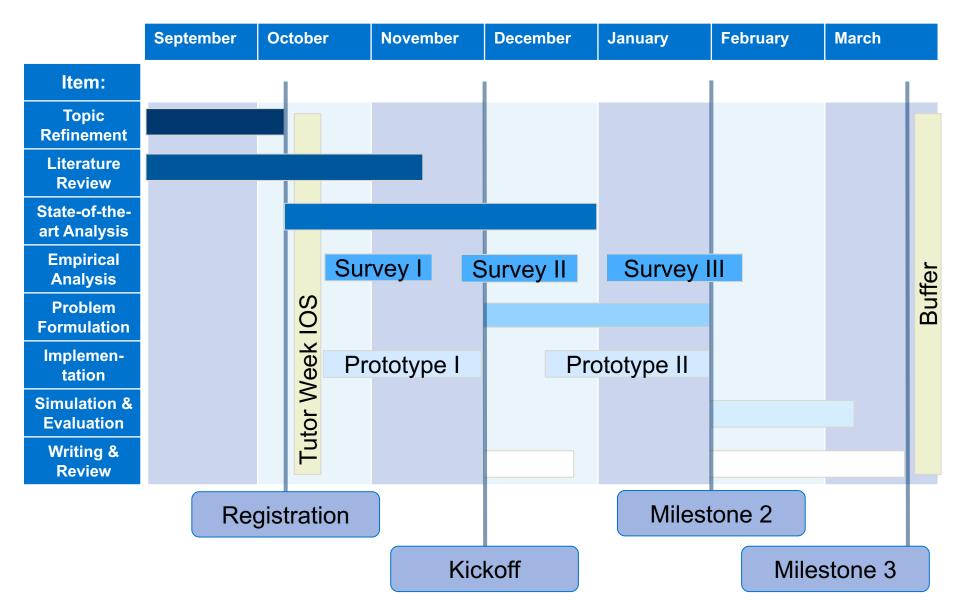
## Methods: Software Implementation and Evaluation



Simulate simultaneous platform users to evaluate the matching algorithm






- Introduction / Motivation
- 2. Research Questions
- 3. Methods
  - 1. State-of-the-art Analysis
  - 2. Empirical Research
  - 3. Modeling as Optimization Problem
  - 4. Software Implementation and Evaluation

#### 4. Rough Timeline

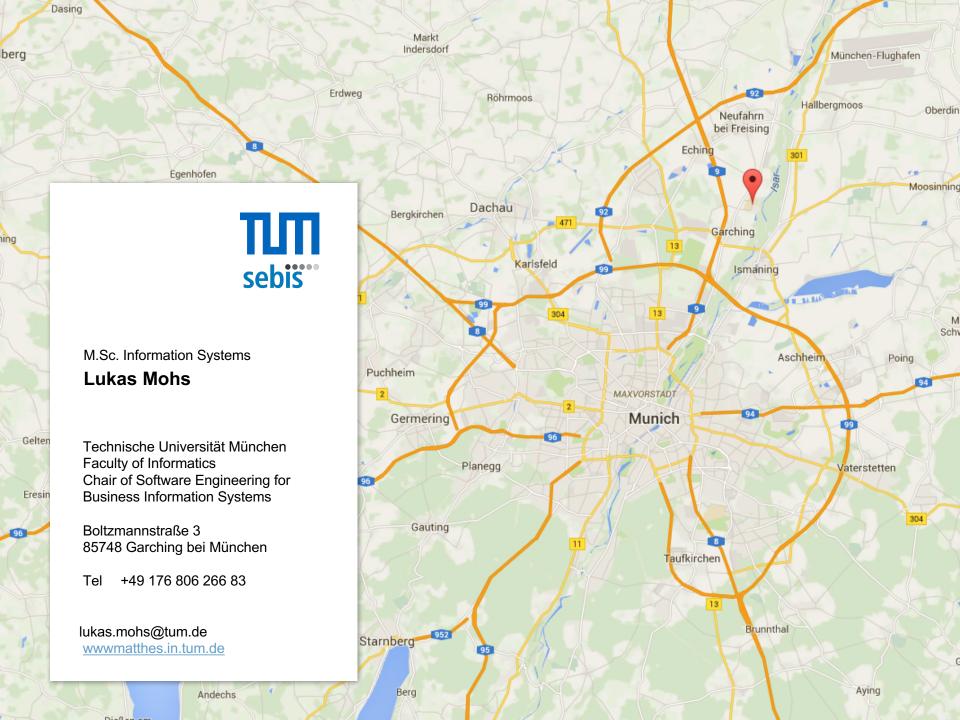
Questions / Feedback

## Rough Planned Schedule








- Introduction / Motivation
- 2. Research Questions
- 3. Methods
  - 1. State-of-the-art Analysis
  - 2. Empirical Research
  - 3. Modeling as Optimization Problem
  - 4. Software Implementation and Evaluation
- 4. Rough Timeline
- 5. Questions / Feedback

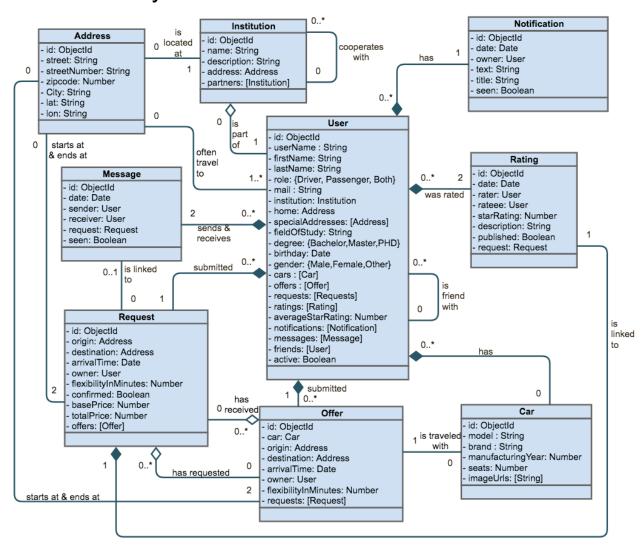
## Thank you for your attention!



- Questions?
- Suggestions?
- If you want to follow the current Prototype:

http://my.fastpool.eu/






- Introduction / Motivation
- 2. Research Questions
- 3. Methods
  - 1. State-of-the-art Analysis
  - 2. Empirical Research
  - 3. Modeling as Optimization Problem
  - 4. Software Implementation and Evaluation
- 4. Rough Timeline
- Questions / Feedback
- 6. Backup

## Backup: Software Implementation and Evaluation

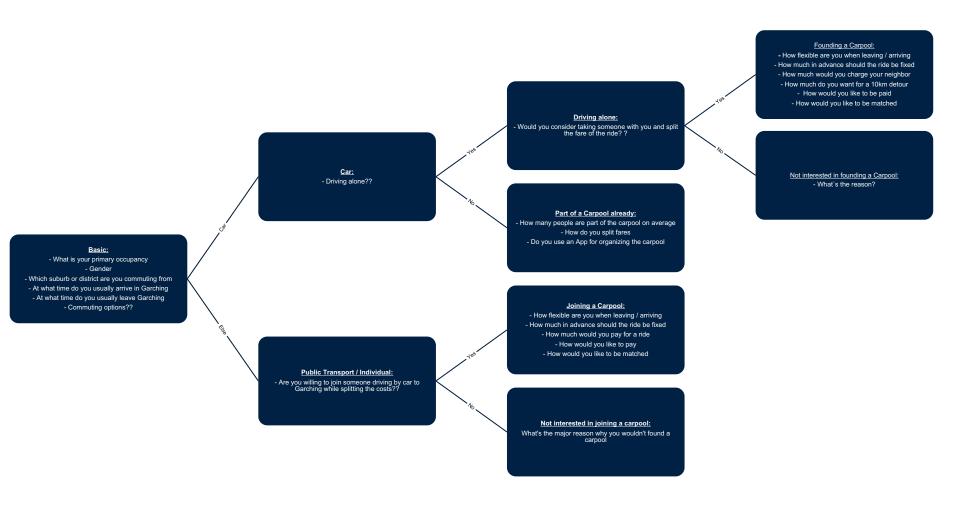


#### **Entity Architecture**



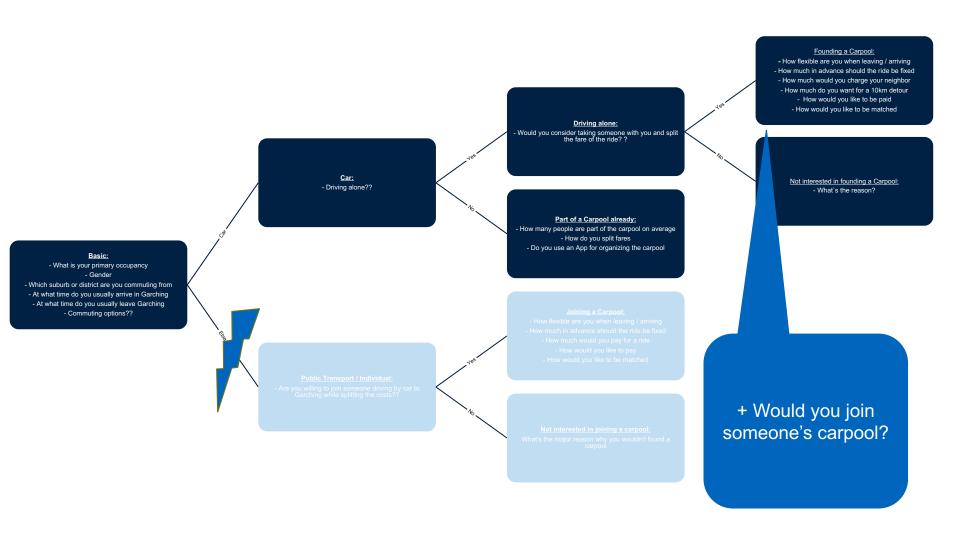
#### User central entity

 Associated with institution


#### Loosely coupled Request and Offer entity

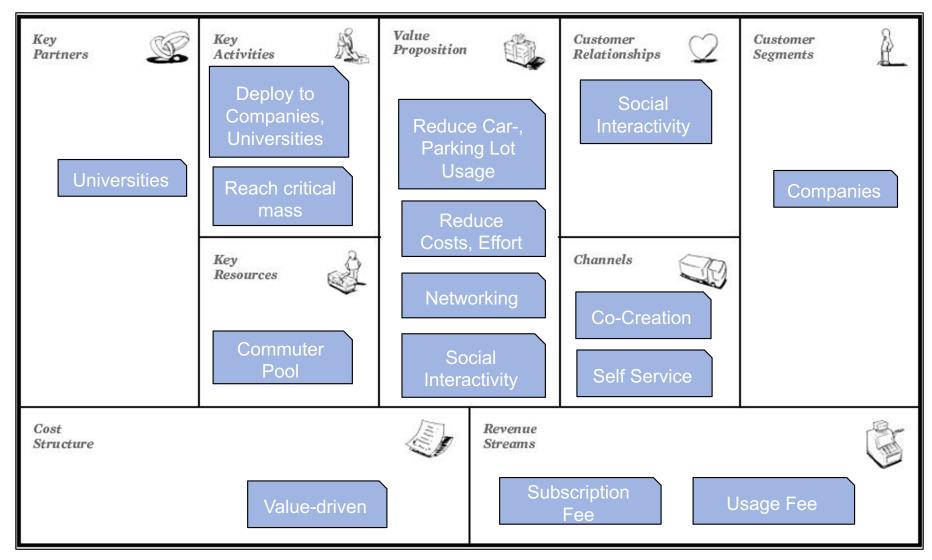
- Enable central / asynchronous matching
- Notification informs about new matches

Message and Rating realize platform confidence


## Backup: Survey I Design






## Backup: Survey II Design





## Backup: Business Model Canvas





http://wordpress-innovately.rhcloud.com/wp-content/uploads/2015/04/business-model-canvas.jpg

34

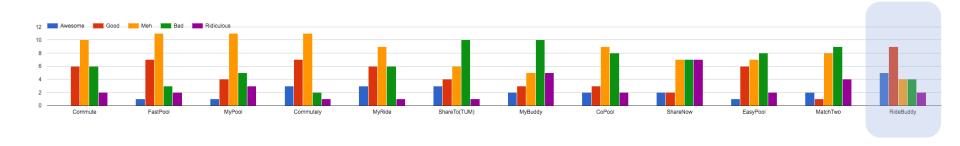
## Backup: Further References (I)

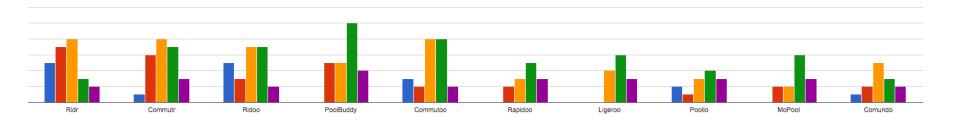


| 2  | Smart peer car pooling system                                                                    | Paper      | 2016 | Middle East University (Oman)                                |
|----|--------------------------------------------------------------------------------------------------|------------|------|--------------------------------------------------------------|
| 3  | Real-Time Rideshare Matching Problem                                                             | Paper      | 2011 | University of Maryland                                       |
|    | Ridesharing in North America: Past,                                                              |            |      |                                                              |
| 4  | Present, and Future                                                                              | Paper      | 2012 | University of California, Berkeley                           |
|    |                                                                                                  | Article    |      |                                                              |
| 5  | Casual carpooling in the San Francisco Bay Area                                                  | (Magazine) | 1990 | Transportation Foundation                                    |
|    | Impacts of Employer-Based Trip Reduction                                                         |            |      |                                                              |
|    | Programs and Vanpools on Passenger Vehicle                                                       |            |      |                                                              |
|    | Use and Greenhouse Gas Emissions                                                                 | Paper      | 2014 | University of Southern California                            |
|    | WHAT MAKES A CAR-SHARER?                                                                         | Paper      | 1984 | The University, Leeds'                                       |
| 8  | Ridematching Online: An Evolution in Service Delivery EMPLOYEE TRIP REDUCTION IN SOUTHERN        | Article    | 2004 | Association for Commuter Transportation                      |
| 9  | CALIFORNIA: FIRST YEAR RESULTS                                                                   | Paper      | 1993 | UCLA                                                         |
|    | Commute trip reduction—a collaborative approach                                                  | Paper      | 1999 | Department of Transportation                                 |
|    | Slugging in Houston — Casual Carpool Passenger Characteristics                                   | Paper      | 2006 | A&M University                                               |
|    |                                                                                                  | . арс.     | 2000 | •                                                            |
|    | A distributed geographic information system for the daily car pooling problem                    | Danar      | 2004 | Universit de Technologie de Troyes,<br>University de Bologna |
|    | •                                                                                                | Paper      |      | University de Bologna University of Washington               |
| 13 | Seattle smart traveler: dynamic ridematching on the World Wide Web COMMUTER CONNECTION: FLEXIBLE | Paper      | 1999 | Offiversity of washington                                    |
| 14 | RIDESHARING IN MARIN COUNTY, CALIFORNIA                                                          | Paper      | 1981 | Washington, DC: Urban Mass Transit Administration            |
|    | The rise and fall of the American carpool: 1970–1990                                             | Paper      | 1997 | Erik T. Ferguson & Associates                                |
|    | STUTTGART: M21 - a telematics-based mobility service for commuter                                | •          |      | Č                                                            |
|    | traffic                                                                                          | Article    | 2001 | DAIMLER, Baden-Württemberg                                   |
|    | Real-Time Ridesharing: Exploring the Opportunities                                               | Aitioic    | 2001 | DAINIELIX, Baden-waittemberg                                 |
|    | and Challenges of Designing a Technology-                                                        | Master     |      |                                                              |
|    | based Rideshare Trial for the MIT Community                                                      | Thesis     | 2010 | MIT                                                          |
|    | Flexible Operation Command & Control System (FOCCS) With Vehicle-                                |            |      |                                                              |
|    | Autonomous Schedule Control and Synchronisation                                                  | Paper      | 1992 | Rufbus GmbH                                                  |
|    | <b>,</b>                                                                                         | Report /   |      | Federal Transit Administration,                              |
| 19 | Advanced Public Transportation Systems: The state of the Art                                     | Book       | 2000 | Washington                                                   |
|    | Bellevue Smart Traveler: Design                                                                  |            |      | Federal Transit Administration,                              |
| 20 | Demonstation and Assesment                                                                       | Report     | 1995 | Washington                                                   |
|    |                                                                                                  | •          |      | •                                                            |

## Backup: Further References (II)




| 21<br>22<br>23 |                                                                                                       | Report<br>Working<br>Paper<br>Article | 1995<br>1990<br>2007 | University of Southern California, Berkeley University of California Transportation Center Association for Commuter Transportation |
|----------------|-------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 24             | Travelling to work: will people move out of their cars                                                | Paper                                 | 2001                 | University of Hertfordshire                                                                                                        |
| 25<br>26       | Rideshare History & Statistics Flinc - Mobilitätsmanagement und die Förderung von Fahrgemeinschaften  | Article<br>Website                    | 2009                 | MIT<br>MIT                                                                                                                         |
| 27<br>28       | im Unternehmen Evaluation of Springfield Instant Carpooling                                           | Studie<br>Paper                       | 2012<br>1989         | Flinc, Rheinland-Pfalz The Urban Institute                                                                                         |
| 29<br>30<br>31 | RideNow Casual Car Pool                                                                               | Website<br>Paper<br>Website           | 2015<br>2000         | University of South Florida                                                                                                        |
| 32             | Dynamic ridesharing and information and communications technology: past, present and future prospects | Article                               | 2011                 | University of Toronto at Mississauga<br>Erasmus University,                                                                        |
| 33             | Optimization for dynamic ride-sharing: A review Investigating ride sharing opportunities              | Paper                                 | 2012                 | Georgia Tech, Newcastle (AUS) University of Modena and                                                                             |
|                | through mobility data analysis                                                                        | Paper                                 |                      | Reggio Emilia, Italy Bundesministerium für Verkehr,                                                                                |
| 35             | Mobilität in Deutschland 2008                                                                         | Report                                | 2008                 | Bau und Stadtentwicklung                                                                                                           |


#### Icons (flaticon.com)

- Tomas Knop
- Zlatko Najdenovski
- Freepik

# Backup: Name Survey







37

## Backup: Background - Platform Development



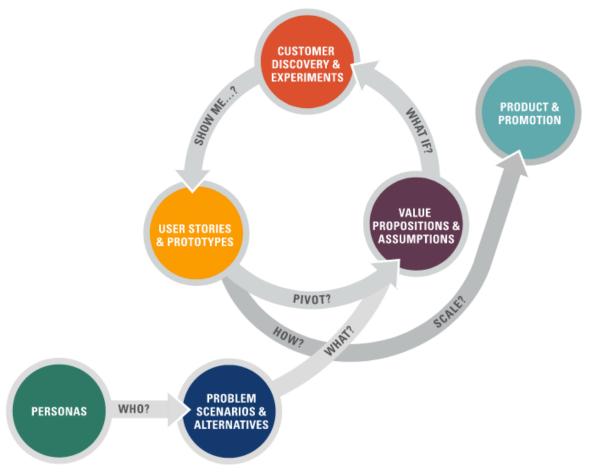
- The advent of platforms in the IT domain during the last years emphasized an important social and economic impact in many fields of industry.
- The platform as a business model creates a standalone market, which connects providers and customers and is controlled by an operator.
- Design principles, policies and the growth strategy form decisive factors which have to be studied and identified for each environment individually.

## Backup: Literature Review (I)



- The first practical organized carpooling studies have been undertaken in Bellevue and Seattle in Washington as well as Sacramento, Coachella and Los Angeles in California during the 1990s[17].
- These similar systems were introduced to take advantage of the so-called "high-occupancy vehicle" (HOV) lanes on several highways, which permit just vehicles with more than one passenger driving on a specific lane.
- Besides empirical studies about the participants, functionality, usability and the payment system, social aspects were researched, too [2,4,5,6,7,8,10,11,12,13,14,15,18,19,20,21,22,23,25,26,28,29,30,32].
- Further studies discussed the potential for ridesharing for single universities or companies [9,24,27,31].

## Backup: Literature Review (II)




- Hwang and Giuliano analyzed the travel distance, parking options and company size [22].
- The master thesis of Andrew M. Amey (MIT) particularly emphasized the importance of incentives for travelers and potential strategies for reaching a critical mass when establishing a commuter system to the MIT campus [17].
- In a report of the University of Maryland, the "Real-time Rideshare Matching Problem" is treated by analyzing and comparing state-of-the-art systems and furthermore formalizing the theoretical model.
- This model included smoking habits, pet friendliness together with gender and age preference into one trip matching function [3].
- In 1981, there was the first organized commuting system in Germany operated by the city of Friedrichshafen, which was based on a shared taxi system of predefined route points [17,18]
- Another system called "M21" was established in 1998 and operated by Daimler-Chrysler and the State of Baden-Württemberg with the goal of increasing the car utility of commute rides to the company's research facility [16, 17].
- Since 2010, "Flinc" provides a matching platform for spontaneous shortdistance trips and daily commuting routes in Germany [3,27,33,34].

## Backup: Venture Design



# **VENTURE DESIGN PROCESS**



https://www.alexandercowan.com/venture-design

41