
Master’s Thesis
for the Attainment of the Degree

Master of Science
at the TUM School of Management

of the Technische Universität München

The Role of Architecture in a Scaled Agile Organization -
A Case Study in the Insurance Industry

Examiner: Chair of Software Engineering for Business Information Systems
Prof. Dr. Florian Matthes

Advisor: Ömer Uludağ M.Sc.

Course of Study: Management & Technology M.Sc.

Author: Christina Schimpfle
Lechfeldstraße 10
86931 Prittriching
Matriculation Number 03628567

Date: August 10, 2017

Master’s Thesis
for the Attainment of the Degree

Master of Science
at the TUM School of Management

of the Technische Universität München

The Role of Architecture in a Scaled Agile Organization -
A Case Study in the Insurance Industry

Examiner: Chair of Software Engineering for Business Information Systems
Prof. Dr. Florian Matthes

Advisor: Ömer Uludağ M.Sc.

Course of Study: Management & Technology M.Sc.

Author: Christina Schimpfle
Lechfeldstraße 10
86931 Prittriching
Matriculation Number 03628567

Date: August 10, 2017

I hereby declare that the thesis submitted is my own unaided work. All direct or indirect
sources used are acknowledged as references.

I am aware that the thesis in digital form can be examined for the use of unauthorized
aid and in order to determine whether the thesis as a whole or parts incorporated in it
may be deemed as plagiarism. For the comparison of my work with existing sources I
agree that it shall be entered in a database where it shall also remain after examination, to
enable comparison with future theses submitted. Further rights of reproduction and usa-
ge, however, are not granted here.

This paper was not previously presented to another examination board and has not be-
en published.

München, den 10. August 2017 Christina Schimpfle

Abstract

Digitization and disruptive innovations change the environment of organizations rapidly.
Especially, large organizations face challenges when it comes to developing applications
which satisfy the customers’ changing requirements at a quick pace. Their original enter-
prise architecture is characterized by legacy systems with long life and release cycles. The
role of architecture is adjusted to this strongly intertwined environment, in which making
changes is very complex and happens tediously.
To stay competitive, many enterprises develop applications using agile development meth-
ods, such as Scrum or eXtreme Programming. However, Scrum is a method for small,
cross-functional teams. As soon as there are several agile teams working on one project,
challenges such as cross-team coordination and communication as well as the focus on
a common goal become very challenging. Especially, the lack of architectural guidance
poses a challenge to the teams and to the success of the entire project. To address these
challenges there are agile scaling frameworks, such as Nexus, Large-Scale Scrum (LeSS)
and the Scaled Agile Framework (SAFe). In this thesis, these frameworks are analyzed
with focus on their approach to architecture. However, their advise on architecture in ag-
ile development projects is limited. As two of the frameworks suggest Domain-driven
Design (DDD) for architecting in an agile way, this approach is discussed.
So far no approach on how to combine agile scaling frameworks and DDD was defined.
The goal of this thesis is to explore how DDD can be established in a scaled agile develop-
ment project. Therefore, based on a case study in a large insurance company a framework
for (enterprise) architecture in agile teams is defined. The framework is largely based on
LeSS and incorporates strategic and tactical DDD. The framework is evaluated by apply-
ing it in cooperation with three agile teams in the large insurance company. The results are
part of the presented pre-study. Additionally, the framework is evaluated in interviews
with different stakeholders and roles in the framework.
In the discussion the key findings and limitations are presented. Finally, the research ques-
tions relating to the role of architecture in scaled agile organizations are answered and an
outlook on future research as well as on practical applications is given.

vii

viii

Contents

Abstract vii

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Approach . 3

2 Foundations 7
2.1 Agile Software Development . 7

2.1.1 The Agile Manifesto . 7
2.1.2 Scrum . 9

2.2 Large-Scale Agile Development . 16
2.2.1 Benefits and Challenges of Large-Scale Agile Development 16
2.2.2 Template for comparing agile scaling Frameworks 16

2.3 Nexus . 17
2.3.1 Framework and Objectives . 17
2.3.2 Roles . 19
2.3.3 Process . 19
2.3.4 Artifacts . 20
2.3.5 Nexus and Architecture . 21

2.4 Large-Scale Scrum (LeSS) . 21
2.4.1 Framework and Objectives . 21
2.4.2 Roles . 23
2.4.3 Process . 24
2.4.4 Artifacts . 25
2.4.5 LeSS and Architecture . 26

2.5 Scaled Agile Framework (SAFe) . 29
2.5.1 Framework and Objectives . 29
2.5.2 Roles, Process and Artifacts . 29
2.5.3 SAFe Update . 34
2.5.4 SAFe and Architecture . 34

2.6 Comparison of Nexus, LeSS and SAFe . 37
2.6.1 Frameworks and Objectives . 37
2.6.2 Roles . 39

ix

Contents

2.6.3 Process . 41
2.6.4 Artifacts . 45
2.6.5 Architecture . 46

2.7 Domain-driven Design (DDD) . 49
2.7.1 Approach and Objectives . 49
2.7.2 Domains, Subdomains and Bounded Contexts 52
2.7.3 Establishing an Ubiquitous Language 53
2.7.4 Strategic Design . 54
2.7.5 Tactical Design . 59

2.8 Related Work . 60
2.8.1 Bente et al. (2012) . 60
2.8.2 Keller (2017) . 60
2.8.3 Dikert et al. (2016) . 61
2.8.4 Rost et al. (2015) . 61

3 Framework for (Enterprise) Architecture in Agile Teams 63
3.1 Case Study in an international Insurance Enterprise 63

3.1.1 Overview . 63
3.1.2 Roles . 64
3.1.3 Process . 64
3.1.4 Artifacts and Tools . 65
3.1.5 Architecture . 65
3.1.6 Major challenges . 65

3.2 Framework for (Enterprise) Architecture in Agile Teams 68
3.2.1 Agile Scaling, DDD and Architecture 68
3.2.2 Overview . 71
3.2.3 Roles . 74
3.2.4 Process . 78
3.2.5 Artifacts . 86
3.2.6 Tools . 90

4 Evaluation 99
4.1 Pre-Study . 99
4.2 Results of the Interviews . 105

4.2.1 General Questions . 105
4.2.2 Strategic DDD . 107
4.2.3 Tactical DDD . 109
4.2.4 Development Process . 111
4.2.5 Final Questions . 115

5 Discussion 117

x

Contents

6 Conclusion 121
6.1 Summary . 121
6.2 Outlook . 123

Bibliography 125

xi

1 Introduction

To begin with, the topic of architectural activities in scaled agile organizations is motivated.
Based on this, three research questions arise. Additionally, the approach to answer these
research questions is described.

1.1 Motivation

The environment of organizations is changing rapidly. While digitization and digital dis-
ruption offer new opportunities to companies, they can also pose a significant threat to es-
tablished companies as their long successful business models are put at risk to be disrupted
[69, 87]. Digital disruption describes ”changes in the competitive environment resulting
from the use of digital technologies by new market entrants or established competitors
in ways that undermine the value proposition of a company’s product/service portfolio
or go-to-market approach” [69]. Today, it is not enough for enterprises to offer the best
products or services in the market. Undergoing digital transformation, they must focus on
customer experience as their key differentiator [79].
To provide innovative software products and to adapt these to emerging stakeholder needs
rapidly, an increasing number of companies uses agile development approaches [18]. Ag-
ile development practices promise improvements in software quality as well as produc-
tivity and team morale [59]. Hence, the popularity of agile approaches gained significant
popularity in the last years in order to respond to dynamic market conditions quickly and
effectively [12].
Scrum has become the most wide-spread agile approach for software development in
small, self-organizing teams [57, 28, 46, 5]. Large organizations also strive to adopt the
benefits of Scrum in their software development [59]. However, as soon as there are sev-
eral Scrum teams in a complex environment, which are not entirely independent from
each other, Scrum cannot be applied without adapting some of its principles, roles and
processes [49]. In the last few years, numerous approaches to scale agile methods to large
organizations were defined, while still keeping the benefits of small, independent teams
[38]. Three of the most popular agile scaling approaches are Nexus, Large-Scale Scrum
(LeSS) and the Scaled Agile Framework (SAFe) [80]. These practices focus on agile devel-
opment with many teams including cross-team coordination and communication [8].
For agile development practitioners, software architecture is part of an initial design pro-
cess which often cannot be in line with agile principles. In their opinion, defining soft-
ware architecture upfront, as in waterfall approaches and traditional enterprise architec-

1

1 Introduction

ture management approaches, causes too much work in the beginning, while providing
only little value to the customer [12, 83]. In agile projects, architecture is considered to
emerge incrementally during the development process through programming [9].
While agile methods have many benefits, especially in large software development projects
the lacking definition of the role of architecture - and of architects - can be problematic [12].
However, current literature and practical experience concerning large software projects
imply that ”some amount of architectural planning and governance is necessary to reli-
ably produce and maintain such systems” [59]. While Nexus and LeSS say that architecture
simply evolves in a natural process over time, SAFe acknowledges that emergent design
is insufficient in large development projects and therefore also addresses intentional archi-
tecture [41]. However, providing overall architectural guidance to agile teams, as implied
by intentional architecture, is still a much discussed topic. Agile practitioners fear that ar-
chitects dictate architectural and technical constraints which limit their freedom and slow
down their development speed [59]. Even though the body of research on architecture in
agile teams has increased significantly in the last years, the form and subject of architec-
tural guidance for agile teams are still widely unclear [70, 9, 1]. Further, the acceptance of
architectural guidance by agile teams is considered to be low [12, 83].
This thesis addresses the role of architecture in agile teams starting with Scrum, agile
scaling frameworks and an analysis of their approaches to architecture. SAFe and LeSS
address architectural issues using the Domain-driven Design (DDD) approach [41, 20].
Therefore, this method is discussed additionally. The main result of this thesis is a frame-
work for (enterprise) architecture in agile teams, including agile scaling as well as DDD
characteristics. The framework describes a lightweight method how enterprise architects
can provide architectural and methodological guidance to agile teams. The framework
for (enterprise) architecture in agile teams defines roles, a process, artifacts and tools to
establish architectural guidance supported by DDD in several agile teams. The approach
provides value to the teams, while keeping system architecture sound. The framework is
defined and evaluated in a case study in a large insurance enterprise.

1.2 Research Questions

In this section, the research questions (RQ) which are addressed in the thesis are described.

RQ1. What is the role of architecture in scaled agile organizations? The objective of
the first research question is to identify practices for scaling Scrum in large organizations
and to give an overview of their approach to architecture. In the beginning, a definition
of agility according to the Agile Manifesto as well as of Scrum, which is the most common
agile development method, is given. Further, it is discussed what makes scaling Scrum in
large organizations so challenging. Then three popular agile scaling frameworks - Nexus,
Large-Scale Scrum (LeSS) and the Scaled Agile Framework (SAFe) - are explained and
compared including their approaches to architecture. The findings are based on a literature

2

1.3 Approach

review. The main result answering this research question is a comparison of the practices
concerning architecture in Section 2.6.5.

RQ2. How can Domain-Driven Design be adopted in a large organization with several
agile development teams? As DDD is recommended by some agile scaling frameworks
to be used to support the definition of architecture, an overview of strategic as well tactical
DDD is given in the foundations section. As a starting point for the case study in the large
insurance company, it is explored how DDD can contribute to agile development involv-
ing multiple teams. After a description of the current situation of agile teams and their
challenges at the large insurance company, an explanation of the idea on how to integrate
DDD into the work of multiple agile development teams and of enterprise architects is
presented. Based on the findings, a framework for (enterprise) architecture in agile teams
is defined. The result is not a framework for enterprise architecture, such as TOGAF or
Zachman. Instead the framework describes how enterprise architects can support agile
teams with their practices, new methods and knowledge based on DDD.

RQ3. Which roles, processes, artifacts and tools are required for scaled Domain-Driven
Design? In the literature review, the main roles, processes and artifacts of the agile scal-
ing frameworks are identified and compared to build the basis for answering this research
question. This as well as the current situation of agile teams at the large insurance en-
terprise are the basis for defining a framework for (enterprise) architecture in agile teams
including the required, roles, processes, artifacts and tools. The focus is put on establish-
ing strategic and tactical DDD. The roles of agile team members, project managers and
enterprise architects in the process are elaborated. Additionally, tools to support the appli-
cation of the framework are described and applied. The part of the framework concerning
strategic DDD is evaluated in a pre-study. The pre-study is conducted to make the first
steps taken to establish strategic DDD in a part of the company with agile teams appar-
ent. Finally, the framework is evaluated by conducting interviews with the key roles in the
agile teams, architects as well as decision makers in the large insurance enterprise.

1.3 Approach

The approaches used in this thesis comprise a literature review and a case study. The aim
of the literature review in this work is to investigate the role of architecture in scaled agile
organizations by examining its role in three selected agile scaling frameworks. The prac-
tices and the role of architecture are investigated by a literature review consisting of five
phases [85]. First, the scope and suitable research questions are defined. The approach to
selecting the practices that are analyzed in detail is to consider size and scope of the prac-
tices as well as their popularity. Further, it is important to examine practices with different
approaches to architecture to find a suitable one for the company in the case study and for

3

1 Introduction

the later defined framework for (enterprise) architecture in agile teams. Based on these cri-
teria Nexus, Large-Scale Scrum and the Scaled Agile Framework are chosen. The results of
the literature review contribute to answering all three research questions. However, only
the first research question is purely addressed by the literature review.
In the next step, suitable definitions and summaries of the practices are examined to gain
a general understanding. In this phase, mostly books and whitepapers about the practices
are included.
It aids with further defining relevant search terms which are used in the third phase. The
main search terms are Nexus, Large-Scale Scrum, Scaled Agile Framework, scaling agile,
Scrum and agile architecture. In this step, the relevance of DDD for architecture in agile
teams is recognized. Therefore, this topic is explored additionally based on relevant litera-
ture. The databases EBSCOhost, Sciencedirect, IEEE Explore, SpringerLink, Scopus, Safari
Books Online (ProQuest) and Google Scholar are used to find articles and books about the
relevant topics. Additionally, relevant sources of the analyzed papers are searched.
In the fourth phase, the results are structured and evaluated. The three practices are com-
pared systematically using the dimensions objectives, roles, processes, artifacts and archi-
tecture. The last phase builds the basis for roles, process, artifacts and architecture to be
addressed in the case study [85].
Based on the gained insights in the literature review a case study is conducted with the re-
sult of a framework for (enterprise) architecture in agile teams. The framework is defined
based on the literature, but adapted based on the insights the case study provides.
A case study is an approach with focus on understanding the dynamics in certain situa-
tions. In a case study, different methods of data collection can be utilized, such as inter-
views and observations [29]. The case study helps to evaluate if and how such a framework
is helpful in the chosen setting at the large insurance company. According to Yin, a case
study has six phases [90].
In the planning phase, it is evaluated if the method of the case study is a suitable ap-
proach. As a part of the design phase, it is decided if one or multiple cases should be
considered. Here, a single case is examined. In the following, the case to be evaluated is
chosen. In this thesis, three of the agile teams at the large insurance company participate
in the case study, in which certain components of the framework are tested in cooperation
with selected members of these teams. This leads to the data collection which takes place
in form of a pre-study and interviews. The pre-study addresses only a certain part of the
framework (strategic DDD) and is evaluated statistically. Then the results are discussed
with relevant roles in the company to ensure validity and reliability of the approach. The
structured interviews are conducted with nine persons in different roles to evaluate all
components of the framework. The next step is to analyze the collected data. Finally, the
results are visualized and presented to the affected and relevant roles within the company
[90]. Figure 1.1 gives a comprehensible overview of the research approach.

4

1.3 Approach

Figure 1.1: Literature review and case study

5

1 Introduction

6

2 Foundations

This chapter gives a theoretical overview of the most important concepts which are ad-
dressed and utilized in this thesis. First, the Agile Manifesto is presented to describe what
agility is. Scrum, as one of the most popular agile development methods, is explained.
After describing the major challenges of applying Scrum methodology in large organiza-
tions three approaches for scaling agility are presented: Nexus, Large-Scale Scrum and
the Scaled Agile Framework. The explanations of these practices include their main objec-
tives, roles, processes and artifacts. Central for answering the first research question, the
role of architecture in these practices is described. Finally, the three agile scaling frame-
works are compared concerning roles, processes, artifacts and architecture. Finally, the
main concepts of DDD are introduced.

2.1 Agile Software Development

The following section describes agility in Software development and Scrum as one of the
widest spread agile development approaches. Additionally, a template for presenting and
comparing the following agile scaling frameworks is shown.

2.1.1 The Agile Manifesto

In 2001, experts and practitioners of agile development methodologies defined the Agile
Manifesto including four core values and twelve principles to produce excellent software
in an agile way [57]. The core values are:

• ”Individuals and interactions over processes and tools” (1)

• ”working software over comprehensive documentation” (2)

• ”customer collaboration over contract negotiation” (3) and

• ”responding to change over following a plan” (4) [3].

The four core values include that individuals and their interactions are more important
than processes and tools (1). Software is build by individuals who communicate with each
other, should be motivated and work self-organized.
Progress is measured by working software which is more crucial than having a compre-
hensive documentation (2). The goal is to provide business value to the customer by fre-
quently providing software. Documentation should be only done if it adds value.

7

2 Foundations

Collaborating with the customer is more essential than contract negotiation (3). To reach
the customer’s vision the development team has to collaborate closely and continuously
with the customer.
Being able to respond to changes throughout the development process is more important
than following a predefined plan (4). If the customer’s requirements change, the team has
to be able to adapt [35].
Furthermore, the Agile Manifesto comprises twelve core principles as presented in Table
2.1.

Core Principles
P1 ”Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.”
P2 ”Welcome changing requirements, even late in development. Agile processes

harness change for the customer’s competitive advantage.”
P3 ”Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.”
P4 ”Business people and developers must work together daily throughout the

project.”
P5 ”Build projects around motivated individuals. Give them the environment

and support they need, and trust them to get the job done.”
P6 ”The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.”
P7 ”Working software is the primary measure of progress.”
P8 ”Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.”
P9 ”Continuous attention to technical excellence and good design enhances agility.”
P10 ”Simplicity - the art of maximizing the amount of work not done - is essential.”
P11 ”The best architectures, requirements, and designs emerge from self-organizing

teams.”
P12 ”At regular intervals, the team reflects on how to become more effective,

then tunes and adjusts its behavior accordingly.”

Table 2.1: Core principles in the Agile Manifesto [3]

The first principle defines how to provide value to the customer by delivering software
early in the project and continuously as the highest priority in agile software development
(P1). Second, agile teams need to be aware that the customer’s requirements change over
time and need to be able to implement those changes even late in the development process
to support the customer’s competitive advantage (P2). Third, working software should be
delivered as frequently as reasonable and possible, e.g. every couple of weeks or month
(P3). Collaboration between business experts and developers is essential and is practiced

8

2.1 Agile Software Development

daily (P4). Building an agile team requires motivated people. The individuals need to be
provided an appropriate environment and support to keep them motivated. Putting trust
in the team to succeed is very important (P5). Face-to-face communication is the most ef-
fective and efficient way to exchange information and to gain deep understanding (P6).
The progress of a project is measured by the amount and quality of working software,
not by models or documentation (P7). Agile processes foster sustainable delivery. The
agile team needs to be able to keep its pace and productivity constant over the complete
length of the development project. Working longer hours does not mean higher produc-
tivity (P8). The agile team needs to pay attention continuously to good design which is
enhanced throughout the development process (P9). Tenth, keeping the software simple is
crucial to be able to add functionality throughout the iterations. Implement only what is
necessary to many stakeholders and avoid unnecessary complicated solutions (P10). The
teams should be self organizing which is supposed to provide the best architecture and
design (P11). Finally, the agile team needs to reflect on how to adjust its behaviour to be-
come more effective (P12) [3, 35, 57].
The Agile Manifesto describes a set of values and principles which are helpful for devel-
opment teams, but it is important to be aware that it does not provide a common method-
ology for all software development projects. While project teams can benefit from the
Manifesto, each project has to define the most suitable methodology to achieve its goals
[35].

2.1.2 Scrum

This section gives an overview of Scrum including its main objectives, as well as roles, the
process, artifacts, tools and architecture in the agile development process.

Objectives Based on the core values and principles of the Agile Manifesto many dif-
ferent agile methodologies exist, such as Scrum, Extreme Programming (XP) and Crystal
[12]. Scrum has become one of the most popular over time [57, 28, 46, 5]. Based on the
assumption that small independent teams work more effective, Scrum is a iterative prod-
uct development process for small teams. Focus on a common goal for the whole team is
essential to Scrum. The team works together closely, knowing the priorities and each of
the members having a well-defined role knowing his/her own tasks in each product incre-
ment [68]. The objective of Scrum is to develop products, mostly software, of high-quality
while maintaining flexibility to be able to react to changes in the environment and of the
requirements during the whole development process. Initially, in Scrum only the context
and a broad definition of the deliverable are determined while being aware that this defi-
nition is incomplete and that the environment as well as the deliverable evolve throughout
the development process [72].
Scrum as an agile methodology is consistent with the four core values of the Agile Man-
ifesto. Especially, the focus on team responsibility is essential (”Individuals and interac-
tions over processes and tools” [3]). As soon as a Scrum team knows its business goal, it has

9

2 Foundations

to figure out how to reach the goal, do the work, identify possible challenges, resolve all
challenges within its scope and collaborate with other business units to resolve those dif-
ficulties which are outside the team’s control [7]. After every sprint the team is to provide
a working product increment which does not need to include all functionality necessary
to ship the product, but the already implemented functionality needs to be of shippable
quality (”Working software over comprehensive documentation” [3]) [7]. Additionally,
promoting and facilitating collaboration is critical for successful Scrum (”Customer col-
laboration over contract negotiation” [3]). While the team members collaborate with each
other to detect the most suitable way to build a software, they also have to collaborate
with other stakeholders to achieve a valuable software deliverable which provides busi-
ness value and complies with the customer’s vision [7]. Every Scrum team has to plan the
current sprint. Additionally, some Scrum teams define long term plans to support the busi-
ness and the team itself when making decisions. In Scrum the plan itself is not a central
concept. The thought process during planning including gathering new ideas is far more
important. Furthermore, the team is not supposed to stick blindly to the plan if changes
occur (”Responding to change over following a plan” [3]). Not only the plans, but also
the product backlog is continuously updated to react to changes or to incorporate newly
discovered information. Responding to changes increases the chances of developing a suc-
cessful product with maximum business value which fits the current environment and the
customer’s vision [7].
The central Scrum values which are mostly relate to collaboration in the team are focus,
courage, openness, commitment and respect. In Scrum it is essential to focus only on a few
tasks at the same time to fulfill them quickly and in the best possible way. Courage means
the team should stick together closely and support each other to be able to solve even the
most challenging problems. Being open means that the team members openly talk about
the challenges they face and discuss how to address them. This not only relates to the
tasks to be worked on for the product increment but also how the team works together
and how every team member is feeling. Commitment to success is essential because the
team in Scrum should be able to work very independently from other organizational units
and therefore is the only one that can reach its own goals. Respect between team mem-
bers includes treating each other respectfully as well as supporting each other and to take
shared responsibility for failures and successes [7].
Scrum is the basic development methodology in practices which have the objective to
make large enterprises more agile that are presented in the following sections. Further-
more, the agile teams in the case study use Scrum with some adaptions as their methodol-
ogy. Figure 2.1 shows a basic Scrum process including the most essential roles and artifacts.

10

2.1 Agile Software Development

Figure 2.1: Scrum [57]

Roles A Scrum team consists of a product owner, the Scrum master and ideally three to
nine developers. A bigger team causes higher complexity and need for much more coor-
dination, while smaller teams may have a skill set which is not diversified enough to solve
all problems the team encounters. The teams are cross-functional to include all competen-
cies to be able to achieve their goals independently from others outside the team. Addi-
tionally, Scrum teams are self-organizing which means that the team members themselves
determine how to achieve their overall goal. This characteristics foster the optimization of
productivity, flexibility and creativity [6].
The product owner makes sure that the business value of the created product is maxi-
mized and is responsible for the product backlog. He/She represents the customer to the
development team. Everyone who has a requirement for the product or wants to change
a requirement’s priority has to address the product owner. The product owner clearly de-
scribes all requirements as items of the product backlog and orders them to achieve the
team’s goals and to optimize the work of the development team. The development team
only works on requirements specified by the product owner [6].
The development team delivers the increment at the end of each sprint. It is best practice in
Scrum to organize a team around features. Feature teams are long-lived, stable over time,
cross-functional, cross-component, develop end-to-end features and consist of co-located
members in the best case [53]. Team members organize their work themselves. The team
decides how to implement the requirements from the product backlog and delivers the

11

2 Foundations

functionalities. Even if the developers have different specialized competencies and areas
of focus, there are no sub-teams within a team and the whole team is accountable for all
parts of a product increment [6].
The Scrum master makes sure that the development team applies Scrum theory, rules and
practices to ensure the success of the project. The Scrum master is not a classical leader
to the team, but provides mostly methodological guidance to both the development team
and the product owner. The Scrum master supports the product owner to create a valu-
able product backlog and he/she supports the development team to implement the spec-
ifications from the product backlog. He/she makes sure all Scrum meetings take place
according to Scrum rules [73].

Process In Scrum all work is done in short development phases called sprints which last
from one up to four weeks [68]. The duration of the sprints does not change throughout
the development process and after the end of a sprint the next one starts immediately.
The result of each sprint is a product increment which potentially could be released. Each
sprint includes the events sprint planning, daily Scrums, the actual development, a sprint
review and retrospective.
In the sprint planning the team determines collaboratively what will be included in the
product increment at the end of the sprint and how the determined goal will be achieved.
As all events in Scrum the sprint planning is time-boxed to a maximum of eight hours for
a 30 day sprint with the preference to keep it shorter [6]. After committing the scope in the
sprint planning adding further functionalities is not possible except by the development
team [57].
The daily Scrum is used to inspect the progress toward the defined sprint goal and to
synchronize work until the next daily Scrum on the following day. Every member of the
development team explains what he/she has done since the last daily Scrum and until
the next daily Scrum as well as potential obstacles preventing the team from reaching the
sprint goal. The daily Scrum helps the team to work together to remove those obstacles,
improves communication and knowledge within the team and allows making decisions
quickly without additional meetings taking place. The daily Scrum takes place at the same
time everyday and is time-boxed to 15 minutes [6].
At the end of each sprint the Review takes place to inspect the product increment to be
able to incorporate feedback and to adapt the product backlog. The new product incre-
ment is demonstrated, it is discussed what has (not) been done and what to do next. This
event is attended by the development team, the product owner and key stakeholders and
is time-boxed to four hours for a 30 day sprint [6].
A further Scrum event can be the backlog Refinement in which the product owner and the
development team adapt the product backlog by adding new requirements, describing re-
quirements more in detail and by ordering the requirements according to their priorities.
This can also be done in the sprint review [6].
The sprint retrospective after the end of each sprint and before the sprint planning of the

12

2.1 Agile Software Development

next sprint is used to inspect what went well and what not regarding the team, prod-
uct, process and tools. Potential improvements are identified and the team defines how
to implement the improvements. The definition of ”done” is adapted if necessary. The
retrospective is time-boxed to three hours for a 30 day sprint and is attended by the devel-
opment team and the Scrum master [6].

Artifacts The artifacts created in Scrum are mostly important to reach transparency and
to detect opportunities for further inspection and improvement. The artifacts in Scrum are
the product backlog, the sprint backlog, a definition of ”done” and the product increment
itself [6].
The product backlog includes a list of all functionality to be provided by the product which
is developed by a team. The product owner takes responsibility for its availability, content
and priorities of the single requirements. At the start of a project the product backlog is
defined including all requirements which are clear at that time. However, the product
backlog is a dynamic artifact which is adapted over time. Requirements may be changed,
added or deleted if they are not considered necessary anymore [73]. The items which are
placed higher in the product backlog need to be described more in detail than the ones
which have lower priorities. The items which might be part of the next sprint have to be
defined in detail and need to be doable in the timeframe of one sprint. The product owner
can track progress by analyzing what is already done and how many requirements remain
in the product backlog. The product backlog exists not only during the time when the
product is developed but throughout its whole lifetime [6].
The sprint backlog includes the work to be implemented in the upcoming sprint to reach
the sprint goal by providing a potentially releasable product increment. In the sprint plan-
ning the team decides which requirements are part of the next sprint. The team estimates
how long it takes to finish each of the requirements. The tasks to be executed should be
divided in pieces of work that take between 4 and 16 hours to be implemented. Tasks
which take longer need to be divided in several smaller tasks [73]. This happens at best
before the sprint planning. Based on the estimated duration of the tasks and the working
days of each team member the team determines how many and which requirements can
be turned into software functionality in the next sprint. During the sprint the team keeps
the sprint backlog updated by assigning requirements to team members and by labelling
requirements which are already implemented and need to tested or are entirely done. To
meet the sprint goal all requirements in the sprint backlog need to implemented at the end
of the sprint.
Another artifact is the Product Increment itself which represents the sum of all require-
ments implemented in the previous sprints. At the end of each sprint the product incre-
ment is supposed to be ”done” meeting the team’s definition of ”Done”. The definition of
”done” is determined and understood by the team members. It describes when work is
complete and can additionally include criteria for high quality. The definition of ”done”
evolves over time to include a more detailed description [6].

13

2 Foundations

Not being artifacts defined by the Scrum methodology itself, user stories are nevertheless
often used as a form to describe requirements in the Product and sprint backlog. A user
story comprises a short and simple written description, communication about the story to
refine it and acceptance criteria to define when a user story is complete. The acceptance
criteria can be used for testing. A user story is formulated from the viewpoint of the user
and his/her role in the developed Software and includes what the user wants to do and
why this provides value [62]. An example of good user story could be ”As an user, I want
log in with my user name and password to get access to the system”. Additionally, accep-
tance criteria could say ”Access is granted when using a correct user name and password
combination, otherwise not”.
Further, user stories should follow the INVEST-criteria which state user stories should be
Independent, Negotiated, Valuable, Estimatable, Small and Testable. These criteria are
explained in Table 2.2.

INVEST
Independent ... means that the user stories should be as independent from each other as

possible, so that the order in which they are implemented does not matter.
Negotiated ... says that their content is based in close collaboration and negotiation

between the development teams and key stakeholders.
Valuable ... means that a user story needs to provide value to the users and that

this value must be described clearly in the story.
Estimatable ... user stories allow the development team to estimate how long it will

take to implement the user story by assigning story points.
Small ... means that user stories should not be too big or too small. Those stories

either need to be split or aggregated into one story.
Testable ... means that the teams needs to be able to determine if it was completed

correctly.

Table 2.2: INVEST-criteria [19, 62]

Furthermore, user stories should be atomic, minimal, problem-oriented, unambiguous,
well-formed and conceptually sound [62]. User stories are often written on sticky notes or
index cards, but there exist also some tools to manage user stories digitally [19].

Tools The Scrum Guide and other central sources concerning Scrum methodology do
not describe tools that support the application of Scrum [6, 73, 74]. However, teams which
apply Scrum can be supported by different tools. The functionality of Scrum tools includes
the possibility to manage the product backlog being able to describe and prioritize backlog
items. A tool should also comprise a clear visualization of the items which are part of

14

2.1 Agile Software Development

the sprint backlog and therefore the current sprint. Further, tools need to provide the
functionality to assign items to team members and a status concept to document which
items are already finished. Additionally, visualization tools, such as burndown charts
which represent the work which is left to do (vertical axis) along the timeline of the project
(horizontal axis) are helpful [86]. Next to the described functionality, usability and the
configuration possibilities of the tool are important [81]. As in Scrum literature, not much
information could be found about tooling for the scaling practices. Therefore, the topic of
tooling will not be described in detail in this thesis.

Scrum and Architecture Most agile methods, such as Scrum, do not provide particular
guidance concerning the architecture of the developed solution [57]. The Scrum methodol-
ogy includes the assumption that architecture evolves naturally during the iteration cycles
along with the implementation of further functionality and continuous re-factoring [59].
None of the roles in Scrum is described to have detailed architectural knowledge or re-
sponsibility.
As Scrum relies on the Agile Manifesto, the principle ”the best architectures, requirements,
and design emerge from self-organizing teams” is the central assumption for architecture
in Scrum [3, 56]. Even if during an initial planning phase a possible target architecture is
defined, it will change over time [68]. Practitioners of agile approaches often see the up-
front design of software architecture as too costly and think it provides only little value to
their customers. However, more and more literature on how to integrate agile and archi-
tectural practices is published [12]. How much architectural action is required in Scrum
teams depends on many factors, such as team distribution, number of agile teams, en-
terprise size, size of the application and its dependencies on other systems and projects.
Especially, large complex projects have a need for high architectural effort [80, 1].
Further, the role of the architect in a Scrum team can be defined differently. The ”Inter-
nal/Team architect” can be a member of the development team who is an architecture
expert sharing his knowledge with the rest of the team. The architect role can also be
taken on by the whole team if there is no dedicated expert in the team [9]. Then the ar-
chitecture emerges as a result of the collaboration of all team members [37]. However, the
architecture can also be defined by an external architect who is not a member of the Scrum
team. In this setup, the architect can be a partner to many agile teams and is supported by
other architects, e.g. in architectural boards [9]. The external architect provides high-level
architectural guidance to the teams and defines what high quality architecture means and
how the teams can adopt it [37]. Further, there can be two architects, an internal and an ex-
ternal architect. Then the external architect focuses on the big picture, its requirements and
the relating decisions as well as being an external coordinator (referred to as ”Architectus
Reloadus” by Martin Fowler [33]) [9]. His main goal is to ensure conceptual integrity. He
makes all the important decisions that need to made in the beginning of a project [33].
On the other hand, the internal architect (referred to as ”Architectus Oryzus” by Martin
Fowler [33]) is always aware of what is going on in the team and the code to be able to

15

2 Foundations

solve potential problems before they occur. This requires very intense collaboration with
the development team. This kind of architect is also a mentor to the development team
so that the team itself is trained in architecture to be able to take on more complex issues
themselves and to support the architect to make him not the only decision maker being an
architectural bottleneck [33].
The role of the architecture becomes especially critical with many Scrum teams in large or-
ganizations. Agile development practices for large scale organizations and their approach
to architecture are discussed in the next sections.

2.2 Large-Scale Agile Development

The principles and approaches as defined by the Agile Manifesto and Scrum were created
for small teams with small problems to solve and do not scale easily to large organizations
with many Scrum teams or large teams with complex business problems. Agile methods
became increasingly popular during the last years and large organizations want to profit
from the benefits of agile methods, too [38].

2.2.1 Benefits and Challenges of Large-Scale Agile Development

The benefits of agile methodologies comprise a higher velocity in development projects
and a resulting shorter time to market for new products. Further, agile approaches con-
tribute to high quality software [79]. Scrum cannot be applied in large organizations with-
out adapting some of its principles, roles and processes [49]. There are numerous ap-
proaches to scale agile methods to large organizations while still keeping the benefits of
small, independent teams [38]. Three of the most popular ones are Nexus, the Scaled Agile
Framework (SAFe) and Large-Scale Scrum (LeSS).
However, large organizations face various challenges when scaling agility, such as inter-
team coordination, many dependencies on other projects or applications, lack of clearly de-
fined requirements and agile culture [65]. Especially, a lacking definition of the architecture
- on a team level as well as overall - causes problems in large organizations when adopting
agile methods. Scrum itself does not provide guidance on architecture but assumes that
it emerges on team level naturally with each iteration and continuous re-factoring. This
can be problematic as soon as large-scale systems or many different applications are built
by many teams which is the case in large organizations. Then at least some governance
and architectural planning is required to develop reliable, expandable and scalable sys-
tems [59]. In the following the practices Nexus, SAFe and LeSS and their approaches to
architecture in large-scale agile organizations are presented.

2.2.2 Template for comparing agile scaling Frameworks

In the following section, three frameworks for scaling Scrum to large software develop-
ment projects are presented and compared. The description of the frameworks follows a

16

2.3 Nexus

template including the same major points as the description of Scrum in Section 2.1.2. The
template follows the structure used in the Scrum and Nexus guide plus an architecture
Section [6, 76]. The template with all its criteria is shown in Table 2.3.

Table 2.3: Template for comparing agile scaling Frameworks

Therefore, first a general overview of each of the frameworks themselves and their objec-
tives is given. Then the role of the product owner, Scrum master and development teams in
the respective framework are explained. If a framework includes additional roles, these are
presented as well. Subsequently, the process and its most essential elements and events,
such as sprints, backlog refinement, sprint planning, daily Scrum, sprint review, sprint
retrospective as well as additional events are presented. Further, the most important arti-
facts in the framework are depicted, such as product backlog, sprint backlog, the product
increment itself, a definition of ”done”, sprint goals and other useful artifacts defined by
the practice. Lastly, an overview of the role of architecture in the respective framework is
given.
The following sections about Nexus (Section 2.3) and LeSS (Section 2.4) are structured
according to the presented template into the subsections framework and objectives, roles,
process, artifacts and the respective framework and architecture. For the SAFe it seemed to
be more comprehensive to describe the roles, process and artifacts in one section (2.5.2) di-
vided by the different levels. The defined dimensions are also used to compare the frame-
works in Section 2.6. The comparison of the role of architecture takes place in Section 3.2.1.

2.3 Nexus

The following section gives an overview of Nexus including its central objectives, roles,
the process, artifacts and architecture in Nexus.

2.3.1 Framework and Objectives

Nexus means ”Unit of development” [76]. The Nexus Framework is a framework for large-
scale product or software development consisting of roles, a process with focus on events
and artifacts. Nexus is largely based on Scrum and was developed by Ken Schwaber - the

17

2 Foundations

developer of Scrum - and Scrum.org in 2015 [76]. It supports large-scale software devel-
opment in which three to nine Scrum teams work on a single product increment using a
single product backlog [38]. The basic building block of Nexus is Scrum. Therefore, Nexus
is consistent with the Scrum methodology and the idea of agility in the Agile Manifesto
concerning its basic values, such as lean, working in self-organizing teams, empowering
and trusting team members and delivering a working product increment after every sprint
[78].
Nexus is an exoskeleton resting on top of three to nine Scrum teams that are dedicated
to the development of one integrated ”done” product increment supporting them to deal
with dependencies and interoperation between the teams. The dependencies between the
teams relate to requirements, software and test artifacts as well as domain knowledge.
Requirements may affect each other or overlap. This must be taken into account when
ordering and selecting requirements for a sprint as well as for implementation and testing.
The team members have know-how about different parts of the business and different
computer systems. This domain knowledge needs to be considered for the team composi-
tion to reduce dependencies between teams and optimize productivity [76].
Nexus is only applicable for three to nine teams. If more teams are involved, Nexus+ is
a further extended framework for more than nine teams. In Nexus+ several Nexus units
exist, that work as independently from each other as possible. The rules defined by Nexus
apply. Unfortunately, there are no further sources including a more detailed description
of Nexus+. Therefore, the focus lies on the simpler Nexus framework which is shown in
Figure2.2 [75, 48].

Figure 2.2: Overview of Nexus including roles, process and artifacts [76]

Schwaber explains that they defined more than 30 or even 40 practices for Nexus to op-

18

2.3 Nexus

erate as aimed, calling those practices Scaling Professional Scrum [75, 60]. Those practices
are concerned with development, management, organization and leadership. However,
there is no source which names or explains those practices and it seems that the practices
are only explained to those who take part in the Scaled Professional Scrum workshops and
courses offered by Scrum.org [75]. The practices represent what is needed for scaling soft-
ware development and the tools are used to automate them [60]. However, as no access to
the practices could be gained, only the basics of Nexus as defined by the Nexus Guide are
described.

2.3.2 Roles

The roles in Nexus for three to nine Scrum teams are the same as in one-team Scrum plus
a Nexus integration team. There are development team members and a Scrum master in
every development team and in the Nexus integration team, but a single product owner
for all teams. The Nexus integration team supervises the application of Nexus, coaches
and coordinates the teams and takes responsibility for all integration issues. This team re-
solves all non-technical as well as technical constraints which inhibit the Nexus to deliver
a ”done” product increment. The product owner, one Scrum master and some further ap-
propriate integration team members represent the Nexus integration team. The integration
team members can be part of the Scrum teams and can change depending on the current
priorities in the Nexus. If this is the case, their work for the Nexus integration team takes
precedence over their work in the individual Scrum teams as all teams are affected by
the work of the Nexus integration team. The integration team members have knowledge
about infrastructural and architectural standards of the organization, detect dependencies
between the teams and coach the Scrum teams about necessary tools and practices. The
Scrum master in the Nexus integration team is responsible that Nexus is enacted and can
be at the same time Scrum master of one or more of the development teams. Next to that
there are further Scrum masters who are responsible for the development teams. While the
Scrum master in the integration teams takes on overall responsibilities, such as overall in-
tegration and use of Nexus practices, the other Scrum masters are responsible that Nexus
is enacted in their teams. The product owner is responsible for the single product backlog.
To sum up, the roles and their responsibilities in Nexus are quite similar to Scrum plus the
additional Nexus integration team [76].

2.3.3 Process

In Scrum as well as in Nexus the work is done in sprints. For Nexus, some of the events of
Scrum are conducted as known, extended or replaced by a Nexus event to serve not only
the individual teams but the overall success of the common product. In the Nexus sprint
planning appropriate representatives of all Scrum teams and the product owner validate
the current status of the product backlog and make adjustments if necessary. After that all
team members participate to determine the Nexus sprint goal and to coordinate which re-

19

2 Foundations

quirements each of the Scrum teams will work on in the upcoming sprint. Afterwards each
team conducts its own separate sprint planning. If new dependencies are detected, they
should be visualized and the sequence of the work might need to be adjusted. However, if
the product backlog is refined properly, all dependencies should be clear beforehand. All
work items which are part of the upcoming sprint for any team become part of the Nexus
sprint backlog. In the Nexus daily Scrum appropriate representatives of each Scrum team
participate to detect and discuss integration issues as well as dependencies. They focus on
the impact each of the teams has on the integrated increment. Following the Nexus daily
Scrum, each team holds its own daily Scrum as defined by Scrum. Tasks which arise in
the Nexus daily Scrum will be taken back to the intra-team daily Scrum to be considered
in the planning for the day. The Nexus sprint review replaces individual sprint reviews
by every team because it is used to show all new features in the new integrated increment
which can be demonstrated to the stakeholders to be able to incorporate feedback. Finally,
a Nexus sprint retrospective is conducted which consists of three parts. Firstly, appropriate
representatives from different Scrum teams identify issues which had impact on more than
one Scrum team, making those issues transparent and detecting possibilities to deal with
them. Secondly, each development team holds its own retrospective possibly using input
from the first part of the retrospective. They formulate actions which should be taken to
improve in the next sprint. Thirdly, representatives from all development teams visualize
and discuss the identified actions. Refining the product backlog is essential to Nexus as
the backlog items need to be independent from each other to be worked on by various
teams without interruptions. How often and how long the refinement meetings take place
depends on the dependencies and the complexity. Backlog items are refined and decom-
posed from large and very vague requirements to actionable backlog items. It also helps
to determine which team is suitable to work on which backlog item. The first half of the
Refinement meeting should be used to decompose and detail items while the second half
should be used to identify and visualize interdependencies [76].

2.3.4 Artifacts

As in Scrum, the Nexus product backlog is the central artifact including all requirements
which need to be implemented by all teams. In Nexus, there is a single backlog for all
Scrum Teams which is maintained by the product owner. Additionally, to the backlog in
Scrum, the Nexus product backlog serves to detect dependencies and to determine which
team will work on which backlog item. Equivalently to Scrum, there is the Nexus sprint
backlog which is composed of all items which are worked in a sprint. Therefore, it is
an composite of the sprint backlogs of all teams in the Nexus. It is updated regularly
and conduces to make dependencies and the flow of work during the sprint transparent.
Another artifact is the Nexus sprint goal, which is the overall goal of a sprint for all teams
to be reached in collaboration. While each Scrum team has its own sprint goals, these
goals are aggregated to the Nexus sprint goal, as the overall objective to be fulfilled. The
integrated increment is the integrated product developed by all teams. As is Scrum, a

20

2.4 Large-Scale Scrum (LeSS)

definition of ”done”, which is known by all team members, exists. Summing up, the Nexus
artifacts are very similar to the artifacts defined by the Scrum methodology [76].

2.3.5 Nexus and Architecture

Equivalently to Scrum, for Nexus the role of architecture and the role of architects them-
selves are not defined in the Nexus guide. In contrast to Scrum, Nexus is a quite new
framework about which only a small amount of literature was published [80]. Therefore,
not much about architectural implications of applying Nexus can be said. Some of the
above mentioned practices might relate to high-level architecture, but no information was
found about those practices [37]. Therefore, the assumption is that Nexus places a heavy
emphasis on emergent architecture. As no concrete practices and implications are given
it is assumed that whatever practices help the teams to keep the architecture simple and
make the teams successful can be chosen. Giving no guidance for architecture or an idea
on how to structure the teams can become problematic if Nexus is applied in large de-
velopment projects. However, the Nexus integration team which is responsible for the
overall integration into a product increment should provide some architectural guidance
and align the teams [76].

2.4 Large-Scale Scrum (LeSS)

The following section gives an overview of Large-Scale Scrum with its central objectives,
roles, the process, artifacts and the role of architecture for agile scaling.

2.4.1 Framework and Objectives

The first book on the Large-Scale Scrum Framework, short LeSS, was published in 2008
by Craig Larman and Bas Vodde though the authors already had teamed up from 2005
on to apply Scrum in large organizations [51, 54]. From this starting point two forms of
LeSS evolved: LeSS for scaling up to eight teams and LeSS Huge for more than eight
teams up to a few thousand people that all are working on a single product. LeSS does
not intend to be improved Scrum or Scrum applied on the team level with additional
layers on top. The focus of LeSS is to apply Scrum principles, processes and elements
in a large-scale context. To do so, a deep understanding of one-team Scrum is necessary.
LeSS is scaled Scrum adopting many of the principles and practices of Scrum. One of
the most crucial objectives of LeSS is to support the different teams to focus on the whole
common product instead of just making their part of the product work [21]. The authors
of LeSS say that it is not a complete framework, but that it leaves space for each team
and organization to learn from its own experiences. The LeSS Framework is defined by
a set of rules concerning the organizational structure, the product and sprints which are
minimalistic and do not give definitive answers on how to apply LeSS in a certain context.

21

2 Foundations

Further, the framework includes experiments which are practical applications of different
forms of LeSS in real organizations and learnings from those experiments. Additionally,
LeSS provides guides which are tips helping to apply the rules. Figure 2.3 shows the
simple LeSS process including some additional practices and concepts that are helpful for
the application of LeSS.

Figure 2.3: Overview of Large-Scale Scrum including roles, processes and artifacts [21]

The LeSS principles support organizations with their decisions on how to apply LeSS
[55]. The first principle says that LeSS is Scrum meaning that the framework’s objective is
to apply Scrum in large-scale contexts in a simple way (1). The second principle is trans-
parency arising from tangible items, such as implemented functions (2). Thirdly, no further
roles are added to keep responsibility in the teams, no additional artifacts are defined be-
cause the teams should focus on what they provide for the customer and no new process
steps are defined to provide more space for situational learning and keep the process own-
ership to the team (3, ”More with LeSS” [55, 21]). The focus is supposed to lie on the whole
product which is reached by a single product backlog and one product owner responsi-
ble for it, one releasable product and all teams in the same sprint (4). Another principle
is customer centricity. The goal is to provide a valuable product to the customer which
can be only reached if the customer’s problem is understood and solved (5). Furthermore,
the product has to be improved continuously (6). Lean-thinking should be applied by all
managers. These pose frequent challenges to the teams, have respect for others, foster
improvement and are teachers to the team (7). System-thinking supports the understand-
ing and optimization of the entire product (8). Empirical process control means not to
follow some predefined best practices, but to inspect and adapt not only the product but

22

2.4 Large-Scale Scrum (LeSS)

also processes, practices and design continuously while focusing on the current situation
and its challenges (9). Finally, it has to be understood how systems with queues function
and apply those learnings to manage work-in-progress, variability and work packages (10)
[55, 21].
In the next sections, the roles, processes, artifacts as well as tools and practices in LeSS
are described followed by additions which need to be made if more than eight teams are
involved and therefore LeSS Huge is needed.

2.4.2 Roles

The roles in LeSS are the same as in Scrum. The roles include one product owner for the
entire product, Scrum masters, that are responsible for one to three teams each, and two
to eight development teams. Conceptually, the role of the product owner has the same re-
sponsibilities as in one-team Scrum. However, next to managing the single product back-
log, the product owner has to keep an overview of all teams and the entire product. The
product owner has to ensure that the Return on Investment is maximized. This supports
the required whole product focus and avoids the optimization of sub-products developed
by sub-teams. While in Scrum the product owner focuses equally on prioritizing and clar-
ifying backlog items, in LeSS his main responsibility is the prioritization. Clarification is
mostly done by the teams in cooperation with the customer. Here the product owner is a
connector between the teams and the customer. When the teams support the clarifications
in that way, the product owner is able to focus more on the big picture and to explore fur-
ther strategic opportunities. Further, the product owner communicates with higher level
management to visualize the development progress, e.g. using burndown charts, and to
adapt organizational design. The managers help to improve organizational capabilities
and make decisions about organizational structures and policies [24]. The product owner
cooperates with the Scrum masters who educate the product owner and help them to im-
prove methodically. In a LeSS structure with many teams, the single product owner can be
supported by other product managers, composing a product owner Team [23]. ”Product
owner is not a new name for a traditional project manager who delivers a scope and date
contract of work. Rather, a product owner must have the independent authority to choose
and change content, release dates, priorities, vision, etc. Of course she collaborates with
stakeholders, but a real product owner has final decision-making authority” [23].
Scrum masters have a deep understanding of LeSS and coach the teams, the product owner
as well as the organization about development practices and create a working environ-
ment in which the teams succeed [25]. One Scrum master can be responsible for up to
three teams [21]. However, coordination between the teams is not the Scrum masters’ re-
sponsibility.
The teams themselves are responsible for inter-team coordination [25]. The teams are self-
managing, cross-functional and work across different components. The teams cooperate
in a shared code environment. They are dedicated to take shared ownership and responsi-
bility for their actions and team members use all their time to create a successful product.

23

2 Foundations

Each team is co-located meaning that they work together in the same room to allow fre-
quent face-to-face communication, team learning and to create trust and a sense of shared
responsibility. Further, the teams need to be long-lived. Therefore, they should be stable
over time to be able to cooperate closely and improve together over time [26]. If the teams
are not able to create a shippable increment at the end of each sprint and have some open
tasks left, an ”undone” department exists which finishes those tasks before the release.
Especially in smaller adoptions of LeSS, such a department should not exist, because the
teams should be able to complete all tasks for the release. In LeSS Huge adoptions, some-
times an ”undone” department can be useful for testing, Quality Assurance or architecture
[22].
In LeSS Huge, teams are structured in requirement areas with four to eight teams each.
The requirement areas are grouped around important areas of customer matters to ensure
customer-centricity. Requirement areas are dynamic constructs whose size and priority
varies over time. Each requirement area has an own product owner, the so-called area
product owner who is responsible for the area product backlog. Sometimes the overall
product owner can additionally be an area product owner [21].

2.4.3 Process

Most events in the LeSS development process are similar to Scrum events with some adap-
tions. All teams in LeSS are in the same sprint, that means in a sprint with the same
start and end date as well as the same sprint goal. This allows for easy coordination of
events which include representative of all teams. Coordination is also simplified by the
co-location of the teams and can be supported by open spaces and communities though
most communication takes place face-to-face or via code [21].
The sprint planning is divided into two parts. The sprint planning one is executed by the
product owner and representatives of all teams. They discuss shared work and related
backlog items. Further, it is decided which product backlog items will be implemented
by which team. In the sprint planning two which is held in parallel by each team with all
team members taking part the teams discuss design issues and make a plan for the upcom-
ing sprint which is visualized by the sprint backlog [55]. If there is a lot of coordination
required between some of the teams for the items in the upcoming sprint, they might hold
their sprint planning two in the same room in different areas but with the possibility to
communicate easily and frequently during the meeting.
There is no overall daily Scrum. Instead each team holds its own daily Scrum with the
possibility of team members from other teams taking part to share information.
An overall backlog refinement with the product owner and representatives from all teams
is a chance to align the teams and to discuss which team could implement which backlog
item and to select those for discussion in the product backlog refinement in the affected
team. The overall backlog refinement is only held if necessary [21]. The product back-
log refinement held by each team separately has the same purposes as the corresponding
Scrum event. It is used to refine the items the team is likely to implement in later sprints

24

2.4 Large-Scale Scrum (LeSS)

[55]. This event can take place for several teams in the same room to simplify coordination
and information sharing.
In the sprint review the product owner, representatives from all teams and customers as
well as other stakeholders take part. The setting of the sprint review differs from the
event in Scrum. It is meant to be more like a ”science fair” with different areas where
team members present those new functions their team has developed. The customers and
stakeholders are shown the new items and are able to give feedback [21].
First, each individual team holds its own retrospective followed by the overall retrospec-
tive. In the overall retrospective, the product owner, the Scrum masters and representa-
tives from all teams explore possibilities to improve the overall work [21]. Design work-
shops which incorporate agile modeling techniques and entire feature teams or members
from different teams can be useful to determine design and architecture of items which
need to be implemented. The design workshops are described more detailed in the Sec-
tion 2.4.5.
In LeSS Huge, each requirement area conducts its own sprint planning. The overall back-
log refinement is held for each requirement area instead of for the whole product. In order
not to lose the whole product focus which is required there can be an additional product
owner meeting with all requirement area product owners and the overall product owner
to align and discuss overall issues. There are no rules for sprint reviews and retrospectives
in LeSS Huge. Certainly, there are reviews and retrospectives for each requirement area.
Additionally, there can be a review and retrospective for the whole product if considered
necessary [55]. The further events remain the same as for LeSS [21].

2.4.4 Artifacts

The artifacts in LeSS are an overall product backlog, separate sprint backlogs for each team
and one integrated product increment. The product backlog does not differ from the cor-
responding artifact in the one-team Scrum. It therefore includes prioritized and estimated
items ordered by their granularity with more detailed items at the top. The sprint back-
logs consists of the product backlog items and all tasks to implement those a team needs
to complete in the current sprint. It is the same as in one-team Scrum. At the end of each
sprint an integrated and potentially shippable product increment is finished. The integra-
tion itself is done during the sprint. This supports transparency and the whole product
focus, reduces risk and work in progress and keeps feedback cycles short to allow for con-
tinuous improvement. Further, a common definition of ”done” which is initially defined
and agreed on but evolves over time [21].
The application of LeSS Huge requires a requirement area attribute in the overall product
backlog to visualize which requirement area works on the item. As a result, those back-
log items with the same area attribute can be grouped in the so-called requirement area
backlog [21].

25

2 Foundations

2.4.5 LeSS and Architecture

”We believe that agile architecture comes from the behavior of agile architecting. It is primarily
about mindset and actions, not the use of a particular design pattern. And part of that mindset is
thinking ’growing’ or ’gardening’ over ’architecting’.” [52]

Craig Larman and Bas Vodde, the creators of LeSS, consider the term ”architecture”
which was borrowed from actual building architects a bad analogy as it implies that archi-
tecture has to be done before starting to build. Once the construction of a building started
it is nearly impossible to change its architecture. On the other hand, software and accord-
ingly its architecture are not supposed to be fixed permanently but still changeable over
time, especially when agile methods are used. Architecture changes or ”grows” over time.
Larman and Vodde are critical about defining an intended architecture at the beginning
of the development process as this is often only done in documents. Later, this intended
architecture might not correspond to the actual architecture in the system and even might
not be the best suitable one as well. Further, they criticize that often architecture and the
source code are considered to be completely separate from each other [54]. Larman and
Vodde present some observations they made about agile architecture and design [54, 20].
Their first observation is that the source code is the true architecture or design of the soft-
ware. The architecture defined in the source code often does not correspond to the archi-
tecture which is intended by the team: ”The architecture is what is , not what one wishes
it to be” [20]. Based on the first observation, the second one is that architecture evolves
over time with every line of code which is written. Architecture is not a static construct
but changes continuously as long as the development team is programming. Additionally,
Larman and Vodde observed that ”the real living architecture needs to be grown every day
through acts of programming by master programmers” [54]. In general, the LeSS frame-
work assumes that architecture is rather grown than being built. Further, the programmers
themselves are the ones to determine the true architecture. This can be connected to the
fourth assumption which says that an architect that does not know or work on ”the evolv-
ing source code of the product is out of touch with reality” [20].
In LeSS, the role of the architect is not defined as one person in the team, but every mem-
ber of the development team is an architect, even if he/she does not know or want it. As
soon as a developer changes the code or adds something to it, it is an architectural act
[54, 20]. In large organizations often those observations are not acknowledged and ar-
chitecting is exclusively done by architects outside of the development teams most likely
before the development process starts. Agile architecture arises from the team’s behavior
concerning architecture including agile mindsets or culture as well as agile practices and
actions [52]. Larman and Vodde suggest ”hands-on master-programmer architects, a cul-
ture of excellence in code, an emphasis on pair-programming coaching for high-quality
code/design, agile modeling design workshops, test-driven development and refactoring,
and other hands-on-the-code behaviors” [54, 20]. Therefore, they mainly give behavior
oriented tips and only few technical oriented tips when it comes to architecture and de-

26

2.4 Large-Scale Scrum (LeSS)

sign in LeSS [54, 20].
As an important step for improving architecture or designing new items to be imple-
mented Larman and Vodde suggest to hold design workshops for agile modeling. These
workshops involve the entire feature team which is responsible for building the new item
to be modeled and designed. A team might do a design workshop right before starting
to build the item or whenever the team considers modeling useful. Most requirements
should be clarified before the workshop though during the modeling new questions may
arise. The feature team decides what to model and depending on the team’s objective
they can model only the new item or the overall system architecture [54, 20]. The team
decides which kind of model is useful for reaching their objectives: ”low-fidelity UI mod-
eling with sticky notes or in prototyping tools, algorithm modeling with UML activity
diagrams, object-oriented software design modeling usually sketched in UML-ish nota-
tion, and database modeling likewise” [20]. The authors suggest modeling on large white-
boards and even covering the entire wall of the team room with posters or whiteboard-like
material which sticks to the walls to be able to make sketches that the whole group can see
and can get involved in. It helps the team to model in a simple, graphic way. They see
those models not as specifications but as a basis for having constructive discussions about
the new item (”Model to have a conversation” [20]). LeSS acknowledges that all models
are ”wrong” and that they evolve. They serve as an inspiration and help the team to learn
and reach a shared understanding.
It is useful to hold modeling workshops in their team room every iteration. Such work-
shops should be time-boxed as every Scrum event, but can last from two hours to two
days. If design or architecture issues affect more than one team, those teams should take
part in the workshop as well. Larman and Vodde also encourage LeSS teams to involve
modeling in their daily work. If developers are stuck during programming or have any
questions, they could sketch a simple model and invite their team members for a short dis-
cussion to get their opinions or a new perspective on their issue. Therefore, team members
are able to translate code into simple or very detailed models and the other way around
- whatever abstraction level is required. Further, architects can develop spikes solution to
refine requirement. Spikes are very small solutions going vertically through all compo-
nents to explore suitable architecture for a new feature.
In the beginning of new product development or if major changes to the architecture are
necessary it makes sense to establish a small co-located tiger team of architects, that are
programmers at the same time. The tiger team explores architecturally significant features
and implements them. As soon as the tiger team gets too small to handle all challenges, it
is divided. Then the tiger team members become part of different new teams which they
can support with their gathered knowledge and skills. A system architecture documenta-
tion workshop helps to spread the knowledge gained by the tiger team and create a shared
understanding for all teams. The former tiger team members can coach the teams on ar-
chitecture and programming practices and can take on the role of technical leaders in the
teams. Additionally, Communities of Practice (CoPs) can bring together technical leaders
and programmer-architects from different teams to work on common (architectural) issues

27

2 Foundations

and share knowledge. CoPs can cooperate and document their findings in a shared Wiki
Space for themselves and their teams. If the code of some components is shared, the role
of a component mentor who knows a certain component in detail, teaches and informs
others about the component and ensures that the changes made by the feature teams on
the component make sense can be helpful [54, 20].
As Scrum teams and LeSS teams are cross-functional they should be able to provide their
customers with entire solutions. Hence, there is no separate architecture team, but archi-
tects should be included in the teams as regular members. Architectural tasks are part of
the product backlog and work is done in the sprints. The requirements which have a ma-
jor impact on the architecture should be implemented early to minimize the risks of major
architectural changes later in the development process. The architecture evolves over time
and in the process all earlier architecture decisions should be questioned and - if necessary
- changes should be made. However, some early analysis and decisions are required, such
as choosing a programming language. Especially if some architectural decisions seem to
be outdated, teams should make the effort to find a better technical solution and to con-
vince others that a change might bring benefits later on. If earlier decisions are questioned
and continuous actions for improvement are taken, technical debts can be reduced. This is
especially important if teams develop a solution which now may be little, but is supposed
to become really large. Re-factoring and continuous integration are essential. Additionally,
one should avoid ”architecture astronauts”, ”Powerpoint architects” or ivory-tower archi-
tects that are out of touch with the code and therefore the actual architecture [20]. In large
organizations in which a separate architecture team exists, the role of the architect needs
to change. These architects can take on the role of teachers or mentors to the team and pro-
vide the teams with methodical competences or new practices as well as tools and can be
a connector to the overall business vision. However, Larman and Vodde prefer architects
who are developers and technical leaders at the same time, know the code, provide guid-
ance during pair programming or design workshops, push the usage of new technologies,
make architectural decision and communicate them [54, 20].
Finally, next to other methods Larman and Vodde recommend the use of DDD as it ”en-
courages thoughtful iterative design, shared understanding, and a domain model that
must be well-expressed in the code” [54]. DDD can give the teams helpful tools for domain
modeling. DDD can support the teams to reach a shared understanding of their domains
by providing the advice that all code reflects the domain model and that the model is the
basis for a shared language for all team members. Though this is mostly related to tactical
DDD, Strategic DDD can support the definition of the team organization according to busi-
ness domains. It is suggested that the teams are structured around customer requirements
and not around architecture. Therefore, the feature teams are the preferable team com-
position to be able to develop ”vertical” features fulfilling the customer’s requirements.
Feature teams develop and maintain features end-to-end [4]. This means that the teams
program to fulfill a customer requirement by implementing the feature across all layers
and components [54, 20]. Verticalization can be supported by Strategic DDD 2.7.4.

28

2.5 Scaled Agile Framework (SAFe)

2.5 Scaled Agile Framework (SAFe)

The following section gives an overview of the Scaled Agile Framework (SAFe 4.0) with its
most essential objectives, roles, the process, artifacts and the role of architecture for agile
scaling.

2.5.1 Framework and Objectives

The Scaled Agile Framework was first published under this name by Dean Leffingwell
in 2011. In the beginning of 2017 (until June), the most current version was SAFe 4.0.
Based on agile and lean principles, the Scaled Agile Framework (SAFe) can be applied
in large organizations with many agile, sometimes geographically distributed teams to
develop complex enterprise systems [38]. SAFe helps to align numerous teams and can
be adapted to the needs of different organizations, as it is modular and can be applied
in different ways to provide better business outcomes [40]. SAFe is based on the three
main bodies of knowledge agile software or systems development (see Section 2.1.1), lean
product development and flow or systems thinking [58]. SAFe is not a predefined process
which can be applied step by step by each organization which wants to become more
agile. SAFe provides a starting point, patterns and a knowledge base. Therefore, nearly all
of the described elements are optional. The actual implementation might differ for each
organization [63].
Two general bigger pictures of SAFe exist. The three-level view is suitable for a modest
number of teams with up to 100 practitioners and includes the team, program and portfolio
level as well as some foundations. The four-level view comprises additionally a value
stream level and is suited for projects which require more than hundred team members to
develop large and complex solutions [58]. While SAFe is the most complex of the scaling
methods presented here, it can be used to make an entire enterprise or large parts of an
organization more agile. Figure 2.4 presents four-level SAFe with all its roles, processes
and artifacts.

2.5.2 Roles, Process and Artifacts

SAFe consists depending on the size of the enterprise or project of three or four levels: the
team, the program, the optional value stream and the portfolio level. The different levels
are described in the following paragraphs.

Team Level On the team level SAFe includes agile teams of which each is responsible for
specifying, implementing and testing user stories from their own team backlog in a series
of iterations with predefined duration (like sprints) [40, 57]. Each team has between five
and nine members and applies either Scrum or Kanban methodology with lean product
development practices and eXtreme Programming elements. In this work, the focus lies
on Scrum extended by some lean and eXtreme programming practices. The roles within

29

2 Foundations

Figure 2.4: Overview of four-level SAFe including roles, process and artifacts [43]

each of the teams are Scrum master, product owner as well as developers with responsi-
bilities as defined by Scrum. The product owners maintain and refine the team backlogs
with their team’s user stories and are further responsible to plan the product increments
and value to be provided in cooperation with product management [40].
While in small organizations only a few teams exist, in larger enterprises groups of teams
cooperate to build up extensive functionality into final products, features, subsystems or
architectural components [57]. In larger organizations, the teams should follow a standard
iteration length, also known as cadence, with the same start and end time so that the new
functionality can be integrated at this point. For each iteration the same process is fol-
lowed by each of the teams. First, they plan the iteration and commit to functionality to
be implemented. After that the development itself and testing takes place. Finally, similar
to a sprint review, new functionality is demonstrated in the team demo and a retrospec-

30

2.5 Scaled Agile Framework (SAFe)

tive is held (iteration retro) [58]. Daily stand-ups, similar to daily Scrums, are conducted
by the teams internally. The development timeline is not only divided in iterations, but
also includes the program increment (PI) planning which is a meeting lasting two days
and taking place every eight to twelve weeks which is used to commit to a set of common
goals until the next PI. The PI requires a lot of preparation including the definition of a
vision, milestones and a roadmap in cooperation of the product management, agile teams
and the customer. The PI is the most essential event to communicate with the program
level [40].
Further artifacts correspond to Scrum methodology and are sprint backlogs for each team,
user stories, a definition of ”done” and the integrated increment [57]. Quality of the soft-
ware developed by a team is assured by the team members themselves. However, addi-
tional quality assurance personnel is responsible for system-level testing to ensure system-
level quality. Further, the teams can be supported by user-experience and data-base de-
signers, documentation as well as build and deployment specialists and whomever else is
suitable to develop a successful integrated product or shared services. Even if agile teams
do not include the role of an architect, architecture matters. The architecture is determined
by the local teams and emerges from the teams’ activities [57].

Program Level At the program level, five to twelve agile teams are organized into a
so-called ”agile release train” (ART). An ART is a long-lived and self-organizing virtual
program structure which is to deliver value in the form of PIs to the enterprise’s most es-
sential value streams [40]. Business owners, a critical group of three to five individuals,
share ”fiduciary, governance, efficacy, and ROI responsibility for the value delivered by a
specific Agile Release Train. For each train, the role is fulfilled by the people best suited to
these responsibilities” [58]. Next to the teams organized in the ARTs, on the program level
additional roles exist as some further higher level objectives need to be reached [40]. They
are also responsible for the program backlog.
The objectives at the program level are maintaining the vision and the roadmap, coordi-
nating releases, assuring quality of the aggregated results of each ART, managing deploy-
ment for the end users, managing resources and eliminate those impediments that hinder
the teams to reach their goals which are outside of the teams’ control [57]. The three ad-
ditional roles on the program level are release train engineer, product management and
system architect/engineer. The release train engineer as the chief Scrum master of the
ART optimizes continuous value delivery by using PI Planning. He organizes a Scrum of
Scrums meeting taking place weekly or even more often with the Scrum masters to make
progress and any impediments transparent [40]. Product management cooperates with
the customer and product owners to understand the customer’s requirements and define
them in the program backlog for the ART for which the Product Management is respon-
sible [58]. Product management meets up with product owners in the ”product owner
sync” to get an insight into the progress of the ART concerning the PI objectives on the
program level [40]. The system architect/engineer who is either one person or a small

31

2 Foundations

cross-discipline team define the overall architecture of the large-scale system, define non-
functional requirements and interfaces [58].
Another concept included on the program level is the architectural runway symbolizing
the emergence of architecture over time including not only emergent design, but also in-
tentional architecture which is required to guide the teams as soon as the number of agile
teams and the size of the system grow larger. Further information on the architectural run-
way is given in Section 2.5.4 along with information about agile architecture in SAFe.
At the program level, one has to decide if the teams in the ART should be organized as
component or feature teams to optimize value delivery and simplify integration. Compo-
nent teams are organized around specific components of the architecture of a large-scale
system. For example, there might be a team for each layer of the architectural stack, such as
one team for the presentation layer, one for the business logic and one for the database. In
contrast to component teams, feature teams are organized around certain features, mean-
ing that a team develops a feature including not only the business logic, but also the pre-
sentation layer and the database. The core competence of each team is one feature or a set
of similar features and not only one part of the technology stack. Many sources find feature
teams preferable even if it means a higher effort for reorganizing the enterprise. Advan-
tages of feature teams include that the team builds up expertise in its domain, ability to
develop end-to-end features, fewer interdependency between the teams, less overhead in
the product backlog and increased value throughput [57].
Between the program and the value stream Level the so-called ”Spanning Palette” is pre-
sented which includes roles and artifacts which can apply on different levels of SAFe,
though they are most common in the program and value stream level. The ”Spanning
Palette” includes amongst others vision, roadmap, milestones and DevOps [40]. Either on
the program or value stream level inspect and adapt Workshops take place at the end of
each PI to identify possibilities to improve the next PI concerning reliability, quality and
velocity [58].

Value Stream Level The value stream level is optional and only necessary if extremely
large and complex systems are developed. While for simpler solutions only one ART exists
on the Program level, for more complex solutions many synchronized ARTs are needed.
Each value stream serves to synchronize multiple ARTs. The cadence on the value stream
level is based on ART PIs to be able to synchronize the ARTs. Some further roles, such
as value stream engineer, solution management and solution architect/engineer are nec-
essary [40]. As the servant leader of the value stream, the value stream engineer is respon-
sible for identifying and resolving bottlenecks across the value stream. The solution man-
agement is responsible for the value stream backlog representing the customer’s require-
ments and the capabilities to be implemented as well as the overall strategy defined by
the portfolio level and for governing the economic aspects of the decision-making for the
ARTs. The solution architect/engineer specifies the overarching architecture to connect the
solution across the various ARTs. Additionally, they guide the system architects/engineers

32

2.5 Scaled Agile Framework (SAFe)

in the ARTs [58]. As in the case study in this thesis the systems might not be as large and
complex, the value stream level will not be needed if the enterprise decides to apply a vari-
ation of SAFe. Therefore, the process, roles and artifacts of this level are not explained in
detail. However, the value stream level includes some interesting aspects when in comes
to architecture in SAFe. These aspects are explained in Section 2.5.4 .

Portfolio Level The top level in SAFe is the portfolio level which either communicates
with the value stream level, if it exists, or directly with the program level. The portfo-
lio level serves to organize and fund one or more value streams of which each develops
a solution to reach the enterprise’s strategic goals. The portfolio level provides strate-
gic themes, coordination of the value streams, lean-agile budgeting and governance [40].
The portfolio level connects the whole framework to the enterprise by defining strategic
themes in cooperation with other key stakeholders in the enterprise. Strategic themes are
the business objectives derived from the overall enterprise strategy. Further, the portfolio
level provides feedback to the enterprise, for example key performance indicators (KPIs),
information about the current solution’s fitness and current strengths and weaknesses as
well as possible opportunities and threats [58]. The program portfolio management (PPM)
is one of the key roles on this level considering all knowledge about the enterprise strat-
egy, financial and technological constraints. PPM is responsible for any investments and
returns as well as for any content to be developed.
Major artifacts are portfolio epics which are large initiatives required by the enterprise and
including all business capabilities that need to be developed or improved [40]. Portfolio
epics first go through the portfolio Kanban to be analyzed and approved for implemen-
tation considering strategic initiatives and economic aspects. The portfolio epics which
are approved to be implemented are organized in the portfolio backlog and are managed
by the epic owners [57]. One can differentiate between business epics and epic enablers
on the portfolio level. Business epics comprise impact or cost analyses or business cases
connected to potentially evolving business capabilities to be approved before deciding if
it should be implemented. Enabler epics include architectural or technical topics which
serve to enable the new business capabilities. The flow of work on the portfolio level is
made transparent by a portfolio Kanban system. The enterprise architect role requires
knowledge about all value streams and programs to be able to strategic technical guid-
ance. The enterprise architect often is the owner of enabler epics with the objectives to
harmonize delivery and development [58]. In Section 2.5.4, the architectural runway and
the enterprise architects role are described in detail.

Foundation Layer Additionally, SAFe includes a Foundation Layer which holds prac-
tices, values and principles to support large scale development, such as core values, Lean-
Agile mindset, lean-agile principles, lean-agile leaders and CoPs). The core values are
alignment, transparency, built-in-quality and program execution. The Lean-Agile mindset
includes the values as defined in the Agile Manifesto plus lean principles, such as respect

33

2 Foundations

for people and culture, flow innovation and relentless improvement. The lean-agile prin-
ciples in SAFe are to take an economic view, apply systems thinking, assume variability
and preserve options, build incrementally with fast, integrated learning cycles, base mile-
stones on objective evaluation of working systems, visualize and limit work-in-process,
reduce batch sizes, and manage queue lengths, apply cadence, synchronize with cross-
domain planning, unlock the intrinsic motivation of knowledge workers and decentralize
decision-making [40]. Lean-agile leaders follow all these principles while being life-long
learners and teachers to their teams. CoPs are established to allow a group of experts and
members from different teams to discover, share and discuss practical knowledge [58].

2.5.3 SAFe Update

During writing this thesis in June 2017, an update of SAFe was published (SAFe 4.5). In this
section, the major differences are listed and discussed shortly. Though most roles stayed
the same, there are now four different versions of SAFe for different organizational sizes
and complexities. However, SAFe still has to be configured differently to fit different or-
ganizations. The four drafts now may come closer to the solution the organizations really
implement. The four configurations are Full SAFe, Portfolio SAFe, Large Solution SAFe
and Essential SAFe. Essential SAFe describes the basic elements of SAFe on the team and
program level. Portfolio SAFe corresponds to the former three-level SAFe. Large Solution
SAFe is for more complex organizations which require multiple ARTs. This configura-
tion of SAFe consists of Essential SAFe plus a large solution level (former value stream
level), while it does not include the portfolio level. Full SAFe then also includes the port-
folio level. The poster for the four different configurations can be found on the website of
Scaled Agile Inc [44].
What previously was a value stream is now the solution train which serves to manage sev-
eral ARTs. Additionally, compliance is now part of SAFe and is considered as a part of the
solution intent. Agile architecture was removed from the big picture, however it is still a
very important component in the guidance articles and a part of the solution intent. Based
on the lean start-up cycle, now also minimum viable products and lean business cases are
part of SAFe. Additionally, DevOps and continuous delivery play a role in the ARTs [44].

2.5.4 SAFe and Architecture

SAFe underlies the assumption that architecture is agile. However, opposing to Nexus
and LeSS, in SAFe not all architecture is said to emerge purely through the act of program-
ming. Leffingwell calls this component emergent design, while additionally he says a part
of the architecture is intentional and is created in collaboration of architects, technical lead-
ers and the teams [40, 56]. However, in SAFe one should avoid big up-front design and
processes with plenty of interruptions. Additionally, the system is supposed to run always
and value has to be delivered continuously. Emergent design ensures a suitable technical

34

2.5 Scaled Agile Framework (SAFe)

basis for iterative development and incremental delivery and the possibility to adapt the
design according to customer needs quickly. Corresponding to the approach to architec-
ture in Nexus and LeSS a part of the architecture emerges along with programming and
deploying new features. However, according to Leffingwell large enterprises face further
challenges which can only be coped with successfully with large-scale architectural ini-
tiatives. These initiatives require certain objectives (or ”intentions”) and more planning.
Large-scale architectural initiatives address overarching technical issues and provide guid-
ance to agile teams on the team and program level. They help to reduce redundancy, guide
the teams concerning approaches and want to reach a higher reliability and robustness of
the overall system [41, 58]. Both, emergent design and intentional architecture contribute
to the architectural runway which is shown in Figure2.5.
The architectural runway was defined by Leffingwell in 2007 as follows: ”A system that
has architectural runway contains existing or planned infrastructure sufficient to allow in-
corporation of current and anticipated requirements without excessive refactoring” [56].
Therefore, in the agile enterprise context with many incremental releases the architectural
runway means to answer the question: ”What technology initiatives need to be underway
now so that we can reliably deliver a new class of features in the next year or so?” [57].
These initiatives contain significant architectural changes, possibly affecting all teams. The
implementation of those large-scale structural changes are planned, estimated and orga-
nized as architectural epics on the portfolio level. Architectural epics help to reach the
enterprise’s technology vision and often require high investments and a lot of resources.
They bear the risk to reduce the current velocity, but may be necessary to increase the ve-
locity and quality of the system in the future. On the program level architectural epics
are divided into architectural features for the upcoming release meaning that they have to
be done on time for the release. They are handled like all other features on the program
level. The development teams contribute to the architectural runway through re-factoring
and by conducting spikes. These actions are handled like any other user story in the team
backlogs and must be demonstrated at the end of each iteration [57].

Figure 2.5: Architectural runway in SAFe [41]

35

2 Foundations

Agile Architecture in SAFe is defined by a set of principles. The principles by Leffing-
well have evolved over time and some differ in the various sources [59, 57, 41, 58]. The
first principle is that design emerges and that architecture evolves by collaboration of per-
sons on all levels (1). This principle was adopted from the 11th principle of the Agile
Manifesto: ”the best architectures, requirements, and design emerge from self-organizing
teams” which is the central assumption for architecture in Scrum [3, 58]. SAFe acknowl-
edges that emergent design is very effective at the team level, but that on the other levels
some additional guidance is necessary. Intentional architecture provides guidance for is-
sues concerning more than one team and the teams’ interdependencies and helps to im-
prove usability and performance of the overall system. It is done in a more abstract and
less detailed way to leave space for the teams to adopt the constraints and ideas in their
context. Though intentional architecture sets constraints for the emergent design, the team
level design can contribute to intentional architecture with new ideas which might deliver
value to other teams in the future as well. So if one team found a good solution to an
issue other teams may also face in the future, this solution can contribute to intentional
architecture and other teams can profit from it as well. The collaboration for evolving a
suitable architecture involves not only the development teams, but also system, solution
and enterprise architects as well as product and solution management. Summing up, in a
very complex environment a global view on architecture is required to anticipate changes
to the overall system and to ensure integrity, synchronization, performance, scalability and
maintainability [41, 58].
The second principle is ”The bigger the system, the longer the runway” (2) [41]. Large
teams working on large systems need to improve the architecture continuously to also be
able to deliver features which are required later in the project on time. Therefore, a suitable
technological infrastructure is necessary to implement new features to avoid excessive re-
design which causes - if realized too late - high delays. While intentional architecture
contributes to the architectural runway by laying the foundations for the implementation
of high priority features in the future, emergent design is done by the agile teams devel-
oping features in the current iteration. Building the runway for large systems takes a lot of
time and is a continuous process which is an essential part of the project [57, 41, 58].
Thirdly, the teams are given advice to ”build the simplest architecture that can possibly
work” (3) [41]. In agile development projects requirements changes over time. To en-
able those changes in the developed product, the architecture has to be kept as simple
as possible while still ensuring the current functionality [57]. Simplicity is supported by
establishing a common language, refactoring, keeping the solution close to the problem
domain, ensuring that the intent of interfaces is expressed transparently and by following
design principles. Relating to this principle, Leffingwell suggests DDD to keep design and
communication simple by fostering feature-orientation [41, 58].
”When in doubt, code or model it out” is another principle of agile architecture in SAFe
(4). To explore how a new item should be implemented, the teams can just code it out, use
spikes or even rapid prototyping to find a suitable solution. If this is not enough, modeling
can help to understand the problem to be solved and understand its impact. Especially,

36

2.6 Comparison of Nexus, LeSS and SAFe

domain modeling can be useful to gain a better understanding of the entities in the prob-
lem domain and their relationships. Therefore, Leffingwell suggests: ”If you model one
thing in agile, model the domain” [42]. Domain modeling not only supports the analysis
of requirements, but can also help to determine the conceptual design. Here, the DDD ap-
proach can help to model, design and implement new features and to manage complexity
[42, 41].
The next principle says that the ones who design and build a system and its architecture are
also responsible for testing it (5). The development teams have to be able to test all func-
tional and non-functional requirements they have implemented continuously [57, 41, 58].
Another principle is that ”There is no monopoly on innovation” [41]. There is not a single
person, role or team who is responsible for innovation, but all teams, architects as well as
engineers and all stakeholders can contribute to the system with their innovative ideas.
Agility in SAFe also means to foster a culture of innovation [57, 41, 58].
The last principle is to ”implement architectural flow” by coordinating and implementing
large-scale architecture initiatives on all levels [41]. This can only be reached by improving
continuously and making necessary changes visible and transparent [57, 41, 58].
Summing up, those principles are central to architecture in SAFe and DDD can support
the teams by making the underlying logic explicit by using models, by providing a basis
for a shared language, refactoring and linking the domain and solutions to issues in the
domain [41, 58].

2.6 Comparison of Nexus, LeSS and SAFe

To summarize the main ideas, processes, roles, artifacts and architecture in Nexus, LeSS
and SAFe the next sections include a comparison of the frameworks. For the comparison
some criteria from the Agile Scaling Knowledge Matrix that compares many approaches
were used in an adapted ways [71]. However, many new and more detailed criteria were
added. The results then are reused to find a suitable approach for the large insurance
enterprise in the case study which is the goal of the third research question. Differences in
architecture in the frameworks and how DDD contributes to architecture, are explored in
sections 2.6.5 and 3.2.1.

2.6.1 Frameworks and Objectives

The results of the comparison of the objectives of the three frameworks are presented in
Table 2.4. All of the three frameworks are available in two versions. While Nexus sup-
ports agile scaling for up to nine Scrum teams, Nexus+ suggests that several Nexus units
which should be as independent as possible from each other can be coordinated using
Nexus+. However, there is no detailed information about how coordination happens in
the framework [78]. LeSS scales up to eight Scrum teams, while LeSS Huge scales up to
a few thousand individuals, if all teams are organized in requirement areas. In SAFe, the

37

2 Foundations

number of teams that can be scaled depends on if the three or four level view is used. By
adding the optional value stream level hundreds or even more people can be scaled [58].
Whereas SAFe, tries to make very large parts of enterprises more agile and to cover all
levels of the organization from team level to portfolio level, in Nexus and LeSS the focus
is more on the integration between the teams [17]. In Nexus, the higher levels are not re-
ally specified. However, in Nexus the integration team might function as a connector to
higher level management. Similarly, in LeSS the product owner (referred to as PO in the
tables) connects the teams to management. Differences also occur in inter-team coordina-
tion. While in Nexus the coordination is done by the integration team, in SAFe the product
owner and Scrum master are responsible for coordination in exchange with the program
level and in LeSS the teams themselves and the product owner are responsible for inter-
team coordination.
In all frameworks there are joint events with people from different teams and with over-
arching roles that support inter-team coordination [14]. The objectives of the frameworks
are quite different. SAFe supports even very large organizations to become more agile
by providing a set of practices that are all optional and adaptable to any organization
[2]. However, it is often argued that SAFe is not really agile including many top-down
decisions and a lot dependencies that potentially slows development down. Further, a
misalignment with Scrum is stated especially because of the product owner roles which
potentially lead to forgetting that whole product focus is essential [82]. Schwaber criti-
cizes SAFe and other large scaling frameworks by saying that they ”started to reintroduce
methodological, prescriptive, one-size-fits-all thinking back into software development, at
the same time claiming that it was agile. However, all of these approaches fall apart at the
software development level. They typically just say ”’use Scrum’, but Scrum is a one-team,
one-sprint thing. Also, these methodologies do not tell you how to run large, multi-team
Scrum projects or programs” [78]. Schwaber who is one of the founders of Nexus therefore
wanted to define a framework which is simple and respects the central values of Scrum.
This is done by keeping and slightly adapting the Scrum roles and adding the Nexus in-
tegration team on top to reach what one-team Scrum is missing: a way for coordinating
many teams and integrating their work [78].
However, as Nexus is the newest of the discussed frameworks, there are not many case
studies or success stories of companies that used Nexus and there is not much informa-
tion that is available to the public. Therefore, the implementation of Nexus can be very
difficult without sending many people to Nexus/ Scaled Professional Scrum workshops
[76, 60]. Similar to Nexus, LeSS is considered to be really agile [16]. Especially for small or-
ganizations, that grow larger the approaches in LeSS seem to feel quite natural. However,
for large organizations large organizational and architectural redesign might be required
[16, 2]. Additionally, Scrum teams in LeSS should be experienced in using Scrum method-
ology to be able to deal with not only the development, but also inter-team coordination
and emergent architecture [82].

38

2.6 Comparison of Nexus, LeSS and SAFe

Table 2.4: Overview of the frameworks and their objectives (see Sections 2.3, 2.4, 2.5 for
descriptions and further sources)

2.6.2 Roles

A comparison of the roles in the frameworks is shown in Table 3.2. The team structure and
roles are largely the same as in Scrum. However, there are some additional roles and some
changed responsibilities in the different frameworks. In Nexus and LeSS, a single product
owner exists who is responsible for the overall product backlog and who has an overview
of the whole product as well as the goals to achieve with the product. On the other hand, in
SAFe every development team has an own product owner who manages the team backlog
and focuses features implemented by the team. In all frameworks, a product owner prior-
itizes and clarifies backlog items. However, in LeSS, it is explicitly said that clarification is
supported by the teams cooperating with the customer. Here, the product owner has the
function of a connector between the teams and the customer. Additionally, he/she is the

39

2 Foundations

connector to higher level management, e.g. concerning budgeting. To foster integration,
the product owner is part of the Nexus integration team in Nexus and cooperates closely
with product management in PI planning.
In all frameworks, there are Scrum masters who are responsible for one or more teams
and mainly coaches the associated teams concerning the used methodologies and ensures
their application. In Nexus, one of the Scrum masters is part of the Nexus integration
team ensuring the overall application of Nexus and integration. In SAFe and Nexus, the
Scrum masters play a bigger role in integration and cross-team coordination than in LeSS.
In LeSS, the teams themselves are responsible for inter-team coordination. In SAFe, there
is an additional release train engineer who takes on the responsibilities of a Scrum master
for the ART.
In the three frameworks, all teams are feature teams. However, the Nexus guide does not
say explicitly that teams are organized depending on features, but still says that teams are
cross-functional, self-organizing and take responsibility for the features they deliver. The
development teams support the clarification of user stories, as well as their estimation.
They are responsible for implementing features and testing them. LeSS is the only frame-
work in which no additional roles are added except if LeSS Huge and therefore Area prod-
uct owners are required. In Nexus, the integration team is an additional role or construct
for cross-team coordination and for ensuring overall integration of features developed by
the teams into an integrated increment. As SAFe is used to make very large projects more
agile and because of its level structure, many additional roles are required that are not
comparable with any roles in the other frameworks [76, 21, 55, 40, 14, 58].

40

2.6 Comparison of Nexus, LeSS and SAFe

Table 2.5: Roles in Nexus, LeSS and SAFe (see Sections 2.3, 2.4, 2.5 for descriptions and
sources)

2.6.3 Process

A description of the central events can be found in Table 2.6. The events defined by Scrum
are part of all frameworks with some adaptions. Especially in Nexus and LeSS, the names
of the events correspond to Scrum events. In SAFe, which adds further events, some of the
names of the events are adapted, such as iteration instead of sprint and team demo instead
of sprint review [32].
For the inter-team coordination, the goals of some meetings are changed and some addi-
tional events are required. However, as in Scrum all work is done in sprints with fixed
length. Sprints - or iteration in SAFe - last between one and four weeks. Thus, in the SAFe
framework an iteration length of two weeks is suggested.
When it comes to refining the backlog, the frameworks differ. In Nexus, the backlog refine-
ment happens not only continuously but also as a time-boxed event with representatives

41

2 Foundations

from all teams who first decompose and detail items and second identify and visualize de-
pendencies between the teams. Further, it should be identified as early as possible which
team will implement an item so the team can get involved in the refinement. In LeSS, the
overall backlog refinement takes place if necessary and also includes appropriate members
of all teams whose main tasks are not only refining the items but also to discuss which team
is suitable to implement a certain user story and to align the teams. Additionally, there is
a backlog refinement for each team in which the team members refine the items they are
likely to implement in an upcoming sprint. In SAFe, on none of the levels a backlog re-
finement event is specified. On the team level, refinement happens continuously within
the teams, and having a meeting is optional. On the program and value stream levels, the
only constraint for refining is that it has to be well-elaborated before the PI planning. On
the portfolio level, epics are refined as long as they go through the Kanban system. Only
if they pass, they become part of the portfolio backlog. At this time refinement should
already be finished.
In LeSS and Nexus, sprint planning consists of two parts. In the Nexus sprint planning,
the product owner and representatives from all teams validate and adapt backlog items,
determine the Nexus sprint goal and assign backlog items to the teams. After that each
holds its own sprint planning in parallel to plan the assigned items. Similar to that the
first part of sprint planning in LeSS is done by product owner and representatives from all
teams who focus on shared work and the backlog items that are related. After discussing
dependencies they coordinate which team works on which items and with which teams
they might have dependencies in the upcoming sprint. The sprint planning two is held in
parallel by each team after sprint planning one to discuss design issues and to make a plan
for the upcoming sprint which is visualized in Teams’ sprint backlogs. Planning in SAFe
requires much more effort throughout all levels. Planning is done top-down. Therefore, in
the PI Planning, which is conducted for each ART or Value Stream and lasts two days, one
needs to take into account the vision and strategic themes defined on the portfolio level as
well as inter-team dependencies. With the results in mind, each team on conducts its own
Iteration Planning.
In each framework, the daily Scrum - or daily Stand-up in SAFe - plays an important role.
In Nexus, there is not only a team-internally daily Scrum, but even before that a Nexus
daily Scrum with representatives from all teams who discuss integration and dependency
issues takes place. After that the teams discuss the identified issues within their teams
in the daily Scrum. This allows that integration issues and dependencies are addressed
everyday and detected early especially by the affected teams. In LeSS, the daily Scrum
takes place team-internally. However, there is the possibility that team members of other
teams take part in the daily Scrum of other teams to discuss current dependencies and
integration issues. In SAFe, there is a daily Stand-up for each team separately to discuss
team-internal issues. There is no focus on integration. The sprint review at the end of
each iteration in Nexus and LeSS is an overall event with the customer and different stake-
holders to demonstrate the current increment and to incorporate their feedback. While
in Nexus the entire new features of the increment are shown at once, the setting of the

42

2.6 Comparison of Nexus, LeSS and SAFe

LeSS sprint review is meant to be similar to a ”Science Fair” with different areas where
team members present those new functions their team has developed. In SAFe, the sprint
review is divided into Team Demo, System Demo and Solution Demo with different par-
ticipants, parts of the system shown and different frequency.
Agility not only means to make changes to the developed system continuously but also
to the own working frameworks. The sprint retrospective is used to identify areas of im-
provement. The approach to this event is different for all frameworks. In Nexus, the ret-
rospective has three parts: First, appropriate representatives from all teams identify issues
which had impact on more than one Scrum team, making those issues transparent and
detecting possibilities to deal with them followed by a team-internal part in which each
development team using input from the first part formulates actions to be taken to im-
prove. Finally, representatives from all teams visualize and discuss the identified actions.
In LeSS, first a team-internal retrospective takes place to identify areas of improvement for
the team members themselves and in the overall process. After that the overall retrospec-
tive is held by the product owner, Scrum masters and representatives from all teams to
explore possibilities to improve the overall work. SAFe describes the Iteration retrospec-
tive held by each team corresponding to Scrum at the end of each Iteration. Additionally,
there are Inspect and Adapt workshops at the end of each PI to identify possibilities to
improve in the next PI concerning reliability, quality and velocity.
In Nexus, no additional events are specified. However, in practice there probably need to
be regular events for the Nexus integration team to discuss integration issues. In LeSS,
no additional meetings are defined. Only for LeSS Huge, the described overall events do
not take place for the entire product, but for the requirement areas. Those events are not
specified in detail, but it is assumed that no additional rules apply. However, there also
might be an additional meeting in which the overall product owner and the requirement
area product owners can synchronize. In SAFe, there other meetings, such as a product
owner sync and Scrum-of-Scrums. As coordination in SAFe, is extremely complex, there
might be many more meetings as well.
Summing up, all frameworks use the events defined by Scrum. Though all frameworks
have a different approach on how, when and where integration issues are discussed and
solved [76, 21, 55, 40, 14, 58].

43

2 Foundations

Table 2.6: Process and Events in Nexus, LeSS and SAFe (see Sections 2.3, 2.4, 2.5 for de-
scriptions and sources)

44

2.6 Comparison of Nexus, LeSS and SAFe

2.6.4 Artifacts

The central artifacts are represented by Table 2.7 and explained in the following.

Table 2.7: Artifacts in Nexus, LeSS and SAFe (see Sections 2.3, 2.4, 2.5 for descriptions and
sources)

Especially in Nexus and LeSS, the names of the artifacts are mostly the same as defined
by Scrum. In SAFe, which adds further artifacts, some of the names of the artifacts are
adapted, such as system increment instead of product increment and team or program

45

2 Foundations

backlog instead of product backlog [32].
While in Nexus and LeSS the central artifact is a single product backlog which is main-
tained by a single product owner, in SAFe every team has an own product backlog main-
tained by the according product owner. Additionally, in SAFe, backlogs exist on all levels
including features on the program level, capabilities on the value stream level and epics
on the portfolio level.
In all frameworks, there are sprint backlogs including all backlog items of the current
sprint. In Nexus, there are not only Team sprint backlogs but also an Nexus sprint backlog
which is the composite of all Team sprint backlogs. LeSS refers only to Team sprint back-
logs, but with an existing overall product backlog it might be easy to filter accordingly to
see an overall sprint backlog.
Additionally, in both Nexus and LeSS, there is an overall sprint goal all teams know and
each team has to deliver its part at the end of the sprint to reach the goal. In SAFe, the team
sprint backlogs exist as well, while on the other levels sprint backlogs are not specified, but
are probably part of the according backlogs on the levels. Each team in SAFe defines an
iteration goal. The equivalent to this on the other levels are PI goals on the program/value
stream level and strategic themes on the portfolio level.
In all frameworks, the teams work on overall integrated product increment. Nexus and
SAFe require a usable and potentially releasable product at the end of each sprint, while
in SAFe releases should be done with a fixed frequency, however not every Iteration. A
potential release cycle length could be the length of a PI.
All frameworks include that there should be a definition of ”done”, though every project
team in an organization has to define and evolve it itself. In Nexus, the integration team
is responsible for defining what ”done” means in the beginning and to adapt it over time.
In LeSS, the teams agree on a suitable definition of ”done” in the beginning, but evolve
it over time. In SAFe, the definition of ”done” differs on all levels and potentially also
between the teams.
There might be another definition of ”done” for the releases. Additional artifacts are user
stories in all frameworks. While Nexus and LeSS do not require further artifacts, in SAFe
next to user stories, there are features, capabilities and epics as well as strategic constructs,
such as vision, roadmap and milestones.
To sum up, Nexus and LeSS rely on central used artifacts, such as the product backlog and
the sprint goal, to keep the whole product focus. Opposing to that in SAFe all team level
artifacts are only related to one team, while the coordination between the teams is done on
the program level [76, 21, 55, 40, 58].

2.6.5 Architecture

An overview of the role of architecture in the frameworks is given in Table 2.8 followed
by an explanation in this section. When it comes to Nexus and architecture there is no
information to be found. The only thing that is mentioned in the Nexus Guide is that the
Nexus integration team knows the architectural standards of the organization and teaches

46

2.6 Comparison of Nexus, LeSS and SAFe

the development teams to adhere to them. There is no guidance on how this should be
done in practice. Therefore, one can assume that - as in Scrum - Schwaber considers the
architecture to evolve, but that there has to be some overall guidance [76]. The other two
frameworks see architecture as a much more essential topic and therefore address it com-
prehensively. LeSS emphasizes emergent design and defines the code itself as the real ar-
chitecture of a system. Based on this assumption architecture grows along with program-
ming. To achieve a high-quality design the focus in LeSS is mostly on behavior oriented
tips. Further, it is assumed that organizational structure influences culture. A culture of
continuous improvement, learning and coaching is required. On the other hand, SAFe em-
phasizes that emergent design and intentional architecture coexist and contribute to each
other fostering the architectural runway of the system.
In LeSS, the role of an IT architect within the team is not explicitly defined. All developers
are architects in LeSS. However, some team members are more experienced in architecture
and therefore are able to coach the others or to conduct architectural spikes. In SAFe, on
the team level no architecture role is defined as it is assumed that architecture emerges.
On the program and value stream level the role of system and solution architects exist
who can be either one person are a team or architects. They provide guidance to the teams
or ARTs respectively. At the portfolio level, additionally the role of the enterprise archi-
tect exists who has an overview of all levels, provides strategic architectural guidance and
owns architectural enabler epics. The enterprise architect mostly focuses on intentional
architecture. The architects on the lower levels split up architectural epics into capabilities
and features for incremental implementation. In LeSS, the role of an enterprise architect is
not defined. Larman and Vodde argue that only architects that are in touch with the code
are required and no ”Powerpoint” or ”Ivory Tower” architects [20].
In SAFe, architecture is addressed in the process by incrementally building the architec-
tural runway, implementing (architectural) enabler epics now to support features in the
future, conducting Spikes and establishing CoPs. Additionally, an advise is to keep the
architecture as simple as possible and that the ones who build the software test it. In
LeSS, hands-on master-programmer architects in the teams provide some guidance. A
culture of excellence in code by coaching needs to be established. Practices, such as pair-
programming, test-driven development, refactoring, conducting Spikes and establishing
CoPs are used. Larman and Vodde also recommend to establish a tiger team in the begin-
ning of a project to explore architecturally significant issues and to spread their knowledge
in the teams later e.g. in architecture documentation workshops. In SAFe, no events for
exploring architecture are defined. In LeSS, it is suggested to hold agile modeling and de-
sign workshops in which feature teams model related to their upcoming objectives or even
to overall system architecture by using various agile modeling techniques on whiteboards
whenever modeling is useful. Further, teams are encouraged to use modeling throughout
the process also outside of workshops. Modeling throughout the development process is
seen as a helpful tool whatever method is used. Larman and Vodde leave it to the teams
to decide which modeling method helps the most. They also encourage the teams to doc-
ument models visible for the entire team on whiteboards in the team room and in a shared

47

2 Foundations

Table 2.8: Architecture in Nexus, LeSS and SAFe (see Sections 2.3, 2.4, 2.5 for descriptions
and sources)

wiki space. Models are said to evolve over time [20]. In SAFe, domain modeling is encour-
aged. The role of modeling in SAFe is best described by two citations: ”When in doubt,
code or model it out” and ”If you model one thing in agile, model the domain” [41]. In
both SAFe and LeSS DDD is recommended. How DDD can support architecture scaled
agile organizations is explained in Section 3.2.1 [20, 41, 40].

48

2.7 Domain-driven Design (DDD)

2.7 Domain-driven Design (DDD)

In the next sections, the major ideas of DDD are explained. Both strategic and tactical DDD
concepts are presented.

2.7.1 Approach and Objectives

DDD is an approach to the design and development of complex and large-scale software
systems [31]. Initially introduced in 2003 and coined by Eric Evans, the premises of DDD
are twofold. First, the focus in most software projects should be on the domain and its
business logic. Second, complex domain designs need to be based on a model of the do-
main [30]. Therefore, DDD aims to provide a way of thinking and a set of priorities to
handle the complexities resulting from the business activities and logic in the domain to
accelerate development [88].
A domain in DDD is defined as ”a sphere of knowledge, influence or activity” [31]. A ma-
jor goal of DDD is to make this domain knowledge explicit through a model and an ubiqui-
tous language, helping a team to influence the domain by acting according to the built up
knowledge. Further Evans (2003) motivates the approach by the fact that while some com-
plexities arise from the technical design of an application, the most significant complexities
result from the business logic itself. There are many approaches to deal with technical com-
plexities and associated design issues, such as design of networks and databases, but one
also has to deal with the complexities of the business as a project will not benefit from a
well conceived technical infrastructure as long as this central aspect is not well handled
[30]. In the following the central principles of DDD are presented.

Focus on the core domain. In DDD one of the most essential principles is the focus on the
core domain which is the part of the product most crucial for providing business value and
generating competitive advantage [64]. From a strategic point of view an organization has
to excel in its core domain. A project concerning the core domain has the highest priority
and is supposed to get the best qualified team [83].

Bounded context. The Bounded context explicitly sets boundaries to a model concern-
ing the model itself, as well as team organization and all implementations. The bounded
context is the part of the business in which a model applies. In each bounded context one
team is at work that continuously works on code and the model within the context [31].
To get a deeper insight on how to define bounded contexts see Section 2.7.4.

Creative collaboration. Models of the domain are explored by developers and business
experts in creative collaboration [31]. DDD aims to gain deep insight into the problem
domain and its key concepts by creating a model reflecting a high amount of knowledge

49

2 Foundations

about the domain. This can only be reached by a close and continuous collaboration be-
tween domain experts who have the business knowledge and developers who know how
to build software [30].

Evolving the model constantly. The team has to reconsider constantly if the current
model helps to solve the business problem in focus. Especially, new business cases may
require the model to change to make the underlying concepts more explicit. Therefore,
constant knowledge crunching to maintain, simplify and enhance the model are crucial.
Exploration and experimentation help to find the most useful design for the model and the
associated code. Not the first usable design should be chosen. It is suggested that for each
useful design at least three bad ones exist. This will lead to deeper insights in the domain
and helps the team to understand the business better [64].

Continuous Integration. The more people work on a business problem the more likely
code and model are to fragment. To avoid fragmentation a process to merge all imple-
mentation artifacts frequently needs to be established. Model and code are closely linked
and therefore a refactoring in the code means also making changes to the model. Inversely
changes in the model affect the code [31].

Ubiquitous Language. To allow effective communication between domain experts and
developers a common language needs to be defined. This ubiquitous language is essential
to the success of DDD as communication without a language which is shared by develop-
ers as well as domain experts cannot be effective. The language is developed alongside
the model and the code as the same terms should be used in model, code and language.
Changing the model or the code, means changing the language [64]. The term ubiquitous
language and how such a language can be established and evolved in the DDD process is
further described in Section 2.7.3.
DDD helps with the following major aspects. It brings a team of domain experts and de-
velopers together to be able to create software reflecting an explicit model of the business
which was before only present in a mental model of the domain experts. This approach
unifies domain experts and software developers while forming a team with deep knowl-
edge of the related business domain and an ubiquitous language as the central tool to
communicate and work together effectively toward a common goal [83].
DDD not only provides guidance on team level but also on a strategic level, by addressing
strategic initiatives of the organization. Therefore, one can distinguish between strategic
level (see Section 2.7.4) and tactical level DDD (see Section 2.7.5). The central concept of
strategic design is context mapping, while the DDD building blocks are essential on the
tactical level. Figure 2.6 gives an comprehensive overview of these concepts. Strategic
design follows the strategy of the company. It defines the relationships between bounded
contexts and the related teams giving possibilities to detect potential project or software
failures caused by interdependency between the contexts [83]. The most crucial strategic

50

2.7 Domain-driven Design (DDD)

Figure 2.6: DDD Building Blocks and Context Mapping [31]

design tools of DDD are bounded context, distillation, context mapping and large-scale
structure [30]. Additionally, tactical design helps the teams to deliver software meeting
the specifications of the domain experts while also meeting technical demands. Tacti-

51

2 Foundations

cal design modeling tools allow to develop software which is scalable, testable and of
high quality [83]. Tactical design especially concerns the intra-team collaboration within
bounded contexts, while strategic design helps to understand the relationships between
bounded contexts and gives an overall understanding of the entire business domain. The
main focus in this thesis lies on strategic design. Before elaborating strategic design the
role of the domain model in DDD is explained and the most crucial principles of DDD,
bounded contexts and Ubiquitous Language, are addressed. The most essential part of
Tactical DDD, such as the domain model and its building blocks, are explained shortly in
Section 2.7.5.

2.7.2 Domains, Subdomains and Bounded Contexts

A domain is what a business does in its surrounding environment.

Figure 2.7: Domains, Subdomains and Bounded Contexts [83]

Each organization establishes know-how and a set of methods to sell certain kinds of
products or services in certain markets. All this is part of the domain of the organiza-
tion. If a team develops applications for an organization, they work in the organization’s
domain. According to this very broad definition, the domain in which an organization
acts in is quite obvious. This notion of the term domain can lead to the misunderstanding
that DDD means to define a single, large and extremely complex model of an organization
including all aspects of its business domain. However, DDD wants to reach exactly the
opposite assuming that the whole business domain can be divided into subdomains. Each
subdomain addresses a certain area of the business supporting teams to focus on a certain
area for which it should solve a certain problem [83]. For each subdomain, a logical model

52

2.7 Domain-driven Design (DDD)

should be defined to gain deep understanding of this distinct area of the business [64].
In the best case, one bounded context is at work in only a single subdomain. However, it
is fine if there are more than one bounded contexts in a subdomain. If a subdomain was
developed utilizing DDD from the beginning, each subdomain would correspond to one
bounded context worked on by one team, but this is especially in large and established
companies seldom the case [84].
In the example in Figure2.7 all bounded contexts except the one on the bottom which over-
laps different subdomains are good examples for how subdomains and bounded contexts
relate. However, in the best case, there is a one to one alignment between a subdomain
and a bounded context.

2.7.3 Establishing an Ubiquitous Language

Domain experts use their own language to describe terms within the domain which is dif-
ficult to understand for the software developers. Software developers might understand
this description of the desired functionalities in a different way. On the other hand, soft-
ware developers describe the technical terms of the software to the domain experts in their
own language which is not understandable to domain experts. This may happen if one
part of the team has to translate e.g. technical terminology into terminology of the do-
main or the other way around as this leads to a loss of information. This bears the risk that
even if domain experts and developers communicate frequently about the specifications of
the software, they might mean a complete different thing. The resulting software will not
fulfill the specifications which are required to provide business value to the domain. To
avoid these misunderstandings, DDD suggests to establish an ubiquitous language which
is shared by domain experts and developers. The shared language should be developed in
collaboration of all team members and needs to be exercised relentlessly not only in oral
and written communication, but also in all documentation and code. Therefore, the lan-
guage and the model need to be closely linked and evolve alongside each other [30]. As
any language the ubiquitous language of a bounded contexts evolves over time. Changing
terminology of the language means a change to the model as well as the code [84].
When starting to establish an ubiquitous language one should not only use the language of
domain experts or developers, but use parts of both, and additionally it might be necessary
to create new terminology [31]. It is important that everyone in the team consistently uses
a clearly defined word for a specific concept to avoid confusion. The terminology should
be unambiguous meaning that no overloaded terms or terms which have a very specific
meaning in software development should be part of the Ubiquitous language. The com-
mon language is visible in the code by conforming class, method and property names to
the ubiquitous language. Finally, it can help to define a glossary with crucial terminology
for the team [64].

53

2 Foundations

2.7.4 Strategic Design

As most organizations are too large and far too complex to be represented by a single
comprehensive model, they have to be broken down into several smaller models. This
has to be done for concepts and implementation. However, the different models need to
be able to interact with each other. To integrate the various parts of the business domain
strategic design provides a set of themes, such as bounded contexts, context mapping,
distillation and large-scale structure [30]. Strategic design focuses on large models divided
into several bounded contexts as well as team organization [34].

Defining Bounded Contexts Bounded contexts are the most central topic of DDD. As
one large unified model can lead to misunderstandings, as different groups of people
communicate using different vocabulary. The same term could mean a completely dif-
ferent thing which could lead to a lot of confusion [34]. Therefore, in large organizations
multiple models should co-exist which apply in different contexts. Often their existence
is not recognized until code from different models is combined in one software or two in-
teracting softwares. Then the code becomes difficult to understand, more prone to errors
and unreliable [30]. It might be clear that another software’s data format and technical
specifications differ, but there can be more crucial differences if each software has an own
underlying model which is only implicit in code without being formulated explicitly in
the code or in models. Differences are even more unlikely to be detected if they lie in the
same code base. According to Evans (2003) this happens in all big projects. Problems will
be recognized in the end if the code does not work correctly. The problems start long be-
fore that in the way teams are structured and interact. As a result, to define clear bounded
contexts one has to look at both team organization and (end) products [30]. Other factors
for determining boundaries of contexts are human culture and especially the language a
certain group of people uses [34].
A bounded context in DDD is defined as ”a description of a boundary (typically a sub-
system, or the work of a particular team) within which a particular model is defined and
applicable” [31]. The bounded context clarifies what a model is used for, in which area it
should be consistent and what is out of scope. By making the boundaries explicit DDD
ensures that the focus lies on the problem within the bounded context which needs to be
solved without being distracted by issues outside the context [64]. Often bounded contexts
are compared to language or country boundaries [84, 64]. Within each of the bounded con-
texts a different ubiquitous language should be defined and exercised. Then everyone in
the team can communicate with each other without misunderstandings which can happen
during translations. If people are talking to others outside their bounded context, the lan-
guage can be completely different [84]. Millet (2015), compares the boundaries of a context
to border control meaning that nothing should pass the borders without being checked
and valid. Everything that passes should adhere to the defined rules and use the defined
language [64].
Defining boundaries for a context is challenging and the bounded context evolves as the

54

2.7 Domain-driven Design (DDD)

teams learn more about the domain. One of the key goals in strategic design is to align
bounded contexts to Subdomains. Naturally, also team organization can be an indication
for defining context boundaries. In the best case, one team would work on one Bounded
Context which corresponds to one subdomain [84]. This would mean that a bounded
context aligns with a certain area of the business. Looking at Figure2.8 this would apply
for subdomain A.2 and A.3 with their corresponding bounded contexts A.2.1 and A.3.1.
A bounded context includes a ”vertical slice of functionality from the presentation layer,
through the domain logic layer, on to the persistence, and even to the data storage” [64].
Therefore, each context is responsible for its presentation, domain logic and persistence.
This allows the team in the context to direct its work towards delivering business value
with the most suitable implementation on each layer for its own context. The domain
logic is represented as the domain model which is implemented in the software. There-
fore, Figure2.8 makes clear that each bounded context has its own model. This means that
objects might exist in different contexts but most likely have different attributes and logic.
This could be the case for the entity product in the contexts A.2.1 and A.3.1. The product
can have completely different attributes and logic in context A.2.1 and in A.3.1.

Figure 2.8: Vertical Subdomains and Bounded Contexts with DDD [64]

Isolating the subdomains prevents undesired side effects that can occur if changes are
made to one of them [64]. However, not all contexts can be completely isolated, but they

55

2 Foundations

relate to each other. In DDD, these relationships are made explicit through the use of
context maps.

Context Mapping Each bounded context in DDD should be able to evolve as indepen-
dent as possible from other contexts. However, all bounded contexts are related to other
contexts. A context map represents the integration between bounded contexts in a simple
and graphic way. It shows the current and real relationships between the contexts rather
than the desired state. However, the context map should be adapted according to the
changes made to the system [84]. A first context map helps to get a better understanding
of how the contexts interact. Further, a context map can give an overview of the archi-
tecture of systems including not only the relationships between the contexts but also to
get a comprehensive overview of which domain model is used in the different contexts
[89]. However, not only architectural aspects, but also organizational and political aspects
should be taken into account for a context map. Team organization and communication are
one of the most important clues for defining a relationship between bounded contexts. If
two teams need to communicate a lot during development, their models and context might
be more closely related and dependent on each other. Even the actual office space can have
an impact. Teams that work in different locations or different parts of the same building
communicate less and therefore their model will diverge more likely. Further, isolation
and sharing mechanisms as well as influence on each other should be taken into account
[31]. Evans highlights that having a clear view on the links between team organization,
software models and design is essential to the success of software projects. Therefore, this
information should also be part of the context map [30]. Even if a context map is not an
enterprise architecture diagram, it can be the basis for higher level architectural decision
or investigations providing the explained further information. Context maps may help to
identify integration bottlenecks, issues with governance and other architectural deficien-
cies [83].
DDD defines different kinds of relationships between bounded contexts: partnership,
shared kernel, customer/supplier, conformist, anticorruption layer, open-host service, pub-
lished language, separate ways and big ball of mud [83, 30]. These relationships exist be-
tween two teams of which each is responsible for one bounded context.
In a partnership the two teams have as dependent set of goals. They either both fail or suc-
ceed. The two teams are required to meet frequently to synchronize their work as well as
their timelines. Further, they should use continuous integration to achieve consistency of
their work. A high level of commitment is required. Therefore, the relationship between
the contexts should be only maintained as a partnership if it really is advantageous for
both teams. The advantages need to balance the commitment and the integration efforts.
Over the long term it often makes sense to reduce commitment and find another way to
integrate [84].
Shared kernel describes a relationship in which two teams that are working on the same
application on bounded contexts that are overlapping. Therefore, the two teams share a

56

2.7 Domain-driven Design (DDD)

part of the domain model as well as of the code. The part of the model that is the same
for both teams is called the shared kernel [64]. Both teams need to know which objects in
the model they share and teams often need to communicate and agree on change to the
shared elements. It is very challenging to determine which part of the model to share and
to maintain it in a suitable way for both teams [84].
In customer/supplier relationship there are two teams that have a upstream (supplier) to
downstream (consumer) relationship. This means that the upstream team is to provide
functionality according to what the customer needs. The downstream team needs to re-
quest domain model changes at the upstream teams. There have to be planning sessions
in which the tasks required by the downstream team are negotiated and budgeted. This
potentially slows down both teams. The upstream team needs to fulfill the downstream
team’s tasks and the downstream team also has veto power if the upstream team wants
to make changes to the model which are not suitable for them. However, the downstream
team really depends on the upstream team an sometimes can only wait for the requested
changes to be implemented [30].
A conformist relationship exists between an upstream and a downstream team if the sup-
plier (upstream) is not motivated to implement the changes the downstream team requires.
The downstream team has to conform to the upstream team’s model if the team can’t make
the effort to translate the upstream model. Becoming a conformist can happen especially
to small and newly established teams when they integrate with an upstream team with a
very complex, large and well-established model [84]. It is also common if a team needs to
integrate with an external supplier. Here it might be useful for the downstream team to
create an anticorruption layer to retain integrity and clarity of their model and changes on
the upstream model do not affect their model [64].
An anticorruption layer is an isolating layer which a downstream team can use to pro-
vide itself with functionality from the upstream teams in a way that corresponds to its
own model. The layer translate in both directions between both models [30]. Downstream
teams should create an anticorruption layer to protect their own models so that they can
adapt their model according to their own business needs [84].
An open-host service is a protocol a team can create to provide access to its functionality to
other teams via services. The protocol should be available to all teams so that they are able
to integrate. If various other teams require changes to the protocol, the providing team
should adapt it. However, if only one team requires changes for a very special use case,
the team should not adapt the protocol but provide a one-off translator to the other team
to amend the protocol for that use case [30].
A published language constitutes a shared language which is well-documented and allows
exchange of information. This language allows that other bounded contexts can consume
and translate domain information easily. Defining a published language can be achieved
w.g. with XML or JSON schema. Often open-host services and published language can be
connected to provide a better integration to other contexts [84].
Separate ways means that a bounded contexts has no relationship to any other context al-
lowing the team to find simple solutions that are targeted only on its own business needs

57

2 Foundations

[30].
A big ball of mud often exists in large and established systems. It describes parts of the
system with mixed models and undefined boundaries. It is suggested to draw boundaries
around these parts and declare them as big balls of mud trying to avoid that the models
corrupt other models in other contexts. It might be too late to apply sophisticated model-
ing in such a context [31].

Distillation Another concept included in DDD is distillation. The goal of distillation
is to find out which problem area is the most important one in the developed software
[50]. As in a large project not all parts of the design can be refined in the same way, one
has to set priorities to determine the subdomains which are most crucial to the success
of the business [30]. One can distinguish between core, supporting and generic subdo-
mains. The core domain is most crucial to the success of the business. The teams should
figure out what actually belongs to the core and what not. Moving certain function out
of the core domain allows a better focus on what really is essential [50]. A project should
invest in a well-defined model and ubiquitous language for the core domain. Distinguish-
ing from competitors in the core domain gives an organization a competitive advantage.
The best developers and domain experts should work on the core domain to develop a
supple design [30]. For supporting subdomains an organization does not make such high
investments as for the core subdomains. Software in the supporting subdomain is neces-
sary because the core subdomains couldn’t be succeed without it. Custom development
is required in the supporting subdomain but one could contemplate outsourcing. In the
generic subdomains off-the-shelf solutions can be used or their development can be out-
sourced. Organizations shouldn’t make high invests in the generic subdomains. Instead
of developing applications themselves, buying standard software might make more sense
[84].

Large-Scale Structure Large-Scale Structure becomes important as soon as a context map
itself grows very large and complex. The context map can be overwhelming and might be-
come unmanageable [50]. A large-Scale Structure is a language giving an overview of
the entire system on whose basis the overall structure can be discussed. Therefore, a set
of rules, roles and relationships is needed which that support design as well as under-
standing of the system. It especially helps to understand the role of single parts in the
system as a whole without knowing detailed what the part’s responsibility is [31]. Sys-
tem Metaphor, Responsibility Layer and Evolving Order are the most known approaches.
System Metaphor supports the definition of a fundamental structure for the system as a
whole. Responsibility Layer implies that the system is divided into several layers, but not
in a technical way (UI, logic and database). Each layer is able to call the layer below but
not the other way around. Evolving order is not pre-definition of the overall structure of
a system in the beginning by a certain logic, but means that the structure will evolve over
time depending on the individual components [89].

58

2.7 Domain-driven Design (DDD)

2.7.5 Tactical Design

On the tactical level, the most essential concept is the domain model itself consisting of cer-
tain building blocks: entities, value objects, events, services, modules, aggregates, reposi-
tories and factories [31].
Entities are domain objects that are clearly defined by their identity rather than by their
attributes. Each entity can be distinguished from any other entity using this identifier re-
gardless of its attributes or history. Entities should be kept spare adding only the most
essential behaviors and attributes to it. The definition of an entity should be focused on
life cycle continuity [30].
Value objects are defined by their attributes, logic and functionality rather than an unam-
biguous identity are value objects. These should be treated as immutable [31].
Domain events reflect something that has happened in the domain. Only those events
that are relevant because they influence other objects should be modeled. These discrete
events can be used as a form to monitor changes or as a means of communication between
aggregates [64]. Domain events are different from system events that represent activity in
the software. However, domain and system events can be associated, e.g. as a response to
each other [31].
Services are activities that do not belong directly to an entity or a value object [30].
Modules are parts of the domain model with high cohesion within them and low coupling
between them. Modules make it much easier to understand the underlying concepts of the
model and the code. If a person wants to get an overview, he/she can look at the modules
and their relationships without being overwhelmed by many details within them. The
other way around one can look detailed at one module without be distracted by the other
elements [30].
Aggregates are composed of various domain objects, such as entities and value objects [89].
The boundaries of an aggregate should be clearly defined and one of the objects within the
Aggregate is the root. Objects from outside the aggregate can only access objects within
the boundary through the root. Invariants that apply to all objects inside the Aggregate
can be enforced as a whole [30].
Repositories query access to entities and aggregates. While the domain logic should be
kept in the model, accessing and storing objects is delegated to Repositories [31].
Factories generate instances of complex domain objects. Factories serve for encapsulation
and do not need to have further responsibility in the domain model [30].
The building blocks are used to represent the logic and behavior in the domain. The build-
ing blocks as components of the domain model constitute an Ubiquitous Language, on
which not only communication, but also code is based [64].

59

2 Foundations

2.8 Related Work

In the following, papers addressing the collaboration between architects and their stake-
holders, agile scaling, DDD and the role of architecture in agile environment are summed
up.

2.8.1 Bente et al. (2012)

Bente et al. (2012) address next to classical enterprise architecture management (EAM) ap-
proaches lean and agile EAM. In this context, they define three major building blocks of
lean and agile EAM: ”Get Rid of Waste by Streamlining Architecture Processes”, ”Involve
all Stakeholders by Interlocking Architecture Scrums” and ”Practice Iterative Architecture
through EA Kanban” [13]. Removing waste in this case means to reduce overly strong
governance and ineffectiveness in the process of the EA group. Introducing architecture
Scrums aims at adjusting the perspective of the EA organization to foster cooperation be-
tween architects and their stakeholders and to overcome silo thinking. Getting input from
stakeholders helps architects to get a more realistic view on the consequences of their gov-
ernance activities. Using a Kanban board and an agile backlog for lightweight planning
helps to increase transformation speed. Further, they stress participation instead of relying
on experts enforcing top-down governance. In the work by Bente et al. (2012), the focus
is on collaboration between enterprise architects and their stakeholders to be able to profit
from the diversity of knowledge in the company as an input for architectural decisions
[13].

2.8.2 Keller (2017)

Keller (2017) focuses on the future of EAM impacted by digitization [47]. He describes
the concepts of agile and lean EAM as well as the concept of agile architecture, as also
addressed by SAFe. Agile architecture is often connected to REST services, microservices
or self-contained systems, cloud and DevOps. Especially microservices or self-contained
systems can - in his opinion - only work if the business architecture is defined by busi-
ness domains divided by clear boundaries. A good model of business capabilities helps
defining these boundaries. Therefore, he also names the concept of DDD as a support for
determining bounded contexts. Keller (2017) argues that not only the processes, but also
the software itself must be agile to be able to react quick and flexible to changing require-
ments. However, he addresses that some concepts, such as microservices or self-contained
systems, were not tested enough so far. He especially addresses that problems might oc-
cur if a very high number of developers is working on a large number of microservices.
Essential questions according to Keller (2017) are, how to avoid too much redundancy and
how to do governance in this environment [47].

60

2.8 Related Work

2.8.3 Dikert et al. (2016)

Dikert et al. (2016) conduct a case study with focus on challenges and success factors
of the adoption of lean and agile methodologies at large scale. Among the challenges
are general resistance against change, coordination in multi-team settings, low acceptance
of top-down management decisions, difficulties to implement agile methodologies and
integration of non-development functions. Success factors include management support,
commitment to change, mindset changes, finding a suitable customized agile approach,
engaging people, training as well as communication and transparency [27]. Keeping the
success factors in mind a customized agile approach is necessary which engages people
and leaves time for learning for all involved roles. Further, support from all stakeholders
including management is necessary.

2.8.4 Rost et al. (2015)

Rost et al. (2015) focus on how architecture can be integrated in agile development. They
explain possible architectural activities, responsibilities and how to document architecture
in agile development. Their recommendations include to check compliance to architectural
decisions in code reviews, not to introduce many additional meetings, to make clear that
documentation and agile are no contradictions. They stress that in multi-team projects the
teams need to align especially when it comes to architecture and that the business value of
architectural activities needs to be conveyed to the teams.

61

2 Foundations

62

3 Framework for (Enterprise) Architecture in
Agile Teams

The following chapter includes the case study starting with a description of the current
situation and the major challenges arising from it. As an approach to solve the problems
which occurred, the idea is to bring concepts from agile scaling as well as DDD together.
This approach means to support the agile teams by defining cross-team coordination as
well as by addressing architectural questions. Finally, a framework for (enterprise) archi-
tecture in agile teams is defined. The framework includes roles, a process, artifacts and
tools to support cross-team coordination and to establish strategic and tactical DDD in the
agile teams. DDD especially is used to define the architecture. The case study itself was
done by enterprise architects and is described from their point of view.

3.1 Case Study in an international Insurance Enterprise

This section describes the current situation of the agile teams which take part in the case
study. It gives a general overview of the position of the agile teams in the enterprise as well
as about their roles, process, artifacts and tools. Finally, the major challenges are described.

3.1.1 Overview

Facing the challenges of digitization, the large insurance enterprise decided to establish
agile teams in 2016. These few agile teams coexist next to many other teams that still
use waterfall methodologies. Employees from different parts of the enterprise - from the
IT department as well as business experts - come together to form cross-functional agile
teams. These agile teams are co-located at another location of the company to make sure
they can focus on the product, that they develop, without being distracted by their former
responsibilities in the traditional part of the enterprise. As agile methodologies were not
commonly used in the company before, the new teams received training concerning agile
methodologies before they got started. They further obtain training and guidance during
the development process.
In this case study the focus is on three of the agile teams which belong along with a few
other teams to one major project. The overall project’s aim is to develop an integrated plat-
form for all distribution channels. The agile teams contribute to this aim by developing a
cross-channel application each. The future users of the developed application are insur-
ance agents and sales partners. Their feedback is incorporated in the process as early as

63

3 Framework for (Enterprise) Architecture in Agile Teams

possible, for example by conducting user interviews. This customer-centered approach is
to provide higher quality and supports meeting the customers’ requirements.
Lean and agile principles guide the methodology the teams use. All teams are required
to use the same methodology which is Scrum extended by some Extreme Programming
practices. Further, the company Pivotal provided know-how on lean start-up and agile
methodologies to define a suitable methodology to be used by the teams at the large insur-
ance company [66]. The most essential addition to the Scrum methodology in this case is
the development and release of Minimum Viable Products (MVP). A MVP includes only
the really necessary features, but already serves to demonstrate the value of the product.
Therefore, an MVP is released very early in the process to incorporate customer feedback.
This helps to focus on the most essential functions and to adapt the product according to
customer requirements. It also fosters learning of the team itself [67]. After having re-
leased a first MVP after 100 days, the team extends the MVP. Further, pair-programming
and test-driven development are encouraged.

3.1.2 Roles

The three teams in focus consist of experts from different functional areas. Each of these
cross-functional teams has two to eight developers plus a product owner, a Scrum master
as well as business analysts and an UX designer. Further, one of the more experienced
developers takes on the role of the IT architect. As in Scrum, the product owner has end-
to-end responsibility for the product and takes care of the product backlog of his team. The
business analysts support the product owner. The Scrum master is responsible for teaching
and adhering to the defined methodology. The Scrum master is a full time team member
and can be one of the developers or business analysts. The UX designer is concerned
with designing user interfaces and optimizing usability. As the teams have worked quite
independently from each other so far, none of the defined roles is explicitly responsible for
inter-team coordination. However, the three teams taking part in the case study are co-
located in one room to allow simple coordination and knowledge exchange if necessary.

3.1.3 Process

As in Scrum, all work is done in sprints. Each of the teams can decide how long their
sprints are. Two of the teams in focus use sprints that last two weeks, the other team de-
fined a sprint length of one week. Sprint planning, review and retrospective take place as
in Scrum. The length and frequency of these events depend on the sprint length. The back-
log refinement is a weekly event. The daily Scrum takes place separately for each team.
Goal and content of the named meetings correspond to Scrum methodology.
Additionally, every morning an office stand-up with all agile teams from different projects,
that work at this location, takes place. It is time-boxed to a few minutes and serves to ex-
change information about new team members, issues that affect all teams as well as events
that might be interesting for others to visit. The teams can ask for help with challenges

64

3.1 Case Study in an international Insurance Enterprise

they face. It fosters transparency and communication between the teams. The meeting
does not allow the exchange of technical and business issues in detail. Further, some CoPs
were established in which members of different teams take part to synchronize the teams
concerning practical issues that affect all of them. However, the CoPs which foster knowl-
edge exchange so far did not lead to visible results or overarching functions that would be
very helpful for the teams.

3.1.4 Artifacts and Tools

As in Scrum, an essential artifact is the product backlog. Each of the teams has an own
product backlog which is managed by the product owner of the corresponding team. The
backlog items are written down as user stories, then refined and prioritized. To manage
the backlog an issue and project tracking tool is necessary, which is described in Section
3.2.6. In this case, Jira Software is used by all teams.
Further, all teams use sticky notes and similar artifacts to do some modeling or even write
down their user stories and tasks. So far none of the teams practices domain modeling.
There is an overarching wiki space for the entire project which includes documentation
relevant for all agile teams. Additionally, each of the agile teams has an own subordi-
nated wiki space to document organizational, as well as technical and business issues and
requirements. The wiki is utilized extensively by all teams. A description of the collab-
oration software for the wiki and its use cases is given in Section 3.2.6. In this case, the
collaboration and wiki tool is Confluence. The major artifact of each team is its developed
product. In the beginning, the different products and teams seemed to be quite indepen-
dent from each other. However, some interdependency as well as similar requirements
were detected.

3.1.5 Architecture

Each of the teams develops its own product and therefore is responsible for its architecture.
However, some technical constraints were given to the teams by IT architects. Cross-team
coordination and interdependency so far did not play a major role for architectural con-
siderations. Then the teams started to realize that dependencies exist. However, the teams
need to reach their own sprint goal which does not leave a lot of time to consider over-
arching issues. Additionally, enterprise architects so far did not play a major role in the
development process.

3.1.6 Major challenges

In this section, the challenges the agile teams on the project as well as the enterprise archi-
tects face in the case study are described. The major challenges are listed comprehensively
in Table 3.1 and explained in the following paragraphs. The framework following in the
next section addresses these challenges.

65

3 Framework for (Enterprise) Architecture in Agile Teams

Major Challenges
C1 Dealing with dependencies between the teams
C2 Dealing with overarching functions
C3 Cross-team coordination
C4 Inter-team communication
C5 Organizational Structure
C6 Organizational Structure as soon new teams are added
C7 Scaling Scrum methodology to more teams
C8 Lack of whole product focus
C9 Lack of architectural guidance
C10 Lacking definition of the EA role
C11 Lack of common language (intra-team) communication
C12 Cultural change towards a more lean and agile mindset in the company

Table 3.1: Major Challenges

The established teams work independently from each other most of the time. However,
some dependencies exist. These were detected by the teams themselves in the develop-
ment process. So far, common issues and dependencies are discussed in CoPs. However,
it is not clearly defined how to detect, address and reduce dependencies between the teams
(C1).
Overarching functions exist that are needed by more than one team. These functions
mostly include supporting functionality, such as document management or authentication
mechanisms. In the current situation every team develops its own solution for overarch-
ing functions (2). However, it might be more practicable if a function which was already
implemented by another team can be reused by other teams. As copying source code is
an anti-pattern which should be avoided, other teams should be able to utilize already
implemented functionality via APIs or events. For the development of overarching func-
tions, it would be beneficial if the teams have an overview of what functions were already
developed. This especially could be useful for newly established teams to be able to focus
on the core functionality of their MVP and in the first step use already given supporting
functionality.
To be able to deal with dependencies and overarching function cross-team coordination
(C3) and inter-team communication (C4) are necessary. However, both should be kept as
simple as possible to avoid extensive additional effort. A process is needed to define how
coordination and communication can be integrated in the development process. Where
possible, need for coordination and communication between the teams should be reduced.
To support this, the organizational structure plays an important role (C5). The team struc-
ture is supposed to allow the teams to work as independently as possible from each other.
Currently, the teams are structured around the applications they develop. However, this

66

3.1 Case Study in an international Insurance Enterprise

leads to the already mentioned challenges. Therefore, a new idea to be applied in the case
study is to structure teams around functional areas - (sub-)domains.
Especially, in the future when further agile teams that work on the same project will be es-
tablished, one has to determine the organizational structure, such that the teams can work
as independently from each other as possible (C6). Currently, with only a few teams work-
ing on the product, the organizational structure, cross-team coordination and inter-team
communication are not extremely crucial problems. However, the mentioned challenges
were detected and it is already clear that new teams will be added to the project in the fu-
ture. Then it becomes very essential to determine an organizational structure that reduces
interdependency between the teams. A process for dealing with dependencies - if existing
- needs to be clearly defined and simple.
To address the explained challenges, it is important to find a method to scale Scrum to
more than one team (C7). Currently, each team applies one team Scrum in its develop-
ment process. A method for scaling is not defined so far, but it is considered as necessary
not only by the teams themselves, but also by project management and enterprise archi-
tects.
As currently one team Scrum is applied, every team has an own product owner and back-
log. However, this might hinder retaining whole product focus as each team only focuses
on achieving its own Scrum goal. A lack of whole product focus might reduce overall
product quality (C8).
The teams determine the architecture of their application themselves. This is practical for
the technical architecture. However, considering the challenges concerning overarching
functions some architecture guidance from a business point of view is considered to be
necessary. Additionally, some more methodological guidance is needed (C9).
So far enterprise architects were not involved in the development process. Their role is
not defined. However, the enterprise architects might be able to reach an overview of all
teams, especially concerning dependencies. They could also provide the lacking architec-
ture guidance from a business perspective and might be also suitable to provide method-
ological guidance (C10).
When talking about requirements within a team a common language is of advantage. So
far no ubiquitous language was defined by the teams. Not all teams need the same lan-
guage, but it is advantageous within each of the teams (C11).
Another challenge is to bring back the teams after they developed their product and re-
ceived training on the agile methodologies back to the main location of the company. The
teams then focus on the operation of their product. They are supposed to impact the orga-
nizational culture with their new skills and mindset change (C12). However, the process
after the development of the their product is not entirely defined, as most of the teams are
still working on their product. Therefore, this challenge is not in focus of this master’s
thesis.

67

3 Framework for (Enterprise) Architecture in Agile Teams

3.2 Framework for (Enterprise) Architecture in Agile Teams

To begin with applying DDD, some strategic as well as tactical DDD practices are adopted
in the international insurance company. Therefore, a framework for enterprise architecture
is presented in this section. First, the connection between agile scaling approaches, DDD
and architecture is explained. Taking into account the findings of the previous sections and
some further literature concerning agile architecture and DDD, it is explored how the dif-
ferent concepts can be integrated and applied. Then the idea on how to make use of those
practices in the case is explained. Based on these findings and ideas a framework includ-
ing roles, a process, artifacts as well as tools defined. The framework itself is represented
in one comprehensive graphic.

3.2.1 Agile Scaling, DDD and Architecture

”If you think that design is a dirty word when agile is in practice, it is not with DDD. Using
DDD with agile is completely natural. Always keep design in check with agile. Design need not be
heavy.” [83]

To scale Scrum, the agile scaling approaches, Nexus, LeSS and SAFe, are considered to
be helpful. However, the frameworks provide only little architectural guidance. Nexus
does not provide an idea on how to evolve architecture at all. Often Scrum teams act like
architecture is not relevant for agile teams, but Scrum or Nexus cannot replace architec-
ture [70]. Simply saying that architecture emerges somehow might work for one or a few
loosely coupled Scrum teams, but even with three agile teams in focus in the case study
it was detected that some overall architectural guidance and inter-team coordination is
necessary to not slow down the teams. While speed, flexibility and high quality are three
of the main objectives of agile methodologies, with more than one team minimal architec-
tural guidance as in Scrum or Nexus are not enough.
Therefore, LeSS and SAFe are more closely considered to be a more suitable approach for
the teams in the case study in the future. Both of these agile scaling frameworks recom-
mend using DDD practices when they address the topic of architecture. When considering
DDD as a support for agile teams as well as architects, it is advantageous to distinguish
between strategic and tactical DDD. While Strategic DDD especially addresses organiza-
tional structure and dependencies between the teams, tactical DDD is about supporting
the teams with domain models and a common language. DDD provides enterprise archi-
tects and development teams with very useful strategic as well as tactical tools to improve
their processes. ”DDD is not a heavyweight, high-ceremony design and development pro-
cess. DDD is not about drawing diagrams. It is about carefully refining the mental model
of domain experts into a useful model for the business. It is not about creating a real-world
model, as in trying to mimic reality” [83]. DDD can be applied alongside each agile de-
velopment approach the team is comfortable with. The models produced are not only the
domain model, but the software as well. Both are refined continuously and incrementally

68

3.2 Framework for (Enterprise) Architecture in Agile Teams

over time [83].
The objectives of DDD and agile development are quite similar. This also supports the hy-
pothesis that these approaches can be combined very well in practice. Vernon (2013) lists
and explains major benefits of DDD [83]. In the following those benefits, which can also be
seen as an organization’s goals to reach by applying DDD, are connected to the aims of ag-
ile development. First, DDD helps to focus on what is most essential to an organization’s
business and success - the core domain. By modeling and context mapping the organi-
zation is not only able to determine and set boundaries around its core domain, it is also
able to enhance understanding of its own business. Not only the developers increase their
knowledge about the business, but also domain experts themselves. The main objective of
agile development projects is to provide business value to the customer quickly. This can
only be reached if business as well as software experts have a shared understanding of the
product to be developed. An ubiquitous language based on the domain model supports
their communication and understanding. Close collaboration between developers and
domain experts is emphasized by DDD as well as in Scrum and agile scaling frameworks,
where teams are cross-functional and the product owner is the connector to the customers
in the business and frequent sprint reviews are used to show results to the customer and
future users. DDD and agile methodologies therefore can increase user experience when
combined.
Further, it is emphasized that in agile development it is best to develop products in feature
teams. This is supported by DDD, through bounded contexts which help to verticalize
the application landscape and to determine the organization structure. One vertical slice
should correspond to one subdomain - in the best case one bounded context - and should
be worked on by one agile team. This is suitable to keep the teams working as indepen-
dently from each other as possible. Reducing dependencies between contexts and teams
is the major characteristic of DDD to increase development speed. Developing quickly is a
major aim of agile development as well. DDD can be a method for agile teams to increase
their speed.
Bounded contexts determine where a model applies and where not. This means that each
agile team has an own model in its context. This allows each team to evolve its model as
well as its software iteratively over time. Modeling as well as development are done in an
agile and iterative way.
Further, DDD helps to better organize and understand enterprise architecture. Setting
explicit boundaries around contexts and understanding them, contributes to understand
where and why integration between two contexts are necessary. If bounded contexts are
clear, the relationships between them become clear as well. To model dependencies com-
prehensively context maps can be utilized. This fosters a very deep understanding of
enterprise architecture [83].
Often it is argued that architecture contradicts agile values and principles. However, if
architects themselves work in a more agile way, support by enterprise architects from an
overarching team can be beneficial. ”Our mantra for Architectural Agility is ’informed
anticipation’. The architecture should not over-anticipate emergent needs, delaying deliv-

69

3 Framework for (Enterprise) Architecture in Agile Teams

ery of user value and risking development of overly complex and unneeded architectural
constructs. At the same time, it should not under-anticipate future needs, risking feature
development in the absence of architectural guidance and support. Architectural Agility
requires ’just enough’ anticipation. To achieve the quality of being ’just enough’, archi-
tectural anticipation must be ’informed’” [18]. While it is now widely spread that agility
needs some kind of architecting, it is not clear how this should be done [70].
There are several questions, architects and agile teams have to ask themselves, when deter-
mining the role of architecture in the agile development process. Additionally, the answers
given to those questions may vary for every organization. Table 3.2 gives an overview of
important questions and possible answers to them [70].

Table 3.2: Major questions and possible answers for determining the role of architecture in
agile organizations [70]

These questions and answers need to be kept in mind also when defining the role of
architecture in the framework. Therefore, those questions need to be answered in the case
study with the international insurance company. The critical questions address when ar-
chitectural activity needs to be performed, which artifacts to target, how to document the
architecture and who actually is responsible for the architectural activity.
After detecting the listed challenges and analyzing scaling frameworks, it became clear
that scaling the agile teams following one of the frameworks without further additions
and adaptions, especially concerning architecture, is not a suitable approach. Therefore,
also DDD is seen as a possibility to contribute to solving the challenges. A first conceptual
idea on how to use agile scaling in combination with DDD to incorporate architectural

70

3.2 Framework for (Enterprise) Architecture in Agile Teams

guidance in the context of the large insurance enterprise is explained in the following.
As DDD was not used in the insurance enterprise before, enterprise architects try to take
some first steps towards establishing DDD. It was decided to get started with strategic
level DDD, before some tactical practices were adopted as well. The idea was to include
DDD in the development process without slowing down the teams. Therefore, the ad-
ditional efforts for the teams themselves need to be kept small. What steps are taken in
the international insurance enterprise and how DDD is involved in the process as well as
which role enterprise architects play, is explained in the next section.

3.2.2 Overview

The framework to address the challenges of the agile teams at the international insurance
company comprises the relevant roles, a process including events, artifacts and tools. The
starting point for defining the framework are the current practices of the agile teams in the
company. However, these practices need to be improved. Therefore, this framework is a
proposition how the agile development process in the organization should be adapted to
improve concerning the presented challenges. The framework addresses especially how
enterprise architects can take part in the process and are able to provide value to each of
the agile teams as well as the overall project.
Figure 3.1 shows the framework which is divided into three main parts: strategic DDD, the
development process and tactical DDD. The first part describes how strategic DDD can be
incorporated in the agile development process. The area in the center of the framework
describes the development process including what has to be done within the teams and
cross-team coordination. Here the main focus is mostly on scaling agile teams. The area
on the bottom addresses how tactical DDD supports the development process.

71

3
Fram

ew
ork

for
(Enterprise)A

rchitecture
in

A
gile

Team
s

Figure 3.1: Framework for (Enterprise) Architecture in Agile Teams

72

3.2 Framework for (Enterprise) Architecture in Agile Teams

In the following paragraphs, an overview of these three parts is given, before in the
next section the roles, process, artifacts and tools are explained in detail. The description
includes reasoning why certain responsibilities, process steps, events, tools and artifacts
are beneficial. Reasons for certain recommendations were found in the already presented
literature or are based on experiences made during the case study.
The framework is a suggestion how the teams should work in the future incorporating
DDD in their daily work. Enterprise architects support the teams during the entire imple-
mentation of the framework and are an essential element in the framework. The strategic
and tactical DDD part of the framework were already tested, partly implemented and
evaluated during the last months. In contrast to that, the development process was not
changed so far, but might be adapted in the future based on the framework. The already
implemented elements as well as the elements that might be implemented in the future
are evaluated in chapter 4 with a pre-study and interviews.

Strategic DDD The strategic DDD process in the framework serves mainly to determine
in which subdomains the different teams on the project work. This is reached by assigning
all user stories of all teams to the subdomain they belong to. An overview of all domains
and their subordinated subdomains was created by enterprise architects before applying
the defined framework. However, the overview of the domains can be adapted in the
course of the process. The assignment is conducted by the teams themselves and is con-
tinuously evaluated by enterprise architects. The results support decisions of project man-
agers and the product owner. These decisions mostly are about the organizational struc-
ture of the current teams and especially about the structure how and with which structural
changes new teams are added to work on the same project.
Further, the results of the evaluation give an idea of what overarching functions might be,
that are needed by all or at least more than one team, and help to detect dependencies
between the teams. Based on the results of the strategic DDD process teams are struc-
tured around the subdomains they work in. Currently, they are not structured in this way,
but the established process helps to define the subdomains the teams work in. Especially
for each of the subdomains containing overarching functions, a new team could be estab-
lished. In the large insurance company this approach will be tested on the example of one
team for one subdomain. If this approach shows to be beneficial, further teams for further
subdomains might follow.
This approach is mainly driven by organizational and architectural considerations. As in
the agile scaling framework, especially mentioned in SAFe and LeSS, the teams are sup-
posed to be structured based on features they build. Currently, the teams are structured
depending on the components of the entire application they develop. Therefore, the strate-
gic DDD process is supposed to make way for a more feature-centric team structure. To
get started, teams should be structured depending on functional domains which leads to
the development of end-to-end features in a certain functional area. A team in a certain
subdomain is supposed to provide the other teams with their features. Summing up, this

73

3 Framework for (Enterprise) Architecture in Agile Teams

part of the framework describes how an organization can get started with DDD from a
strategic perspective.

Development Process The central part of the framework is the development process
which is the main process of all teams and which is enriched by DDD practices. Dur-
ing the development process all teams give input to the DDD processes. Based on their
inputs, the teams can also profit from the results of the incorporated DDD approaches.
As major challenges in the case study arise from the fact that there are many teams work-
ing on one project, another focus in the development process is the cross-team communi-
cation and coordination. The development process in the framework incorporates many
elements as defined by LeSS. The LeSS framework is considered to fit best to address the
current challenges as the number of teams is still manageable, but likely to increase in the
near future. Further, LeSS incorporates agile modeling approaches which can be easily
connected to DDD. Additionally, LeSS suggests to have a single product owner and a sin-
gle product backlog for all teams which supports the whole product focus. This is crucial
for product quality and might help dealing with overarching functions. The process, roles,
artifacts and tools are described in detail in the following sections.

Tactical DDD The tactical DDD part of the framework describes how agile teams can
use the DDD approach to contribute to their development process. The central element
of tactical DDD is the domain model which serves to support a common understanding
and an ubiquitous language in each team. All input for the domain model comes from
the respective team, while the enterprise architects mainly provide methodological guid-
ance. The domain models are continuously improved throughout the entire development
process. Tactical DDD describes an approach to domain modeling which is also cited as
very helpful by LeSS and SAFe [20, 41]. For evolving the domain model, agile modeling
techniques, such as event storming which is also suggested by Vernon, are used [84]. The
domain model is mainly used by the team by which it is defined and evolved. However,
it might make sense that two teams which work on similar tasks have an open exchange
about their models. Further, before making important strategic decisions, the product
owner and project managers might take these models into account as well. This can also
serve to validate the results of the strategic DDD process. Summing up, this part of the
framework describes how agile teams in an organization can get started with DDD from a
tactical perspective in a bottom-up approach.

3.2.3 Roles

In the following the roles and their responsibilities in the framework are explained. The
framework includes, next to the development teams consisting of developers and a Scrum
master, a single product owner, project managers and enterprise architects. Figure 3.2
gives a comprehensive overview of the roles and their involvement in the different events

74

3.2 Framework for (Enterprise) Architecture in Agile Teams

and process steps in the framework. ”x” means that the role always should take part in the
event, while ”(x)” means that participation is optional, but would make sense depending
on the current situation. The roles are described in detail in the following paragraphs.

Figure 3.2: Roles and their involvement in the process/events

Product Owner In the framework it is suggested that there is one product owner for all
three agile teams who manages the single product backlog. This especially includes the
prioritization of user stories and to assign them in cooperation with representatives from
all teams to the most suitable team. The product owner’s responsibility, corresponding to
LeSS, is to ensure whole product focus. The product owner can be, corresponding to the
current situation, supported by business analysts.
The product owner is a connector between the teams and to the customer. This means
he takes part in all overall meetings, such as the overall backlog refinement, sprint plan-
ning, daily Scrum, sprint review and sprint retrospective. In these meetings next to the
product owner, suitable representatives from all teams participate. This allows the prod-
uct owner in the framework to communicate with all teams continuously and in parallel.
This especially allows discussions about dependencies and responsibilities of the teams.
The product owner decides after these discussions, which can happen in the overall re-
finement and sprint planning, which story is implemented by which team. The product
owner, as a connector to the customer, moderates the sprint review in which representa-
tives from all teams present what they have achieved in the previous sprint.
The product owner can take part in the team meetings - sprint planning, backlog refine-
ment, daily Scrum and sprint retrospective - of one of the teams, if required. Most likely,
the named intra-team meetings for each of the teams take place at the same time. There-

75

3 Framework for (Enterprise) Architecture in Agile Teams

fore, the product owner can only participate in one of them. However, this is optional. It
also makes sense if the product owner takes part in an event storming workshop.
Further, the product owner is a connector to higher level management being in contin-
uous exchange with the project managers. Based on the inputs from the strategic DDD
part, he/she can advise the project managers concerning organizational structure. He/She
should be the first to realize if there are too many dependencies between the teams. Then
he/she might suggest a reorganization of the teams. Further, he/she should discover early
if an additional team should be established. The product owner in general is responsible
for all issues that concern all teams and the entire product.

Scrum masters The Scrum master is not depicted explicitly in the framework (and also
not in Figure3.2), as the role corresponds to the Scrum master in LeSS and has no specified
inter-team responsibilities. Each team has an own Scrum master who has a deep under-
standing of agile development practices and coaches the teams. The Scrum master can be
a developer or business analyst at the same time. He/She has no further responsibilities
concerning inter-team coordination and communication than any other team member.
If it is regarded as necessary and practicable after a first implementation of the framework,
the Scrum masters also could be educated in DDD practices to support the other team
members. This might be especially necessary if many new teams are added and enterprise
architects do not have the capacity to conduct workshops with all teams.

Development Team The developers in this case study are organized in three teams. As
in the different agile scaling methods, the teams are self-managing, co-located and long-
lived. The teams clarify, implement and test user stories. Further, development teams
should be cross-functional and cross-component feature teams. This is in the framework
central as the teams should be organized around the subdomains they work in. As in
the current situation, one of the more experienced developers can take on the role of an
IT-architect. Further, an UX designer can be part of the team. However, this role is not
depicted in the framework and optional.
In the overall meetings - sprint planning, backlog refinement, daily Scrum, sprint retro-
spective and review - not all team members participate, but only representatives of the
teams. The suitable representatives of each team are the persons with the best knowledge
in the discussed issues. If a team is not involved in a certain issue and in the sprint no
synchronization is necessary, teams might not send a representative to the overall meet-
ings. However, it makes sense in terms of coordination and communication. In the team-
internal meetings - sprint planning, backlog refinement, daily Scrum and sprint retrospec-
tive - all team members take part.
For the continuous user story assignment each team can decide itself if the entire team
does the assignment or only one or two team members (as in the pre-study). However,
it makes sense to have a person who is responsible that it is continuously done and can

76

3.2 Framework for (Enterprise) Architecture in Agile Teams

be addressed by enterprise architects for questions that might occur. For event storming
workshops and domain modeling it should be determined who participates depending on
the discussed issues. However, it makes sense for the teams to discuss and adapt their do-
main models collaboratively in their respective backlog refinement or sprint retrospective
to keep it up-to-date.

Project Manager(s) The project managers, of which there are two in the project in this
case study, mostly use the input from strategic DDD for strategic decisions, such as deter-
mining the organizational structure and deciding if additional teams are necessary. There-
fore, they take part only in the strategic DDD process of the framework and mostly use
the results of the process without giving essential input to the evaluations. However, in
the context of the case study the project managers participated in a higher level workshop
which was utilized to detect overarching functions which are to be implemented within
the project. The results of this workshop were compared to the results of the pre-study to
verify both workshop and pre-study results. Such comparisons might be especially help-
ful in the first time of the implementation of the framework to check the results of the
assignment and their usefulness for decisions.

Enterprise Architects The enterprise architect is part of a central architectural team. De-
pending on the number of teams and the project complexity one or more enterprise archi-
tects can be involved. In the framework the role of the enterprise architect is depicted as
one person.
The framework itself was developed by enterprise architects. Therefore, this role is critical
as it provides methodological guidance to the teams. The enterprise architect in the frame-
work is especially involved in the strategic and tactical DDD process.
On the strategic level the architect provides the overview of domains and subdomains to
the teams. This includes a first draft of the overview as well as coaching the teams on
how to use this artifact. Further, the enterprise architect evolves the domain overview
considering the input from the teams. He/She is especially responsible that the overview
is adapted accordingly in all tools. Sometimes and especially in the beginning the enter-
prise architect supports the teams with the continuous user story assignment. Further, this
role’s responsibilities comprise the continuous evaluation of the user story assignment of
subdomains and presenting the results comprehensively to the decision makers which are
the product owner and project managers. The enterprise architect himself has no decision
making authority, but provides input to the decisions.
The same assumption applies on the tactical level. Here enterprise architects introduce the
method of event storming as well as domain modeling to the teams. These approaches
mostly provide value to the teams and only are useful if the teams themselves give their
input. The teams need to evolve the domain models over time. The event storming ap-
proach was considered as beneficial by enterprise architects to define a first draft of the
domain model, but also to further evolve it. In this case study, the enterprise architect is

77

3 Framework for (Enterprise) Architecture in Agile Teams

the moderator in all event storming workshops. The enterprise architects also teach the
teams how the event storming approach works and how they can incorporate the domain
model in their development process in a way that provides value to the teams in terms
of reaching a common understanding and defining an own ubiquitous language for each
team. To support this the enterprise architect optionally participates in team backlog re-
finements or team retrospectives to help with keeping the domain model up-to-date. For
the same reason he/she might also support the teams with their continuous domain mod-
eling.
As agile scaling of the development process became a much discussed issue in the entire
project, enterprise architects provide input by analyzing agile scaling frameworks and by
making a proposition on how to scale the teams in the future in the form of this framework.
However, this role is not a direct part of the development process in this framework, but
works as a facilitator to support agile scaling.
Further, the enterprise architect has an overview of the entire project and evaluates the
inputs from the DDD processes. The idea of incorporating above team level architects in
the framework is based on the approach to architecture in SAFe.

3.2.4 Process

In the following the processes on all three levels, with focus on the single events, are de-
scribed. This includes not only the known Scrum events as well as sprints, but also the
further established events storming workshops. Further, the continuous user story assign-
ment and evaluation are part of the process as well as strategic decision making.

Sprints All discussed agile scaling frameworks - Nexus, LeSS and SAFe - suggest to syn-
chronize the sprints for all teams. This means the same sprint length as well as sprint start
and end. Here a sprint length of one to two weeks is suggested. Only with synchronized
sprints, the defined overall meetings make sense and can provide value to the teams.
All development work is done during the sprints. A sprint starts with the sprint planning,
while its ends with the sprint review and retrospective. Right after the retrospective, the
next sprint is started with the sprint planning. The backlog refinement takes place once in
each sprint which can be seen as a preparation for the sprint planning. Further, events are
the daily Scrums.
With every new sprint the development process is repeated. The strategic and tactical
DDD process are running in parallel. However, on the strategic DDD level only in the
beginning a draft of the overview of domains and subdomains is provided by enterprise
architects, while after that this artifact is only adapted based on the input of the teams.
On the tactical level not every sprint and event storming workshop is necessary. Event
storming especially makes sense in the very beginning of the development process or for
scoping the next MVP. If during the development process issues come up, which need to
be discussed by the entire team, an event storming workshop can be helpful. Therefore,
these workshops are scheduled and conducted as needed.

78

3.2 Framework for (Enterprise) Architecture in Agile Teams

Backlog Refinement As events during the development process, there are the overall
backlog refinement as well as the team backlog refinement. Having both an overall as well
as a team backlog refinement is like in LeSS. However, in LeSS only the overall backlog re-
finement is optional. In the framework it should be determined based on the current user
stories in the backlog if both meetings make sense or only the overall backlog refinement.
Each team can decide itself when a team backlog refinement is necessary and when not.
The overall backlog refinement is done by the product owner in cooperation with repre-
sentatives from the development teams. They refine user stories and prioritize them. Ad-
ditionally, in this meeting the user stories which are not assigned to a subdomain should
be assigned. Based on this, teams already can get a first idea, which user stories might be
assigned to the for implementation.
The user stories that are likely to be assigned to a team, can be refined in the team backlog
refinement. A team backlog refinement might not really be necessary, if the representa-
tives of the teams have refined the user stories already properly in the overall backlog
refinement. Therefore, this meeting is optional. However, this meeting can also be used
to discuss how future user stories that are implemented might affect the domain model.
Usually, all members of the development team participate in this meeting.
Sometimes it makes sense that the enterprise architect takes part in the backlog refine-
ments. In the overall backlog refinement, the enterprise architect supports with the as-
signment to the subdomains and in the team backlog refinement he/she supports with
adapting the domain model. In both he/she is supposed to mainly give methodological
guidance. If he/she takes part or not, is discussed with the teams upfront. However, it is
likely that the teams hold their backlog refinements at the same time. Then the enterprise
architect needs to decide in which of the intra-team refinements he/she takes part.

Sprint Planning As a very essential part of the development process, there is an overall
sprint planning as well as a team sprint planning which is conducted separately and in
parallel by each of the three teams.
In the overall sprint planning, the product owner as well as representatives from all teams
take part. The participants discuss shared work and decide which user stories will be im-
plemented by which team in the upcoming sprint. The workload of the teams has to be
divided depending on the number of developers and availability. Therefore, a rough esti-
mation, e.g. using story points, is helpful. As soon as the teams are structured according
to their subdomains, the user story assignment - which should have happened before the
sprint planning - is a very good indication for deciding in which team’s functional area
the user story belongs. In the best case the user story assignment was already discussed in
the backlog refinement. Further, the priorities of user stories in the single product backlog
have to be considered.
The product backlog is managed in an issue and project tracking tool, e.g. Jira. In the
sprint planning, in the tool a new sprint is opened and the user stories to be implemented
are moved into the sprint backlog. The assignment of user stories to the teams should

79

3 Framework for (Enterprise) Architecture in Agile Teams

have been done before the sprint planning in the tool, so that the teams are able to plan the
backlog for the user stories that were assigned to them.
The team sprint planning is held by each team separately directly after the overall sprint
planning. The entire development team participates in this meeting to plan the upcom-
ing sprint. Stories should be divided into smaller tasks and the teams need to estimate
the workload of each user story more precisely. The teams can use the meeting to discuss
which user story is done by which team member. Further, they can discuss which impact
the user stories have on their domain model.

Daily Scrum As daily events during the development process, there are the overall daily
Scrum and the team daily Scrum. This proposition is similar to the daily Scrums in Nexus.
In the current situation there is the daily stand-up with all agile teams from all different
projects discussing mostly organizational issues. The framework suggests to do an overall
daily Scrum instead in which the product owner and representatives from all teams in one
project are involved. This meeting should be used to discuss the tasks the teams work on
that also might affect other teams. So the focus should be on dependencies and integration
issues. The meeting should be kept very short and should be time-boxed to around 10-15
minutes.
Currently, the teams conduct their own daily Scrum directly after the stand-up. This
should be kept as it is with the only difference that the team members who have par-
ticipated in the overall daily Scrum before, give a summary about what was discussed in
the overall daily Scrum.

Sprint Review In the development process in the framework, it is suggested to have
only an overall sprint review with the customer and representatives from each team who
present what their team has implemented in the sprint. The meeting can be used to get
feedback from stakeholders. The meeting is conducted as the review in Nexus and LeSS.
This meeting is not connected to the strategic and tactical DDD process. However, when
communicating with the customers which are most likely business experts, it is important
to use a common language based on the language defined in the domain models of the
teams.

Sprint Retrospective As a very essential part of the development process, there is an
overall sprint retrospective as well as the team sprint retrospective which is conducted
separately by each of the three teams. In contrast to the other meetings, for the retrospec-
tive first the team-internal retrospective takes place, before representatives of the teams
participate in the overall retrospective.
The team retrospective is used to discuss what went good and bad in the previous sprint
and to discuss means to improve. Further, the meeting can be used to adapt the domain
model if changes occurred during the sprint that were not incorporated in the model. It
also makes sense that an enterprise architect participates in the meeting. However, this

80

3.2 Framework for (Enterprise) Architecture in Agile Teams

is optional and is not necessary every week. As the team sprint retrospective takes place
for all teams at the same time, the enterprise architect can take part in the retrospective of
another team every week.
After that, one or more representatives join the overall sprint retrospective to discuss those
issues that affect more than one team. The meeting should be utilized to discuss what went
good and bad concerning dependencies and integration. The sprint retrospective is held
right after the sprint review. Directly after the retrospective, the overall sprint planning for
the next sprint takes place.

Continuous User Story Assignment and Evaluation The assignment of user stories to
the subdomains of the organization as a part of the strategic DDD process serves to de-
termine a suitable organizational structure in line with the DDD approach. The goal is to
have teams that are working in one bounded context within one subdomain.
In the framework and the pre-study it was determined that the assignment to a subdo-
main for each user story should be done before it becomes part of a sprint. Sometimes
it might be easy to assign it, when it is created. For some user stories further refinement
is necessary to be able to assign it. Then the team can discuss the assignment in the user
story refinement.
The major artifacts involved in this process are the overview of domains and subdomains
as well as all user stories in the overall product backlog. The artifact which arises from
this, is the evaluation of the assignment. For the detailed description of the artifacts see
Section 3.2.5. The continuous assignment is done in the issue and project tracking tool. For
the continuous evaluation an enterprise architecture Management Tool is necessary, while
for the pre-study (see Section 4.1) Microsoft Excel was used.

Strategic Decision Making The strategic decision making in the framework is done by
the product owner (currently product owners) and project managers. They are mostly con-
cerned about organizational structure in the framework. However, their focus is to make
the entire project and the developed product successful. The framework contributes to this
decisions about team structure. Therefore, the strategic decision making in the framework
is only focused on organizational structure. This comprises not only potentially restruc-
turing existing teams, but also deciding about the responsibilities as soon a new team is
added.
In this case study, the core subdomains of the three teams differ. However, next to user
stories in their core subdomain, all teams have implemented overarching functions. Over-
arching functions are mainly supporting functionalities which are needed - potentially in
a different way - by every team. Such functions could concern authentication issues, like
log-in or managing user roles as well as managing documents or transactions. Until be-
fore the case study each team has developed an own solution for e.g. a user log-in. For
the example in Figure3.3 assume that domain A includes overarching functions and that
subdomain A.1, as one of its subdomains, is concerned with legitimization and therefore

81

3 Framework for (Enterprise) Architecture in Agile Teams

every user story concerned with the user log-in would be assigned to this subdomain.
The major idea is to structure the teams based on the subdomains they work in. Accord-
ing to DDD, this fosters independence between the teams which lets the teams work more
quickly. When deciding about the responsibility of a team for one or more subdomains
there are two options. Figure 3.3 illustrates the two options with an example.

Figure 3.3: Options for the team structure with focus for providing overarching functions
from subdomain A.1 to all teams and adding a new team

The first option would be to make one of the existing teams responsible for managing
log-in functionality for all teams and providing this functionality via an API to all other
teams (Option 1). This team would then still be responsible for its core subdomain plus
one subdomain with overarching functions. In the example team 1 would be accountable
for its core subdomain B.1 and the overarching subdomain A.1. team 1 has to provide
functionality concerning subdomain A.1 to other teams via events or an API. Therefore, all
user stories in the common backlog with subdomains A.1 and B.1 should be assigned to
team 1 in the future. No new team needs to be added.
Another possibility would be to establish a new team which then is accountable for an
overarching function (Option 2). This means the responsibility of the new team is to im-
plement all user stories of subdomain A.1, while team 1 now - as the other teams in option
1 - is free to focus on its core subdomain B.1 whitout having to provide overarching func-
tionality to other teams. This only works if there are a lot of user stories for subdomain
A.1 so the new team is working to capacity. This option could also work the other way
around, meaning that team 1 becomes responsible for subdomain A.1 and the new team
works on subdomain B.1. However, this might not make sense as team 1 already gathered
a lot of expertise concerning its core subdomain B.1 and therefore most likely should con-
tinue working on its core subdomain B.1.

82

3.2 Framework for (Enterprise) Architecture in Agile Teams

In this case study, it was further detected that in the beginning it makes sense to let the
teams start to develop their MVPs, while continuously evaluating in which subdomains
they work. This allows the teams to get started quickly without being slowed down by
having to provide functionality to others, while getting insights for a informed strategic
decision. A strategic decision about the team structure then can be made based on numer-
ical evidence. However, as soon as certain teams for overarching functions are established
and can be provided to new teams directly when they start, the new teams are able to fo-
cus on their core subdomain from the beginning on. This will increase their development
speed significantly. In the best case, there is a platform which provides the overarching
functions to the teams, which is documented comprehensively so that all teams know what
functionality there already is. Then the teams are able to utilize the existing functions as
they are or are even able to adapt them to fit their application.

Event Storming and continuous domain modeling In DDD related architecture, it is
suggested that ”one of the best things you can do at the inception of a project is to use
event storming” [84]. Therefore, event event storming is part of the tactical DDD process
in the framework, see Figure3.4. Continuous modeling is used to refine the domain models
outside of the workshops during the development process. The domain model can con-
tribute to the development process over the entire development process. The other way
around the development process contributes to the refinement of the models over time.

Figure 3.4: Event Storming and continuous (domain) modeling in the tactical DDD process

Event storming is a workshop format supporting the exploration of complex business
domains with domain models starting with domain events as their most crucial part. It al-

83

3 Framework for (Enterprise) Architecture in Agile Teams

lows to come up with a comprehensive model of the business flow in a domain in a couple
of hours by bringing domain experts and developers together in a room to build a model
collaboratively. The approach is in line with DDD, as it helps to determine bounded con-
texts and aggregates quickly. It has a very easy and intuitive notation that all participants
can understand within a couple of minutes. The event storming workshops create an at-
mosphere for discussions about the business logic [15].
To understand event storming, the term of the domain events is central. A domain event
is something that happens in the business domain which is of interest to domain experts.
They are interested in the business domain and its logic - not databases or design patterns.
Without specifying a certain implementation, events capture what happened in a domain
[61]. Therefore, domain events are formulated in the past tense. In Figure3.5 an example
for business logic including similar to creating backlog item is shown [84]. An example for
an event would be backlog item created.
It is crucial to invite the right people to the workshop including the right amount of people
who ask the right questions and those who know the answer. The group might consist of
the six to eight developers and business experts plus a moderator. Having enough model-
ing space is crucial. Therefore, a lot of whiteboards or other modeling space on the walls
of the room are necessary. Modeling space should not be a limiting factor [15].
The first step is to collect all domain events on sticky notes. In event storming a orange
sticky note is used for every domain event. As the focus is on the process within the do-
main the events are ordered according to their occurrence over time from left to right. If
it is not clear when a domain event happens, the order can be changed whenever it the
workshop the time order becomes obvious. If there are domain events happening in par-
allel or alternatively to each other, they can be placed under each other. The events which
are not entirely clear at his point and require further discussion, should be marked with
question marks or red sticky notes. These are the events the workshop have to invest the
most time in to clarify them. The granularity of the model depends on the goal of the
workshop. Domain events that are very important in the core domain should be modeled
more fine-grained [84]. In the next step, the origin of the domain events need to be ex-
plored. Some events happen because of a user action. These are called commands and are
modeled with a blue sticky note directly in front of the event they cause [15]. If it is im-
portant which person made a command, the role of the person should be written down as
well - either on the blue sticky note or on a separate (yellow) sticky note [84]. An example
for a command in Figure3.5 would be, e.g. create backlog item. The person to initiate the
command is the product owner in this figure. Other events are the consequences of some-
thing that happens in an external system or because of time passing. These are modeled
with a purple (or pink) sticky note in front of the respective events. Both are formulated
as verbs in present tense. Further, an event can cause another event. Then the two events
are placed next to each other [15].
The next step is to find the aggregates (or in some cases entities) on which the commands
are executed leading to a domain event. Aggregates hold the data used to execute com-
mands and to emit domain events. After having focused on the business process before,

84

3.2 Framework for (Enterprise) Architecture in Agile Teams

data has to be considered as well. The aggregate names can be written on yellow (in our
case green) sticky notes. Aggregate names are nouns, such as backlog item in Figure3.5. It
is very likely that the same aggregates are used by multiple times. During the process new
domain events may be found which should be added. If some aggregates are too complex,
they might need to be modeled more detailed [84]. Later in the case study it was tried to
model the relationships between the aggregates/ entities.
The next step is to draw arrows to represent a flow. Further, the participants should ex-
plore boundaries. Boundaries can be between areas where different models are in play.
Indicators that boundaries are needed could be if different departments are concerned
with the events or that different domain experts have different, conflicting definitions for
certain terms. One can use solid lines for bounded contexts and also add subdomains to
the picture in the form of dashed lines [84]. The concept of different artifact views was not
used in our event storming workshops.

Figure 3.5: Event Storming Example [84]

This workshop approach was tested with all teams. In this case the enterprise architects
were the moderators and facilitators in the workshops. After trying the approach with
only one person from each team to get an initial model, further workshops are conducted
with more participants to refine the model and to allow discussions. The results of the
workshops were made available in the wiki for each team. This is explained in detail in
Section 3.2.6. Further, it was seen as beneficial if the models with all their sticky notes are
kept on the walls of the team room. However, this was not always possible because of the
limited space.
In the case study, event storming is regarded as a first step towards defining a domain
model with the central concept of events. There were also further tries with domain mod-
eling starting with entities. However, the approach around entities lead to a model very
similar to a data model, which did not provide much value to the teams.
The event storming workshops especially make sense in the initial sprints of a project as
well as upfront or in a sprint 0 which could be used to explore the scope of the product

85

3 Framework for (Enterprise) Architecture in Agile Teams

to be developed as well as its potential architecture starting from a business view. As the
teams in the case study are not right in the beginning of their development process, the
workshops are mostly done to explore benefits of the event storming approach. It was ob-
served that it helped to detect issues that are not clear to the whole team or still need to be
determined. It fosters open discussion between team members with a graphical represen-
tation on the wall which can be adapted flexible during the discussion in the workshop.
After one of the workshops a member of team 1 came up with the idea to conduct an event
storming workshop moderated by enterprise architects during he concept phase for his
team’s next MVP. In particular, the suggestion to is to plan a workshop with representa-
tives from team 1 and 2 as for the next MVP many interfaces between the two applications
need to be developed. The idea is to get an understanding of the business logic of the
respective other team and to check if their languages are the same and certain concepts in
their applications differ. This might help both teams in the development of their next MVP
and supports information exchange and communication between the teams.
The agile teams are encouraged by enterprise architects to use domain modeling continu-
ously during the development process. It does not always need to be an event storming
workshop, but after having an initial model the domain model can be useful for refin-
ing user stories or to discuss business issues which are not entirely clear within the team.
Therefore, the framework suggests to look at the domain models in the team-internal back-
log refinement to explore the effects of a user story on the model and the application. Fur-
ther, the models might be also used in the team retrospective or sprint planning to analyze
the impact of a new user story. In general, the teams can utilize domain modeling when-
ever it is helpful for them.

3.2.5 Artifacts

Essential to the framework are different artifacts which are used and created in the process.
While on the strategic DDD level the overview of the subdomain as well as the results of
the user story assignment are essential, on the tactical DDD level the domain models are
the central artifacts. User stories, product and sprint backlog are very essential in the
strategic DDD as well as in the development process. It makes also sense for the teams to
define key use cases and document the logic architecture.

User Stories, Single Product Backlog and Sprint Backlogs Consistent with the current
situation the teams define their requirements as user stories. All teams use Jira Software
which is explained in detail in Section 3.2.6. Opposing to the current situation, the frame-
work suggests that the three teams which are part of the case study should share one
common product backlog including all of their user stories. As soon as it is clear which
team is responsible for implementing which user story the user stories are marked with
the respective team name. This supports the possibility to filter for user stories of the own
team while still being able to get an overview of all user stories of the entire project. While
the single product owner is responsible for these artifacts, he/she is supported by business

86

3.2 Framework for (Enterprise) Architecture in Agile Teams

analysts and developers who write and refine user stories as required.
The backlog is the most central artifact for the development process and the strategic DDD
process, as it includes all user stories and their assignment to a subdomain.

Overview of (Sub-)Domains The overview of the domains is the first artifact to be de-
fined before starting to apply the framework. However, the domains and subdomains
evolve over time. In this case study, a domain overview including four domains with two
subdomains each is used as an example (see Figure3.6).

Figure 3.6: Overview of domains and subdomains

The defined artifact including the domains and subdomains of the large insurance com-
pany is very similar to one of the most central enterprise architecture management arti-
facts - the business capability map. ”Business capabilities focus on the enterprise’s ability
to perform activities from a functional perspective” [36]. The business capabilities often
are structured into functional areas or domains. In our example they are divided into do-
mains with subdomains on the second level followed by the business capabilities on the
third level. However, for the application of the framework in the first place the business
capabilities are too granular. Therefore, the user stories are assigned to subdomains which
are less granular than the capabilities.

Domain Evaluation The domain evaluation is very essential for the strategic decision
making process step in the framework. The most central aspect of the user story assign-
ment to be evaluated is the number of user stories assigned to a (sub-)domain overall and
per project. This helps to detect the core subdomain a team is working on, e.g. sales. It
further supports to see on which additional supporting subdomains the teams work. Here
the focus is especially on overarching functions. If all teams implement user stories from

87

3 Framework for (Enterprise) Architecture in Agile Teams

one overarching subdomains with a high number of user stories in total, this can be an
indicator that one has to adapt the organizational structure and responsibility for an over-
arching subdomain. Further, one can take into account for these decisions the status of the
user stories. Functions that have already been implemented could be provided to other
teams and function not implemented yet could be implemented by a potential new team
with focus on the respective subdomain. Further, one has to pay attention that there might
be design and purely technical user stories which should not be taken into account for the
evaluation. In the case study, there was one domain which only includes technical or IT
aspects. All technical user stories can be assigned to this domain - in our example domain
D (see Section 4.1) - and can be included or excluded in the evaluations as required.
However, the proceeding of the evaluation in the tools is explained very detailed in the
section3.2.6. This description includes how to do the evaluation in the tools and some
examples for the graphical results are presented.

Domain Model The most essential part of the tactical DDD process is domain modeling.
The goal is that every team defines and evolves a domain model making the business logic
in their subdomain explicit. Before defining the framework, two different approaches to
domain modeling were tested.
One of the approaches was to start with the most essential entities in a domain. This lead
to more data-centric model, meaning that mostly the entities were defined plus some of
their attributes. This bears the risk that the teams get lost in detail defining all attributes
belonging to an entity without considering the business logic which is most essential. For
attributes, which are not as essential to the business logic, it is considered to be enough to
be documented in code. Further, some teams have documented the attributes in their wiki
already.
Therefore, another approach to domain modeling was tested - event storming which was
explained in Section 3.2.4. This approach lead to much more helpful results. Collecting the
essential events helped the teams to reconsider the business logic and process. Further, the
commands support understanding why certain events happen. Personas and artifacts also
contribute to a deep understanding of the business logic. It was also detected that with
this approach in a workshop with some team members after approximately two hours
the draft of a first model was ready. These models are then to be refined in additional
workshops or by the teams. Considering the building blocks presented in Section 2.7.5, the
event storming helps to determine domain events, some entities and aggregates. Further,
it helps to find boundaries of subdomains or bounded contexts. Over time the domain
models can be extended by further building blocks.
Opposing to the case study, it makes sense to start with domain modeling already in the
very beginning of a project - in a sprint 0 or even before. It might help to determine the
scopes and most essential business logic of the team and can be a very good basis for
discussing open topics concerning the logic.

88

3.2 Framework for (Enterprise) Architecture in Agile Teams

Key Use Cases and Logic Architecture Keeping a domain model is in line with agile
modeling, of which the main focus is to model to have a conversation. In agile modeling,
one can differentiate between models ”to keep” and models formulated temporarily to be
thrown away when they are not needed anymore. Figure 3.7 shows these kinds of models
- keeps and temps - and how to include them in the agile development process.

Figure 3.7: Agile Modeling for agile teams [39]

The models ”to keep” describe the big picture of a system visually. Next to domain mod-
els, it is suggested to keep two other kinds of models. Logic architecture models describe
the idea of the entire system roughly and key use cases can be used to understand what a
typical user expects from a system, how a user interacts with the systems and how a user
benefits from it [39].
The logic architecture model and key use cases are part of the framework in the devel-
opment process as they are not related to DDD. The architects in the case study so far
did not support the teams with these models. However, the teams started to define key
use cases and started to document the logic architecture according to arc42 in their wikis.
Arc42 ”provides a template for documentation and communication of software and sys-
tem architectures” [77]. It is based on practical experiences and independent from the used
development method. However, it suits to lean and agile processes very well [77].

89

3 Framework for (Enterprise) Architecture in Agile Teams

3.2.6 Tools

The most central tool for the framework is the issue and project tracking tool Jira Software
to manage the product backlog. The teams further utilize a collaboration and knowledge
management tool as a knowledge base, for collaboration and documentations. Addition-
ally, an enterprise architecture Management tool is necessary to be able to automize the
evaluation of the user story assignment. In the following the used tools with focus on the
ones, that the agile teams utilize in the case study, are described in general and how the
framework suggests to engages these tools.

Jira Software As an issue and project tracking tool, the teams in this case study use Jira
Software (by Atlassian) which they utilize for managing their backlogs. However, other
organizations might use a different tool with similar functionality. Jira Software allows
flexible planning for agile teams - with different methods, such as Kanban and Scrum - es-
timating the effort for user stories and ordering items according to their priorities. Further,
transparent execution including the assignment of user stories to team members and a sta-
tus concept is supported by the tool. There is reporting functionality to monitor progress.
Backlog item types and fields remain adaptable throughout the process to support agile
project management [11].
The teams already have been working with Jira before establishing the framework. Jira is
the most common tool for agile software teams to manage their product and sprint back-
log. For an example of a backlog in Jira see Figure3.8.

Figure 3.8: Example of a Jira Backlog including a sprint and the detail view of one user
story

90

3.2 Framework for (Enterprise) Architecture in Agile Teams

It is necessary that an additional field is added to the Jira template for writing down
user stories. This field is used to document the domain and subdomain a user story af-
fects. Therefore, this new field is called ”Affected Domain”. It consists of two drop-downs
of which the first one allows to select the domain. Based on the choice for the first drop-
down in the second drop-down only the subdomains of the selected domains are electable.
For example, if a user chose Domain A in the first drop-down in the second one he/she
can only choose subdomain A.1 or subdomain A.2. The field then includes, if subdomain
A.1 was chosen, ”Domain A - subdomain A.1”. See also figures 3.9 for the domain and
subdomain selection in Jira.

Figure 3.9: Selecting the domain and then the subdomain of a user story

Further, it is necessary to add a field to be able to assign certain user stories to certain
teams, as the teams share a single backlog. To allow each team a better overview of their
user stories in the next sprint or in the backlog, one can define customized filters only to
show the user stories for a certain team, while still easily being able to access the view
including all teams.
Jira allows exporting all user stories in a .xlsx file including value for all fields, such as
for ”Affected Domain”. This is the base for the evaluation of the assignment in the enter-
prise architecture management tool, which is used for the continuous evaluation, and in
Microsoft Excel, which is used for the evaluations in the pre-study. Currently, the export

91

3 Framework for (Enterprise) Architecture in Agile Teams

has to be conducted for all teams separately as they use different backlogs. However, this
will be more simple as soon as the teams utilize a shared backlog.

Iteraplan For the enterprise architects at the large insurance company Iteraplan, as their
enterprise architecture management tool, is a very essential tool that is necessary in the
framework to be able to automize the evaluation of the user story assignment. Iteraplan
by Iteratec GmbH is an EAM tool which can be used to plan and analyze architectures. It
includes a repository to document business domains, business capabilities and business
processes as well as project. Further, it can be used to document IT-services, applications,
infrastructure elements and technical domains. In the tool many helpful visualization,
such as (nesting) cluster graphics, portfolio, information flow and landscape plans as well
as pie and bar charts, can be created [45].
Iteraplan is the tool which is used by the enterprise architects in the large insurance com-
pany. Therefore, it is an obvious choice for the architects to use this tool for the evaluation
of the user story assignment. Another plus for iteraplan as a tool for the evaluation is, that
all domains and subdomain were documented in the tool before the start of the user story
assignment and that they are always up-to-date in the tool. Therefore, in the following a
concept for the evaluation of the user story assignment is presented.
Therefore, if not already done, the first step for starting the strategic DDD process is to
document all domains including their subdomains in Iteraplan. This can happen manu-
ally or via an import using an Microsoft Excel file (.xls). Assigning the same attribute to all
necessary business domains is helpful, to later be able to only use these for the evaluation
of the user story assignment. See Figure3.10 for all domains and subdomains in the case
study as well as their respective attribute ”Modellbasis = User Story Mapping MA CS”.
All further attributes, which are necessary for the evaluation and are described in the next
paragraphs, need to be created before importing the user stories.

Further, all required teams need to be created as a project. To make clear that these
teams belong to the same project, the teams are created as sub-projects of the superordinate
project. For the projects, see Figure3.11.

Before one can import the files, that were exported from Jira, they have to be format-
ted and ordered as the Iteraplan import template requires. A template of the metamodel
showing how the file needs to look like, can be exported from Iteraplan. The formatting of
the Jira export files to fit the Iteraplan metamodel is for now done by hand, but will be au-
tomatized later. The user stories are imported as business processes as this element in the
metamodel is related to projects and business domains. The following Figure3.12 shows
a file to be imported in Iteraplan with user stories. The columns from left to right include
an ID, which will bet set in Iteraplan after the import, name and description of the user
story, the name of the person working on the story, the attribute ”Modellbasis = User Story
Mapping MA CS”, priority, sprint number and status of the story. All these attributes need
to be created in Iteraplan before importing the actual data. The last column would include
a name representing the hierarchy of the elements. However, this is not relevant here, as a

92

3.2 Framework for (Enterprise) Architecture in Agile Teams

Figure 3.10: Domains and Subdomains in Iteraplan

Figure 3.11: The project and the three teams in Iteraplan

user story has not got a superordinated element.

Figure 3.12: Importing the user stories in Iteraplan

In the same import file, on has to determine the relations of the user stories to subdo-
mains and projects. This is presented in Figure3.13.

As it is not possible in Iteraplan to calculate the number of user stories assigned to a

93

3 Framework for (Enterprise) Architecture in Agile Teams

Figure 3.13: User stories and their assigned subdomains and projects for the import in
Iteraplan

subdomain or domain, the attribute number of user stories (”Anzahl User Stories”) was
created before the import. This number should be calculated when formatting the Jira
export file by an Microsoft Excel tool. Then it can be imported as shown in Figure3.14.

Figure 3.14: Importing the (sub-) domains in Iteraplan including their number of assigned
user stories

94

3.2 Framework for (Enterprise) Architecture in Agile Teams

After all data is imported into Iteraplan, the user story assignment can be visualized.
Mostly bar charts and nesting cluster graphics are useful in this case. Figure 3.15 shows
the number of user stories of all projects assigned to the subdomains in a bar chart (design
user stories not included).

Figure 3.15: Bar Chart: Number of User Stories from all three projects assigned to the
subdomains

A bar chart can also be colored depending on certain attributes, such as status of the user
stories. Further, Figure3.16 shows one bar chart per project with bars colored depending
on the status of the user stories in the subdomains.

Later it was detected that simply assigning the user stories to projects or teams limits the
possibilities for evaluation. Therefore, to allow more visualizations an additional attribute
”Team MA CS” was created with the option ”Team 1 MA CS”, ”Team 2 MA CS” and ”Team
3 MA CS”. This means that the information to which team a user story is kept redundantly.
Assigning the attributes correctly was easily achieved by a bulk update in Iteraplan which
was used to assign e.g. the attribute value ”Team 1 MA CS” to all user stories that were al-
ready connected to project ”Team 1 MA CS”. To generate more comprehensive evaluations
with the different teams represented by different colors as in Figure3.17, this is necessary.
Finally, the tool, as presented in Figure3.18 also allows to present the results as a nesting
cluster graphic including all domains and subdomains on the outside. The graphic fur-
ther shows which teams works in which subdomains. The coloring was used to show
how many user stories in total exist in the respective domains and subdomain from green
(none) to red (up to 38). For example, domain A includes the most user stories of which all
are concentrated in subdomain A.1 worked on by all teams, while subdomain A.2 includes
no user story at all.
Summing up, these figures can be provided to project managers for strategic decision mak-
ing as presentations. Later the results should automatically be displayed in the wiki for
all teams as well as the project managers to see continuous results. However, this is not
implemented yet.

95

3 Framework for (Enterprise) Architecture in Agile Teams

Figure 3.16: Bar Chart: Comparison of the projects depending on the number of User Sto-
ries per subdomain

Confluence Wiki Further application of the framework requires a team collaboration
software and a wiki. In the case study, the agile teams utilize Atlassian Confluence as a
knowledge base, for collaboration and documentations. All teams have established wiki
which they use frequently. Atlassian Confluence is a tool for teams to create content collab-
oratively. It can be used for project collaboration e.g. by creating roadmaps, writing down

96

3.2 Framework for (Enterprise) Architecture in Agile Teams

Figure 3.17: Bar Chart: Number of User Stories from all three projects (in different colors)
assigned to the subdomains

Figure 3.18: Nesting Cluster Graphic: Subdomains and the teams working on them with
(sub-)domains colored depending on their total number of user stories

goals as well organizational topics to share them with the entire team while also allowing
all team members to contribute. Further, it can be utilized as a knowledge base or wiki.

97

3 Framework for (Enterprise) Architecture in Agile Teams

Additionally, it can be helpful for documentation. It guarantees to have a single source of
truth and transparency [10].
The teams do all documentation in their wiki. While each teams has an own wiki space,
next to that an overarching wiki space exists. The overarching space includes, next to
other topics, documentation on strategic and tactical DDD as well as documentation of the
overview of domains and subdomains. Later here, the continuous results of the user story
assignment is to be presented as well.
The team-internal wiki spaces are structured roughly in the same way for all teams. The
parts described in this thesis and included in the wiki are the domain model, as well as key
use cases and logic architecture corresponding to the arc42 template. Most importantly on
one page the event storming method is explained and a picture of the current domain for
the corresponding team is included. Further, all former versions of the domain model are
included to document its development over time.

98

4 Evaluation

The evaluation of the framework consists of two parts. First, a pre-study was conducted
to evaluate if the user story assignment to the subdomains as a part of the strategic DDD
process is possible and a reliable source to make assumptions about the functional do-
mains the teams work in. Further, some interviews were conducted to evaluate the defined
framework. The questions and results of the interviews concerning the framework for (en-
terprise) architecture in agile teams are presented. Finally, the key findings are summed
up comprehensively.

4.1 Pre-Study

The strategic DDD part of the framework is constituted of the user story assignment, its
evaluation and decisions based on the results. After defining the framework, the assign-
ment of user stories to subdomains, as a central component of the framework, needed to
be evaluated in terms of practicality as well as reliability and validity of its results. There-
fore, a pre-study was conducted with the three agile teams. The pre-study was done in a
period of two months. During that time all user stories of the three teams were assigned
to subdomains. This includes not only the stories in the current sprint and in their product
backlogs, but also those stories that the teams had already implemented before the pre-
study started.
The pre-study has several objectives. First, it serves to evaluate if the assignment of user
stories to the subdomains can be done unambiguously. Further, it helps to detect what
kinds of user stories cannot be assigned to any domains. Additionally, it is important that
the procedure itself is simple and not time consuming for the agile teams. If it would take
the teams a lot of time, it is likely that the approach will not be accepted by them. This is
especially critical in this case because the results of the user story assignment are mainly
used by project management to recognize a need for action and to make decisions, e.g.
concerning team structure. However, the results of the pre-study are also shown to repre-
sentatives of the teams to keep them updated and to discuss the results and the next steps
with them. Finally and most importantly, it needs to be checked if the approach leads to
plausible results that can be used as a basis for decisions.
The basic data of the pre-study is presented in the following Table 4.1.

99

4 Evaluation

Basic Data
Involved teams Team 1, Team 2, Team 3
Timeframe 2 months
Total Number of user stories assigned 425
Roles EAs for methodological guidance

1-2 representative(s) from each team
Artifacts Overview of (Sub-)Domains

User Stories
Evaluation Template/Results

Tools Jira Software and MS Excel
(later/ in framework Iteraplan)

Table 4.1: Pre-Study Basic Data and Results

The procedure of the pre-study is described in the following. Enterprise architects had
the idea for applying a domain-driven approach in the framework and for conducting the
pre-study. Therefore, enterprise architects mostly work on the methodological approach to
the pre-study. Beforehand, it is necessary for enterprise architects to define and overview
of the domains and their subordinated subdomains of the organization. Here a first draft
might be enough, as during the user story assignment certain drawbacks of the domain
overview might be detected, e.g. missing subdomains or not unambiguously defined sub-
domains. With the input from the user story assignment the domain overview can be
adapted and refined. To get started, enterprise architects conduct a workshop with rep-
resentatives from the agile teams, most likely the business analysts, product owners (at
the time of the pre-study each team has its own product owner) and/or Scrum master to
introduce them to the approach and the overview of the domains and subdomains.
After that it is necessary to get to know how the agile teams themselves work. In this case
study and in the framework, it is central that the teams formulate requirements as user sto-
ries and organize them in Jira Software. Therefore, enterprise architects use an approach
considering this knowledge. This means that the teams don’t need to make changes to
their development process or use additional tools. This might be very important for the
acceptance of the approach. To make use of these characteristics the approach is to uti-
lize the current version of the overview of the (sub-)domains as well as the user stories
the teams implement to determine in which domains or subdomains the teams work. The
tooling for the pre-study as well as later in the framework is Jira which the teams use for
the assignment. Further, they are provided information about the overview of domains
and subdomains in the Wiki.
After having decided which teams take part in the pre-study, each team should choose
one or two representatives who take on the responsibility for assigning the user stories
correctly and continuously. The teams are asked to select the team member who is likely
to write the most user stories. In most teams, a Business Analyst in the team takes on the

100

4.1 Pre-Study

responsibility for the user story assignment. To get started frequent meetings with an en-
terprise architect and the representative(s) of each team are helpful to assign the first user
stories collaboratively to get to know the domains and the approach. In the beginning,
these meetings are held every week and are time-boxed to 30 minutes. The meetings are
done separately for each of the teams. During that time the participants assign current
user stories to subdomains collaboratively. This allows the representatives to get to know
the (sub-) domains and their definitions and gives the enterprise architect an impression
how easy or difficult the procedure of deciding for the suitable subdomain is. Further,
the meeting is used to answer questions that came up when the teams tried to assign user
stories. After around four weeks the representatives are able to assign most user stories
themselves. Then enterprise architects are mostly responsible to check the user story as-
signment in terms of quality and completeness. This means they check if the user stories
are assigned correctly and question the assignment in the cases in which their assignment
might differ. If the teams stop or forget assigning the stories, it is the enterprise architect’s
responsibility to encourage the teams to proceed with the assignment.
The approach of choosing one representative of the teams to be responsible for the user
story assignment proved to be very helpful so that there is one person to be addressed
by enterprise architects. However, all team members are able to assign user stories after
being taught by the representatives. Some teams also chose to assign the user stories col-
laboratively from the beginning on in a meeting with the entire team, such as the user
story refinement. Therefore, it is beneficial that in the framework it is not formulated ex-
actly when in the process the user stories have to be assigned. The teams can choose when
this step fits best in their development process. The only constraint is to have the assign-
ment done latest as soon as a story becomes part of the current sprint. This gives the team
flexibility. Therefore, the enterprise architects determine only that the assignment must be
made, but not when. In the best case, the teams assign a user story when they create it.
Another important condition is not to slow the teams down because of the additional ef-
fort for the pre-study. Therefore, it makes sense if the teams only assign the user stories
which are part of the current sprint or in the product backlog. In the case study enterprise
architects are also responsible for assigning the already implemented user stories. This is
helpful to have more reliable and valid results for each of the teams by getting an overview
of the domains of all user stories which were, are and will be implemented. This step is
not necessary if the teams start with the user story assignment from the beginning of the
development process. Therefore, in the framework it is determined that the teams assign
their user stories supported by enterprise architects. While in the beginning of the project
more guidance is necessary, it will become less over time. The simplicity of the approach
and that the teams are able to do the assignment on their own very quickly is an important
result of the pre-stuy.
The entire evaluation of the pre-study was done in Microsoft Excel, while in the frame-
work the evaluation happens with Iteraplan. The evaluation in Microsoft Excel is useful
for quickly gathering and evaluating further information on the assignment of the user
stories, such as by whom the assignment was made. This is only evaluated in the pre-

101

4 Evaluation

study. Therefore, it was not included in the framework and not in the evaluations that can
be made in Iteraplan. The assignment of user stories to domains happens in Jira Software
as described in the previous section. To evaluate the assignment it is possible to export all
user stories for all three projects including the field ”Affected Domain” in a separate file
each. After making some adaptions concerning formatting to the exported files (.xls), an
Microsoft Excel tool is used to conduct the evaluation. The tool generates an overview of
the number of user stories assigned to each domain and subdomain in a Table as well as
bar and pie charts. It further shows by whom the user story was assigned and if it could
be assigned unambiguously. These results are shown in a Table as well as a bar chart each.
Additionally, the file includes an overview - as a list - about all user stories including their
key (an identification number), summary, description, sprint, status, domain, subdomain,
a field showing if the story was assignable and by whom it was assigned. For some exam-
ples, see Table 4.2.

Table 4.2: Example for a list for one team of User Stories to be evaluated in the Excel Eval-
uation Tool

The field that shows if a user story is assignable provides five different choices:

• unambiguous: selected if it is clear to which subdomain a user story belongs, e.g.
US-103 and US-104 belong to subdomain A.1 and B.2 respectively;

• Design user story: selected if no functionality is affected by the user story, but only
the design, then the story is assigned to no subdomain e.g. US-101 which could
include to move a bottom from the bottom to the top of a page;

• Technical user story: selected if the story is technically necessary to lay the founda-
tion for further functional requirements, e.g. US-102. Technical user stories are op-
posing to design stories, assigned to a domain including only technical subdomains,
here domain D;

• ambiguous/ more than one subdomain affected: selected if a user story affects more
than one subdomain or it is not possible to determine to which one it belongs unam-
biguously, e.g. US-105 most likely belongs to subdomain A.1, but might affect A.2 as
well; and

102

4.1 Pre-Study

• no suitable subdomain: selected if the domain overview does not include a suitable
subdomain yet and it might be necessary to add a new subdomain, e.g. US-106
could belong to domain A, but none of the subdomains might be suitable. Then an
additional subdomain A.3 could be added.

As the exact results of the pre-study are sensitive information for the large insurance
company, only the results concerning the methodology itself as well as some adapted re-
sults are presented. As shown in Figure 4.1 in this case around 55% of the user stories
were assigned by an Enterprise Architect, while 18% assigned in the mentioned meetings
and 27% by the teams. This will change over time, as at the point of the evaluation all pre-
viously implemented user stories were assigned by an Enterprise Architect and all new
ones will be assigned by the teams. This information was documented by the involved
Enterprise Architect in an Microsoft Excel file.

Figure 4.1: Main Results of the pre-study (Tables)

Most of the 425 user stories are assigned unambiguously to one subdomain. This com-
prises around 58%. However, this low percentage results from the high proportion of de-
sign and technical user stories of around 35% which cannot be assigned to a functional do-
main. It was detected that it makes sense to exclude technical user stories for determining
the functional areas for a project. However, it was interesting how much effort the teams
have to invest in purely technical issues. Technical issues can be seen - corresponding to
SAFe - as a contribution to the architectural runway, as they enable the implementation
of business related functions in the future. Further, it is interesting to see how of the total
effort the teams invest in design user stories.
The percentage of user stories that fit to more than one subdomain is around 4%. This can
be fixed by dividing the respective user stories into several user stories each with focus on
the functional requirements of one subdomain.
Around 3% of user stories fit in no subdomain. This is an indicator that the domain model
is not entirely complete. As soon as for a potential new subdomain several user stories
are found, it makes sense to establish this new subdomain in the overview of domains
and subdomains. However, this is only necessary if this domain can be completely delim-
ited without having intersections with other subdomains and if it is likely that more user
stories for this subdomain will occur in the future. Based on the results of the pre-study,

103

4 Evaluation

one additional subdomain was added. One domain was restructured by renaming the
included subdomains and defining their scope differently. The cross-team comparison in
Figure4.2 shows the assignment results for each of the teams. The distribution of the three

Figure 4.2: Main Results of the pre-study per team (Bar Chart)

teams in the different bars is very similar. However, team 1 seems to have more design
user stories than the other teams and team 3 has far less purely technical user stories than
the other teams. This mostly depends on the current focus of the projects. Team 1 might
have decided on changing some aspects of the user interface at the time, e.g. to improve
usability. Summing up, all teams were able to assign the majority of functional user stories
unambiguously.
The pre-study results are presented to the teams and discussed with them. Overall the re-
sults correspond to their perception of current challenges and overarching functions. It is
especially important to present the results to the project managers which are - also accord-
ing to the framework - responsible for making strategic decisions about the organizational
structure. The project managers provided the results of a workshop, which was conducted
to identify overarching functions as well as the core functions in the entire project. These
results were compared to the pre-study results and the refined by including the numbers
resulting from the pre study. Based on these combined results the project managers de-
cided to start one new team with focus on one subdomain - as a test for the framework.
The pre-study results help not only to make first decisions based on the approach, but also
to get insights in the approach itself. It leads to several findings:

• User stories that relate purely to design issues exist and cannot be assigned to a
functional domain. This is detected right in the beginning of the pre-study, so it is
possible to include it in the evaluation.

• User stories that solve purely to technical issues and cannot be assigned to a func-
tional domain. This is detected right in the beginning of the pre-study, so it is possible
to include it in the evaluation.

104

4.2 Results of the Interviews

• Most of the functional user stories can be assigned unambiguously.

• The approach was easy to understand for the teams and after a few meetings with
the teams, they were able to do the assignment on their own.

• Quality assurance by enterprise architects is helpful to detect issues where more dis-
cussion can be helpful.

• Comparing the results to the problems the teams reported and overarching func-
tions, they already had identified, the results of the pre-study seem to be reliable.

• Opinions about having precise numbers for making decisions were very positive.

• The results are really used to make strategic decisions about the organizational struc-
ture.

• Acceptance of the approach can be supported by explaining the teams the approach
thoroughly and presenting the results to them. This also allows to discuss the results
with them and compare it to their perception of critical issues.

4.2 Results of the Interviews

In a time-frame of one week, interviews with nine persons in different roles, that are all
associated with the agile teams at the large insurance company, are conducted. In the fol-
lowing sections the main results of the interviews are presented. The interviews consist of
four main topics. Starting with general questions, questions about strategic DDD, tactical
DDD and the development process (in the framework) follow.

4.2.1 General Questions

The first question concerns in which role the interviewee works at the large insurance com-
pany. Nine persons with different roles are interviewed. Among the interviewed persons
are members of the three agile teams with the roles agile master (AM), business analyst
(BA1 and BA2) and product owner (PO). Further, the two projects managers (PM1 and
PM2) of the respective project are interviewed. Next to them, a department head in oper-
ational organization (DH) sales takes part in the interviews. Further, a domain architect
in the sales domain (DA) and a lead enterprise architect (EA) are interviewed. Table 4.3
gives an overview of the roles of all interview partners as well as their respective alias
which will be used in the following to reference their answers. The table also shows if
the interview partners took part in the user story assignment (strategic DDD) and in event
storming workshops (tactical DDD).

Secondly, the interviewees are asked how long they have been part of an agile team or
how long they work in cooperation with agile teams. AM, BA1, BA2 and PO work in their

105

4 Evaluation

Nr. Role Alias User Story Assignment Event Storming
1 Project Manager PM1
2 Agile Master AM X X
3 Business Analyst BA1 X
4 Business Analyst BA2 X X
5 Product Owner PO X X
6 Department Head of Sales

Processes and Applications
(Operational Organization)

DH

7 Lead Enterprise Architect EA
8 Project Manager PM2
9 Domain Architect (Sales Do-

main)
DA X

Table 4.3: Interview partners and their participation in user story assignment and Event
Storming workshops

respective agile teams since one and a half year. Of them only PO has worked in an agile
team before. Both project managers (PM1 and PM2) work with agile teams since one and a
half year. EA has contact with agile teams since 2012, however he is currently not working
with the agile teams on the project which is part of the case study. DH has experience with
agile teams of around ten years and works with the agile teams which are part of the case
study since their start one and a half year ago. DA has around six years of experience with
agile teams including the ones considered in the case study.
The third question addresses the major challenges the interviewees experienced in agile
development with more than one team. Many mention that coordination and communi-
cation between the teams is one of the biggest challenges (BA1, BA2, EA, PO and PM2).
While some say there is too less exchange between the teams, some also mention that
it is a problem that it is not actually defined how and when the teams should exchange
knowledge. Further, it is not clearly defined how the teams work together if they require
something from another team (PM2). Additionally, the reuse of overarching functional-
ity can be a challenge. While the teams oppose having to reuse code from other teams as
they have varying requirements, all agree that there must be a way to access functionality
implemented by other teams e.g. via APIs (BA1 and BA2). AM and PM2 also stress the
problem, that each team has its own goals which it has to reach without having an over-
arching goal all teams need to achieve. Therefore, there often is no time for knowledge
exchange or focus on overarching functionality and each team tries to find an own solu-
tion. DA adds that this problematic should be addressed by adapting the management of
agile teams including goal setting as well as budget planning. The challenges include fur-
ther that each team is working very independently from each other and currently there has

106

4.2 Results of the Interviews

been not defined how to scale with even more agile teams (DA). In this context, the ques-
tion arises in which architectural and technical questions the teams decide themselves and
when overarching decisions need to be taken as the applications they develop later have to
fit in the overall application landscape (PM2, DH). EA further raises the question, if decen-
tralized agile teams really are suitable for developing very large and complex applications.
DH stresses the importance of architectural considerations before starting a development
process. In DH’s opinion, the (sub-)domains the teams work in must be clear beforehand
to determine when they need something from other teams.

4.2.2 Strategic DDD

The first question concerning strategic DDD (question 4) is if the interviewee participated
in the user story assignment to the subdomains. Of the nine interview partners, four took
part in the assignment: AM, BA1, BA2 and PO (see also Table 4.3). Question 5 is only
asked to them. This question concerns the time at which they assign the user stories to a
subdomain. In the best case, this would be done right after creating a user story. BA1, BA2
and PO assign the user stories right after creating them if it is not forgotten. AM assigns
the stories later in the process as soon as a user stories becomes part of a sprint and really
gets implemented, because often user stories become unnecessary and are closed.
Additionally, the interview partners are asked in question six if they already have profited
from the evaluations of the user story assignment and if yes how. The agile team members
(AM, BA1, BA2 and PO) answer - as expected -that the teams couldn’t make use of this arti-
fact so far. BA2 says that the evaluation might be useful for the Product Owners. PO added
that the evaluation proved correct the assumptions about the overarching (sub-)domains
they work in. DH, PM1 and PM2 confirm this and add that the evaluation delivered data
about the core focus of each team and the overarching functions that might require some
more discussion and ultimately also action. They see it as a valid basis for their decisions
about team structure and responsibilities. According to DA, the results were used to cre-
ate a decision memo for the strategic enterprise architecture management board and for
project managers. EA adds that the evaluation if presented on a dashboard gives decision
makers a nice overview of those subdomains that require action. DH further states that
this considerations should have been made before starting the development process.
Starting with question seven the most following questions include a statement which the
interviewees are asked to rate on a Likert scale from 1 - I strongly disagree to 5 - I strongly
agree (2 - I disagree, 3 - I neither agree nor disagree, 4 - I agree). The results are shown in
bar charts with two different colors: blue for members of agile teams (AM, BA1, BA2 and
PO) and grey for decision makers, project managers (PMs) and architects (PM1, PM2, DH,
EA, DA).
Statement seven is if it makes sense to assign the user stories to subdomains further and to
evaluate them continuously. This statement receives a rather high agreement with an av-
erage of 4,1. However, the members of agile teams rate the statement lower than the other
interviewees. This can be seen in Figure4.3. A reason for that is that the teams haven’t

107

4 Evaluation

really profited from the results so far. However, AM says that making the benefits of the
assignment more clear to the teams could help them to use the results. PO considers it
beneficial to identify overarching subdomains continuously to identify need for action.
DA says that he has seen some cases in which the results were used, however it is neces-
sary to find some additional use case and possibilities to scale the approach in the future.
The further reasoning is similar to question six. In general, reactions to this statement are
rather positive.

Figure 4.3: Question 7: It is beneficial to further assign user stories and to evaluate the
assignment continuously (from 1 - I strongly disagree to 5 - I strongly agree).

Question eight includes a statement concerning the presentation of the results of the user
story assignment to all stakeholders in form of charts on a Wiki page. Here agreement is
even higher with an average of 4,4. There aren’t really differences in the ratings by agile
team members and the other interview partners (see Figure4.4).

Figure 4.4: Question 8: It is beneficial to provide the continuous results of the user story
assignment to all involved persons on a Wiki page (from 1 - I strongly disagree
to 5 - I strongly agree).

108

4.2 Results of the Interviews

All consider the Wiki as the currently most suitable tool to provide the results as this in-
creases transparency (EA), might be easy to find (PM2) and teams use the wiki (PM1). DA
considers it as overall helpful, but is not sure if the teams really will use it. DA sees having
the results in Jira more as a useful tool for architects to detect ares they should focus on
in an easy ways. Then architects can address the detected issues easily with the teams by
referring to these easily accessible results. After that architects and agile teams can address
the issues collaboratively.

4.2.3 Tactical DDD

Question nine which is the first question concerning tactical DDD addresses its most cen-
tral artifact: the domain model. The statement is that it is beneficial that each team creates
and evolves its own domain model. The agreement in this question is on average 4,8 (see
also 4.5. The model helps the teams to reach a common understanding of the business logic
in its domain and serves as a shared language for all team members - developers as well as
business experts (DA, PO, EA). AM sees the domain model as very helpful to detect which
functionality could be added next and as tool to discuss how the logic changes. DA adds
that in the future this domain model also has to be found in the code. Developers should
base their code on the domain model which is a representation of the business logic. All
respondents agree strongly with the statement in question nine except PM1 who notes that
it might make more sense in the future if the teams are structured based on subdomains.
Then each team would work on one subdomain and establish a domain model of this sub-
domain as defined by DDD. However, PM1 adds that it takes still a long time to structure
teams in that way and that it is questionable if it is realistic to do so.

Figure 4.5: Question 9: It is beneficial if each teams creates and evolves its own domain
model (from 1 - I strongly disagree to 5 - I strongly agree).

Question ten is if the respondents took part in an event storming workshop. Four of

109

4 Evaluation

nine interview partners participated in one or more workshops: AM, BA2, PO and DA (see
Table 4.3). Question 11 is only asked to the participants and is in which role the persons
participated. AM, BA2 and PO took part as representatives of their respective agile team
in their assigned role. DA was a moderator in two of the event storming workshops so far.
Question twelve is only posed to the participants of the workshops. This question concerns
the use of the domain model in the teams. However, the interviews were conducted after
event storming workshops with only parts of the teams and it was decided to present the
results later to the other team members. Therefore, AM, BA2 and PO answer that they
didn’t use it so far, but they are very positive to use it in the future for naming conventions
or language, determining the scope of services (BA2) and to refine user stories and the
according events as well as for scoping and planning in the beginning of the development
process and as a basis for discussion about unclear topics (PO).
Question 13 is if event storming as a method is beneficial to establish a first draft of the
domain model and to refine it. The statement received a very high agreement with an
average of 4,8 (see also Figure4.6). In general the team members who participated in the
workshops are really convinced that the method is very helpful, but also all others see it
as a helpful and method. Advantages of the method include that it is very simple and
understandable (PO, AM), that it creates a good atmosphere for open discussions (BA2,
EA), that its focus is on business events and logic (BA2) and helps to find aggregates and
(sub-)domains boundaries (PM1). DA adds that it is a good thing to focus on the business
logic before addressing technical issues.

Figure 4.6: Question 13: It is beneficial to use the event storming method to create a (first
draft of a) domain model (from 1 - I strongly disagree to 5 - I strongly agree).

Question 14, which is the last concerning tactical DDD, is if it is beneficial to compare the
domain models if two teams have dependencies on each other. This statement receives an
average agreement of 4,6 (see also Figure4.7. Reasoning includes that it helps to determine
the boundaries of each team’s work, which would be in the best case also the boundary of
the subdomains (BA2). Therefore, each team needs its own domain model before a com-

110

4.2 Results of the Interviews

parison can be made. Then it might help to reach a common understanding of the business
logic where interfaces between the applications are required. Possibly this could also help
to define a published language (DH). Further, if this is done timely problems, which oth-
erwise might occur later caused by dependencies, can be detected early (EA and PM2).
However, this approach can increase the need for cross-team coordination and communi-
cation (EA). If this is wished the interdependency could increase (BA1). Further, this might
not be desired by the teams as they are supposed to reach their own goals and therefore
interest in common goals and overall architecture might not be given (AM). DA sees it
as the architects’ responsibility to compare domain models and to detect challenges that
might occur. An architect then could contact the affected teams and bring them together
to discuss and decide about the detected issues.

Figure 4.7: Question 14: It is beneficial if teams with dependencies compare their domain
models in a workshops (from 1 - I strongly disagree to 5 - I strongly agree).

4.2.4 Development Process

The next questions address the potential development process with three example teams
as depicted in the defined framework. Interviewees were asked about some of the compo-
nents included in the framework.
Question 15 is how the interviewees estimate the effort for the teams to include the strate-
gic and tactical DDD component into their development process. The interview partners
are requested to make an estimation on a scale from 1- very low to 5-very high. Here the
average estimation is 3,1 meaning a medium high effort for the teams. Surprisingly, all
interviewees choose a number between two and four and agile teams don’t estimate the
effort higher than the other participants. This is also shown in Figure4.8. Reasoning in-
cludes that effort is not that high and that the teams especially can profit from the tactical
component directly and in the long run also from the strategic component (PM1, PM and
EA). Some stress it is worth the effort or that it has to be done anyway (DH). However, PO
mentions that now the effort is small, but that it might increase in the future when a lot

111

4 Evaluation

of action has to be taken. DA adds that also a mind change might be necessary, from ad-
dressing challenges from a more technical to addressing them with focus on the business
logic.

Figure 4.8: Question 15: How do estimate the effort for the teams to integrate the strategic
and tactical DDD component in the development process (from 1 - very low to
5 - very high)?

Question 16 asks from the interviewees to judge if it makes sense to synchronize the
sprints of teams with dependencies (same sprint length, start and end). Here the opinions
vary in dependently from the role of the interviewees (see also Figure4.9).

Figure 4.9: Question 16: It is beneficial to synchronize the sprints of teams with depen-
dencies (same sprint length, start and end) (from 1 - I strongly disagree to 5 - I
strongly agree).

The ones that agree to the statement argue that this helps to manage dependencies and
might be easy to operationalize (PM1). Further, two of the considered teams were one
team before being divided. In this case, there are still some dependencies and then it e.g.

112

4.2 Results of the Interviews

makes sense to synchronize the sprints (BA1). AM also thinks it makes sense and adds
that in this context it might help to have very short sprints, maybe around one week, to
react quickly. EA says if homogeneity and complexity of the topics the teams work on are
similar it might work. BA2 argues that actually no dependencies should exist and every
team is responsible for its own API and that in this case every team should decide about
its sprint length. If continuous delivery and integration is practiced, it also is not necessary
(DA, PM2). An important addition by DA is that synchronizing sprints are only useful if
the teams all work on one common product. Currently, the organization is that each teams
works on an own product and has its own goals, however they all belong to one project
with the goal to have one common sales platform including all products.
Question 17 is divided into questions 17a and 17b. Question 17a is if the interviewees
think it makes sense if teams with dependencies share a single product backlog. Here the
average agreement is around 3,2. However, the opinions vary which can be also seen in
Figure4.10. The ones that agree argue that it might help to keep whole product/ project
focus (EA) and to increase transparency (PM1). PM2 argues there should not be depen-
dencies and then it makes no sense to share a backlog. DH also says a single backlog does
not make sense as long as each team knows its scope and can manage the dependencies
that exist. Further, BA1 explains that each teams has a high number of different user sto-
ries and with one backlog it would be very confusing. DA adds that the decision for one
or multiple backlogs depends on how the teams are structured and if they work on one
common product or different ones.

Figure 4.10: Question 17a: It is beneficial if teams with dependencies share a single backlog
(from 1 - I strongly disagree to 5 - I strongly agree).

Question 17b is teams with dependencies in one project should have a common prod-
uct owner. Here the opinions also differ and the average agreement was around 2,7 (see
also Figure4.11. When asking this question, it comes apparent that different persons have
different opinion on what a product owner has to do in this case. If the product owner
focuses on prioritizing and focusing on an overarching goal, some say it makes sense to

113

4 Evaluation

have only one product owner. With many teams in one project it also helps if someone
with an overview of all teams prioritizes the user stories (AM, EA). PO argues that the
agile teams need to be experienced to make it work with one overarching product owner
as they have to refine and organize their work themselves in this case. If teams are not as
experienced they might need a product owner each, plus an additional product owner for
the overall prioritization of user stories (PO). Further, some argue that handling an over-
arching backlog is too much work for a single product owner (DH, PM2). DA says that for
him the decisions for a single backlog and a single product owner are connected, meaning
that for one backlog there should be always one responsible product owner.

Figure 4.11: Question 17b: It is beneficial if teams with dependencies are managed by a
single product owner (from 1 - I strongly disagree to 5 - I strongly agree).

Question 18 includes a very broad statement: It is beneficial if teams use the defined ar-
tifacts, such as domain model and user story assignment results, in the overarching events
(sprint planning, refinement, review, retrospective). The statement receives an overall
agreement of 4,4. However, AM and BA1 don’t answer the question, as they don’t try
applying the artifacts so far (see also Figure4.12). PM1 says the artifacts, can be useful for
scoping the next MVP and help to determine which functional area the implementation of
an user story affects. EA explains that it is necessary, but only if especially the strategic
DDD component is given and applied. PM2 agrees and argues that it is not a high ef-
fort, but that it really has to applied to generate business value. DH adds that the domain
model is supposed to serve as the basis for a shared language in the teams and therefore
the domain model is utilized in that way in every meeting. Others explain that it depends
on what you want to reach in a meeting if it makes sense to use a certain artifact (BA1,
DA). DA thinks that the domain model can be very helpful in the refinement as a shared
language and very good for MVP scoping as well as for developers for the implementation
of certain user stories.

114

4.2 Results of the Interviews

Figure 4.12: Question 18: It is beneficial if teams use the defined artifacts, such as domain
model and user story assignment results, in the overarching events (from 1 - I
strongly disagree to 5 - I strongly agree).

4.2.5 Final Questions

Question 19 includes the statement: It is beneficial if architects support the agile teams as
described by the framework. This statement receives full agreement (average 5,0) by all
interview partners (see also Figure4.13).

Figure 4.13: Question 19: It is beneficial if architects support the agile teams as described
by the framework (from 1 - I strongly disagree to 5 - I strongly agree).

Some say that architects should coach the teams concerning new methodologies that can
be helpful for them as well for overarching considerations, such as DDD (PM1, AM BA2).
Architects are supposed to have an overview of all involved teams and applications and
therefore should provide input for overarching issues, such as team structure depending
on domains (DH, PO, BA1, BA2). EA sees also the necessity to establish some overarch-
ing architectural standards in the agile teams. Further, architects are seen as moderators

115

4 Evaluation

for inter-team issues and in event storming workshops (PO). To get started with DDD the
teams need someone - an architect - to establish the approach initially and keep the re-
sponsibility for all issues connect to it (PM1). DH sees the architects explicitly not in a
supporting role, but says that it is their task to make especially the strategic considera-
tions about team structure and in which domains the teams work before the development
process gets started. In his opinion, the architect has a very central role connected to the
agile teams. DA agrees that architects need to cooperate with project managers to make
strategic and architectural decision concerning multiple teams.
Finally, the interviewees were asked if the have something to add concerning the frame-
work and its approach in the agile teams or if they have any other additions concerning the
interviews. PM1 stresses that the operationalization of the framework has to be continued
and scaling the framework to more than the current three teams is needed. BA1 adds that
coordination and communication between the teams is always difficult and takes a lot of
time. However, in his opinion overarching components the teams could access would be
beneficial. DH commented on the framework saying that the division in the three compo-
nents makes sense. However, he adds that the results of the strategic DDD pre-study were
not surprising, but helped the decision makers. Further, the learnings need to be discussed
and the process changed accordingly (if necessary).

116

5 Discussion

In this chapter, the findings connected to the challenges - defined in Table 3.1 - as well
as further key findings are explained. This thesis connects agile scaling frameworks and
DDD to address challenges which arise in large organizations with several agile teams.
Additionally, some limitations are discussed.

Addressing the defined challenges In this thesis, strategic DDD is used to address the
challenges concerning organizational structure and team responsibilities (C5 and C6). The
goal is to structure teams according to the subdomains they work in. This means restruc-
turing already established teams based on the user story assignment - if necessary. Ad-
ditionally, new teams should be structured around the subdomains they mostly work in.
However, this would require some additional upfront effort. Structuring teams based on
subdomains helps to define clear boundaries around a team’s responsibility and, accord-
ing to DDD, helps to reduce dependencies between teams (C1). Further, strategic DDD
would help the current teams to focus on their core domains and new teams with focus on
subdomains including mostly overarching function could be established (C2). This would
overcome the current challenge that each of the teams develops its own overarching func-
tions e.g for managing documents or roles and legitimations.
Tactical DDD addresses challenge C11 by using domain modeling to reach a shared un-
derstanding of the business logic within each of the teams. Further, domain models help
to define an ubiquitous language for each of the teams.
Agile scaling, similar to LeSS, as in the framework for (enterprise) architecture in agile
teams provides a process for scaling the Scrum method to more than one team (C7) for
cross-team coordination (C3) and inter-team communication (C4). All overall meetings as
well as sharing a product backlog and a product owner serve this purpose. This also ad-
dresses the challenge of maintaining the whole product focus in all teams (C8). However,
in the case study the interview participants had different opinions with some saying the
three teams work on one product and others saying on three completely different ones.
This leads to a lack of common goals.
By introducing DDD and defining the role of enterprise architects in the framework the
lack of architectural guidance (C8) and the lacking definition of the enterprise architect
role (C9) are addressed. In the framework, architects found their position in agile devel-
opment projects as guides concerning new methodologies, as moderators and facilitators.
Cultural change towards a more lean and agile mindset in the company (C12) can only
happen over time, but using agile methodologies, coaching and implementing DDD can

117

5 Discussion

be a step towards such a mind change.

Key Findings After working independently from all architectural governance, the ag-
ile teams and project managers realized that without any form of architectural guidance
large agile projects can hardly be successful. Therefore, one of the key findings is that agile
teams, as soon as there are several of them on a project, need to be supported by enterprise
architects having an overview of the teams and the applications they develop. Many chal-
lenges arise which cannot be addressed by single teams, but need to be addressed with
overarching methods driven by overarching roles within the organization.
Especially, combining agile scaling and DDD can address various challenges. While scal-
ing frameworks support cross-team coordination and communication, they lack detailed
advise on how to do architecting in large scale agile projects. Therefore, the combination
of agile scaling and DDD can be beneficial.
DDD provides basic concepts for architecture that can be beneficial not only to the agile
teams, but the project overall. Architectural activities in agile projects earlier were not
accepted by agile teams who wanted to work independently. However, if architects are
capable of providing apparent value to the agile teams, they appreciate architectural sup-
port. The same applies for project managers and other decision makers.
To be able to demonstrate value quickly to both decision makers and agile teams, we rec-
ommend starting with both strategic and tactical DDD at the same time. Decision makers
will profit soon from the strategic DDD, while agile teams profit mostly from the tactical
component in the first place.
Further, the framework shows how to combine agile scaling and DDD in a lightweight
method. Before, it was only recommended to combine the approaches without describing
how to do so.
Key findings about the role of the enterprise architect include that it can be helpful if this
role is part of a large project to have an overview of all teams and their subdomains to
detect where action is required. Further, stakeholders involved in the project appreciate
that architects not only coach the teams concerning new methods, such as DDD, but also
support them to actually apply them and get value out of them quickly. This also in-
cludes being an objective moderator in event storming workshops, such as depicted in the
framework. It can be beneficial for architects to work with the teams at their location con-
tinuously to support the DDD process over time.
For scaling, the agile teams and project managers must be on the same page if they work
all on a single product or on different ones. This seems to be a challenge in the case study.
Here the teams say they work on their application each with completely different require-
ments than the other ones, while project managers consider the applications developed by
the three teams as a single product. However, before starting to scale one should discuss
this question in detail. Based on this the goals and budget for the teams need to be set.
The assumption is that if teams work on a single product, there must be some overarching
goals all teams contribute to and based on which the teams’ success is measured. Then

118

it might help the teams to also focus on overarching goals, e.g. concerning overarching
functions, for which they now in the current situation don’t have time without failing to
reach their own team goals.

Limitations There are several limiting factors for the internal validity and generalizabil-
ity of the case study results. First, the case study is conducted only in a limited timeframe,
so the benefits and drawbacks of the framework could not be evaluated in the long run.
There is a decision about establishing a new team with focus on one overarching subdo-
main. However, this team was not established yet, so it is not possible to evaluate the
consequences of this decision.
After having evaluated the framework, a recommendation would be to start the DDD pro-
cesses based on the framework already some time before the teams start developing with
event storming workshops. After the evaluation all stakeholders see it as a very good
method, but not all use cases for doing event storming could be tested. This was not pos-
sible in the case study as the teams already had implemented significant functions of their
applications. Based on the evaluation, we would recommend conducting a case study
which establishes DDD from the beginning on.
Further, the development process is not established as depicted in the framework so far
and is only a possible target process. However, the focus in this thesis is on the strategic
and tactical DDD process which is tested with the teams. However, the development pro-
cess as defined in the framework could be tested in the future.
Only three teams participate in the case study, while the other agile teams on the project do
not participate so far. To test the entire framework, we would recommend that all teams
on the project take part in the DDD process for improved and more complete results.
The case study and its evaluation in this thesis are only done in one company - the large
insurance company. Repeating the approach in other organizations might yield different
results and recommendations for adaptions. Other companies have different prerequisites,
such as experience with agile methods and scaling, a different culture or organizational
structure. Further, experience of architects and their acceptance in agile teams may differ.
The framework for (enterprise) architecture in agile teams is not like a ”cookbook” giving
a step-by-step advise about scaling and establishing DDD. The framework is described
and evaluated as it was conducted in the large insurance company and requires adaptions
to fit another company and its goals.
The DDD approach, according to the book by Evans, also means to change how develop-
ers interact in their daily work [30]. DDD especially describes how projects proceed within
their bounded contexts. DDD gives a more detailed approach to developing complex soft-
ware on the development level. The defined framework for (enterprise) architecture in
agile teams only deals with the first steps to take for establishing DDD. The process might
need to be adapted over time and further DDD concepts, such as context mapping on the
strategic level and further building blocks on the tactical level, can be incorporated in the
framework for (enterprise) architecture in agile teams.

119

5 Discussion

One major drawback of the framework is the term of the domain model. The definition of
the domain model in DDD is completely different from the one enterprise architects know.
Therefore, teaching suitable terms from the beginning on is absolutely necessary to create
a shared understanding of this term. Another option would be to adapt the terms fitting
to the language in the teams.

120

6 Conclusion

Finally, in this chapter the three research questions are answered in the summary before
an outlook on further research is given and practical applications of the framework for
(enterprise) architecture in agile teams are explained.

6.1 Summary

In the following, the findings answering the three research questions are summarized.

RQ1. What is the role of architecture in scaled agile organizations? The three agile
scaling frameworks have very different views on the role of architecture in large scale ag-
ile development. Nexus does not really address the topic of architecture. Therefore, one
can assume that - as in Scrum - architecture evolves through programming and the teams
make all architectural decisions themselves. However, the integration team is responsi-
ble for teaching architectural standards of the company to the teams. In LeSS, a lot more
advice on how the teams evolve architecture in the best way is given. It is said that experi-
enced programmers in the team take on the role of an IT architect. Further, agile modeling
and architecture documentation workshops are suggested. In LeSS, only architects on the
team level are considered necessary and the role of the enterprise architect is not defined.
However, the importance of architectural decisions is acknowledged and it is suggested to
use DDD connected to agile (domain) modeling. SAFe is the only framework addressing,
next to emerging design, additionally intentional architecture which comprises architec-
tural decisions that affect more than one team and that are out of scope for team decision
making. Here the role of the enterprise architect is defined. The enterprise architect aligns
the teams on all levels to follow a common technical vision and gives a strategic direction
to all teams. SAFe also suggests to use DDD for domain modeling.
Summing up, the main takeaway is that DDD is a suggested method to develop archi-
tecture without contradicting agile values. It does not require extensive upfront design,
but especially in strategic design a business or enterprise architect is needed to keep an
overview of bounded contexts and their dependencies. This supports structuring the
teams. With clear bounded contexts and reduced dependencies, agile teams can make
technical and architectural decisions within their contexts themselves.

121

6 Conclusion

RQ2. How can Domain-Driven Design be adopted in a large organization with several
agile development teams? The adoption of DDD takes time and should be integrated
step-by-step into the development process of agile teams. There should be a special-
ist concerning the methodology to provide guidance to the teams and to support them
throughout the process. In this case study, enterprise architects take on this role. Before
getting started the business value of DDD should be explained to foster initial acceptance.
Throughout the entire adoption process the value of DDD should be demonstrated to the
agile teams and decision makers.
To integrate DDD in the development process one can differentiate between strategic and
tactical DDD as already suggested by Evans (2003) [30]. The results of the strategic DDD
process are in the first place only used by project managers to make decisions about team
structure and responsibilities. The teams themselves might profit later from being able to
focus on their core subdomains as well as from reduced dependencies. However, strategic
DDD can only work with the input from the agile teams.
Tactical DDD is a bottom-up approach that can be started in the agile teams. However,
the teams should focus on their sprint goals and someone from outside the team needs to
provide methodological guidance - in this case the enterprise architects. Domain modeling
can be a helpful tool to reach a shared understanding of the business logic and an ubiqui-
tous language within a team. The agile teams in the case study regard the domain models,
including event storming as the method to get started with domain models, as beneficial.
In the case study, the adoption of tactical DDD was started a considerable amount of time
after the teams started their development process. In the future, it would be beneficial to
conduct event storming workshops before the development starts for planning, scoping
and as a comprehensive representation of the business logic. After having understood the
business logic, the teams can make technical considerations.
These are the first steps for the adoption of DDD in several agile teams. Throughout the
process the teams should be structured according to subdomains. Then it also would make
sense to include context mapping into the strategic DDD process to model dependencies
between the different subdomains the teams work in. On the tactical level, the teams
could further evolve their domain models including additional building blocks as defined
by DDD.

RQ3. Which roles, processes, artifacts and tools are required for scaled Domain-Driven
Design? The central roles, processes, artifacts and tools are depicted in the defined frame-
work for (enterprise) architecture in agile teams. In the framework, no additional roles are
added. The different Scrum roles already existed in the large insurance company, as well
as the project managers and enterprise architects. This might also be the case in other
companies. However, in the process of adopting DDD the roles have some further respon-
sibilities. The teams provide input for the strategic DDD process to reach those results of
the user story assignment based on which project managers and product owners decide
about team structure and responsibilities. Further, the teams are advised to evolve domain

122

6.2 Outlook

models and use them throughout their development process. Especially, the importance of
architects in the process increases. Enterprise architects provide methodological guidance
to the teams, evaluate the user story assignment, support project managers and product
owners in their strategic decision making. Furthermore, they should keep an overview of
overarching functions and serve as moderators in event storming workshops. They further
might take part in some overall meetings in the development process, if the teams wish to
adapt their domain model or want to discuss the results of the user story assignment.
The development process in this framework is largely based on LeSS plus the strategic
and tactical DDD the teams contribute to. Major artifacts are - as in Scrum - the product
backlog and user stories. However, now the overview of subdomains and the results of
the user story assignment become more central also to agile teams. Essential additional
artifacts - especially to the teams - are the domain models as well as key use cases and
architectural documentation according to arc42.
The teams are advised to keep the tools that they already used and architects integrate
them into the DDD processes. Jira and Confluence are very central to the teams also in
the framework. Further, architects use their enterprise architecture management tool to
document and evaluate the user story assignment.
The framework for (enterprise) architecture in agile teams provides the essential roles,
processes, artifacts and tools to establish DDD and therefore a lightweight approach to ar-
chitecture in scaled agile organizations with several agile teams. However, this might not
be complete and so far was only tested in one company in a limited timeframe. Therefore,
an outlook on future research is given.

6.2 Outlook

In the future, within the large insurance company the framework and especially its DDD
process will be further operationalized. This includes that one enterprise architect will be
at least one to two days at the co-location of the agile teams to support the implementation
of the DDD process and to support the teams in all overarching and architectural ques-
tions. Until now, only three teams on the project were involved with the DDD process.
In the future, all agile teams on the project should conduct the user story assignment and
evolve a domain model. Further, all new teams are taught the methodology and should
get started with DDD right in the beginning. Especially, event storming and domain mod-
eling can be beneficial to them in the scoping and planning of their development process
before they actually have implemented something.
Step-by-step in the large insurance company the agile teams could be structured based on
subdomains to explore the benefits and drawbacks of the method in the long run.
Additionally, the strategic DDD process addresses the allocation of user stories to bounded
contexts which is a crucial step towards DDD. Strategic DDD also suggests context map-
ping to explore the dependencies between bounded contexts. In the future, this could also
be helpful for an overarching view and therefore might be integrated in the framework.

123

6 Conclusion

Connecting the strategic and tactical DDD process to explore aggregates and bounded con-
texts might be helpful as well.
The key use cases and arc42 documentation were only shortly mentioned in the frame-
work, but not really applied and tested so far. These concepts could be further explored
and tested increasing the importance of architecture in agile development projects.
Further, one should decide how to scale the framework and the development process. This
can be done using an approach similar to LeSS as suggested, but should be decided and
tested in the future.
Research concerning how DDD can be established in large and very complex organiza-
tions might deliver some interesting use cases that help organizations to adopt DDD. The
generalizability of the framework could be explored by trying to apply it in other organi-
zations and to adapt it.
Research concerning the role of architecture in other agile scaling frameworks could be
analyzed. Additionally, some research about the implementation in large and established
organizations might deliver interesting results on this topic which was not extensively ex-
plored so far. The role of architects in agile development projects could be analyzed not
necessarily starting from agile scaling frameworks.
For the enterprise architecture management discipline it might be interesting to analyze
how this approach and these responsibilities of enterprise architects can be connected to
agile enterprise architecture management. To sum up, based on this work a lot of research
topics can be explored and applied practically, as many companies face similar challenges.

124

Bibliography

[1] Pekka Abrahamsson, Muhammad Ali Babar, and Philippe Kruchten. Agility and
architecture: Can they coexist? IEEE Software, 27(2), 2010.

[2] Blue Agility. Scaling agile: Less vs. safe. https://blue-agility.com/scaling-
agile-less-vs-safe/, 2016.

[3] Agile Alliance. Agile 101 - manifesto for agile software development.
https://www.agilealliance.org/agile101/12-principles-behind-
the-agile-manifesto/, 2017.

[4] Scrum Alliance. Large scale scrum - more with less. https://www.
scrumalliance.org/why-scrum/agile-atlas/agile-atlas-common-
practices/planning/december-2013/large-scale-scrum-more-with-
less, 2013.

[5] Scrum Alliance. The 2017 state of scrum report, 2017.

[6] Scrum Alliance. Scrum guide. https://www.scrumalliance.org/why-scrum/
scrum-guide, 2017.

[7] Scrum Alliance. Scrum values. https://www.scrumalliance.org/why-
scrum/core-scrum-values-roles, 2017.

[8] Mashal Alqudah and Rozilawati Razali. A review of scaling agile methods in large
software development. International Journal on Advanced Science, Engineering and Infor-
mation Technology, 6(6):828–837, 2016.

[9] Samuil Angelov, Marcel Meesters, and Matthias Galster. Architects in scrum: What
challenges do they face? In Software Architecture: 10th European Conference, ECSA 2016,
Copenhagen, Denmark, November 28–December 2, 2016, Proceedings 10, pages 229–237.
Springer, 2016.

[10] Atlassian. Confluence. https://www.atlassian.com/software/confluence,
2017.

[11] Atlassian. Jira software. https://www.atlassian.com/software/jira, 2017.

125

https://blue-agility.com/scaling-agile-less-vs-safe/
https://blue-agility.com/scaling-agile-less-vs-safe/
https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/
https://www.agilealliance.org/agile101/12-principles-behind-the-agile-manifesto/
https://www.scrumalliance.org/why-scrum/agile-atlas/agile-atlas-common-practices/planning/december-2013/large-scale-scrum-more-with-less
https://www.scrumalliance.org/why-scrum/agile-atlas/agile-atlas-common-practices/planning/december-2013/large-scale-scrum-more-with-less
https://www.scrumalliance.org/why-scrum/agile-atlas/agile-atlas-common-practices/planning/december-2013/large-scale-scrum-more-with-less
https://www.scrumalliance.org/why-scrum/agile-atlas/agile-atlas-common-practices/planning/december-2013/large-scale-scrum-more-with-less
https://www.scrumalliance.org/why-scrum/scrum-guide
https://www.scrumalliance.org/why-scrum/scrum-guide
https://www.scrumalliance.org/why-scrum/core-scrum-values-roles
https://www.scrumalliance.org/why-scrum/core-scrum-values-roles
https://www.atlassian.com/software/confluence
https://www.atlassian.com/software/jira

Bibliography

[12] Muhammad Ali Babar. An exploratory study of architectural practices and challenges
in using agile software development approaches. In Software Architecture, 2009 and Eu-
ropean Conference on Software Architecture. WICSA/ECSA 2009. Joint Working IEEE/IFIP
Conference on, pages 81–90. IEEE, 2009.

[13] Stefan Bente, Uwe Bombosch, and Shailendra Langade. Collaborative enterprise archi-
tecture: enriching EA with lean, agile, and enterprise 2.0 practices. Newnes, 2012.

[14] Charles Bradley. Comparing and contrasting the 3 major agile scaling frameworks
(safe, less, nexus). http://www.scrumcrazy.com/Presentations, 2016.

[15] Alberto Brandolini. Introducing event storming. http://ziobrando.blogspot.
de/2013/11/introducing-event-storming.html, 2013.

[16] Scrum Breakfast. Scaling scrum: Safe, dad, or less? http://www.scrum-
breakfast.com/2013/10/scaling-scrum-safe-dad-or-less.html, 2013.

[17] Scrum Breakfast. Three things to like about safe. http://www.scrum-breakfast.
com/2014/05/three-things-to-like-about-safe.html, 2014.

[18] Nanette Brown, Robert Nord, and Ipek Ozkaya. Enabling agility through architecture.
Technical report, DTIC Document, 2010.

[19] Mike Cohn. User stories applied: For agile software development. Addison-Wesley Pro-
fessional, 2004.

[20] The LeSS Company. Architecture and design. https://less.works/less/
technical-excellence/architecture-design.html, 2017.

[21] The LeSS Company. Introduction to less. https://less.works/less/
framework/introduction.html, 2017.

[22] The LeSS Company. Organizational structure. https://less.works/less/
structure/organizational-structure.html, 2017.

[23] The LeSS Company. Product owner. https://less.works/less/framework/
product-owner.html, 2017.

[24] The LeSS Company. Role of manager. https://less.works/less/
management/role-of-manager.html, 2017.

[25] The LeSS Company. Scrum master. https://less.works/less/structure/
scrummaster.html, 2017.

[26] The LeSS Company. Teams. https://less.works/less/structure/teams.
html, 2017.

126

http://www.scrumcrazy.com/Presentations
http://ziobrando.blogspot.de/2013/11/introducing-event-storming.html
http://ziobrando.blogspot.de/2013/11/introducing-event-storming.html
http://www.scrum-breakfast.com/2013/10/scaling-scrum-safe-dad-or-less.html
http://www.scrum-breakfast.com/2013/10/scaling-scrum-safe-dad-or-less.html
http://www.scrum-breakfast.com/2014/05/three-things-to-like-about-safe.html
http://www.scrum-breakfast.com/2014/05/three-things-to-like-about-safe.html
https://less.works/less/technical-excellence/architecture-design.html
https://less.works/less/technical-excellence/architecture-design.html
https://less.works/less/framework/introduction.html
https://less.works/less/framework/introduction.html
https://less.works/less/structure/organizational-structure.html
https://less.works/less/structure/organizational-structure.html
https://less.works/less/framework/product-owner.html
https://less.works/less/framework/product-owner.html
https://less.works/less/management/role-of-manager.html
https://less.works/less/management/role-of-manager.html
https://less.works/less/structure/scrummaster.html
https://less.works/less/structure/scrummaster.html
https://less.works/less/structure/teams.html
https://less.works/less/structure/teams.html

Bibliography

[27] Kim Dikert, Maria Paasivaara, and Casper Lassenius. Challenges and success factors
for large-scale agile transformations: A systematic literature review. Journal of Systems
and Software, 119:87–108, 2016.

[28] Torgeir Dingsøyr, Sridhar Nerur, VenuGopal Balijepally, and Nils Brede Moe. A
decade of agile methodologies: Towards explaining agile software development.
2012.

[29] Kathleen M Eisenhardt. Building theories from case study research. Academy of man-
agement review, 14(4):532–550, 1989.

[30] Eric Evans. Domain-driven design: tackling complexity in the heart of software. Addison-
Wesley Professional, 2003.

[31] Eric Evans. Domain-Driven Design Reference: Definitions and Pattern Summaries. Dog
Ear Publishing, 2014.

[32] Malte Foegen and Christian Kaczmarek. Organisation in einer Digitalen Zeit: Ein Buch
fÃ¼r die Gestaltung von reaktionsfÃ¤higen und schlanken Organisationen mit Hilfe von
skalierten Agile Lean Mustern. wibas GmbH, 2016.

[33] Martin Fowler. Design - who needs an architect? IEEE Software, 20(5):11–13, Sept
2003.

[34] Martin Fowler. Bounded context. https://martinfowler.com/bliki/
BoundedContext.html, 2014.

[35] Martin Fowler and Jim Highsmith. The agile manifesto. Software Development, 9(8):28–
35, 2001.

[36] Andreas Freitag, Florian Matthes, Christopher Schulz, and Aneta Nowobilska. A
method for business capability dependency analysis. In International Conference on
IT-enabled Innovation in Enterprise (ICITIE2011), Sofia, 2011.

[37] Matthias Galster, Samuil Angelov, Marcel Meesters, and Philipp Diebold. A multiple
case study on the architect’s role in scrum. In Product-Focused Software Process Improve-
ment: 17th International Conference, PROFES 2016, Trondheim, Norway, November 22-24,
2016, Proceedings 17, pages 432–447. Springer, 2016.

[38] Lynda Girvan and Debra Paul. Agile and Business Analysis: Practical guidance for IT
professionals. BCS Learning and Development Limited, 2017.

[39] Kenji Hiranabe. Modeling in the agile age: What to keep next to code to scale agile
teams. https://www.infoq.com/articles/kenji-modeling-agile, 2013.

[40] Scaled Agile Inc. SAFe 4.0 Introduction: Overview of the Scaled Agile Framework for Lean
Software and Systems Engineering (White Paper). scaledagile.com, 2016.

127

https://martinfowler.com/bliki/BoundedContext.html
https://martinfowler.com/bliki/BoundedContext.html
https://www.infoq.com/articles/kenji-modeling-agile

Bibliography

[41] Scaled Agile Inc. Agile architecture. http://www.scaledagileframework.com/
agile-architecture/, 2017.

[42] Scaled Agile Inc. Domain modeling. http://www.scaledagileframework.
com/domain-modeling/, 2017.

[43] Scaled Agile Inc. Download the big picture. http://www.
scaledagileframework.com/posters/, 2017.

[44] Scaled Agile Inc. What’s new in safe 4.5? http://www.scaledagileframework.
com/whats-new-in-safe-45//, 2017.

[45] iteratec GmbH. iteraplan - amazing eam. https://www.iteraplan.de/en/
iteraplan/, 2017.

[46] Ron Jeffries. The Nature of Software Development. Pragmatic Bookshelf, 2017.

[47] Wolfgang Keller. Eam - quo vadis? Objektspektrum - IT Management und Software-
Engineering, (4):46–51, 2017.

[48] Simon Kneafsey. Scaled professional scrum and nexus - nexus+. http:
//www.thescrummaster.co.uk/scrum/scaled-professional-scrum-
and-nexus-nexus-plus/, 2017.

[49] Maarit Laanti. Characteristics and principles of scaled agile. In International Conference
on Agile Software Development, pages 9–20. Springer, 2014.

[50] Einar Landre, Harald Wesenberg, and Harald Rønneberg. Architectural improvement
by use of strategic level domain-driven design. In Companion to the 21st ACM SIG-
PLAN symposium on Object-oriented programming systems, languages, and applications,
pages 809–814. ACM, 2006.

[51] Craig Larman. Scaling lean and agile development: thinking and organizational tools for
large-scale Scrum. Pearson Education India, 2008.

[52] Craig Larman. Large-scale agile design and architecture: Ways of work-
ing. https://www.infoq.com/articles/large-scale-agile-design-
and-architecture, 2011.

[53] Craig Larman and Bas Vodde. Feature team primer. http://www.
featureteamprimer.org/#sthash.kVpNbrjx.ebVfdUfo.dpuf, 2010.

[54] Craig Larman and Bas Vodde. Practices for scaling lean and Agile development: large,
multisite, and offshore product development with large-scale scrum. Pearson Education,
2010.

128

http://www.scaledagileframework.com/agile-architecture/
http://www.scaledagileframework.com/agile-architecture/
http://www.scaledagileframework.com/domain-modeling/
http://www.scaledagileframework.com/domain-modeling/
http://www.scaledagileframework.com/posters/
http://www.scaledagileframework.com/posters/
http://www.scaledagileframework.com/whats-new-in-safe-45//
http://www.scaledagileframework.com/whats-new-in-safe-45//
https://www.iteraplan.de/en/iteraplan/
https://www.iteraplan.de/en/iteraplan/
http://www.thescrummaster.co.uk/scrum/scaled-professional-scrum-and-nexus-nexus-plus/
http://www.thescrummaster.co.uk/scrum/scaled-professional-scrum-and-nexus-nexus-plus/
http://www.thescrummaster.co.uk/scrum/scaled-professional-scrum-and-nexus-nexus-plus/
https://www.infoq.com/articles/large-scale-agile-design-and-architecture
https://www.infoq.com/articles/large-scale-agile-design-and-architecture
http://www.featureteamprimer.org/#sthash.kVpNbrjx.ebVfdUfo.dpuf
http://www.featureteamprimer.org/#sthash.kVpNbrjx.ebVfdUfo.dpuf

Bibliography

[55] Craig Larman and Bas Vodde. Large-Scale Scrum: More with LeSS. Addison-Wesley
Professional, 2016.

[56] Dean Leffingwell. Scaling software agility: best practices for large enterprises. Pearson
Education, 2007.

[57] Dean Leffingwell. Agile software requirements: lean requirements practices for teams, pro-
grams, and the enterprise. Addison-Wesley Professional, 2011.

[58] Dean Leffingwell. Safe 4.0 reference guide: Scaled agile framework for lean software
and systems engineering. 2017.

[59] Dean Leffingwell, Ryan Martens, and Mauricio Zamora. Principles of agile architec-
ture. Leffingwell, LLC. and Rally Software Development Corp, 2008.

[60] Ben Linders. Nexus guide for scrum is published. https://www.infoq.com/
news/2015/09/nexus-guide-scrum-published, 2015.

[61] Steven A. Lowe. An introduction to event storming: The easy way to achieve domain-
driven design. https://techbeacon.com/introduction-event-storming-
easy-way-achieve-domain-driven-design, 2017.

[62] Garm Lucassen, Fabiano Dalpiaz, Jan Martijn E. M. van der Werf, and Sjaak
Brinkkemper. Improving agile requirements: the quality user story framework and
tool. Requirements Engineering, 21(3):383–403, 2016.

[63] Christoph Mathis. SAFe-Das Scaled Agile Framework: Lean und Agile in großen Un-
ternehmen skalieren. dpunkt. verlag, 2016.

[64] Scott Millet. Patterns, Principles and Practices of Domain-Driven Design. John Wiley and
Sons, 2015.

[65] M. Paasivaara and C. Lassenius. Scaling scrum in a large globally distributed orga-
nization: A case study. In 2016 IEEE 11th International Conference on Global Software
Engineering (ICGSE), pages 74–83, Aug 2016.

[66] Inc. Pivotal Software. Pivotal labs. https://pivotal.io/labs, 2017.

[67] Dobrila Rancic Moogk. Minimum viable product and the importance of experimen-
tation in technology startups. http://timreview.ca/article/535, 2012.

[68] Linda Rising and Norman S Janoff. The scrum software development process for
small teams. IEEE software, 17(4):26–32, 2000.

[69] Jeanne W. et. al. Ross. Designing digital organizations. 2016.

129

https://www.infoq.com/news/2015/09/nexus-guide-scrum-published
https://www.infoq.com/news/2015/09/nexus-guide-scrum-published
https://techbeacon.com/introduction-event-storming-easy-way-achieve-domain-driven-design
https://techbeacon.com/introduction-event-storming-easy-way-achieve-domain-driven-design
https://pivotal.io/labs
http://timreview.ca/article/535

Bibliography

[70] Dominik Rost, Balthasar Weitzel, Matthias Naab, Torsten Lenhart, and Hartmut
Schmitt. Distilling best practices for agile development from architecture method-
ology. In European Conference on Software Architecture, pages 259–267. Springer, 2015.

[71] Agile Scaling. Ask: Agile scaling knowledge - the matrix. http://www.
agilescaling.org/ask-matrix.html, 2014.

[72] Ken Schwaber. Scrum development process. In Business Object Design and Implemen-
tation, pages 117–134. Springer, 1997.

[73] Ken Schwaber. Agile project management with Scrum. Microsoft press, 2004.

[74] Ken Schwaber. The enterprise and Scrum. Microsoft press, 2007.

[75] Ken Schwaber. More on scaling scrum. https://kenschwaber.wordpress.
com/2015/01/30/more-on-scaling-scrum/, 2015.

[76] Scrum.org. Nexus guide - the definitive guide to nexus: The exoskeleton
of scaled scrum development. https://www.scrum.org/resources/nexus-
guide, 2015.

[77] Gernot Dr. Starke. arc42. http://arc42.org/, 2017.

[78] TechBeacon. Enter the nexus: Ken schwaber on scaling scrum and the future of
agile. https://techbeacon.com/enter-nexus-ken-schwaber-scaling-
scrum-future-agile, 2017.

[79] CA Technologies. Ca technologies: Most businesses will be software-driven
in 36 months. https://www.ca.com/us/company/newsroom/press-
releases/2015/ca-technologies-most-businesses-will-be-
software-driven-in-36-months.html, 2015.

[80] Ömer Uludağ, Martin Kleehaus, Xian Xu, and Florian Matthes. Investigating the role
of architects in scaling agile frameworks. In 21th Conference on Enterprise Distributed
Object Computing (EDOC), Québec City, Canada, 2017.

[81] Edward Uy and René Rosendahl. Migrating from sharepoint to a better scrum tool.
In Agile, 2008. AGILE’08. Conference, pages 506–512. IEEE, 2008.

[82] Ravi Verma. I’m not calling your baby ugly - two ways and 25 dimensions to compare
agile scaling frameworks. http://smoothapps.com/index.php/2017/04/im-
not-calling-your-baby-ugly-2-ways-and-25-dimensions-to-
compare-agile-scaling-frameworks-less-safe-nexus/, 2017.

[83] Vaughn Vernon. Implementing domain-driven design. Addison-Wesley, 2013.

[84] Vaughn Vernon. Domain-driven design distilled. Addison-Wesley Professional, 2016.

130

http://www.agilescaling.org/ask-matrix.html
http://www.agilescaling.org/ask-matrix.html
https://kenschwaber.wordpress.com/2015/01/30/more-on-scaling-scrum/
https://kenschwaber.wordpress.com/2015/01/30/more-on-scaling-scrum/
https://www.scrum.org/resources/nexus-guide
https://www.scrum.org/resources/nexus-guide
http://arc42.org/
https://techbeacon.com/enter-nexus-ken-schwaber-scaling-scrum-future-agile
https://techbeacon.com/enter-nexus-ken-schwaber-scaling-scrum-future-agile
https://www.ca.com/us/company/newsroom/press-releases/2015/ca-technologies-most-businesses-will-be-software-driven-in-36-months.html
https://www.ca.com/us/company/newsroom/press-releases/2015/ca-technologies-most-businesses-will-be-software-driven-in-36-months.html
https://www.ca.com/us/company/newsroom/press-releases/2015/ca-technologies-most-businesses-will-be-software-driven-in-36-months.html
http://smoothapps.com/index.php/2017/04/im-not-calling-your-baby-ugly-2-ways-and-25-dimensions-to-compare-agile-scaling-frameworks-less-safe-nexus/
http://smoothapps.com/index.php/2017/04/im-not-calling-your-baby-ugly-2-ways-and-25-dimensions-to-compare-agile-scaling-frameworks-less-safe-nexus/
http://smoothapps.com/index.php/2017/04/im-not-calling-your-baby-ugly-2-ways-and-25-dimensions-to-compare-agile-scaling-frameworks-less-safe-nexus/

Bibliography

[85] Jan Vom Brocke, Alexander Simons, Bjoern Niehaves, Kai Riemer, Ralf Plattfaut, Anne
Cleven, et al. Reconstructing the giant: On the importance of rigour in documenting
the literature search process. In ECIS, volume 9, pages 2206–2217, 2009.

[86] Gerard Wagenaar, Sietse Overbeek, and Remko Helms. Describing criteria for se-
lecting a scrum tool using the technology acceptance model. In Asian Conference on
Intelligent Information and Database Systems, pages 811–821. Springer, 2017.

[87] Peter Weill and Stephanie L Woerner. Thriving in an increasingly digital ecosystem.
MIT Sloan Management Review, 56(4):27, 2015.

[88] Harald Wesenberg, Einar Landre, and Harald Rønneberg. Using domain-driven de-
sign to evaluate commercial off-the-shelf software. In Companion to the 21st ACM SIG-
PLAN symposium on Object-oriented programming systems, languages, and applications,
pages 824–829. ACM, 2006.

[89] Eberhard Wolff. Microservices: Flexible Software Architecture. Addison-Wesley Profes-
sional, 2016.

[90] Robert K Yin. Case study research: Design and methods. Sage publications, 2013.

131

	Abstract
	Introduction
	Motivation
	Research Questions
	Approach

	Foundations
	Agile Software Development
	The Agile Manifesto
	Scrum

	Large-Scale Agile Development
	Benefits and Challenges of Large-Scale Agile Development
	Template for comparing agile scaling Frameworks

	Nexus
	Framework and Objectives
	Roles
	Process
	Artifacts
	Nexus and Architecture

	Large-Scale Scrum (LeSS)
	Framework and Objectives
	Roles
	Process
	Artifacts
	LeSS and Architecture

	Scaled Agile Framework (SAFe)
	Framework and Objectives
	Roles, Process and Artifacts
	SAFe Update
	SAFe and Architecture

	Comparison of Nexus, LeSS and SAFe
	Frameworks and Objectives
	Roles
	Process
	Artifacts
	Architecture

	Domain-driven Design (DDD)
	Approach and Objectives
	Domains, Subdomains and Bounded Contexts
	Establishing an Ubiquitous Language
	Strategic Design
	Tactical Design

	Related Work
	Bente et al. (2012)
	Keller (2017)
	Dikert et al. (2016)
	Rost et al. (2015)

	Framework for (Enterprise) Architecture in Agile Teams
	Case Study in an international Insurance Enterprise
	Overview
	Roles
	Process
	Artifacts and Tools
	Architecture
	Major challenges

	Framework for (Enterprise) Architecture in Agile Teams
	Agile Scaling, DDD and Architecture
	Overview
	Roles
	Process
	Artifacts
	Tools

	Evaluation
	Pre-Study
	Results of the Interviews
	General Questions
	Strategic DDD
	Tactical DDD
	Development Process
	Final Questions

	Discussion
	Conclusion
	Summary
	Outlook

	Bibliography

