
Department of Informatics
Technical University of Munich

Master’s Thesis in Information Systems

Platform-Independent UI Models: Extraction
from UI Prototypes and rendering as W3C

Web Components

Marvin Aulenbacher

Department of Informatics
Technical University of Munich

Master’s Thesis in Information Systems

Platform-Independent UI Models: Extraction from UI
Prototypes and rendering as W3C Web Components

Plattformunabhängige UI-Modelle: Extraktion aus
UI-Prototypen und Darstellung als W3C-Komponenten

Author: Marvin Aulenbacher
Supervisor: Prof. Dr. Florian Matthes
Advisor: M. Sc. Adrian Hernandez-Mendez
Date: October 15, 2017

ii

Ich versichere, dass ich diese Masterarbeit selbständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

München, den 12. Oktober 2017 Marvin Aulenbacher

Acknowledgments

Firstly I would like thank Prof. Dr. Florian Matthes for giving me the opportunity to
write the thesis at the Software Engineering for Business Information Systems (sebis) chair.
I am deeply grateful to M. Sc. Adrian Hernandez-Mendez for his advice, valuable input
and guidance throughout the development of this thesis.
In addition, I want to thank my parents Axel and Andrea for their endless support and
motivation during my academic studies. Lastly, I want to thank my sister Meike for her
support, expertise and proof-reading.

v

Abstract

Managing a process to design a user interface faces many issues. One is the communica-
tion between the designer and developer. This issues may even be greater in the domain of
prototype driven development, since it may be iterative and refactoring starts the process
from the beginning. These issues are significantly slowing down the development process
and therefore the life and release cycles of the product.
The idea of this thesis is to provide a tool, that automates the process of transforming a
drawing of the user interface by an UI expert to W3C Web Components. The data is ex-
ported from the UI expert‘s prototyping tool via the scalable vector graphics format and
then transformed to a view model, from which W3C standardized web components can
be generated.

vi

Contents

Abstract vi

1 Introduction 1
1.1 Problem Description . 1
1.2 Research Questions . 2
1.3 Research Method . 2

2 Domain Description 5
2.1 Web Application Development . 5

2.1.1 Overview . 5
2.1.2 Lack of Design Know-How . 5

2.2 Prototype Driven Development . 6
2.2.1 Overview . 6
2.2.2 Typical Process . 6

2.3 Prototyping Tools . 7
2.3.1 Overview . 7
2.3.2 Figma . 7
2.3.3 Sketch . 8

2.4 W3C Components . 8
2.4.1 Overview . 9
2.4.2 Design . 9

2.5 Related Approaches . 10

3 Platform Independent UI Model 13
3.1 View Model . 13

3.1.1 UI View Model . 13
3.2 Separations of Concerns in UIML . 14

3.2.1 Structure . 15
3.2.2 Style . 15
3.2.3 Behavior . 15
3.2.4 Content . 16

3.3 Proposed Process . 17
3.3.1 SVG Parser . 17
3.3.2 Extraction Process . 18
3.3.3 DOM Abstraction . 20
3.3.4 Component Generation . 21
3.3.5 Component Model . 23
3.3.6 Data Flow . 23

vii

Contents

4 Design and Implementation 25
4.1 Development Approach . 25

4.1.1 ECMA-Script Environment . 25
4.1.2 Compilers and Frameworks . 26
4.1.3 Lodash . 26
4.1.4 Test Driven Development . 27
4.1.5 Test Framework . 27
4.1.6 Test Structure . 28

4.2 Extraction Process . 29
4.2.1 First Phase of Extraction Process . 29
4.2.2 Second Phase of Extraction Process . 30

4.3 DOM Abstraction . 33
4.3.1 Exemplary View Model to DOM Abstraction Mapping 34

4.4 Component Generation and Rendering . 35
4.4.1 Component Generation . 35
4.4.2 Component Rendering . 37
4.4.3 Polymer Project Structure . 40

5 Evaluation Use Cases 43
5.1 Evaluation Approach . 43
5.2 Fridge App Login View . 43

5.2.1 Fridge App Login View . 43
5.2.2 SVG and rawJSON . 44
5.2.3 Preprocessed JSON . 47
5.2.4 View Model . 49
5.2.5 DOM Abstraction . 57
5.2.6 Generated Components . 60
5.2.7 Use Case Evaluation Summary . 62

5.3 Stripe Checkout . 66
5.3.1 SVG and rawJSON . 66
5.3.2 preprocessedJSON and View Model Header 68
5.3.3 View Model . 70
5.3.4 DOM Abstraction and Generated Components 70
5.3.5 Use Case Evaluation Summary . 70

5.4 Fridge App Add Item View . 72
5.4.1 Fridge App Add Item View . 72
5.4.2 preprocessed JSON . 72
5.4.3 View Model . 72
5.4.4 Use Case Evaluation Summary . 75

5.5 Analysis of Evaluation . 75

6 Conclusion and Further Work 77

7 Appendix 79
7.1 FridgeApp Login View: Simplified Handcrafted View Model used for the

Evaluation . 79

viii

Contents

7.2 FridgeApp Add Item View: Simplified Handcrafted View Model used for
the Evaluation . 79

List of Figures 82

List of Tables 83

Bibliography 85

ix

1 Introduction

In the modern era of software development most notably agile software development, the
goal is to shorten the release and development life cycles of software. Start-ups and small
companies are continuously threatening established players with new concepts, technolo-
gies and innovative products. In recent years there has been an observable shift to heavy
user oriented programming, specifically through web applications and mobile devices.
This shift causes a high demand for front end or user interface designers. Many processes
have been created to support the design phase in software development.
But specifically when it comes to heavy user oriented products, it is tough to go with the
flow of short release and development life cycles. The reason is not difficult to identify.
The process of designing a user interface is between the designer, the future user and the
responsible front-end developer. As there are many people involved, it will be harder to
speed up this process because of communication issues, cultural aspects etc. The designer
has to develop a draft, which the front end developer implements and after that the user
has to review the user interface to check if the requirements are met. If a requirement needs
refactoring the whole process has to start from the beginning.

1.1 Problem Description

In the process of developing user interfaces with prototype driven development the de-
signer and developer face certain communication issues, working on low- and high-fidelity
prototypes. The goal of this passage is to identify several communication issues between
those two employees and derive the problem description on this basis.
Communication issues between the developer and designer come up on different phases
of the development of a prototype and are triggered by different causes. There are orga-
nizational structures, that do not contribute to a improve communication[Isa16], personal
and cultural aspects[Joh12] as well as differences in skill sets and working experience. The
problem they face is always similar as they do not share a common domain specific lan-
guage. In this particular case the designer is familiar using prototyping tools whereas the
developer is familiar using editors or IDEs. One idea to support this process is to assist
the developer by creating an abstraction of the UI prototype which the developer can be
expected to understand. One possibility of a platform independent abstraction of the view
that matches the stated requirements would be the view model. This model could further
be used to generate front-end source code and hence not only contribute to knowledge
about the structure and composition of components of the abstracted view. Through this
generation the time the developer needs to craft the high-fidelity prototype from the low-
fidelity prototype, which was created by the designer, would significantly decrease. This
decrease of needed time is even more valuable when the prototype development approach
is as usually incremental and triggers refactoring actions after being presented to the end

1

1 Introduction

user. Instead of starting from the scratch the developer could use the extracted and gener-
ated elements and would be able to speed up both the crafting and refactoring process.

1.2 Research Questions

The goal of this thesis is to provide a tool to bridge the gap between the developer and
designer by generating a view model and W3C Components of the low-fidelity UI proto-
type for the developer. This could greatly impact the time and effort to finalize design and
implementation details for the product.

1. Which design tools do designers use and why? (Two Tools)

2. How should the architecture of a supporting process for the generation of web com-
ponents be structured?

3. How useful is the automation process based on two basic use cases for prototype
driven development?

1.3 Research Method

The research for the extraction tool and the generation process is conducted on the design
science research methodology described by Alan et al[HC10]. The framework is structured
in three pillars Environment, IS Research and Knowledge Base to supply organizations and
their research with information in a way that it can be utilized. The three pillars clearly de-
couple inputs and interactions and hence improve the insights of the research. The pillars
and their respective inputs and interactions are shown in figure 1.1. Information systems
are in general implemented within an organization to improve the effectiveness and effi-
ciency of the organization as well as their research by aiding the managerial process with
knowledge of the information technology and its use[HC10, p.2].
The environment pillar consists of people, organizations and technologies and formulate
comprehensive business needs to the IS Research. This implies that research is always trig-
gered by business needs.
The research process itself is separated into two specific processes, namely behavioral and
design science. Behavioral science focuses on developing theories to predict or explain
organizational and human phenomena surrounding the analysis and in the end justifying
their results[HC10, p.10]. The design science paradigm has its roots in engineering and
is fundamentally a problem-solving paradigm. It seeks to create innovations that define
the ideas, technical capabilities and practices trough which the analysis, design and imple-
mentation can be effectively and efficiently accomplished[HC10, p.3]. In the end a tool or
artifact can be crafted on this theoretical basics[HC10, pp.11].
The knowledge base provides fundamentals for the research such as frameworks, instan-
tiations and methods that already have been used by researches, that were conducted ear-
lier[HC10, p.7]. The new research therefore profits by prior research through the respective
findings such as boundaries and experiences.
The acquired results by the conducted research loop back to the environment and to the
knowledge base. In case of the environment the findings are applied to the appropriate

2

1.3 Research Method

environment to satisfy business needs for instance. On the other hand the findings are
also used to enrich the knowledge base and hence can be used for further research.

Figure 1.1: Research Framework Based on Design-Science Paradigm[HC10]

3

1 Introduction

4

2 Domain Description

This chapter is contemplated as an entry point to the thesis and hence to provide un-
derstanding for the thesis’ domain. It will describe each aspect of the domain in their
respective section and will lead to a greater understanding for the abbreviated problem
description and the idea that will be presented in the conceptual design chapter.

2.1 Web Application Development

In this section a short overview of Web Application Development will be given, as well as
a deeper insight in the problems that small companies and start-ups have to face, when in
the search of design know-how.

2.1.1 Overview

As mentioned before, the world of software development is changing rapidly and espe-
cially Web Application Development . There has been a rapid shift from traditional de-
velopment approaches, which are defined by defining requirements, planning, building,
testing and deployment to agile development approaches [MW17, p. 584]. Those agile
approaches involve smaller and shorter releases, parallel programming, and iterations as
core pf their process [MW17, p. 585]. The link between agile development processes and
User-centered Design has been increasingly gaining interest [MW17, p. 584]. The described
link on the other hand has lead to a strong demand for design know-how, as most compa-
nies are developing applications with emphasis on user-centered design.

2.1.2 Lack of Design Know-How

In recent years, big companies in the software development sector have acquired design
companies to include know-how in their business landscape. There are many cases as for
example 1 Google and Facebook acquired design companies, Accenture purchased Fjord,
Adobe bought Behance, which is basically a creative online community 2, and Square
bought 80/20.
The question that arises is what solutions can small and medium sized companies as well
as start-ups develop, to keep on track with the big players.
Small companies, as they can not just acquire know-how have to develop processes to
optimize collaboration with those design companies. One of this processes is part of the
domain of this thesis and will be introduced in the next section is prototype driven devel-
opment.

1https://www.wired.com/2013/05/accenture-fjord/
2https://www.behance.net/

5

2 Domain Description

2.2 Prototype Driven Development

2.2.1 Overview

Prototype driven development is a method to iteratively design a product. It is often used
in the context of Web Application Development, because of the short release and life cy-
cles. In this section, a typical process for prototype driven development is presented and
explained to narrow the problem space of this thesis.

2.2.2 Typical Process

In Figure 2.1 the process of a prototype driven development is modeled. The process
typically starts with a meeting between the application‘s designer and its customer. They
formalize technical and visual requirements. In the second step the designer receives these
requirements as an input and designs a low-fidelity prototype. Low-fidelity means, that
the prototype is designed quickly and is an easy tangible representation of the concept
[mob16b]. Low-fidelity prototypes can be paper-based or look-and-feel mock-ups. They
allow ideas to be evaluated for numerous aspects, like usability with real users. This may
lead to refining and testing the low-fidelity prototype again, before design decisions are
finalized and lead to the high-fidelity prototype [Jac09, p.232]. Usually the designer uses
prototyping tools like Figma or Sketch. The low-fidelity prototype is an image file, that
represents the visual requirements. This image file on the other hand serves as input for
the developer, who implements a high-fidelity prototype. High-fidelity prototypes are
computer-based interactive representations of the product or application in its closest re-
semblance to the final design in terms of details and functionality [mob16a]. The main
disadvantage of high-fidelity prototypes is that its iterations are more time consuming
and thus prevent exploration of new ideas without jeopardizing the entire project [Jac09,
p.683]. This prototype is ready for evaluation by the end user, who may have some im-
provements or change requests. In this case the process starts from the beginning.

Figure 2.1: Prototype Driven Development

The key issue addressed by this thesis is the communication between the designer and
developer. As they do not share a common domain specific language, they are not able
to communicate in a proper way. For example, the developer is familiar with his IDE or

6

2.3 Prototyping Tools

editor, as on the other hand the designer is used to prototype with his UI Prototyping tools.
The idea of the thesis is to provide a tool, that helps the developer to create high-fidelity
prototypes more quickly and be more efficient in case of re-factoring.

2.3 Prototyping Tools

This section is contemplated to give a quick overview of prototyping tools as well as the
two tools, that were used for the implementation.

2.3.1 Overview

With the proliferation of mobile, there needed to be enhancements to common used paper
prototyping. Paper prototypes are inconsistent, designed for a very specific use case and
though not reusable. Even User-centered Design(UCD) explicitly recommends a specific
life cycle stage, where the UI could be prototyped based on the future system‘s stakehold-
ers like designers, developers, usability specialists, graphic experts, and end users [CKV07,
p.1]. To fulfill designer‘s needs prototyping tools have been developed, that support the
designer with vector graphics, predefined templates for environments and even real-time
collaboration. Prototyping tools, as they are supporting a process, need to fulfill three
requirements:

1. Design specifically for the context in which work will be viewed.

2. Communicate the end user‘s experience by showing how a screen changes based on
input.

3. Add transitions and moments of joy to their design through motion graphics [Dyl17].

Of course, those three requirements do not make a complete list, but they still illustrate
the most important ones from the perspective of a designer.

In the following two common used prototyping tools, namely Sketch and Figma, which
have been used to analyze the structure of user interfaces will be presented in greater
detail. This analysis finally leads to the implementation of the extraction tool that will be
presented in the implementation chapter 4.

2.3.2 Figma

Figma is a powerful editing and prototyping tool. It has been build to create digital prod-
ucts and user interfaces. A neat feature is the component based architecture. This enables
the possibility of reusing elements and not having to start from the scratch every time3.

There are more features that make Figma stand out.
Firstly, the Vector Networks technology used, is a significant improvement on the tradi-
tional path model. A vector network improves on the path model by allowing lines and
curves between any two points instead of requiring that they all join up to form a single

3https://www.figma.com/features

7

2 Domain Description

chain. This helps provide the best of both worlds. Splitting, deleting and recombining is
much more natural with vector networks[Dyl17].
It also offers features to work collaboratively as a team. Furthermore it is shipped with
version control, which is especially an advantage when working in rounds of feedback
and multiple iterations, just as explained in the process of prototype driven development.
The arguably biggest advantage compared to other tools, may be Figma‘s collaborative
workspace. It offers real time commenting and assets, that are shared team wide4.
In conclusion, Figma is a great prototyping tool which is pretty new to the design cosmos.
It offers many new features and may get more attention with increasing time.

2.3.3 Sketch

Sketch is also a vector design tool, that is entirely focused on user interface design and only
available on iOS. It is advertised as an alternative to Adobe‘s Photoshop, which used to be
the tool for designing user interfaces or even static prototypes, although it was originally
developed for image processing. Sketch offers styles, that are only relevant to UI design, as
well as an iPhone previewing tool called Mirror and Artboards. A common core feature is
the availability of UI templates for iOS platforms, Android Icon Design and even Material
UI5.
There are even more features:

• Autosave and versioning

• Vector editing and pixel perfection

• Edit elements on the fly

• Convert styles to CSS [Jea13]

A survey conducted by Substraction.com in 2015 asked about 4000 participants from
almost 200 countries to report on their favorite tool for six major design tasks like brain-
storming, wireframing, interface design, prototyping, project management and version
control. Sketch was the favorite tool for wireframing and interface design, although falling
short on prototyping6. Although the survey is not representative on how it was conducted,
it clearly shows the popularity of Sketch among the participants.

2.4 W3C Components

This section is contemplated to serve as an introduction to the W3C Web Components
specification, which is drafted by the W3C consortium. The goal of the consortium is to
include those standards in every modern web browser.

4https://blog.framer.com/a-simple-way-to-import-and-iterate-with-figma-8cf0cd4d21b3
5https://designcode.io/sketch
6http://tools.subtraction.com/

8

2.4 W3C Components

2.4.1 Overview

The W3C Web Component standard consists of several separate technologies, that will be
introduced in the design subsection. Web Components are reusable user interface widgets,
which are part of the browser or are planned to be included in the standard. Hence most of
the Web Components do not need any external or transformation libraries to be executed
by modern web browser7. Even if certain features may not be supported by the browser
yet or are still in development, there are so called Polyfills which make sure the browser
can use the technology by using already available libraries8. As an example Custom El-
ements, which are part of the W3C specification, are already available in Chrome and in
development for Firefox9.The Web Components can be created by using open Web technol-
ogy and can be seen as an improvement to the HTML, CSS and JavaScript combination.
There are many famous front-end frameworks, that are based on the Web Components
standard, like Google‘s Polymer 2.010 or Vue.js 11.

2.4.2 Design

The W3C Web Components consist of the following four technologies, which can be used
separately:

• HTML Imports

• Custom Elements

• Shadow DOM

• HTML Templates

Custom Elements are arguably the most exciting part of the specification. A developer
can create new HTML tags, extend existing HTML tags or components, which other de-
velopers have created. Those possibilities enable a web standards-based way to create
components that are highly reusable and consist of nothing more than vanilla JS, HTML,
and CSS. The result is less and more modular code. [Eri17a].
Custom elements also have so called life cycle callbacks, which are invoked after a specific
event has happened. They are implemented to help the developer hook in between the
component‘s life cycle.

7https://developer.mozilla.org/en-US/docs/Web/Web Components
8https://www.polymer-project.org/2.0/docs/polyfills
9http://caniuse.com/#search=custom%20elements

10https://www.polymer-project.org/
11https://vuejs.org/v2/guide/components.html

9

2 Domain Description

The three life cycle events are:

1. readyCallback

2. insertedCallback

3. removedCallback

As the function names already indicate, readyCallback is called after a custom element
has been created, insertedCallback is called after the custom element has been inserted into
a document and removedCallback is called after the custom element has been removed
from the document12.
The Shadow DOM on the other hand is responsible for encapsulation and is therefore the
core of the Web Components. Shadow DOM is able to fix CSS and DOM issues by in-
troducing scoped styles. Those scoped styles simplify the use of CSS, because one does
not have to worry about naming conflicts and is able to use simple CSS selector names.
Shadow DOM also hides implementation details and can wrap Custom Elements[Eri17b].
HTML Templates as the name already states, is thought to be the starting point of a par-
ticular application so that the format does not have to be recreated each time it is used13.
Using HTML Templates offers certain advantages like that its content is effectively inert
until activated, because HTML Templates are by default deactivated. This also means that
there are side effects like scripts running or selecting elements with

document.getElementById()

until the point of activation[Eri13b].
The last part of the specification are HTML Imports. Every type of resources used on the
web have their respective syntax to be loaded. Comparing it to JavaScript‘s script loader

<script src>

or CSS‘

<link rel="stylesheet">

stylesheet loader[Eri13a], there is no well defined way of importing HTML. HTML Imports
close this gap for HTML content. It is a way of including HTML documents into other
HTML documents.

2.5 Related Approaches

The goal of this subsection is to reference related scientific approaches and to elaborate
the theoretical foundation of the implemented tool on the basis of the research method
described in the introduction.
A lot of literature in this specific domain is about reverse engineering legacy software or
software architectures. It means to transform a system or system architecture back to some
kind of model that displays all relevant parts and relationships. In the scope of this thesis

12https://www.w3.org/TR/2013/WD-components-intro-20130606/#lifecycle-callbacks
13http://www.thefreedictionary.com/template

10

2.5 Related Approaches

the focus can be narrowed down to only the graphical user interface part of systems. One
example for this kind of approach is the automatic extraction of graphical user interface
models for industrial testing by Aho et al. The team developed so called Murphy Tools
that in combination with their innovative platform independent technique is able to extract
GUI models based on a dynamical analysis of the GUI[Aho+14, p.1]. This model is than
later used to support industrial testing of the software that the model was extracted from.
Aho et al divide their process into three steps:

1. Application specific model extraction script.

2. Murphy tool explores GUI application and dynamically extracts model.

3. Visually inspect the model and validate the correctness of observed behavior.[Aho+14,
pp.3]

Some experience the team acquired are very interesting foundations for the further work
of this thesis. For instance they recommend to partition the extracted model into a set of
smaller and simpler models to reduce complexity and increase the usability of the models
in the daily work of developers[Aho+14, p.5].
Another interesting approach and theoretical foundation of this thesis is the basic archi-
tecture by Chikofsky and Cross for a platform independent reverse engineering process.
The architecture splits the transformation in three distinctive steps. It starts with the se-
mantic analyzer continues with a enriched information base and ends with the view com-
poser[CC90]. The result of the information extraction process is a platform independent
model.
The third related approach to mention is Model-Driven Composition of Information Sys-
tems from Shared Components and Connectors by Leone et al[LSM13]. The teams pro-
poses a process that on the basis of an UML model, generates Java source code. The UML
model has to be created by the developer with the help of the CompIS platform which is
introduced by Leone et al. The platform is basically a UML editor that supports the devel-
oper in creating the composition of the information system. Figure 2.2 displays the gen-
eral iterative model driven development process. The UML editor reuses findings from
the repository and passes them to the UML model, which is defined by the developer,
to the code generator. This code generator generates Java source code and passes it to
the CompIS Object Database, which is responsible for building the basis for the deployed
code[LSM13][p.211]. The arrow from the CompIS Object Database to the UML editor ex-
presses the iterative nature of this approach. The most interesting part of the findings
presented by Leone et al, is the fact that they use a model driven development process
to generate source code. In this case the code generation is used for the front-end and
back-end.

11

2 Domain Description

Figure 2.2: Simplified Model Driven Development Process[LSM13, p.211]

12

3 Platform Independent UI Model

This chapter is contemplated to give an overview of the early design goals of this thesis.
It will feature a description of the view model, the adaption of the view model and the
targeted process for the implementation part of the thesis.

3.1 View Model

The view model is an abstraction of the view. The view itself is part of the user interface
including layout, structure and all contained elements. The idea of such a model is to be
platform independent, so it can be used in any arbitrary environment.

3.1.1 UI View Model

Figure 3.1 displays one way to model an abstraction of the view. The UI consists of com-
ponents, which themselves encapsulate either simple elements or composite elements.
In Web Application Development simple elements could for instance be represented as
HTML’s p or span elements

<p>

which are neither nested nor representing a complex part of an UI.
Composite elements on the other hand are are more complex like for example a div

wrapping another div

<div id =”wrapper”>
<div id =”wrappedElement”></div>

</div>

to represent the UI as nested components with implicit hierarchy. The model is an adaption
of the well-known composite pattern, which itself is a common used design pattern in
software engineering.

13

3 Platform Independent UI Model

Figure 3.1: UI View Model

3.2 Separations of Concerns in UIML

A well-known approach to achieve true platform independency is the User Interface Markup
Language (UIML) by the Organization for the Advancement of Structured Information
Standards (OASIS). The design objective of this approach is to provide a vendor-neutral,
canonical representation of any UI suitable for mapping to existing languages[OAS08]. All
elements that are used in UIML are defined by the Extensible Markup Language (XML).
An example for a general structure of an UIML document is visualized in figure 3.2. Each
interface element, namely structure, behavior, content and style, is called a part[OAS08].
The presentation of the interface parts, is different for every platform or device. To pro-
vide logic to those different interfaces, they are connected to data sources, which can be
applications, database management systems etc.

Figure 3.2: Separation of Concerns in UIML
[OAS08]

The UIML approach is a generic one and many of the elements are unnecessary for

14

3.2 Separations of Concerns in UIML

the scope of this thesis. Figure 3.3 shows the simplified model as JSON schema1. As the
target standard, which is W3C Web Components are as stated in section 2.4 component
based, the model is more tailored to this approach and the generic term interface has been
replaced by the term component. In this adaption components have their children attached
as an array of components instead of the UIML way of redefining those elements each
time. Furthermore the representation has been changed from XML to the JSON format.
The main reason to chose JSON was because of the implementation which is written in
JavaScript and JSON is the go-to interchangeable data format for the script language.
A component is modeled by its style and structure. Those parts are very important to
render components. The first idea was to remove the content element completely, because
the input SVG file does not supply any textual data, yet everything inside of this standard
is vector based. As this may be true there are some cases, where an element of the SVG
can supply textual information, e.g. when a group element is wrapping a component.
This issue will be explained in detail in the design and implementation chapter 4. All
assumptions for SVG are only valid, when the SVG is exported from one of the presented
prototyping tools in section 2.3. The behavior element was removed completely, because
it would go beyond this thesis’ scope.

3.2.1 Structure

The interface portion of an UIML document defines a virtual tree of parts with their asso-
ciated content, behavior and style[OAS08]. Figure 3.4 shows a simplified graphical repre-
sentation of such a virtual tree. The standard also specifies the part element, which rep-
resents an instance of a class instance and can be nested inside each other[OAS08]. In the
proposed adaption of the UIML standard, the structure parts, as stated above, have been
replaced by a simple array of the component‘s children as well as a specific class name.
The references of the child components will later make it easier to map the view model to
a DOM structure. Class names on the other side introduce typing for the components.

3.2.2 Style

The style element in the UIML standard contains a list of properties and values that are
used to render the interface[OAS08]. As the scope of these components will be tailored to
their own shadow tree, every component can have its own style properties and does not
need global unique identifiers. Therefore, an object for the component‘s properties, which
in JavaScript is implicitly a key-value pair, is sufficient. This tree scoping ability is one of
the advantages of the Shadow DOM, as stated in section 2.4.

3.2.3 Behavior

The UIML standard specifies a behavior element used to describe the interaction of an
end-user with the user interface[OAS08]. This element was removed from the proposed
view model, because it would go beyond the scope of this thesis. In general, SVG elements
can be enhanced with script tags, similar to HTML2.

1http://json-schema.org
2https://www.w3.org/TR/SVG/script.html

15

3 Platform Independent UI Model

{
”componentName ” : ”” ,
” type ” : ” o b j e c t ” ,
” p r o p e r t i e s ” : {

” content ” : {
” type ” : ” o b j e c t ” ,
” p r o p e r t i e s ” : {

” t e x t ” : {
” type ” : ” s t r i n g ”

}
}

} ,
” s t r u c t u r e ” : {

” type ” : ” o b j e c t ” ,
” required ” : [

”className”
] ,
” p r o p e r t i e s ” : {

”className ” : {
” type ” : ” s t r i n g ”

}
}

} ,
” s t y l e ” : {

” type ” : ” o b j e c t ” ,
” p r o p e r t i e s ” : {

” property ” : {
” type ” : ” o b j e c t ”

}
}

} ,
” ch i ldren ” : {

” type ” : ” array ”
}

}
}

Figure 3.3: View Model Adaption of UIML in JSON Schema

3.2.4 Content

Another important part of the UIML standard specifies the content element. A part in
an UI can be associated with various types such as words, characters, sounds, or im-
ages. Since UIML supports separation of content in an UI, it is useful to display differ-
ent content under different circumstances like such as rendering different languages in the
front-end[OAS08]. In modern front-end frameworks like for instance React.js, this issue
is solved by a component’s state. As stated before, the content element is used to display
textual data such as labels and is therefore incorporated in the view model adaption.

16

3.3 Proposed Process

Figure 3.4: Example of the Virtual UIML Tree
[OAS08]

3.3 Proposed Process

This subsection is intended to provide an overview of the targeted process. Every part of
the extraction and model generation process will be explained in its respective subsection.
The respective parts are based on the findings of the research method and explains why
the architecture was designed in this way.

3.3.1 SVG Parser

The first step is to convert the received SVG into the JSON format. JSON was chosen, be-
cause the target language is JavaScript and JSON is the programming language’s standard
interchangeable data format. Hence SVG is well-formed XML, many parsers are available
for this task. The decision to use the xml2json3 package was selected, because firstly it is
well documented and lightweight and secondly it nearly worked out of the box without
much configuration effort. The package itself uses node-expat to convert the XML file into
the target JSON. Figure 3.5 presents an abstract view of the parsing process, with its cor-
responding input and output data. The output of this process is called raw JSON, because
no modifications were made yet, but a transformation to JSON.
This part of the process does not directly correlate with any related approaches that were
mentioned before. Nevertheless, the extraction process has to be defined on the basis of
a data format and as the target programming language was defined to be JavaScript, the
decision to use JSON can be seen as an advantage.

3https://github.com/buglabs/node-xml2json

17

3 Platform Independent UI Model

Figure 3.5: SVG Parser

3.3.2 Extraction Process

The extraction process is the core part of the provided tool and an overview is given in
figure 3.6. It is basically a transformation function that extracts information from the raw
JSON and transforms it into a platform independent view model.
The extraction process correlates with the basic architecture of a platform independent re-
verse engineering process introduced by Chikofsky and Cross[CC90], as explained in 2.5.
The first phase of the extraction process is adapted from the semantic analyzer, as it is
a kind of preprocessor by preparing the data. It identifies the relevant parts of the object
such as headers, wrappers and components and extracts this information. The view model
greatly relies on the findings of this step, since the second phase of the extraction process,
which is the application of the specific rules, can not be done without preprocessing.
The second phase of the extraction process is responsible for extracting the useful informa-
tion from the processed object to form the information base of the following view model
generator. This generator takes the information base as an input and composes the single
components into a hierarchical tree to form the view model. This step is can be seen as an
adaption from the view composer by Chikofsky and Cross.

Figure 3.6: Overview Extraction Process

18

3.3 Proposed Process

First Phase of Extraction Process

The extraction process applies rules to the input object, whereas every rule is responsible
for one particular part of the object. A rule is a pure function, that receives the object as an
input and returns the part of the object it is responsible for. If the rule can not be applied,
e.g. when the component the rule is responsible for is not part of the input object, the
rule just returns the object that was passed. As exemplified in figure 3.7 generic rules are
chained. Generic rules are the ones, that generally need to be applied first, because they
are important to remove unused parts of the objects or for the component hierarchy.
As the rule names suggest, removeSVG removes the SVG part of the input object, as it only
holds vector information, that can not be assessed in the following process. removeCanvas
removes the canvas object from the input, since every SVG exported via Figma is wrapped
in a group element called canvas4. Furthermore extractWrapper and rootComponentExtractor
are very important for the hierarchy of the view model and are thus chained before every
other extraction rule. Those rules will be explained in detail in the implementation chapter
4 as well as an overview of all available rules.
The result of figure 3.7 is an intermediary JSON called preprocessed JSON from which en-
capsulating objects have been removed and an useful hierarchy could be extracted, which
is then passed to the second phase of the extraction process.

Figure 3.7: First Phase of Extraction Process

4https://help.figma.com/editor/canvas

19

3 Platform Independent UI Model

Second Phase of Extraction Process

The second phase of the extraction process also features rules that are, as explained before,
pure functions and are responsible for one part of the input object. The architecture of
the second phase may look familiar but is far more extensible. In contrast to the first
phase, the rules do not have to be applied in a particular order. Every rule takes the whole
object, applies its logic and returns the part of the object that it is responsible for. Those
accumulated values from each rule get merged at the end of the process to produce the
target view model. Figure 3.8 shows four example rules that are applied to the preprocessed
JSON.
This architecture allows the extraction process to be greatly extendable. As a result a new
rule only has to be added to the array of applied rules or an existing rule can be modified,
because neither of those possibilities does modify the other rules or disturb the process.
The extensibility mentioned above though is only available for rules that are not generic,
since those are important to remove unneeded parts of the object.
One of the goals of this thesis is to supply an architectural design and a set of rules that
may be extended later. The explained architectural design complies with this goal and
may be reused or extended easily.

Figure 3.8: Second Phase of Extraction Process with Example Rules

3.3.3 DOM Abstraction

Popular front-end frameworks like React.js use its own DOM implementation (react-dom)5.
The advantage of this approach is that the mapping of React components to the react-dom

5https://github.com/facebook/react/tree/master/packages/react-dom

20

3.3 Proposed Process

implementation is much easier, since it is created on this behalf. At rendering time, React
maps the components from its DOM abstraction to the browser‘s DOM.
This approach is also used in this thesis as recommended by the adviser. The components
are mapped from the view model to a DOM abstraction. The framework used for this
mapping is a lightweight DOM abstraction called virtual-dom6.
The first step is to create a root node. Afterwards all children are appended as virtual
nodes or DOM elements to the root node. The framework features the most important
implementations of the DOM such as root nodes, appending children and rendering those
as a tree. Figure 3.9 demonstrates the general structure of a DOM adapted from W3C
schools7.
The root element is directly attached to the document header and consists of two parts.
The first element is the header, which is used to define general information about the doc-
ument like exemplary modeled by the title element. The second element is the body where
all child nodes are attached to. Those elements are exemplary modeled by a link element
(a) and a headline (h1). Moreover, those elements could have children attached to form
a deeply nested structure. All of those described structures are forming the DOM tree,
which is then rendered by the browser.

Figure 3.9: General Structure DOM

3.3.4 Component Generation

The component generation is the final step of this thesis‘ tool implementation. It reveals
the generation and rendering of the extracted components as W3C Web Components. The
W3C Web Components specification is designed with great foresight and is thought to be
the web standard of the future. This is one of the reasons why the decision was made to
render W3C Web Components and not as components of a component based framework.
The proposed process has some similarities with the approach of Leone et al introduced in

6https://github.com/Matt-Esch/virtual-dom
7https://www.w3schools.com/js/pic htmltree.gif

21

3 Platform Independent UI Model

section 2.5. The major differences between the approach in this thesis and the presented
one, are due to the differences in domains and scope. For example the developer does not
need to define the model by himself as it is composed by the extraction tool. Moreover,
since the target language is not Java but JavaScript the output language of the generator is
changed as well. In addition to the specific domain of UI prototypes the generation pro-
cess produces only UI specific source code, as even the behavior parts are skipped. One
more thing that was adapted was the kind of code generation. Leone et al used Acceleo8

which is a open source code generator implementing the Model to Text Language (MTL)
standard. The code generator uses a template based approach[LSM13, p.218] which was
adapted by this thesis‘ component generation.
Figure 3.10 shows an overview of the component generation process. It receives the DOM
abstraction as input and produces custom elements. The first step is to generate a HTML
template for each of the extracted components. This leads to great reusability and extensi-
bility as HTML templates can easily be imported in every HTML document. Every HTML
template consists of a HTML part and a style part, which is in this case CSS. Both prop-
erties get wrapped inside a template tag. The result of this step is a HTML template that
contains CSS and HTML information, but is only one document. This is why the figure is
modeled with the HTML template on the top with CSS and HTML information attached.
The next step is to render this HTML template as a custom element. Every custom element
gets implicitly wrapped in a shadow root which leads to two main advantages:

• Tree scoping.
Prevents namespace issues and ensures that every custom element uses its own style

• Hides implementation details.
The script part is hidden from the DOM.

The result is a custom element for every extracted component wrapped in its own shadow
root. Those components can then be bundled in a shadow tree to form the result of the ex-
tracted view model.

Figure 3.10: Overview Component Generation

8https://projects.eclipse.org/projects/modeling.m2t.acceleo

22

3.3 Proposed Process

3.3.5 Component Model

The component model is an adaption of the IT4IT reference architecture. The reference
architecture is defined by ”The Open Group” and provides prescriptive, holistic guidance
for the implementation of IT management capabilities for today‘s digital enterprises9. This
architecture is very well suited to model the processes and the crafted artifacts.
Figure 3.11 visualizes the adaption of the IT4IT reference architecture. The rectangles rep-
resent the processes or responsible stakeholders within that process. The bubbles inside
the processes represent the crafted artifact or the tool the artifact of the process was crafted
with. The labels on the bottom represent the status of the current stage of the process.
Although the adaption has no defined starting point, because of its circular structure, it
is self-evident that the beginning has to be the design guidelines. This process is con-
templated to produce design guidelines, which helps the extraction tool to rely on some
general rules. Later in chapter 4 this issue will be described in greater detail.
The next logical step is the designer who uses prototyping tools to craft the UI prototype.
This process depends on the design guidelines. Therefore it is scheduled behind the de-
sign guidelines. The UI prototype is the input for the parse process.
This process is responsible for parsing the well-formed SVG to the raw JSON and prepares
the object for the extraction process.
The raw JSON artifact is used as input for the extraction process. It produces a result JSON.
This JSON object is an intermediary artifact between the preprocessed JSON and the view
model. It is defined different in this model, since it is contemplated to provide a better
overview of the architecture. The extraction process is explained in great detail in section
3.3.2. The result JSON artifact is passed to the view model generator.
The view model generator process is responsible for crafting the view model artifact. It
includes the extracted components as well as their attached style and content information.
The view model is platform independent and an abstraction of the source SVG.
The next step is to map the view model to a DOM abstraction. This is thought to simplify
the component generation, as the components are firstly mapped to a simplified DOM
and following that to W3C components. The mapper produces an important intermediary
DOM abstraction, which is then passed to the component generator.
The component generator produces W3C components from the DOM abstraction. There-
fore, the crafted artifact are the W3C components. Since the IT4IT reference architecture
models the whole IT management capabilities the last process is representative for possi-
ble stakeholders.
The modeled entity for those stakeholders is a test user. This test user verifies the proto-
type according to certain criteria and may trigger the process from the beginning. In this
case the whole process unleashes its whole power, since it is nearly fully automated. The
only bottleneck is the designer, who needs to modify the UI prototype according to the
tester‘s feedback.

3.3.6 Data Flow

Figure 3.12 shows an overview of the data flow of the whole process. It starts with the
SVG, which is exported via the Figma prototyping tool. This data serves as an input for

9http://www.opengroup.org/IT4IT/referencearchitecture

23

3 Platform Independent UI Model

Figure 3.11: IT4IT Reference Architecture Adaption

the SVG Parser, which parses the well-formed XML to JSON. The output of this process is
the raw JSON, which is itself the input for the extraction process. The first phase of the ex-
traction process produces a preprocessed JSON, which is handed to the second phase of the
extraction process to be transformed to the platform independent view model. In the last
step the view model is mapped to W3C Web Components by the component generation
process.

Figure 3.12: Overview Data Flow

24

4 Design and Implementation

This chapter explains in detail how the extraction tool was implemented. It starts off with
an overview of the used frameworks and environments as well as the chosen develop-
ment approach. It then continues with the explanation of the JavaScript module structure,
explains rules in detail and presents examples from the code base.

4.1 Development Approach

In the following the chosen development approach is explained in general and to which
extend this approach is used. Moreover, the used ECMA-Script stages, plug-ins and most
important frameworks that were used to support the implementation are illustrated.

4.1.1 ECMA-Script Environment

New ECMA-Script features are designed by the Technical Committee 39(TC39). Its mem-
bers are companies and all vendors of modern browsers1. New feature requests or pro-
posals have to get through the so called TC39 process, which features four stages. Stage-0
also called strawman phase is a way of submitting ideas for evolving JavaScript, so it is
pretty informal yet. The next stage, stage-1 includes a formal proposal for the feature. If
this proposal is accepted by the TC39 the feature ascends to stage-2, called the draft. As
the stage name indicates, a first version will be added to the specification. The feature
now has to include a formal description of syntax and semantics. Stage-3 is the candidate
phase, where the proposal is finished to a great extend and is now waiting for feedback
from implementation and users. The last stage, stage-4 embodies that the feature has been
accepted and will be included in the standard. It has to complete some standard tests as
well as to show some significant practical experience with its implementation.

Import and Export Syntax

The feature, greatly used in the implementation part of this thesis and defined in the
ECMA-262 Specification, is the import statement2. It lets the developer define default and
named exports as well as importing those in your modules. Named members are imported
via the following syntax:

import { member } from ”module−name”

On the other hand default exports can be imported to a module via

import defaultMember from ”module−name”

1http://2ality.com/2015/11/tc39-process.html
2https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Statements/import

25

4 Design and Implementation

The default export should be chosen wisely, since there is only one default export al-
lowed per module. Those are the most used features but there are many more as aliasing
members or importing the namespace of a module with:

import * as name from ”module−name”

4.1.2 Compilers and Frameworks

This subsection is meant to illustrate the most important frameworks that are used as well
as the JavaScript compiler Babel.js.

Babel

Babel.js 3 is by far the most popular code compiler for next generation JavaScript. It allows
the developer to write future syntax, for instance syntactical sugar that is not yet sup-
ported by the modern browsers. Babel transforms source code into a syntax that browser
can execute nowadays. The developer is able to determine the ECMA-Script stage in the
babel.rc-file or can use single babel plug-ins, that implement certain transformation rules.
One of the most used features of future JavaScript in this thesis, was the object rest spread
operator. This operator has many advantages when working with objects, like applying
objects to objects or updating current object’s properties. Those abilities also come in very
handy, when working with immutable data structures like for instance React.js properties.
Since the operator always returns a new object, in case of assigning new properties to an
object, instead of mutating the current object.

Prettier.js

Prettier.js 4 is an opinionated code formatter, which supports JavaScript, JSON, JSX but
also syntax like GraphQL and Flow. It evolved from ESLint5, which calls itself a pluggable
linting utility for JavaScript and JSX. The big advantage comparing Prettier and ESlint is
the very limited configuration options in Prettier. This defines a clear code style for projects
and helps the developers in teams to read each others code more quickly. Furthermore it
assures code formatting over all phases of the development process. In this thesis the
framework is used to format all of the written code.

4.1.3 Lodash

Lodash 6 is a modern JavaScript library that brings aspects of functional programming to
JavaScript. It is great for mutating JavaScript objects and arrays and provides many helper
functions. In the case of this thesis, the lodash library was mostly used to iterate over the
preprocessed JSON and to identify components in that object. The library is fast and easy to
use and is of great use when working with data structures.

3https://babeljs.io/
4https://github.com/prettier/prettier
5https://eslint.org/
6https://lodash.com/

26

4.1 Development Approach

4.1.4 Test Driven Development

Test driven development (TDD) is one of the most fundamental processes in agile soft-
ware development. The approach produces loosely coupled and highly cohesive source
code [AMS06, p.154]. When developing with test driven development, the way of thinking
about the implementation is different. A developer thinks about the desired functionality
of his implementation, then writes the first test, which then constructs the implementation
step by step. The result is cohesive code and the developer is protected from refactoring
his code over and over again. Obviously it leads to a higher code coverage[AMS06, p.154],
which prevents unexpected errors or bugs. Nevertheless, writing code with this approach
expends a lot of time and often feels like creating lots of boilerplate code especially when
unit testing.
For the scope of this thesis a test driven development approach is well suited because it
is easy to unit test every single rule. This evolves from the fact that rules are pure func-
tions, which means that they create the same output every time an equal input has been
passed. After testing all the rules independently the next step is to test the combination of
them. This is not as time expending as for instance system or integration tests, which often
feature tests of user interfaces, data binding and user behavior.

4.1.5 Test Framework

The most important criteria that were taken into account were the following:

• Unit testing framework

• Easy configuration

• Fast and lightweight

• Coverage report

There were two frameworks taken in account after an initial analysis namely, Facebook’s
Jest7 as well as the combination of Mocha8 and Chai9. The bundled power of Mocha and
Chai is very popular among the JavaScript world and though have evolved so called fla-
vors. Those flavors are developed for a certain reason for instance expect/should or assert
syntax. Moreover, they are often just syntactical sugar for writing tests more readable.
Mocha is the corresponding test runner.
Jest however, was built on top of Jasmine10, which itself is a unit testing framework. Over
time Jest has moved away more and more from Jasmine mainly due to the goal of devel-
oping a matcher tailored for Jest’s requirements11 . Nevertheless, Jest inherited Jasmine’s
describe syntax, which is the way tests were written in this thesis. In the meantime Jest
developed its own test syntax, which is very similar to the stated test describing logic.

7https://facebook.github.io/jest/
8https://mochajs.org/
9http://chaijs.com/

10https://jasmine.github.io/
11https://www.heise.de/developer/meldung/JavaScript-Unit-Test-Framework-Jest-15-verabschiedet-sich-

von-Jasmine-3311094.html

27

4 Design and Implementation

After a quick evaluation the decision was taken to use Facebook’s Jest, because it satisfies
very well the mentioned criteria. The framework does not need any configuration in the
scope of this thesis as well as it is contrary to Mocha and Chai test runner and test de-
scriber, bundled in one application. When executing Jest, the tool looks for any files in the
project that match a test pattern and executes them. The structure of project will be shortly
explained in the following subsection 4.1.6. On top of all that, Jest has a built in coverage
report which is supplied by the reporter tool Istanbul.js12.

4.1.6 Test Structure

An exemplary overview of the test structure inside the project is presented in figure 4.1.
The root project folder itself contains two folders. Firstly, the src folder, where every
JavaScript file is located and inside of this folder other folders can be found for structuring
the files and logic like the rules- or componentRules folder. Secondly, there is the test folder,
which has exactly the same structure and files as the src folder. It obviously contains all
the tests for the corresponding JavaScript files. Jest finds these tests easily when adding
the string test between the JavaScript file to test and the file ending, for instance formEx-
tractor.js is the JavaScript file to test and formExtractor.test.js is the corresponding test file.
This folder structure is favorable, because every test file is easy to find even if the devel-
oper has not written the test by himself.

extractor
src

rules
rootComponentExtractor.js
etc

componentRules
buttonExtractor.js
formExtractor.js
etc

index.js
test

rules
rootComponentExtractor.test.js
etc

componentRules
buttonExtractor.test.js
formExtractor.test.js
etc

index.test.js
testObject.js

Figure 4.1: Overview Test Structure

12https://istanbul.js.org/docs/tutorials/mocha/

28

4.2 Extraction Process

4.2 Extraction Process

4.2.1 First Phase of Extraction Process

Since section 3.3 is already covering the concept of the first phase of the extraction process,
the goal of this section is to analyze the structure of the exported SVG and how to trans-
form it the preprocessed JSON.
As the SVG is well-formed XML and the parser transforms it to JSON the rawJSON is of-
ten a deeply nested object. Therefore, the JSON does not lose any structural information,
which is really important to create the view model later.
Some structural elements in the rawJSON are generally very similar, because they are ex-
ported via the Figma prototyping tool. Figure 4.2 displays a simplified structural model of
a typical SVG file.

The first part of the object is obviously the SVG header. It often contains some informa-
tion about the size of the SVG like width and height, some XML related properties such as
name-space and xlink. Moreover it includes a version number and a view box, which spec-
ifies a rectangle in user space which should be mapped to the bounds of the viewport13.
Lastly the SVG header includes a description with the property indicating, that the SVG
was created by Figma.
The following element is the canvas object, indicated by the identifier canvas and followed
by a group object. This group object wraps the rest of the SVG and has also an identifier
that often indicates the name of the current view.
The next element is the first that may contain information that can be extracted and be-
cause of that is called rootComponent. Components are always indicated by group object
arrays. The objects inside of that array always have an identifier and some style proper-
ties and are signaling the start of the particular components. This is where the extraction
process really starts and the first phase of the process is finished.

Figure 4.2: Hierarchic Structure of a SVG File

13https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/viewBox

29

4 Design and Implementation

4.2.2 Second Phase of Extraction Process

Hereafter the general rule structure will be presented by illustrating an example as well as
an overview of all available rules.
Rules are pure functions that take a part of the preprocessed JSON as input and return either
the component or just an empty object. Those rules are invoked by the viewModelExtractor
module, which schedules the parsing of the SVG object, the preparation of the object, the
application of all available rules and in the end combines the result to the view model.
Every part of the raw input object that is meant to be an object, is applied to the rules.

Specific Rules Overview

Figure 4.3 reveals an overview of all available component rules. Each rule‘s name indicates
the type of component they are responsible for.
As stated above, those rules are applied to the preprocessed JSON by the viewModelExtractor
module. The results of every single rule will in the end get combined to form the view
model. If a rule fails, it will just return an empty object, which will get filtered out and not
be part of the result view model. Every main function of each rule, which is responsible
for identifying the component, extracting the important parts like content and style and
returning the result object, is exported to a bundling module. In this module those main
functions get composed to an array of functions and exported via the default export syntax.
This default export is imported by the viewModelGenerator module which itself iterates over
this array and tries to apply the rules to the preprocessed JSON. Those two loops form the
main part of the view model generation process.

Figure 4.3: Overview of Specific Rules

Specific Rule Example

To clarify the general functionality of a rule, figure 4.4 shows the flow chart of an exem-
plary rule, namely formComponentExtractor. The particular steps are a summary of the most

30

4.2 Extraction Process

important function calls, assignments and validators.
The extractFormComponent-function is invoked by the viewModelExtractor module and is
the main function of the extractor. It applies the input object to various validators, calls
other rules and at the end of the function returns a result.
The first step after the invocation is to initialize a result object as well as an identifier for
the wrapping component. Secondly, the first validator is applied to check if the received
object has a form component structure. When this conditional statement evaluates to false,
the current result is returned, which is an empty object at this moment. This empty object
gets recognized by the viewModelExtractor and therefore the output of the rule is ignored.
If the conditional statement evaluates to true the getFormAndLabelParts-function, which is
also part of the formExtractor-module, will get called. This function returns the label- and
form-part and assigns them to their respective variables.
Following this, another conditional statement checks if a form-part could successfully be
extracted. If it evaluates to false, the result is returned, which is still is an empty object.
The validator only checks the form-part, as a form component could be extracted without
a valid label-part but not without a form-part.
If a form-part is present another assignment follows, which itself calls two extractors that
return the form and label for the formComponentWrapper. This wrapper is contemplated to
be the final result, if every validation is successful.
Following this, the next step evaluates if the label-part has a useable identifier, that later
could be used as global identifier of the wrapping component. This identifier is obviously
not available, if no label-part is present. Therefore, this conditional statement has to be
called before combining the particular parts to the result and returning it. The returned
component conforms to the rules of the adapted view model and is integrated into the
component hierarchy of the view model.

31

4 Design and Implementation

Figure 4.4: Flow Chart Form Component Extractor

32

4.3 DOM Abstraction

4.3 DOM Abstraction

The DOM abstraction is contemplated to simplify the mapping from the view model to the
target DOM.
Figure 4.5 displays on the left side an empty view model and on the right side the root
node with one virtual node attached as child. The component name is directly mapped to
the tag name. As the first extracted component always is the rootComponent its values will
be mapped to the node. Node name is only present, if it is a DOM element. On contrary
the node field is empty, when the element is of type virtual node.
The class name is also directly mapped when the current element is a DOM element. If the
element is a virtual node, its class name is mapped to the properties object. The properties
of the array are also responsible for holding the element‘s style information.
The content part of the component is rendered as virtual text and attached to its parent‘s
children array. This is a way of enabling an easy mapping from the view model to the
DOM abstraction.
All of the other displayed DOM elements or virtual nodes are not used in the scope of this
thesis because they are either not having a valid mapping partner on the side of the view
model or are handled by the virtual DOM framework. This mapping to a virtual DOM
also enables child parent relationships in both directions, since the child nodes have their
parent node attached at the bottom of the virtual node. Contrarily the view model only
visualized parent child relationships but not vice versa.

Figure 4.5: Mapping Empty View Model to Virtual DOM

33

4 Design and Implementation

4.3.1 Exemplary View Model to DOM Abstraction Mapping

Figure 4.6 shows an exemplary mapping of a rootComponent and its first child a copyright
component. The mapping of the rootComponent is pretty obvious and is essentially easy to
match. The node is created with the identifier of the component and its component name
is used as tag name, which happens to be equal in this specific case.
The rootComponent‘s first child is in the visualized view model a copyright component.
This leads to rendering the component as a virtual node of the rootComponent. Its tag name
is mapped from the component‘s identifier. Moreover the style and structure parts are
mapped to the properties array inside the virtual node. It must be kept in mind that the fill
property has been mapped to color, since it is the valid property in the CSS world. Lastly
the content element, which is a text, is mapped as child to the component. The type of
this element is VText, as it is responsible for the plain text part of a DOM element. The last
element that is filled by the mapping process is the parentNode, which happens to be the
rootComponent DOM element.

Figure 4.6: Exemplary Mapping to Virtual DOM

34

4.4 Component Generation and Rendering

4.4 Component Generation and Rendering

This subsection describes the component generation and how they are rendered with the
help of the Polymer-2 starter kit14. This step finishes the implementation part.

Web Components Naming Conventions

The web components specification features clear rules on how to name components. The
specification implicates that every element has to contain a dash to force the developer to
add a namespace 15, for instance johns-tabs. Anything without a dash will throw an error.
The text before the dash should be used as namespace, whereas the text after the dash is
used to describe the element or the type of element.
For the implementation part the component names were chosen according to the rules
prefixing every component with ”my” and adding the identifier of the component after
the dash, for instance my-button1.
Moreover, there are reserved names that need to be avoided:

• annotation-xml

• color-profile

• font-face

• font-face-src

• font-face-uri

• font-face-format

• font-face-name

• missing-glyph

4.4.1 Component Generation

The component generation produces a separate HTML file for each component and names
them after the web components naming conventions described above.
In the first step, the skeleton for the creation of Virtual Nodes is visualized and following
this a skeleton for the creation of a DOM element is described.

Virtual Node Skeleton

Figure 4.7 visualizes the skeleton of a HTML template used to create Web Components on
the basis of a Virtual Node. The style part consists of the className followed by its style
properties. Following style, the element is rendered with its className as element type
and its unique identifier. If the component has a content part the text is put between the
opening and closing tag brackets.

14https://www.polymer-project.org/2.0/start/toolbox/set-up
15https://www.webcomponents.org/community/articles/how-should-i-name-my-element

35

4 Design and Implementation

<template>
<s t y l e >
className{

s t y l e . p r o p e r t i e s
}
</s t y l e>
<className id =” id”>c o n t e t . t ex t </className>

</template>

Figure 4.7: Virtual Node Skeleton of HTML Template

Figure 4.8 shows an exemplary HTML template of a button component. The style prop-
erties were adapted to the respective syntax. The classNames were resolved to button. The
element‘s identifier is defined by the component‘s identifier. Lastly, the button component
has a text attached and therefore this text is also mapped to the rendered button.

<template>
<s t y l e >

button{
transform : t r a n s l a t e (−156 , 9 0) ;
c o l o r : #2F80ED ;
background−c o l o r : #FFFFFF ;
}

</s t y l e>
<button id =” button1”>Submit</button>

</template>

Figure 4.8: HTML Template Button Component

DOM Element Skeleton

As described in the DOM abstraction part in section 4.3, components with children are
mapped to DOM elements. Figure 4.9 visualizes the template for a component with two
children. Obviously a component can inhere more children but for simplicity reasons this
template features just two children.
The wrapper may have some style properties in the respective style section of the template.
The style properties of the children are also attached to the style section. In the element
rendering part, just after the closing style tag, the wrapper encapsulates its children. Both
children may have properties according to their element type but always an unique iden-
tifier.

36

4.4 Component Generation and Rendering

<template>
<s t y l e>

div{
wrapper . s t y l e . p r o p e r t i e s
}
className1{

c h i ld 1 . s t y l e . p r o p e r t i e s
}
className2{

c h i ld 2 . s t y l e . p r o p e r t i e s
}
</s t y l e>
<div id =”wrapper”>
<className1 id =” c h i l d1 . id”>c h i ld 1 . content . t e x t </className1>
<className2 id =” c h i l d2 . id”>c h i ld 2 . content . t e x t </className2>

</div>
</template>

Figure 4.9: DOM Element Skeleton of HTML Template

4.4.2 Component Rendering

The rendering part of the components is greatly supported by Polymer 2.016. The frame-
work is well-suited to support the generation of custom elements inside its own shadow
tree by working with a dom-template17. This dom-template allows the developer to specify
the HTML template completely in markup, which is according to their documentation the
most efficient way of defining HTML imports. By default, if an element has a shadow
DOM, the shadow tree is rendered instead of the element‘s children. Through this setup
tree scoping and all the neat features of shadow trees are enabled for the element.
Figure 4.10 shows the complete skeleton of the used dom-module template.

<dom−module id =”my−header”>
<template>

<s t y l e > . . .</ s t y l e>
<header>

<h1>I ’m a header</h1>
<button>Menu</button>

</header>
</template>

</dom−module>

Figure 4.10: Template Definition using Polymers‘ dom-module

16https://www.polymer-project.org/2.0/start/
17https://www.polymer-project.org/2.0/docs/devguide/dom-template

37

4 Design and Implementation

JavaScript Part

The defined HTML template at the current stage could be imported to other HTML doc-
uments and could be rendered as custom elements in a DOM environment e.g. in mod-
ern browsers. For the scope of this thesis the decision was made to render those custom
elements in the Polymer 2.0 starter kit. The reasons why this approach was chosen is ex-
plained in further detail in the following section 4.4.3. Because of this approach there has
to be some JavaScript added to render the single components and in the end the render the
bundled component inside of an application.
Figure 4.11 illustrates the complete skeleton of the used approach. On top of the file there
is a HTML import, which includes the Polymer Element that is later used to be extended by
the component. Following the import the dom-module is defined. This section is already
described above. After the closing template tag the beginning of the JavaScript part is sig-
naled by the opening script tag. Inside the tag, the component is defined as a class and
extends the imported Polymer Element from the top of the file. Through the static ”is”-
getter Polymer is able to retrieve the dom-module for the element and to clone the current
template‘s contents into the element‘s shadow DOM18.
Lastly, the new class is associated with an element name19. Through the class syntax, which
is primarily syntactical sugar over JavaScript’s existing prototype-based inheritance20, the
developer could also expand created HTML templates by extending the class, in this case
MyComponent.

18https://www.polymer-project.org/2.0/docs/devguide/shadow-dom
19https://www.polymer-project.org/2.0/docs/devguide/registering-elements
20https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

38

4.4 Component Generation and Rendering

<l i n k r e l =”import ”
hre f = ” . . / bower components/polymer/polymer−element . html”>

<dom−module id =”my−component”>
<template>
<s t y l e>

className{
s t y l e . p r o p e r t i e s
}

</s t y l e>
<className id =”component”>content . t ex t </className>

</template>
<s c r i p t >

c l a s s MyComponent extends Polymer . Element {
s t a t i c get i s () {

re turn ”my−component ” ;
}
}
window . customElements . def ine (MyComponent . i s ,
MyComponent)
</s c r i p t >

</dom−module>

Figure 4.11: Complete Skeleton HTML Template

Exemplary HTML Template

Figure 4.12 shows a complete example of a generated button component. The generic
placeholders such as className, style.properties, text and my-component were replaced by
their respective values. This results in a custom element wrapped inside a HTML tem-
plate that could be imported into any application and could be rendered in a DOM en-
vironment. All implementation details and style properties are scoped to its shadow root
and are therefore not affecting or affected by other elements. Only some generic properties
are inherited from components that are higher in the component hierarchy.

39

4 Design and Implementation

<l i n k r e l =”import ”
hre f = ” . . / bower components/polymer/polymer−element . html”>

<dom−module id =”my−button1”>
<template>
<s t y l e>

button{
transform : t r a n s l a t e (−156 , 9 0) ;
c o l o r : #2F80ED ;
background−c o l o r : # FFFFFF ;
}

</s t y l e>
<button id =” button1”>Submit</button>

</template>
<s c r i p t >
c l a s s MyButton1 extends Polymer . Element {

s t a t i c get i s () {
re turn ”my−button1 ” ;
}
}
window . customElements . def ine (MyButton1 . i s ,
MyButton1)
</s c r i p t >

</dom−module>

Figure 4.12: Complete Example of Generated Button Component

4.4.3 Polymer Project Structure

The Polymer 2.0 starter kit was used for the view part of the implementation part, because
it is well-suited to quickly deploy and display generated components. The project template
is set up to follow the PRLP pattern for efficient and progressive loading of applications21.
The PRLP pattern stands for:

• Push critical resources for the initial route.

• Render initial route.

• Pre-cache remaining routes.

• Lazy-load and create remaining routes on demand22.

The project is generated by the Polymer-CLI and the output is visualized in figure 4.13.
This figure is adapted from the official documentation of the toolbox setup23. The most
important files of this project are:

21https://www.polymer-project.org/2.0/toolbox/templates
22https://www.polymer-project.org/2.0/toolbox/prpl
23https://www.polymer-project.org/2.0/start/toolbox/set-up

40

4.4 Component Generation and Rendering

• index.html
This is the main entry point for the application.

• src folder
All generated components should be in this folder. Inside this example the my-
app.html file is the top-level element and all other elements are bundled inside of
this file. Consequently the my-app.html file is imported to the index.html. This is a
well-known approach for decoupling components.

• service-worker.js and sw-prechage.config.js
This is the generated service worker and its configuration file. The service worker is
responsible for offline caching critical resources24.

bower.json
images
index.html
manifest.json
package.json
polymer.json
service-worker.js
src

my-app.html
my-icons.html
my-view1.html
my-view2.html
my-view3.html
my-view404.html
shared-styles.html

sw-precache-config.js
test

Figure 4.13: Overview Polymer Project Structure

Adaption of Polymer 2.0 Starter Kit

The Polymer starter kit is used as a template in the implementation part, because it was
easy to set up and greatly displays newly generated components in an overview. The
components are generated by the componentGenerator-module. After their generation the
components are written to a file and saved inside the source folder of the Polymer applica-
tion. Moreover, the my-app.html is generated too, since all generated components should
be rendered inside the application. The Polymer-CLI provides a command for serving the
components from the source folder. Shortly after the generation of the components they
are visualized after in the application. The only components of the Polymer‘s source folder
that are not generated are:

24https://www.polymer-project.org/2.0/toolbox/service-worker

41

4 Design and Implementation

• my.icons.html
This file contains icons that are required by the view. These icons are for instance
used in the application‘s header.

• my-view404.html
This is just a fallback view if anything goes wrong. Should loading the generated
components fail, it does not break the application.

Figure 4.14 visualizes the source folder of the Polymer project after the components were
generated. As stated before the my-icons.html and my-view404-html are the only files that
were not generated. The rest of the source folder is generated by the componentGenerator-
module.

src
my-app.html
my-button1.html
my copyrightComponent.html
my-icons.html
my-loginFormWrapper.html
my-Register.html
my-view404.html

Figure 4.14: Overview Polymer Source Folder after Component Generation

After serving the components the single components are visualized in the application.
Figure 4.15 shows the application with some generated components. On the left there
is a selection view where every component can be selected and viewed singled up and
on the bottom there is the bundled component. This component contains all generated
components and is therefore the result of the whole extraction and generation process.
The view displayed in the screenshot is situated after clicking the View button1 reference.
The main page then loads the HTML template and renders the custom element underneath
the MyApp-header. In this case the Submit-Button is rendered.

Figure 4.15: Screenshot Entry Point MyApp

42

5 Evaluation Use Cases

The goal of the evaluation is to assess the capabilities of the implemented extraction tool
in context of user interfaces that were designed with either Sketch or Figma and were
accessible online free of charge. The evaluation focuses on the extracted view model and
how comprehensive this model represents the real world example.

5.1 Evaluation Approach

The evaluation of each use case is based on the expected and the actual view model. The
expected view model was crafted by hand on the basis of the rawJSON since at this point
of the process no transformation has been performed yet. All elements in the expected
view model were counted and compared to the actual view model. The evaluation differ-
entiates between identified components, extracted components and extracted properties.
This approach was chosen, because firstly identified and extracted components are not al-
ways equal. Secondly, the properties are the core part of the styling part, which are very
important for rendering the components according to the W3C specification. Moreover,
each phase of the extraction process faced many challenges concerning the mapping of
the components to the view model. To explain these issues every section of the extraction
process features its own problem identification section. Those problems are divided in the
part they arose, namely problems identified with structure, content and style.

5.2 Fridge App Login View

This subsection features a walk-through explanation of the first use case, namely an input
form. The example1 was taken from uplabs.com, which is a community website for graphi-
cal user interfaces. Designers present their creations and some of them are available free of
charge. The example features different views of an application for iOS. As a starting point
the login view was chosen.

5.2.1 Fridge App Login View

Figure 5.1 displays a screenshot of the user interface. This UI prototype was designed with
the design tool Figma, using its power explained in section 2.3.2. It features a simple lo-
gin view where the users can submit their credentials like phone number and password.
Moreover, it has one button to submit the credentials, as well as a header. The following
consists of two links, one is for registering for the application and one helping in the case
of a forgotten password. On the bottom of the UI a copyright tag is located.

1https://www.uplabs.com/posts/fridge

43

5 Evaluation Use Cases

This prototype can be exported as SVG via Figma and then passed to the extraction pro-
cess.

Figure 5.1: Fridge App Login View

5.2.2 SVG and rawJSON

As stated in section 4.2.1 the exported SVG follows certain rules that support its parsing.
Figure 5.2 shows an object model of the structure of a SVG file and which part of the SVG is
applied to which rule. Since the SVG header is only instantiated once, it is not modeled in
the same syntax as the following group elements (g). Despite containing some information
about the size and a description, the SVG header is removed completely from the object as
it does not contribute knowledge to the view model.
The first instance of a group element, g1, is removed by the second rule, as it also does not
contribute any information to the view model. It is an element created by Figma to wrap
everything inside one element. The second instance, g2, is identified as the wrapper for
the following components. This is why it is the first element which is extracted as wrapper
and added to the view model. Its identifier is often a hint towards the view, that is pro-
totyped, and is therefore extracted as well. Moreover, it may contain some attached style,
as for instance clip-path-keys. Those clip-paths are meant to restrict a region, where the
paint shall be applied2. Although this feature is also implemented in CSS, it was removed
because of its reference to resources inside the SVG. This reference though is the path and
can not be mapped to a component and therefore the clip-path-properties were removed
completely.

2https://developer.mozilla.org/en-US/docs/Web/SVG/Element/clipPath

44

5.2 Fridge App Login View

The next element is another group element, but this time it is an array filled with objects.
Since this part of object wraps the whole component tree, it is called rootComponent and
is applied to the respective extractor. This component marks the root of the DOM, which
has later children added to it. Referring back to the object diagram, the rootComponent‘s
first element is often a rectangle, which is in case of the prototypical UI representing its
outer bounds. Those rectangles have style information attached, which is specified by the
use object in this case . The use object is tailored to duplicate nodes from the inside of a
SVG document to some other place in the document3. Since, cross-referencing is not part
of this thesis it was skipped but the style attributes of the use object can be used and were
therefore extracted as style information and attached to the rootComponent.
In the example object diagram 5.2 there is also a first component to be seen, which leads
to the first problem, discussed in the following. In general this component would be ex-
tracted by a specific rule tailored towards the requirements of this component.
The extraction of the rootComponent marks the end of the first phase of the extraction pro-
cess as defined in figure 3.7.

Problems identified with structure

Copyright component inside of rootComponent

It was stated that the rootComponent is on top of the tree and the child components are fol-
lowing it. In the example the UI prototype 5.2 already indicates that it can not be generally
admitted. The copyright component is inside the rootComponent although being located on
the bottom of the application as visualized in figure 5.1. This issue is a big problem for the
structure of the view model as it messes up the hierarchy that is met by all other compo-
nents. Eventually a workaround for this problem has to be developed when mapping the
components to W3C Components.

Problems identified with style

SVG‘s XML pointers

Many style properties inside the components point to resources as it is part of the XML
design. Nevertheless, this resource can not be extracted as they are vectors that describe
in detail how for instance a rectangle has to be drawn. Since this kind of drawing is not
possible in component based rendering, the solution is mapping. Referring back to figure
5.2 some of the style properties can be used and are therefore extracted. To be precise for
the example, the property of fill can be used later on, as it is part of CSS. On the contrary,
xlink:href is another XML pointer to a resource and is therefore removed.

Mapping of fill property

The fill property is the most interesting style characteristic when mapping the SVG to
the view model, because it is the only way that color properties are defined in the SVG.
This means that for example a button has two fills, where one needs to be mapped to the

3https://developer.mozilla.org/en-US/docs/Web/SVG/Element/use

45

5 Evaluation Use Cases

Figure 5.2: Object Diagram rawJSON

button‘s background color and the other fill needs to be mapped to its font color. The same
problem arises when dealing with different type of components. To solve this problem two
steps have to completed in order to guarantee a valid mapping:

1. Identification of the component type
In order to establish the right mapping, the component type has to be identified
correctly. Otherwise step two can not be executed.

2. Proper mapping of style properties.
If the component type was identified correctly, the respective extraction rule will
handle the mapping of the style properties from the SVG to the view model.

These style issues are a general challenge in the extraction process and this is why they
were placed inside this section, although they are explicitly handled in the second phase
of the extraction process. This placement is due to the structure of the following use case
evaluation where every phase of the extraction process is explained in detail and many of

46

5.2 Fridge App Login View

the extracted components and their respective problems with style, structure and content
are presented one after another.

5.2.3 Preprocessed JSON

The preprocessed JSON marks the beginning of the second phase of the extraction process,
which is the application of the specific rules. Figure 5.3 shows an object diagram of a form
component taken from the FridgeApp login view. The component is introduced by an
object (o2) with the identifier ”Group” and followed by a group array, wrapping the single
parts of the component. Since the component is of type form it is obvious that the left part
of the diagram has to be the form part. It is an object with object identifier ”Rectangle”
followed by some style information. On the other side the label part is located, which is
introduced by an object (o3) with the identifier ”Password”. This property is not only the
identifier of the object but also the content of the form component. It can be mapped to
the label that is located above the form as visualized in the login view figure 5.1. The label
part has also some style information attached which can be extracted.

Figure 5.3: Object Diagram Form Component

Problems identified with structure

Header inside of the first form

As shown above, the extraction of a form component can be an easy match. A counter
example is visualized in figure 5.4. The figure is very similar to figure 5.2. It clearly consists
of a form part (o2) having an identifier ”Rectangle” with some style attached, as well as
a label part. The issue arising is, that both o3 and o4 could be the label part of the form

47

5 Evaluation Use Cases

component. There is no way of differentiating between those two objects. By looking at
the FridgeApp login view it is obvious that o4 is the label part of the component and o3
is a kind of header for the following components. This issue is a clear limitation of the
SVG‘s structure and in this example there is no clean way of matching the elements to its
respective components without looking at the login view.

Problems identified with content

Identification of text inside the SVG

The problem identified with the content part of the view model is, that the SVG does not
directly supply any content. The string Phone Number from the label of the form component
for instance is saved in the identifier of the object as visualized in figure 5.4. This could be
problematic when facing more complex user interfaces than the analyzed example.

Problems identified with style

Different style structures in form parts

Comparing the form parts of the two object diagrams, namely o2 in 5.3 and o2 in 5.4, there
is a clear difference between the structure of their attached style parts. One is wrapping its
style information inside of a use object, whereas the problematic form component structure
in figure 5.4 is more complicated. It contains a group and mask object, which is the first
reason it is more difficult to identify. Moreover, the mask and group objects wrap use
objects, which themself have nearly identical style contents. The only difference are the
various XML references (xlink:href), whereas the fill properties ”white” and #FFFFF are
identical. This problem leads to a higher complexity of writing a comprehensive rule to
identify and extract form components, as they do not follow a general structure and can
vary.

48

5.2 Fridge App Login View

Figure 5.4: Object Diagram Form Component with Problematic Structure

5.2.4 View Model

The view model is the result of the first and second phase of the extraction process. It
contains all information about the SVG that could be extracted.

View Model Header and Copyright Component

Figure 5.5 visualizes the origin of the view model.
The first element is the rootComponent which has an identical identifier and has its style
and structure attached. The class name div is self-evident, as it is the wrapper of the com-
ponent tree and this is one of its features in HTML documents. The style part has been
extracted from the first rectangle of the SVG, which is responsible for the outer bounds of
the user interface.
Following style and structure is an array of rootComponent‘s children, which are all compo-
nents that could be extracted. In the case of the example the first component is a copyright
component. As stated in 5.2.2 the copyright component is on top of the hierarchy, although
it is located on the bottom of the view, which is obviously a problem. Nevertheless, the
copyright component gets extracted smoothly with all its properties, namely structure,
content and style. The combination of the structure and the text of content, the component
could already be rendered in pure HTML, since the beginning of the text © references
a copyright tag in HTML4.

4https://wiki.selfhtml.org/wiki/Referenz:HTML/Zeichenreferenz

49

5 Evaluation Use Cases

Since the copyright component has no children attached, the view model continues with
the component tree.

{
id : ”rootComponent ” ,
s t r u c t u r e : {

className : ” div ”
} ,
s t y l e : {

p r o p e r t i e s : {
transform : ” t r a n s l a t e (−188 −334)” ,
f i l l : ”#C4C4C4”

}
} ,
ch i ldren : [

{
CopyrightComponent : {

id : ”CopyrightComponent ” ,
s t r u c t u r e : {

className : ”p”
} ,
content : {

t e x t : ”© ; Copyright 2017 Fridge App”
} ,
s t y l e : {

p r o p e r t i e s : {
transform : ” t r a n s l a t e (−78 3 0 2) ” ,
c o l o r : ”#FFFFFF ” ,
f i l l −opaci ty : ”0 .7”

}
}

}
} ,

.

Figure 5.5: View Model of Header and First Component

Extracted Form Component

Figure 5.6 visualizes the next child of the rootComponent. The component features its form-
ComponentWrapper, which is responsible for wrapping the component‘s form and label
part. This is why it is defined again as a div.
The first child is the label part. Its identifier is generated from the content and the term
label to make its assignment easier. The structure is defined as label as it is HTML‘s way
of defining a label for its respective form. Because of that a similar approach for this view
model was chosen. The content part is the extracted identifier of the object from the pre-
processedJSON.
The form component is described by a similar identifier which is the label string appended
with the term form. As it is conceivable that a form component may exists without a label
part, the form identifier in this case would be form plus a number, which will be incre-

50

5.2 Fridge App Login View

mented each time a form is extracted. This process is exemplary shown in the flow chart
of the extractor in section 4.2.2. The style part of the form is an easy extraction, skipping
the useless XML pointer. Lastly, the form component is self-evidently of type form, since it
is HTML‘s way of defining forms. The identifier of the wrapping component is defined by
the label‘s content string appended with the term ”FormWrapper”. Through this naming
convention it is self-evident which part is the wrapper the form or the label.

{
formComponentWrapper : {

id : ”passwordFormWrapper ” ,
s t r u c t u r e : {

className : ” div ”
} ,

ch i ldren : [
{

labelComponent : {
id : ”passwordLabel ” ,
s t y l e : {

p r o p e r t i e s : {
transform : ” t r a n s l a t e (−156 −29)” ,
c o l o r : ”#FFFFFF”

}
} ,
s t r u c t u r e : {

className : ” l a b e l ”
} ,
content : {

” t e x t ” : ”Password”
}

}
} ,
{

formComponent : {
id : ”passwordForm ” ,
s t y l e : {

p r o p e r t i e s : {
f i l l : ” white ” ,
transform : ” t r a n s l a t e (−156 −6)”

}
} ,
s t r u c t u r e : {

className : ”form”
}

}
}

]
}

}

Figure 5.6: View Model of Form Component

51

5 Evaluation Use Cases

Faulty Extracted Form Component

As stated in subsection 5.2.3 one problem identified with the structure was the header
inside the form component. Figure 5.7 displays exactly the result of this problem. The first
element in the object array, where the form component was extracted from, is the login
header followed by the form part. There is no way of differentiating between the header
and label part of the form component. This is why the result in figure 5.7 is faulty as
the header is accidentally identified as the label part. Therefore, the wrong label part is
extracted although the valid label component is present.

formComponentWrapper : {
id : ” loginFormWrapper ” ,
s t r u c t u r e : {

className : ” div ”
} ,
ch i ldren : [

{
labelComponent : {

id : ” loginLabel ” ,
s t y l e : {

p r o p e r t i e s : {
transform : ” t r a n s l a t e (−156 −178)” ,
c o l o r : ”#FFFFFF”

}
} ,
s t r u c t u r e : {

className : ” l a b e l ”
} ,
content : {

t e x t : ”Login”
}

}
} ,
{

formComponent : {
id : ” loginForm ” ,
s t y l e : {

p r o p e r t i e s : {
transform : ” t r a n s l a t e (−156 −101)” ,
f i l l : ”#FFFFFF”

}
} ,
s t r u c t u r e : {

className : ”form”
}

}
}

]
}

Figure 5.7: View Model of Form Component with Faulty Content

52

5.2 Fridge App Login View

Extracted Button Component

The next element in the component hierarchy is identified as a button component. Figure
5.8 shows the object diagram of the mentioned button component as it is saved inside the
component array. Similar to a form component, a button consist of two different elements.
The first one, is an object with an ”Rectangle” identifier and an object with a label like
identifier. Both elements have style information attached in form of an use object.
Figure 5.9 shows the extracted view model of a button component. The identifier of the
object is incremented each time a button component could be successfully extracted to
ensure globally unique identifiers.
The structure part can easily be mapped to a button in HTML. The description of the
button is kept in the content part as well as the style part is attached in its respective
object. The mapping of the colors has been solved in the following way:
The color property, which is responsible for the description of the button is extracted from
the fill property of the label part. The background color on the other hand is mapped from
the rectangle object‘s fill, as it is responsible for the color of the button itself. This mapping
works as long as both label and button part can be identified successfully.

Figure 5.8: Object Diagram Button Component

Problems identified with structure

Identical structure as a form component

When comparing the object diagram of a button visualized in figure 5.8 and a form compo-
nent 5.3 it is obvious to conclude that both components are very similar. Both have a kind
of label part and rely on an object with a ”Rectangle” identifier. This is a huge problem, as
the identification of components is a necessary step to extract them. The only difference is
the identifier of the label part. Inside a button component the identifier of the label part
is associated with a button description like for instance submit, cancel, abort, etc. This

53

5 Evaluation Use Cases

problem is solved in the implementation part by matching the input component against
an array of known button strings as named before. If an identifier that could be matched
to a button component is present, the buttonExtractor will be invoked, otherwise the com-
ponent will be passed to the formComponentExtractor.
As this workaround may work for the scope of this use case, it is self-evident that this could
cause huge problems in more complex use cases and greatly effect the extraction quality.
The array that is matched against the identifiers on the other hand can be extended easily,
as it is defined as a variable.
{

buttonComponent : {
id : ” button0 ” ,
s t r u c t u r e : {

className : ” button ”
} ,
content : {

t e x t : ”Submit”
} ,
s t y l e : {

p r o p e r t i e s : {
transform : ” t r a n s l a t e (−156 9 0) ” ,
c o l o r : ”#2F80ED” ,
background−c o l o r : ”#FFFFFF”

}
}

}
}

Figure 5.9: View Model of Button Component

Extracted HTML Link Component

The last elements that are inclosed in the component array are two HTML link compo-
nents. Figure 5.10 shows an object diagram of the components inside the component ar-
ray. Components of this kind can be identified by their use object array, which contains all
attached style properties. Their respective identifiers can be mapped to their label, which
is in the case of the view model is mapped to the content part.
Figure 5.11 visualizes the extracted view model of the object diagram. Since two compo-
nents could be identified, the workaround implemented for this case was to combine both
components in one array. This also leads to the first problem identified with structure,
but is not content of this paragraph. Both components are very similar, as they only differ
in their identifiers and marginally in their style properties. Their content and identifiers
are derived from their object identifiers as well as their style information. The mapping
to HTML links can be made, because of their very similar characteristics. Both should be
click-able and should trigger and action, for instance direct the user to a dialog, where he
can register.

54

5.2 Fridge App Login View

Figure 5.10: Object Diagram HTML Link Component

Problems identified with structure

Two elements inside one identified component

This is a severe problem and limitation since all other components are singled up inside
of an group object array. HTML links differ, as they are wrapped inside one group object
array and therefore the rule has to be implemented differently. Moreover, the mapping to
the view model is a problem, as it does not conform to the the view model‘s structure.

Difficult component identification

The second problem is due to its different structure compared to other components. HTML
links may be difficult to identify in other use cases. They are not containing much infor-
mation as visualized in the object diagram 5.10, what makes it tough on the extraction tool
to identify the valid kind of component or even extract usable information. The figure
shows the two components (o2, o5) with their respective content information, which is
in this case their identifier and their style properties encapsulated in their respective use
array(u1, u2). The properties of the use array are in both cases very similar and will be ex-
plained in problems identified with style. Nevertheless, this slight difference in structure
are a big challenge for the identification of the right component type.

55

5 Evaluation Use Cases

Problems identified with style

Two use objects with nearly identical properties

This problem is not only related to style but also to the structure of the object. The only
possibility to identify HTML link components is their respective use objects array. By ana-
lyzing those objects, it becomes self-evident that the information included in the use object
arrays is very limited. Both elements inside the array contain nearly identical information,
as only the XML pointer has an different identifier. All other properties such as fill and
transform are identical. This may be a limitation but has to be checked by evaluating a
second use case.

56

5.2 Fridge App Login View

{
htmlLinks : [
{

htmlLinkComponent : {
id : ’ Forgot Password ’ ,
s t r u c t u r e : {

className : ’ a ’
} ,
content : {

t e x t : ’ Forgot Password ’
} ,
s t y l e : {

p r o p e r t i e s : {
transform : ’ t r a n s l a t e (−156 1 6 2) ’ ,
c o l o r : ’# FFFFFF ’

}
}

}
} ,
{

htmlLinkComponent : {
id : ’ Regis ter ’ ,
s t r u c t u r e : {

className : ’ a ’
} ,
content : {

t e x t : ’ Regis ter ’
} ,
s t y l e : {

p r o p e r t i e s : {
transform : ’ t r a n s l a t e (111 1 6 2) ’ ,
c o l o r : ’# FFFFFF ’

}
}

}
}
] ;

}

Figure 5.11: View Model of HTML Link

5.2.5 DOM Abstraction

This subsection is contemplated to show examples of two typical components from the
view model and how they were mapped to the DOM abstraction.

Form Component

Referring to figure 5.6 figure 5.12 visualizes how the extracted form component is mapped
to the DOM abstraction. It has to be noted that only properties which were enriched by

57

5 Evaluation Use Cases

the view model are modeled.
Since the component has children attached, the root of the component is mapped to a DOM
element. This element is enriched with the component‘s identifier as tag and node name.
Moreover, it has its class name attached, which is a div element. Two virtual nodes extend
the root node, namely the label part (v1) and the form part (v2).
The first virtual node‘s tag name is again the identifier of the label part of the form com-
ponent. This node has properties (p1) and children (c1) attached. The specific properties
contain the class name, which is label and a style object which itself contains the respective
style information that have been extracted to the view model. As stated before, the content
part is mapped as Virtual Text (vt1) to the virtual node, which explains the extra children
the right side of the tree.
The second virtual node on the right side of the tree represents the form part of the form
component. It is very similar to the label part, unless having different style properties, a
Virtual Text (vt2) and obviously a different class name.
Elements that have not been modeled but are enriched by the DOM framework are the
parent nodes for instance. Every element in the DOM abstraction has a parent node at-
tached. The label part (v1) and form part (v2) have their wrapper (d1) referenced in the
parent node and the DOM element itself has the rootComponent attached as reference.

Figure 5.12: Object Diagram of DOM Abstraction Form Component

Button Component

The next example that is given is the mapping from a button component to a virtual node.
Figure 5.13 illustrates the model of a mapped button component. The first thing that stands
out is the simpler structure compared to the form component. This arises due to the fact
that the button component has no additional children attached but its content in form of a

58

5.2 Fridge App Login View

VText. The remaining properties are mapped similar to the form component.
The virtual node (v1) is identified by its unique tag name, which is again extracted from the
button component‘s identifier. The attached child contains the content part instantiated as
VText (vt1). On the left side of the tree the property section is located. It contains the button
class name as well as some extracted style properties.
Obviously this virtual node has more properties in its specific implementation as only
the most important ones are modeled. These properties are for example a reference to its
parent node, hooks and namespaces.

Figure 5.13: Object Diagram of DOM Abstraction Button Component

59

5 Evaluation Use Cases

5.2.6 Generated Components

The following will presented two of the generated components. The respective sections
will feature their HTML document as well as limitations, that came up during the evalua-
tion.

Generated HTML Link Component

The first generated component presented is a HTML link component. In the FridgeApp
login view the button is located beyond the submit button, visualized in figure 5.1. The
generated HTML is represented by figure 5.14.
The HTML is generated on the basis of the Virtual Node skeleton, described in section 4.4.1.
On top of the generated HTML there is as always the import of the Polymer element. The
remaining part of the structure is also according to the template. The interesting part is the
rendering part of the the link element (a). The identifier is chosen according to the com-
ponent‘s identifier. The href property is hardcoded and referring to the root node inside
the Polymer application, as there is obviously no reference defined in the UI prototype.
This approach was chosen, since when there is no href defined inside the link element, the
rendered element is not click-able and therefore is not visualized correctly. This property
has obviously to be modified by the developer, when reusing the component.
The following script and Polymer part is again generated according to the template.

60

5.2 Fridge App Login View

<l i n k r e l =”import ”
hre f = ” . . / bower components/polymer/polymer−element . html”>

<dom−module id =”my−forgotpassword2”>
<template>
<s t y l e>

a{
transform : t r a n s l a t e (−156 , 1 6 2) ;
c o l o r : #FFFFFF ;
}

</s t y l e>
<a id =”ForgotPassword2 ”
hre f =” http : / / 1 2 7 . 0 . 0 . 1 : 8 0 8 1 / rootcomponent”>
Forgot Password

</template>
<s c r i p t >
c l a s s MyForgotpassword2 extends Polymer . Element {

s t a t i c get i s () {
re turn ”my−forgotpassword2 ” ;
}
}
window . customElements . def ine (MyForgotpassword2 . i s ,
MyForgotpassword2)
</s c r i p t >

</dom−module>

Figure 5.14: Generated HTML Link Component

Generated Form Component

Figure 5.15 visualizes the generated HTML document of a form component. It adapts
to the DOM element skeleton defined in 3.3.4. Each of the parts, namley form and label
part, have their own style definition inside the script tags. The difference in the element
definition (beginning of the closing script tag) is that the div is wrapping label and form
part. Inside the form tags an input element is defined. This is where the developer can
adapt the input types. There are three different input types5:

• text
Defines an one-line input field.

• radio
Defines a radio button, which allows selecting one of many choices.

• submit
Defines a submit button, which is self-evidently used to submit a form.

5https://www.w3schools.com/html/html forms.asp

61

5 Evaluation Use Cases

<l i n k r e l =”import ”
hre f = ” . . / bower components/polymer/polymer−element . html”>
<dom−module id =”my−passwordformwrapper”>

<template>
<s t y l e>

l a b e l {
transform : t r a n s l a t e (−156 , −29);
c o l o r : #FFFFFF ;
}
form{

f i l l : white ;
transform : t r a n s l a t e (−156 , −6);
}

</s t y l e>
<div id =”passwordFormWrapper”>

< l a b e l id =”passwordLabel”>Password</l a b e l>
<form id =”passwordForm”> <input> </form>

</div>
</template>
<s c r i p t >

c l a s s MyPasswordformwrapper extends Polymer . Element {
s t a t i c get i s () {

re turn ’my−passwordformwrapper ’ ;
}

}
window . customElements . def ine (
MyPasswordformwrapper . i s ,
MyPasswordformwrapper
) ;

</s c r i p t >
</dom−module>

Figure 5.15: Rendered Form Component

5.2.7 Use Case Evaluation Summary

In the following a summary of the evaluated use case will be given.

Extraction Process

The extraction process will be measured by its successfully extracted components and their
respective properties. Table 5.1 shows the success of the extraction process. The total
number of components from the rawJSON were taken as available components and were
counted. The extraction quality of components has been divided into two rows, since the
first step is the identification and the second the extraction. Obviously a component can

62

5.2 Fridge App Login View

not be extracted if it has not been identified before. Nevertheless, it is an important quality
criteria of the extraction process.
Properties are only listed once, as when a component has been identified there is an im-
plicit extraction of their properties. Only those properties are counted, that can be used in
a W3C Components context. This means that all XML related properties that can not be
used in the view model are not counted for the total column.
The table shows that every component from the use case could be identified correctly.
This obviously correlates with the fact, that the extraction tool has been developed by the
means of this example and therefore is well suited for its structure and contents. The rate
will likely greatly differ, when the extraction tool is applied to a different use case. Never-
theless, the rate is a good indicator for successful mapping to the view model.
It may be surprising that the rate of identified and successfully extracted components dif-
fer. This evolved from the problem described in section 5.2.4. The header inside the form
component can only be identified by looking at the login view itself. There is no way of
differentiating between the right label components just with the extraction tool, as they
look exactly the same. This issue is responsible for the difference between successfully
identified and extracted components.
The rate of successfully extracted properties is also indicating a decent success rate. The
incorrect extracted properties are easy to explain, as they have been skipped for several
reasons. For instance, two properties of the HTML link components have been skipped, as
they are important to identify the components, but do not contribute any style information
to the view model. This is because the style properties are identical as described in section
5.2.4. Moreover, two properties are missing due to the issue concerning the faulty identi-
fied form component. The last missing property has evolved from the different structure
of form parts inside the form component.

Correct Incorrect Missing Total Rate
Identified components 6 0 0 6 100 %
Extracted components 5 1 0 6 83 %
Extracted properties 19 0 5 26 73 %

Table 5.1: Evaluation of Extracted Components Login View

DOM Abstraction

The DOM abstraction part is not expected to cause problems as long as the extraction part
was executed successfully. Every component that has been identified will be mapped to
the virtual DOM with no exception. This is the reason why a evaluation of this part of the
process is not necessary.

W3C Components Generation

Finally, the last step of the evaluation is the result of the component generation. Note
that the extraction tool has been built around this use case and the result is most probably
the best result this approach can produce. Figure 5.16 pictures a screenshot of the bun-
dled component inside the Polymer project. All of the individual generated components

63

5 Evaluation Use Cases

are bundled, imported into the HTML and then rendered. The result clearly pictures the
limitations of the chosen approach and many of the problems, that have been identified
during the implementation and have carried out through the whole process. In the follow-
ing every single component will be considered individually naming all issues and their
cause.

Figure 5.16: Screenshot Bundled Components FridgeApp

rootComponent and Background

The first thing that immediately pops up is the background of the bundledComponent. The
background is computed by the linear gradient6 which happens to follow the same rules
in CSS and SVG. Obviously this makes the mapping easy and the visualization of the
background is pretty good. The only problem is the design of the first phase of the extrac-
tion process, where the section that contains the linear gradient information was removed
completely. By design the first phase is not extensible and therefore a workaround was
implemented to ensure a proper background mapping.

Copyright Component

The next component in the hierarchy is the copyright component. The mapping of the
component itself and its style worked good but obviously the placement of the component
is false. This issue was already addressed in subsection 5.2.2 as the component is not
placed at the expected position and therefore is also rendered at the wrong position inside
the bundled component.

Form Components

The next two elements are the form components and there are several issues. Although
nearly all style information from the SVG could be extracted to the respective compo-
nents, there are still obvious issues with the style part. Firstly the rectangles do not have
soft edges but hard ones. The reason for this is that the rectangles in the SVG are defined
vectors. Those vectors draw the lines and therefore create the soft edges of the rectangles.

6https://developer.mozilla.org/en-US/docs/Web/CSS/linear-gradient#Gradient with multiple color stops

64

5.2 Fridge App Login View

Sadly there is no way to map those vectors to the components and hence the form part
does not have any soft edges.
Secondly the mapping of the rectangles‘ fills did not work properly. In the UI prototype
the only the rectangles‘ borders are white as in the generated component the whole fill of
the rectangle is white. This issue is again caused by the way rectangles are defined in the
SVG.
Thirdly there is also a structural issue. The first form component has a label named ”Lo-
gin” which is self-evidently the wrong label. As described in subsection 5.2.2 the issue is
the login string, which is of type header and placed inside the form component. As stated
before there is no way of differentiating between the header and the label in this particular
case. Since the first element inside the form component is the login header and its structure
is identical to a label, the responsible extractor expects the header to be the label and there-
fore maps it to the label part of the form. The correct label is skipped, because there is no
second label expected inside of a form component. This issue is not present inside of the
second form component (Password) and therefore the mapping works for this component.

Submit Button

The next component in the figure is the submit button component. Since a button compo-
nent is very similar to a form component and its rectangle part is identical to the form‘s
rectangle, the same issue with the soft edges can be identified. Moreover, the size and
dimension of the button are not even close to the button of the UI prototype. This issue
is also caused by the vector definition of rectangles in SVG data structures. On the other
hand the extraction of the remaining style part worked pretty well, since the background
color and font color could be extracted and mapped successfully to the button component.

HTML Links

On the bottom of view, the last two components are the HTML link components. In the im-
plementation parts there were already big problems with the structure of the links. They
appear inside the SVG as one component, but need to be mapped to two single compo-
nents for the rendering part. This workaround was implemented and may not work for
other use cases, since the assumption that every HTML link is defined as single component
may not be true generally. Nevertheless, by the means of the workaround the mapping to
the rendered components inside the bundled component worked pretty well. The content
information, which is basically the displayed text, and style properties could be extracted
and rendered successfully. The only issue of the rendering part is the placement of the
components. In the UI prototype the links were put beyond the submit button. In the
resulting component the links are placed next to the submit button. This issue is caused
by the lack of structural information of the SVG. During the implementation no properties
could be found that justify the placement of the links and therefore are also not present in
the rendered component.

65

5 Evaluation Use Cases

Summary

Before the summary of the evaluation some assumptions that have been made during the
implementation have to be emphasized. Firstly the extraction tool was designed around
this use case and therefore no other UI prototype will yield a better result than the FridgeAp-
pLoginView. Every assumption of how elements from a SVG can be mapped to components
are based on the content and structure of this use case. Since this may not generally be true
for other use cases the scope of the implemented extraction tool may be small but has to
be evaluated by assessing another use case. Nevertheless even for this use case many
workarounds had to be implemented which already question the generally applicability
of the chosen approach. This applicability obviously has also to be evaluated by assessing
another use case.
Moreover, not even all properties that could be extracted and were attached to the compo-
nents can be rendered in browser such as the transform property that nearly every com-
ponent has. The transform property defines a list of transform definitions that are applied
to an element and the element‘s children7. As the property works with coordinates it ob-
viously can not be rendered as a component and is skipped at DOM build time, although
it was extracted and mapped successfully to its respective component. This issue exempli-
fies the loss of information when transforming a SVG file to a HTML document.
The evaluation can be summarized by stating that a mapping from SVG elements to web
components is possible in general but many issues exist although the tool was designed
around this use case. Those issues have to be solved by implementing workarounds which
themselves narrow the general applicability scope of the extraction tool. The applicability
to real world examples can already be questioned.

5.3 Stripe Checkout

The next use case that was analyzed is a view from an UI prototype that features forms
for pay checkouts8. Those checkouts are for instance used when buying something online
and then being redirect to the paying part. This use case was chosen after a long search
for a well-suited example to elaborate the limitations of the implemented tool. Even if
the evaluation will disclose huge limitations, it was exactly chosen for that reason. The
main issue is that there is nothing like design guidelines and even if the prototypes are
designed with the same tool, they greatly differ in their structure and their properties.
Figure 5.17 shows the UI prototype. At first sight it looks very similar to the FridgeApp
login view. There are forms and their respective labels and on the bottom a button to
trigger the checkout. Nevertheless, its structure and properties greatly differ from those of
the FridgeApp and will be discussed in the following.

5.3.1 SVG and rawJSON

The first step of the process is not causing problems. This is not surprising as it only
parses the SVG to JSON. But looking at the structure of the rawJSON there are the first big

7https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/transform
8https://www.uplabs.com/posts/stripe-checkout-form-web-mobile-responsive

66

5.3 Stripe Checkout

Figure 5.17: Screenshot Movie Detail View

problems arising. On basis of the FridgeApp the assumption was made that the structure
of the header components is always identical. This is certainly not the case for this use case.
Figure 5.18 shows the beginning of the passed object. As the first part of the extraction
process is fixed, structural problems cause the extraction tool to fail.

Problems identified with structure

Different component identifiers

The first four objects are as expected (SVG, g1, g2, g3), but beginning with g4 are great and
not expected difference in the structure. In the FridgeApp, components were introduced
wrapped in an array with the identifier ”Group” and every single component was itself
wrapped after a group identifier and inside of an array. The object diagram clearly shows
that this is not the case for checkout view. This issue leads to failure of the extraction,
before any extraction could be started. Of course a workaround for this problem could
be implemented, but the idea of this thesis was to create a generic tool and a another
workaround would greatly contradict this approach. This is why even if the extraction
process is basically over at this point, the evaluation of the use case will continue, as it
shows limitations of the whole approach which the attempt to generate components from
SVG UI prototypes.

Problems identified with style

The problems that were identified with style properties are very similar to the ones of the
FridgeApp. Those issues are generic problems when trying to transform SVG, which again
is well-formed XML, to a data structure with lower abstraction level. This will always lead
to loss of information, which is already described in section 5.2.2.

67

5 Evaluation Use Cases

Figure 5.18: Object Diagram rawJson of Stripe Checkout

5.3.2 preprocessedJSON and View Model Header

The next step in the extraction process is the generation of the preprocessedJSON. This step
is applied after the parsing and generates a rootComponent with its respective properties.
Moreover this step creates an array with all components that are included in the SVG and
attaches them as children to the rootComponent. Figure 5.19 shows the JavaScript object,
after the generic rules have been applied. Although a component array was extracted
successfully, a look at the first element of the componentArray will immediately rise big
concerns if any information can be extracted.

68

5.3 Stripe Checkout

{
rootComponent : {

id : ”rootComponent ” ,
s t r u c t u r e : {

className : ” div ”
}

} ,
componentArray : [

{
id : ” S t r i p e /Buttons/Pay button ” ,
g : [

{
id : ” base button ” ,
use : {

x l i n k : hre f : ”# p a t h 0 f i l l ” ,
transform : ” t r a n s l a t e (978 7 3 3) ” ,
f i l l : ”#66C226”

}
} ,
{

id : ” I c c h e c k ” ,
use : {

x l i n k : hre f : ”# p a t h 1 f i l l ” ,
f i l l : ” u r l (# pat tern0) ” ,
transform : ” t r a n s l a t e (1154 755)”

}
}

]
} ,

]
}

Figure 5.19: preprocessedJSON of Stripe Checkout View

Problems identified with Structure

No Component Identifiers

Components inside the Stripe Checkout view are different than in the FridgeApp. There-
fore, all of the rules will fail as the components need to be identified firstly and only if this
condition evaluates to true, the extraction of the component can start. This means if the
component can not be identified the extraction process will also fail.

Exemplary Button Component

Figure 5.19 shows the beginning of the preprocessedJSON. It shows the rootComponent and
following this the component array. The first element in the array is representing a button
component, which can be assumed by opening the UI prototype in Figma. This exam-
ple greatly shows the problem that was stead above that components following different

69

5 Evaluation Use Cases

structural patterns than in the FridgeApp example. The component is neither introduced
by a group identifier, nor is the button component similar to button components of the
FrigeApp example. A button component in the FridgeApp example always had an rect-
angle, which was representing the button itself, and a labeling part which was responsible
for the content. This structure is not upheld by the Stripe Checkout example. Therefore,
an extraction of the component is not possible by the means of the implemented extraction
tool.

Exemplary Form Component

To elaborate even more limitations figure 5.20 shows what was manually identified to be
a form component in the Stripe Checkout example. A form component was assumed to
have at least a form part and optional a label part. The form was identified by being a
rectangle with respective style properties and label by an identifier which was extracted as
text and also some style properties. Those two elements were wrapped inside of an array,
which identified itself as a component. Not one of these identifiers is present in the Stripe
Checkout view. There is clearly another structure. Obliviously the object with identifier
label is contemplated to be the label part and also the icon is pretty clear at first sight.
Of course it would have been possible to implement a button component identifier that
follows the corresponding rules of the Stripe Checkout view but again this would greatly
decrease the generic approach the extraction tool was designed to. During design and
implementation there had been no clue that the structure would differ by this amount.

5.3.3 View Model

The issued problems result in a nearly empty view model visualized in figure 5.21. The
only component that was extracted successfully was the rootComponent. But not even this
is a big accomplishment, as the rules for rootComponents were defined light, since the com-
ponent is obligatory to start any type of extraction or even rendering. All of the stated
problems lead to an empty children array, which makes the view model completely use-
less.

5.3.4 DOM Abstraction and Generated Components

Since the view model is useless neither a mapping to the virtual DOM can be realized
nor components can be generated. Therefore, a further analysis will not yield anymore
findings.

5.3.5 Use Case Evaluation Summary

The analysis of this use case greatly shows the limitation of the implemented extraction
tool as well as the chosen approach. If the tool works similar to the FridgeApp use case
and is further developed it may lead to positive result in the process of prototype driven
development. As this is not the case for different use cases, the chosen approach is not
comprehensive enough. The easiest way and probably most useful way would be to create
design guidelines which represent how which type of element should be modeled. This
would greatly simplify the identification of components and hence the extraction.

70

5.3 Stripe Checkout

{
id : ” S t r i p e /Inputs/ I n p u t s i n g l e ” ,
g : [

{
id : ” h r u l e ” ,
use : {

x l i n k : hre f : ”# p a t h 2 f i l l ” ,
transform : ” t r a n s l a t e (1012 4 6 1) ” ,
f i l l : ”#E5E5E8”

}
} ,
{

id : ” S t r i p e /Inputs/ I n p u t t e x t p l a c e h o l d e r ” ,
$ t : ””

} ,
{

id : ” Label ” ,
use : {

x l i n k : hre f : ”# p a t h 6 f i l l ” ,
transform : ” t r a n s l a t e (1010 430)”

}
} ,
{

id : ” S t r i p e /Icons/UI/Email ” ,
g : {

id : ” i c l o c a t i o n ” ,
use : {

x l i n k : hre f : ”# p a t h 7 f i l l ” ,
transform : ” t r a n s l a t e (989 4 3 1) ” ,
f i l l : ”#559A28”

}
}

}
]

}

Figure 5.20: Form Component of Stripe Checkout View

{
id : ”rootComponent ” ,
s t r u c t u r e : {

className : ” div ”
} ,
ch i ldren : []

}

Figure 5.21: View Model of Stripe Checkout View

71

5 Evaluation Use Cases

5.4 Fridge App Add Item View

To emphasize the applicability of the extraction tool to SVGs with an expected structure
one more view of the FrigeApp use case will be evaluated to a minor extend.

5.4.1 Fridge App Add Item View

Figure 5.22 displays the screenshot of the UI prototype. It features a view to add items to
the fridge. Therefore, it consists of a header and three forms. One to type determine the
item‘s name, the second one for quantity and the third one for the quantity‘s unit. On the
bottom a submit button is located, to save the typed in information. While extracting and
rendering the components from the SVG no adjustments had been made to the extraction
tool but adding one rule, namely the header extraction. The result directly yield the power
of the extraction, when the structure is as expected.

Figure 5.22: Screenshot Add Item View FridgeApp

5.4.2 preprocessed JSON

Exemplary for the preprocessed JSON figure 5.23 displays the first component that has a
different type than any component identified in the login view. Its type is header and it is
located at the very top of the UI prototype. It features a rectangle to define the structure
of the underlying header, a label part and the icon part. The implementation of the rule
currently features only the extraction of the label part, since this is the most important
part of the header. As the rules are designed to be extendable it would be easy to add the
missing parts to the extraction process and make it available for the rendering part.

5.4.3 View Model

In this section one component of the view model is shown to emphasize the quality of the
extraction and the extensibilty of the specific rules.

72

5.4 Fridge App Add Item View

{
id : ”Header ” ,
g : [

{
id : ” Rectangle 3” ,
f i l t e r : ” u r l (# f i l t e r 0 d) ” ,
use : {

x l i n k : hre f : ”# p a t h 0 f i l l ” ,
transform : ” t r a n s l a t e (267 1276)” ,
f i l l : ”#FFFFFF”

}
} ,
{

id : ” angle− l e f t ” ,
g : {

id : ” Vector ” ,
use : {

x l i n k : hre f : ”# p a t h 1 f i l l ” ,
transform : ” t r a n s l a t e (2 8 2 . 6 5 6 1290)” ,
f i l l : ”#2F80ED”

}
}

} ,
{

id : ”Add Item ” ,
use : {

x l i n k : hre f : ”# p a t h 2 f i l l ” ,
transform : ” t r a n s l a t e (420 1288)” ,
f i l l : ”#2F80ED”

}
}

]
}

Figure 5.23: Header Component Add Item View

Header Component

Figure 5.24 visualized the view model of the header component. As stated above only the
extraction of the label part is implemented and therefore is the only part that is extracted.
The component is successfully identified and moreover all properties are mapped cor-
rectly. This will perfectly work with the process that follows, namley mapping to virtual
DOM as well as the rendering and generating part.

73

5 Evaluation Use Cases

headerComponent : {
id : ” header0 ” ,
s t y l e : {

transform : ” t r a n s l a t e (420 1288)” ,
c o l o r : ”#2F80ED”

} ,
content : {

t e x t : ”Add Item”
} ,
s t r u c t u r e : {

”className ” : ” header ”
}

}

Figure 5.24: View Model Header Component of Add Item View

Bundled Component

Figure 5.25 displays the screenshot of the bundled and rendered component. Note that the
background has been hidden as the white background is not easy to differentiate from the
native background of the application. As the screenshot clearly shows, the core part of the
components could be successfully extracted and rendered inside the application.

Figure 5.25: Screenshot Add Item View FridgeApp

74

5.5 Analysis of Evaluation

5.4.4 Use Case Evaluation Summary

Table 5.2 displays the overview of identified and extracted components as well as extracted
properties. The missing component is the display of the unit button, as the form compo-
nent extractor only expects one form inside of a component array and everything else is
ignored. To summarize the findings, it can be stated that the extraction tool does work to
a satisfying extend when an expected structure is imposed to the input SVG.

Correct Incorrect Missing Total Rate
Identified components 4 0 1 5 80 %
Extracted components 4 0 1 5 80 %
Extracted properties 10 0 5 15 67 %

Table 5.2: Evaluation of Extracted Components Add Item

5.5 Analysis of Evaluation

The evaluation showed that the quality of the model extraction by the implemented tool
is not sufficient enough to be applied to real world use cases. The quality differs a lot
between the use case, that the tool was built around and a different use case. As this may
not to be too surprising, it is still notable that the model extraction could work, when the
prototyping tool would follow predefined rules or some kind of annotations. By doing so,
the complexity of the extraction tool would be greatly decreased, since it has only to extract
the components and is not challenged by also identifying the components. Nevertheless,
the extraction tool completely failed with the second use case because of the unexpected
structure, so its applicability to real world use cases is not given.
In addition, the quality of the generated components can be questioned as well, since they
are not very complicated in case of the evaluated examples. It is impossible to formulate
an assumption on how the quality of the components would respond to an increasing
complexity of the use case, but taken all findings into account it can be highly doubted
that the quality of the extracted components would increase.
To conclude the evaluation taking all evaluated use cases into account there are some major
improvements to be made, when further developing the implemented tool:

1. Annotate or identify components before passing then to their respective rule.
This would decrease each rule‘s complexity and an assumption of the extracted com-
ponents quality could be taken much earlier.

2. Prototyping tools have to be extended or developed to increase support for compo-
nent extraction and generation.
This suggestion would greatly contribute to the first item, as it would make compo-
nents identification more trivial and reliable.

3. Enable extensibility in appropriate components.
This suggestion refers to the templates for component generation. It would be bene-
ficial, if components that are extendable, could easier be enhanced by the developer.

75

5 Evaluation Use Cases

An example would be a button component that receives its on-click function as prop-
erties. This would probably increase the usage by developers, as they only need to
define the HTML import, render the element at the desired position and them pass
the function as a property to the component.

4. Increase extensibility of the first phase of the extraction process.
In contrary to the second phase of the extraction process, the first phase is hardly
extensible at all. The assumptions made during that phase were important for the
following process, but as a result of evaluating the second use case were not generally
applicable. Therefore, the first phase which is basically a preprocessor needs to be
redesigned according to the findings of the evaluation.

76

6 Conclusion and Further Work

It was successfully shown that it is possible to map elements from an UI prototype to
W3C Components. The defined view model clearly has its own limitations, since it only
allows style, content and structure properties. Nevertheless, it was sufficient to generate
and render web components based on the view model. On contrary it was conducted
that assuming certain structures is not sufficient to cover a variety of use cases. This issue
could be dealt with by introducing design guidelines or maybe to annotate the compo-
nents inside the prototyping tool. By doing so, the modification would greatly increase
the extraction coverage of the tool and therefore increase the quality of the generated com-
ponents. Since it is unrealistic to assume, that the introduced prototyping tools tailor their
output to simplify component identification and generation the usability and future of the
chosen approach has to be questioned. Not only because of the identified limitations but
on the basis of different approaches. Those different approaches often include machine
learning such as the pix2code project1. The tool generates code on the basis of a graphical
user interface‘s screenshot and is far more comprehensive than the model based approach
that was used in this thesis, although the machine learning approach also relies on some
kind of model.
The identification of components turned out to be far more complex than anticipated. The
prototypical implementation of the view model extractor was greatly impacted by that is-
sue. To avoid this and because of the lack of documentation of how the prototyping tools
export crafted user interfaces, many structural characteristics of the first use case had to
be taken as general assumptions for other use cases. As it turned out, this was not the
case and lead to failure of the tool. Nevertheless, it was successfully shown that when UI
prototypes follow certain structural rules and components can be identified correctly, the
generation of the components happened to be less complex. In addition, although the an-
alyzed prototyping tools are used by designers because of their similar component-based
structure compared to the current major front-end frameworks (Vue.js, React.js, Angu-
lar.js), they could not fulfill the expectations of predictable SVG exports. This is still the
biggest issue when dealing with this kind of model driven approach.
All in all it can be stated the chosen architecture was well-suited for the kind of process.
The limitations of the first phase of the extraction lead to redesigning this step according to
passed SVG‘s structure. To accomplish this, a deep analysis and evaluation of how SVGs
are exported from prototyping tools has to be conducted and modeled. This kind of model
would greatly impact the development of tools, that take a similar approach than the one
presented in this thesis.

1https://github.com/tonybeltramelli/pix2code

77

6 Conclusion and Further Work

78

7 Appendix

7.1 FridgeApp Login View: Simplified Handcrafted View Model
used for the Evaluation

Figure 7.1: Hand Crafted Overview View Model of Login View

7.2 FridgeApp Add Item View: Simplified Handcrafted View
Model used for the Evaluation

Figure 7.2: Hand Crafted Overview View Model of Add Item View

79

7 Appendix

80

List of Figures

1.1 Research Framework Based on Design-Science Paradigm[HC10] 3

2.1 Prototype Driven Development . 6
2.2 Simplified Model Driven Development Process[LSM13, p.211] 12

3.1 UI View Model . 14
3.2 Separation of Concerns in UIML . 14
3.3 View Model Adaption of UIML in JSON Schema 16
3.4 Example of the Virtual UIML Tree . 17
3.5 SVG Parser . 18
3.6 Overview Extraction Process . 18
3.7 First Phase of Extraction Process . 19
3.8 Second Phase of Extraction Process with Example Rules 20
3.9 General Structure DOM . 21
3.10 Overview Component Generation . 22
3.11 IT4IT Reference Architecture Adaption . 24
3.12 Overview Data Flow . 24

4.1 Overview Test Structure . 28
4.2 Hierarchic Structure of a SVG File . 29
4.3 Overview of Specific Rules . 30
4.4 Flow Chart Form Component Extractor . 32
4.5 Mapping Empty View Model to Virtual DOM 33
4.6 Exemplary Mapping to Virtual DOM . 34
4.7 Virtual Node Skeleton of HTML Template . 36
4.8 HTML Template Button Component . 36
4.9 DOM Element Skeleton of HTML Template 37
4.10 Template Definition using Polymers‘ dom-module 37
4.11 Complete Skeleton HTML Template . 39
4.12 Complete Example of Generated Button Component 40
4.13 Overview Polymer Project Structure . 41
4.14 Overview Polymer Source Folder after Component Generation 42
4.15 Screenshot Entry Point MyApp . 42

5.1 Fridge App Login View . 44
5.2 Object Diagram rawJSON . 46
5.3 Object Diagram Form Component . 47
5.4 Object Diagram Form Component with Problematic Structure 49
5.5 View Model of Header and First Component 50

81

List of Figures

5.6 View Model of Form Component . 51
5.7 View Model of Form Component with Faulty Content 52
5.8 Object Diagram Button Component . 53
5.9 View Model of Button Component . 54
5.10 Object Diagram HTML Link Component . 55
5.11 View Model of HTML Link . 57
5.12 Object Diagram of DOM Abstraction Form Component 58
5.13 Object Diagram of DOM Abstraction Button Component 59
5.14 Generated HTML Link Component . 61
5.15 Rendered Form Component . 62
5.16 Screenshot Bundled Components FridgeApp 64
5.17 Screenshot Movie Detail View . 67
5.18 Object Diagram rawJson of Stripe Checkout 68
5.19 preprocessedJSON of Stripe Checkout View 69
5.20 Form Component of Stripe Checkout View 71
5.21 View Model of Stripe Checkout View . 71
5.22 Screenshot Add Item View FridgeApp . 72
5.23 Header Component Add Item View . 73
5.24 View Model Header Component of Add Item View 74
5.25 Screenshot Add Item View FridgeApp . 74

7.1 Hand Crafted Overview View Model of Login View 79
7.2 Hand Crafted Overview View Model of Add Item View 79

82

List of Tables

5.1 Evaluation of Extracted Components Login View 63
5.2 Evaluation of Extracted Components Add Item 75

83

Bibliography

[Aho+14] P. Aho et al. “Murphy Tools: Utilizing Extracted GUI Models for Industrial
Software Testing”. In: 2014 IEEE Seventh International Conference on Software
Testing, Verification and Validation Workshops. 2014, pp. 343–348. DOI: 10.1109/
ICSTW.2014.39.

[AMS06] Pekka Abrahamsson, Michele Marchesi, and Giancarlo Succi, eds. Extreme Pro-
gramming and Agile Processes in Software Engineering: 7th International Confer-
ence, XP 2006, Oulu, Finland, June 17-22, 2006. Proceedings. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006. ISBN: 978-3-540-35095-8.

[CC90] E. J. Chikofsky and J. H. Cross. “Reverse engineering and design recovery: A
taxonomy”. In: IEEE Software 7.1 (1990), pp. 13–17. ISSN: 0740-7459.

[CKV07] Adrien Coyette, Suzanne Kieffer, and Jean Vanderdonckt. “Multi-fidelity Pro-
totyping of User Interfaces”. In: Human-Computer Interaction – INTERACT 2007:
11th IFIP TC 13 International Conference, Rio de Janeiro, Brazil, September 10-14,
2007, Proceedings, Part I. Ed. by Cécilia Baranauskas et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 150–164. ISBN: 978-3-540-74796-3.

[HC10] Alan Hevner and Samir Chatterjee. “Design Science Research in Information
Systems”. In: Design Research in Information Systems: Theory and Practice. Boston,
MA: Springer US, 2010, pp. 9–22. ISBN: 978-1-4419-5653-8.

[Jac09] Julie A. Jacko, ed. Human-Computer Interaction. New Trends: 13th International
Conference, HCI International 2009, San Diego, CA, USA, July 19-24, 2009, Pro-
ceedings, Part I. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. ISBN: 978-
3-642-02574-7.

[LSM13] Stefania Leone, Alexandre de Spindler, and Dennis McLeod. “Model-Driven
Composition of Information Systems from Shared Components and Connec-
tors”. In: On the Move to Meaningful Internet Systems: OTM 2013 Conferences:
Confederated International Conferences: CoopIS, DOA-Trusted Cloud, and ODBASE
2013, Graz, Austria, September 9-13, 2013. Proceedings. Ed. by Robert Meersman
et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 204–221. ISBN:
978-3-642-41030-7.

[mob16a] mobgen. High-fidelity prototyping: What, When, Why and How? 2016. URL: https:
//mobgen.com/high-fidelity-prototyping/ (Retrieved June 6, 2017).

[mob16b] mobgen. Low-fi prototyping: What, Why and How? 2016. URL: https://mobgen.
com/low-fi-prototyping/ (Retrieved June 6, 2017).

85

https://doi.org/10.1109/ICSTW.2014.39
https://doi.org/10.1109/ICSTW.2014.39
https://mobgen.com/high-fidelity-prototyping/
https://mobgen.com/high-fidelity-prototyping/
https://mobgen.com/low-fi-prototyping/
https://mobgen.com/low-fi-prototyping/

Bibliography

[MW17] Aaron Marcus and Wentao Wang, eds. Design, User Experience, and Usability:
Theory, Methodology, and Management: 6th International Conference, DUXU 2017,
Held as Part of HCI International 2017, Vancouver, BC, Canada, July 9-14, 2017,
Proceedings, Part I. Cham: Springer International Publishing, 2017. ISBN: 978-3-
319-58634-2.

[OAS08] OASIS. User Interface Markup Language (UIML) Version 4.0. 2008. URL: https:
//www.oasis-open.org/committees/download.php/28457/uiml-
4.0-cd01.pdf (Retrieved Aug. 3, 2017).

[Dyl17] Dylan Field. Introducing Figma’s Integration with Framer. blog.figma.com, 2017.
URL: https://blog.figma.com/introducing-figmas-integration-
with-framer-c69a747aeee2 (Retrieved July 16, 2017).

[Eri13a] Eric Bidelman. HTML Imports. 2013. URL: https://www.html5rocks.com/
en/tutorials/webcomponents/imports/ (Retrieved July 26, 2017).

[Eri13b] Eric Bidelman. HTML’s New Template Tag. 2013. URL: https://www.html5rocks.
com / en / tutorials / webcomponents / template/ (Retrieved July 26,
2017).

[Eri17a] Eric Bidelman. Custom Elements v1: Reusable Web Components. 2017. URL: https:
//developers.google.com/web/fundamentals/getting-started/
primers/customelements (Retrieved July 26, 2017).

[Eri17b] Eric Bidelman. Shadow DOM v1: Self-Contained Web Components. 2017. URL:
https://developers.google.com/web/fundamentals/getting-
started/primers/shadowdom (Retrieved July 26, 2017).

[Isa16] Isaac Lyman. Developer-driven development. 2016. URL: https://hackernoon.
com/development-driven-development-75c01b2afca1 (Retrieved
June 6, 2017).

[Jea13] Jean-Marc Denis. Discovering Sketch. 2013. URL: https://medium.com/
sketch-app/discovering-sketch-25545f6cb161 (Retrieved July 26,
2017).

[Joh12] John Mueller. 10 Reasons Development Teams Don’t Communicate. 2012. URL: https:
//blog.smartbear.com/management/10-reasons-development-
teams-dont-communicate/ (Retrieved June 6, 2017).

86

https://www.oasis-open.org/committees/download.php/28457/uiml-4.0-cd01.pdf
https://www.oasis-open.org/committees/download.php/28457/uiml-4.0-cd01.pdf
https://www.oasis-open.org/committees/download.php/28457/uiml-4.0-cd01.pdf
https://blog.figma.com/introducing-figmas-integration-with-framer-c69a747aeee2
https://blog.figma.com/introducing-figmas-integration-with-framer-c69a747aeee2
https://www.html5rocks.com/en/tutorials/webcomponents/imports/
https://www.html5rocks.com/en/tutorials/webcomponents/imports/
https://www.html5rocks.com/en/tutorials/webcomponents/template/
https://www.html5rocks.com/en/tutorials/webcomponents/template/
https://developers.google.com/web/fundamentals/getting-started/primers/customelements
https://developers.google.com/web/fundamentals/getting-started/primers/customelements
https://developers.google.com/web/fundamentals/getting-started/primers/customelements
https://developers.google.com/web/fundamentals/getting-started/primers/shadowdom
https://developers.google.com/web/fundamentals/getting-started/primers/shadowdom
https://hackernoon.com/development-driven-development-75c01b2afca1
https://hackernoon.com/development-driven-development-75c01b2afca1
https://medium.com/sketch-app/discovering-sketch-25545f6cb161
https://medium.com/sketch-app/discovering-sketch-25545f6cb161
https://blog.smartbear.com/management/10-reasons-development-teams-dont-communicate/
https://blog.smartbear.com/management/10-reasons-development-teams-dont-communicate/
https://blog.smartbear.com/management/10-reasons-development-teams-dont-communicate/

	Abstract
	Introduction
	Problem Description
	Research Questions
	Research Method

	Domain Description
	Web Application Development
	Overview
	Lack of Design Know-How

	Prototype Driven Development
	Overview
	Typical Process

	Prototyping Tools
	Overview
	Figma
	Sketch

	W3C Components
	Overview
	Design

	Related Approaches

	Platform Independent UI Model
	View Model
	UI View Model

	Separations of Concerns in UIML
	Structure
	Style
	Behavior
	Content

	Proposed Process
	SVG Parser
	Extraction Process
	DOM Abstraction
	Component Generation
	Component Model
	Data Flow

	Design and Implementation
	Development Approach
	ECMA-Script Environment
	Compilers and Frameworks
	Lodash
	Test Driven Development
	Test Framework
	Test Structure

	Extraction Process
	First Phase of Extraction Process
	Second Phase of Extraction Process

	DOM Abstraction
	Exemplary View Model to DOM Abstraction Mapping

	Component Generation and Rendering
	Component Generation
	Component Rendering
	Polymer Project Structure

	Evaluation Use Cases
	Evaluation Approach
	Fridge App Login View
	Fridge App Login View
	SVG and rawJSON
	Preprocessed JSON
	View Model
	DOM Abstraction
	Generated Components
	Use Case Evaluation Summary

	Stripe Checkout
	SVG and rawJSON
	preprocessedJSON and View Model Header
	View Model
	DOM Abstraction and Generated Components
	Use Case Evaluation Summary

	Fridge App Add Item View
	Fridge App Add Item View
	preprocessed JSON
	View Model
	Use Case Evaluation Summary

	Analysis of Evaluation

	Conclusion and Further Work
	Appendix
	FridgeApp Login View: Simplified Handcrafted View Model used for the Evaluation
	FridgeApp Add Item View: Simplified Handcrafted View Model used for the Evaluation

	List of Figures
	List of Tables
	Bibliography

