[

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Bachelorarbeit in Wirtschaftsinformatik

The Evolution of Scaling Agile Practices

Gerhard Schwab

D

I

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Bachelorarbeit in Wirtschaftsinformatik

The Evolution of Scaling Agile Practices

Die Entwicklung von agil skalierbaren Praktiken

Author: Gerhard Schwab
Supervisor: Prof. Dr. Florian Matthes
Advisor: Omer Uludag

Date: November 15, 2017

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Miinchen, den 15. November 2017 Gerhard Schwab

Abstract

Since the 1990s the idea of agile problemsolving exists, but only in the recent years with
the advent of digitization, the IoT and rapidely changing requirements, have companies
recognised its value. To help big companies apply agile methods, that are specifically made
for small teams, on a company level, practices for the scaling of those agile methods have
been developed.

With this thesis we aim to provide an overview over all Scaling Agile Practices, their evolu-
tion and matureness, as well as their foundational methods and practices and the relations
between them.

In order to achieve this, we first conducted a literature review identifying 22 different Scal-
ing Agile Practices. Afterwards we invited all main developers of these 22 Scaling Agile
Practices to take part in our survey to get the developers view on their work, as well as
chronological data and the foundational methods and practices that their Scaling Agile
Practices are based on.

This survey was completed by the five Scaling Agile Practices ETF, LeSS, HSD, FAST and
the Mega Framework. Their information was then visualized in a Time Map and five
Foundational Maps. We found similarities in the challenges they face and their goals and
differences in scale and employed approach to acieve the goals, as well as differences in
the useage of foundational methods and practices.

vii

viii

Contents

[Abstract vii
Il.__Introduction| 1
(L. Introduction| 3
[LI. Motivationl 3
[1.2. Research Questions| 3
[I.3. Research Approach|, 4
L. _Foundations| 7
[2. _Foundations| 9
R.1. Agile Practices|. 9
RIT Scrumlot 10

2.1.2. Extreme Programming|. 12

RI3. Kanban|.o 13

2.2. Large-Scale Agile Development| 14
2.2.1. Challenges in Large-Scale Agile Development 14

(ITI. Existing Frameworks| 15
(3. Existing Frameworks| 17
B.1. Agile Software Solution Framework (ASSF)| 17
B.2. Crystal Family (Crystal)] 19
B21. CrystalClear] 20

B.22. CrystalOrange| 20

B.3. Disciplined Agile 20 (DA2.0) 21
B.4. Dynamic Systems Development Method Agile Project Framework for Scrum |

[(DSDM)|. .+« o e e e 22
3.5. Enterprise Scrum (eScrum)|. 24
B.6. Enterprise Transition Framework (ETF) 25

7. Event Driven TNANCE . .« o v v v v e e e e e e e 26

13.8. eXponential Simple Continuous Autonomous Learning Ecosystem (XSCALE)[27
B9. FASTAgilel. 27
B.10. Holistic Software Development (HSD)| 28
B.1T1. Large Scale Scrum (LeSS)[. v v v oo i 31

ix

Contents

[3.12. Lean Enterprise Agile Framework (LEAF)[.
13.13. Matrix of Services (Maxos)|« . v v v v it e e e
3.14. Mega Framework] oo oL oo
...
[3.16. Recipes for Agile Governance in the Enterprise (RAGE)[.
B.17. Resilient Agile| L oo
[3.18. Scaled Agile Framework (SAFe)l.,
£3.19. ScALeD Agile Lean Development (ScALeD)|
£3.20. Scrum at Scale (S@S)|
[3.21. Scrum-of-Scrums (SoS)|
[3.22. Spotify Model (Spotity)[. o oo

[IV. The Evolution of Scaling Agile Frameworks|

4. The Evolution Of Scaling Agile Frameworks|
4.1, QuestionNnaire] vt e e e e e e e e e e e e e e e
@.2. Descriptive Statistics| oo oL o oo
4.3. Evaluationl
4. EvolutionMap|.
4.5. Foundational Methods and PracticesMaps|

5D ol

6. Conclusion|
[6.1. Summary|.
6.2. Outlookl. o e

[VII.Appendix|

45

47
47
47
48
56
57
57
59
60
61
62

63
65
65
67
69
71

71
72

73

Contents

DD (l X 75
[A. Appendix| 75
|K.1. Questionnaire questions| Lo 75
Bibliography| 77

xi

Part 1.

Introduction

1. Introduction

In this chapter we give an introduction to this thesis. We convey the motivation behind it,
the research questions that follow and the research approach to answer those questions.

1.1. Motivation

With the ongoing digitization of all organizations, the ever ongoing globalization and the
increasing speed with wich new enterprise opportunities are presenting themselves, the
ability to adjust to change and use it as an advantage has become more and more impor-
tant. As Eric Overby et al. say: ”In turbulent environments, enterprise agility, that is, the
ability of firms to sense environmental change and respond readily, is an important deter-
minant of firm success.”[55] As a result, agile and lean methods are increasingly applied
to the value creation process of organizations, especially in the IT sector. Because of this,
there is a high demand for agile practices, as companies largely recognize the value of in-
troducing those methods and practices. [85] As those practices, such as Scrum, Kanban
and others, are only intended for small project teams and do not cope well with bigger or
multiple teams, big companies with projects involving over one hundred employees have
a need for scaled agile practices that can be used at higher levels with bigger numbers of
participants, such as LeSS and SaFe. To give a complete overview over those scaled prac-
tices and their properties and features, we look at the evolution of scaling agile practices.

1.2. Research Questions

In this section we will describe the research questions (RQ) that this thesis is aiming to
answer.

RQ1: Which scaling agile practices exist? In the first research question we give an
overview over the current existing scaling agile practices up until the first of august 2017.
To achieve this we will conduct an extended literature review (Figure .The main result
answering this research questions will be a list of all existing scaling aigle practices, which
will then serve as a basis for all further research questions answered in this thesis.

RQ2: How did scaling agile practices develop? The second research question serves to
append chronological data to the information gathered from the first research question.
We will gather this data by the extended literature review, as well as an expert interview
which we will conduct with the leading developers of scaling agile practices (Figure .
This question will result in the list of existing scaling agile practices being extended with
chronological data, as well as a graphic to illustrate the development and matureness of
the scaling agile practices.

1. Introduction

RQ3: On which foundational methods and practices are scaled agile practices based on?
In the last research question we will compare the different existing scaling agile practices
with each other. We will complete the overview over all scaling agile practices by showing
their foundational methods those practices are based on, as well as show their relationship
between each other and the activities,artifacts,and principles those practices employ. To
achieve this, we will use the data gathered from the first research question, through the
extended literature review, as well as through the expert interview. As a result, we will
have a complete overview over the current scaling agile practices based on their founda-
tions and relations between each other. This overview will be visualized in tables as well
as in multiple graphics.

1.3. Research Approach

Our approach to answering these three research questions is to first perform a structured
literature review and to then conduct an expert interview.

The literature review is conducted as recommended by Brocke et al. [86] ,to ensure the
rigour and relevance of this thesis, in a 5 step progress. First we defined the scope of the
work and identified the research questions we wanted to answer. After that, we worked
out the relevant search terms to find the correct information to answer those questions.
We chose the following terms and their synonyms and abbreviations: scaling agile meth-
ods, scaling agile practices, scaling agile frameworks, scaling agile software engineering,
scaling agile organizations, large-scale agile. Using these search terms we found 612 ini-
tial pieces of relevant literatur using the following sources: Science Direct, Web of Science,
IEEExplore, ACM Digital library, EBSCOhost, Scopus, SpringerLink, Emerald Insight and
GoogleScholar. We conducted the literature search in July / August of 2017. After the initial
612 findings, we analysed the results and synthezised them in multiple revisions. After
the first revision, we identified 120 potentially important pieces of literature, which we
further reduced to 30 in the second revision. From these 30 papers, books and conference
proceedings, the research outcome of the list of the 22 different scaling agile practices was
extracted, answering our first research question.

In order to get inside-information, unobtainable by a literature review, we conducted an
online expert interview with the developers of the respective scaling agile practices, to an-
swer the second and third research questions. We performed the interview in six phases
as recommended by Punter et al. [61]: First we defined the goals of the interview, which
we then transformed into a set of questions. Those questions were then transfered over to
the unipark tool “questback” [31]], with wich we conducted the interview. The link to the
questionnaire was then sent out to all 22 scaling agile practice developers. Thereafter we
analyzed and interpreted the data, taking into account the results of the literature review.
In the last step we visualized the data.

1.3. Research Approach

. Topic Conceptualization|

1. Scope of Research

Research CQuesfions

scaling agile

scaling sgile
methods

framewrorks

Relevant search terms

4 Literature Analysis

Analysis of current existing
scaling agile practices

scaling agile

H
H

scaling aigle |arge-scale
organizations agike

&

3. Literature Search

List of relevant sources

—)

0

5. Research Agenda

Basis for interview
and thesis

Figure 1.1.: The literature review research process used

1. Introduction

1. Study definition

Use the results from the
literature review to define
the goals of the interview

2. Study design

Tranform the goals of the
interview into a set of

questions
= 3. Implementation
L Transfer the questions
to the survey tool
4. Execution

Send out the interview via
email and telephone

5. Analysis

Analyze and structure the
acquired information

6. Packaging 3 |l
Visualize the gained ol h ¢ - -] -
information - palll| - || - |[-

Figure 1.2.: The interview research process used

Part II.

Foundations

2. Foundations

In this chapter we provide an overview over the essential concepts which are utilized in
this thesis, to provide a foundation for the Thesis. First, we will consult the agile manifesto
to grasp the concept of agility in software engineering. Secondly we will detail the most
common agile and lean methods: Scrum, Extreme Programming and Kanban, which often
serve as a basis for scaling agile practices and are therefore of vital importance. Finally, we
will talk about scaling-up those methods and up-scaled software development and what
is generally understood by scaling and the benefits and scaling of it.

2.1. Agile Practices

As Scott W. Ambler, Chief Methodologist/Agile with IBM Rational states: There is no
official definition for agile software development and there likely never will be. However,
there are multiple unofficial definitions used to describe agile software development, for
example:

" Agile software development is an evolutionary (iterative and incremental) approach which reg-
ularly produces high quality software in a cost effective and timely manner via a value driven
lifecycle. 1t is performed in a highly collaborative, disciplined, and self-organizing manner with
active stakeholder participation to ensure that the team understands and addresses the changing
needs of its stakeholders. Agile software development teams provide repeatable results by adopting
just the right amount of ceremony for the situation they face.” [11]

However the definition, agile software development is based on the four values and
twelve principles of the agile manifesto, which was released in 2001 with the emergance
of the Agile Software Development Alliance. These four core values of agile software
development are: [24]

“Individuals and interactions over processes and tools”
”"Working software over comprehensice documentation”
”Customer collaboration over contract negotiation”
“Responding to change over following a plan”

While they give some ideals more value in this comparison, they do acknowledge that
their opposites do also hold value to the development process. Following those four core
values, the agile manifesto presents the following twelve principles, to help bring agility
into the development process: [24]

2. Foundations

”Our highest priority is to satisfy the customer through early and continuous deliv-
ery of valuable software.”

”"Welcome changing requirements, even late in development. Agile processes har-
ness change for the customer’s competitive advantage.”

"Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.”

“Business people and developers must work together daily throughout the project.”

”Build projects around motivated individuals. Give them the environment and sup-
port they need, and trust them to get the job done.”

"The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.”

“Working software is the primary measure of progress.”

”Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.”

”Continuous attention to technical excellence and good design enhances agility.”
”Simplicity—the art of maximizing the amount of work not done-is essential.”
"The best architectures, requirements, and designs emerge from self-organizing teams.”

” At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.”

Agile software development methods therefore differ greatly from more “traditional”
methods, are focused on working together with the customer, on delivering working soft-
ware in short intervals and offer greater flexibility.[10] Using agile methods, organizations
are finding that agile project teams, when compared to traditional project teams, enjoy
higher success rates, deliver higher quality, have greater levels of stakeholder satisfaction,
provide better return on investment (ROI) and deliver systems to market sooner.[85]

2.1.1. Scrum

Being one of the two most commonly used agile methods, Scrum is based on the four core
values and twelve principles of the agile manifesto.[28] Scrum is a process for incremen-
tally building software in complex environments with a small team consisting of around
seven members, one of wich is the Scrum Master and a Product Owner responsible for the
delivered product.[65][72] The Scrum team is self-managing, cross-functional and ideally
co-located to facilitate informal communication.[71]

Scrum consists of the Sprint, which is the heart of Scrum, which in itself consists of the
Sprint Planning, Daily Scrums, the development work, the Sprint Review and the Sprint
Retrospective.[73] These activities utilize the agile artifacts of the Product Backlog, the
Sprint Backlog and produce the Product increment, as seen in Figure

10

2.1. Agile Practices

Sprint
Retrospecti

Cg
ﬁ‘m%‘\

Product Sprint
Backlog Backlog

Sprint
ﬁ:;

Increment

? Scrum Tea™

(;Q Scrum.org

Figure 2.1.: The Scrum Process [74]

Roles

¢ Product Owner:
The Product Owner is responsible for maximizing the value of the product and the
work the Scrum Team delivers. He is the only person responsible for managing the
Product Backlog.[73]

¢ Scrum Master:
The Scrum Master is part of the Scrum Team and serves as a servant-leader for the
team. He is responsible for ensuring that Scrum is understodd and enacted, helping
the team to get rid of impediments and misunderstandings.[73]

Scrum Events

¢ Sprint Planning;:
Each Sprint starts with a Sprint Planning Meeting, limited to eight hours, where
the work to be done in the next Sprint (2-4 weeks) is discussed and items from the
product backlog are selected by the entire team to be developed in the Sprint.[73]

¢ Daily Scrum:
At the beginning of each day, the 15 minute long Daily Scrum is held. Here the Team
synchronize activities and create a plan for the day. To achieve this, the work of the
previous day is inspected and impediments discussed.[36]

* Sprint Review:
The Sprint Review is held at the end of each Sprint and takes a maximum of four
hours. Its purpose is to, together with key stakeholders invited by the product owner,

11

2. Foundations

demonstrate and inspect the Product Increment created by the team in the Sprint and
adapt the Product Backlog if needed.[73]

* Sprint Retrospective:
As seen in Figure the Sprint Retrospective is held between the Sprint Review
and the next Sprint Planning. It is an opportunity for the Scrum Team to analyse
itself and the last sprint and to plan improvements for the next Sprint.[36]

Scrum Artifacts

* Product Backlog:
Consisting normally of User Stories, the Product Backlog is an ordered list of ev-
erything needed in the product and is the single source of requirements for the en-
visioned product. It is never complete and changes throughout the development
process.[73]

¢ Sprint Backlog:
The Sprint Backlog contains all the elemts of the Product Backlog that are necessary
to meet the agreed upron Sprint Goal. It can be changed by the Development Team
during the Sprint, if items in it are deemed unncessary or new items need to be
added.[72]

¢ Product Increment:
Wether or not the Product Owner decides to release it, the Product Increment is a
working and releasable part of the envisioned product.[36]

2.1.2. Extreme Programming

As one of the two most commonly used agile methods, Extreme Programming (XP) aims
to reduce the cost of change in software development.[28] Extreme Programming is de-
signed to be applied to projects that can be built by teams of two to ten programmers,
where a reasonable job of executing tests can be done in a fraction of a day.[14] As seen
in Figure the XP development process starts with a short overall analysis of the en-
visioned product, defining what it could do and what it should do first, resulting in a list
of Unfinished Features.[87] In the initial analysis, the product is described in the form of
business oriented, testable and estimable stories, which can be thought of as the amount of
a use case that will fit on an index card.[13] In the next step, the customer chooses the most
important features, guided by the development team and their effort estimations of the
stories.[87] Thereafter the iterative one week development cycle begins by the customer
selecting the stories to be developed, again guided in his descision by the development
team, their speed and their estimations.[13] The most distinct features of XP are:[13]

¢ On-site customer:
A customer sits with the team full-time.

¢ Pair programming:
All production code is written by two people at one screen/keyboar/mouse.

12

2.1. Agile Practices

Tests:

In Extreme Programming the Test Driven Development approach is followed, re-
quiring each developer to first create unit tests and to then write code fulfilling those

tests.

Just rules:

Extreme programming is an evolving process, acknowleding that every team and
project is different. Therefore giving each team the freedom to change certain aspects
of XP, to tailor it to their specific situation.

Unfinished
Features

Most Important

Features
Iterative
Planning
A Project
/ Heart al\
Working Honest
Software Plans
Team
Empowerment

Daily Communication

Figure 2.2.: The Extreme Programming Process [87]

2.1.3. Kanban

Kanban is a Japanese word meaning a signboard, and it stems from manufacturing, where

it was and is used as a scheduling system. It is a flow control mechanism for pull-driven
Just-In-Time production/ development with a focus on the reduction of waste. The basic

idea behind Kanban usage is to execute the Lean thinking principles in practice.[5]

The seven principles of lean, adapted to software development by Mary and Tom Poppendieck[59]
that Kanban is based on are the following:

Eliminate Waste
Build Quality In
Create Knowledge
Defer Commitment
Deliver Fast
Respect People

Optimize the Whole

13

2. Foundations

5 3 2] 3 5
To Do Requirement Analysis Development Testing Deployment
Doing Done Doing Done
-) N il R
—) Ulo| D
) [=5 J
] J
] E 1
L L ¢

Figure 2.3.: The Kanban Board [88]

Based on these principles, Kanban provides a process to visualize the workflow, limit work
in progress (WIP), measure and manage flow, make process policies explicit and to im-
prove collaboratively.[5] This is done using the center piece of Kanban, the Kanban board
(Figure[2.3).

The Kanban board is used to map the value stream with columns for each step in the value
stream. Kanban cards (tokens for a piece of work) are placed in the columns, representing
the current state of the task. When the piece of work meets specified policies, the Kanban
card is placed in the next column, therefore visualizing the workflow. The important ele-
ment of the Kanban board is that work in any column (step in the value stream) is limited,
limiting WIP. Therefore, the entire system contains a limited amount of work.[60]

2.2. Large-Scale Agile Development

As defined by Dingsoyr et al.[27], Large-Scale Agile Development refers to 2-9 teams work-
ing together on one product in an agile manner. As all the “traditional” Agile Practices we
described in the last section have in common that they are designed for one small, co-
located team working alone on one product, different - Large-Scale - Agile Practices need
to be developed. These Scaling Agile Practices focus on keeping the benefits of Agile Prac-
tices of higher velocities in development projects, shorter time to market for new products
and a higher software quality, while making them apply to every size of project.[81][85]

2.2.1. Challenges in Large-Scale Agile Development

There are however challenges with Large-Scale Agile Development. Dikert et al.[26] states
the main categories of challenges in Large Scale Agile Development as agile being dif-
ficult to implement, integrating non-development functions, change resistance, and re-
quirements engineering challenges. Adding to the challenge of agile being difficult to im-
plement, Paasivaara et al.[57] mentiones that in particular, the project they monitored did
not succeed in attaining a real agile mindset, and did not adopt all important practices sug-
gested by the framework. Inter-team coordination was insufficient, and the experienced
time pressure led to practices not being taught properly, being skipped, or implemented
poorly. Boehm et al.[17] identified development process conflicts, business process con-
flicts and people conflicts as the main categories of challenges.

14

Part I11.

Existing Frameworks

15

3. Existing Frameworks

This chapter lists all the existing scaling agile practices available at the time of writing
alphabetically. We describe each practice and therefore provide a short overview over
the current market. Each practice will have its own subsection containing all the relevant
information about it. With this we also answer our first research question “What scaling
agile practices exist?”.

3.1. Agile Software Solution Framework (ASSF)

The Agile Software Solution Framework (ASSF) is a method-independent agile scaling
framework, to aid construct high quality processes for the development of large and com-
plex applications [63]. As seen in Figure it can be divided into the agile conceptual
aspect model (acam), linked to the business via the Business-Agile Alignment Bridge and
tools. The agile conceptual model incorporates the aspects of: [64]

¢ Knowledge: The Knowledge Cell is used to engineer and manage all knowledge
that is related to agile software development, such as knowledge regarding different
process fragments and processes, created by people cooperating and communicat-
ing in the organization. It captures and manages this knowledge, to improve perfor-
mance, increase learning and to aid the decision making process.

* Governance: This Cell introduces an integrated agile IT governance as defined by
Qumer [30]. It is based on the following five key perspectives of governance for ag-
ile processes: lightweight, collaborative, communication-oriented, economical and
evolving.

¢ Method Core: Combined with the abstraction element of ASSF, this cell represents
the six aspects of an agile software development methodology: agility, process, peo-
ple, prodict, tools and abstraction. It can be used to link a situational method engi-
neering approach, a feedback mechanism and a meta-model into a software devel-
opment methodology /process(es).

This agile conceptual model is linked to the Business via the Business-Agile Alignment
Bridge, which aligns business goals and agile software development goals, to help foster
business value. The Business Cell that the Business-Agile Alignment Bridge connects to
the agile conceptual model represents the organization implementing ASSF. It includes the
policies, strategies, business goals and its culture, as they have a big, undeniable impact on
the execution of any agile software development method [64]. The afore mentioned tools
of ASSF are an agile Toolkit, to facilitate the construction and evaluation of processes for
the development of complex projects, and a four-dimensional Analytical Tool (4-DAT), as
developed by Qumer and Henderson-Sellers [29], for the assessment and analysis of the
constructed processes.

17

3. Existing Frameworks

Agile Software Solution Framework

Agile Conceptual Aspect Model

Method Core .

1. Agility

2. People

3. Process

4. Product

5. Tools
I 4

Knowledge Governance]
Agile
Toolkit
\ Method 4-DAT
Core
[
K Software
Abstraction Technology

Business-Agile Alignment Bridge

Business

Figure 3.1.: The Agile Software Solution Framework (ASSF) [64]

18

3.2. Crystal Family (Crystal)

3.2. Crystal Family (Crystal)

The Crystal Family is a set of customizable development methodologies for small to very
large teams. The choice of Crystal Family members is dependent on the size of the project
team and the criticality of the project [16]. This choice leads to the two dimensional desci-
sion matrix shown in Figure where the x-axis represents the size of the team working
on the project and the y-axis representing the criticality of the operation. As the criticality
and the amount of team members increases, the opacity of the assigned color grows. The
criticality of the projects represents their potential for causing damage. The lowest damage
being a loss of comfort (C), then the loss of discretionary money (D), after that the loss of
essential money (E) and finally the potential loss of life (L). The size of the project teams
and therefore the x-axis is sectioned into teams of up to 6, 20, 40, 100, 200, 500 and over
1000 people. Not every combination of sections (C6,D20,etc.) has its own methodology
in the Crystal Family, but the Crystal Methodologies are rather used in a wide field and
combined and adapted to the specific requirements, as their creator believes there is no
”one-size-fits-all” development process. However, they all focus on a development cycle
no longer than three months and personal, unofficial communication with people on-site.
The two most defined Methods are Crystal Clear and Crystal Orange.

Life
(L)

Essential
money
Criticality E)
(potential loss
of)

Discretionary
money
(D)

Comfort
()

1-6 7-20 21-40 41-100 ;Iz%‘l)_ 201-500 501-1000+

Number of people (+/- 20%)

Figure 3.2.: The Crystal Family Descision Matrix [16]

19

3. Existing Frameworks

3.2.1. Crystal Clear

Crystal Clear is the smallest methodology in the Crystal family. It is tailored to a D6 project,
but can also be applied to projects in the size and criticality of C6 or E6. It can possibly be
extended from six to ten people, applying to C10,D10 and E10 [16], as long as they sit in
the same or adjacent rooms and all have access to close communication with each other.
A. Cockburn, the creator of the Crystal family of methodologies, describes Crystal Clear
as follows:

“The lead designer and two to seven other developers in a large room or adjacent rooms,
with information radiators such as whiteboards and flip charts on the wall, having access
to key users, distractions kept away, delivering running, tested, usable code every month
or two (okay, three at the most), periodically reflecting and adjusting on their working
style.” [22]

Boehm [16] lists the elements of Crystal Clear along these lines:

Documents and artifacts: release plan, schedule of reviews, informal /low-ceremony
use cases, design sketches, unning code, common object model, test cases, and user
manual

Roles: project sponsor/customer, senior designer-programmer, designer-programmer,
and user(part time at least)

Process: incremental delivery, releases less than two to three months, some auto-
mated testing, direct user involvement, two user reviews per release, and methodology-
tuning retrospectives. Progress is tracked by software delivered or major decisions
reached, not by documents completed.

3.2.2. Crystal Orange

The Crystal Orange model is mainly targeted at a D40 project. It is aimed at 20-40 pro-
grammers working together in the same building on a project with medium risk, where
the time to market is of big importance and the duration is estimated between one and two
years [21]. The elements of the Crystal Orange model are described as follows: [16]

Documents & artifacts: requirements document, release plan, schedule, status re-
ports, UI design document, inter-team specs, running code, common object model,
test cases, migration code, and user manual

Roles: project sponsor, business expert, usage expert, technical facilitator, business
analyst, project manager, architect, design mentor, lead desinger- programmer, designer-
programmer, Ul designer, reuse point, writer, and tester

Process: incremental delivery, releases less than three to four months, some auto-
mated testing, direct user involvement, two user reviews per release, and methodology-
tuning retrospectives.

20

3.3. Disciplined Agile 2.0 (DA 2.0)

3.3. Disciplined Agile 2.0 (DA 2.0)

The Disciplined Agile Framework provides frameworks for certain levels of a company. It
supplements core agile practices with more disciplined approach, extending the construction-
focused lifecycle, adds modeling, documentation and government strategies [12]. The of-
ficial definition of Disciplined Agile reads:

"The Disciplined Agile (DA) process decision framework provides light-weight guid-
ance to help organizations streamline their processes in a context-sensitive manner, pro-
viding a solid foundation for business agility. It does this by showing how the various
activities such as Solution Delivery, IT Operations, Enterprise Architecture, Portfolio Man-
agement, Finance, Procurement and many others work together. The framework also de-
scribes what these activities should address, provides a range of options for doing so, and
describes the tradeoffs associated with each option”[43]]

The four levels of the Disciplined Agile framework as seen in Figure are described
as follows: [43]]

Disciplined Agile Delivery(DAD) DAD addresses all aspects of solution delivery
from beginning to end, in a streamlined manner. This includes initial modelling and
planning, forming the team, securing funding, continuous architecture, continuous
testing, continuous development, and governance all the way through the lifecycle.
The framework includes support for multiple delivery lifecycles, including but not
limited to a basic/agile lifecycle based on Scrum, a lean lifecycle based on Kanban,
and a modern agile lifecycle for continuous delivery.

Disciplined DevOps Disciplined DevOps is the streamlining of IT solution develop-
ment and IT operations activities, and supporting enterprise-IT activities, to provide
more effective outcomes to an organization.

Disciplined Agile IT (DAIT) As the name suggests DAIT addresses how to apply
agile and lean strategies to all aspects of IT. This includes IT-level activities such
as enterprise architecture, data management, portfolio management, IT governance,
and other capabilities.

Disciplined Agile Enterprise A Disciplined Agile Enterprise (DAE) is able to an-
ticipate and respond swiftly to changes in the marketplace. It does this through an
organizational culture and structure that facilitates change within the context of the
situation that it faces. Such organizations require a learning mindset in the main-
stream business and underlying lean and agile processes to drive innovation.

21

3. Existing Frameworks

" Disciplined
 Adgile Enterprise (DAE) .

D|SC|pI|ned
/~ AgileIT(DAIT)

|) Disciplined QG |
DevOps A

" Disciplined
Agile Delivery
(DAD)

Figure 3.3.: The scope of the Disciplined Agile 2.0 framework[43]]

3.4. Dynamic Systems Development Method Agile Project
Framework for Scrum (DSDM)

The Dynamic Systems Development Method Framework (DSDM) focusses on people in-
stead of tools. It focusses on understanding the needs of a business and delivering work-
ing software solutions. It provides a framework of controls and best practices for agile
software development [78]. The philosophy behind the Dynamic Systems Development
Method framework is best described by the following: [77]

¢ Development is a team effort. It must combine the customers” knowledge of the
business requirements with the technical skills of IT professionals.

¢ High quality demands fitness for purpose as well as technical robustness.

¢ Development can be incremental - not everything has to be delivered at once, and
delivering something earlier is often more valuable than delivering everything later.

¢ The law of diminishing returns applies - resources must be spent developing the
features of most value to the business.

DSDM flips the traditional view on a project, where the features of the product (the re-
quirements) are the only fixed point, which leads to increasing cost and time, to a view
where time and cost are fixed and any adjustments are made on the features of the prod-
uct, in full agreement of all parties involved [79]. It follows these eight principles: [42]

1. Focus on the Business Need: Every decision taken during a project should be viewed
in the light of the overriding project goal - to deliver what the business needs to be

22

3.4. Dynamic Systems Development Method Agile Project Framework for Scrum (DSDM)

delivered, when itneeds to be delivered. It is important to remember that a project is
a means to an end, not an end in itself.
2. Deliver on Time: In order to fulfil this principle, DSDM brings teams to:
¢ Timebox the work
¢ Focus on business priorities
¢ Always hit deadlines
¢ Build confidence through predictable delivery
3. Collaborate: Teams that work in a spirit of active cooperation and commitment will

always outperform groups of individuals working only in loose association. In order
to fulfil this principle, DSDM gets its teams to:

¢ Involve the right stakeholders, at the right time, throughout the project
¢ Encourage pro-active involvement from the business representatives

¢ Ensure that all members of the team are empowered to take decisions on behalf
of those they represent

¢ Build a one-team culture

4. Never compromise quality: In DSDM, the level of quality to be delivered should be
agreed at the start. All work should be aimed at achieving that level of quality - no
more and no less. This is achieved by constant reviews and appropriate design and
documentation.

5. Build Incrementally from Firm Foundations: One of the key differentiators for
DSDM within the Agile space is the concept of establishing firm foundations for the
project before committing to significant development. DSDM advocates first under-
standing the scope of the business problem to be solved and the proposed solution,
but not in such detail that the project becomes paralysed by overly detailed analysis
of requirements. This is achieved by carrying out analysis and enough design up
front and formal and informal re-assessments throughout the ongoing project.

6. Develop Iteratively: The concept of iteration is at the heart of everything developed
as part of the DSDM approach. It is very rare that anything is created perfectly first
time and it is important to recognise that projects operate within a changing world.

7. Communicate Continuously and Clearly: Poor communication is often cited as the
biggest single cause of project failure. Therefore DSDM encourages:
¢ Informal, face-to-face communication at all levels

¢ Daily team stand-up sessions

Workshops, with a facilitator where appropriate

Visual communication practices such as Modelling and Prototyping

¢ Demonstrating the Evolving Solution early and often

Keeping documentation lean and timely

23

3. Existing Frameworks

¢ Managing the expectations of the stakeholder at all levels throughout the project

¢ Always aiming for honesty and transparency in all communication

8. Demonstrate Control: It is essential to be in control of a project at all times and to
be able to demonstrate that this is the case. This can only be achieved by reference
to a plan for the work being done, which is clearly aligned with agreed business
objectives. It is also vital to ensure transparency of all work being performed by the
team.

3.5. Enterprise Scrum (eScrum)

Enterprise Scrum, as the name suggests, scales Scrum to the enterprise level. It looks at all
attributes of Scrum, like sprint length, estimation units, backlog item size, feedback-loop
frequency, assigned resources, planning processes and the ranking system, and escalates
them to the enterprise level [32].

It therefore creates a Scrum-model of the quarterly enterprise activities as seen in Figure
where the quarter is equivalent to a Scrum-sprint, including planning, production
of deliverable products and a retrospective. It also uses a weekly standup for Product
Managers, Scrum Masters and Team Leaders to discuss progress, short-term plans and
difficulties [32]. Enterprise Scrum puts a big focus on the iterative quarterly planning. The
official definition of Enterprise Scrum is defined as:

“Enterprise Scrum is a customer-centric, co-evolutionary, empirical, subsumption-based
management framework to deliver the most business value in the shortest amount of time
while balancing the benefits for all people involved, based on an abstraction, generaliza-
tion, extension and parametrization of Scrum for generic, business, technique-pluggable,
and scaled management purposes”[15]

24

3.6. Enterprise Transition Framework (ETF)

Weekly
Standup
Testing,
dev ops,
marketing,
etc.
Quarter
Quarter
Backlog
Releaseable
Products
Retrospective
Enterpris Planning’
Backlog Team Formation
Released
Product

Figure 3.4.: Enterprise Scrum[32]]

3.6. Enterprise Transition Framework (ETF)

The Enterprise Transition Framework (ETF) is a Framework by the agile42 company de-
signed to help companies of all sizes to transform their business processes and culture to
an agile one. Through a iterative process,the company and each part of the business is first
assessed, then a strategy is formed and pilot projects are launched. If those pilot projects
succeed, the desired scaling agile process is rolled out to the tested part. The official defi-
nition reads:

“The Enterprise Transition Framework is not only a unique approach to enterprise con-
tinuous improvement, but also a library of reusable tools and training modules which en-
able an organization to evolve very rapidly in their own way. ETF practices have proven
successful across a wide-range of industries. Through a scientifically validated approach
the ETF enables your organization to foster a continuous improvement culture, which will

25

3. Existing Frameworks

allow your business strategy to succeed.” [3]

3.7. Event Driven Governance

The Event Driven Governance methodology, formerly known as Enterprise Agile Delivery
and Agile Governance Practice (EADAGP), focuses on a lean governance framework. The
Event Driven Governance framework introduces a governance buffer zone, which aims to
protect agile teams from the slowness, friction and rigidity of traditional IT governance
[54]. Nevertheless the agile teams are enabled to engage with the IT governance for the
escalation of problems, critical decisions and oversight over the bigger picture. The buffer
zone is comprised of three tiers, which include top-down governance, community gover-
nance and self-governance. Event Driven Governance introduces a new item: the gover-
nance backlog. Similar to the product backlog, the governance backlog contains prioritized
governance requirements, which are identified at various times in the agile delivery pro-
cess. This new item is cared for by the new agile governance owner, who is responsible for
it [50]. Event Driven Governance is build upon the following ten principles:[51]

¢ Do not create standing governance bodies, boards or committees.
* Enforce critical enterprise policies when policy events trigger the governance model

¢ Implement trust-based governance via self-governance and community governance
designs

¢ Focus on the vital few principles and policies that will drive desired business and IT
performance

¢ Use policy enforcement event models (governance processes and events) to define
where, when and how policies will be enforced

¢ Define core policy threads that connect oversight processes, policy enforcement points
and policy events into a policy enforcement model

¢ Explicitly design in self-governance, community governance and trust-based capa-
bilities into your governance model

* Leverage a common Governance Reference Model to define, model, implement and
operate your governance model

¢ Collapse key IT governance processes and mechanisms into the fewest number of
policy events that will meet Enterprise Governance requirements

¢ Design the governance model to be Just-In-Time and Just Enough, and no more than
that

26

3.8. eXponential Simple Continuous Autonomous Learning Ecosystem (XSCALE)

3.8. eXponential Simple Continuous Autonomous Learning
Ecosystem (XSCALE)

The eXponential Simple Continuous Autonomous Learning Ecosystem (XSCALE) extends
the agile manifestos” principles to the product and portfolio level and changes the com-
panies culture and decicion making. It aims at tranforming a company into an agile or-
ganization not by scaling Agile to the company, but by descaling the organization of the
company to Agile[53]. The six principles of XSCALE are what creates the name:

¢ Exponential return by stacking growth curves

Simple design to the elegance of minimum

Continuous optimization of throughput

Autonomous teams, self-managing streams
* Learning: triple loop, breadth-first, set-based
* Ecosystems thinking: whole-board & win-win

As XSCALE sees itself as the next step of the agile manifesto, its values are formulated in
the same manner, where they value certain things over others, but do not deprive those
other values of their importance. They value: [53]

¢ Individuals and interactions over processses and tools

¢ Business throughput over comprehensive accounting

Customer collaboration over contract negotiation

Responding to change over following a plan

Decentralized ownership over delegating control

3.9. FAST Agile

"The goal of FAST Agile is to gain control of your project and achieve hyper-productivity
by TRUSTING your developers to do the right thing at the right time and letting them
SELF-ORGANIZE.” [62] This official description of the FAST Agile process shows the two
major focusses of FAST: self organization and the trust that goes with it. The FAST Agile
process congregates all your working teams into clans in a tribe. Each tribe (and therefore
the number of people working on a project) is limited to Dunbar’s number: 150. It is a
suggested cognitive limit to the number of people with whom one can maintain stable
social relationships. FAST is heavily influenced by Open Space Technology (OST)[56], as
such it demands the co-location of the entire development team. In FAST, there is one big
meeting, called the FAST meeting, held at the start of every iteration. It is comprised of the
following five steps:[62]

27

3. Existing Frameworks

L

II.

I1I.

IV.

Show and Tell

During the first phase, each team that has completed work from the previous itera-
tion will show their work to everybody. After everyone has had the chance to answer
questions, the Product Director/ Manager and Stakeholders will give critique and
feedback. The Product Director will at this point be able to make refinements and
add or drop features. This is also the point where he declares stories to be “done”.

Marketplace

Phase two of the FAST Agile process is copied from Open Space Technology, as this is
the phase where volunteers will approach the stage and announce to everyone what
story or problem they would like to work on in the next iteration. After all volunteers
have assigned their work to a room, the Product Director inspects the marketplace
and may ask questions/ use his veto right.

Announcements and Alignment of Vision
In the thrid phase, while everyone is present, any public announcements ought to be
made and the vision for the product should be reiterated.

Team huddle, dependency management and planning

The fourth phase consists of the story shepherds (the volunteers from phase II) re-
viewing the marketplace and identifying any dependencies they need to be aware
of. Afterwards they go to their respective rooms, waiting for the people that want to
join them for this iteration on the task they have presented in phase II.

. Get coding!

The last phase is not really a phase of a meeting but the start of the iteration, in which
the newly formed clans work on their tasks.

3.10. Holistic Software Development (HSD)

Holistic Software Development combines Lean Portfolio, Programme and Project Manage-
ment practices with agility, complex software practices and soft practices into the H-Model
(Figure [3.5), which is derived from the old V-model.[46]

As you can see in Figure the H-model is divided into three categories:

L

II.

I1I.

Portfolio and Programme Management:

The left side of the H-model represents the portfolio and programme management
view. It focusses on architecture, forming the right teams and managing require-
ments.

Release Planning:
The cross-bar of the H model concentrates on agile development, joining up strategy
and delivery teams and de-conflicting agile delivery and management approaches.

Product Delivery:
As with the classical V-model, the right side focusses on quality management, prod-
uct delivery and integration, using feedback cycles and a definition of done.

28

3.10. Holistic Software Development (HSD)

Strategy
Portfolio
Management
People Business
Programme Value
Management
Teams Quality
Release Planning
Requirements Integration
Project Delivery
Architecture Environments

e halistic-saftware.com

Figure 3.5.: The H-model used by HSD [45]

The big differences to the old V-model are that the H-model is used iteratively, not fo-
cusing on vertical decomposition and recomposition, but on releasing product increments
through iterative processes. HSD can be used with a variety of different agile and lean
software development methods like Scrum, XP or Kanban.

Figure provides a more detailed description of the H-model, called “the big picture”.
It shows the roles and artifacts used in HSD, as well as the project stream, going from Cus-
tomer Requests and Backlog refinement, through Product Development, to Systems and

Acceptance tests.

29

3. Existing Frameworks

o| People Reguirements

Delivery

Metrics &
Reporting

Definition

Operations
¥ of Done

Portfolio and Programme Management

Seoping
Diagram

g
=| Product
& | Customer Uiser Stories,
B & Bups
3 A Changes
a
Team
Formation
Individual
Mastery
Holistic Software Development v1 5

Continuous Top Level Governance

ﬁ%n

Enterprise
Architecture

Investment

i De-Risked

Incremental Business

Benefit Delivered .

Portfolio Rﬂlrsass Stream

—

Product Family - Programme

HSmped did

&1‘;

Product Family Ini mgr+(m Stream

——

Product - Praject

ns:upad T
I

| Taam Devaiopment Straam

. 0 Risked | l: Deliery
“ L | ‘

Product Infegration Stream

Taam Davelopment Straam

7 "
> T r
—_—

%A@Inﬂtsmhva Team(s)

Plan/ N

% Continuous Flow Team(s}

wwsholistic-software com

Product
Warkflow
Metrics

©

Go See

Ralms?ema
Bubble Lip

Figure 3.6.: The ”Big Picture” [47]

| Product F;
Uaul

EZE Integration integration Tested
Environments.

I

. System Tested

Continugus.
Integration
Envirenments
Unit Tested
Development Developed
Environments

£ Holistic Software Cansuling Lid. |5

30

3.11. Large Scale Scrum (LeSS)

3.11. Large Scale Scrum (LeSS)

The Large Scale Scrum Framework is a scaled-up version of the normal one team scrum.
It tries to be as close to one team scrum as possible by introducing the least amount of new
roles, artifacts and processes [40]. LeSS divides the work process into sprints, like normal
scrum. In those sprints however, multiple teams work on the same product, albeit on dif-
ferent product backlog items. The whole project therefore has the same product backlog
and the same product owner (PO). LeSS defines the role of the product owner as having
the same responsibilities as in regular one-team classic scrum: owning the vision for the
total product portfolio, business plan, road map and dates. The focus of the product owner
is return on investment [41]].

As depicted in Figure each sprint starts with a sprint planning meeting 1, in which
the PO and representatives of all teams work out the next items to work on. Thereafter the
sprint planning meeting 2 is held for each team independantly and in parallel, which re-
sembles the normal scrum sprint planning meeting. Afterwards begins the normal scrum
process of daily sprints and product backlog refinement, which can optionally be held
with representatives of all teams. After the sprint is completed, a sprint review is held
with the product owner, members of all teams and relevant customers/users and other
stakeholders. It is recommended that this is held in the form of a ”science fair”: a large
room with multiple areas for the teams to present and discuss their developed items. Fi-
nally an overall retrospective is held to improve the overall system. It is limited to 45
minutes per week of sprint and includes the PO, scrum masters and rotating representa-
tives of each team[20]. For projects incorporating more than eight teams the LeSS Huge
framework was developed.

It is an alteration of the normal LeSS framework accounting for the difficulties that arise
from hundreds of people working together. LeSS Huge splits the project into different re-
quirement areas, each representing a normal LeSS unit [41]. It therefore adds the new role
of area product owner (APO) and the product owner team, which is comprised of all area
product owners and the product owner. The area product owner is the product owner of
an area backlog, which is a view onto the product backlog for one area.

"For large groups, LeSS hits the sweet spot between defined concrete elements and em-
pirical process control.”[20]

31

3. Existing Frameworks

WHY LeSS FRAMEWORK? B,

By SCRUMMASTER
23 O| ¢ FeATURE TEAM
9
W@w @ A\
’
SPRINT REVIEW
NEXT

SPRINT | 00@@9
SPRINT | [“sremy VOQ g Q@) Q P RETROSPECTIVE NILTR
PLANNING 2 COORPINATION (OVERALL RETROSPECTIVE

PREVIOUS PLANNING 1 [/
SERINT PROPUCT

BACKLOG BACKLOG
REFINEMENT

http://less.works

Figure 3.7.: The LeSS framework [20]

3.12. Lean Enterprise Agile Framework (LEAF)

The Lean Enterprise Agile Framework (LEAF) is a scaling agile practice developed by
Satisha Venkataramaiah. It is a systems thinking tool for helping oragnizational agility
[44]. LEAF aims to help organizations find the constraints that are limiting their agile
scaling potential [84]. The Lean Enterprise Agile Framework is based on the following
four principles:

¢ Systems Thinking

* Engineering Practices

¢ Community Practices

¢ Continuous Collaboration

These four principles are used to continuously break constraints in a five step process.
Those constraints are then being changed by protecting or improving, so that they are
no longer a constraint to the scaling. This process is supposed to be run constantly to
iteratively remove all constraints [44].

3.13. Matrix of Services (Maxos)

The Matrix of Services (Maxos) is supposedly used by companies in the silicon valley to
get an advantage over the competition. [76]

Formerly known as the Continuous Agile Framework (CAF), the Matrix of Services is
build on the principle of “divide and conquer”. It divides each product into tens, even
hundreds of small services. As seen in Figure each service is build, tested and operated
by a small team, which is responsible for multiple services [76].

Maxos focusses on:[[75]

¢ Continuous Delivery

32

3.13. Matrix of Services (Maxos)

Frequent releases

Developer responsibility

Feature gates

Delivering user experience instead of requirements

The Matrix of Services is simple to scale: as you add more to your product you add more
services. More services lead to more teams, if the number of services is higher than what
the current number of teams can work on. This leads to the need of teams being truly
multifunctional. Maxos relies on coordination and communication without big meetings
and self organizing teams. It bestows responsibility onto the developer by making Quality
Assessment into a consulting role.

Matrix of Services

Organize by Each team releases
testing as one system when ready

Integration Production
test env. sarvice
Integration Production
test env. sarvice
) Integration i
Service team
'\ service

test env.
Feedback on speed, errors, usage, and requests

Service team

N—

Current
Work

Service team

N—

Prioritized
Backlog

Figure 3.8.: The Matrix of Services [76]

33

3. Existing Frameworks

3.14. Mega Framework

The Mega Framework adds an additional layer to Scrum. Mega is a set of practices and
meetings that provides synchronization to all levels: from the stakeholders over the man-
agement to the team. The teams in Mega are focused on features instead of software com-
ponents. It uses one big Mega backlog, whose prioritization can change the focus of exist-
ing teams.[48] The Mega Framework is comprised of the following eight meetings: [49]

Weekly pre-planning: Held weekly by the product owner and stakeholders to dis-
cuss the prioritized backlog items that will be worked on this week

Sprint Planning: The normal sprint planning meeting.

Mega Planning: This meeting is held by the product owner and members of each
team. Its agenda is the calendar of upcoming releases and the stories of each of
them. It is an opportunity for inter-team communication, where important issues
and details are uncovered and discussed.

Mega Standup: In the Mega Standup, each team is invited to discuss if the sprints
are on time and the impacts if they are not. This mid-sprint meeting is used to syn-
chronize the teams.

Mega Retrospective: The Mega Retrospective is held every six sprints, to identify
global impediments that can not be identified in team retrospectives. The scrum
master and one member of every team bring their prioritized impediments to this
meeting, to find global ones, common to at least two of them.

Sprint Review: The only difference to normal scrum sprint reviews lies therein that
at least one member of each feature team is present in each other teams meetings.

Weekly product owner and scrum master meeting: In this meeting the PO and
scrum masters of each feature team meet to discuss impediments, main features
planned, changes, pending issues, corporate policies and decisions.

Regular Mega meetings with business area: This monthly meeting is held with all
product owners and managers of the operational areas to share the most relevant
points that have to be addressed in the feature teams and the business.

3.15. Nexus

“Nexus is a framework consisting of roles, events, artifacts, and techniques that bind and
weave together the work of approximately three to nine Scrum Teams working on a single
Product Backlog to build an Integrated Increment that meets a goal.”[70]

Nexus scales normal one-team scrum to the level of 100 people. It focusses on depen-
dencies and interoperation between Scrum Teams to accomplish one Integrated Increment
every Sprint. As seen in Figure Nexus scales scrum by adding an integration team,
consisting of a scrum master, the product owner and integration team members. They are
responsible for solving impediments and that the product increment is delivered on time.

34

3.15. Nexus

Therefore they may work in the normal development teams as necessary. Its role is to
coach and coordinate the other teams and to administer the correct implementation of the
Nexus framework [52].

Nexus also uses a new artifact: the Nexus backlog. It is made up of all the items from the
individual team sprint backlog, to highlight dependencies and to give higher transparency.
At the start of each daily scrum the Nexus Daily Scrum is held, which representatives of
all teams attend to discuss new identified dependencies and to share information across
all teams. After each sprint, representatives of all teams have the opportunity to meet and
identify issues that have impacted more than a single team in the Nexus Sprint Retrospec-

tive. [70]

Nexus Sprint Retrospective

=T

Nexus Sprint Nexus Sprint
Planning Backlog

Integrated

Increment

Figure 3.9.: The Nexus Framework [70]

35

3. Existing Frameworks

3.16. Recipes for Agile Governance in the Enterprise (RAGE)

RAGE focusses on allowing quick decisions in accordance to lightweight artifacts created
using minimum resources. It can be employed in any process like agile, hybrid or plan-
driven.[7]

As seen in Figure RAGE distinctively divides into three levels: [82]

¢ Project level The project level describes the team level. It utilizes all roles, artifacts
and meetings and functions like a normal scrum team. Additionally it is recom-
mended that they make use of burn down charts and taskboards to keep track of
their progress.

¢ Programm level At the programm level area product owners and program managers
conduct release planning meetings and release reviews, as they focus on product
readiness and uphold responsibility for their area of the product.

¢ Portfolio level In RAGE, the portfolio level focusses on decision and planning. Port-
folio, area product owners and program managers conduct portfolio grooming meet-
ings to develop the portfolio backlog. This level is used to determine new initiatives,
funding decsicions, monitoring and for quality assessment.

As the name suggests, RAGE provides the company with many different “recipes” to solve
common problems with scaling (agile) at the different levels, which still allow for cus-
tomization, while providing enough clear information to have them implemented easily.
Those recipes are not only made to be tailored to the specific environments the company
may face, but RAGE also provides guidance on how to create new recipes on your own.
[82]

36

3.17. Resilient Agile

pNCE
e
\V{,f? .
, L. 0
© 4 3
O 0 \
'.,‘ = “‘ \ PROGRAM LEVEL
o e P O Gross-team Decisions and Planning
- m-w« . m““ - -
b e @ o o* O
L] e
w S
S -
<
g
E
[#]
0]
2
O,
-5

S PROJECT LEVEL
‘g\\ Team Decisions and Planning

Figure 3.10.: The Recipes for Agile Governance in the Enterprise (RAGE) [23]

3.17. Resilient Agile

"Resilient Agile (RA) is an attempt to put the necessary engineering back into software
development without losing the ”get to code early” focus that agile gets right. RA is based
on a time-tested method (ICONIX/DDT) of developing an initial problem domain model,
then decomposing a system into collaborating use cases and elaborating each use case by
doing a conceptual models, views, controllers (MVC) decomposition.”[33]

Resilient Agile is a process used to scale agile by introducing a minimum amount of
planning and by splitting the project down use cae boundaries, to enable parallel work. Re-
silient Agile implements a complete sunny-day/rainy-day description for all use cases, to
add resilience to the software designs. By combining a UML-design approach with exten-
sive prototyping RA is both feedback-driven and plan-driven at the same time, and there-
fore minimizes planning costs. It hits the sweetspot between over-planning and under-
planning. Resilient Agile does however not specify a management process for delivering
code, but focuses strictly on the engineering design of software deveopment. It is possible
to use RA with two-week scrum sprints. If the sprint/backlog paradigm is desired, it is
straightforward to populate the backlog with controllers from the MVC use case decom-
positions. At last, Resilient Agile attempts to eliminate ”"ceremony”(e.g. meetings) from
the development process. However, RA recognizes the need for organized communication
between team members, introducing a 90 minute standup meeting once every week.[69]

37

3. Existing Frameworks

3.18. Scaled Agile Framework (SAFe)

The Scaled Agile Framework version 4.5 is a comprehensive framework for scaling agile
accross the 4 different levels of an organization, as depicted in Figure Each level
carries its own activities and all levels are tied together. SAFe integrates Agile and Lean
practices at all four levels.[8]

The first of those levels is the team level. It regulates the different agile teams and the
development process, which is modeled after scrum, but utilizes XP and Kanban.

Above the team level is the program level, which introduces the concept of the agile release
train (ART), comprising of four two-week iterations followed by a three-week Hardening,
Innovation and Planning iteration, consisting of 50-124 people.[18]

Teams are dedicated to the ART and synchronously develop and release potentially ship-
pable increments(PSI). To help them accomplish this, the architectural runway is devel-
oped, to support the development teams with the needed infrastructure.[83]

The large solution level combines different ART into a solution train, therefore allowing
hundreds of people to work together on one large and complex product. This level fo-
cusses on capturing requirements in solution intent, the coordination of suppliers, and the
need to ensure compliance with regulations and standards.[34]

Above all, the portfolio level focusses on the principles, practices, and roles needed to
initiate and govern a set of development Value Streams (solution trains). ”This is where
strategy and investment funding are defined for value streams and their Solutions. This
level also provides Agile program guidance and Lean governance for the people and re-
sources needed to deliver solutions.”[35]

These four levels, as of SAFe version 4.5, can be combined in four different ways to cater
to the specific needs of different organizations:[34]

I. Essential SAFe:
Essential SAFe consists of the team and programm levels. It is the heart of SAFe and
the starting point for all organizations looking to scale agile using SAFe.

II. Portfolio SAFe:
Portfolio SAFe adds the portfolio level to essential SAFe and is suggested for start-up
like companies of up to 125 employees working on the same product, as it provides
portfolio strategy and investment funding.

III. Large Solution SAFe:
Large Solution SAFe is designed for enterprises that are building large and complex
solutions, but do not require expertise at the portfolio level, like aerospace, defense
and government organizations.

IV. Full SAFe:
Last but not least, Full SAFe supports building large, integrated solutions that re-
quire hundreds of people or more. It is used for scaling the whole organization, from
the team up to the portfolio level.

38

3.19. ScALeD Agile Lean Development (ScALeD)

&

Metrics

(]
ana
Shared
Services

9
s
CoP

<

Milestones

Roadmap
Vision

m

System
Team

g

Lean UX

Figure 3.11.: The Scaled Agile Framework 4.5 [34]

3.19. ScALeD Agile Lean Development (ScALeD)

c
— \
lll Enterprise) o .‘-E“ = = PORTFOLIO
Epic Enterprise < NFR,
Owners Architect Backlog
== Strategic 0
i== Themes [YIVSN S Loan Budgets. Budgets KPls
Lean
o Portfolio Mgmt Value Streams
—l Coordination |
Solution Solution
° . I3 : (wsor @ Souti lution O LARGE SOLUTION
[™] (V] Economic 8 Gy
Solution Solution Framework € — B B E l]
Arch/Eng Mgmt X NFRs [l Capablllty Customer KA
= Compliance Backlog
= - oo
STE Y] MBSE SOLUTION
LT SetBased = -:m_—
Solution Context
Continuous Dellvery Plpellne PROGRAM
0 enees beeen, e -
[} ! Business . — AGILE RELEAlSE TRAIN \ e
- M Owners AT LT T : DevOps
System Product Continuous Continuous cantmuous Release * Culture
Arch/Eng Mgmt weor i ion Deploy on Demand * Automation
< - Pl Objectives * Lean Flow
[] S) e ® « Measurement
RTE g = System Demos + Recovery
X NFRs ? ? 1 v R
Backlog = =3 m =4 Architectural
‘= [l Enabler | g EME 5| Runway
£ £ £
Kl = T — s
o o a
o o o
‘. & XP .:h" . = T Goals Iterations B B TEAM
* Execute = = <
pugga M, e @ ED DD DHED D D D]
Dev T > S s ° —
evTeam guner Sorom «Retro NFRs S g g -
° 2 . |Enabler (SN £ —
1] 3 - = . £ | E —
swW = = u s U g —
Scrum
Fw Master = - \i‘ ? D‘ D D D‘ g’ D D D D P ? Built-In Quality
HW . -— NFRs o o a
: Kanban Backlog Develop on Cadence 45
Agile Teams — :
9 98 Lean-Agile — Core Il Lean-Agile .= SAFe *===3 Implementation @3 oo IR 20”5“'““9“6‘y
Leaders — Values =- Mindset = Principles (C—-. Roadmap ’

Scaled Agile Lean Development is a set of principles and values that aims to scale agile
by changing the culture of the enterprise. ScALeD focusses on trying to incorporate the
employees into the process early, on teaching management the fundamentals of an agile
culture and on reflecting over processes and practices.[2]
To achieve this, ScALeD introduces thirteen principles, grouped into five categories:[1]

I. Excited customers:

¢ Define value and how it is created

¢ Produce small, deliverable increments

II. Happy and productive employees:

¢ Create independent, cross-functional teams

¢ Authorize and empower your employees

III. Global optimization:

¢ Create transparency in all directions

e Prefer direct communication

39

3. Existing Frameworks

¢ Create flow and rythm

IV. Supportive leadership:
¢ Set objectives and provide support

e Decentralize control structures

¢ Cultivate the change and change the culture

V. Continuous Improvement:

¢ Inspect and adapt the product

¢ Inspect and adapt the development process

¢ Inspect and adapt the organisation

These thirteen principles are then applied using the Agile Scaling Cycle (Figure [3.12).[67]
As you can see in Figure it is a three step cycle, starting with “reduce dependencies”,
where the dependencies between the development teams are reduced as much as possi-
ble. After that, the teams have to coordinate the remaining dependencies that could not be
removed. During work in the second step, (organisational) problems might occur, which
get removed in the third step, before the cycle continues again.

Agile

Scallng reduce
Cycle // dependencies

——
1
| develop

| organization

L

Scaled principles: S—

scaledprinciples.org

e

principles

Figure 3.12.: The Agile Scaling Cycle[68]

40

3.20. Scrum at Scale (S@S)

3.20. Scrum at Scale (S@S)

Scrum at Scale is a minimal expansion on scrum, to scale it to the enterprise level. It fo-
cusses on keeping the modularity and the inherent object orientation of scrum. Scrum at
Scale concentrates only on the pure scaling part of scaling agile practices. It does not give
great detail on problems of distribution of teams and saturation of scrum in the company
culture. Like scrum, the Scrum at Scale framework is modular.[66]

As seen in Figure [3.13| S@S consists of ten modules, linked in a Product Ownership and
a Scrum Master cycle. Each module has defined goals, required input and expected out-
comes, depending on its role. Each module is maintained at at least one level of the or-
ganization (Team, Business, Enterprise), where the responsibility for the module lies. The
actual method to achieve the goals of a module are interchangeable, as long as they fulfill
the defined goals with the predetermined input, leading to the desired output.[19]

Organization Level ° °

. Enterprise [] a Metrics &

Product Transparem:y
Business Unit Ownership ,

Cycle 4
O Team
. Strategic Vision . o

Backlog — Product & Release
Prioritization Feedback

L]

o
. Cross-t Continuous
Backlog Decomposition g c mc;“' sam ¢ Improvement &
oordination S

& Refinement Impediment Removal

o (e}
Release : > Release
Planning Management

o]

3

Team-Level
Secrum Process

Figure 3.13.: The Scrum at Scale framework [19]

41

3. Existing Frameworks

3.21. Scrum-of-Scrums (SoS)

Scrum of Scrumes, also called Meta Scrum, is used to scale normal scrum by introducing, as
the name suggests, a new scrum meeting: the Scrum of Scrums (also called Meat Scrum).
(6]

As seen in Figure SoS consists of each team sending an “ambassador” to a second
(daily) scrum meeting, where the ambassadors of each scrum team, using a backlog of
their own, discuss their teams’ progress as well as trying to reduce overlap between the
teams backlogs, as well as the coordination of the different scrum teams. This method
can be scaled indefinitely, by creating new Scrums of Scrum of Scrums, where the teams
of team-ambassadors choose new ambassadors, which will meet with their respective
counterparts.[80]

These Meta-Scrums are ment to be a synchronization meeting between the teams, not a
status reporting meeting for management though.[58]

The size of SoS meeting participants, as well as the meetings duration and frequency are
not written in stone, but variable. In practice, the most common approach is a 30-60 minute
SoS daily-meeting with 5-9 participants.[58]

SCRUM OF SCRUM OF SCRUMS

2 o
Ci: &

2 9 2. 9 s 9 ° 9 s 9
PN AR oMM,) (4,0,
ad nd md [V IRV YV | [V IV | (Y B N Y

2 9 2 2 2" 2 2" 9 2" 9
-

SCRUM SCRUM SCRUM SCRUM SCRUM SCRUM
TEAM A TEAM B TEAMC TEAMD TEAME TEAM F

Figure 3.14.: The Scrum of Scrums structure[4]

42

3.22. Spotify Model (Spotity)

3.22. Spotify Model (Spotify)

The Spotify Model is the method deployed at Spotify to manage multiple agile teams in
different locations working on the same product. Its focus lies on the structuring and co-
ordination of teams.[25]

As seen in Figure a company using the Spotify Model is composed of squads. Those
squads are comparable to scrum-teams, in that they are cross-functioning, self organiz-
ing teams with a product owner, working autonomously on a specific part of the product.
These squads can however employ any method they see fit to develop their part of the
product (like Scrum, Kanban, etc.).[9]

Squads working in a related area are grouped into Tribes. Each Tribe is co-located and not
bigger than Dunbars Number (100 people) and is managed by a tribe lead, who is respon-
sible for providing the best possible habitat for the squads within the tribe. To deal with
dependencies between the squads and as a synchronization tool, “on demand” Scrum of
Scrums are held.[37]

To make use of economies of scale, chapters and guilds are formed, to profit from the expe-
rience of others in the same field and to foster communication between the teams. A chap-
ter consists of all employees with similar skills working in the same general competency
area, within the same tribe. Each chapter meets regularly to discuss specific challenges.
The leader of each chapter takes on “traditional manager responsibilities”, such as setting
salaries and developing people, whilst still being involved in day-to-day work.[37]
Guilds span across tribes and can best be described as “interest groups”. Guilds often in-
clude all chapters specific to the corresponding interest, like testing, agile coaching, etc.
but are not limited to them, as anyone can join a guild. [37]

Chapter L |

) |
Chapter[1 ‘

\ Squad Squad Squad Squad Squad Squad squad Squy

Figure 3.15.: The Spotify Model [37]

43

3. Existing Frameworks

44

Part IV.

The Evolution of Scaling Agile
Frameworks

45

4. The Evolution Of Scaling Agile
Frameworks

The following chapter includes the expert interviews we held with the methodologists of
the scaling agile practices we discovered in part III: Existing Frameworks. We start by
presenting the questionnaire we used to conduct the interview online, as described in our
research process.

The insights and information we gathered from this will then be presented. First in the de-
scriptive statistics about the survey, then in the evaluation of the interview. Finally we will
present an Evolution Map to visualize the chronological evolution of the identified prac-
tices, answering the second research question: “"How did scaling agile practices develop?”
and several Foundational Methods and Practices Maps, showcasing the relations between
the practices and agile methods, visualizing the answer to the third research question:”On
which foundational methods and practices are scaled agile practices based on?”

4.1. Questionnaire

As recommended by Punter et. al.[61], to create our survey we first defined the goals of
the interview, which were:

I. Find out general information about the scaling agile practice from the view of its
developers

II. Getan overview over all releases and chronological data about the practice, even the
”unofficial” ones

III. Gather information about the agile and lean foundations of the practice
IV. Get the developers view on the combination of his practice with others

These four goals were then transformed into a set of 15 questions, some of which were
further split up to ease the interview process and to gain more detailed information. Ad-
ditionally some questions included follow up questions, depending on the answer of the
developer, therefore resulting in a total of 22 questions asked via the unipark tool ”quest-
back” [31], with wich the interview was conducted. All 22 questions asked can be found
in the appendix of this thesis (A.T).

4.2. Descriptive Statistics

As seen in Table of the 21 invited main-developers of our identified scaling agile prac-
tices, 12 accepted the invitation and started the survey, resulting in a coverage rate of

47

4. The Evolution Of Scaling Agile Frameworks

Total number | Coverage Completion Average time | Duration
of developers | Rate Rate to complete
21 | 57.14% | 23.81% | 35 min. | 58 days

Table 4.1.: Statistics of the survey

57.14%. Of those 12 participants 5 completed the whole survey, resulting in a completion
rate of 23.81%.

The survey took the participants around 35 minutes to complete on average (arithmetic
mean) and was held from the 24th of august 2017 to the 20th october 2017, resulting in a
survey duration of 58 days, or roughly two months.

On the 1st of october 2017, a reminder was send to all developers that did not answer the
survey, to increase the coverage rate. The developers of the following five Scaling Agile
Practices completed the survey and are the focus of the following sections: Holistic Soft-
ware Development (HSD), the Mega Framework (Mega), LargeScaleScrum (LeSS), FAST
agile (FAST) and the Enterprise Transition Framework (ETF).

4.3. Evaluation

The answers to questions XIII to XVII of the survey can be found in tables to pro-
viding us with the insight into the foundational methods and practices of the Scaling Agile
Practices. The data from these tables was used to generate the corresponding foundational
methods and practices maps (Fig.[4.2)to [4.6), which are described in part

In this section we will analyse the more openly asked questions of the survey and provide
an insight into the minds of the main developers of ETF, LeSS, HSD, FAST and Mega:

Agile Activities
ETF | FAST | HSD | LeSS | Mega
Agile Portfolio Planning || X - X X X
Daily Standup X - X X X
Iteration Planning X X X X X
Iteration Reviews X X X X X
Product Roadmapping X - X X X
Release Planning X - X X X
Retrospectives X - X X X
Story Mapping X X X X -
Team-based Estimation X - X X X

Table 4.2.: Agile Activities

48

4.3. Evaluation

ETF: The Enterprise Transition Framework, as described by its main developer, provides
a way to design organizations. These can be organizations of any industry, although more
traditional sectors where all the work can be predetermined and executed without any
mistakes, may be better off with automation. Following this, ETF challenges the popular
belief that organizations are machines producing or delivering a product, but proposes
that they are more networks of competing interests. ETF therefore focusses on a natural
systemic view.

The Enterprise Transition Framework employs safe-to-fail projects to foster complexity
awareness and discovery, 6 principles to guide change and organizational design and a
library of successfully used patterns to scale agile.

The aim here is to change the culture of the organization and to align culture and strategy,
but it also tries to keep the culture heterogenised enough to foster innovation.

The major challanges, problems and misunderstandings that may erupt during the appli-
cation of ETF are listed as: a lack of mindset change, the fall back to old plan and execute
approaches and not allowing mistakes to happen and not to create safe-to-fail environ-
ments. It is also mentioned that it requires the understanding of Lean, Agile and Cynefin
(a sense making framework for managing complexity), which takes a lot of time.

In summary, ETF is a Set of Principles designed to change the culture of an organization
into a self-improving and experimenting one that is aligned with the strategy of the orga-
nization, independent of a specific practice to develop software, which can be combined
with different other Scaling Agile Practices (Figure [4.6).

Agile Artifacts
ETF | FAST | HSD | LeSS | Mega

Backlog Items
Information Radiators
Kanban Board

Product Backlog

Product Increment
Product Roadmap
Product Vision Statement
Release Plan

Sprint Backlog

User Stories

< X
> X

>
XX X X X X

XX K KKK KRR K
XX X KK

XX KKK X K
XX X

Table 4.3.: Agile Artifacts

49

4. The Evolution Of Scaling Agile Frameworks

LeSS: As described by its developer, the idea behind LeSS is creating an organizational
design, strongly based on Scrum & Lean Thinking, that for the case of many teams work-
ing together on one product, is consistent with highest adaptiveness/agility and working
on highest value. All of this in the context of not knowing for sure what is highest value, a
changing environment which can lead to changing highest value and needing an empirical
system for product and processes.

The goals are to achieve low cost of change and low transaction cost for a delivery cycle
through high adaptiveness/agility and to be working on highest value.

To achieve this, LeSS changes the organization and removes traditional elements like port-
folios and programs and utilizes Scrum as the main development method.

Major challenges in adopting LeSS are considered to be following Larman’s five Laws:[39]

I. Organizations are implicitly optimized to avoid changing the status quo middle- and
first-level manager and ”specialist” positions and power structures.

II. As a corollary to (I), any change initiative will be reduced to redefining or overload-
ing the new terminology to mean basically the same as status quo.

aaii

III. As a corollary to (I), any change initiative will be derided as “purist”, “theoretical”,
“revolutionary”, “religion”, and “needing pragmatic customization for local con-
cerns” - which deflects from addressing weaknesses and manager/specialist status

quo.

IV. Asa corollary to (I), if after changing the change some managers and single-specialists
are still displaced, they become ”coaches/trainers” for the change, frequently rein-
forcing (II) and (III).

V. Culture follows structure.

As far as incompatibility is concered, LeSS lists local optimization, single-function teams/roles,
projects and programs, project and program management and annual operating budgets
driving annual release plans as the main incompatibilities.

In summary, LeSS provides a lightweight organizational design to change the software
development process as well as the whole organization, with a strong focus on systems
thinking.

50

4.3. Evaluation

Agile Methods
ETF | FAST | HSD | LeSS | Mega
Agile Software Development X X X X X
Adaptive Software Development - - - - -
Agile Modeling - - X - -

Agile Unified Process - - - - -
Disciplined Agile Delivery - - - - -
Dynamic Systems Development Method -
Extreme Programming X - - X -
Feature-Driven Development

>
>

Iterative Development

Kanban - - - - -
Lean Software Development X - X X -
Rapid Application Development - - - - -
Scrum X - X X X
Scrumban - - - - -

Table 4.4.: Agile Methods

HSD: The idea behind HSD is stated as:”Combining the philosophies of agile and lean
with organisational workflow to achieve whole organisation agility. HSD bridges the tradi-
tional business management world with software agility in teams, without compromising
the goals of either.” As seen in Figure HSD, like ETF, can be combined with other
Scaling Agile Practices, as it does not specify a specific method of software development.
Its focus is on cross-team integration, delivering value and embracing change throughout
the whole business. HSD has significant architectural depth, psychology-based change
practices and is less about planning than other models. It covers everything from business
strategy to version-control.

HSD presents improved flow throughout the business, making work healthier, faster, cheaper
and happier as its main goals.

Big issues in adoption are trying to have the organization adopt all of HSD, as it is more
a library of guidance rather than a method to adopt and that its comprehensiveness and
that everything in it is linked together.

To provide a summary, HSD provides organization-wide positive, people-centric change
wich can be combined with other Scaling Agile Practices.

51

4. The Evolution Of Scaling Agile Frameworks

Agile Practices
ETF | FAST | HSD | LeSS | Mega

>

Acceptance Test-Driven Development
Agile Modeling

Agile Portfolio Planning

Agile Testing

Agile/Lean UX

Behavior-Driven Development
Coding Standards

Continuous Deployment

Continuous Integration
Cross-Functional Team

Dedicated Product Owner
Domain-Driven Design

Iterative and Incremental Development
Open Work Area

Pair Programming

Planning Poker

Product Roadmapping

Refactoring

Single Team (integrated dev & testing)
Story-Driven Modeling

Test-Driven Development
Timeboxing

Unit Testing

User Story Mapping

Velocity Tracking

XX X X X

XXX X XXX XX

XXX X X
XX X X
XXX XXX X XXX

KX XX 1 XXX X X X X
X X v X X X X X
pes XXX v X !

1 X XX X > 1 X o

e
HKHXXHEXHXHEXXHEKXHK XXX XX XXX XXXNXXX

b

Table 4.5.: Agile Practices

FAST: “The idea behind FAST Agile is to move teams that need to cooperate into a net-
work. This network becomes a complex adaptive system and self-organizes people around
work by means of Open Space Technology.” FAST focusses on distributing work across
multiple teams and keeping them in synch with each other in an agile way, rather than us-
ing hierarchical centralized mechanisms commonly used in command and control struc-
tures.

It does so to deliver rapid releases of production code, short feedback cycles, empowered
and highly motivated employees, cross training of skills, improve natural leadership, in-
novation, happiness and to lower the headcount.

As seen in Table FAST scales only to the Program and Team level, providing a focus
on delivering software in an agile manner, rather than changing the whole organization.
This is also reflected in the challenges that arise in adopting FAST: FAST has no scrum
master role, so it’s often rejected where Scrum is strongly embraced and entrenched. Also,
FAST creates a vacuum where work happens through self-organization, leading to a chal-
lenge for people that are used to working in an environment of command and control.

52

4.3. Evaluation

And maybe the biggest benefits as well as problems arise from the fact that FAST requires
co-location.

In summary, FAST is a mechanism organizing people in self-organizing networks, using
Open Space Technology, to increase agility in the software developing process, and can be
used as a template by other Scaling Agile Practices like ETF and eScrum.

Agile Principles

ETF | FAST | HSD | LeSS | Mega

Build Quality In

Continuous Attention to Technical Excellence
Create Knowledge

Defer Commitment

Deliver Fast

Eliminate Waste

Face-to-Face Conversation

Frequent Releases

Optimize The Whole

Regular Self-Reflection Builds the Best Teams
Respect People

Statisfy the Customer Though Early Delivery
Self-Organization Leads to the Best Outcome
Short Iterations

Simplicity

Trust and Motivate Employees

Welcome Change Requirements

Working Software as Primary Measure of Success

XX X X X X

X X

KX XXX XXX XX XX XXX XX
X X X

HKHXHXXX XXX XX XX XXX XXX

KX XX XXX XXX XX XXX XXX
HKHXHXXHX XXX XX XX XXX XXX

<

Table 4.6.: Agile Principles

53

4. The Evolution Of Scaling Agile Frameworks

Mega: The main goal of the Mega framework was stated to be to keep information flow-
ing among teams, to anticipate issues, leverage synergies and help each other. It can ac-
commodate many different agile processes inside and is highly adaptable, resembling in
some ways the Spotify Model. In Mega, teams deploy their changes independently, while
focussing on the essence of Mega: communication.

Benefits of using Mega are listed as: higher levels of communication and overall alignment,
less incompatibilities, less integration errors, less defects and less rework, more perceived
value of product changes and faster spotting of lesser value changes and higher team co-
hesion.

Mega scales up to the Portfolio level (Table [£.7), providing a framework that scales with
the underlying architecture and that applies to teams and their activities.

The Mega Framework can be combined with most lightweight practices, since the Mega
Framework just goes into more detail on how the ceremonies should happen and their
purpose. As Scrum-of-Scrums was the inspiration for Mega Framework, combining the
two is seen to be a good idea by the main developer. The software development process in
Mega is also variable, as often Kanban is used, but Scrum and others can be used as well.
Overall Mega delivers tools to better define the purpose and procedure of ceremonies from
the team to the portfolio level and can be used in such a manner by frameworks like ETF
and HSD.

Scaling
ETF | FAST | HSD | LeSS | Mega
Team X X X - -
Program X X X - -
Portfolio X - X - X
IT Organization || X - X - -
Enterprise X - X X -

Table 4.7.: The Scale of Scaling Agile Practices

54

4.3. Evaluation

In this section we gave an insight into the mind of the methodologists of the Enterprise
Transition Framework, LeSS, Holistic Software Development,FAST Agile and the Mega
Framework, showing their thoughts behin their Scaling Agile Practices. We showed, and
will show in greater detail in section that the five Scaling Agile Practices we gathered
data from have a lot in common. While the goal of all five Scaling Agile Practices is to
scale the agile principles to big organizations, the way they achieve this is unique to each
and every one of them. While some of them change the whole organization from top to
bottom and leave no stone standing, others fit into a specific part of the organization and
perform their change there. Despite their commonalities, there are big differences in scale,
applicability with other frameworks, the software development process, and the overall
focus of the Scaling Agile Practice. Although the way they achieve their goal is different,
the problems they face are mostly the same: an overall change resistance, best described
by the five laws of larman[39].

55

4. The Evolution Of Scaling Agile Frameworks

4.4. Evolution Map

In this section we present the Evolution Map, answering our second research question
"How did scaling agile practices develop?”. We take a look at the starting points of each
Scaling Agile Practice, their development over the years and where they currently are,
as well as provide an overview over Large-Scale Agile in the whole. Based on the work
of Uludag et al.[54] and the results of our survey, we visualized all the chronological in-
formation about the identified scaling agile practices in the Evolution Map (Figure [4.1),
showcasing the start of development, the different verions since then, the current version
and the influences that drove the development of certain versions.

From this we can clearly see that the roots of Large-Scale Agile Development lie way back
in the 1990s with the development of the Crystal Methods and DSDM. After the publica-
tion of the Agile Manifesto in 2001 [24], we can see an increase in the early and mid 2000s.
With Agile Practices as a whole picking up steam and getting more and more traction in
the software development community over the years, we can clearly make out a boom of
Scaling Agile Practices in and around 2014. We can determine that of all practices that
took part in our survey, LeSS is the oldest, having been released in 2005. As stated in our
survey, LeSS will always be only one release. ”As with scrum, the focus is not in changing
large-scale scrum (which is simple), but in changing the organization.” HSD and Mega on
the other hand follow a different approach, as they have many releases, being in a state of
constant self-improvement, adaption and change.

supercaads

Legend: Start of Current
o development version
=5

. WHW
EEREEEEE & wersion released
Crystal >Crystal
DSDM >DSDM »DSDM
eScrum
S0S -, Les5S
ASSF
“““-_“‘ 20 P 30 'D'a,-r :_.o::"‘ SAFE L3
DA2.0
e Spotifyrc-...__
-hq*lf.‘_eqﬁ*h‘e;a'J;“%I@l
RAGE "y
FAST
sS@s
(ETF } » ETF
ScAleD
XSCALE
Maxos
|£JE‘>HSD1.5
Nexus
LEAF
RA
e ..
1992 1994 1996 1998 2000 = 2002 2004 2006 2008 2010 2012 2014 = 2016

Figure 4.1.: The Evolution Map

56

4.5. Foundational Methods and Practices Maps

4.5. Foundational Methods and Practices Maps

Based on the information gathered in the survey, we set out to illustrate the differences
and dependencies in the Scaling Agile Practices we got information from. In the following
Circos-Tables [38], we show the foundational Methods, Practices, Principles, Artifacts and
Activities that these Scaling Agile Practices are based on. The direction of the relationships
go from the Scaling Agile Practice to the base of the Methods /Practices/Principles/ Artifacts
or other Scaling Agile Practices that they have a relation with.

Figure 4.2.: The Methods Map

4.5.1. Methods

Figure [4.2]shows the agile methods the five Scaling Agile Practices in our survey are based
on and, as all following Figures, the relationship between the Scaling Agile Practices. In

57

4. The Evolution Of Scaling Agile Frameworks

this Figure we can see that HSD and ETF can be combined with Mega, LeSS or FAST, to
adapt them to a Large Scale organization. We can see that ETF is the only practice using
Iterative Development, while the only method FAST is based on is Agile, which is the
foundation of all five Scaling Agile Practices.

58

4.5. Foundational Methods and Practices Maps

;
H
2

@t

serStoryMapping
ugaLwn

Vebocit Tracking

Figure 4.3.: The Practices Map

4.5.2. Practices

Being in stark contrast to the smaller Methods Map (Fig. in terms of size, the Practices

Map shows that FAST is based on the least practices, while Velocity Tracking is the
least employed practice. Here we can again see the relations between the Scaled Agile

Practices with Mega being able to make use of the LeSS framework.
59

4. The Evolution Of Scaling Agile Frameworks

BuiklQuaiy
Aty
“ToTechg,

P

M‘ﬁ‘
5
e
== !
- Av 1A~ &
AT,
Sy T "_";"- RegulaSlReflc
WD

RespectPeapye

%D,%,

Figure 4.4.: The Principles Map

4.5.3. Principles

While the two afore mentioned maps show clear differences in employed methods and

practices, the Principles Map (Figure shows that all five Scaling Agile Practices have
roughly the same amount of foundational principles, while no principle is the basis of less

than four Scaling Agile Practices.

60

4.5. Foundational Methods and Practices Maps

Figure 4.5.: The Artifacts Map

4.5.4. Artifacts

Displaying the different artifacts used in our five Scaling Agile Practices, the Artifacts Map
(Figure shows that the only artifact used in FAST are Information Radiators, while ETF
uses all ten artifacts identified. One can also see that Kanban Boards are only employed in
ETF and the Mega framework.

61

4. The Evolution Of Scaling Agile Frameworks

K
3
H
2
-3
<

Figure 4.6.: The Activities Map

4.5.5. Activities

The Activities Map (Figure at last shows a fairly even distribution of agile activi-
ties, where no activity is used by less than four Scaling Agile Practices. It also reveals
that, while all other Scaling Agile Practices employ almost all of the agile activities, FAST
only employs Iteration Planning, Iteration Reviews and Story Mapping, while leaving out
Team Based Estimation, Retrospectives, Release Planning, Product Roadmapping, Daily
Standups and Agile Portfolio Planning.

62

Part V.

Discussion

63

5. Discussion

5.1.

Key Findings

We identified the following 22 different Scaling Agile Practices in October of 2017:

L
II.
111
Iv.

VL
VIL
VIIL
IX.

XI.
XIL
XIIIL
XIV.
XV.
XVL
XVIL
XVIIL
XIX.
XX.
XXIL
XXIL.

Agile Software Solution Framework (ASSF)

Crystal Family (Crystal)

Disciplined Agile 2.0 (DA 2.0)

Dynamic Systems Development Method Agile Project Framework for Scrum (DSDM)
Enterprise Scrum (eScrum)

Enterprise Transition Framework (ETF)

Event Driven Governance (EDG)

eXponential Simple Continuous Autonomous Learning Ecosystem (XSCALE)

FAST Agile

. Holistic Software Development (HSD)

Large Scale Scrum (LeSS)

Lean Enterprise Agile Framework (LEAF)
Matrix of Services (Maxos)

Mega Framework (Mega)

Nexus

Recipes for Agile Governance in the Enterprise (RAGE)
Resilient Agile (RA)

Scaled Agile Framework 4.5 (SAFe 4.5)
ScALeD Agile Lean Development (ScALeD)
Scrum at Scale (S@S)

Scrum-of-Scrums (SoS)

Spotify Model (Spotify)

65

5. Discussion

Through the survey and the literature review we conducted, we were able to locate all 22
Scaling Agile Practices and their evolution on a Time Map (Figure [4.1).

Further we were able to construct an Activities (Figure [4.6), Practices (Figure [(.3), Ar-
tifacts (Figure [4.5), Methods (Figure and Principles Map (Figure to showcase
the foundational methods and practices of the Enterprise Transition Framework, Holistic
Software Development, FAST Agile, LeSS and the Mega Framework.

We gathered an insight into the minds of the methodologists of those Scaling Agile Prac-
tices and the thought process behind them. We discovered that, while most of them share
a lot of commonalities, each adresses a certain problem a certain way, that is unique to
each Scaling Agile Practice. We also could pinpoint which Scaling Agile Practices can be
used by which one, expanding them or serving as a template for the software development
process.

66

5.2. Limitations

5.2. Limitations

In this section we highlight the limitations of this work and its applicability. First, there is
the obvious limitation that this thesis only provides a snapshot of the Scaling Agile Prac-
tices “marketplace” in 2017. In the future there may be new Scaling Agile Practices and
old ones might no longer be supported or be used.

Secondly, although we conducted the literature review with utmost rigour, we might not
have identified all Scaling Agile Practices, as they might have fallen through our defined
search terms, have been published in databases or libraries where we did not have access
to, or might be published in languages other than english and german and were therefore
out of our reach.

To gain more access to the ideas of the developers of the Scaling Agile Practices and trans-
port our goals accross to the interviewee, an expert interview in the form of an actual
interview via telephone or in person might have been better than an online survey.

In the survey, we were limited in the amount of interviewees to one per Scaling Agile
Practice, reducing the validity and chance of response. This lead to a rather low sample
size of 5 Scaling Agile Practices out of 22, whose data would then be used. Due to time
constraints, we could only send out one reminder, instead of the recommended three, and
were only able to hold the survey over 58 days from the months of august to october.
Another reason for the low completion rate of 23.81% might have been the high amount of
questions that were required to be answered, as well as the rather long duration of around
35 minutes on average to complete the survey.

The therefore following description of the Scaling Agile Practices and their foundations
was based mainly on the answers given by the developers. Not in the scope of this thesis
was the comparison or the categorization into groups according to different criteria.

With the Evolution Map only showcasing years, a lot of information was lost in favor of
readability and clarity.

Lastly, a more detailed answer of the second , as well as the answer to the third research
question was only based on the answers provided by the methodologists in the survey,
resulting in research question three only focussing on five Scaling Agile Practices instead
of all 22 identified Practices.

67

5. Discussion

68

Part VI.

Conclusion

69

6. Conclusion

6.1. Summary

In this thesis we first defined its scope by asking the following three research questions:

I. Which scaling agile practices exist?

II. How did scaling agile practices develop?

III. On which foundational methods and practices are scaled agile practices based on?

These research questions were then answered by conducting an extensive literature review
in five steps, as recommended by Brocke et al. [86]. Through this we identified 22 different
Scaling Agile Practices in 2017.

After the literature review was conducted, an expert interview of the form of an online
survey of the main methodologists was conducted. This survey was held over the course
of two months, following the principles of Punter et al. [61]. It resulted in a 23.81% com-
pletion rate, with the completing Scaling Agile Practices being the Enterprise Transition
Framework, LeSS, Holistic Software Development, FAST Agile and the Mega Framework.
These five were then used to answer research question II and III. Following the data gath-
ered by the literature review and the survey, a Time Map showcasing the Evolution of all
Scaling Agile Practices was constructed.

Focussing on the five Scaling Agile Practices ETFE, LeSS, HSD, FAST and Mega, we show-
cased the idea behind these Scaling Agile Practices according to their developers. We
showed the main challenges these Practices face in the eyes of their creators, as well as their
relationships between each other, as well as to the methods, artifacts, activities, principles
and practices they are based on. This information was then visualized in five Foundational
Maps.

71

6. Conclusion

6.2. Outlook

We hope that this work will serve as a guide to Scaling Agile Practices, providing an
overview over what is out there and over the matureness of these Practices, as well as
their foundations. We realise that in order for this to be the case, the answers to the re-
search questions asked in this thesis, especially the first, need to be updated in the future,
as this work is only a snapshot of 2017. In regular intervals a literature review using the
same process could be used to keep the list of Scaling Agile Practices up to date.

An improved version of the survey could be established with an ongoing duration, to gain
insight into each new Scaling Agile Practice. In order to get this information from existing
Scaling Agile Practices that did not take part in our survey, a different approach in doing
so could be used.

Another way to build on this thesis would be to get the view of practitioners of the Scaling
Agile Practices that were identified in this work, and compare them with the expectations
of the methodologists. One could also provide a comparison of the identified Scaling Ag-
ile Practices expanding on the similarities and differences we could identify, to provide a
guide for companies to choose a Practice that fits their needs. This comparison could also
be used to group the frameworks according to empirically chosen criteria.

72

Part VII.

Appendix

73

A.

Al

Appendix

Questionnaire questions

The following are all 22 questions that were used in the questionnaire of scaling agile
practice developers:

L
IL.

III.
Iv.

VL

VIL
VIIL
IX.

XI.
XIL

XIII.
XIV.
XV.
XVL
XVIL
XVIIL

Which scaling agile practice did you develop?

What is the idea behind your scaling agile practice and what problems does it mainly
address?

How would you categorize your scaling agile practice?
What outcomes are expected after using your scaling agile practice?
On which level does your scaling agile practice scale?

What are the major challenges, problems, and misunderstandings in implementing
and using your practice?

When did you start with the creation of your scaling agile practice?
When did you publish or release the first version of your scaling agile practice?

How many releases does your scaling agile practice have and when were they re-
leased?

. Do you plan to continue developing your scaling agile practice?

Why do you want to stop the further development of your scaling agile practice?

What is your advice for people interested in your scaling agile practice, which is not
developed anymore? Should they continue to use it or should they use other scaling
agile practices?

What agile activities does your scaling agile practice use?
What agile methods does your scaling agile practice use?
What agile practices does your scaling agile practice use?
What agile artifacts are used in your scaling agile practice?
What principles does your scaling agile practice employ?

What differentiates your scaling agile practice from others?

75

A. Appendix

XIX.

XX.

XXIL
XXIL

With which other scaling agile practices can your scaling agile practice be combined?
Are there major problems involved in combining? Are there major gains for combin-
ing?

What are the main changes between your scaling agile practice versions and were
they influenced by other scaling agile practices?

Is there anything your scaling agile practice is incompatible with?

Do you have further remarks or some points to add?

76

Bibliography

[1] DasScrumTeam AG. http://scaledprinciples.org, October 2017.

[2] DasScrumTeam AG. https://www.dasscrumteam.com/scaled, October 2017.

[3] agile42. http:/ /www.agile42.com/en/agile-transition/etf/, October 2017.

[4] Agilest. https://www.agilest.org/scaled-agile/scrum-of-scrums/, October 2017.

[5] Muhammad Ovais Ahmad, Jouni Markkula, and Markku Oivo. Kanban in software
development: A systematic literature review. In Software Engineering and Advanced
Applications (SEAA), 2013 39th EUROMICRO Conference on, pages 9-16. IEEE, 2013.

[6] Agile Alliance. https://www.agilealliance.org/, October 2017.

[7] Mashal Alqudah and Rozilawati Razali. A review of scaling agile methods in large
software development. International Journal on Advanced Science, Engineering and Infor-
mation Technology, 6(6):828-837, 2016.

[8] Mashal Alqudah and Rozilawati Razali. A review of scaling agile methods in large
software development. International Journal on Advanced Science, Engineering and Infor-
mation Technology, 6(6):828-837, 2016.

[9] Mashal Alqudah and Rozilawati Razali. A review of scaling agile methods in large
software development. International Journal on Advanced Science, Engineering and Infor-
mation Technology, 6(6):828-837, 2016.

[10] Scott Ambler. Dr.dobb’s journal’s 2008 project success survey.
http:/ /www.ambysoft.com/surveys/success2008.html, 2008.

[11] Scott W. Ambler. The agile scaling model (asm): Adapting agile methods for complex
environments. Adapting Agile Methods for Complex Environments, 2009.

[12] Scott W Ambler and Mark Lines. Disciplined agile delivery: A practitioner’s guide to agile
software delivery in the enterprise. IBM Press, 2012.

[13] Kent Beck. Embracing change with extreme programming. Computer, 32(10):70-77,
1999.

[14] Kent Beck. Extreme programming explained: embrace change. addison-wesley profes-
sional, 2000.

[15] Mike Beedle. Enterprise scrum-definition: Agile management for the 21 st century.
Enterprise Scrum Inc., 2015.

77

Bibliography

[16] Barry Boehm. A survey of agile development methodologies. Laurie Williams, 2007.

[17] Barry Boehm and Richard Turner. Management challenges to implementing agile
processes in traditional development organizations. IEEE software, 22(5):30-39, 2005.

[18] Richard Brenner and Stefan Wunder. Scaled agile framework: Presentation and real
world example. In Software Testing, Verification and Validation Workshops (ICSTW), 2015
IEEE Eighth International Conference on, pages 1-2. IEEE, 2015.

[19] Alex Brown and Jeff Sutherland. Scrum at scale-go modular for greater success. In
Agile 2014 - Orlando, 2014.

[20] The LeSS Company B.V. https://less.works/less/framework/index.html, October
2017.

[21] Alistair Cockburn. Surviving object-oriented projects: a manager'’s guide. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 1998.

[22] Alistair Cockburn. Crystal clear: a human-powered methodology for small teams. Pearson
Education, 2004.

[23] cPrime. https://www.cprime.com/rage/, October 2017.
[24] Ward Cunningham. http://agilemanifesto.org, September 2017.

[25] Patrick Daut. agile@ scale: Do more with less or be safe? ansitze zur skalierung-ein
tiberblick. In Vorgehensmodelle, pages 159-167, 2015.

[26] Kim Dikert, Maria Paasivaara, and Casper Lassenius. Challenges and success factors
for large-scale agile transformations: A systematic literature review. Journal of Systems
and Software, 119:87-108, 2016.

[27] Torgeir Dingseyr, Tor Erlend Feegri, and Juha Itkonen. What is large in large-scale?
a taxonomy of scale for agile software development. In International Conference on
Product-Focused Software Process Improvement, pages 273-276. Springer, 2014.

[28] Torgeir Dingseyr, Sridhar Nerur, VenuGopal Balijepally, and Nils Brede Moe. A
decade of agile methodologies: Towards explaining agile software development,
2012.

[29] AQ Gill and Brian Henderson-Sellers. Measuring agility and adaptibility of agile
methods: A 4 dimensional analytical tool. In The IADIS international conference on
applied computing 2006. IADIS Press, 2006.

[30] AQ Gill, Brian Henderson-Sellers, and TM McBride. Agile adoption and improve-
ment model. In European, Mediterranean and Middle Eastern Conference on Information
Systems. Polytechnic University of Valencia, 2007.

[31] Questback GmbH. www.unipark.de, September 2017.

[32] Daniel R Greening. Enterprise scrum: Scaling scrum to the executive level. In System
Sciences (HICSS), 2010 43rd Hawaii International Conference on, pages 1-10. IEEE, 2010.

78

Bibliography

[33] Inc. ICONIX Software Engineering. http://www.iconixsw.com/a-better-agile-
methodology.html, October 2017.

[34] Scaled Agile Inc. http:/ /www.scaledagileframework.com/, October 2017.

[35] Scaled Agile Inc. http://www.scaledagileframework.com/portfolio-level/, October
2017.

[36] SCRUM ALLIANCE Inc. https:/ /www.scrumalliance.org/why-scrum/scrum-
guide, November 2017.

[37] Henrik Kniberg and Anders Ivarsson. Scaling agile@ spotify with tribes, squads,
chapters & guilds. Entry posted November, 12, 2012.

[38] Martin Krzywinski. http://circos.ca, November 2017.
[39] Craig Larman. http://larmanslaws.org, November 2017.

[40] Craig Larman and Bas Vodde. Large-Scale Scrum: More with LeSS. Addison-Wesley
Professional, 1st edition, 2016.

[41] Craig Larman and Bas Vodde. Large-scale scrum: More with LeSS. Addison-Wesley
Professional, 2016.

[42] Agile Business Consortium Limited. https:/ /www.agilebusiness.org/content/principles,
October 2017.

[43] Mark Lines and Scott Ambler. http://www.disciplinedagiledelivery.com/process/,
October 2017.

[44] Leanpitch Technologies PVT LTD. https://leanpitch.com/lean-enterprise-agile-
framework-leaf/, October 2017.

[45] Mike MacDonagh and Steve Handy. http://www.holistic-software.com/h-model,
October 2017.

[46] Mike MacDonagh and Steve Handy. http:/ /www.holistic-
software.com/introduction/introduction-2, October 2017.

[47] Mike MacDonagh and Steve Handy. http://www.holistic-software.com/maps/big-
picture, October 2017.

[48] Rafael Maranzato, Marden Neubert, and Paula Herculano. Scaling scrum step by
step:”the mega framework”. agilealliance.org, 2016.

[49] Rafael P Maranzato, Marden Neubert, and Paula Herculano. Scaling scrum step by
step: “the mega framework”. In Agile Conference (AGILE), 2012, pages 79-85. IEEE,
2012.

[50] E.Marks. Governing enterprise agile development without slowing it down: Achiev-
ing friction-free scaled agile governance via event- driven governance. AgilePath Cor-
poration, 2014.

79

Bibliography

[51] Eric A. Marks. A Lean Enterprise Governance Manifesto: Improving Business Performance
with Event-Driven Governance. Agile Path Corporation, 2012.

[52] Christoph Mathis. SAFe-Das Scaled Agile Framework: Lean und Agile in groflen Un-
ternehmen skalieren. dpunkt. verlag, 2016.

[53] Peter Merel. http:/ /www.xscalealliance.org/index.html#manifesto, October 2017.

[54] Uludag 0., Kleehaus M., X. Xu, and Matthes F. Investigating the role of architects in
scaled agile frameworks. In 21th Conference on Enterprise Distributed Object Computing
(EDOC), 2017.

[55] Eric Overby, Anandhi Bharadwaj, and V Sambamurthy. Enterprise agility and the
enabling role of information technology. European Journal of Information Systems, 15,
April 2006.

[56] Harrison Owen. Open space technology: A user’s guide. Berrett-Koehler Publishers,
2008.

[57] Maria Paasivaara and Casper Lassenius. Scaling scrum in a large globally distributed
organization: A case study. In Global Software Engineering (ICGSE), 2016 IEEE 11th
International Conference on, pages 74-83. IEEE, 2016.

[58] Maria Paasivaara, Casper Lassenius, and Ville T Heikkild. Inter-team coordination
in large-scale globally distributed scrum: Do scrum-of-scrums really work? In Pro-
ceedings of the ACM-IEEE international symposium on Empirical software engineering and
measurement, pages 235-238. ACM, 2012.

[59] Mary Poppendieck. Lean software development. In Companion to the proceedings of the
29th International Conference on Software Engineering, pages 165-166. IEEE Computer
Society, 2007.

[60] Mary Poppendieck and Michael A Cusumano. Lean software development: A tuto-
rial. IEEE software, 29(5):26-32, 2012.

[61] Teade Punter, Marcus Ciolkowski, Bernd Freimut, and Isabel John. Conducting on-
line surveys in software engineering. In Proceedings of the 2003 International Symposium
on Empirical Software Engineering (ISESE’03), 2003.

[62] Ron Quartel. http://www.fast-agile.com, October 2017.

[63] Asif Qumer and Brian Henderson-Sellers. Construction of an agile software product-
enhancement process by using an agile software solution framework (assf) and sit-
uational method engineering. In Computer Software and Applications Conference, 2007.
COMPSAC 2007. 31st Annual International, volume 1, pages 539-542. IEEE, 2007.

[64] Asif Qumer and Brian Henderson-Sellers. A framework to support the evaluation,
adoption and improvement of agile methods in practice. Journal of Systems and Soft-
ware, 81(11):1899-1919, 2008.

80

Bibliography

[65] Linda Rising and Norman S Janoff. The scrum software development process for
small teams. IEEE software, 17(4):26-32, 2000.

[66] Patrick Roach. https://www.scruminc.com/scrum-scale-case-modularity/, October
2017.

[67] Stefan Roock. https://stefanroock.wordpress.com/2014/07/13/agile-scaling-cycle-
from-scaled-principles-to-practices/, October 2017.

[68] Stefan Roock and Peter Beck. Beyond safe: Wirklich agile und lean sein mit den scaled
prinzipien. In scaled vortrag las zurich 2014, 2014.

[69] Doug Rosenberg, Barry Boehm, Bo Wang, and Kan Qi. Rapid, evolutionary, reliable,
scalable system and software development: the resilient agile process. In Proceedings
of the 2017 International Conference on Software and System Process, pages 60—69. ACM,
2017.

[70] K Schwaber. Nexus guide. Scrum. org, August, 2015.

[71] Ken Schwaber. Scrum development process. In Business object design and implementa-
tion. Springer, 1997.

72] Ken Schwaber. Agile project management with Scrum. Microsoft press, 2004.

[72]

[73] Ken Schwaber and Jeff Sutherland. The scrum guide. Scrum Alliance, 21, 2011.
[74] Scrum.org. https://www.scrum.org/resources/what-is-scrum, November 2017.
[75]

75] Andy Singleton. https://andysingleton.com/agile-2014-appearance-for-maxos-the-
new-continuous-agile-3f4b3f564801, October 2017.

[76] Andy Singleton. http://www.continuousagile.com/unblock/ea_matrix.html, Octo-
ber 2017.

[77] Jennifer Stapleton. DSDM, dynamic systems development method: the method in practice.
Cambridge University Press, 1997.

[78] Jennifer Stapleton. Dsdm: Dynamic systems development method. In Technology of
Object-Oriented Languages and Systems, 1999. Proceedings of, pages 406—406. IEEE, 1999.

[79] Jennifer Stapleton. DSDM: Business focused development. Pearson Education, 2003.

[80] Jeff Sutherland. Agile can scale: Inventing and reinventing scrum in five companies.
Cutter IT journal, 14(12):5-11, 2001.

[81] CA Technologies. https:/ /www.ca.com/us/company/newsroom/ press-
releases/2015/ ca-technologies-most-businesses-will-be-software-driven-in-36-
months.html, November 2017.

[82] K Thompsom. Recipes for agile governance in the enterprise, 2013.

[83] Aashish Vaidya. Does dad know best, is it better to do less or just be safe? adapting
scaling agile practices into the enterprise. PNSQC. ORG, pages 1-18, 2014.

81

Bibliography

[84] Satisha Venkataramaiah. https:/ /confengine.com/agile-india-
2016/proposal /1677 /lean-enterprise-agile-framework-a-systems-thinking-
approach-to-scale-deliverables, October 2017.

[85] VersionOne. 11th annual state of agile survey. Technical report, VersionOne Inc., 2017.

[86] Jan vom Brocke, Alexander Simons, Bjoern Niehaves, Kai Riemer, Ralf Plattfaut, and
Anne Cleven. Reconstructing the giant: On the importance of rigour in documenting
the literature search process. In ECIS, volume 9, pages 2206-2217. ECIS 2009 Proceed-
ings. 161, 2009.

[87] Don Wells. http:/ /www.extremeprogramming.org, November 2017.

[88] ZilicusPM. http:/ /blog.zilicus.com /wordpress/kanban-board-visualize-project-
work-workflow/, November 2017.

82

	Abstract
	Introduction
	Introduction
	Motivation
	Research Questions
	Research Approach

	Foundations
	Foundations
	Agile Practices
	Scrum
	Extreme Programming
	Kanban

	Large-Scale Agile Development
	Challenges in Large-Scale Agile Development

	Existing Frameworks
	Existing Frameworks
	Agile Software Solution Framework (ASSF)
	Crystal Family (Crystal)
	Crystal Clear
	Crystal Orange

	Disciplined Agile 2.0 (DA 2.0)
	Dynamic Systems Development Method Agile Project Framework for Scrum (DSDM)
	Enterprise Scrum (eScrum)
	Enterprise Transition Framework (ETF)
	Event Driven Governance
	eXponential Simple Continuous Autonomous Learning Ecosystem (XSCALE)
	FAST Agile
	Holistic Software Development (HSD)
	Large Scale Scrum (LeSS)
	Lean Enterprise Agile Framework (LEAF)
	Matrix of Services (Maxos)
	Mega Framework
	Nexus
	Recipes for Agile Governance in the Enterprise (RAGE)
	Resilient Agile
	Scaled Agile Framework (SAFe)
	ScALeD Agile Lean Development (ScALeD)
	Scrum at Scale (S@S)
	Scrum-of-Scrums (SoS)
	Spotify Model (Spotify)

	The Evolution of Scaling Agile Frameworks
	The Evolution Of Scaling Agile Frameworks
	Questionnaire
	Descriptive Statistics
	Evaluation
	Evolution Map
	Foundational Methods and Practices Maps
	Methods
	Practices
	Principles
	Artifacts
	Activities

	Discussion
	Discussion
	Key Findings
	Limitations

	Conclusion
	Conclusion
	Summary
	Outlook

	Appendix
	Appendix
	Appendix
	Questionnaire questions

	Bibliography

