
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Semantic Text Matching of Company Policies
and Regulatory Documents using Text

Similarity Measures

Christoph Erl

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Information Systems

Semantic Text Matching of Company Policies and
Regulatory Documents using Text Similarity Measures

Semantic Text Matching von Unternehmensrichtlinien und
Regulatorischen Dokumenten mittels

Textähnlichkeitsmaßen

Author: Christoph Erl
Supervisor: Prof. Dr. Florian Matthes
Advisor: Jörg Landthaler
Submission Date: February 15, 2018

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Munich, February 15, 2018 Christoph Erl

Acknowledgments

At this point, after an intensive period of six months, I would like to give many thanks to all the
people who supported me during my thesis:

At first, I would like to offer my special thanks to my advisor Jörg Landthaler. He inspired me
with constructive discussions, gave valuable feedback and guided me in the right direction if
needed.

I would like to acknowledge my gratitude to Prof. Dr. Florian Matthes for his feedback and
the opportunity to write my thesis at his chair Software Engineering for Business Information
Systems.

My sincere thanks goes to the founders of Alyne who provided me the opportunity to join this
exciting practice-oriented research project: Manuel Reil, Karl Viertel, Matthias Danner and
Stefan Sulistyo. Thank you very much for the great time at Alyne, for participating in the expert
interviews and for proofreading my thesis.

Finally, I must express my very profound gratitude to my parents, my brothers and my girlfriend
for providing me with unfailing support and encouragement through the process of writing this
thesis.

Christoph Erl

vii

Abstract

Companies need to comply to international standards and regulations - both growing in number
and complexity. Derived from these regulatory documents, large enterprises typically maintain
individual company policies but do not keep their original references which are required, how-
ever, for future audits or updates. Alyne GmbH provides a solution with intermediate, so-called
control statements that map controls from both regulatory documents and company policies.
We develop a recommender system that aims to support regulatory experts at mapping con-
trols with semantically similar control statements using text similarity approaches. This work
investigates to which degree this recommender system can solve the mapping problem. Fi-
nally, we evaluate the results with datasets from real-world regulatory documents.

Zusammenfassung

Unternehmen müssen internationale Standards und Richtlinien einhalten, die jeweils stetig in
ihrer Anzahl und Komplexität wachsen. Große Firmen pflegen in der Regel eigene, von diesen
regulatorischen Dokumenten abgeleitete Unternehmensrichtlinien, halten aber keine Referenz
zur Orginalquelle. Diese wird allerdings im Falle einer Prüfung oder Aktualisierung erforder-
lich. Die Alyne GmbH löst dieses Problem mit intermediären, sogenannten Control State-
ments, die Richtlinien von regulatorischen Dokumenten und Unternehmensrichtlinien miteinan-
der verknüpfen. Ziel ist es, ein Recommender System zu entwickeln, das Experten dabei un-
terstützt, semantisch ähnliche Richtlinien mit Control Statements zu verlinken. Hierfür verwen-
den wir Textähnlichkeitsmaße. Diese Arbeit untersucht, inwieweit dieses Recommender Sys-
tem das erwähnte Verknüpfungsproblem löst. Schließlich werden die Ergebnisse mit realen
Daten von regulatorischen Dokumenten evaluiert.

ix

x

Contents

Acknowledgements iv

Abstract v

1. Introduction 1
1.1. Motivation . 2

1.1.1. Explicit Mapping of Controls . 2
1.1.2. Problem Statement . 3
1.1.3. Proposed Solution . 4

1.2. Research Questions . 5
1.3. Research Approach . 6

1.3.1. Iterative Approach . 6
1.3.2. Ground Truth . 7
1.3.3. Evaluation Criteria . 8

1.4. Structure of the work . 9

2. Semantic Text Matching 10
2.1. Definition . 10
2.2. Related Work . 11

3. Natural Language Processing 12
3.1. Preprocessing Technologies . 12
3.2. Text Similarity Approaches . 14

3.2.1. Term Frequency - Inverse Document Frequency 14
3.2.2. Word2Vec (Word Embeddings) . 15
3.2.3. Doc2Vec (Document Embeddings) . 17

4. Implementation Recommender System 19
4.1. Requirements . 19
4.2. System Structure . 20

4.2.1. Configuration . 20
4.2.2. Matcher . 22
4.2.3. Data Sets . 23

5. Implementation GUI Citadel 24
5.1. Setup . 24
5.2. Features . 26

5.2.1. Evaluation Management . 26
5.2.2. Evaluation Analysis . 27

xi

Contents

6. Evaluation 31
6.1. Individual Evaluation . 32

6.1.1. Preprocessing Analysis . 32
6.1.2. Meta Information . 35
6.1.3. Corpora Analysis . 38
6.1.4. Context Information . 40

6.2. Overall Evaluation . 42
6.2.1. Text Similarity Approach Analysis . 42
6.2.2. STM Problem Analysis . 43

7. Conclusion and Future Work 49

Bibliography 51

List of Figures 52

List of Tables 54

Appendix 56

A. Result Tables 56

xii

1. Introduction

Corruption, money laundering and fraud cause massive economic damage to companies year
after year. And new forms of crime emerge through the progressive digitization such as com-
puter fraud or espionage and interception of confidential company data.

Therefore, governments and professional associations develop standards and regulations in
order to combat this economic crime and to reduce the legal, operational as well as financial
risk for enterprises.

Deriving controls from regulatory documents and managing them in form of an internal controls
system (company policies) is a legal requirement for the corporate governance of many compa-
nies in Germany for financial controls (BilMoG, Bilanzrechtsmodernisierungsgesetz) and also
a regulatory requirement in regulated industries such as banking where this is defined in the
KWG (Kreditwesengesetz) in Germany.

This derivation creates an implicit reference between a control of a company policy and the
corresponding control of a regulatory document, as illustrated in Figure 1.1. The problem that
arises now is that companies often do not store the explicit reference to the original control of a
regulatory document which is required, however, for future audits or updates.

COBIT 5

ISO/IEC
27001:2005

PCI DSS
v3.1

Finish
Personal
Data Act

MAS TRMG

Company
Policy I

Company
Policy II

Company
Policy III

BDSG

Figure 1.1.: Implicit References between Regulatory Documents and Company Policies

1

1. Introduction

1.1. Motivation

The motivation of this thesis is driven by a concrete business problem that our industry partner
Alyne GmbH1 faces. Alyne is a young RegTech company that was launched in Munich in the
year 2015. Their product is a B2B software as a service that supports organisations to manage
their cyber security, risk management and compliance.

Our goal is to support regulatory experts of Alyne to create explicit references between seman-
tically related controls from company policies and regulatory documents.

This section explains how Alyne solves the problem of explicit mappings, describes the busi-
ness problem and proposes the solution idea.

1.1.1. Explicit Mapping of Controls

Enterprises typically extract and derive controls from regulatory documents and maintain a
smaller number of individual company policies that are relevant for their business.

Table 1.1 shows two example controls in the field of password management, one from a regu-
latory document and one from a company policy:

Type Reference Control

Regulatory Document PCI DSS 3.1 8.2.5 Do not allow an individual to submit a new
password that is the same as any of the last four
passwords he/she has used.

Company Policy Example The user password must be at least 8 characters
long with at least one special character and must
not same as any of his/her last three passwords.

Table 1.1.: Example controls from regulatory documents and company policies

This company policy control seems to be derived from the regulatory document control and
additionally extended by password charactistics. The overlapping control - passwords must not
be same as any of the previous passwords - only differs in the specified number of pervious
passwords. This is an example for a potential implicit reference.

To make it explicit, Alyne manually extracted key statements from various regulatory documents
of different topics (data privacy, fraud prevention etc.) and created a collection of (so far) 879
well defined controls statements. Controls statements store explicit references to related con-
trols from both regulatory documents and company policies, as shown in Figure 1.2.

The corresponding control statement for the example above is “user passwords shall be pre-
vented from being changed to any of the previous n passwords”.

1https://www.alyne.com/en/, last accessed February 2018

2

https://www.alyne.com/en/

1.1. Motivation

COBIT 5

ISO/IEC
27001:2005

PCI DSS
v3.1

Finish
Personal
Data Act

MAS TRMG

Company
Policy I

Company
Policy II

Company
Policy III

BDSG

Control
Statements

Figure 1.2.: Explicit References between Regulatory Documents and Company Policies

The generalization of controls from regulatory documents to distinct control statements coun-
teract the today’s growing number and complexity of regulations. Alyne’s customers can ex-
clusively focus on them but the explicit references still allow to see to which documents they
comply and to which degree.

1.1.2. Problem Statement

The collection of control statements and their explicit references is the unique selling proposition
of Alyne. The extension and maintenance, however, is a very labor intensive process.

Let us consider a relevant selection of work routines of an Alyne expert in Figure 1.3.

Figure 1.3.: Work Routine of Regulatory Experts

Regulatory experts need to add regulatory document controls, company policy controls as well
as control statements. Since the number of regulatory documents and control statements is
finite and comparatively small, it would be acceptable to maintain and map them by hand.

3

1. Introduction

Company policies, however, are potentially infinite due to an unlimited number of customers.
While the extraction of controls from policies can be achieved by simple algorithms (assuming
controls are equal to text paragraphs), expert knowledge is required to reference a control to
its corresponding control statement to ensure not to create wrong mappings and thus achieve
a high data quality.

The problem statement that arises now is: How can we support Alyne’s regulatory ex-
perts in their work routine, in particular, to map company policy controls to control state-
ments?

It is noted that, although the focus is on mapping company policies, throughout the work we do
not differentiate between company policy and regulatory document controls because both are
assumed to be equal.

1.1.3. Proposed Solution

To support Alyne’s regulatory experts in mapping company policies to control statements, the
thesis proposes a recommender system using text similarity approaches.

Whenever an expert intends to map a control, the recommender system sorts the collection
of 879 control statements according to their semantic similarities to the control. The intended
effect is that experts

• do not need to check all control statements but only the top results (time savings) and

• find control statements which they might have forgotten (improved data quality).

A fully automatic approach instead of a recommender system was considered as not realisitic
because the semantic similarity of controls is hard to capture and requires domain knowledge.

The principle of the recommender system is illustrated in Figure 1.4.

1. User passwords shall be prevented from being
changed to any of the previous 10 passwords.

2. Privileged account passwords shall be prevented
from being changed to any of the previous 15
passwords.

Do not allow an individual to submit
a new password that is the same
as any of the last four passwords
he/she has used.

Recommender
System

Text Similarity
Approach 879.Recovery from backup media shall be tested at

least every year.

..

.879	Control	Statements

1	Input	Control

Recommender	
System

Input Output

Figure 1.4.: Recommender System using a Text Similarity Approach

4

1.2. Research Questions

The recommender system accepts a control from both regulatory document or company policy.
This input control is then compared with every control statement within the collection using a
text similarity approach. Finally, the system sorts the collection whereby the more similar control
statements appear at the top.

From an abstract technical perspective, the recommender system matches a text passage
against a collection of other text passages. This view allows the system to be used in use
cases of different domains and even function as a classical search algorithm.

1.2. Research Questions

During the development of the prototype of the recommender system, the thesis addresses the
following six research questions:

1. To which degree does the text similarity approach solve the semantic text matching
problem?

We discuss to which degree text similarity approach solve the semantic text matching problem
(introduced in Chapter 2) with regard to the problem statement of Alyne.

2. What text similarity approach performs best - TF-IDF, Word2Vec or Doc2Vec?

We evaluate and compare the performance of three different text similarity approaches: TF-IDF,
Word2Vec and Doc2Vec.

3. Which preprocessing technologies have a positive impact on the matching results?

We investigate four different preprocessing technologies including cleaning, stemming, stop-
words removal and PoS tagging.

4. Does the addition of meta information to control statements improve the results?

Control statements are linked with meta information such as topic, subtopic, title and tags. We
add these information to control statements and examine the impact on matching results.

5. What are good corpora to train Word2Vec and Doc2Vec?

The machine learning based text similarity approaches Word2Vec and Doc2Vec are trained on
a corpus. We investigate several corpora that differ in characteristics regarding content type
(off-topic/on-topic) and size (small/big) to conclude the influence on matching results.

6. Can chapter or paragraph context help to improve the results?

Chapter or paragraph context of input controls, like section titles, often contains key words that
might help in the matching process. We extract context information and examine its impact.

5

1. Introduction

1.3. Research Approach

This section presents our iterative research approach and introduces the ground truth as well
as the quantitative criteria we use to evaluate the recommender system.

1.3.1. Iterative Approach

After literature research and the implementation of the recommender system, we perform a
series of evaluations to answer the research questions (RQ) following an iterative approach.

The iteration steps are shown in Figure 1.5.

RQ 3 RQ 4 RQ 5 RQ 6 RQ 2 RQ 1

Chapter 1-4 Chapter 5-6 Chapter 7.1.1 Chapter 7.1.2 Chapter 7.1.3 Chapter 7.1.4 Chapter 7.2.1 Chapter 7.2.2

Overall EvaluationsIndividual Evaluations

Literature
Research

Pre-
processing

Meta
Information

Corpora
Analysis

Context
Information

Text
Similarity
Approach
Analysis

STM
Problem
Analysis

Evaluation Evaluation Evaluation Evaluation Evaluation Evaluation

Implemen-
tation

Figure 1.5.: Iterative Research Approach

First, covering research questions from 3 to 6, we perform individual evaluations on four different
strategies which aim to improve matching results: preprocessing, addition of meta information
to control statements, corpora analysis and addition of context information to input controls.

Second, covering research questions 1 and 2, we conduct a final overall analysis on the per-
formance of text similarity approaches TF-IDF, Doc2Vec and Word2Vec, and assess to which
degree the semantic text matching problem of regulatory documents and company policies is
solved.

The iterative approach is particularly important during the individual evaluations. Due to time
and hardware limitations, especially with regard to the machine learning based similarity ap-
proaches, we can only perform a subset of parameter combinations (curse of dimensionality).
So, per iteration step we only change the values of one parameter, evaluate the matching results
and continue with the value of the best result we identified.

We assess quantitatively the research questions from 2 to 6 with ground truth and RPS measure
which are both introduced in the following two Sections. Research question 1 is evaluated
qualitatively in form of a feedback sheet. The qualitative evaluation approach is described in
detail in Chapter 6.2.2.

6

1.3. Research Approach

1.3.2. Ground Truth

To quantitatively evaluate the quality of the matching results, we have access to a ground truth
of 1000 items from 10 different regulatory documents.

The 10 documents are listed in Table 1.2 including the number of paragraphs and number of
words per paragraph.

Regulatoy Document #Paragraphs ∅ Words/Paragraphs

BDSG2 24 362.88
COBIT3 5 2012 191 32.02
COSO4 2013 16 18.94
Finish Personal Data Act 523/1999 29 164.24
ISO 22301:2012 37 122.46
ISO 27001:2005 133 24.86
ISO 31000:2009 46 95.17
MAS-TRMG5 21 268 52.00
NIST6 C2M2 Cyber Security Framework v1.1 95 9.02
PCI DSS7 v3.1 161 170.16
All Ground Truths 1000 74.30

All Control Statements 21.55

Table 1.2.: Ground Truth

The ground truth, same as the control statements, are in English language.

They differ in level of detail and paragraph length. Different paragraph lengths can complicate
the matching of two text passages. So, we ensure that our regulatory documents also cover
extreme examples: BDSG with an average length of 363 words per paragraph is almost 17
times longer than the average of 22 for control statements. NIST with an average of 9 is more
than 2 times shorter. ISO 27001 and COSO have nearly same length as the control statements.

Listing 1.1 shows an example ground truth item.

It consists of an identifier, the input control (input) and the corresponding control statements
(outputs). The identifier is a unique string consisting of document title (“PCI DSS v3.1”) and
paragraph (“8.2.5”) of the input control.

2German Federal data protection act
3Control Objectives for Information and Related Technologies
4Committee of Sponsoring Organizations of the Treadway Commission
5Monetary Authority of Singapore Technology - Risk Management Guidelines
6National Institute of Standards and Technology
7Payment Card Industry Data Security Standard

7

1. Introduction

{
"identifier": "PCI DSS v3.1 8.2.5",
"input": "Do not allow an individual to submit a new password

that is the same as any of the last four passwords he/she
has used.",

"outputs": [
"Control_Statement_Id_00033", // "User passwords shall be

prevented from being changed to any of the previous 10
passwords."

"Control_Statement_Id_00056",
...

]
}

Listing 1.1: Ground Truth Item

1.3.3. Evaluation Criteria

To quantify the quality of the matching results of our recommender system, we use the intuitive
RP-Score (Ranking-Position-Score, RPS) [Landthaler, 2017] that averages the ranking position
of the expected output contained in the ground truth.

Table 1.3 shows an examplary matching result for the ground truth item in Listing 1.1:

RP Control Statement Id

1 Control Statement Id 00033
2 Control Statement Id 00544
3 Control Statement Id 00056
4 Control Statement Id 00612
. . . (and 875 more)

Table 1.3.: Matching Result Example

The matching result is (throughout the thesis) a list of 879 control statements, while here the
two correct outputs Control Statement Id 00033 and Control Statement Id 00056 have ranking
positions 1 and 3. So, the average rank, or RP-Score, is 1+3

2 = 2.

The optimal RPS in this example is (
∑#outputs

i=1 i)/#outputs = 1+2
2 = 1.5.

The average optimal RPS of all ground truth items is 2.75.

8

1.4. Structure of the work

1.4. Structure of the work

The remainder of this thesis is organized as follows:

• Chapter 2 gives a brief summary of the research topic of the semantic matching problem
(STM) and related work.

• Chapter 3 looks at theoretical background of natural language processing, and describes
preprocessing technologies and text similarity approaches that will be applied.

• Chapter 4 introduces requirements, features and implemenation details of our recom-
mender system.

• Chapter 5 presents the platform Citadel , implemented in this thesis, that supports us
during the evaluation of the recommender system.

• Chapter 6 describes the evaluations undertaken and presents their results, and discuss
the research questions.

• Chapter 7 summarizes this thesis and discusses future work.

9

1. Introduction

10

2. Semantic Text Matching

The matching of semantically similar text passages - throughout this thesis company policies
and regulatory documents with control statements - is a common problem of different domains,
in particular text-intensive areas such as compliance or law.

This chapter introduces the research topic semantic text matching (STM), which focuses on
this problem, and looks at related research. STM is related to the area of information retrieval
(IR).

2.1. Definition

According to [Landthaler, 2018], the STM problem is the detection of semantic links between
text passages of one or several documents. Figure 2.1 illustrates the STM problem which is
essentially an abstracted view of Figure 1.1 in Chapter 1.

Doc 1

Doc 2

Doc 3

Doc A

Doc B

Doc C

Figure 2.1.: Illustration of STM Problem, based on [Landthaler, 2018]

This paper differentiates two sub-problems of STM:

• Segmentation (not considered in this thesis): Before text passages can be matched they
need to be extracted from their documents. These sources differ in structure and file
formats which complicates the parsing process to retrieve relevant text passages.

• Matching (focus of this thesis): Semantically related text passages from different docu-
ments need to be matched.

11

2. Semantic Text Matching

2.2. Related Work

The identification of semantic links causes a lot of manual work. There have been different
attempts to automate this process in several domains.

In the domain of German Tenancy Law [Landthaler, 2018] presents a vision of how to link
contract clauses and legal comments using the unsupervised text similarity approach Word2Vec
and TF-IDF as baseline. This paper proves the technological feasibility to some degree but also
points out the challenge to distinguish very similar text passages.

In the police domain [Duan and Xu, 2016] introduce an unsupervised text similarity algorithm
for 110 incidents to semantically match similar incidents. Their approach is a combination of the
TF-IDF and Word Mover’s Distance (WMD) [Kusner et al., 2015] which is a semantic similarity
metric between text documents based on word embeddings. Results show that TF-IDF has a
positive impact on the performance of WMD. TF-IDF outperforms in case types where incident
descriptions are mostly the same.

[Rinott et al., 2015] propose a supervised automatic method to detect evidences from unstruc-
tured text for a given claim. [Naderi and Hirst, 2015] present a model, that combines a super-
vised (support-vector machine) and an unsupervised (Word2Vec) approach, to discover framing
strategies for given parliamentary statements.

12

3. Natural Language Processing

Natural language processing (NLP) is an interdisciplinary approach in the areas of computer
science, linguistics and artifical intelligence that focuses on how to make computers under-
stand human beings by analysing and extracting the semantic meaning from natural language
(English, German etc.) [Gurusamy and Kannan, 2014].

NLP provides important tools to implement our recommender system that aims to solve the
STM problem. In this chapter, we introduce theoretical background regarding

• preprocessing technologies and

• the text similarity approaches TF-IDF, Word2Vec and Doc2Vec.

3.1. Preprocessing Technologies

Text preprocessing technologies aim to reduce unnecessary information and draw out important
features. Preprocessing is applied to any text passage that is intended to be matched by our
recommender system.

Legal documents, like regulatory documents or company policies, are generally quite clean
and structured texts: They are less incomplete, noisy and inconsistent than other real world
instances such as Twitter tweets that contain colloquial language and spelling mistakes. This
fact already simplifies but does not replace preprocessing, for example, we cannot assume all
sources to be clean, some controls are short bullet points and others are long sentences, and
special characters are hard to interpret.

Figure 3.1 shows the pipeline of common preprocessing techniques which we implement (Chap-
ter 4) and investigate (Chapter 6) for our recommender system. These include tokenization &
cleaning, stopwords removal, stemming and part-of-speech (PoS) tagging.

Preprocessing

Matching	
Algorithm

Text from
Documents

Tokenization
&

Cleaning
Stopwords
Removal Stemming PoS

Tagging

Figure 3.1.: Preprocessing Pipeline, based on [Vijayarani and Ilamathi, 2015]

13

3. Natural Language Processing

We read about state-of-the-art preprocessing technologies in [Gurusamy and Kannan, 2014]
and [Vijayarani and Ilamathi, 2015]:

Tokenization & Cleaning: Tokenization is the process that splits a text into its individual com-
ponents (tokens) such as words, symbols or punctuations. We then can apply different tech-
niques in order to clean these tokens. Commonly, digits, punctuation and symbols (hash tags,
slashes etc.) are removed and words converted to lowercase.

Stopwords Removal: Stopwords removal is the process that removes filler words that appear
frequently but give little or no meaning to the text like, for example, articles or prepositions.
These words are typically defined in a pre-compiled list and can be either general or domain-
specific. This process removes noise and saves memory as well as processing time by shrink-
ing the vocabulary space. It is noted that incorrectly identified stopwords can remove relevant
information.

Stemming: Stemming is the process that transforms a word to its stem by removing its suffix.
For example, prevented, preventing, prevention result all in prevent. It aims to create accurate
matching pairs and aggregate key words.

PoS Tagging: Part-of-speech (PoS) tagging marks up each word of a sentence with its word
class by labelling nouns, verbs, adjectives etc. We use this technique to identify and then
remove word classes that contains more noise than information - it is known that nouns usually
hold most of the semantic information of a sentence. The Penn Treebank lists available part-of-
speech tags1.

Table 3.1 shows an exemplary application of the introduced preprocessing technologies to the
control statement from Listing 1.1.

Preprocessing Result

- “User passwords shall be prevented from being changed to any
of the previous 10 passwords.”

Tokenization & Cleaning [“user”, “passwords”, “shall”, “be”, “prevented”, “from”, “being”,
“changed”, “to”, “any”, “of”, “the”, “previous”, “passwords”]

Stopwords Removal [“user”, “passwords”, “prevented”, “changed”, “previous”,
“password”]

Stemming [“user”, “password”, “prevent”, “chang”, “previous”, “password”]
PoS Tagging (Nouns/Verbs) [“user”, “password”, “prevent”, “chang”, “password”]
PoS Tagging (Nouns) [“user”, “password”, “password”]

Table 3.1.: Exemplary Application of Preprocessing Technologies

1https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html, last
accessed February 2018

14

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

3.2. Text Similarity Approaches

3.2. Text Similarity Approaches

A text similarity approach creates a vector representation of a text passage and maps the
vector into a vector space model. When, then, two text passages are compared, their semantic
similarity is determined by calculating the distance between their vectors using text similarity
measures like, throughout the thesis, the cosine distance. [Salton et al., 1975] A summary of
similarity measures can be found in [Gomaa and Fahmy, 2013]. The similarity (or distance) is
reflected by a number between -1 and 1 where 1 indicates high similarity.

We introduce the three approaches which the recommender system implements:

• TF-IDF as a very simple but efficient algorithm and

• two machine learning based approaches,

– Word2Vec (word embeddings) and

– Doc2Vec (document embeddings).

3.2.1. Term Frequency - Inverse Document Frequency

Term frequency - inverse document frequency, abbreviated TF-IDF, is a term-weighting system
[Salton and Buckley, 1988] that expresses the relevance of a term t for a document D (text
passage) in a collection. It is the product of term frequency (tf) and inverse document frequency
(idf).

Concept

The term frequency specifies how often a term occurs in a document in relation to the document
size. The algorithm assumes that frequently occurring terms are key words and they thus have
a higher weight than others. In our example from Listing 1.1, the terms passwords and be occur
2 times, and the document size is 15 words. The tf value of both terms is

tf(t,D) = tf(passwords,D) = tf(be,D) = 2
15 = 0.13.

The inverse document frequency represents in how many documents a term appears. When
a term occurs in several documents, like stopwords do, it might contain less information and
thus has a lower weight. In our example, the term passwords occur 25 and be 100 times with a
collection size of 879 control statements. The idf values are

idf(passwords) = log 879
25 = 1.55 and idf(be) = log 879

100 = 0.94.

The final TF-IDF weights are tfidf(passwords,D) = 0.13 ∗ 1.55 = 0.20 and tfidf(be,D) =
0.13 ∗ 0.94 = 0.12. So, the key word passwords has a higher weight than word be.

15

3. Natural Language Processing

From Text Passage to Vector

It is now necessary to clarify, based on the concept of TF-IDF, how to transform a text passage
to a vector in order to finally calculate similarities.

The transformation is described in pseudo-code in Algorithm 1.

input : Text text, TFIDFVocabCache cache
output: Vector[] vector

1 words← Tokenize(text)
2 vector← InitialiseVector(Count(cache))

3 for word in words do
4 get cache index for word, calculate TF-IDF value and put value to vector
5 index← IndexOf(word,cache)
6 vector[index]← CalculateTFIDF(word)
7 end

Algorithm 1: TF-IDF - from Text to Vector

The algorithm accepts two parameters (input), a text and a vocabulary cache which contains
all terms that appeared within the collection. It returns the final vector representation of the text
passage (output).

The text is first tokenized to single words and the final vector is initialized with a length which is
equal to the (distinct) number of words of the cache. Second, the words are iterated. For each
word, the algorithm reads the cache index and calculates the TF-IDF value. This value is then
put into the vector on the position of the cache index. Finally, the vector is returned.

Because the algorithm can only calculate TF-IDF values for words appearing in the collection,
other unknown words are ignored by the algorithm.

3.2.2. Word2Vec (Word Embeddings)

Word embeddings are words represented as vectors of real numbers while the distance of two
word vectors indicates semantic similarity.

[Mikolov et al., 2013a, Mikolov et al., 2013b] proposes an unsupervised machine learning al-
gorithm, called Word2Vec, that uses a neural network to efficiently train billions of word rep-
resentations in a vector space. These papers show that the algorithm can capture (to some
degree) syntactic analogies (like “secure”, “securely” or “developer”, “development”) as well as
semantic analogies, like “the country to capital city relationship”. It is also noted that simple
algebraic operations can result in semantically meaningful results: a very famous example is
King −Man+Woman = Queen.

16

3.2. Text Similarity Approaches

Concept

The basic assumption of Word2Vec is that words in a corpus are considered as related when
they appear in the same context, which means their surrounding words are similar.

Figure 3.2 shows two different architectures of Word2Vec to create word embeddings: the con-
tinuous bag-of-words model (CBOW) predicts a word based on its context and the continuous
skip-gram model predicts the context for a given word.

the cat sat

on

(a) CBOW

the cat sat

on

(b) Skip-gram

Figure 3.2.: Word2Vec models, based on [Mikolov et al., 2013a, Le and Mikolov, 2014]

Our recommender system implements the Skip-gram model because it generally performs bet-
ter than CBOW, according to [Mikolov et al., 2013a].

Word2Vec provides several parameters to optimise its vectors. We only introduce two that
appear in the further context:

• Vector size: Length of word vector, a bigger size means higher memory usage but also
more space to numerically describe a word

• Epochs: Number of iterations over whole training corpus during training

From Text Passage to Vector

The concept of Word2Vec, as the name indicates, is based on word level so that we first need
to transfer this approach to text level. Therefore, we simply average word vectors.

The transformation from text passage to vector is shown in pseudo-code in Algorithm 2.

The algorithm accepts two parameters (input), a text and a vocabulary cache which stores all
words appeared within the corpus and their word vectors. It returns the final vector representa-
tion of the text passage (output).

17

3. Natural Language Processing

input : Text text, WordEmbeddingsVocabCache cache
output: Vector[] vector

1 words← Tokenize(text)
2 matrix← InitialiseMatrix(Count(words), GetWordVectorSize (cache))

3 i← 0
4 for word in words do
5 get word vector from cache and put to matrix
6 matrix[i]← GetWordVector(word, cache)
7 i ++
8 end

9 average rows of matrix
10 vector← Average(matrix)

Algorithm 2: Word Embeddings - from Text to Vector

The text is first tokenized to single words and we initialise a matrix with the word vector size
and the number of words in the text passage. Second, we iterate the words and add the
corresponding vectors to the matrix. Finally, the matrix is averaged and the resulting vector is
returned.

3.2.3. Doc2Vec (Document Embeddings)

Document embeddings are documents (text passages) represented as vectors of real numbers
while the distance of two document vectors indicates semantic similarity.

[Le and Mikolov, 2014] propose the framework Paragraph Vectors (PV) that can create vector
representations from text of any length, such as sentences or documents. The unsupervised
algorithm, called Doc2Vec, is an extension of Word2Vec and algebraic operations can here also
result in semantically meaningful results [Dai et al., 2015].

Figure 3.3 shows two different models of Doc2Vec, the distributed memory model (PV-DM) and
the distributed bag of words (DBOW).

PV-DM is similar to CBOW with the difference that an additional paragraph token (P-ID) is added
to the context. This token acts as the memory or topic of the current context. Together they
predict the next word. It is noted that this model considers the word order.

DBOW is similar to Skip-gram with the difference that a paragraph token instead of a word
predicts its context. The word order is hereby not considered.

18

3.2. Text Similarity Approaches

the cat sat

on

PV
P-ID

(a) PV-DM

the cat sat

P-ID

on

PV

(b) PV-DBOW

Figure 3.3.: Doc2Vec models, based on [Le and Mikolov, 2014]

Although [Le and Mikolov, 2014] state a better performance for PV-DM, our recommender sys-
tem implements PV-DBOW because our initial evaluations, and also [Lau and Baldwin, 2016],
show contrary results.

19

3. Natural Language Processing

20

4. Implementation Recommender System

In this section we present implementation details of the recommender system that uses text
similarity approaches to semantically match a text passage against a collection of other text
passages or, transferred to our business problem, an input control against control statements.

We first summarize functional and non-functional requirements which the recommender system
addresses and implements (4.1). Second, the conceptual system structure is shown consisting
of matching algorithm, its configuration and evaluation (4.2).

The matching algorithm is referred to hereinafter as Matcher.

4.1. Requirements

At the beginning of the thesis, functional and non-functional requirements for the recommender
system are defined.

The following functional requirements are addressed:

• The system shall provide an interface to configure all relevant parameters of a Matcher,
including parameters of the underlying text similarity approaches (4.2.1)

• The configuration shall be done in writing a configuration file or programmatically (4.2.1)

• The Matcher shall calculate the similarity between two text passages (4.2.2)

• The Matcher shall recommend text passages from a defined collection that are semanti-
cally related to a given search query (4.2.2)

• The system shall save a Matcher instance into a file and load it from a file (4.2.2)

• The system shall evaluate a Matcher instance by using ground truths (4.2.3)

21

4. Implementation Recommender System

And the following non-functional requirements are addressed:

• The system shall be implemented in the programming language Java: In the future it is in-
tended to be integrated into the already existing JAVA web application Lexia [Waltl, 2015],
a data science environment for legal texts.

• The system shall be implemented using the framework DeepLearning4J (DL4J): It is an
“open-source, distributed, deep learning library for the JVM”1. The framework includes
natural language processing tools as well as implementations of the text similarity ap-
proaches TF-IDF, Word2Vec and Doc2Vec.

4.2. System Structure

The recommender system consits of three components: Configuration, Matcher and Data Sets.
We can see the conceptual system structure in Figure 4.1.

Configuration

configure

Data SetsMatcher

evaluate

Matching
Results

match
{

“type“:	“word2vec“,
“minWordFrequency“:	3,
“stopWords“:	[“can“,	“shall“,	“and“,	...],
“stemmingEnabled“:	true,
“preprocessingEnabled“:	true,
“allowedPoSTags“:	[“NN“,	“NNS“],
“epochs“:	 	20

}

[{
“identifier“:	“ISO	31000:2009	4.3.5“,	
“input“:	“The	organization	should

allocate	appropriate	resources	for
risk	management:	...“,

“output“:	 [
“The	Chief	Risk	Officer	shall	be	
responsible	for	the	appropriate	
management	of	risks ...“,
“...“

]
},
{

...
}]

Figure 4.1.: System Components

We first specify the text similarity approach and define its set of configuration paramters. Sec-
ond, a Matcher is instantiated accordingly and then ready to match related text passages.
Finally, the performance of the Matcher can be evaluated by data sets that contains ground
truths.

4.2.1. Configuration

The component Configuration encapsulates all functionality needed to configure relevant pa-
rameters of a Matcher instance including parameters of the underlying text similarity approach.

1https://deeplearning4j.org/index.html, last accessed February 2018

22

https://deeplearning4j.org/index.html

4.2. System Structure

The conceptual structure of Configuration is shown in the class diagram in Figure 4.2.

«interface»
Config

+getCollection(): List<String>
+isPreprocessingEnabled(): Boolean
+isStemmingEnabled(): Boolean
+getStopWords(): List<String>
+getAllowedPoSTags(): List<String>
+#moreParameters#(): #Any#

«enumeration»
ConfigType

Tfidf
Word2Vec
Doc2Vec

+type

ConfigImpl

ConfigTFIDF ConfigDoc2VecConfigWord2Vec

ConfigBuilder

+read(configFile: File): Config
+write(config: Config, file: File)
+stopWords(words: List<String>): ConfigBuilder
+#parameterName#(#parameterValue#): ConfigBuilder
+build(): Config

ConfigWord2VecBuilder

ConfigDoc2VecBuilder

ConfigTFIDFBuilder

«build»

Figure 4.2.: Configuration Class Diagram

The interface Config and the class ConfigBuilder as well as its subclasses are public.

The Config interface provides getter methods to access the type of text similarity approach
(ConfigType), preprocessing settings and approach-specific parameters as well as the collec-
tion of text passages that are aimed to be matched. ConfigImpl implements the interface and
ensures - together with its subclasses ConfigTFIDF, ConfigWord2Vec and ConfigDoc2Vec -
that only approach-related values are stored. An instance of Config can exclusively be built by
a ConfigBuilder.

The ConfigBuilder is an abstract class that allows to create a Config instance programmati-
cally or by loading a configuration from a file. The concrete subclasses TFIDFConfigBuilder,
Word2VecConfigBuilder and Doc2VecConfigBuilder provide setter methods for all approach-
specific parameters. Method build finalizes the building process and returns a Config instance.

The static methods read and write enables to load and save a configuration file in JSON format,
as shown in Figure 4.3.

{
"type": "tfidf",
"stemmingEnabled": true,
"allowedPoSTags": ["NN", "NNS"],
...

}

Figure 4.3.: Example Configuration File

23

4. Implementation Recommender System

4.2.2. Matcher

The component Matcher is responsible to match a text passage against a collection of other
text passages - the core function of the recommender system.

The conceptual structure of Matcher is shown in the class diagram in Figure 4.4.

«interface»
Matcher

+similarity(text1: String, text2: String): double
+rankedCollection(text: String): List<String>

MatcherImpl

#createVector(text: String): Vector
+similarity(text1: String, text2: String): double
+rankedCollection(text: String): List<String>

MatcherTFIDF

#createVector(text: String): Vector

MatcherDoc2Vec

#createVector(text: String): Vector

MatcherWord2Vec

#createVector(text: String): Vector

MatcherFactory

+create(configFile: File): Matcher
+create(config: Config): Matcher

«create»

Tokenizer

+cleaning: Bool
+stemming: Bool
+allowedPosTags: List<String>

+tokenize(input: String): List<String>

+tokenizer

1 1

Figure 4.4.: Matcher Class Diagram

The interface Matcher and the class MatcherFactory are public.

The MatcherFactory allows to create a MatcherImpl object by specifying the configuration file or
directly by an instance of Config. Depending on the passed ConfigType, either MatcherTFIDF,
MatcherWord2Vec or MatcherDoc2Vec is instantiated and finally configured.

The MatcherImpl implements the interface Matcher which provides the functionality of the
matching algorithm: The method rankedCollection returns the collection sorted by the simi-
larities with the input text passage - related passages at the top.

The similarity value for each collection item is calculated by the method similarity which takes
two strings (item and input text passage), transforms both into a vector representation and
applies the Cosine distance. The transformation from string to vector is realised by method
createVector that is basically the only piece of code in which the approach-specific subclasses
MatcherTFIDF, MatcherWord2Vec and MatcherDoc2Vec differ. The theoretical background
about string-to-vector transformation is explained in Section 3.2.

Before a text passage is transformed to a vector, however, the class Tokenizer splits the string
into words. Depending on the configuration, preprocessing technologies are then applied, in
particular cleaning, stemming and PoS tagging.

24

4.2. System Structure

4.2.3. Data Sets

The component Data Sets is responsible for a quantitative assessment of a Matcher instance
and provides the final evaluation results presented in chapter 6.

The conceptual structure of Data Sets is shown in the class diagram in Figure 4.5.

EvaluationDataSets

+averageRPS
+averageOptimalRPS

EvaluationGroundTruthItem

+RPS
+optimalRPS
+#moreMeasures#: #Any#

EvaluationDataSet

+averageRPS
+averageOptimalRPS

DataSets DataSet

+identifier: String

GroundTruthItem

+identifier: String
+input: String
+outputs: List<String>

1..*11..*1

Evaluation

+evaluate(dataSets: DataSets, matcher: Matcher): EvaluationDataSets

«uses»

1..*1 1..*1

«creates»

Figure 4.5.: Data Sets Class Diagram

All classes are publicly visible.

The classes DataSets, DataSet and GroundTruthItem store ground truths information. DataSets
groups a set of DataSet objects and these group a set of GroundTruthItem objects. For exam-
ple, “BSDG”, “COBIT 5” etc. from Table 1.2 correspond to DataSet instances, Listing 1.1 to an
instance of GroundTruthItem.

The class Evaluation provides the core method evaluate. It accepts two arguments, a DataSets
and a Matcher instance, runs the matching process and finally assesses the results by calcu-
lating relevant numbers, such as RPS or optimal RPS (introduced in Section 1.3.3), based on
the passed ground truths. As a result, an instance of EvaluationDataSets is returned.

The classes EvaluationDataSets, EvaluationDataSet and EvaluationGroundTruthItem contains
evaluation data related with DataSets, DataSet and GroundTruthItem.

25

4. Implementation Recommender System

26

5. Implementation GUI Citadel

Citadel is a platform that enables to easily manage and evaluate Matcher instances that are
created by the recommender system.

The aim is to provide a graphical user interface that supports us throughout the entire life cycle
of a Matcher instance, and in particular to assist regulatory experts from Alyne while analyzing
matching results.

The assistance of regulatory experts is the main motivation to build such platform. The experts
are potential business users of the recommender system functionality who strongly supported
us during the work on this thesis: They understand their domain, know vocabulary and wording
of relevant documents, so that they evaluate matching results from a different point of view and
thus give valuable feedback. Because the experts are usually non-IT professionals who might
struggle with console output, we provide a more advanced interface.

This chapter presents the system setup (5.1) of Citadel and introduces its core features (5.2).

5.1. Setup

The platform is designed to run on a remote server that operates day and night. This setup
decision is mainly driven by two requirements: We need, on the one hand, constant availabil-
ity to enable experts permanent access and, on the other hand, powerful hardware to create
Matchers which are based on CPU and memory intensive machine learning algorithm. Both
facts exclude the use of a local personal computer.

Therefore, Citadel is deployed on an Amazon EC2 Linux Instance with 32 GB of memory which
is accessible from the outside.

The setup follows a 3-tier-architecture consisting of backend CitadelServer , frontend Citadel-
Client and database CitadelDB. The system structure of these three components is shown in
the deployment diagram in Figure 5.1.

27

5. Implementation GUI Citadel

«device»
Amazon EC2-Linux-Instance

«application server»
Apache Tomcat 8

«artifact»
citadel-server.war

«database server»
CitadelDB

«web server»
Node.js

recommender.jar

«database»
MongoDB

«MongoDB driver»

«REST»

«execution environment»
Angular

CitadelClient

Evaluation Management

Evaluation Analysis

Demo

Dashboard

«collection»
Evaluation

«collection»
User

«collection»
Feedback

«collection»
GroundTruthItem

Figure 5.1.: Deployment Diagram of Citadel

The backend CitadelServer is a Java EE application1 which runs on an Apache Tomcat 82.
The application implements the business logic of the platform which is accessible via a REST
API: It consumes the functionality of the integrated recommender system (recommender.jar),
introduced in the previous chapter, and provides, among others, an interface to start evaluations
and request their matching results as well as statistics. Moreover, because the server is online,
user authentication is implemented.

The database CitadelDB is a document-oriented MongoDB3 and is connected to the backend
via MongoDB Java Driver4. It stores evaluation data including all ground truth items as well as
feedback information provided by users, in particular regulatory experts.

The frontend CitadelClient is an Angular 5 application5 and is connected to the backend via a
REST-API. The core features include Dashboard, Evaluation Management, Evaluation Analysis
and Demo which are explained in detail in the following section.

1https://docs.oracle.com/javaee/6/, last accessed February 2018
2https://tomcat.apache.org/download-80.cgi, last accessed February 2018
3https://www.mongodb.com, last accessed February 2018
4https://mongodb.github.io/mongo-java-driver/, last accessed February 2018
5https://angular.io, last accessed February 2018

28

https://docs.oracle.com/javaee/6/
https://tomcat.apache.org/download-80.cgi
https://www.mongodb.com
https://mongodb.github.io/mongo-java-driver/
https://angular.io

5.2. Features

5.2. Features

The core features of Citadel include the management and the analysis of Matcher evaluations.

5.2.1. Evaluation Management

The evaluation management provides a convenient interface to create, start and monitor the
evaluation process as well as finally view the evaluation results.

Figure 5.2 shows four relevant screenshots of evaluation management.

(a) Runs (b) Run Creation

(c) Run and its Evaluations (d) Evaluation Creation

Figure 5.2.: Run and Evaluation Management

Due to a high number of performed evaluations during this thesis, we group related evalua-
tions to so-called runs to ensure a good overview, as shown in Figure 5.2(a). For example,
run “Doc2Vec - Preprocessing” contains 8 evaluations that combines different preprocessing
techniques applied to text similarity approach Doc2Vec. A run can be created by providing a
title and an optional description, as shown in Figure 5.2(b).

The detail page of a run lists already existing Matcher evaluations, as shown in Figure 5.2(c).
It also provides several controls to edit the title of the run, to delete the entire run and to restart
one or every Matcher (necessary when Matcher implementation has changed).

29

5. Implementation GUI Citadel

And last but not least, there is a dialog that enables the creation of evaluations, as shown in
Figure 5.2(d). It provides drop-down lists to specify the text similarity approach, preprocessing
technologies and other approach-specific parameters, whereby multi selection is allowed. For
example, when you select the approaches “Doc2Vec”, “Word2Vec” and “TF-IDF”, and stemming
“Yes” and “No”, the system starts 6 evaluations.

5.2.2. Evaluation Analysis

Besides management, Citadel also provides three screens that aims to view and analyze
Matcher evaluations: dashboard, evaluation detail screen and demo.

Dashboard

The dashboard screen summarizes and aggregates results from all Matcher evaluations that
are performed during this thesis.

Figure 5.3 shows two screenshots of the dashboard.

(a) Summary and Best Configuration (b) Parameter Analysis

Figure 5.3.: Dashboard

At the top of the dashboard screen, aggregated key facts like total number of evaluations or the
currently highest RPS value of the best performing Matcher including its configuration parame-
ters are listed, as shown in Figure 5.3(a).

Another dashboard section is the parameter analysis. It provides charts for relevant configura-
tion parameters and visualizes their impact on RPS distinguished by text similarity approaches.
For example, the chart Stopwords Removal in Figure 5.3(b) shows that the elimination of stop-
words has a positive effect in particular on approach Word2Vec.

30

5.2. Features

Demo

The demo screen provides an interface that allows to test dynamically and interactively the
matching behavior of an already created Matcher instance.

Figure 5.4 shows four screenshots related with the demo.

(a) Default Screen (b) Matcher Selection

(c) Matcher Details (d) Matching Results

Figure 5.4.: Demo

Figure 5.4(a) shows the demo screen before any matchings have happened. This screen pro-
vides a text field to enter a control, or any other strings like “How to change my password?”,
which shall be matched. You can specify the Matcher by selecting the corresponding instance
in the drop-down list shown in Figure 5.4(b). By tapping the info button you can view a dialog
containing the configuration parameters of the selected Matcher, as shown in Figure 5.4(c).
And the button “Match” triggers the matching process.

Figure 5.4(d) shows the demo screen after a matching has performed. A list view presents the
matching result which has already been sorted by their similarity with the input. You can see
the preprocessed input below the text field and the preprocessed matching items by hovering
over the list, those simplified texts that were actually matched.

31

5. Implementation GUI Citadel

Evaluation Details and Feedback Loop

The evaluation detail screen provides detail information on individual Matcher evaluations and
enables a feedback loop between experts.

Figure 5.5 shows two screenshots related with evaluation details.

(a) RPS and Configuration Parameters (b) Various Charts

Figure 5.5.: Evaluation Details

At the top of the detail screen, you read the RPS value and configuration parameters of an
evaluation, as shown in Figure 5.5(a). Moreover, aggregated data is visualized in form of plots,
like the chart titled “Ground Truth Item Ranks” from Figure 5.5(b): it illustrates the distribution
of the ground truth items, and we can see that most items are ranked better than a RPS of 50.

Figure 5.6 shows two screenshots related with the analysis of ground truth items.

(a) Ranks of Ground Truth Items (b) Expected and Actual Outputs of Ground Truth Item

Figure 5.6.: Details of Ground Truth Item

For a thorough analysis, experts get an insight into concrete matching results by examining the
list view at the end of the screen in Figure 5.6(a). A list item contains the input and the reached
RPS of a ground truth item. To quickly find best and worst results the list provides a sorting
function.

32

5.2. Features

Tapping a list item opens a more detailed view of the selected ground truth item which is shown
in Figure 5.6(b): In addition to input and RPS mentioned above, this view also presents the
ranking of expected outputs and the actual top 10 matching results. This figure demonstrates
a negative example in which the expected control statements are ranked by positions 179 and
277 instead of the ideal ranking of 1 and 2. By tapping the “Add” button, next to the label
“Feedback”, you can access the feedback sheet.

Figure 5.6 shows two screenshots related with the feedback loop.

(a) Feedback Sheet (b) Submitted Feedback

Figure 5.7.: Feedback Loop

The feedback sheet is shown in Figure 5.7(a). This sheet is particularly intended to be used
by experts to submit structured and documented feedback. It contains two multiple choice
questions regarding relatedness between input and expected outputs as well as input and top
10 list. The text field allows to provide free comments.

The submitted feedback including its creation date and the username of the author is stored in
the database and accessible at any time, as in Figure 5.7(b).

33

5. Implementation GUI Citadel

34

6. Evaluation

This chapter evaluates our recommender system and investigates how far text similarity ap-
proaches - TF-IDF, Word2Vec and Doc2Vec - solve the STM problem of company policies and
regulatory documents. Here we answer the research questions of this thesis.

First, we iteratively perform four individual evaluations that test strategies which aim to support
the Matcher (6.1). Second, an overall evaluation is conducted that examines the final matching
results with regard to the text similarity approaches and Alyne’s business problem (6.2).

During the evaluation, our platform Citadel supports us to manage Matcher instances and to get
insights into results. We create and test a total of 278 different Matchers of which 75 instances
and their results are directly included in this work.

Initially, the performance of a Matcher that has not been preprocessed or optimized is tested.
We start to train word and document embeddings on an on-topic corpus with a size of 200 MB
(see WIKI TOPIC in Section 6.1.3), 5 epochs, vector size of 100 and other standard parameters
set by DL4J.

The results of the initial evaluation are shown in Figure 6.1.

Matcher without optimisation

220

176

132

88

44

1

198
221

148

optimal RPS = 2.75

R
P

S

TF-IDF Word2Vec Doc2Vec

Figure 6.1.: Initial Evaluation

The plot shows the reached RPS for each approach - TF-IDF, Word2Vec and Doc2Vec. Al-
though the score could theoretically be any value in between 2.75 (= optimal RPS, see Sec-
tion 1.3.3) and 879 (= number of control statements), practically, however, the score varies in

35

6. Evaluation

the upper quarter. So, to make differences in rankings more clear, we start the visualization
from position 220.

The RPS for TF-IDF is initially 198, for Word2Vec 221 and for Doc2Vec 148. Due to the fact that
we have not performed any optimization at this point, we only note that the approaches differ
considerably and the optimal RPS is far away.

6.1. Individual Evaluation

Starting from the results of the initial evaluation, we now iteratively apply four strategies that
aim to improve the matching results. These include

• application of preprocessing techniques (research question 3),

• addition of meta information to control statements (research question 4),

• corpora analysis (research question 5) and

• addition of context information to input controls (research question 6).

6.1.1. Preprocessing Analysis

This first iteration applies the four preprocessing techniques introduced in Section 3.1 that in-
cludes cleaning, stopwords removal, stemming and PoS tagging, and evaluates their impact on
the matching results.

Preparation

We create 12 Matchers per text similarity approach: 8 Matchers test every combination of clean-
ing, stopwords removal and stemming, and another 4 evaluate different PoS tags combinations
consisting of nouns (N), nouns and verbs (NV), nouns and adjectives/adverbs (NA), and nouns,
verbs and adjectives/adverbs (NVA).

All texts are cleaned by lowercasing and removing line breaks as well as non-alpha characters.
We eliminate general stopwords from a pre-compiled list provided by DL4J. The Penn treebank
tags used for nouns are NN, NNS, NNP, NNPS, for verbs VB, VBD, VBG, VBN, VBP, VBZ, and
for adjectives/adverbs JJ, JJR, JJS, RB, RBR, RBS.

36

6.1. Individual Evaluation

Results

The results show that all of these four preprocessing techniques support the Matcher and to-
gether significantly improve the matching results. The RPS of TF-IDF is increased from 198 to
129 (+69 positions), Word2Vec from 221 to 114 (+107) and Doc2Vec from 148 to 107 (+41).

The impact of cleaning, stemming and stopwords removal is illustrated in Figure 6.2 which is
subdivided in a separated application of these techniques in Figure 6.2(a) and a combined
application in Figure 6.2(b).

- Cleaning Stopwords Stemming

220

176

132

88

44

1

198

165

195

136.9

221
194

143

207

148
130 120

136.7R
P

S

TF-IDF Word2Vec Doc2Vec

(a) Separate Application

- All Best

220

176

132

88

44

1

198

129.0 129.0

221

134
117

148

108.4 108.0

R
P

S

TF-IDF Word2Vec Doc2Vec

(b) Combined Application

Figure 6.2.: Cleaning, Stopword Removal and Stemming

Cleaning and stemming have a positive effect particularly for TF-IDF (+33 and +60, Word2Vec
+27/+18 and Doc2Vec +14/+9). Both techniques create more accurately matching terms which
is a fundamental requirement that TF-IDF functions properly. Word2Vec and Doc2Vec, on

37

6. Evaluation

the other hand, might treat unclean or not stemmed terms like synonyms which allow indirect
matching.

Stopwords removal has a very positive impact on Word2Vec and Doc2Vec (+78/+28), greater
than on TFIDF (+3). While Word2Vec creates a text vector by just summing up word vectors,
the IDF of TFIDF gives lower weights to frequently occuring terms - such as stopwords - which
leads to a reduced impact on the final text vector and thus to better results.

A combined application of all preprocessing techniques - cleaning, stopwords and stemming -
leads to clear improvements compared to a separated application. Applying all techniques
creates the best matching results for TFIDF (+69). For Word2Vec and Doc2Vec, however,
the Matcher that uses cleaning, stopwords removal and not stemming gets the best results
(+91/+40).

- N NV NA NVA

220

176

132

88

44

1

129.0

161
140 144

128.8
117

133
118 122 114108

123
111 114 107

R
P

S

TF-IDF Word2Vec Doc2Vec

Figure 6.3.: PoS Tagging

The impact of PoS tagging is positive but low for all three approaches, as shown in figure 6.3.
Tag NVA gives the best and the only positive results for TF-IDF (+0), Word2Vec (+3) and
Doc2Vec (+1). Tags N, NA and NV cause negative effects. The PoS tagging iteration shows
that further text cleaning can improve the matching process, but the risk exists that valuable
information are considered as noise.

In the next iterations, the TF-IDF approach applies cleaning, stopwords removal and stemming.
Word2Vec and Doc2Vec approaches continue with cleaning and stopwords removal but do not
use stemming. PoS Tagging is not applied due to slight improvements and increased computing
times.

38

6.1. Individual Evaluation

6.1.2. Meta Information

The second iteration extends control statements by key words and matches then the extended
statements against input controls. Adding meta information can create new matching pairs
which boost up related controls statements and thus automatically boost down unrelated ones.

Preparation

The Alyne database provides meta information for each control statement. Listing 6.1 presents
an example control statement with additional fields including topic, subtopic, title and tags.

{
"id": "Control_Statement_Id_00033",
"topic": "Password Management",
"subTopic": "Password History",
"title": "User Password History Length",
"statement": "User passwords shall be prevented from being

changed to any of the previous 10 passwords."
"tags": ["Password History", "Access Management", ...]

}
Listing 6.1: Control with Meta Information

Topics and subtopics group together related control statements, for example, “Password Man-
agement” or, more specifically, “Password History”. It is noted that subtopics can also be formu-
lated in a general manner, like “General Principles”. The title is basically just a shorter version
of the actual statement. Tags are, as the name indicates, a collection of related key words.

Table 6.1 gives the average number of words per meta information field in order to get an idea
by how much text we extend the control statements.

Meta Information Field ∅ Words

Topic 2.54
Subtopic 2.37
Title 2.69
Tags 8.53
All Fields 16.13

Ground Truth Items 74.30
Control Statements 21.55

Table 6.1.: Meta Information Statistics

These fields often contain overlapping terms and we assume that they do not contain any
stopwords. Topic, subtopic and title consists of between 2 and 3 words in average. Tags, on

39

6. Evaluation

the other hand, are approximately three times bigger with an average of 8.53 words. So, the
sum of the four meta fields is equal to 16.13 words. Together with the average word count of
21.55 per control statements, the final matching strings result in a size of 37.68 words which is
roughly the half of the size of the ground truth input controls.

To extend control statements by meta information we use simply string concatenation. There-
fore, we write a script which firstly parses the database dump in JSON format that contains
all control statements and their meta information. After, it combines statements and the fields
topic, subtopic, title and tags.

Figure 6.4 shows our recommender system that matches an input control against control state-
ments that are now extended by tags. Statement 1 and 2 increase their similarities because
“Password History, Access Management” strengthens the linkage regarding key word “Pass-
word”. The similarity of statement 879, however, decreases because “Data Lifecycle” is an
unrelated key term.

1. User passwords shall be prevented from being
changed to any of the previous 10 passwords.

2. Privileged account passwords shall be prevented
from being changed to any of the previous 15
passwords.

Do not allow an individual to submit
a new password that is the same
as any of the last four passwords
he/she has used.

Recommender
System

879.Recovery from backup media shall be tested at
least every year.

..

.

Password History, Access Management, ...

Password History, Access
Management, ...

Data Lifecycle

Figure 6.4.: Recommender System with Meta Information

We create 7 Matchers per text similarity approach: 4 Matchers separately add meta information
fields to the control statements (CS) - CS+Title, CS+Topic, CS+Subtopic and CS+Tags - and
another 3 successively add these meta fields - CS+Title+Topic, CS+Title+Topic+Subtopic and
CS+Title+Topic+Subtopic+Tags.

Results

The results show that extending control statements by meta information has a great, positive
impact on the matching results, as illustrated in Figure 6.5. The trend is similar for all considered
text similarity approaches. The RPS of TF-IDF is increased from 129 to 100 (+29 positions),
Word2Vec from 117 to 84 (+33) and Doc2Vec from 108 to 80 (+28).

The separated addition of meta information in Figure 6.5(a) shows that the RPS per meta field
is proportional to the average number of words. CS+Title is a minor exception and the reason
might be the high similarity of the title with the control statement itself which result in less new
matching pairs than other fields create. CS+Tags leads clearly to the best results for TF-IDF
(+25), Word2Vec (+30) as wells as Doc2Vec (+24).

40

6.1. Individual Evaluation

- Title Topic Subtopic Tags

220

176

132

88

44

1

129 121 116 120
104

117
105 102 103

87
108 101 99 100

84

R
P

S

TF-IDF Word2Vec Doc2Vec

(a) Separate Addition

- +Title +Topic +Subtopic +Tags

220

176

132

88

44

1

129 121 111 105 100
117

105 104 94 84
108 101 93 87 80

R
P

S

TF-IDF Word2Vec Doc2Vec

(b) Combined Addition

Figure 6.5.: Control Statements with Meta Information

The combined addition of meta information in Figure 6.5(b) further improves the results and
confirms that the RPS increases the more meta information you use. The sum of all meta fields
(CS+Title+Topic+Subtopic+Tags) leads to the best results for TF-IDF (+20), Word2Vec (+33)
and Doc2Vec (+28).

It must be noted, of course, that the use of meta information reaches its limits: unrelated or
general key words as well as terms that are not sufficiently disjunct to other control statements
decreases the RPS. With the meta information provided for this thesis, however, we cannot give
any negative, real-life examples.

So, in the next iterations, we use control statements that are extended by all available meta
information fields: topic, subtopic, title and tags.

41

6. Evaluation

6.1.3. Corpora Analysis

This third iteration compares various corpora that differ in size as well as quality (in terms of
domain-specific vocabulary) and make a statement about the impact of these characteristics.

Preparation

Due to memory limitations and long computing times during the creation of the Matchers, we
aim to create corpora with a maximum size of 400 MB. Although this size is relatively small
(other examples from the internet often uses corpora of 5 GB), it is still a very time-consuming
task to find sufficient sources. With regard to the research questions to be answered, we decide
to use Wikipedia articles as well as regulatory texts from the internet.

Table 6.2 shows the corpora that are taken into account in our analysis.

Name Description On-Topic Size

CTRLS Control statements yes 0.1 MB
REG On-Topic documents yes 200 MB
WIKI TOPIC On-Topic Wikipedia articles yes 200 MB
WIKI OTHER Off-topic Wikipedia articles no 200 MB
WIKI WIKI TOPIC + WIKI OTHER mixed 400 MB
TOTAL REG + WIKI TOPIC yes 400 MB

Table 6.2.: Corpora

Wikipedia is a great source for NLP tasks, especially because it provides large and clean texts
that you can easily get from a publicly available XML dump1. We extend an existing Python
script2 that extracts plain text from Wikipedia and add a function to filter articles by categories.
So in order to create a domain-specific corpus we manually pick around 2500 key words which
are closely related with the control statements topics (WIKI TOPIC). We also build another
corpus with the non-related fields biology, history, chemistry and geography (WIKI OTHER).
Both files have a size of 200 MB, in total 400 MB (WIKI).

Regulatory texts contains, unlike Wikipedia articles, similar legal formulations like input controls
we might find in company policies or regulatory documents. Alyne collected 200 MB of plain
text (REG). It must be noted that most of the source documents are PDF files which need to be
parsed and cleaned. So, this corpus is less clean than the one created from Wikipedia.

As a baseline measure, we create a corpus that consists exclusively of control statements with
a very small size of 0.1 MB (CTRLS). Because of the small size, we use 50 epochs instead of
5 for this corpus.

1https://dumps.wikimedia.org/backup-index.html, last accessed in February 2018
2https://github.com/attardi/wikiextractor, last accessed in February 2018

42

https://dumps.wikimedia.org/backup-index.html
https://github.com/attardi/wikiextractor

6.1. Individual Evaluation

Results

The results show that the quality is at least as important as the size of the corpus. The on-topic
corpus REG performs best: The RP-Score of Word2Vec is slightly increased from 84 to 82
(+2) and Doc2Vec from 80 to 79 (+1) compared to the second-best corpus WIKI TOPIC which
we have already used in the previous interations. Figure 6.6 illustrates the performance of all
corpora.

CTRLS WIKI-OTHERWIKI-TOPIC WIKI REG TOTAL

220

176

132

88

44

1

101

144

84.1

119

82 83.9

125
137

80
106

79 85

R
P

S

Word2Vec Doc2Vec

Figure 6.6.: Corpora Analysis

We firstly focus on corpus quality. Let us consider the unrelated WIKI OTHER (200 MB), the
related WIKI TOPIC (200 MB) and their combination WIKI (400 MB). As a result, WIKI OTHER
performs poorly with a RPS of 144/128 (Word2Vec/Doc2Vec), WIKI TOPIC performs best with
90/81, and the RPS of WIKI with 118/103 are located in between. It has already been obvious
that on-topic corpora build better word vectors. The results emphasises, however, the great
deterioration in the results. Even WIKI which contains the best corpus WIKI TOPIC decreases
its RPS by -28/-22 positions because WIKI OTHER influences the creation of word vectors in a
negative way. Here, quality wins compared to quantity.

The positive impact of domain-specific vocabulary is also noticeable when we take a closer
look at WIKI TOPIC (200 MB) and REG (200 MB). The RPS are nearly identical with slight
advantages for REG, although it is considered as less clean and more noisy than WIKI TOPIC.

To evaluate the importance of the corpus size, we consider on-topic corpora of three different
sizes: CTRLS (0.1 MB), REG (200 MB) and TOTAL (400 MB). The small CTRLS performs
poorly with a RPS of 101/125, the big TOTAL performs better with 83.9/85 but the medium
REG performs best with 82/79. This outcome confirms the well-known thumb rule that bigger
corpora achieve better results, but also shows the limit of this rule and demonstrates again
the importance of corpus quality. Although both corpora are on-topic, a combination does not
automatically lead to an improved matching result. Regarding corpus CTRLS, Doc2Vec seems
to work poorly with very small corpora.

43

6. Evaluation

In the next iteration the machine learning based approaches continue with the corpus REG.

6.1.4. Context Information

This fourth and last iteration examines whether chapter or paragraph context help to improve
the matching results.

The idea is similar to the addition of meta information from Section 6.1.2. Instead of adding meta
information to control statements, we here extend input controls by context information such as
section titles. However, the objective remains the same: we aim to create new matching pairs
which boost up related controls statements.

Preparation

Similar controls within company policies or regulatory documents are usually grouped together
under a fitting heading which can contain important key words. These might support the algo-
rithm by creating new matching pairs.

To extend input controls by context information we again use simply string concatenation. To-
gether with two colleagues from Alyne, we collect and integrate the missing section and para-
graph title, if any, for each ground truth item. In production mode, this job could be done by an
intelligent parser that can recognize relevant headings.

Table 6.3 shows the average number of words per title which we plan to add to the correspond-
ing input controls. The values vary between 3.35 and 13.26 words in average.

Regulatoy Document #Paragraphs ∅ Words/Title

BDSG 24 13.26
COBIT 5 191 10.78
COSO 16 4.63
Finish Personal Data Act 29 11.73
ISO 22301 37 7.11
ISO 27001 133 9.74
ISO 31000 46 6.2
MAS-TRMG 268 7.11
NIST 95 3.35
PCI DSS 161 13.63
All Ground Truths 1000 9.45

Table 6.3.: Ground Truths with Title

Figure 6.7 shows our recommender system that now extends input controls by their section
titles, for example “Implement strong access control measure”. The resulting string is then

44

6.1. Individual Evaluation

matched against all control statements. Statement 1 and 2 increase their similarity because of
the newly created matching pair “access”. The similarity of statement 879 further decreases
because the added context information only contains unrelated words.

1. User passwords shall be prevented from being
changed to any of the previous 10 passwords.

2. Privileged account passwords shall be prevented
from being changed to any of the previous 15
passwords.

Do not allow an individual to submit
a new password that is the same
as any of the last four passwords
he/she has used.

Recommender
System

879.Recovery from backup media shall be tested at
least every year.

..

.

Password History, Access Management, ...

Password History, Access
Management, ...

Data Lifecycle

Implement strong access
control measures

Figure 6.7.: Input Controls with Context Information

For this iteration, we create 1 Matcher per text similarity approach that matches input controls,
which are now extended by context information, against all control statements.

Results

The results show that extending input controls by context information has a great, positive
impact on the matching results for all considered text similarity approaches, as illustrated in
Figure 6.8. The RP-Score of TF-IDF is increased from 100 to 86 (+24 positions), Word2Vec
from 82 to 77 (+5) and Doc2Vec from 79 to 71 (+8).

No Yes

220

176

132

88

44

1

100
8682 7779 71

R
P

-S
co

re

TF-IDF Word2Vec Doc2Vec

Figure 6.8.: Input Controls with Context Information

In this setup, TF-IDF benefits from context information considerably more than Word2Vec or
Doc2Vec does. This fact allows us to conclude that the titles in our ground truths mainly create
direct matching pairs between exactly same words instead of indirect matching pairs through,
for example, synonyms.

45

6. Evaluation

6.2. Overall Evaluation

After improving the matching results by the previously performed individual evaluations, we now
focus on an overall evaluation with regard to

• the performance of the text similarity approaches (research question 2) and,

• finally, the semantic matching problem that Alyne faces (research question 1).

In simple words, both sections/questions basically deal with the same question: How reliable
do text similarity approaches (or the recommender system) link semantically related text pas-
sages?

6.2.1. Text Similarity Approach Analysis

Figure 6.9 summarizes the best performing Matchers per text similarity approach by comparing
the RPS values of the initial and final matching results.

Initial Final

220

176

132

88

44

1

198

86

221

77

148

71

optimal RPS = 2.75

R
P

S

TF-IDF Word2Vec Doc2Vec

Figure 6.9.: Final Evaluation

While the text similarity approaches differs materially in the beginning, they have improved a lot
and the final results are more balanced in the end. Especially preprocessing has boosted up
TF-IDF as well as Word2Vec and shorten the gap to Doc2Vec. Other strategies such as adding
meta or context information improves the performance of the approaches in a similar manner.

Regarding the final RPS values, the machine learning approaches perform better than TF-
IDF does, in particular the Doc2Vec implementation with an average ranking position of 71.
Word2Vec has a final score of 77 (-6 positions) and TF-IDF even 86 (-15). Despite the fact that
Word2Vec and Doc2Vec can handle with synonyms (to some degree) and TF-IDF cannot, the
simple and efficient TF-IDF still works very well.

46

6.2. Overall Evaluation

Figure 6.10 examines the final performance from a different perspective. The RPS is a simple
and intuitive evaluation measure but limited in its explanatory power. In order get a deeper
insight into the results, we modify the previously used plot type by adding a new dimension that
shows the percentage of ground truth items per ranking in intervals of 50 positions - 1+ means
in between rank 1 and 49. So, in an ideal world, all items would be ranked with the optimal
RPS, which means that 1+ is equal to 100 for all approaches in this example. The results show,
however, rankings appearing in each interval.

The first conclusion that can be stated is that the rankings of TF-IDF, Word2Vec as wells as
Doc2Vec are very similarly distributed. More than half of the rankings are located in 1+ (TF-IDF
54.2%, Word2Vec 50.0%, Doc2Vec 53.7%), and (about) more than two third in 1+ together with
50+, which means positions in between 1 and 99 (TF-IDF 66.3%, Word2Vec 63.8%, Doc2Vec
67.3%). The percentage of ground truth items declines with increasing intervals more or less
consistently. The lower part between 450+ and 850+, from position 145 to 879, only contains
less than 10% of all ranking results (TF-IDF 10.1%, Word2Vec 8.7%, Doc2Vec 7.7%).

Although the rankings of all considered approaches are similarly distributed, we still can see
differences between TF-IDF and the machine learning approaches, and state a second con-
clusion. While TF-IDF results in many positive matchings and also many comparatively bad
matchings, Word2Vec and Doc2Vec provide better balanced results. This behaviour can be ex-
plained by TF-IDF’s accurate matchings and word embeddings’ understanding for synonyms.
Despite the fact that Doc2Vec performs significantly better than TF-IDF does (difference of 15
positions), TF-IDF ranks more ground truth items into interval 1+.

6.2.2. STM Problem Analysis

Based on the performed text similarity approach analysis, we now investigate whether and
to what extent our recommender system solves the STM problem of company policies and
regulatory documents.

First, we discuss the outliers from Figure 6.10 to estimate further potential for improvement and
to identify common problems. Second, the level of maturity of the recommender system for the
productive use is assessed.

Therefore, four experts examine the 209 worst ranked ground truth items (Expert 1: 60, Expert
2: 60, Expert 3: 59, Expert 4: 30) independently of one another using the feedback functionality
of Citadel (see Section 5.2.2).

47

6. Evaluation

0 10 20 30 40 50 60 70 80 90 100

850+

800+

750+

700+

650+

600+

550+

500+

450+

400+

350+

300+

250+

200+

150+

100+

50+

1+
54.2

12.1

6.7

4.3

3.4

3.1

2.5

1.6

2

1.2

1.3

1.6

1

1.4

1.3

0.8

0.7

0.8

50

13.8

7.5

5.6

4.3

3.7

2.5

2

2

1.7

1.1

0.7

1

1

1

0.9

1

0.3

53.7

13.6

7.4

4.9

3

3.3

2.6

2.1

1.8

1.6

1.7

1.5

0.9

0.6

0.6

0.5

0.2

0.1

Percentage of Matching Results (in %)

In
te

rv
al

s
Doc2Vec

Word2Vec
TF-IDF

Figure 6.10.: Distribution of Matching Results

48

6.2. Overall Evaluation

For each of the 209 outliers, the experts focus on four questions:

• Are there any reoccuring patterns?

• How similar is the input control with the expected output control statements?
In ideal case, the input and expected output are similar enough to successfully match
them. In cases of outliers, however, the output is not correctly matched so that we
assume dissimilar vocabulary which is hard for the algorithm to “understand”.
Idea: No similarity indicates correct functioning of the algorithm.

• How similar is the input control with the actual output control statements (top 10)?
In ideal case as well as cases of outliers, we assume the top ranked outputs to be similar.
Idea: High similarity indicates correct functioning of the algorithm.

• Is the recommender system ready for productive use?

Detected Patterns

During their evaluation the experts detect the following patterns:

• abbreviations,

• short input,

• wrong focus,

• missing synonyms,

• specific input control and general control statement and

• general input control and specific control statement.

Abbreviations are avoided as far as possible by Alyne’s control statements to prevent ambiguity.
Other sources, however, frequently use acronyms which cannot be mapped consequently (for
example, SAN and Storage Area Network). A solution might be to extend the meta information
of a control statement by abbreviations or to preprocess input controls by replacing short forms
through full forms using the document’s list of abbreviation, if available, or any online service.

Short input controls are often used due to their good comprehensibility but misses relevant
context information. This problem can be solved by extracting section titles, as we showed
in Section 6.1.4, but also by taking into account the previous and next paragraph, or even
the document’s table of contents. An extreme case for short inputs is an enumeration which
consists of one sentence, goes over several lines and includes multiple paragraphs with own
numbers (§1,§2 etc.) which should be probably matched individually.

A wrong focus can be already corrected by the solution ideas for abbreviations or short input.

49

6. Evaluation

We additionally observe the need of extraction and tranformation of keyphrases. For example,
both “IT assets” and “information assets” needs to be tranformed from two words to one single
token before tokenizing so that they become more distinctive from each other for the algorithm.

While missing synonyms can be “easily” improved by adding context information to input or meta
information to control statements, the imbalance in depth of content between input control and
control statement represents a far greater challenge. A possible solution is to match, instead
of the control statement, already (manually) mapped controls which might have same depth of
content.

Simlarity between Input Control and Expected Control Statements

We now compare the similarity between input control and the expected control statements.
Since we consider the worst rankings, we expect a very low similarity, because otherwise, the
algorithm should work and match in a correct manner.

Therefore, the experts classify the vocabulary of input and output into exactly one of four cate-
gories: different vocabulary, same topic of vocabulary, synonyms or same key words.

Figure 6.11 shows the experts’ assessment:

32%

37%

18%
5%

8%

Different Vocabulary
Vocabulary of Same Topic
Synonyms
Same Key Words
NA

Figure 6.11.: Similarity between Input Controls and Expected Control Statements

The results confirm our expectations.

Almost 70% of all matching results have different or only topic-related vocabulary which is hard
to learn by the algorithm and consequently difficult to link. Adding more information to input or
output can support the algorithm.

Synonyms, however, should be captured and thus achieve higher rankings. The percentage of
18% for segment “Synonyms” indicates potential for parameter optimization.

Only 5% of the worst rankings contains key words in both input and expected output which we
can generally explain and solve with the introduced solutions to the detected patterns.

50

6.2. Overall Evaluation

Simlarity between Input Control and Actual Control Statements

In cases where the expected controls are not that related, we at least assume that the actually
matched (top 10) results are similar in terms of keywords, synonyms or topic.

Therefore, for each ground truth item we compare the input control with the 10 highest ranked
control statements and determine the number of cases where both use similar vocabulary.

Figure 6.12 shows the experts’ assessment:

6%

23%

29%

38%

4%

All of them similar
8-9 similar
6-7 similar
<6 similar
NA

Figure 6.12.: Similarity between Input Control and Actual Top 10 Control Statements -
similar in terms of Keywords, Synonyms or Topic

The results do not confirm our expectations.

In only 29% of the cases, the top 10 results contains 8 or more similar control statements, just
as much as in between 6 and 7. In even 38% of the cases, less than 6 control statements are
related.

In this regard, it can be concluded that these input controls might provide poor information. With
an average number of words of 51.41, the input control of the ground truth items in segment
“<6 similar” are considerably shorter compared to the total average of 83.75 words. (74.3 from
Table 1.2 in Section 1.3.2 + 9.45 from Table 6.3 in Section 6.1.4).

Level of Maturity of the Recommender System

Finally, we estimate the level of maturity of the recommender system for the productive use.

As a reminder, our approach supports regulatory experts, during their mapping process of
company policies and regulatory documents, by recommending related control statements. We
aim to provide a list of all control statements which is sorted according to the similarity with the
input control while related ones appear at the very top. The traditional method is a completely
manual approach.

51

6. Evaluation

We define four levels of maturity for the recommender system:

1. Expert works (almost) exclusively with recommender system
Effect: Significant time savings

2. Expert works with recommender system (50%) but also traditional method (50%)
Effect: Medium time savings

3. Expert uses recommender system only as cross-check and reassurance
Effect: Improved data quality

4. No productive applicability yet

The expert interview show that the recommender system reaches level 3 with a tendency to
level 2, which means that the algorithm can already contribute actively to a higher data quality.
A simple example might be a cross-check during a manual mapping to ensure no relevant
control statements have been overlooked.

To reach level 2, it is necessary to further decrease the number of outliers. This task can be
achieved by developing countermeasures for the identified patterns - some solution ideas are
already introduced in this chapter. It is noted that an intuitive user interface, which allows the
expert to consume the recommendations, is a key success factor.

In summary, text similarity approaches solve (to a certain degree) the STM problem of regula-
tory documents and company policies.

52

7. Conclusion and Future Work

This thesis presented that text similarity approaches successfully support regulatory experts to
match semantically related controls from company policies and regulatory documents. It is an
instance of the semantic text matching (STM) problem.

We developed a recommender system that finds, for a given control, related generalized con-
trol statements from a predefined collection. The system implements the unsupervised text
similarity algorithms Word2Vec and Doc2Vec, as well as the classical TF-IDF approach as a
baseline. For evaluation purposes, we build up an user interface that allows to manage dif-
ferently configured instances of the recommender system, to visualize matching results and to
enable structured, qualitative feedback provided by regulatory experts.

With the aim to enhance the performance of the algorithms, four different techniques were quan-
titatively assessed including preprocessing technologies, addition of meta information, corpora
analysis and addition of paragraph context. It showed that all these techniques lead to improved
matching results for all text similarity approaches. We state that a domain-specific corpus has a
decisive influence on the matching quality. While the initial evaluation without any optimization
showed better results for TF-IDF compared to Word2Vec, the final evaluation presents contrary
results. Doc2Vec, however, achieved generally the best results.

A qualitative evaluation of bad matching results was performed by regulatory experts who iden-
tified five patterns: abbreviations, short input, missing synonyms, wrong focus, and imbalance
in depth of content between input and expected output. We also observed that the input and
output of bad results often do not share similar vocabulary which is obviously difficult to be
matched by an algorithm. The expert interview showed that the recommender system in its
current version is already able to actively support experts but the number of outliers is still high.

Through the analysis using Citadel , we also identified a number of cases where the manual
initial mapping had errors. We also identified cases where the issues of a standard had applied
incorrect matchings within the standard. This demonstrates a superior capability of Citadel over
a manual approach in many cases.

In future work, we need to further improve the matching quality and thus reduce outliers by
developing countermeasures for the detected patterns. Examples are parameter optimization,
replacing abbreviations through its full form, adding more context information to controls or
transforming keyphrases to single tokens. A more advanced method is to match, instead of
the control statements, already (manually) mapped controls. It is also feasible to make use not
of one but more similarity approaches, for example, TF-IDF and Doc2Vec in combination and
merge their results.

53

7. Conclusion and Future Work

An intelligently designed user interface for experts to consume the recommendations and find
relevant control statements might also compensate deficiencies of the algorithm, for example,
by highlighting key words and synonyms, or providing filter options for the current control topic.

54

Bibliography

[Dai et al., 2015] Dai, A. M., Olah, C., and Le, Q. V. (2015). Document embedding with para-
graph vectors. In NIPS Deep Learning Workshop.

[Duan and Xu, 2016] Duan, L. and Xu, T. (2016). A short text similarity algorithm for finding
similar police 110 incidents. In 2016 7th International Conference on Cloud Computing and
Big Data (CCBD), pages 260–264.

[Gomaa and Fahmy, 2013] Gomaa, W. and Fahmy, A. (2013). A survey of text similarity ap-
proaches. International Journal of Computer Applications, 68.

[Gurusamy and Kannan, 2014] Gurusamy, V. and Kannan, S. (2014). Preprocessing tech-
niques for text mining.

[Kusner et al., 2015] Kusner, M. J., Sun, Y., Kolkin, N. I., and Weinberger, K. Q. (2015). From
word embeddings to document distances. In Proceedings of the 32Nd International Confer-
ence on International Conference on Machine Learning - Volume 37, ICML’15, pages 957–
966. JMLR.org.

[Landthaler, 2017] Landthaler, J.; Waltl, B. H. D. B. D. S. C. G. T. M. F. (2017). Improving
thesauri using word embeddings and a novel intersection method. Proc. of 2nd Workshop
Workshop on Automated Semantic Analysis of Information in Legal Texts (ASAIL’17).

[Landthaler, 2018] Landthaler, J.; Scepankova, E. G. I. L. H. M. F. (2018). Semantic text match-
ing of contract clauses and legal comments in tenancy law. IRIS: Internationales Rechtsin-
formatik Symposium.

[Lau and Baldwin, 2016] Lau, J. H. and Baldwin, T. (2016). An empirical evaluation of doc2vec
with practical insights into document embedding generation. CoRR, abs/1607.05368.

[Le and Mikolov, 2014] Le, Q. V. and Mikolov, T. (2014). Distributed representations of sen-
tences and documents. CoRR, abs/1405.4053.

[Mikolov et al., 2013a] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient esti-
mation of word representations in vector space. CoRR, abs/1301.3781.

[Mikolov et al., 2013b] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013b).
Distributed representations of words and phrases and their compositionality. CoRR,
abs/1310.4546.

55

Bibliography

[Naderi and Hirst, 2015] Naderi, N. and Hirst, G. (2015). Argumentation mining in parliamen-
tary discourse. In Principles and Practice of Multi-Agent Systems - International Workshops:
IWEC 2014, Gold Coast, QLD, Australia, December 1-5, 2014, and CMNA XV and IWEC
2015, Bertinoro, Italy, October 26, 2015, Revised Selected Papers, pages 16–25.

[Rinott et al., 2015] Rinott, R., Dankin, L., Perez, C. A., Khapra, M. M., Aharoni, E., and Slonim,
N. (2015). Show me your evidence - an automatic method for context dependent evidence
detection. In Màrquez, L., Callison-Burch, C., Su, J., Pighin, D., and Marton, Y., editors,
EMNLP, pages 440–450. The Association for Computational Linguistics.

[Salton and Buckley, 1988] Salton, G. and Buckley, C. (1988). Term-weighting approaches in
automatic text retrieval. Information Processing Management, 24(5):513 – 523.

[Salton et al., 1975] Salton, G., Wong, A., and Yang, C. S. (1975). A vector space model for
automatic indexing. Commun. ACM, 18(11):613–620.

[Vijayarani and Ilamathi, 2015] Vijayarani, D. S. and Ilamathi, J. (2015). Preprocessing tech-
niques for text mining - an overview. In International Journal of Computer Science and Com-
munication Networks, pages 7–16.

[Waltl, 2015] Waltl, B.; Zec, M. M. F. (2015). Lexia: A data science environment for legal texts.
Jurix: International Conference on Legal Knowledge and Information Systems.

56

List of Figures

1.1. Implicit References between Regulatory Documents and Company Policies . . . 1
1.2. Explicit References between Regulatory Documents and Company Policies . . 3
1.3. Work Routine of Regulatory Experts . 3
1.4. Recommender System using a Text Similarity Approach 4
1.5. Iterative Research Approach . 6

2.1. Illustration of STM Problem, based on [Landthaler, 2018] 10

3.1. Preprocessing Pipeline, based on [Vijayarani and Ilamathi, 2015] 12
3.2. Word2Vec models, based on [Mikolov et al., 2013a, Le and Mikolov, 2014] . . . 16
3.3. Doc2Vec models, based on [Le and Mikolov, 2014] 18

4.1. System Components . 20
4.2. Configuration Class Diagram . 21
4.3. Example Configuration File . 21
4.4. Matcher Class Diagram . 22
4.5. Data Sets Class Diagram . 23

5.1. Deployment Diagram of Citadel . 25
5.2. Run and Evaluation Management . 26
5.3. Dashboard . 27
5.4. Demo . 28
5.5. Evaluation Details . 29
5.6. Details of Ground Truth Item . 29
5.7. Feedback Loop . 30

6.1. Initial Evaluation . 31
6.2. Cleaning, Stopword Removal and Stemming 33
6.3. PoS Tagging . 34
6.4. Recommender System with Meta Information 36
6.5. Control Statements with Meta Information . 37
6.6. Corpora Analysis . 39
6.7. Input Controls with Context Information . 41
6.8. Input Controls with Context Information . 41
6.9. Final Evaluation . 42
6.10.Distribution of Matching Results . 44
6.11.Similarity between Input Controls and Expected Control Statements 46
6.12.Similarity between Input Control and Actual Top 10 Control Statements - similar

in terms of Keywords, Synonyms or Topic . 47

57

List of Figures

58

List of Tables

1.1. Example controls from regulatory documents and company policies 2
1.2. Ground Truth . 7
1.3. Matching Result Example . 8

3.1. Exemplary Application of Preprocessing Technologies 13

6.1. Meta Information Statistics . 35
6.2. Corpora . 38
6.3. Ground Truths with Title . 40

A.1. Stemming, Cleaning, Stopwords Removal . 56
A.2. PoS Tagging . 57
A.3. Meta Information . 58
A.4. Corpora Analysis . 59
A.5. Context Information . 59

59

List of Tables

60

Appendix

61

A. Result Tables

Preprocessing

Algorithm Stemming Cleaning Stopwords FRP RPS LRP %RPS

TFIDF No No No 89.68 198.05 339.04 77.56
No No Yes 91.16 194.51 316.96 77.96
No Yes No 71.47 164.74 294.31 81.35
No Yes Yes 73.06 163.15 275.20 81.53
Yes No No 55.98 136.90 249.00 84.52
Yes No Yes 53.14 129.98 228.73 85.31
Yes Yes No 53.63 132.46 242.94 85.03
Yes Yes Yes 52.77 129.00 227.25 85.42

Word2Vec No No No 113.58 221.12 355.55 74.93
No No Yes 67.99 143.33 249.49 83.79
No Yes No 95.66 193.92 323.03 78.03
No Yes Yes 50.90 116.94 212.32 86.79
Yes No No 100.35 207.28 343.21 76.51
Yes No Yes 61.71 139.15 248.72 84.27
Yes Yes No 104.79 210.08 343.99 76.19
Yes Yes Yes 58.90 133.88 237.84 84.87

Doc2Vec No No No 70.51 147.94 257.91 83.26
No No Yes 52.36 120.47 222.54 86.39
No Yes No 57.54 129.93 233.00 85.32
No Yes Yes 45.56 108.00 200.14 87.81
Yes No No 62.67 136.72 244.17 84.54
Yes No Yes 48.47 112.72 210.48 87.28
Yes Yes No 55.78 129.18 235.82 85.40
Yes Yes Yes 46.36 108.38 204.64 87.77

Table A.1.: Stemming, Cleaning, Stopwords Removal

63

A. Result Tables

Algorithm PoS Tags FRP RPS LRP %RPS
TFIDF - 52.77 129.00 227.25 85.42

N 76.88 160.51 259.34 81.83
NV 63.01 140.11 237.57 84.16
NA 64.50 143.98 242.23 83.72
NVA 53.27 128.77 226.30 85.45

Word2Vec - 50.90 116.94 212.32 86.79
N 64.50 133.25 233.42 84.94
NV 52.92 119.18 215.46 86.54
NA 55.13 121.71 218.66 86.25
NVA 48.93 114.06 208.21 87.12

Doc2Vec - 45.56 108.00 200.14 87.81
N 58.91 123.42 222.80 86.06
NV 48.77 110.58 204.49 87.52
NA 49.69 113.94 211.75 87.14
NVA 45.09 106.89 199.24 87.94

Table A.2.: PoS Tagging

64

Editorial Help

Algorithm Meta-Information FRP RPS LRP %RPS

TFIDF DOC 52.77 129.00 227.25 85.42
DOC TITLE 48.56 121.45 217.25 86.28
DOC TOPIC 50.57 116.27 200.89 86.87
DOC SUBTOPIC 51.84 120.22 207.08 86.42
DOC TAGS 48.56 104.28 177.72 88.24
DOC TITLE TOPIC 47.32 111.07 193.34 87.46
DOC TITLE TOPIC SUBTOPIC 46.84 105.48 179.73 88.10
DOC TITLE TOPIC SUBTOPIC TAGS 47.01 99.66 167.08 88.76

Word2Vec DOC 50.90 116.94 212.32 86.79
DOC TITLE 44.97 105.11 192.13 88.14
DOC TOPIC 48.01 101.73 180.21 88.53
DOC SUBTOPIC 45.08 103.06 186.52 88.38
DOC TAGS 41.49 87.06 151.69 90.20
DOC TITLE TOPIC 48.29 103.94 183.41 88.28
DOC TITLE TOPIC SUBTOPIC 43.12 94.80 168.10 89.32
DOC TITLE TOPIC SUBTOPIC TAGS 42.11 84.10 141.81 90.54

Doc2Vec DOC 45.68 108.21 201.20 87.79
DOC TITLE 41.87 101.36 189.63 88.57
DOC TOPIC 43.75 98.55 177.09 88.89
DOC SUBTOPIC 42.89 99.66 181.83 88.76
DOC TAGS 38.16 84.14 151.78 90.53
DOC TITLE TOPIC 39.98 93.04 170.73 89.52
DOC TITLE TOPIC SUBTOPIC 38.49 87.29 157.71 90.17
DOC TITLE TOPIC SUBTOPIC TAGS 38.39 80.45 141.59 90.95

Table A.3.: Meta Information

65

A. Result Tables

Corpus

Algorithm Corpus FRP RPS LRP %RPS
Word2Vec CTRLS 55.69 101.39 161.96 88.57

WIKI OTHER 82.01 143.77 224.31 83.74
WIKI TOPIC 42.11 84.10 141.81 90.54
WIKI 63.34 119.12 194.47 86.55
REG 39.02 82.33 142.16 90.74
TOTAL 40.57 83.93 144.39 90.55

Doc2Vec CTRLS 68.93 125.14 205.36 85.86
WIKI OTHER 77.24 137.79 217.78 84.42
WIKI TOPIC 38.39 80.45 141.59 90.95
WIKI 52.78 105.55 178.77 88.09
REG 38.48 79.38 140.41 91.07
TOTAL 41.20 84.50 148.07 90.49

Table A.4.: Corpora Analysis

Context Information

Algorithm Context Information FRP RPS LRP %RPS
TFIDF No 47.01 99.66 167.08 88.76

Yes 41.84 86.31 145.96 90.28
Word2Vec No 39.02 82.33 142.16 90.74

Yes 36.98 76.51 132.56 91.40
Doc2Vec No 38.48 79.38 140.41 91.07

Yes 34.15 71.21 127.23 92.00

Table A.5.: Context Information

66

	Acknowledgements
	Abstract
	Introduction
	Motivation
	Explicit Mapping of Controls
	Problem Statement
	Proposed Solution

	Research Questions
	Research Approach
	Iterative Approach
	Ground Truth
	Evaluation Criteria

	Structure of the work

	Semantic Text Matching
	Definition
	Related Work

	Natural Language Processing
	Preprocessing Technologies
	Text Similarity Approaches
	Term Frequency - Inverse Document Frequency
	Word2Vec (Word Embeddings)
	Doc2Vec (Document Embeddings)

	Implementation Recommender System
	Requirements
	System Structure
	Configuration
	Matcher
	Data Sets

	Implementation GUI Citadel
	Setup
	Features
	Evaluation Management
	Evaluation Analysis

	Evaluation
	Individual Evaluation
	Preprocessing Analysis
	Meta Information
	Corpora Analysis
	Context Information

	Overall Evaluation
	Text Similarity Approach Analysis
	STM Problem Analysis

	Conclusion and Future Work
	Bibliography
	List of Figures
	List of Tables
	Appendix
	Result Tables

