
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Information Systems

Survey and Analysis of Process Frameworks
for an Agile IT Organization

Binnur Karabacak

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Information Systems

Survey and Analysis of Process Frameworks for an Agile
IT Organization

Überblick und Analyse von Prozessrahmenwerken für
eine agile IT-Organisation

Author: Binnur Karabacak
Supervisor: Prof. Dr. Matthes

Advisor: Ömer Uludağ, M. Sc.
Date: August 16, 2017

I confirm that this bachelor’s thesis is my own work and I have documented all sources
and material used.

Munich, August 16, 2017 Binnur Karabacak

Abstract

Today’s IT organizations are facing a dynamic business environment, which demands that
organizations deliver software much faster and better tolerate changing requirements dur-
ing the project development cycle. To address these challenges, the agile software devel-
opment, as an iterative and incremental approach, has become an alternative to traditional
development methodologies.
Large organizations that are experimenting and succeeding in using process frameworks
at team level, like Scrum or Extreme Programming, face their next challenge in scaling
these practices across the IT organizations. The process inevitably creates confusion as
development teams employ different methods interface with each other. To meet this chal-
lenge, several scaling agile frameworks have emerged.
This bachelor’s thesis aims to survey and analyze popular process frameworks for sup-
porting IT organizations. This is achieved by conducting a structured literature research
and creating a comparison template for juxtaposing the identified process frameworks.

vii

viii

Contents

Abstract vii

Outline of the Thesis xi

I. Introduction 1

1. Introduction 3
1.1. Introduction . 3
1.2. Objectives . 3
1.3. Approach . 4

II. Foundations 7

2. Foundations 9
2.1. Agile Software Development . 9

2.1.1. Scrum . 11
2.1.2. Extreme Programming . 13

2.2. Lean Thinking . 14
2.2.1. Kanban . 15
2.2.2. Scrumban . 16

2.3. Large-scale Agile Software Development . 17

III. Scaling Agile Frameworks 19

3. Scaling Agile Frameworks 21
3.1. Scaling Agile Frameworks . 21

3.1.1. Crystal Family . 23
3.1.2. Dynamic Systems Development Method 23
3.1.3. Scrum of Scrums . 25
3.1.4. Enterprise Scrum . 26
3.1.5. Agile Software Solution Framework 27
3.1.6. Large Scale Scrum . 28
3.1.7. Scaled Agile Framework® 4.0 . 30

3.1.7.1. Description of SAFe® 4.0 . 31
3.1.7.2. Differences between SAFe® 4.0 and 4.5 35

3.1.8. Disciplined Agile 2.0 . 35

ix

Contents

3.1.9. Spotify . 37
3.1.10. Mega Framework . 38
3.1.11. Event-Driven Governance . 40
3.1.12. Recipes for Agile Governance in the Enterprise 40
3.1.13. Matrix of Services . 42
3.1.14. Scrum at Scale . 43
3.1.15. Enterprise Transition Framework . 44
3.1.16. ScALeD Agile Lean Development . 46
3.1.17. Exponential Simple Continuous Autonomous Learning Ecosystem . 47
3.1.18. Lean Enterprise Agile Framework . 48
3.1.19. Nexus . 49
3.1.20. Fast Agile . 50

3.2. Scaling Agile Frameworks in Research . 51
3.3. Limitations . 54

IV. Comparison Table 55

4. Comparison Table 57
4.1. Comparison Criteria . 58
4.2. Consolidation of Comparison Criteria . 60
4.3. Comparison of SAFe® and LeSS . 63

4.3.1. Comparison based on Descriptive Information 63
4.3.2. Comparison based on the Adoption 64
4.3.3. Comparison based on the Scope . 65
4.3.4. Commonalities and Differences . 72

V. Conclusion 75

5. Conclusion and Outlook 77
5.1. Summary . 77
5.2. Results . 77
5.3. Limitations . 78
5.4. Future Work . 79

Appendix 83

A. Detailed Descriptions 83

Bibliography 85

x

Contents

Outline of the Thesis

Part I: Introduction

CHAPTER 1: INTRODUCTION

This chapter starts by revealing the motivation for scaling agile frameworks. Subsequently,
it continues by stating the objectives of the thesis and the underlying research approach
for achieving those objectives.

Part II: Foundations

CHAPTER 2: FOUNDATIONS

This chapter presents foundations of large-scale agile software development. Subsequently,
large-scale agile software development is described.

Part III: Scaling Agile Frameworks

CHAPTER 3: SCALING AGILE FRAMEWORKS

This chapter presents the identified scaling agile frameworks. Furthermore, it highlights
key findings and limitations of related work.

Part IV: Comparison Table

CHAPTER 4: COMPARISON TABLE

This chapter presents the process of creating a comparison template. Based on this tem-
plate, the Scaled Agile Framework and the Large Scale Scrum are compared. Subsequently,
the commonalities and differences are highlighted.

Part V: Conclusion

CHAPTER 5: CONCLUSION AND OUTLOOK

This chapter summarizes the thesis and the results of comparison of the Scaled Agile
Framework and the Large Scale Scrum. Additionally, limitations of the conducted research
are delineated and a brief outlook for further investigations is provided.

xi

Part I.

Introduction

1

1. Introduction

In this chapter, we introduce the need for agile software development (ASD) and scaling
it to the entire IT organization (see Section 1.1). Following this, the objectives and the cor-
responding research questions of the thesis are highlighted in Section 1.2. The succeeding
Section 1.3 delineates the underlying research approach of the thesis.

1.1. Introduction

Today’s IT organizations are facing a dynamic business environment, which demands that
organizations deliver software much faster and better tolerate changing requirements dur-
ing the project development cycle. To address these challenges, the ASD, as an iterative
and incremental approach, has become an alternative to traditional development method-
ologies [118]. An incremental development is a scheduling strategy in which several parts
of a system are developed at different times and integrated if completed. Meanwhile, an
iterative development is a rework scheduling strategy in which parts of the system are
revised and improved [29].

Traditional software development methods are inflexible and unable to respond on cus-
tomer requests, whereas agile software methodologies provide a set of practices that allow
for quick adaptations matching modern product development needs [96].
Compared to traditional project teams, agile project teams provide better return on in-
vestment (ROI), enjoy higher success rates, have greater levels of stakeholder satisfaction,
deliver higher quality, deliver systems to market sooner [2], require less documentation,
and can easily adapt to changing requirements [30]. This does not imply that all agile
teams are successful, nor does it mean that all organizations benefit from agile to the same
extent [13].

The value of the agile methodologies is proven for small, collocated teams [96]. Organi-
zations that are using agile practices and their qualities, such as less documentation, pair
programming and high teamwork at team level, face their next challenge in scaling these
practices across the enterprise [37]. As a result, several practices were published in order
to scale agile across the team level [84].
There are some publications (see Section 4.1) about scaling agile frameworks, some of
which compare the frameworks based on different factors. These comparisons are helpful
for organizations as they can form an opinion about which framework suits them best.

1.2. Objectives

This bachelor thesis aims to identify all existing scaling agile frameworks and to give a
short description of each. Furthermore, the two most popular ones — the Scaled Agile

3

1. Introduction

Framework® and the Large Scale Scrum — are compared based on a self-created compar-
ison template. This comparison template serves as a basis to compare any other scaling
agile framework. Based on these objectives, three research questions are deduced:

1. Research Question 1 (RQ1): Which scaling agile frameworks exist?

2. Research Question 2 (RQ2): How can scaling agile frameworks be compared?

3. Research Question 3 (RQ3): What are the commonalities and differences between
the Scaled Agile Framework® and the Large Scale Scrum?

1.3. Approach

The goal of this thesis is to create a comparison template based on which every scaling
agile framework can be compared. This will make it easier for organizations to adopt the
appropriate framework.

In order to identify material relevant to this goal and assure rigor and relevance of this
thesis, a structured literature review approach is applied as recommended by Brocke et al.
[134]. The recommended framework consists of the five phases, namely phase I: definition
of review scope; phase II: conceptualization of topic; phase III: literature search; phase IV:
literature analysis and synthesis; and phase V: research agenda. This framework is used
for RQ1, including RQ2 and RQ3. The research approach is illustrated in Figure ??.
In the first phase, we defined the scope of the review and identified suitable research
questions about existing scaling agile frameworks. In the second phase, key concepts
were identified, which also provided the opportunity to identify additional relevant search
terms (Scaled Agile Organization, Scaled Agile, Agile Organization, Scaled Agile Frame-
work, Agile Framework, and Agile Software Engineering), together with a variety of re-
lated concepts, synonyms, and homonyms. The mentioned terms were applied to the
subsequent literature search in the third phase. We examined a range of different docu-
mentation, theses, conference proceedings, books and Information Systems journals using
EBSCOhost, ScienceDirect, Scopus, ACM Digital Library, IEEExplore, SpringerLink, Emer-
ald Insight, and Google Scholar in March 2017. We then used the search terms in electronic
full-text search queries. In the first phase, 82 of 759 sources were identified as relevant,
given their focus on the topic. In the second phase, additional 39 sources resulted. In the
third phase, we searched for documentation on the scaling agile frameworks that we had
identified.
In total, 148 relevant sources were obtained. In the fourth phase, we created a comparison
table. The presented criteria resulted from the gathered comparison criteria existing in the
identified six literature sources. Only the ones that appeared important and meaningful
were assumed. Finally, the literature review resulted in a research outcome.

4

1.3. Approach

RQ1
RQ2
RQ3

Agile
Software

Engineering

Agile
Organization

Scaled Agile

Scaled Agile
Organization

Agile
Framework

Scaled Agile
Framework

1. SCOPE OF RESEARCH

Research questions on scaling
agile frameworks

2. TOPIC CONZEPTUALIZATION

Concept map with relevant
search terms

3. LITERATURE SEARCH

List of relevant sources

4. LITERATURE ANALYSIS

Analysis of comparisons of
scaling agile frameworks

5. RESEARCH OUTCOME

Differences and commonalities
of SAFe and LeSS

Figure 1.1.: Research approach

5

1. Introduction

6

Part II.

Foundations

7

2. Foundations

Section 2.1 provides a basic understanding concerning ASD. In addition, the two most
popular agile methods — Scrum and Extreme Programming (XP) — are described. Section
2.2 provides a basic understanding concerning lean thinking, as it is an essential part of
scaling agile development as well. In this context, Kanban and Scrumban are introduced.

2.1. Agile Software Development

There is no official definition for ASD [13] so numerous definitions exist. But to give an
orientation, here is one of several definitions as follows:

”Agile software development is an evolutionary (iterative and incremental) approach which reg-
ularly produces high quality software in a cost effective and timely manner via a value driven
lifecycle. It is performed in a highly collaborative, disciplined, and self-organizing manner with
active stakeholder participation to ensure that the team understands and addresses the changing
needs of its stakeholders. Agile software development teams provide repeatable results by adopting
just the right amount of ceremony for the situation they face.” [13]

Agile development highlights continuous face-to-face communication, short development
cycles, learning, and frequent deliveries [53]. ASD is most typically defined by the ”Mani-
festo for Agile Software Development” (Agile Manifesto), which was founded by 17 method-
ologists in 2001 [1]. Although many of the agile methods were actually introduced earlier
then 2001, ASD is often considered to have been born when the Agile Manifesto was writ-
ten [54]. The Agile Manifesto includes the four values and 12 principles of ASD.
The values are as follows [1]:

• ”Individuals and interactions over processes and tools”;

• ”Working software over comprehensive documentation”;

• ”Customer collaboration over contract negotiation”;

• ”Responding to change over following a plan”.

That does not mean that processes and tools, documentation, contract negotiation, and
planning are not important in agile methodologies, but rather, the focus is on the software.
Therefore, individuals and interactions, working software, customer collaboration, and
responding quickly to changes seem to have a greater value for agile methodologies [1].
The principles of ASD are listed below [1]:

• Customer satisfaction is achieved through early delivery in a continuous fashion;

9

2. Foundations

• Requirement changes can be adopted even in the final stages;

• Emphasis is always on delivering a product as early as possible, and the delivery can
range from a few weeks to few months with an aim to reduce time of delivery;

• Developers and customers need to work together on a daily basis for the entire du-
ration of the project;

• The project teams must have motivated developers working in an environment that
harness trust and support;

• Face-to-face conversation is considered the most efficient and effective method within
a development team and allows better interactions;

• Working software measures the progress of projects;

• A constant step needs to be maintained indefinitely with developers, sponsors, and
users alike;

• Agility must be improved by means of design and technical excellence;

• Simplicity is necessary;

• Self-organizing teams must be available;

• Regular checks guarantee that the progress is going in the right direction and in-
creases efficiency.

These principles facilitate the adoption of agile methodologies for software development
[1].

The values and principles of the ASD are represented in agile methods, such as Scrum
[110] and XP [49]. Further agile methods include Crystal Family, Dynamic Systems Devel-
opment Method (DSDM), Feature Driven Development (FDD), Adaptive Software Devel-
opment [8], Kanban [103], Open Unified Process, and Agile Modeling [13].
Agile methods follow a set of practices and pre-given metrics, and focus on customer
collaboration, constant deliveries, lightweight working practices, inflexible development
phases [53], iterative development, and small cross-functional development teams [38].
By using agile methods, organizations benefit from increased quality, reduced waste, bet-
ter predictability, and better morale [109]. In addition, they promise shorter time-to-market,
as well as higher flexibility to accommodate changes in requirements and thereby, in-
crease companies’ ability to react and respond to evolving customer and market needs
[40, 137]. Furthermore, end-to-end responsibility and team autonomy are reported as im-
portant characteristics permeating the methods [38].
Scrum and XP are the two most popular agile methods [46, 41, 43, 36, 53]. These meet the
need of establishing processes that address the development of systems more quickly and
with quality. They use an incremental and iterative life cycle, with short iterations and re-
quirements that can change throughout the development, with extensive participation by
the customer [113]. Scrum and XP will be described in more detail in the following section.

10

2.1. Agile Software Development

2.1.1. Scrum

Scrum was developed by Jeff Sutherland and Ken Schwaber and first presented in 1995. It
is an iterative and incremental framework for sustaining and developing complex prod-
ucts [111]. Accordingly, Scrum is most suitable for products and development projects
[94].
Scrum is founded on empiricism, or empirical process control theory. Empiricism affirms
that knowledge comes from making decisions based on what is known and from experi-
ence. Every implementation of the empirical process control maintains three pillars: in-
spection, adaptation, and transparency. To detect undesirable variances, Scrum users have
to inspect Scrum artifacts and progress toward a Sprint Goal regularly. Their inspection
should not to be carried out too often. Otherwise it could hinder the current work. When
performed by skilled inspectors at the point of work, inspections are most beneficial. If an
inspector observes that one or more aspects of a process vary outside the acceptable limits
and that the resulting product will be unacceptable, this process must be ceased. To min-
imize further aberration, a cessation must be made as soon as possible. Scrum specifies
four formal events for inspection and adaptation: Sprint Planning, Sprint Review, Sprint
Retrospective, and Daily Scrum. These are defined in the next section. Important aspects
of the process must be visible to those who are responsible for the outcome. Transparency
requires that those aspects are defined by a common standard so observers share a com-
mon understanding of what is being seen. When the values of focus, courage, openness,
commitment and respect are embodied and realized by the Scrum team, the Scrum pil-
lars of inspection, adaptation, and transparency come to life. The Scrum team members
explore and learn those values as they work with the Scrum artifacts, events, and roles
[111].

Figure 2.1.: One-team Scrum [112]

Scrum consists of Scrum teams, artifacts, events and rules, thereby each of them has to
fulfill a functionality to maintain the success of Scrum.

11

2. Foundations

The Scrum team includes the development team, a Product Owner (PO) and a Scrum Mas-
ter.
Scrum teams are cross-functional and self-organizing, which means that the team has all
the knowledge to achieve the requirements without any help of another team, and they
work on their own way rather than being guided by others. To maximize the opportuni-
ties for feedback, Scrum teams deliver products incrementally and iteratively.
The PO is responsible for managing the Product Backlog and maximizing the value of the
product [111]. A Scrum team has only one PO [3].
The development team consists of three to nine experts, who are responsible for delivering
a potentially releasable product Increment at the end of each Sprint. They are working in
a cross-functional and self-organizing way.
The Scrum Master hast to make sure that every team member understands Scrum and
that the events take place. He also supports the development team by leading them to
self-organization and continuous improvement to achieve their goals and by eliminating
existing impediments [111].

The Scrum events include the Sprint, Sprint Planning, Daily Scrum, Sprint Review and
Sprint Retrospective. The Sprint Planning, Daily Scrum, Sprint Review, Sprint Retrospec-
tive and the development work are part of a Sprint.
One Sprint can take up to one month, in which the development team has to create a po-
tentially releasable product Increment. For every Sprint, a definition of what is to be built,
a design and plan that will guide building it, the work, and the resulting product is stated.
The work to be finished in the Sprint is planned at the Sprint Planning, which takes place
for eight hours each Sprint.
Every day, the development team holds a 15 minute time-boxed Daily Scrum, where they
create a plan for the next 24 hours. There, every team member has to answer the following
three questions[111]:

• ”What did I do yesterday that helped the Development team meet the Sprint Goal?”

• ”What will I do today to help the Development team meet the Sprint Goal?”

• ”Do I see any impediment that prevents me or the Development team from meeting
the Sprint Goal?”

Daily Scrums improve the development team’s level of knowledge and their communica-
tions, eliminate other meetings, highlight and promote quick decision-making and identify
impediments to development for removal.
At the end of each Sprint, a Sprint Review is held. There, the Increment is checked, and
if needed, the Product Backlog will be adapted. The result of the Sprint Review is a re-
worked Product Backlog that defines the prospective Product Backlog items for the next
Sprint.
After the Sprint Review, the Sprint Retrospective takes place. This event gives the Scrum
team the opportunity to create a plan, in which the improvements to be implemented in
the next Sprint are stated [111].

The Scrum artifacts include the Product Backlog, Sprint Backlog and Increment.
All functions and requirements of a product are stated in the Product Backlog. The Prod-
uct Backlog is changeable at any time.

12

2.1. Agile Software Development

The Sprint Backlog consists of requirements stated in the Product Backlog, which has to be
fulfilled at the end of a Sprint to create an Increment.
The Increment is the resulting product at the end of a Sprint, which is usable and corre-
sponds to the Scrum team’s definition of ”done”. It contains all the Product Backlog items
that are completed in a Sprint.
It is important that everyone has the same understanding of what ”done” is. If ”done” is
a convention of the development organization, everyone has to stick to this definition. If
not, the development team has to make an appropriate definition of ”done” for the product
[111].

2.1.2. Extreme Programming

XP was invented by Kent Beck in 1999. According to Beck, XP is ’lightweight’, which
means that you only do the essential things to create value for the customer [49]. XP
resulted trough the need to increase performance [54]. XP focuses on the general software
development process and the tasks, which have to be done during the process, rather than
talking about requirement techniques. Furthermore, it accentuates writing tests before
coding [93].

The XP team consists of testers, interaction designers, architects, project and product
managers, executives, technical writers, users and programmers. In XP, there is no team
size specified, and no roles are determined [49].

During the release planning meeting, a release plan is created, which lays out the overall
project. Based on the release plan, iteration plans for each individual iteration are created.
User stories are exploit to create time estimates for the release planning meeting. They
are also preferred to use, rather than a large requirements document. User stories are
written by the customers and specify what the system needs to do for them. During the
release planning meeting, the development team estimates each user story in terms of ideal
programming weeks. During an iteration, the selected user stories will be translated into
acceptance tests. To ensure the correctness of a user story’s implementation, the customer
specifies scenarios to test. A story can have as many acceptance tests as it takes to ensure
the functionality works [135].

XP consists of a set of rules [135], values [135, 49], principles and practices [49].
The rules include the management, planning, coding, design, and testing of software [135].
The core values of XP are communication, feedback, simplicity, courage, and respect [49,
135], which guide the development.
There are 14 principles of XP, namely humanity, economics, mutual benefit, self-similarity,
improvement, diversity, reflection, flow, opportunity, redundancy, failure, quality, baby
steps and accepted responsibility [49].
Beck divides the practices, which XP teams do every day, into two: primary practices and
corollary practices. Primary practices include sitting together, whole team, informative
workspaces, energized work, pair programming, stories, weekly cycle, quarterly cycle,
slack, ten-minute builds, continuous integration, test-first programming and incremental
design. On the other hand, corollary practices include real customer involvement, incre-
mental deployment, team continuity, shrinking teams, root-cause analysis, shared code,
single code base, daily deployment, negotiated scope contract and pay-per-use. Primary
practices can be easily used whereas corollary practices are difficult to apply without first

13

2. Foundations

mastering the primary practices. But not every listed practice needs to be applied to suc-
cessfully develop software. Which practice to choose depends on the situation. The prac-
tices existing in XP make programming more effective [49].

2.2. Lean Thinking

Lean is an evolution of the Toyota Production System, where the emphasis was on con-
tinuous improvement, and respect for people. During its evolution, it has become more
associated with process improvements aimed at improved efficiency and reduced cycle
time [32].

Lean thinking is based on a set of proven mathematical and economic principles that
describe the flow of product information within the enterprise. Furthermore, these princi-
ples are applied equally well to the supplier and customer elements of the larger business
value chain. Therefore, it is broader than the specific agile software methods [79]. Seven
principles are subject to lean [85]:

• Eliminate waste

• Amplify learning

• Decide as late as possible

• Deliver as fast as possible

• Empower the team

• Build integrity in

• See the whole

Inspired by earlier houses of lean from Toyota and others, Bass Vodde and Craig Lar-
man reintroduced a ”house of lean thinking” graphic. The roof, the two pillars, and the
foundation provide the philosophical framework for lean software thinking. The product
development flow describes the specific lean principles [79].

According to Vilkki [128], lean thinking gives better tools to understand and address
the problems of scaling ASD. Lean and agile approaches complement each other in many
domains but there are also challenges in combining these two approaches. Lean thinking
aligns better with ASD than with reductionist management methods, because lean think-
ing also looks at systems holistically, and not by reductionism [54].

The goal of lean is to deliver the maximum amount of value to the customer in the short-
est possible time frame, while still achieving highest quality [59, 79].
The foundation of lean thinking is management support by leading the organization, by
being competent in the basic practices, and by taking an active role in driving continuous
improvement. Thus, management support is a key principle of lean thinking, and is one
of the major drivers for lean in the software enterprise. Managers and executives are ac-
countable for continuously advancing practices.
A systemic approach is required of lean thinking in order to manage operations across all
the components of the enterprise. The facets of a requirements process must be recognized

14

2.2. Lean Thinking

and optimized, rather than optimizing the behavior of any other function, such as require-
ments management, or of a role, such as the PO or Product Manager or even an entire agile
team or business unit [79].
Lean thinking can be implemented as lean product development, lean software develop-
ment or lean manufacturing [54].

2.2.1. Kanban

The Kanban method is an evolutionary and incremental way to handle change for orga-
nizations [54] and originates from Corbis, where it was developed from 2006 to 2008 [16].
It is founded on the Toyota Production System and its Kaizen approach [16] which defines
Toyota’s basic approach to doing business and means continuous improvement [59]. In
this sense, Kanban enables continuous improvement and catalyzes evolutionary change by
using Kanban systems that optically highlight improved understanding of existing condi-
tions [105]. Furthermore, the Kanban method is based on lean principles [79] and supports
organizations by providing information about which types of changes will and will not be
disruptive for them [105]. The Kanban method was intentionally structured in this way to
support evolutionary change, which tends to initially manifest as process optimizations.
Kanban can support substantially larger and more dramatic managed changes as its orga-
nizational capability matures. It is important to know that the Kanban method is neither a
software development framework nor a project management framework. Actually, it does
not even describe how to do these things. More significantly, the Kanban method must be
layered with an existing process [105]. Kanban is best-suited for production support [94].

The concept of Kanban is related to lean manufacturing. In general, it is a signalling sys-
tem based on Kanban cards (or signs) used in lean manufacturing to plan what to produce,
when to produce it, and how much to produce. In software development, Kanban means
a virtual or physical whiteboard and tasks to limit the work-in-progress (WIP) in order to
create a limited pull system that reveals system operation problems and encourage collab-
oration so that the system continuously improves [16]. In addition, Kanban reduces lead
time and the number of tasks to be done [106]. In this sense, the developers can only ”pull
a new card”, — begin a new work — if another work is finished; this is the definition of a
pull system [16]. The Kanban method applies the principles presented in manufacturing
to software development [54].

The four principles, which guide the mindset, are as follows [105]:

• Start with your current work;

• Respect the current responsibilities, roles, process, and titles;

• Pursue incremental and evolutionary change at any time;

• Dare to act as leadership at all levels of the organization.

The six practices, which guide for creating fine-grained practices, are as follows[105]:

• ”Visualize”;

• ”Limit WIP”;

15

2. Foundations

• ”Manage flow”;

• ”Make policies explicit”;

• Develop mechanisms for feedback at the organizational, workflow and inter-workflow
levels;

• ”Improve collaboratively improvement by using model-driven experiments.”

The principles and values existing in Kanban and lean software development are similar
to the ones of agile methods [53, 97].

2.2.2. Scrumban

Corey Ladas introduced Scrumban in his book called ’Essays on Kanban Systems for Lean
Software Development’ in 2009 [55]. According to him, Scrumban is a transition method
for moving software development teams from Scrum to a more evolved development
framework. Scrumban’s entire added capabilities can be applied to a Scrum context in
a variety of ways, but do not have to be. Scrumban emphasizes applying Kanban systems
within a Scrum context and layering the Kanban method alongside Scrum as a vehicle for
evolutionary change, rather than using just a few elements of Scrum and Kanban to cre-
ate a software development process. Ultimately, Scrumban is about realizing and aiding
the competences already constituted in Scrum, as well as providing new competences and
perspectives [105]. Scrumban can be implemented at any level of the organization [105].
The term Scrumban is composed of the terms Scrum and Kanban, as it combines the best
features of these two approaches for maintenance projects [94]. It uses the prescriptive
nature of Scrum to be Agile and the process improvement of Kanban to allow the team to
continually improve its process [94]. Consequently, the roots of Scrumban lay in Scrum
and Kanban [105]. Therefore, you first have to understand Scrum and Kanban before un-
derstanding Scrumban [105].
Scrumban varies from Scrum in the way that certain principles and practices are high-
lighted. These are as follows [105]:

• Recognizing the role of management;

• Enabling specialized teams and functions;

• Applying explicit policies around ways of working;

• Applying laws of flow and queuing theory.

Scrumban differs from the Kanban Method in the following ways:

• Scrumban prescribes an underlying software development process framework (Scrum)
as its core;

• Scrumban is organized around teams;

• Scrumban recognizes the value of time-boxed iterations when appropriate;

• Scrumban formalizes continuous improvement techniques within specific ceremonies.

16

2.3. Large-scale Agile Software Development

Kanban brings three main agendas to Scrumban, which highlight creating enduring results
from better service delivery while maintaining resilience in changing external conditions:
service orientation, sustainability and survivability [105].
Scrumban includes the four principles and six practices of Kanban to achieve its purposes
[105]. In Kanban and Scrumban, the use of roles and meetings are optional [64].

2.3. Large-scale Agile Software Development

Agile methods were originally devised for use in small and single-team projects [24]. How-
ever, their shown and potential benefits have made them attractive for larger projects and
larger companies also in spite of the fact that they are more difficult to implement in larger
projects [39] and pose several challenges. The reason, for this, is that agile is software-
focused, construction-focused at the expense of delivery, prescriptive at the expense of
flexibility, oriented towards small teams in straightforward situations, too narrowly de-
fined, and additionally, the team is focused at the expense of the overall enterprise when
using ASD [95].
Larger projects require additional coordination. Especially handle inter-team coordina-
tion poses a problem when applying agile to larger projects. Large-scale agile involves
further concerns in interfacing with other organizational units, such as product manage-
ment, human resources, marketing and sales. Furthermore, large scale may cause users
and other stakeholders to become remote from the development teams [34]. One consid-
erable difference between small and large scale adoptions is that large organizations have
more dependencies between teams and projects. As a consequence, formal documentation
is required and thus, reduces agility [82].

By doing a literature research, Dingsøyr and Moer [35] gathered previous interpretations
of what large-scale agile is. In the context of large-scale, ”size” plays a decisive role; it had
been considered in terms of size in persons or teams, code base size, project duration and
project budget. The examples of cases that were called ”large-scale” included 40 people
and 7 teams [90], a code base size of over 5 million lines of code [98], a project time of 2
years with a project scope of 60-80 features [23], and project cost of over 10 million GBP
with a team size of over 50 people [21]. Based on their findings, Dingsøyr and Moer [35]
conclude to measure large-scale by the number of coordinating and collaborating teams.
As a result, they categorized as large-scale 2-9 collaborating teams and as very large-scale
over ten collaborating teams.
Dikert et al. [34] identified a number of further studies discussing large- scale ASD and
their interpretations of large-scale, of which all of these referred to the number of peo-
ple involved. The fact that participants of the XP2014 large-scale agile workshop gave
very different definitions for large-scale agile development [35] shows that the meaning of
large-scale depends very much on the context and the person defining it [34]. To give you
an understanding of what large scale agile means, below are some definitions of scaling
agile identified in different publications:

”First, scaling the number of involved teams, this is usually what scaling in the context of agile
means. Second, scaling up the necessary system engineering activities in the iterations/sprints pre-
scribed by different agile methodologies.”[41]

17

2. Foundations

”There are two fundamental visions about what it means to scale agile. The first, tailoring agile
solution delivery strategies to address scaling factors such as geographic distribution, regulatory
compliance, and large team size is referred to as tactical scaling. The second, adopting agility across
your IT department and your organization as a whole, is referred to as strategic scaling. The good
news is that many organizations are tactically applying agile techniques at scale and are succeeding
in doing so.” [10]

”Scale means that it is even more important to understand the fundamental principles behind the
Agile Manifesto and apply them to the specific challenges .” [22]

”Enterprise Agile development, or scaled Agile, is the next horizon of Agile methodology adop-
tion. Enterprise Agile, or scaled agile, refers to the design and implementation of Agile methodology
(irrespective of the specific flavor of Agile, e.g. Scrum, Kanban, XP) for use on large scale IT pro-
grams or large projects at an enterprise level.” [84]

18

Part III.

Scaling Agile Frameworks

19

3. Scaling Agile Frameworks

The focus now includes scaling the agile methods for a variety of applications [44]. In an
attempt to scale the advantages of agile methodologies, various frameworks have been
proposed to provide guidance for scaling agile development across the organization. One
of the well-known models is the Scaled Agile Framework®. Some researchers agree that
guidelines and adaptions of agile practices might be necessary when scaling along the
dimensions of complexity, project size, and dispersion of team members. As a method
is scalable only if it can be applied to problems of different sizes without fundamentally
changing it, scalability of agile is arguable [123].

3.1. Scaling Agile Frameworks

During the literature analysis and synthesis phase of the literature review, 148 distinct in-
formation sources were analyzed. Table 3.1 provides an overview of the distinct literature
source types.
Papers (82 in total) represent the majority of the relevant information sources followed by
white papers (totaling 19). Furthermore, 13 information sources are articles, 11 are web-
sites, ten are presentations, and six are books. Handbooks, dissertations, and master theses
form only a small part of the relevant information sources.

Table 3.1.: Overview of literature source type distribution

During the literature research, 20 scaling agile frameworks were identified. These facil-
itate the adoption of agile beyond the team level.

21

3. Scaling Agile Frameworks

Below, the identified scaling agile frameworks:

• Crystal Family

• Dynamic Systems Development Method

• Scrum of Scrums

• Enterprise Scrum

• Agile Software Solution Framework

• Large Scale Scrum

• Scaled Agile Framework 4.0®

• Disciplined Agile 2.0

• Spotify Model

• Mega Framework

• Event-Driven Governance

• Recipes for Agile Governance in the Enterprise

• Matrix of Services

• Scrum at Scale

• Enterprise Transition Framework

• Scaled Agile Lean Development

• eXponential Simple Continuous Autonomous Learning Ecosystem

• Lean Enterprise Agile Framework

• Nexus

• Fast Agile

Below, I will briefly describe each scaling agile framework and provide some information
concerning the methodologist, the publication date, the category, and the organizations
that were built upon the frameworks. In addition, I will provide information concerning
the adoption, such as the number of contributions that were made regarding each frame-
work, the number of case studies, and the availability of documentation, training courses,
and communities.
The Scaled Agile Framework® (SAFe®) and the Large Scale Scrum (LeSS) are especially
mature, because they are cited very often in the literature, they describe many real-world
use cases, and they also fulfill the other adoption criteria [89]. Because of this, I will pro-
vide more details about them in the following sections.

22

3.1. Scaling Agile Frameworks

3.1.1. Crystal Family

Crystal is a set of methods presented in 1992 by Alistair Cockburn [89]. It is also called
Crystal Family, as it is a family of methodologies. Each crystal has a different hardness
and color, corresponding to the criticality and project size. Crystal methods include inter
alia clear, yellow, orange, orange web, blue, red, and magenta. The crystal clear, for exam-
ple, is suited for up to 6 persons, crystal yellow for up to 20, crystal orange for up to 40,
crystal orange web for up to 50, and crystal red for up to 80 persons working on a system.
Each method is people- and communication-centric, gets adjusted to fit its particular set-
ting, and works from the project tolerance level and the bottleneck activities to an answer
that matches the project ecosystem. Furthermore, the project developed in each method
must use incremental development, with increments of four months or less, and the team
must hold pre- and post-increment reflection workshops [28]. The methods included in
the Crystal Family focus on frequent delivery, close communication, and reflective im-
provement. These properties should be included in all projects. To get further into the
safety zone, the teams also use other properties, such as personal safety, focus, easy access
to user experts, technical environment with automated tests, configuration management,
and frequent integration. Delivering running and tested code to real users is a must in
every project. Frequent delivery includes advantages for teams, inter alia getting critical
feedback on the rate of progress of the team, and getting to debug the development and
deployment processes. To support the close communication, the teams sit in the same
room. If one person asks a question, the others can contribute to the discussion or con-
tinue with their work. In a meeting, the team inspects their work, lists what is and what
is not working, reflect on what might work better, and apply those improvements in the
next iteration [27].

Nineteen contributions were made about Crystal and one enterprise is currently using
it. You can find documentation and a blog, but there are no training courses available [89].

3.1.2. Dynamic Systems Development Method

The Dynamic Systems Development Method (DSDM) framework was published in 1994
by Arie van Bennekum [89]. It is a proven framework for agile project management and
delivery, helping to deliver results effectively and quickly. Over the years, it has been ap-
plied to a wide range of projects from small software development up to full-scale business
process change.

The eight principles of DSDM bring the agile values to life by guiding the team in the at-
titude it must take and the mindset it must adopt in order to deliver consistently whilst still
remaining flexible. These principles include focusing on the business need, developing it-
eratively, delivering on time, never compromising quality, building incrementally from
firm foundations, collaboration, communicating continuously and clearly, and demon-
strating control. The DSDM uses both an iterative and incremental approach.

The DSDM process model consists of a framework which shows the DSDM phases and
how they relate to each other. It is used by each project to derive its lifecycle and has four
main phases: feasibility, foundations, evolutionary development and deployment. These
are preceded by the pre-project phase and followed by the post-project phase. In total, this
results six phases.

23

3. Scaling Agile Frameworks

Figure 3.1.: The Dynamic Systems Development Method process [125]

The pre-project phase ensures that only the right projects are started, and that they are set
up correctly.
The feasibility phase intends, primarily, to determine whether the proposed project is
likely to be feasible from a technical perspective and whether it appears cost-effective from
a business perspective.
Foundations aim to understand the scope of work, how it will be carried out, by whom,
when and where. In addition, the foundations phase determines the project lifecycle by
establishing how the DSDM process will be applied to the specific needs of this project.
The evolutionary development phase aims to evolve the solution. It requires the solution
development team(s) to apply practices such as timeboxing, iterative development, and
MoSCoW prioritization, together with modelling and facilitated workshops, to converge
over time on an accurate solution that meets the business need and is also built in the right
way from a technical viewpoint. MoSCoW is a technique for understanding and manag-
ing priorities, in which the letters indicates Must Have, Should Have, Could Have, and Will
not Have this time.
The deployment phase aims to bring a baseline of the evolving solution into operational
use. This includes three main activities: assemble, review and deploy.
After the final deployment, the post-project phase checks the extent to which the expected

24

3.1. Scaling Agile Frameworks

business benefits have been met.
In the context of scaling, the project organization can easily be refined to support mul-

tiple teams, with key roles acting as directors and coordinators across the teams. In order
to support a more complex project structure, products, such as the solution architecture
definition, management approach definition, development approach definition, timebox
review records and the delivery plan can be made more elaborate and more formal than
would be appropriate for smaller projects [31].

The DSDM Consortium was built upon the DSDM framework. Thirty two contributions
were made and four enterprises are currently using DSDM. Documentation, as well as
communities, and training courses are available [89].

3.1.3. Scrum of Scrums

The Scrum of Scrums (SoS) was presented in 2001 by Jeff Sutherland and Ken Schwaber
[89]. SoS, as a piece of the Scrum at Scale approach to scaling Scrum, is a mechanism
used to coordinate dependencies and the release of products across multiple teams. Scrum
limits the number of communication ways needed to transmit information relevant to the
success of the enterprise, by scaling fractally. SoS is the same as the Daily Scrum at the
team level. The difference is that SoS is a virtual team composed of representatives from a
number of individual Scrum teams that collaborate to integrate and ship a product.

Figure 3.2.: Scrum of Scrums, Source: based on [4]

The Scrum Masters and other required roles meet and communicate impediments, progress,
and any cross team coordination that needs to happen by answering for the teams the same
three questions used in the Daily Scrum. The minimum viable release team for products
and product lines is a properly executed SoS. It aims to remove the waste introduced into
many Scrum implementations by integration teams, release teams, and release manage-
ment teams introduced by scaling frameworks. Outside the SoS meeting, volunteers from
the meeting deal with eliminating operational impediments that are identified as occurring
during the release and deployment process, which is equivalent to Scrum team members
working together in a Sprint. According to the role of management, the SoS Master is re-

25

3. Scaling Agile Frameworks

sponsible for delivery. Therefore, the SoS Master is usually a more senior person, often at
the Director of Engineering or higher level. SoS is not the Enterprise Action, but rather it
may refer company issues to the Executive Action Team, although the SoS deals directly
with operational issues.
In SoS, there are two additional scaling roles:
The Executive Action Team (EAT) is a Scrum team consisting of top level executives. For the
entire organization the Product Owner of this team should be the Chief Product Owner
(CPO). The team members are ideally members of different organizational departments
that help execute the vision of the organization as expected by the CPO. The team needs
to be cross-functional, self-organized, and self-managed, just like any Scrum team.
The Meta Scrum indicates how the Product Owner (PO) role scales in Scrum and comprises
a virtual team made up of four to five POs that coordinate epics, product lines, and prod-
uct releases. An epic, which is created by the EAT, is most likely too big to be completed
by one single Scrum team. To ensure coordination, the POs from all the teams working
on one large epic get together when necessary. The get together is usually coordinated
by a scaled network of Meta Scrums including the EAT. It is the EAT’s work to create the
organizational backlog that feeds large epics to the network of POs [4].

Scrum Inc. is built upon the SoS mechanism. Thirty four contributions were made
and two enterprises are currently using SoS. There are documentation and communities
available, but no training courses [89].

3.1.4. Enterprise Scrum

The Enterprise Scrum (eScrum) framework was presented in 2002 by Mike Beedle [89].
EScrum adapted and extended Scrum based on the abstraction, the generalization, and
the parameterization that can be used in a scaled generic way for any management pur-
pose. Concerning the abstraction, eScrum describes better what Scrum is. Furthermore,
eScrum uses the same concepts in Scrum, but in a more general way. For instance, Scrum
is a 2-level subsumption architecture, whereas eScrum is a n - level subsumption. Finally,
eScrum is a parametrization of Scrum because it adds parameters to explicitly track things
[19]. EScrum provides 80 further parameters, which were abstracted primarily by observ-
ing what people had already done in the field as they used Scrum for different purposes.
These parameters extend, customize, and apply the Scrum concepts to different scaling or
adding techniques and domains, and make eScrum a true framework, as the customizable
parts are now visible and explicit.
Structure parameters allow eScrum scaling into larger organizations by connecting multi-
ple eScrum instances in different ways. These instances include subsumption, collabora-
tion, delegation or centralized [19].

EScrum has the same roles with the same functionality as does Scrum, but they have
different names.
The Product Owner is called Business Owner and the Scrum Master is called Coach. The
team is called team in both approaches. Besides the roles, other concepts are the same in
Scrum, but are renamed in eScrum. In eScrum, the Product Backlog is called Value List,
which is a list of things that add value when done. The Product Backlog Item is called
Value List Item. Sprints are called time-boxes cycles. Cycles can be recursive without any
limitation. For example, you can have a yearly cycle, which contains quarterly cycles that

26

3.1. Scaling Agile Frameworks

contain two week cycles. The Release Planning is naturally included for all cycles and at
all levels.
Scrum has the Burn Down charts, whereas in eScrum any type of report can be chosen [20].

Upon this framework the Enterprise Scrum Inc. is built. Ten contributions were made,
but no information about enterprises using this framework is available. Documentation,
as well as communities, and training courses are available [89].

3.1.5. Agile Software Solution Framework

The Agile Software Solution Framework (ASSF) was presented in 2007 by Asif Qumer and
Brian Henderson-Sellers [89]. Its elements can be classified in terms of tools and the ag-
ile conceptual aspect model. The agile conceptual aspect model represents the aspects of
knowledge, governance, and method core, which are linked to business via business value
or a business-agile alignment bridge.
The method core and abstraction elements of ASSF represent six aspects of an ASD method-
ology, namely agility, people, process, product, tools and abstraction. This set of aspects
provide a mental-model or vision-guiding for an agile methodology.

Method Core

1. Agility
2. People
3. Process
4. Product
5. Tools

Knowledge Governance

Method Core

Abstraction

Business Agile Alignment Bridge

Agile Toolkit

4-DAT

Software
Technology

Business

Agile Conceptual Aspect Model

Figure 3.3.: The main components of the Agile Software Solution Framework, Source:
based on [101]

27

3. Scaling Agile Frameworks

The Knowledge Cell is used to manage and engineer the knowledge related to ASD. An
agile knowledge engineering and management approach [17] should be integrated with
an ASD approach, in order to manage and capture related knowledge and to use it for
performance improvement, learning and decision making in an ASD environment.
Governance provides a mechanism for a strategic IT-business alignment. This makes it
possible to acquire maximum business value delivered by the consumption of IT resources,
but it has not been discussed in the context of ASD organizations. Therefore, a model for
accountability, responsibility and business value governance in the context of agile devel-
opment [101] is developed to introduce sufficient control, discipline, and rationale to scale
up ASD methods for large and complex projects.
The business-agile alignment bridge has not been investigated to any great extent by the
agile community. It has an impact on both the construction and application of agile meth-
ods in terms of the business value delivered to customer, process, team, product, and
workspace. This bridge aligns ASD goals and business goals.
The agile toolkit facilitates the construction and valuation of multiabstraction, which is a
mix of different abstraction-mechanisms, such as object-oriented, agent-oriented, and ser-
viceoriented.
The four-dimensional analysis toll (4-DAT) will facilitate the examination of agile meth-
ods from four dimensions: agility characterization, agile values characterization, method
scope characterization, and software process characterization. The only currently quan-
tified dimension of the 4-DAT is the agility characterization, which permits a numerical
evaluation of the degree of agility at both the large scale and the small scale. The large
scale refers to the process level, meanwhile the small scale refers to the method practices
level.
Business refers to a software development organization. The policies, business goals,
strategies, and the existing culture of a software development organization have a poten-
tially large impact on the construction, adoption, execution, and governance of any ASD
method [101].

Reagrding ASSF, three contributions were made and two enterprises are currently using
this framework, but neither documentation, nor communities, nor training courses exist
[89].

3.1.6. Large Scale Scrum

Large Scale Scrum (LeSS) is a framework that was presented in 2008 by Craig Larman and
Bas Vodde [57]. It is not a framework that applies Scrum at the team level and then adds
additional scaling processes. Rather, it is Scrum scaled on all levels. Basically, LeSS is
one-team Scrum applied to many teams who are working together on one product. LeSS
is about understanding how to apply the principles, elements, purposes, and elegance of
Scrum in a large-scale context as simply as possible [62].
LeSS includes the following components [62]:

• Rules define the foundation and key elements of the framework. Similar to Scrum,
the focus lies on the structure of teams, the development process (e.g., Sprints), the
definition of the requirements of the product (e.g., backlog), and the roles within the
team (e.g., Scrum Master).

28

3.1. Scaling Agile Frameworks

• Principles provide answers as to how to apply LeSS in specific enterprise contexts.

• Guides support the adaptation of the rules and experiments by providing best prac-
tices and tips.

• LeSS fortifies teams to experiment, to fail, and to learn new concepts.

LeSS comprises two different large-scale Scrum frameworks, namely Small LeSS and
LeSS Huge. Small LeSS is suited for up to eight teams of eight people on each team,
whereas LeSS Huge is suited for more than eight teams, and has means for hundreds of
people working on a single product. In this context, the word LeSS is equal to large-scale
Scrum in general and to the smaller LeSS framework [62].

LeSS has the same artifacts as Scrum, namely one potentially shippable product Incre-
ment at the end of each Sprint, one Product Backlog, and a separate Sprint Backlog for
each team [62].

Figure 3.4.: The Large Scale Scrum Framework[130]

As well, the events, such as a common Sprint for the whole product, the Sprint Planning,
the Daily Scrum, the Sprint Review, and the Sprint Retrospective, are present in LeSS.
New to LeSS is the Overall Retrospective meeting, whose purpose is to discuss cross-team,
organizational, and systemic problems within the organization. The PO, Scrum Masters,
team representatives, and managers take part in this meeting. Conceptually, the Overall
Retrospective takes place right after the team Retrospectives. But as the team Retrospec-
tives are often at the end of the day, at the end of a Sprint, people are often exhausted or
do not have time to continue with another Retrospective meeting. Therefore, the common
way is to have the Overall Retrospective at the beginning of the next Sprint.
Another difference between Scrum and LeSS is the Sprint Planning. This planning con-
sists of two parts. Sprint Planning One is a meeting for all of the teams together, where
they decide which team will work on which items. The focus is on the selection of ready
items from those offered by the PO, defining of the Sprint Goal, and wrapping up lingering

29

3. Scaling Agile Frameworks

questions. Sprint Planning Two is a separate meeting for each team, where each creates the
plan for getting the items to ”done” during the Sprint [62].

Concerning the roles in Small LeSS, there is one PO for all teams and a Scrum Master,
who is responsible for one to three teams. Conceptually, the PO role in LeSS is the same
as in one-team Scrum. However, at scale, the focus is rather on keeping an overview and
ensuring the maximum return on investment (ROI) on the product [62].

In LeSS Huge, there is one PO and at least two Area Product Owners (APO). LeSS Huge
introduces additional scaling elements, which are required to manage hundreds of devel-
opers in large enterprises, and a new concept, namely Requirement Areas (RAs).
Each RA includes four to eight teams [62]. RAs comprise major areas of customer concern
from a product point of view and may grow or dwindle over time in order to match prod-
uct needs. The RAs follow the same Sprint rhythm and aim for continuous integration
across the entire product [89].
Furthermore, there is an Area Product Backlog (APB) in LeSS Huge. The APB is a view
into the Product Backlog based on the RA. Each Product Backlog item belongs to one Area
Backlog, and the other way around. If necessary, Area Backlog items are defined, priori-
tized, and split by the APO. The APO focuses on one APB and acts in essentially the same
way as the PO, but with a more limited, and customer-centric perspective [62].

Through the elimination of project manager roles and a traditional team lead, LeSS also
introduces feature teams, which are cross component and cross-functional [61]. Like with
cross-functional teams, feature teams focus on the customer and remove the barriers be-
tween customers and actual users [62].
In comparison with the traditional Scrum approach, the LeSS framework changes the
structure of Sprint Planning meetings. Here, two members of each team plus the one
overall PO decide which Product Backlog items to work on, whereas in standard Scrum,
the rest of the agile team also participates. In the case of a contention over a Backlog item,
the PO mediates between teams.
Furthermore, Sprint Review changes to a single meeting for all agile teams, which is lim-
ited to two team members per agile team. Two more changes are determined [124]:

• The purpose of the inter-team coordination meeting is to increase information shar-
ing and coordination. It can be held frequently during the week and can take various
forms, including a multi-team Daily Scrum, open space, Scrum of Scrums formats,
or a town hall meeting.

• The focus of the joint light Product Backlog refinement meeting is on refining Product
Backlog items for upcoming Sprints. Only two representatives per team attend. The
meeting should not exceed 5% of the Sprint duration.

Upon the LeSS framework, the LeSS Company B.V. was built. Twenty nine contributions
were made, and 22 case studies are reported. Documentation, as well as communities, and
training courses are available [89].

3.1.7. Scaled Agile Framework® 4.0

The Scaled Agile Framework® (SAFe) was first presented in 2011 by Dean Leffingwell
[89]. Currently, SAFe® released the latest version 4.5 [76]. Nevertheless, the version 4.0

30

3.1. Scaling Agile Frameworks

is described hereinafter. Subsequently, the differences between the SAFe® 4.5 and 4.0 are
highlighted.

3.1.7.1. Description of SAFe® 4.0

SAFe® enables implementing agile practices at enterprise scale. The framework focuses
on highlighting the roles, activities, and artifacts that are necessary to scale agile to teams,
programs and enterprises [118].

Figure 3.5.: The Scaled Agile Framework®: The Big Picture (Reproduced with permission
from © 2011-2017 Scaled Agile, Inc. All rights reserved.) [77]

SAFe® follows a combination of existing agile and lean principles, and combines them
into a method for large-scale agile projects. Furthermore, it provides guidance and training
for scaling agile development across the portfolio, value stream (optional), program, and
team levels. Besides these four layers, SAFe® can be additionally configured with a foun-
dation layer. Because the framework is scalable and modular, it allows each organization
to adapt it to its own business model [80].

• Team level:

31

3. Scaling Agile Frameworks

SAFe® fundamentally consists of agile teams. The team level comprises the roles,
events, activities, and processes through which agile teams build and deliver value.
Each agile team consists of 5-9 agile team members, a Scrum Master, and a Product
Owner (PO) and is responsible for defining, building, and testing small pieces of new
functionality from their Team Backlog.
To synchronize work with other teams, each use a common iteration cadence, which
allows the entire system to iterate simultaneously.
Each agile team employs ScrumXP or team Kanban. ScrumXP is a process, which
combines Scrum project management practices and XP technical practices.
The development timeline is divided into a set of iterations within a Program In-
crement (PI). The PI is a fixed timebox that synchronizes delivery, planning, and
reviews within an Agile Release Train (ART) . Each iteration begins with an iteration
planning, where the team members decide how much of the Team Backlog they can
commit during an iteration. The work to be finished during an iteration is summed
up as PI objectives. Each iteration provides a new functionality. This is accomplished
via a constantly repeating pattern: ”plan the iteration, commit to some functionality,
execute the iteration by building and testing stories, demo the new functionality,
hold a Retrospective, and repeat for the next iteration”. At the end of each iteration,
teams hold a system demo. The Innovation and Planning (IP) iteration occurs every
PI. There, the teams have time for planning, and the opportunity for exploration,
innovation, and retrospecting. The Big Picture in Figure 3.5 shows how a PI begins
with a PI planning session and is then followed by four execution iterations, con-
cluding with one innovation and planning iteration. There is no rule on how many
iterations are in a PI, but experiences have shown that a PI duration of 8-12 weeks
works best . Furthermore, an iteration is recommended to last two weeks, but can
also last from one to four weeks.
The dev team is a subset of the agile team and is comprised of developers, testers,
and various specialists.
The team level is part of the program level [80].

• Program level:
The agile teams are divided into the ART, which is a virtual program structure. Each
ART is a self-organizing, long-lived team of agile teams, consisting typically of 5 to
12 teams, along with other stakeholders, that plan, execute, commit, inspect, and
adapt together. ARTs are organized around the enterprise’s significant value streams
and provide continuous objective evidence of progress, provide user experience and
architectural guidance, facilitate flow, and align teams to a common mission. The
ART produces releases or potentially shippable Increments at fixed time boundaries.
At the program level, features and enablers that are required by the business to re-
alize the vision and roadmap are defined and developed. To manage this, SAFe®

provides a Program Kanban system, which is used to ensure that features are rea-
soned and analyzed prior to reaching the PI boundary and then are prioritized in the
Program Backlog. Furthermore, it ensures that acceptance criteria have been estab-
lished to guide a fidelity implementation.
At the Program level, the Product Management (PM) role serves as the content au-
thority for the ART and is responsible for identifying Program Backlog priorities.

32

3.1. Scaling Agile Frameworks

In the Program Backlog, architectural and business features are defined and priori-
tized. Furthermore, the PM works with POs to optimize feature delivery and direct
the work of POs at the team level.
A release train engineer (RTE) operates as the Chief Scrum Master for the train. The
System Architect aligns with enterprise and solution architecture, and identifies and
creates solution architecture to be delivered by teams’ architecture.
The business owners are the role key managers that guide the ART to the appropri-
ate outcomes.
The Weighted Shortest Job First (WSJF) is a formula that illustrates how the ART, the
Solution, and the Portfolio Backlogs are reprioritized [80].

• Value Stream level:
The Value Stream level, which is optional, supports the development of complex and
large solutions, which require multiple, synchronized ARTs, as well as stronger focus
on Solution Intent and Solution Context. Likewise, suppliers and additional stake-
holders contribute to this level.
The main purpose of this level is to describe lean-agile approaches that scale to the
challenge of defining, building, and deploying large solutions. These require ad-
ditional coordination, artifacts, and constructs. The Value Stream level also contains
Program Increments, which are synchronized across all the ARTs in the value stream.
By that, multiple ARTs, pre- and post-PI planning meetings, and the Solution Demo
are synchronized.
Additional roles at the value stream level include the solution management, the
value Stream engineer, and the solution architect/engineering. The Pre-and Post
Program Increment (PI) planning inform the ARTs of the Value Stream purpose and
objectives [80].

• Portfolio level: The Portfolio level funds and organizes a set of value streams, which
realize a set of solutions, to help the enterprise achieve its strategic mission. Further-
more, it provides funding for solution development by Lean-Agile budgeting, any
necessary governance, and coordination of larger development initiatives that affect
multiple value streams.
This level has a bidirectional connection with business. One direction provides a con-
stant flow of portfolio context back to the enterprise. The other direction provides the
strategic topics that guide the portfolio toward larger and changing business objec-
tives. This informs the enterprise of key performance indicators and other business
factors affecting the portfolio as well as the current state of the solution set level.
The Program Portfolio Management personnel have the highest level strategy and
decision-making responsibility in SAFe®.
The Epic Owner is responsible for conducting portfolio epics through the Portfolio
Kanban system and developing the business case. When the epic is approved, he
is working directly with the key stakeholders on the affected value streams to help
actualize the implementation.
Another role at the portfolio level is the Enterprise Architecture, who works with
business stakeholders and Solution and System Architects to guide technology ini-
tiatives and drive enterprise standards across value streams [80].

33

3. Scaling Agile Frameworks

The Foundation layer holds various additional elements, such as lean-agile leaders,
communities of practice, core values, lean-agile mindset, and principles, which support
development [80].

The Spanning Palette, which serves as a floating surface for roles and artifacts, is an
essential part of the configurability and modularity of the Framework and can apply to
multiple levels of SAFe®. The roles and artifacts belonging to the Spanning Palette include
the System team, DevOps, Release Management, Shared Services, user experience, vision,
roadmap, metrics, milestones and releases. These are also involved in the ART. These
apply most often to the Program or Value Stream level. Some of them can apply to the
Portfolio or Team levels (e.g. metrics, vision, roadmap, etc.) [80].

The four core values and nine principles of SAFe® provide the foundation for the frame-
work. The values, namely alignment, built-in quality, transparency, and program execu-
tion, dictate behavior and action. These can help people know where to put their focus,
distinguish what is right or wrong, and how to help companies to ascertain if they are on
the right path to fulfill their business goals.
The principles that have evolved from agile principles and methods, Lean product devel-
opment, systems thinking, and observation of successful enterprises determine the SAFe®

practices.
The principles include:

• ”Take an economic view”;

• ”Apply systems thinking”;

• ”Assume variability; preserve options”;

• ”Build incrementally with fast, integrated learning cycles”;

• ”Base milestones on objective evaluation of working systems”;

• ”Visualize and limit WIP, reduce batch sizes, and manage queue lengths”;

• ”Apply cadence, synchronize with cross-domain planning”;

• ”Unlock the intrinsic motivation of knowledge workers”;

• ”Decentralize decision-making”.

The lean concepts used in SAFe® are based on the ”House of Lean” metaphor. The goal of
lean is to deliver maximum value and quality to the customer in the shortest sustainable
lead time [80].

Since the introduction of the SAFe®, a number of companies have applied the frame-
work and published their experiences. Resulting benefits of these case studies include the
increase in productivity of around 20-50%, faster time to market of around 30-75%, 50%+
reduction in deficit, and happier, more motivated employees [81].

Upon SAFe®, the Scaled Agile Inc. was built. Thirty five contributions were made and
38 case studies are reported. Documentation as well as communities, and training courses
[89].

34

3.1. Scaling Agile Frameworks

3.1.7.2. Differences between SAFe® 4.0 and 4.5

Recently, SAFe® version 4.5 was released. SAFe® 4.5 is backwards compatible with SAFe®

4.0, which means that organizations can adopt the new features in SAFe® 4.5 at their own
pace. In contrast to the above described SAFe® 4.0, SAFe® 4.5 allows companies to test
ideas more quickly using the Lean Startup Cycle and Lean User Experience (Lean UX),
deliver more quickly with Scalable DevOps and the Continuous Delivery Pipeline, and
simplify governance and improve portfolio performance with Lean Portfolio Management
(LPM) and Lean Budgets. The new available implementation roadmap accelerates Lean-
Agile transformation and guides enterprises every step of the way.
Furthermore, four configurable frameworks, which provide a more configurable and scal-
able approach, are introduced. These are Full SAFe, Portfolio SAFe, Large Solution SAFe,
and Essential SAFe. The latter is the most basic configuration. It describes the most critical
elements needed to realize the majority of the framework’s benefits. The Large Solution
SAFe® configuration is suitable for enterprises that are building large and complex solu-
tions that require input of multiple ART and suppliers, but do not require portfolio con-
siderations. Furthermore, it consists of the Large Solution level and Essential SAFe. The
Portfolio SAFe configuration is suitable for enterprises that build solutions that also need
to incorporate portfolio concerns. These may include strategy and investment funding,
lean governance, and innovation across various value streams. Furthermore, this configu-
ration adds the Portfolio Level to Essential SAFe. The most comprehensive configuration is
Full SAFe. This one supports enterprises that build large, integrated solutions that require
hundreds of people or more to develop and maintain.

Regarding the terminology, there are also some changes. The Value Stream Level in
SAFe® 4.0 changed to Large Solution level. In addition, the terms ’Value Stream Backlog’,
’Value Stream Engineer’, ’Value Stream Epic’, ’Value Stream Kanban’ and ’Value Stream
PI Objectives’ changed to ’Solution Backlog’, ’Solution Train Engineer’, ’Solution Epics’,
’Solution Kanban’ and ’Solution PI Objectives’, respectively.
Furthermore, a new term is introduced in SAFe® 4.5, namely Solution Train. This describes
the organizational construct of SAFe®, which is used to build large and complex solutions
that need to coordinate multiple ARTs, as well as the contributions of suppliers. In ad-
dition, it aligns ARTs and suppliers around a shared business and technology mission by
using a common Solution vision, backlog, roadmap, and an aligned Program Increment
(PI) cadence. The Solution Train Engineer is the leader of the train and helps the Solution
Train run smoothly [75].

3.1.8. Disciplined Agile 2.0

The Disciplined Agile Delivery (DAD) is a process decision framework for lean enterprise
[11] and was published in 2012 by Scott Ambler and Mark Lines [14]. The current version
of the framework, named Disciplined Agile 2.0, was released in 2015. It provides light-
weight guidance to help organizations streamline their information technology processes
in a context-sensitive manner, by showing how various activities such as solution deliv-
ery, operations, enterprise architecture, portfolio management, and many others work to-
gether in a cohesive whole. The DA framework adopts practices and strategies from ex-
isting sources, such as Scrum, Kanban, XP and Agile Modeling, and provides advice for

35

3. Scaling Agile Frameworks

when and how to apply them together [15]. The aim of DA 2.0 is to address areas that are
not thoroughly covered in smaller scale agile frameworks and recommends three phases,
namely inception, construction, and transition. It provides recommendations for processes
that come both earlier in the project (inception) and as teams prepare for delivery (tran-
sition), while many other agile frameworks address what DA 2.0 calls the construction
phase. Therefore, the strength of DA 2.0 is in providing more guidance in the areas of
DevOps (transition), design, and architecture (inception).

Figure 3.6.: The Disciplined Agile Delivery’s Agile lifecycle [12]

Furthermore, it provides flexibility by suggesting different process guidelines for four cat-
egories of life cycles, namely lean/advanced, agile/basic, continuous delivery, and ex-
ploratory. The lean/advanced life cycle uses processes similar to Kanban, whereas the
construction phase of agile/basic is Scrum. The inception phase aims to stock a work
item pool that is organized to achieve business values, expedited delivery, fixed deliv-
ery dates, or some other goal. During the transition phase, planning, prototyping, stand
up meetings, retrospection, and further activities are performed. The focus of the con-
tinuous delivery life cycle is on continuous integration, mature DevOps, and deployment
processes for projects that require frequent delivery to stakeholders. The exploratory life
cycle minimizes early planning due to fast delivery, gaining feedback and incorporating it
into the next delivery. The inception phase in the continuous delivery life cycle is unique
and has a brief transition period. In this life cycle, products are produced daily, weekly, or
monthly. Last but not least, the exploratory life cycle aims to encourage agile teams to put
themselves in start-up or research situations wherein the stakeholders have clear ideas for

36

3.1. Scaling Agile Frameworks

a new product but do not yet understand the needs of their user base. The DA 2.0 roles,
which are adopted from the Scrum and agile modeling (AM) methods, start with the PO
and primary team members. The role of a team lead was adopted from the AM method.
This role is similar to a Scrum Master or an architecture owner role. In order to address
scaling issues, DA 2.0 has secondary roles, namely specialist, domain expert, technical ex-
pert, independent tester, and integrator [14]. In DAD, there are two types of ”agility at
scale” [11]:

• Tactical agility at scale is the application of agile and lean strategies on individual
DAD teams. It aims to apply agile deeply to address all of the complexities, what are
called scaling factors. The scaling factors include the ability to apply agile on teams
of all sizes, on teams that are geographically distributed, on teams facing regula-
tory compliance, on teams addressing a complex domain, on teams applying com-
plex technologies, on teams where outsourcing may be involved, and combinations
thereof.

• Strategic agility at scale is the application of agile and lean strategies broadly across
an entire organization. From an enterprise point of view this includes all divisions
and teams within an organization, not just the IT department, whereas from an IT
point of view, this includes Disciplined Agile IT in general and Disciplined DevOps.

The Disciplined Agile Consortium is built upon DA 2.0. Thirty four contributions were
made and four enterprises use DAD. Documentation as well as communities, and training
courses are available [89].

3.1.9. Spotify

Spotify is a model published in 2012 by Henrik Kniberg, Anders Ivarsson and Joakim
Sundén [89]. The basic unit of development at Spotify is a Squad, which is similar to a team
in Scrum [51]. Each Squad consists of 6-12 members [6].The teams have all the skills and
tools needed to design, develop, test, and release to production. So far, Spotify has been
scaled to over 30 teams. They are self-organizing and decide their own way of working —
some use Kanban, some use Scrum Sprints, and some use a mix of these approaches. Each
squad is encouraged to spend 10% of their time on ”hack days” to promote learning and
innovation. During hack days, people typically try out new ideas and share them with
their buddies. Every Squad has a Product Owner who is responsible for prioritizing the
work to be done by the team, but is not involved with how they do their work. In addition,
a squad has access to an agile coach who helps them evolve and improve their way of
working. A collection of squads that work in related areas is called a tribe. For every tribe,
a tribe lead is assigned who is responsible for providing the best possible habitat for the
squads within that tribe. Tribes regularly hold an informal get-together where they show
the rest of the tribe what they are working on, what they have delivered, and what others
can learn from what they are currently doing. The scrum of scrums happens ”on demand”.

At Spotify, there is a separate operations team, whose job is to give the squads the sup-
port they need to release code themselves. The chapter is a small group of people having
similar skills and working within the same general competency area, within the same tribe.

37

3. Scaling Agile Frameworks

Figure 3.7.: The Spotify Model [51]

Each chapter meets regularly to discuss their specific challenges and their area of exper-
tise. The line manager of the chapter members is the chapter lead. His responsibilities
comprise developing people, setting salaries, etc. The chapter lead is also part of a squad
and is involved in the day-to-day work. A guild is a group of people that want to share
knowledge, code, tools, and practices. A guild usually cuts across the whole organization,
while chapters are always local to a tribe [51].
The Spotify organization is built upon the Spotify model. Sixteen contributions were made,
and one case study is reported. There are documentation and communities available, but
no training courses [89].

3.1.10. Mega Framework

The Mega framework is a set of practices [83] and was published in 2012 by Rafael Maran-
zato, Marden Neubert and Paula Heculano [89]. It scales standard Scrum by allowing up
to ten teams to work in parallel [48] and adding new meetings. The teams are feature
teams instead of software component teams, and they work in four-week Sprints [83]. A
feature team is a long-lived, cross-component, cross-functional team that completes many
end-to-end customer features. Each team has its own development environment. After
each release, the feature teams merge their code. In addition to the feature teams, the
Mega Framework introduces a Mega Backlog, which is an initial series of discussions with
the main stakeholders to organize the backlog. Besides the Scrum routine, the following
meetings are added to the Mega framework. The Mega Planning happens after the Sprint
Planning. It gives to the feature teams the opportunity to explain their stories to each other,

38

3.1. Scaling Agile Frameworks

to know what is going on with other teams, and to receive feedback on how they intend
to implement their stories. The Mega Stand-up happens after the middle of the Sprint and
synchronizes the teams that are in the release. The goal of the Mega Retrospective is to
find impediments that cross at least two teams but were previously considered less impor-
tant or too difficult to deal with from a single team perspective. The difference between
the Sprint Review in Scrum and the Mega framework is the audience. Besides inviting the
team, the Product Owner, some members of the operational area, some of the stakeholders,
and one representative of each other feature team is also in attendance. In the Weekly Pre-
Planning meeting, only the features and stories that are candidates for the next Sprint are
discussed. The most important Mega Framework meeting is the weekly Product Owner
and Scrum Master meeting.

Sprint
Planning

Daily Scrum &
Work

Product
Increment

Sprint Review

Sprint
Retrospective

Update
Product
Backlog

11

Sprint
Planning

Daily Scrum &
Work

Product
Increment

Sprint Review

Sprint
Retrospective

Update
Product
Backlog

Scrum Framework Scrum Framework

1. Feature teams
2. Mega Backlog
3. Grow, then split
4. Hiring and ramp up
5. Sprint lenght
6. Teams per release
7. Values instead os rules
8. Development environment
9. Continuous improvement

1. Mega Planning
2. Mega Stand-up
3. Mega Retrospective
4. Sprint Reviews
5. Weekly Pre-Planning
6. Weekly Product Owner and Scrum Master

meeting
7. Regular Mega meetings with business area
8. Knowledge sharing

Strategy

Framework

Figure 3.8.: The Mega Framework, Source: based on [83]

Here, the topics discussed include impediments, pending issues, corporate policies, de-
cisions, and main features that are being developed or planned, especially those that can
affect other teams; changes in the backlog planned for the next Sprints are also discussed.
In the monthly Mega meeting with Business Area, pending issues, problems, and new
opportunities for the product are discussed. As more people are added to the teams, it
gets harder to reinforce and exchange good practices and knowledge. To facilitate this, the
knowledge sharing meeting, which takes place once a week, is conducted for developers,

39

3. Scaling Agile Frameworks

webmasters and test analysts [83].
The Universo Online S.A. is built upon the Mega Framework. Four contributions were

made, and one enterprise uses this framework, but neither documentation, communities,
nor training courses exist [89].

3.1.11. Event-Driven Governance

The Event-Driven Governance is a framework published in 2012 by Erik Marks [89]. Event-
Driven Governance is light weight, lean, and virtual, supported by ten principles, pro-
cesses, and designs. Trough self-governance and community-governance concepts, which
help create a scalable, more collaborative, and trust-based approach to governance, it has
become the first framework for enterprise agile development. The framework includes
multiple agile teams that are protected through an agile governance buffer zone. Each
agile team consists of a Scrum Master, a Product Owner, and the scrum team. The agile
governance buffer zone protects agile teams from the friction of IT governance. Never-
theless, it enables them to engage with IT governance for escalations, critical decisions,
and oversight in a way that is in and of itself agile. Furthermore, it improves governance
process performance of agile delivery and allows agile teams to access oversight processes
and enterprise governance, and align with IT Governance, compliance, and risk. The agile
governance buffer zone describes a three tier governance, each of which describes a dif-
ferent type of IT governance. The three tiers include top-down prescriptive governance,
community governance, and self-governance. In the top-down prescriptive governance,
which is the traditional enterprise IT governance approach, policies are defined and en-
forced at the enterprise level. But this governance does not scale well, and is typically
slow and unresponsive. Community governance style is based on a team, or a collective
distributed team, to provide governance and oversight. It responds to governance re-
quirements quickly, and also scales very well, because the community-based governance
designs are simple, very responsive, and do not have the overhead of Top-Down prescrip-
tive governance processes. In the self-governance, teams are empowered to self-govern
based on the knowledge of key enterprise principles, policies, and controls. Moreover, it
scales remarkably well. The Product Backlog is a central artifact in agile development,
which guides the process and contains the user stories necessary for implementation of a
product or a feature. Relating to enterprise IT governance, a new artifact is introduced:
the governance backlog, which is similar to the Product Backlog. It contains prioritized
governance requirements that are identified during different phases of the agile delivery
process. These include the product planning, release planning, backlog grooming and
Sprint planning. Furthermore, a new role is introduced: the agile governance owner, who
is responsible for the governance backlog [84].

Upon Enterprise-Decision Governance the AgilePath organization is built. One contri-
bution is made but no information about enterprises using EADAGP is available. There
are documents and communities available, but no training courses [89].

3.1.12. Recipes for Agile Governance in the Enterprise

Recipes for Agile Governance in the Enterprise (RAGE) is a framework that was published
in 2013 by Kevin Thompson [89]. It describes how governance can be conducted effectively

40

3.1. Scaling Agile Frameworks

for Agile and hybrid processes in a large company that develops software applications.

Figure 3.9.: Recipes for Agile Governance in the Enterprise [122]

The key insight is that the bulk of governance can be achieved by defining and using
standard roles, meetings, artifacts, tracking and metrics, and governance points at differ-
ent levels. The governance is divided into Portfolio, Program, and Project levels. For each
level, appropriate practices do exist. The Project level refers to the work of a single team;
the Program level refers to the collaboration between teams; and the Portfolio level refers
to the development and management of business initiatives that lead to program- and
project-level work. The roles at the Project level comprise the Product Owner, the Area
Product Owner and the Program Manager. Meetings presented at the project level include
the Portfolio Grooming meeting and the Portfolio Planning meeting. The Artifacts pre-
sented at the Portfolio level include The Business Case, the Agile Charter, the Decision Ma-
trix and the Portfolio Backlog. The Program level distinguishes between Governance for
Development in the Business Units and Governance for Deployment across the Business
Units. An Area Product Owner and a Product Manager exist at the Program-level gover-
nance within Business Units, too. Existing meetings include the Release Planning meeting,
the Scrum of Scrums meeting and the Release Review. The artifacts include the Definition
of Done for the release and the release plan. The Program level governance across Business

41

3. Scaling Agile Frameworks

Units includes the roles for the Release Manager, the Product Manager, and the Product
Operations Team. Here, Release Hand, Staging Readiness Review, Production Readiness
Review, Production Stand-up, and Production Deployment Validation meetings are held.
At the Project level, the Scrum process and the Kanban process are available. The Scrum
process is suitable for environments where there is need to plan the delivery of results on
a schedule, but where it is possible to start and complete a set of tested deliverables within
one to a few weeks, and where scope and effort are not well understood. Furthermore, it is
suitable for Data Warehouse, Business Intelligence and software development, and other
environments with similar characteristics. The roles in the Scrum process are the same
as in standard Scrum. Besides the known Sprint Planning, Daily Scrum, Sprint Review
and Retrospective meetings, the Scrum process additionally contains a Backlog Groom-
ing meeting. Artifacts comprise the Sprint Backlog, the Product Backlog, the Definition
of Done, and Stories and Epics. The Kanban process is suitable for environments where
forecasting the delivery of results on a schedule is either not needed or impossible. It
focuses primarily on prioritizing requests to do various kinds of work, which arrive at un-
predictable moments, and organizing the workflow to optimize throughput. Furthermore,
it is suitable for IT Operations, Production Support, and other environments with similar
characteristics. In a Kanban process, requests for work to be done enter in the Backlog.
Although Kanban does not define roles, RAGE proposes a Backlog Owner, a Process Mas-
ter and the Team as useful roles. In the Kanban process, the Backlog Grooming, the Daily
Stand-up and the Retrospective meetings are held. As Kanban has no prescribed artifacts,
organizations whose Kanban processes move deliverables through workflow states often
use the Story format as the specification of a deliverable [121].

The Cprime organization is built upon the RAGE framework. Six contributions are
made, and one enterprise uses this framework. There are documentation, and training
courses available, but no community, forum or blog [89].

3.1.13. Matrix of Services

The Matrix of Services (MAXOS) is a framework published in 2014 by Andy Singleton
[89]. The MAXOS is used by organizations to scale the size, speed, and complexity of
their IT operations and software development. The work to be done is prioritized in the
Product Backlog. Software applications are divided into small services, each of which is
built, tested, and operated by a small team. The service teams are small, typically con-
sisting of 2-8 programmers who run the process and pull in other roles as needed. Thus,
they can be fast and efficient, and they do not need to be multifunctional. The teams have
their own integration test environment, and they test and submit changes via a distributed
continuous delivery process. In MAXOS there is no iteration, which enables more scalabil-
ity. The teams plan and communicate only if necessary, and integrate and release steadily.
Continuous agile is continuous and non-blocking, lean, automated, and based on manag-
ing code. Consequently, the team members can work on their own features and do not
have to wait for someone else to debug and release. This enables each person to work
efficiently while, at the same time, enabling projects to scale to hundreds of contributors.
Furthermore, contributors can concentrate on one task at a time while still doing a good
job, and completing it. To manage the code, everything is put into repeatable scripts and
is visible online. In this context, continuous agile uses source code management and code

42

3.1. Scaling Agile Frameworks

contribution workflows [117].
In an e-mail, Singleton mentioned that SAFe is a bad idea [114] and that silicon valley

companies would rather use the MAXOS structure and the ”Apex strategies” [116].
Upon this framework the Maxos LLC organization is built. Five contributions were

made but no information about enterprises using CAF is available. There are documenta-
tion and communities available, but no training courses.

Integration
Test env

Integration
Test env

Integration
Test env

Production
Service

Production
Service

Production
Service

Service Team

Service Team

Service Team

Current
Work

Prioritized
Backlog

Organize by
Testing as one system

Each team releases
when ready

Feedback on speed, errors, usage and requests

Figure 3.10.: Matrix of services, Source: based on [115]

3.1.14. Scrum at Scale

Scrum at Scale is a modular framework published in 2014 by Jeff Sutherland and Alex
Brown [89]. It is a minimal extension of the core Scrum framework. The Product Owner-
ship cycle generally describes the vision to complete a work, the process of how the teams
will realize this vision, and the feedback from the customer. If the team visualizes how
to complete the work, the work items have to be prioritized by importance. This is called
the Backlog prioritization. Thereafter, this vision is broken down into smaller pieces. Over
the time, the user stories need to be refined. This step is called the Backlog decomposi-
tion and refinement. During the Release Planning, the teams evaluate when to deliver a
product. Each individual shippable increment is combined, finalized, and delivered to the
customer. This is called the release management. The final step of the Product Ownership

43

3. Scaling Agile Frameworks

Figure 3.11.: Scrum at Scale [120]

cycle is the customer feedback. Based on the feedback, the vision is updated and refined.
Another cycle included in the Scrum at Scale framework is the Scrum Master cycle, which
starts at the team level process and boils up to the strategic vision. The idea behind that is
continuous improvement and impediment removal. Based on the removal from impedi-
ments, a cross-team coordination, which is the closing Scrum Master review, is suggested
additionally. The nine modular have to take place in a context of metrics and transparency.
These concepts can be part of the team level, the product, project, or business unit level,
or the enterprise level. Scrum at Scale allows scaling any Scrum implementation in a way
that is tailored to the unique needs of a company without introducing anti-Scrum patterns
or unnecessary waste. For example, Scrum at Scale helps to implement the Spotify model
or improve the Scaled Agile Framework® implementation of an organization. In addition,
it is also compatible with Large Scale Scrum and the Nexus Framework. The ability of
context-driven solutions and processes is one of the keys to Scrum’s success [5].

Upon this framework the Scrum Inc. is built. Thirteen contributions were made but no
information about enterprises using this framework is available. Documentation as well
as communities and training course and communities are available.

3.1.15. Enterprise Transition Framework

The Enterprise Transition Framework (ETF) was published in 2014 by agile42 [89]. It does
not focus on specific methods like Kanban, SAFe®, or LeSS. Rather, it is based on fun-

44

3.1. Scaling Agile Frameworks

Figure 3.12.: The Enterprise Transition Framework [7]

damental agile principles and values. The agile42 organization has created the ETF that
leads and supports any organization through the process of becoming more Agile. The fo-
cus of this framework is to allow an organization to implement continuous improvement
and to experience change in a controlled way. The ETF supports the adoption of the Dis-
ciplined Agile Delivery (DAD), SAFe®, and other scaling agile frameworks. In addition,
it enables structured and strategic organizational change, and will help to deploy SAFe®,
DAD or any other framework. Furthermore, the ETF provides the right tools and methods
to become agile, independent of the organization type. The ETF supports organizations in
becoming resilient against market changes, and the Team Coaching Framework™guides
agile coaches in their professional development [7].
To become agile, four steps are important [7]:

• ”Assessment: Understand the actual situation”

• ”Strategy: Identify the right agile strategies”

• ”Training: Create a common knowledge base”

• ”Coaching: Learn Agile principles for continuous improvement”

A set of useful methodical tools, coaching structures, and interactive training, such as the
proven end-to-end approach of the ETF, can be scaled to organizations needs and size. The
development of internal coaching capabilities is one important aspect of agile transition.
For this the unique ”Team Coaching Framework (TCF)”, which contains also the education

45

3. Scaling Agile Frameworks

of internal coaches, was developed. The education of internal coaches is called the ”Coach
the Coach” approach. The TCF speed up coaches’ learning and helps organizations to
effectively scale agile from the bottom-up as well as from the top-down [7].

Upon the ETF, the agile24 organization is built. Two contributions were made and
two enterprises use this framework. Documentation as well as communities and train-
ing courses are available [89].

3.1.16. ScALeD Agile Lean Development

ScALeD Agile Lean Development (SALD) is a set of principles published in 2014 by Peter
Beck, Markus Gärtner, Christoph Mathis, Stefan Roock and Andreas Schliep [89].

Figure 3.13.: ScALeD Agile Lean Development, Source: based on [18]

Believing that a set of guiding principles, rather than a new method or additional frame-
work, is required to successfully apply agile practices at scale, Beck, Gärtner, Mathis Roock
and Schliep defined a set of principles. The principles are not new, because they instead
took existing ideas and reworded them to address the scalability challenges. Principles,
such as excited customers, happy and productive employees, global optimization, sup-
portive leadership and continuous leadership shall guide to applying agile at scale. Mo-
tivated customers enable businesses to maintain growth. A common understanding of
the product’s value proposition is especially important in a scaled organization. Shared
values provide guidance for all project members. Small, deliverable increments are funda-
mental for the continuous growth of the product, because they minimize risks and reduce
complexity. Employees offer the highest improvement potential, and achieve a higher pro-
ductivity, if they are satisfied. Therefore, it is important to create a work environment that
results in excited employees. Employees working on a large-scale agile project require not

46

3.1. Scaling Agile Frameworks

only the right technical skills, but they also have to take on ownership for their work and
support each other. Scaling requires a modular, loosely coupled product architecture. At
all levels of the organization continuous improvement is an important agile practice. This
is facilitated by repeated inspection and adaption. Inspection should be based on direct
observation and communication, whereas adaption should happen without any delays
[18].

Three contributions were made but no information about enterprises using SALD is
available. There is documentation and communities available but no training courses [89].

3.1.17. Exponential Simple Continuous Autonomous Learning Ecosystem

Exponential Simple Continuous Autonomous Learning Ecosystem (XSCALE) is a set of
principles published in 2014 by Peter Merel [89]. It is an acronym for the principles of an
agile organization, as well as a language of best practice focused on exponential growth.
The principles of the Agile Manifesto are extended to Portfolio Leadership, Product Lead-
ership, Culture Leadership and Holarchy. The six principles are as follows [86]:

• ”eXponential return by stacking growth curves”;

• ”Simple design to the elegance of minimum”;

• ”Continuous optimization of throughput”;

• ”Autonomous teams, self-managing streams”;

• ”Learning: triple loop, breadth-first, set-based”;

• ”Ecosystems thinking: whole-board & win-win”

The Agile Manifesto focuses on agile teams, not organizations, which are composed of ag-
ile teams. Thus, they apply the agile values at all levels and to all business functions. In an
XSCALE organization, the coach and leader serve as servant leaders. Organizations ben-
efit from XSCALE, because Exponential Product Management aligns design, business and
tech authorities breadth-first to optimize value stream throughput. In addition, De-scaling
Patterns empower doers in decisions to prevent politics and disconnects. Furthermore,
organization Permaculture minimizes costs of quality and delay, combining Agile with
DevOps and ”open-book” Throughput Accounting. Finally, exponential transformation
generates new capability without compromise or confusion [86].

Upon XSCALE the XSCALE Alliance is built. Five contributions were made, but no
information about enterprises using XSCALE are available. Documentation as well as
communities and training courses are available [89].

47

3. Scaling Agile Frameworks

Figure 3.14.: The structure of Exponential Simple Continuous Autonomous Learning
Ecosystem [87]

3.1.18. Lean Enterprise Agile Framework

Lean Enterprise Agile Framework (LEAF) is a framework published in 2015 by Satisha
Venkataramaiah [126]. It is a tool of system thinking for helping organizational agility. In
addition, it is a conversation starter that helps organizations to find constraints that limit
their potential to scale the deliverables [127], rather than processes or teams [126]. An
empirical process to design lean enterprises through kaizen culture is the essence of LEAF.
The four pillars form the foundation of Leaf [127]:

• ”Systems Thinking”

• ”Engineering Practices”

• ”Community of Practices”

• ”Continuous Collaboration”

Upon this framework the LeanPitch Technologies is built. No contributions or informa-
tion about enterprises using LEAF were found. Documentation as well as communities
and training courses and certifications are available [89].

48

3.1. Scaling Agile Frameworks

Unfortunaly, no further information or documentation was found regarding LEAF. The
LeanPitch organization was contacted for additional information, but we did not receive
any response.

3.1.19. Nexus

Nexus is a framework presented in 2015 by Ken Schwaber [89]. It is a framework for
sustaining and developing scaled product and software development initiatives. Scrum
is used as its building block. Compared to Scrum, Nexus pays more attention to depen-
dencies and interoperation between Scrum Teams, delivering one ”done” Integrated In-
crement at least every Sprint. Nexus consists of roles, events, artifacts, and techniques that

Figure 3.15.: The Nexus Framework [108]

bind together the work of approximately three to nine Scrum Teams working on a single
Product Backlog to build an Integrated Increment that meets a goal. Most of these prac-
tices require automation, which helps to manage the volume and complexity of the work
and artifacts especially in scaled environments. The Nexus Integration Team, a new role
introduced in Nexus, exists to coordinate, coach, and supervise the application of Nexus
and the operation of Scrum so the best outcomes are derived. It consists of a Scrum Mas-
ter, a Product Owner, and team members. Similar to other methods, there exists a single
Product Backlog, which is used by all Scrum teams and has a single Product Owner. Team
members are responsible for coaching and guiding the Scrum Teams in a Nexus in order
to acquire, implement, and learn these practices and tools. The Nexus Sprint Backlog, a
new artifact, exists to assist with transparency during the Sprint. Each Scrum Team main-
tains their individual Sprint Backlogs. Nexus events comprise the Nexus Sprint Planning,
the Nexus Daily Scrum, the Nexus Sprint Review and the Nexus Sprint Retrospective,
where the latter consist of three parts. The first part enables representatives from across
a Nexus to meet and identify issues that have impacted more than a single team. In the
second part each Scrum Team holds their own Sprint Retrospective as described in the

49

3. Scaling Agile Frameworks

Scrum framework. The third part is an opportunity for appropriate representatives from
the Scrum Teams to meet again and agree on how to visualize and pursue the identified
actions. There are many levels of refinement at the scale of Nexus. The Product Backlog
items can be selected and worked on without conflict between Scrum Teams in a Nexus
only when they are adequately independent. Product Backlog refinement at the enterprise
scale forecasts which teams will deliver which Product Backlog items, and identifies de-
pendencies across those teams. In doing so, it should focus on dependencies that have to
be identified and visualized across teams and Sprints [108].

Upon this framework the Scrum.org organization is built. Six contributions were made
but no information about enterprises using Nexus is available. Documentation as well as
communities, and training courses are available [89].

3.1.20. Fast Agile

Fast Agile is a set of methods published in 2015 by Ron Quartel [89]. FAST Agile (FAST) is
a system for collaboration from the small scale to the large. It combines elements of Scrum,
XP, Open Space Technology (OST), and Story Mapping with the goal of high-quality and
high-bandwidth output in short iterations. A FAST project may begin by merging all de-
velopment teams working on the same project into one tribe. At the beginning, these
teams stay together inside this tribe as clans. A Story Map forms the basis for the tribe’s
Product Backlog. There, all the features of the project are maintained and tracked visually.
The entire tribe meets in cadence where each clan demonstrates the software that has been
worked on since the last meeting. Afterwards, an Open Space style marketplace takes
place where any team member may pull work from the backlog and announce what they
will plan to do it in the next iteration. Thereafter, developers may either stay with their
clan, or work with another clan. This is called flex-teaming. In the context of small scale,
FAST can be used for scrum sized teams and in place of Scrum. Because FAST comprises
parallel streams of work in an iteration, it works best if the work in progress size is at least
3. If the team is capable of working on three parallel streams then FAST can be used. In the
context of large scale, a FAST tribe can maintain a size of around 150 developers. In case
a project is larger than this, you have move to a multi-tribe mode. A tribe typically works
on one project, but it is also possible for a tribe to own and work on multiple projects in
parallel. In the case of restricted key resources, this is useful as the marketplace is a way
to identify resource bottlenecks and dependencies and quickly strategize around this. In
the multi-tribe mode, the separation of work between the tribes has to be clear. Each tribe
will be responsible for one or more pieces of the portfolio. Product Owners meet to discuss
the interrelationship of their products and all the implications and planning around this.
This is similar to scrum of scrums, but includes the Product Owners. In addition, multi-
tribe mode should be used for distributed teams. In this case, it is necessary that each
distribution area becomes a tribe. That tribe takes ownership of one or more aspects of
the project/portfolio. FAST requires a tribe to be co-located and to meet in person at each
iteration. This is similar to the release planning meetings in the Scaled Agile Framework®,
but happens each iteration. All of the current agile methods and scaling models have small
cross-functional teams at their core. FAST is the first method, where these teams do not
necessarily persist. However, FAST creates a cross-functional tribe, of which, teams self-
form around the work. Within this tribe, any individual is allowed to move between teams

50

3.2. Scaling Agile Frameworks in Research

or form a team at any time. Furthermore, this tribe is a network and is a more efficient way
of balancing work across teams and sharing knowledge than mechanisms used by other
scaling models. Co-location is a precondition. Therefore, FAST differs from other scaling
models because it is the only agile scaling model to state that co-location is a must. In
FAST, there is no Scrum Master and no further administrative roles other than the Product
Owner. FAST is founded on lean principles. By adding a Retrospective meeting into your
FAST implementation and a Scrum Master role to the tribe, Scrum is implemented. A more
structured way to express a Product Backlog is the story map, which is also iterative [99].
The Product Director role is similar to the Product Owner role in Scrum. FAST does not
specify team leads or architect roles [100].

Upon the Fast Agile, the Cron Technologies is built. Three contributions were made,
but no information about enterprises using FAST is available. There is documentation and
communities available but no training courses or certifications [89].

3.2. Scaling Agile Frameworks in Research

In this section, related scientific works on scaling agile frameworks and their comparison
are presented:

• Companies producing embedded systems are in the process of deploying agile meth-
ods, and several attempts to scale agile methods to include development of mass-
produced systems can be identified. Some organizations developing mass-produced
systems have successfully introduced agile development on the team level, but were
facing challenges when doing so in largescale development of software intended for
mass-produced systems. Eklund et al. [41] present these challenges. While some
of them were described, SAFe® and DAD were mentioned in connection with the
challenge of scaling the number of involved teams, as they involve release planning
and road mapping of product portfolios. SAFe® is shortly described, whereas DAD
is not described further.

• Alqudah and Razali [9] aim to review the existing literature of the utilized scaling
agile methods by defining, discussing and comparing them. A wholesome under-
standing of the method, including its strengths and weaknesses as well as when and
how it makes sense is important for large organizations to pick the right method. In
a further analysis, SAFe®, LeSS, DAD, RAGE, Nexus and Spotify were considered
to be scaling agile methods at large organizations. Therefore these frameworks are
treated in Alqudah’s and Razali’s analysis. To give an understanding of these frame-
works, each framework, including its roles and practices, is described. Subsequently,
the frameworks are compared based on some criteria (See Table 4.1). Consequently,
the results are summarized, and the advantages of each framework are shown.

• Ambler and Lines [10] state, that there are two fundamental visions about what it
means to scale agile: tailoring agile strategies to address the scaling challenges and
large team size. When scaling agile, agile teams can face scaling factors. These in-
clude team size, geographic distribution, organizational distribution, compliance,
domain complexity and technical complexity. There are three features of the strategy

51

3. Scaling Agile Frameworks

for scaling agile delivery strategies. The first feature is basic agile and lean methods.
Methods such as Scrum, Extreme Programming, Kanban, and others are the source
of principles, practices, and strategies that are the bricks from which a team will
build its process. The second feature is the Disciple Agile Delivery (DAD), which
provides an end-to-end approach for agile software delivery. The third feature is
agility at scale. Teams which operate at scale apply DAD in a context-driven manner
to address the scaling factors. In the context of agility at scale, you need to first scale
agile delivery, before you can think about scaling agile across the organization.

• Brenner and Wunder [25] focuse on the applicability of the Scaled Agile Framework®.
First, SAFe® 3.0 is described. Afterwards, a short case study of the AVL List company,
where they adopted SAFe® 3.0, is described.

• Hayes et al. [44] discuss the dimensions of the scaling problem. The inventors of
available frameworks that meet the scaling problem were interviewed. In this con-
text, SAFe®, LeSS, DAD, DSDM and Scrum at Scale are described. This report prefers
to describe each framework and provide graphics, references, and the advice of the
author rather, than compare and contrast the frameworks for strengths and weak-
nesses.

• Kapadia [47] presents frameworks in context of multiple teams with total team mem-
bers spanning tens or hundreds or even more. In this context, SAFe®, DAD and LeSS
are mentioned. Primarily, the methodologist, the website and a short description for
each framework are given. Afterwards, screenshots of each framework were shown,
together with some bullet points. Finally, the three frameworks are compared based
on some criteria (See Table 4.1).

• Korhonen and Luhtala [52] aim to contribute the understanding of prerequisites
of implementing agile product development. As a framework that would support
large-scale agile product development, Finland’s Slot Machine Association decided
to adopt SAFe®. As SAFe® plays a major role, the framework is described in detail.
LeSS and DAD are only mentioned as other known scaling agile frameworks.

• The Global Teaming Model (GTM) recommendations, mentioned in [88], specify
what a global software development project should do, but it does not specify how.
In order to provide concrete guidance for projects that wish to employ agile methods
in a global software development context, this paper aims to find out if the practices
described in SAFe® could provide examples for how GTM recommendations could
be actualized. Therefore, SAFe® is described in this Paper. Here, the ASK-Matrix is
referenced to find other scaling agile frameworks.

• Ömer et al. [89] describe the roles of architects in scaling agile frameworks. A prelim-
inary analysis of 20 identified scaling agile frameworks is shown. Subsequently, the
three most popular scaling agile frameworks, namely the Scaled Agile Framework®,
Large Scale Scrum, and Disciplined Agile 2.0, are described in detail. Finally, the
roles of enterprise, software, solution, and information architects, as identified in six
different scaling agile frameworks, are characterized.

52

3.2. Scaling Agile Frameworks in Research

• Pant [95] is about the Scaling Agile Frameworks and how they can be applied to
any organization to get better business results. SAFe®, LeSS and DAD are compared
based on six criteria (See Table 4.1). Based on this comparison, DAD proves to be
an appealing option to make the agile transition painless. Therefore Discipline Agile
Delivery is described extensively.

• Paasivaara and Lassenius [92] present a case study on the application of the LeSS
framework to a large, distributed agile software project at Nokia. The project adopted
Scrum immediately at the project start-up phase and used the LeSS framework to
guide scaling. Primarily, SAFe® and LeSS are briefly described, and Disciplined
Agile Delivery is defined. Besides these quite well-known frameworks, the Agile
Scaling Knowledgebase Decision Matrix is referenced as documentation where fur-
ther frameworks can be found. Afterwards, the case study is described. However,
the project faced challenges in scaling Scrum, despite attempts at applying the LeSS
framework. This is due to inherent problems in the framework itself and to the poor
implementation.

• Large companies have been supported by Atlassian, as they adopt agile methodolo-
gies for many years. Atlassian provides a way to scale agile with the combined force
of Portfolio for JIRA and JIRA Software. Radigan et al. [103] discusses how JIRA
Software and Portfolio for JIRA can support the SAFe® methodology and organiza-
tional needs at all levels. After discussing the need for scaling agile, SAFe® 4.0 is
described in detail. Finally, the tools used at each SAFe® level are presented.

• Razzak [104] describes the gaps of SAFe®. For example, SAFe® does not cover all as-
pects of agility required in a distributed environment context. Experienced adopters
of SAFe® reported that geographically distributed teams experience lower produc-
tivity due to lack of alignment and solid program execution. Furthermore, SAFe®

focuses only on describing the best practices, roles and artifacts of lean principles
and agile but no attempt has been made to describe implementation strategy.

• Saeeda et al. [107] analyze agile approaches in detail, finding its success stories in
small- and medium-sized projects, and highlighting its limitations for large-sized
projects. This study identifies the current research problem of the agile scalability
for large-size projects by giving a detailed literature review of the identified prob-
lem, and it synthesizes the existing work for covering the identified problem in the
agile scalability. Two terms are introduced to distinguish between scalability at ag-
ile. Scaling up refers to using agile methods for developing large software systems
that cannot be developed by a small team. Scaling refers to how agile methods can
be introduced across large size projects with many years of software development
experience.

• Stojanov and Turetken [119] develop a maturity model for adopting agile and SAFe®

practices. The need to scale agile practices to large settings hides challenges. SAFe®

is emerging as a key industry approach to address these challenges. Because well-
structured approach for implementing and establishing SAFe® is lacking, organiza-
tions require a uniform model to establish a roadmap and to assess the current state
and progress. In this context, SAFe® is described in detail.

53

3. Scaling Agile Frameworks

• Turetken et al. [123] claim that there is a lack of a well-structured gradual approach
for establishing SAFe®. Before and during SAFe® adoption, organizations can ben-
efit from a uniform model for assessing the current progress and create a roadmap
for the initiative. To address this need, a maturity model that provides guidance
for software development organizations in defining a roadmap for adopting SAFe®

is developed. In this context, SAFe® is described in detail. Furthermore, it shows
the improvements and challenges that experienced organization faced after adopt-
ing SAFe®. As LeSS and DAD also belong to the most well-known scaling agile
framework, they are described briefly.

• Vaidya [124] reviews DAD,SAFe® and LeSS and their approaches to roles, processes,
and other salient features. This will provide some context on the practices they fol-
low at Cambia as compared to those advocated by the scaling frameworks. The aim
is to examine whether adoption of additional practices will lead to solve specific is-
sues and make continuous improvements. To provide a frame of reference, they also
compare and contrast the key features against Scrum.

• West et al. [136] represent a market guide for Enterprise Agile Frameworks. The
identified frameworks are compared based on four criteria (See Table 4.1). In addi-
tion, brief descriptions of each provider and pointers to further information readily
available in books, videos and websites are provided.

3.3. Limitations

The synthesized information sources provide a stable comprehension of scaling agile frame-
works and their need in today’s organizations. On the one hand, books and whitepapers
provide deep insights into the respective scaling agile framework, whereas part of the sci-
entific work contains detailed information about popular frameworks such as SAFe®, LeSS
and DAD but does not even mention less common frameworks. However, the literature
synthesis has revealed the following limitations:

• None of the analyzed scientific works name all existing scaling agile frameworks.
They mostly enumerate some frameworks and give some details about the most im-
portant or rather best known ones. This limitation hampers enterprises in informing
themselves about other frameworks if the mentioned ones are not suitable in their
enterprise.

• None of the analyzed scientific works list all comparison criteria existing in other
scientific works. Nor did any of them carry out an evaluation to check whether the
mentioned comparison criteria are crucial for an enterprise to adopt a framework or
are practicable at all.

These enumerated limitations unveil a research gap and corroborate the need for this the-
sis, creating a comparison template which enables enterprises to compare existing scaling
agile frameworks and to decide which framework fits their enterprise best.

54

Part IV.

Comparison Table

55

4. Comparison Table

In order to create the comparison template, three steps are performed: Firstly, existing
comparison criteria are gathered from identified publications. Nextly, the redundant crite-
ria are eliminated. In total, 19 of 54 criteria were eliminated as they already exist in other
publications. Furthermore, the criteria which do not seem to be important for an organiza-
tion’s decision to adopt a framework and criteria with a subjective content are eliminated,
too. In this context, important ones include information regarding the structure, concepts,
product, adoption, elements, and basic information of a framework. Criteria with a sub-
jective content include the ones that can be interpreted differently and whose content is
not clearly defined. In this step, further 22 criteria are eliminated. Finally, the remaining
13 criteria, together with ten self-created ones, were categorized. As a result, a comparison
template with 23 criteria has been created, based on which every scaling agile framework
can be compared.

Comparison
Template

Gathering of
existing

comparison
criteria

Elimination of
duplicates and

subjective criteria

Categorization of
the final criteria

Literature
Research

Figure 4.1.: Process of creating the comparison template

57

4. Comparison Table

The following section describes the process of gathering, eliminating, and categorizing
criteria, which leads to the resulting comparison template, in detail. Afterwards, the re-
sulting criteria were described and compared.

4.1. Comparison Criteria

Out of the 148 identified publications about scaling agile development, only six sources
were identified that compare scaling agile frameworks. From these six sources, 54 compar-
ison criteria were identified. Scaling agile frameworks are compared by each publication
as follows:

• Kapadia [47] compares the Scaled Agile Framework® (SAFe®), the Large Scale Scrum
(LeSS), and the Disciplined Agile Delivery (DAD) based on style, foundation, distinc-
tive roles/teams, building block, distinctive events/meetings, websites, books, and certifica-
tions.
Here, relevant criteria are compared. It gives an overview of existing documenta-
tions and of existing components, such as roles and events.

• Alqudah and Razali [9] compare DAD, SAFe®, LeSS, Spotify, Nexus and Recipes for
Agile Governance (RAGE) based on team size, training and certificates, methods and
practices adopted, technical practices required, organization type, and roles.
However, comparison criteria and the respective content provided by Alqudah and
Razali are interesting, but the technical practices required criterion is filled out with
”low”, ”medium”, or ”high”. This assessment is too subjective, as we do not know
what it really means or how it can be coded, i.e. under technical practices required,
previous knowledge or the working period can be meant, but we do not know for
sure.

• The ASK-Matrix [102] compares Scrum of Scrums, LeSS, SAFe®, DAD, Spotify, Drive
Strategy Deliver More, RAGE, Nexus, and Scrum at Scale based on description, web
link, completeness of coverage of levels, portfolio, program structure, inter-team coordina-
tion, team level, tech practices, popularity/adoption, flexibility/emergence, typical cost to
implement, availability of details and support, what team level frameworks are supported,
emphasizes more central control or distributed, scale/target size, used typically by what or-
ganization types, focal point, software centric – how often used outside of SW or IT, big
positives/key differentiators, key risks/concerns, training/resource availability, and deploy-
ment approach.
In comparison to other sources, [102] provides an extensive set of criteria, but some
deficiencies in regarding subjectiveness, i.e. the assessment of the portfolio criterion
based on three characteristics: ”low”, ”medium” and ”high”. However, there is no
explanation of these three characteristics.

58

4.1. Comparison Criteria

Kapadia Alqudah ASK matrix Pant VanLeeuwen West

style 

methods and practices
adopted    

roles  

building block 

events/meetings 

websites   

books 

trainings and certifications    

team size 

technical practices required 

organization type  

description   

completeness of coverage of
levels 

portfolio  

program structure  

inter-team coordination  

team level  

tech practices  

popularity/adoption 

flexibility/emergence 

typical cost to implement 

availability of details and
support 

emphasizes more central
control or distributed 

scale/target size 

focal point 

software centric ̶ how often
used outside of SW or IT 

big positives/key
differentiators 

key risks/concerns 

deployment approach 

enterprise-targeted 

web-scale targeted 

methodologist 

source of practices 

published case studies  

scientific information
available 

Table 4.1.: Existing comparison criteria in different sources

59

4. Comparison Table

• Pant [95] compares DAD, LeSS, and SAFe® based on description, portfolio, program
structure, inter team coordination, team level, and tech practices.
The included criteria here are already described in [102]. Here, the content of the
latter five criteria are also ”low”, ”medium”, or ”high”, without any explanation.
Criteria like this are not meaningful and were considered to be too subjective.

• VanLeeuwen [65] compared the Agile Software Solution Framework (ASSF), DAD,
Dynamic Systems Development Method (DSDM), Matrix of services (MAXOS) (Con-
tinuous agile framework), Enterprise Scrum (eScrum), LeSS, RAGE, SAFe®, the ScALeD
Agile Lean Development (SALD), Scrum at Scale, Scrumban, Scrum of Scrums, the
Spotify model, and the Mega framework based on applicable on Scrum, (scientific) in-
formation available, relevant success cases, courses available, and agile.
Per se, the comparison criteria comprise interesting information, but the provided
characteristics of the criteria are difficult to understand and are not meaningful. In
case that a scaling agile frameworks matches the best with a criterion, it obtains ++.
The scale from best to worst goes from ++ to +, o, -, –. This in turn represents sub-
jective contents. Furthermore, the difference between applicable on Scrum and agile is
not clear. In this thesis, we assume these two criteria as one.

• West compared AgilePath, Continuous Agile, Disciplined Agile (DA) 2.0, DSDM,
FAST Agile, LeSS, Nexus, RAGE, SAFe® 4.0, SALD, Scrum at Scale, and Spotify
based on the methodologist, website, description, enterprise-targeted, web-scale-targeted,
source of practices, and published case studies.
Thus, West [136] provides important basic information, such as the methodologist,
the website, and a short description. However, the further criteria, such as enterprise-
targeted and web-scale targeted, were not sufficient or meaningful, because we do
not know exactly what it means and there is no explanation for it. Especially, the
published case studies could not be accessed; it only indicates if there are some pub-
lished or not.

4.2. Consolidation of Comparison Criteria

As one can see from the previous section, some of the aforementioned criteria are redun-
dant, which are eliminated at the next step. These include all the criteria mentioned by
Pant, as they are adopted from [102]. The criterion description in [136] is also present in
[102]. In addition, the criteria web link in [102], and website in [136] correspond to the cri-
terion websites from [47]. Furthermore, the criteria distinctive roles/teams, certifications, and
foundations in [47] correspond to the criteria roles, trainings and certifications, and methods
and practices adopted in [9], respectively. Furthermore, the criterion building block in [47] is
renamed to concepts in our comparison template. The criteria what team level frameworks are
supported in [102], agile, and applicable on Srum in [65] correspond also to the criterion meth-
ods and practices adopted in [9]. We renamed this criterion in our comparison template to
foundational practices and methods. The criteria courses available in [65] and training/resource
availability in [102] correspond to training and certificates in [9]. The criterion relevant success
cases in [65] corresponds to published case studies in [136]. In our comparison template, this
is reflected as the number of stated cases. Last but not least, the criterion used typically by

60

4.2. Consolidation of Comparison Criteria

what organization type in [102] corresponds to the criterion organization type in [9]. In our
comparison template, this criterion is renamed to purpose.

After eliminating these duplicates, we obtain 35 different comparison criteria. As there
are still lots of comparison criteria, and some of them are not fundamental for the decision
making of an organization or have a subjective content, they have to be verified and ex-
cluded, if applicable.
First, we eliminated the criteria enterprise-targeted, web-scale-targeted, and source of practices
in [136], as well as style in [47], and emphasizes more central control or distributed, focal point,
Software centric – how often used outside of SW or IT, key risks/concerns, big positives/key differ-
entiators and deployment approach in [102]. The reason for this exclusion is that these are not
considered to be decisive for an organization’s decision.
Next, we eliminated technical practices required in [9], completeness of coverage of levels, port-
folio, program structure, inter-team coordination, team level, tech practices, popularity/adoption,
flexibility/emergence, typical cost to implement, and availability of details and support in [102].
The reason for this exclusion is that the characteristics are too superficially described, i.e.,
the portfolio criterion can be specified as either ”low”, ”medium”, or ”high”, but there is
no explanation of what these three terms mean and no restriction to a value.
Furthermore, scale/target size in [102] is eliminated, as its content is too subjective.

After excluding all these criteria, only 13 criteria remain that are considered as impor-
tant. Together with some other self-created criteria, we obtain 23 criteria in total.
During the consolidation phase, we have added the criteria abbreviation, organization, pub-
lication date, category, availability of a community, scope level, approach for software development,
iteration time period, artifacts, and purpose. The first four criteria were added because these
provide additional basic information concerning the regarded scaling agile framework.
The availability of a community is added since it provides people with the possibility to
exchange with other people and to always be up to date. The remaining criteria were
added because based on those, the organization can build a more comprehensive opin-
ion about the application and can better decide whether the regarded framework fits their
organization.

Finally, the 23 criteria are grouped into three categories. Particularly, the background in-
formation of the scaling agile framework is categorized as descriptive information. The data,
based on which organizations can search for proper readings and can exchange experi-
ences, are classified as adoption. Finally, information describing the content of a framework
is classified as scope. This results to the following comparison template in 4.2:

61

4. Comparison Table

Characteristic Scaled Agile Framework Large Scale Scrum

Descriptive

information

Abbreviation

Short description

Methodologist

Organization

Publication date

Category

Website

Adoption

Number of

academic contribution

Number of stated cases

Documentation

Availability of training courses

and certifications

Availability of a

community/blog/forum

Scope

Scope level

Foundational practices

and methods

Purpose

Outcome

Approach for software

development

Iteration time period

Team size

Roles

Events

Artifacts

Concepts

Table 4.2.: Comparison template for scaling agile frameworks

The first category, descriptive information, comprises the abbreviation, a short description,
the methodologist, the organization, which is built upon the framework, the publication date,
the category, and the website for a scaling agile framework.
Many methodologists distinguish their way of scaling beyond the team level from a frame-
work and rather call their method a set of methods, a mechanism, a model, a set of principles,
or a set of practices. This distinction is represented in the comparison criteria category.

The second category, adoption, comprises the number of academic contributions, number of
stated cases, documentation, availability of training courses and certifications, and the availability
of a community of each scaling agile framework.
The number of academic contributions includes only scientific work; theses and presentations
are not included.
The number of stated cases refers to the number of available case studies, and each is de-
scribed on the homepage of the scaling agile framework under investigation.
Documentation includes available data in any form.
The availability of training courses and certifications includes those offered by each organiza-
tion.
The availability of a community includes links to platforms of the scaling agile framework,
where people can exchange with each other, and are kept up-to-date.

The third category, scope, comprises the scope level, foundational methods and practices, pur-

62

4.3. Comparison of SAFe® and LeSS

pose, outcome, approach for software development, iteration time period, team size, roles, events,
artifacts, and concepts of each scaling agile framework.
The scope level describes up to which level of an organization the scaling agile framework
can be applied.
Practices, on which the scaling agile framework is based, and methods, or some of their
elements, used in the frameworks are present in foundational methods and practices.
The purpose describes with which types of organizations the framework would fit.
The outcome describes for which developing products the scaling agile is appropriate.
The iteration time period presents the timebox within which a potentially shippable product
Increment is developed.
The team size comprises the number of teams and the number of members in each team.
Roles include people or teams that contribute to the development process, and support
other people or the process.
Events include time-boxed meetings, each of which serves a purpose.
Artifacts describe work to be done or value that has to be delivered.
Concepts include elements that serve a purpose, and are not included in roles, events, or
artifacts.

4.3. Comparison of SAFe® and LeSS

In this section, SAFe® and LeSS are compared based on the resulting comparison template
in Section 4.2.

4.3.1. Comparison based on Descriptive Information

The Scaled Agile Framework®, also known as SAFe®, consists of proven patterns for im-
plementing lean and ASD and system development at the enterprise scale [80]. It was first
presented in 2011 by Dean Leffingwell. Upon this framework, the Scaled Agile Inc. was
built [89].
The Large Scale Scrum, also known as LeSS, is one-team Scrum applied to many teams
who work together on one product [62]. It was first presented in 2008 by Bas Vodde and
Craig Larman. Upon the LeSS framework, the LeSS Company B.V. was built [89].

63

4. Comparison Table

 Characteristic Scaled Agile Framework Large Scale Scrum

Descriptive
information

Abbreviation SAFe LeSS

Short description

SAFe is a knowledge base of
proven patterns for
implementing lean and agile
software development and
system development at
enterprise scale

LeSS is one-team Scrum applied
to many teams who are working
together on one product

Metholodogist Dean Leffingwell
Craig Larman,
Bass Vodde

Organization Scaled Agile Inc. LeSS Company B.V.

Publication date 2011 2008

Category framework framework

Website www.scaledagileframework.com www.less.works

Adoption

Scope

Table 4.3.: Comparison based on descriptive information

4.3.2. Comparison based on the Adoption

Regarding SAFe®, 35 contributions were made and 38 case studies are reported. Regarding
LeSS, 29 contributions were made and 22 case studies are reported [89].

Documentation regarding SAFe® can be primarily found on the homepage [77]. Besides
the details represented on the homepage, a whitepaper also exists [45], which summarizes
and provides a good overview of SAFe®’s essence. Furthermore, six books [80, 138, 26, 50,
79, 78] were published.
Documentation regarding LeSS can be primarily found on the homepage [131]. Besides
the details represented at the homepage, three books [62, 60, 57] about LeSS are available.

Both, SAFe® and LeSS offer trainings for specific roles, where people can obtain certifica-
tions if completed successfully. The certifications obtained through SAFe® include SAFe®

4 Program Consultant [66], SAFe® Agilist [67], SAFe® Release Train Engineer [73], SAFe®

4 Practitioner [71], SAFe® Scrum Master [74], SAFe® Advanced Scrum Master [68], and
SAFe® 4 Product Owner/Product Manager [72].
Meanwhile, with LeSS, it is possible to obtain LeSS Practitioner, and LeSS for Executives
[132].

On the SAFe® website there is a blog [69], where people are kept up to date concern-
ing everything about SAFe®. For example, new available case studies or updates are an-

64

4.3. Comparison of SAFe® and LeSS

nounced. Furthermore, a community [70] for SAFe® exists where anybody can join and
get the current news.
LeSS offers communities [129] and a blog [133] as well, where those interested in LeSS can
discuss or ask questions.

 Characteristic Scaled Agile Framework Large Scale Scrum

Descriptive
information

Adoption

Number of
academic contribution

35 29

Number of stated
cases

38 23

Documentation homepage, books, whitepaper homepage, books

Availability of training
courses and
certifications

yes yes

Availability of a
community/blog/
forum

yes yes

Scope

Table 4.4.: Comparison of SAFe® and LeSS based on the adoption

4.3.3. Comparison based on the Scope

SAFe® and LeSS scale to all levels of an organization [80, 131]. In other words, they scale
up to the enterprise and the Portfolio level [80].

SAFe® uses a combination of practices based on lean product development and flow,
system thinking, and agile development [80]. Scrum and XP are foundational methods,
which SAFe® combines and uses. Accordingly, SAFe® uses the project management prac-
tices of Scrum, and the technical practices of XP [80].
Similarly, LeSS uses a combination of practices based on various Agile and Lean concepts
[124]. As the name indicates, LeSS is based on Scrum [62].

The ”3-level view” is well-suited for solutions that require a small number of agile teams,
whereas the ”4-level view” supports those building large solutions that typically require
hundreds or more practitioners to construct and maintain [80].
In comparison, LeSS is suitable for Large, Multisite and Offshore Product Development,

65

4. Comparison Table

which includes inter alia embedded systems, telecommunications, or investment banking
[56].

 Characteristic Scaled Agile Framework Large Scale Scrum
Descriptive
information

Adoption

Scope

Scope level all levels all levels

Foundational practices
and methods

practices: lean product development and flow,
system thinking, agile development
methods: Scrum, XP, Kanban

practices: lean thinking, system
thinking, agile development
methods: Scrum

Purpose

“3-level view” is well suited for solutions that
require a modest number of Agile Teams
“4-level view” supports those building large
solutions that typically require hundreds or
more practitioners to construct and maintain

Large, Multisite and Offshore
Product Development

Outcome

SAFe places an intense focus on working systems
and resultant business outcomes
Value Stream level: building large-scale,
multidisciplinary software and cyber-physical
systems
Portfolio Level: the systems and solutions
necessary to meet the strategic intent

broad complete end-to-end
customer-centric solution

Approach for software
development

iterative and incremental iterative and incremental

Iteration time period
recommended as 2 weeks, but
can last from one to four weeks

2-4 weeks

team size
Release Train: 5-12 agile teams
Agile Team: 5-9 persons

Small LeSS: 2-8 teams, with up to 8
team members
LeSS Huge: more than 8 teams
with up to a few thousand people

Table 4.5.: Comparison of SAFe® and LeSS based on the scope

SAFe® focuses intensively on working systems and resultant business outcomes. The
application of the Value Stream level is suitable when building large-scale, multidisci-
plinary software, and cyber-physical systems. The Portfolio level ensures the development
systems and solutions necessary to meet the strategic intent [80].
In contrast, LeSS is suitable for developing a broad complete end-to-end customer-centric
solution that customers use. LeSS does not determine the scope of the product or the
process of how to build it. Meanwhile, Vodde and Larman emphasize that organization
should define their product broadly when applying LeSS, as they are more customer-
centric [62].

Both frameworks use an iterative and incremental software development approach, as
they deliver an Increment each iteration and integrate the resulted solutions. Moreover,
bot frameworks have a timebox in which the product is revised and improved.

An iteration in SAFe® is recommended to last two weeks, but can last from one to four
weeks [80].
Likewise, a Sprint in LeSS is recommended to last two to four weeks [63].

One ART in SAFe® includes 5 to 12 agile teams, each of which consists of 5-9 people,

66

4.3. Comparison of SAFe® and LeSS

making up the development team, the Scrum Master, and the Product Owner [80].
By contrast, Small LeSS is appropriate for 2-8 teams with up to 8 team members. If a project
requires more than 8 teams, LeSS Huge has to be applied [62].

The roles in the Scaled Agile Framework® (SAFe®) at the Team level include [77]:

• the Product Owner — the content authority for the Team level. He is responsible for
the Team Backlog, representing the customer to the agile team, and prioritizing and
accepting stories;

• the Scrum Master — the servant leader and coach for an agile team. He educates
the team in Scrum, XP, Kanban, and SAFe®. Furthermore, he ensures that the agile
process is being followed;

• the Dev team — software developers and testers, engineers, and other dedicated
specialists who can develop and test a story, feature, or component.

The roles at the Program level include [77]:

• the Release Train Engineer — the coach for the ART. He assists the teams in deliver-
ing value, and facilitates the events and processes;

• the System Architect/Engineer — represents an individual or small team and defines
a common architectural and technical vision for the solution under development;

• the Product Management — responsible for the Program Backlog, for identifying
customer needs, developing the program vision and roadmap, and prioritizing fea-
tures;

• the Business Owners — a small group of stakeholders. They have the primary busi-
ness and technical responsibility for compliance, governance, and return on invest-
ment for a solution, which is developed by an ART (ART).

The roles at the Value Stream level include [77]:

• the Value Stream Engineer — similar to the release train engineer. He facilitates and
guides the work of all ARTs and suppliers. Both roles most often operate as leaders
and have a good understanding of scaling lean and agile;

• the Solution Management — responsible for the Solution Backlog and works with
customers to understand their needs, defines requirements, guides work through
the Solution Kanban, and creates the solution vision and roadmap;

• the Solution Architect/Engineer — together with the system architect/engineer, helps
bring into line the solution train and the ART to a common technological and archi-
tectural vision.

The roles at the Portfolio level include [77]:

• the Program Portfolio Management — the highest decision making responsibility
within a SAFe® portfolio;

67

4. Comparison Table

• the Enterprise Architect — drives strategic architectural initiatives for a SAFe® Port-
folio, and facilitates adaptive design and engineering practices;

• the Epic Owner — coordinates portfolio epics through the Portfolio Kanban system.

The roles in the Spanning Palette include [77]:

• DevOps — builds the deployment pipeline. Furthermore, it facilitates automation
and cooperation between operations and agile teams;

• the System Team — helps with infrastructure, assists with the System Demo and
integration, performs ART-level testing, and is capable of evaluating conformance to
nonfunctional requirements;

• the release management — responsible for guiding the value streams towards the
business goals and help stakeholders to receive and deploy the new solution;

• Shared Services that supply the train with specialty functions, such as administra-
tors, and business analysts;

• User experience designer — focuses on building systems. This reflects an under-
standing of end users, what they need and what they value, and an understanding
of their abilities and limitations.

The roles in the Large Scale Scrum (LeSS) include [62]:

• one Product Owner — responsible for managing the Product Backlog and maximiz-
ing the value of the product, but at scale, rather focuses on keeping an overview and
ensuring the maximum return on investment (ROI) in the product;

• the Scrum Master — teaches Scrum to the organization and helps them to reflect and
improve towards their perfection vision. One Scrum Master is responsible for one to
three teams;

• the Feature teams — cross-functional and cross-component teams that work together
in a shared code environment, each doing everything to create done features every
Sprint.

• the Area Product Owner — specializes in an area, and acts as Product Owner in
relation to the teams for that area; does the same work as a Product Owner but with
a more limited, and customer-centric perspective. This role is introduced in LeSS
Huge.

The events in SAFe® at the Team level include [77]:

• the Iteration, wherein the teams built an Increment or product functionality. It is
recommended to last 2 weeks, but can also last from one to four weeks;

• the Iteration Planning, where all team members specify how much of the Team Back-
log they can commit during the next iteration. The Product Owner, Scrum Master,
all the other team members, and any stakeholder are attending this meeting;

68

4.3. Comparison of SAFe® and LeSS

• the Team Demo, where the team reviews the Increment that results from the iteration.
The agile team, ART stakeholders, business owner, customer, executive sponsors,
and perhaps members of other teams are attending this meeting;

• the Iteration Retrospective, where team member discuss their work and identify
ways to improve;

• the Daily Stand-Up meeting, where the teams coordinate their work. In this meeting,
three question have to be answered by each team: ”What stories did I work on yes-
terday (and their status)?”, ”What stories will I be able to complete today?”, ”What
is getting in my way (am I blocked)?”.

The events at the Program level include [77]:

• the System Demo, where the subject system being built by the ART is demonstrated.
In addition, the system is tested and evaluated to get feedback from the primary
stakeholders.

• the Program Increment (PI) planning, where business context and vision are pre-
sented. Thereafter, the teams create the plans for the upcoming PI.

• Inspect and Adapt, which is held at the end of each PI. There, the current state of the
solution is demonstrated and evaluated. All program stakeholders attend this event.
A similar inspect and adapt event is held for large solutions at the Value Stream level.

The events at the Value Stream level include [77]:

• the Pre- and Post PI planning, which supports and coordinates multiple ART in-
volved in the value stream. This plannings allow the teams to build a plan for the
next PI and occur just prior to, and just after the ART plannings. In the Pre-PI Plan-
ning meeting, the context for the upcoming ART PI Planning sessions are set. In
the Post-PI Planning session, the results of ART planning are integrated into value
stream objectives for the upcoming PI and into the solution roadmap;

• Solution Demo, where the results of all the development efforts from multiple ARTs
are shown to the customers and other stakeholders.

The events in LeSS include [62]:

• the Sprint, in which a potentially shippable product Increment results. It is recom-
mended to last 2-4 weeks;

• the Sprint Planning One, where all of the teams come together and decide which
team will work on which items;

• the Sprint Planning Two, which is a separate meeting for each team. There, each
creates the plan for getting the items to ”done” during the Sprint.

• the Daily Scrum, which is the same as in one-team scrum. The Scrum of Scrums is
another coordination technique related to the Daily Scrum and happens three times a
week. There, representatives of each team get together and decide what coordination
is needed across teams;

69

4. Comparison Table

• the Sprint Review, where the teams review the one potentially shippable product
Increment together. In addition, customers and stakeholders examine the increment
of the teams and discuss changes and new ideas;

• the Sprint Retrospective, which occurs at the end of the Sprint. This is a separate
meeting for each team in which a plan for improvements to be enacted during the
next Sprint is created;

• the Overall Retrospective, which is held after the team Retrospectives. There, cross-
team and system-wide issues are discussed, and improvement experiments are cre-
ated. Furthermore, a retrospect on the previous Sprint from a product perspective
takes place.

Scope

Roles

Team level: Product Owner,
Scrum Master, Development
team
Program level: Product
Manager, Release Train
Engineer, System Architect,
Business Owner, Stakeholder
Value Stream level: Value
Stream Engineer, Solution
Manager, Solution Architect
Portfolio level: Epic Owner,
Enterprise Architect

Small LeSS: Product Owner,
Scrum Master, Feature team
LeSS Huge: Product Owner,
Scrum Master, Feature team,
Area Product Owner

Events

Iteration Planning, Program
Increment (PI) Planning, Daily
Stand-Up, Iteration
Retrospective, System Demo,
Inspect and Adapt, Iteration
Review, Pre- and Post-PI
Planning, Solution Demo

Sprint, Sprint Planning One,
Sprint Planning Two, Daily
Scrum, Sprint Review, Sprint
Retrospective, Overall
Retrospective

Artifacts
Team Backlog, Program
Backlog, Portfolio Backlog,
Value Stream Backlog

Small LeSS: Product Increment,
Product Backlog, Sprint
Backlog,
LeSS Huge: Area Product
Backlog

Concepts

Program Increment, Agile
Release Train, Value Streams,
Architectural Runway, Spanning
Palette

Requirement Area

Table 4.6.: Comparison based on the scope

The SAFe® artifacts include [77]:

• the Team Backlog, which contains user or enabler stories that a team needs to do to
advance their part of the system;

• the Portfolio Backlog, which holds and prioritizes Epics that have been approved for
implementation;

70

4.3. Comparison of SAFe® and LeSS

• the Program and Value Stream Backlog, which comprises the repositories for all the
upcoming work necessary to advance the solution. The Backlog consists of pending
features (Program Backlog) and capabilities (Value Stream Backlog). Features and
capabilities deliver business benefits, and Enablers that advance learning and build
the Architectural Runway. Furthermore, they address user needs;

The artifacts in the Spanning Palette include [77]:

• the vision, which describes the view of the solution to be developed, including cus-
tomer and stakeholder needs, features, and capabilities;

• the roadmap, which transmits ART and value stream deliverables and includes the
visibility into the deliverables of the current PI;

• the metrics, which are used to measure the systems and evaluate the performance;

• the milestones, which are marked progress points on the development timeline;

• the release, which is a valuable, working, and tested increment of the solution.

The LeSS artifacts include [62]:

• the product Increment, which is the resulting product of every Sprint;

• the Product Backlog, which defines all of the work to be done on the product;

• the Sprint Backlog, which contains the work that the team will need to do to complete
the selected items of the Product Backlog;

• the Area Product Backlog, which is a view into the Product Backlog based on the
requirement area. For every area Backlog, a Product Backlog item belongs, and the
other way round.

SAFe® introduces new concepts. These include [77]:

• the ART, which is the primary value delivery construct. It is a team of agile teams
and comprises 5-12 teams that plan, commit, and execute together.

• the Program Increment, which is a cadence-based interval for building and validat-
ing a full system increment, getting fast feedback, and demonstrating value. At the
end of every Program Increment (PI), a System Demo and an Inspect and Adapt
workshop occurs. The Program Increment is the same for an ART, as an iteration for
an agile team is;

• the Innovation and Planning (IP) iterations, which gives teams the opportunity every
PI to work on activities that are difficult to fit into a continuous, incremental value
delivery process. During the IP iterations, teams have inter alia time for innovation
and exploration, and the final integration of the solution.

• a Value Stream, which is a series of steps that an enterprise uses to deliver a contin-
uous flow of value to a customer;

71

4. Comparison Table

• the Spanning Palette, which serves as a floating surface for roles and artifacts. It is an
essential part of the configurability and modularity of the Framework and can apply
to multiple levels of SAFe®. It is most often applied to the Program level and Value
Stream level, but some elements can also apply to team level and Portfolio level;

• the Architectural Runaway, which provides the necessary technical basis for imple-
menting new features or capabilities, and developing business processes;

• the Solution Intent, which is also known as critical knowledge. It gives an under-
standing of the current and evolving requirements and design of the solution being
built;

• the Solution Context, which identifies critical aspects of the target solution environ-
ment, and impacts features, capabilities, development priorities, and nonfunctional
requirements.

LeSS Huge introduces one new concept: requirement areas. This provides structure if there
are more than eight feature teams and complements the concepts behind feature teams.
Furthermore, it is a categorization of the requirements, which lead to different views of
the Product Backlog [62].

4.3.4. Commonalities and Differences

All in all, both frameworks introduce new concepts and offer several roles, artifacts, and
events. With respect to the roles, it is obvious that SAFe® offers many more roles than
LeSS does. Nevertheless, there are some commonalities concerning the roles, artifacts, and
events.
The following section provides an overview about the commonalities and differences be-
tween these two practices.

The Product Owner in SAFe® is the owner of the Team Backlog, and the Product Owner
in LeSS is the owner of the Product Backlog. The Team Backlog contains all the things
a team needs to do to advance their part of the system. The Product Backlog defines all
of the work to be done on the product. From this, two things can be referred: The Team
Backlog in SAFe® corresponds with the Product Backlog in LeSS, and the Product Owner
in SAFe® corresponds with the Product Owner in LeSS.
Furthermore, in both frameworks, the Scrum Master is the owner of processes and effi-
cacy. The reason for this is that the Scrum Master ensures that the teams employ an agile
method, and that their processes improve.
The timebox, in which the teams deliver a potentially shippable product, corresponds to
the iteration in SAFe® and the Sprint in LeSS. The iteration in SAFe® is recommended as
two weeks, and can last from one to four weeks, whereas the iteration in LeSS can last
from two to four weeks.
At the end of each iteration, the teams review their increment that resulted within an itera-
tion. In SAFe®, this happens in the team demo. In LeSS, this happens in the Sprint Review.
These assumptions are also supported by Foegen [42], which describes customizable pat-
terns for the adoption of scaling agile frameworks. In this context, [42] compares SAFe®

and LeSS based on artifacts, events, and roles.

72

4.3. Comparison of SAFe® and LeSS

In SAFe®, the development team develops and tests the features each iteration, whereas
in LeSS, the feature team delivers features every Sprint. This implies that the development
team in SAFe® correspondents with the feature team in LeSS.
The Product Owner, Scrum Master, and development team in SAFe® together yield the
agile team. The Product Owner, Scrum Master, and feature team in LeSS together yield the
Scrum team.

At the beginning of each iteration, the teams create their plan for the pending iteration
in a meeting. This happens in SAFe® in the Iteration Planning, whereas in LeSS, the teams
select and plan in the Sprint Planning One and Sprint Planning Two, for which items are
to be delivered at the end of each Iteration.

During each Iteration, a daily meeting is held. Therein, each team member has to answer
what he worked on the past day, what he will do that day, and what impediments exist. In
SAFe®, this is called the Daily Stand-Up, whereas in LeSS, this is called the Daily Scrum.

Furthermore, the work of the teams is discussed at the end of each iteration and ways of
improvements to be enacted in the future are found. In SAFe®, this happens in the Iteration
Retrospective meeting. In LeSS, this happens in the Sprint Retrospective meeting.

SAFe LeSS

artifacts team backlog product backlog

events

iteration sprint

iteration planning sprint planning

iteration retrospective sprint retrospective

daily stand-up daily scrum

team demo sprint review

roles

development team feature team

product owner product owner

scrum master scrum master

agile team scrum team

Table 4.7.: Common artifacts, events and roles in SAFe® and LeSS

• LeSS and SAFe® draw from a variety of agile and lean practices and use a combina-
tion of practices based on various agile and lean concepts. Both frameworks try to

73

4. Comparison Table

address practices beyond the team level [124].

• SAFe® offers a more governance oriented framework with clear roles and responsi-
bilities linking multiple development teams with the enterprise, whereas LeSS offers
a more scalable process and goes into detail about the underlying principles of agility
at scale [33].

• SAFe® assumes an intentional architecture and emergent design. That means that
SAFe® provides guidance to ensure that the system has integrity and efficiacy, and
through the emergent design, teams can appropriately react to changing require-
ments [80]. Furthermore, it covers the roles of enterprise, software, solution, and in-
formation architects [89]. LeSS assumes an emergent design [58], but does not cover
the roles of architects [89]. The emergent design in LeSS is based on the observations
of the paths people naturally walk, and to create permanent paths along these desire
lines, as wide as appropriate [58].

• Small LeSS and the 3-level-view of SAFe® are both designed for few agile teams,
whereas LeSS Huge and the 4-level-view in SAFe® support building large solutions
that typically require hundreds or more people to build and maintain [80, 62].

• LeSS sticks very much to the traditional one-team Scrum, as it has nearly the same
structure and adopted the terms for the roles, events, and artifacts presented in
Scrum [62]. SAFe®, however, introduces a different structure and many more new
conceptions [80].

74

Part V.

Conclusion

75

5. Conclusion and Outlook

This chapter summarizes the thesis in Section 5.1, highlights the key findings in Section 5.2,
reveals the limitations of the thesis in Section 5.3, and provides a brief outlook of possible
future investigations in Section 5.4.

5.1. Summary

The aim of the thesis was to create a comparison template based on which any scaling agile
frameworks can be compared.
At the beginning of this thesis, the motivation for the raison d’être of scaling agile frame-
works was described, followed by the deduced objectives and underlying research ap-
proach in order to ensure rigor and relevance.
To provide a better understanding of scaling agile, firstly, some background information
about the traditional ASD and lean thinking were presented. In addition, Scrum and XP,
as the two most popular ASD methods, and Kanban and Scrumban, which are based on
lean thinking, were described extensively. Afterwards, the meaning of scaling agile and its
difference to the traditional ASD was described.
In the context of scaling agile, all existing scaling agile frameworks were superficially de-
scribed and hereby, the two most popular practices — SAFe® and LeSS — were described
in detail.
Furthermore, existing comparisons about scaling agile frameworks in several publications
were analyzed. Firstly, all comparison criteria were gathered. In the next step, duplicates,
and not suitable cases were eliminated. Together with some other self-created criteria,
we then categorized them. This resulted in a comparison template with 23 criteria with
three respective categories. Based on this comparison template, SAFe® and LeSS were
compared.

5.2. Results

Besides the aim of creating a comparison template, this thesis further aimed at comparing
SAFe® and LeSS, in order to deduce commonalities and differences.
In order to create this comparison template, we first analyzed and identified publications
about scaling agile frameworks. Out of the 148 sources, only six of them compare scal-
ing agile frameworks. In total, 54 comparison criteria were identified. In the next step,
redundant criteria were eliminated. After eliminating these duplicates, this resulted in
35 different comparison criteria. Thereafter, criteria with a subjective content were elim-
inated. After excluding all these criteria, out of the 35 criteria, 13 were considered to be
important. Together with ten other self-created criteria, 23 criteria resulted into the com-
parison template.

77

5. Conclusion and Outlook

Based on this comparison template, we compared SAFe® and LeSS. The comparison has
shown that LeSS and SAFe® have several commonalities, although it does not look like it
at first sight. SAFe® looks much more complex and extensive than LeSS does, because it
offers many more roles and new concepts.
Vodde an Larman justify their decision not to introduce more roles or artifacts by saying
[62]:

”We don’t want more roles because more roles leads to less responsibility to Teams. We don’t want
more artifacts because more artifacts leads to a greater distance between Teams and customers. We
don’t want more process because that leads to less learning and team ownership of process. Instead
we want more responsible Teams by having less roles, we want more customer-focused Teams build-
ing useful products by having less artifacts, we want more Team ownership of process and more
meaningful work by having less defined processes. We want more with less.”

But on the one hand, not every introduced role or concept is a must, and on the other
hand, many roles, artifacts, and events are also present in LeSS. The comparison has shown
that both frameworks are founded on ASD, lean thinking, and Scrum. The roles of the
Product Owner, Scrum Master, and the development team in Scrum is recognized in both
SAFe® and LeSS. Furthermore, the events in Scrum, such as the Sprint Planning, the Daily
Scrum, Sprint Retrospective, and Sprint Review are also represented in SAFe® and LeSS.
The Product Backlog in Scrum is also present in SAFe® and LeSS.
Here, it is noticeable that LeSS sticks very much to the traditional one-team Scrum, as it
has the same structure and adopted the terms for the roles, events, and artifacts presented
in Scrum. SAFe®, however, introduces a different structure and new conceptions. SAFe®

and LeSS both offer a new concept to handle large projects, which require hundreds or
thousands of people.

5.3. Limitations

After the detailed description and comparison of SAFe® and LeSS, the following limita-
tions can be crystallized out:

• Comparison of two scaling agile frameworks: Because organizations faced their
challenges in scaling agile across the entire IT organizations, several scaling agile
frameworks emerged to meet this challenge. In total, 20 scaling agile frameworks
were identified. The goal of this thesis was to create a comparison template, based
on which each scaling agile framework can be compared. This Bachelor’s thesis was
limited to compare the two most well-known scaling agile frameworks.

• Description and comparison of SAFe® 4.0: During the writing process of this the-
sis, a new version of SAFe® was released — SAFe® 4.5. Since about this time, all
the necessary information about SAFe® 4.0 was collected and evaluated. This thesis
treated further on SAFe® 4.0 by describing it in detail and comparing it with LeSS.
But to keep the reader up-to-date, the modifications from SAFe® 4.0 to SAFe® 4.5
were described as well.

78

5.4. Future Work

• No evaluation of comparison criteria: In this thesis, the criteria did not result from
an evaluation. That means we decided ourselves which criteria would be appropri-
ate and then categorized them. But it is important that such an evaluation is carried
out, because this ensures that all criteria worth-knowing are available in the com-
parison. By that, organizations have a better and faster understanding of the frame-
works, and can easily compare them.

5.4. Future Work

This thesis has described the identified scaling agile frameworks. Especially, the focus was
on the two most popular ones, namely SAFe® and LeSS. In this context, both frameworks
were described in detail. Furthermore, they were compared based on a created compari-
son template.
The comparison template serves as a basis to compare any scaling agile framework. This
should help organizations to better decide which practice fits their organization best. As
already mentioned in the limitations, this thesis only compared SAFe® 4.0 and LeSS. This
leads to the need to compare further scaling agile frameworks in order to offer a greater
bandwidth to the organizations. This statement is also supported by [91]. Here, it is
pointed out that, despite the popularity of the topic in the industry, large-scale agile trans-
formations received very little research attention, as almost 90% of the selected papers
were experience reports.
Furthermore, besides SAFe® and LeSS, the other existing scaling agile frameworks need to
be described and understood in detail. Thereby, the comparison of them is easier to carry
out, and the branding bias will be eliminated. This means a deeper analysis is necessary to
find the common elements in one scaling agile framework that corresponds with the ones
existing in other scaling agile frameworks.
In addition, to provide organizations with the possibility of using the comparisons of scal-
ing agile frameworks, a meaningful processing must be considered.
Finally, interviews and case studies should be conducted with organizations using scal-
ing agile frameworks. These should represent the way of an organization to use a scaling
agile framework. In this context, it is interesting to know whether an organization uses a
scaling agile framework as an inspiration to develop their own framework, or whether an
organization uses the framework as a whole, only a part of it, or a modified version.

79

5. Conclusion and Outlook

80

Appendix

81

A. Detailed Descriptions

Here come the details that are not supposed to be in the regular text.

83

Bibliography

[1] Agile Manifesto - www.agilemanifesto.org. accessed: 2017-08-09.

[2] Dr. dobb’s journal’s 2008 project success survey - www.ambysoft.com/surveys/
success2008.html.

[3] Mayer T (2009).Scrum Roles–an abstraction. http://www.dymaxicon.com/
2013/the-peoples-scrum/,.

[4] ”Scrum of Scrums”. https://www.scruminc.com/scrum-of-scrums/. ac-
cessed: 2017-08-09.

[5] ”Scrum@Scale™ Certification Now Available”. https://www.scruminc.com/
scrum-at-scale-certification/. accessed: 2017-08-09.

[6] ”Spotify (part 1): What It’s Like to Work ”The Spotify Way””. http://
corporate-rebels.com/spotify-1/. accessed: 2017-08-09.

[7] ”The Enterprise Transition Framework”. http://www.agile42.com/en/
agile-transition/etf/. accessed: 2017-08-09.

[8] Laxmi Ahuja and Rahul Priyadarshi. Agile approaches towards global software en-
gineering. In Reliability, Infocom Technologies and Optimization (ICRITO)(Trends and
Future Directions), 2015 4th International Conference on, pages 1–6. IEEE, 2015.

[9] Mashal Alqudah and Rozilawati Razali. A review of scaling agile methods in large
software development. International Journal on Advanced Science, Engineering and In-
formation Technology, 6(6):828–837, 2016.

[10] S Ambler and M Lines. Scaling agile software development tactically: Disciplined
agile delivery at scale. Disciplined Agile Consortium White Paper Series, 2016.

[11] Scott Ambler and Mark Lines. The Disciplined Agile (DA) Framework. http:
//www.disciplinedagiledelivery.com/. accessed: 2017-08-09.

[12] Scott Ambler and Mark Lines. The Disciplined Agile (DA) Framework. http:
//www.disciplinedagiledelivery.com/poster-v2-1/. accessed: 2017-08-
09.

[13] Scott W Ambler. The agile scaling model (asm): adapting agile methods for complex
environments. Environments, 2009.

[14] Scott W Ambler and Mark Lines. Disciplined agile delivery: A practitioner’s guide to
agile software delivery in the enterprise. IBM Press, 2012.

85

www.agilemanifesto.org
www.ambysoft.com/surveys/success2008.html
www.ambysoft.com/surveys/success2008.html
http://www.dymaxicon.com/2013/the-peoples-scrum/
http://www.dymaxicon.com/2013/the-peoples-scrum/
https://www.scruminc.com/scrum-of-scrums/
https://www.scruminc.com/scrum-at-scale-certification/
https://www.scruminc.com/scrum-at-scale-certification/
http://corporate-rebels.com/spotify-1/
http://corporate-rebels.com/spotify-1/
http://www.agile42.com/en/agile-transition/etf/
http://www.agile42.com/en/agile-transition/etf/
http://www.disciplinedagiledelivery.com/
http://www.disciplinedagiledelivery.com/
http://www.disciplinedagiledelivery.com/poster-v2-1/
http://www.disciplinedagiledelivery.com/poster-v2-1/

Bibliography

[15] Scott W Ambler and Mark Lines. The disciplined agile process decision framework.
In International Conference on Software Quality, pages 3–14. Springer, 2016.

[16] David J. Anderson. Kanban: evolutionäres Change Management für IT-Organisationen.
dpunkt-Verl., 2011.

[17] Sören Auer and Heinrich Herre. Rapidowlâan agile knowledge engineering
methodology. In International Andrei Ershov Memorial Conference on Perspectives of
System Informatics, pages 424–430. Springer, 2006.

[18] P. Beck, M. Gärtner, C. Mathis, S. Roock, and A. Schliep. ScALeD Agile Lean Devel-
opment - Die Prinzipien. http://scaledprinciples.org/de. accessed: 2017-
08-09.

[19] M. Beedle. Enterprise Scrum Definition: Business Agility for the 21st
Century. http://static1.1.sqspcdn.com/static/f/608893/
27625791/1500228079760/Enterprise+Scrum+Definition.pdf?token=
1rCI5hIdpKWF%2FD1C0tCHaDStbOY%3D. accessed: 2017-08-09.

[20] M. Beedle. Enterprise Scrum Introduction. https://medium.com/
@mikebeedle/enterprise-scrum-introduction-a4987ee690d0. ac-
cessed: 2017-08-09.

[21] Hilary Berger and Paul Beynon-Davies. The utility of rapid application development
in large-scale, complex projects. Information Systems Journal, 19(6):549–570, 2009.

[22] Colin Bird and Rachel Davies. Scaling Scrum.

[23] Elizabeth Bjarnason, Krzysztof Wnuk, and Björn Regnell. A case study on benefits
and side-effects of agile practices in large-scale requirements engineering. In Pro-
ceedings of the 1st Workshop on Agile Requirements Engineering, page 3. ACM, 2011.

[24] Barry Boehm and Richard Turner. Management challenges to implementing agile
processes in traditional development organizations. IEEE software, 22(5):30–39, 2005.

[25] Richard Brenner and Stefan Wunder. Scaled agile framework: Presentation and real
world example. In Software Testing, Verification and Validation Workshops (ICSTW),
2015 IEEE Eighth International Conference on, pages 1–2. IEEE, 2015.

[26] Em Campbell-Pretty. ”Tribal Unity: Getting from Teams to Tribes by Creating a One Team
Culture”. CreateSpace Independent Publishing Platform, 2016.

[27] A. Cockburn. ”Crystal Clear A Human-Powered Methodology for Small Teams”.
Addison-Wesley Professional, 2004.

[28] A. Cockburn. ”Agile Software Development: The Cooperative Game, Second Edition”.
Addison-Wesley Professional, 2006.

[29] Alistair Cockburn. Using both incremental and iterative development. STSC
CrossTalk (USAF Software Technology Support Center), 21(5):27–30, 2008.

86

http://scaledprinciples.org/de
http://static1.1.sqspcdn.com/static/f/608893/27625791/1500228079760/Enterprise+Scrum+Definition.pdf?token=1rCI5hIdpKWF%2FD1C0tCHaDStbOY%3D
http://static1.1.sqspcdn.com/static/f/608893/27625791/1500228079760/Enterprise+Scrum+Definition.pdf?token=1rCI5hIdpKWF%2FD1C0tCHaDStbOY%3D
http://static1.1.sqspcdn.com/static/f/608893/27625791/1500228079760/Enterprise+Scrum+Definition.pdf?token=1rCI5hIdpKWF%2FD1C0tCHaDStbOY%3D
https://medium.com/@mikebeedle/enterprise-scrum-introduction-a4987ee690d0
https://medium.com/@mikebeedle/enterprise-scrum-introduction-a4987ee690d0

Bibliography

[30] David Cohen, Mikael Lindvall, and Patricia Costa. Agile software development.
DACS SOAR Report, 11, 2003.

[31] Agile Business Consortium. The DSDM Agile Project Framework. https://www.
agilebusiness.org/content/introduction-0. accessed: 2017-08-09.

[32] Stephen Denning. How to make the whole organization ”agile”. Strategy & Leader-
ship, 44(4):10–17, 2016.

[33] Tom Devos. Case study: Agility at scale wolters kluwer belgium. Master’s thesis,
UHasselt, 2014.

[34] Kim Dikert, Maria Paasivaara, and Casper Lassenius. Challenges and success fac-
tors for large-scale agile transformations: A systematic literature review. Journal of
Systems and Software, 119:87–108, 2016.

[35] Torgeir Dingsøyr and Nils Brede Moe. Towards principles of large-scale agile de-
velopment. In International Conference on Agile Software Development, pages 1–8.
Springer, 2014.

[36] Torgeir Dingsøyr, Sridhar Nerur, VenuGopal Balijepally, and Nils Brede Moe. A
decade of agile methodologies: Towards explaining agile software development,
2012.

[37] T Dot and AW George. Using an agile approach in a large, traditional project. In
Proceedings of the Conference on AGILE, 2006.

[38] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software development:
A systematic review. Information and software technology, 50(9):833–859, 2008.

[39] Tore Dyba and Torgeir Dingsoyr. What do we know about agile software develop-
ment? IEEE software, 26(5):6–9, 2009.

[40] Nina Dzamashvili Fogelström, Tony Gorschek, Mikael Svahnberg, and Peo Olsson.
The impact of agile principles on market-driven software product development.
Journal of Software: Evolution and Process, 22(1):53–80, 2010.

[41] Ulrik Eklund, Helena Holmström Olsson, and Niels Jørgen Strøm. Industrial chal-
lenges of scaling agile in mass-produced embedded systems. In International Confer-
ence on Agile Software Development, pages 30–42. Springer, 2014.

[42] Malte Foegen and Christian Kaczmarek. Organisation in einer Digitalen Zeit: Ein
Buch für die Gestaltung von reaktionsfähigen und schlanken Organisationen mit Hilfe von
skalierten Agile Lean Mustern. wibas GmbH, 2016.

[43] Amani Mahdi Mohammed Hamed and Hisham Abushama. Popular agile ap-
proaches in software development: Review and analysis. In Computing, Electrical
and Electronics Engineering (ICCEEE), 2013 International Conference on, pages 160–166.
IEEE, 2013.

87

https://www.agilebusiness.org/content/introduction-0
https://www.agilebusiness.org/content/introduction-0

Bibliography

[44] William Hayes, Mary Ann Lapham, Suzanne Garcia-Miller, Eileen Wrubel, and Peter
Capell. Scaling agile methods for department of defense programs. 2016.

[45] Scaled Agile Inc. SAFe® 4.0 Introduction: Overview of the Scaled Agile Framework®

for Lean Software and Systems Engineering. , Scaled Agile Inc., 2016.

[46] VersionOne Inc. 11th Annual State of Agile™Report. , 2017. accessed: 2017-08-12.

[47] Mehul Kapadia. Introduction to Enterprise Agile Frameworks, Salt Lake City, Utah
2014.

[48] Mehul Kapadia. SCALING SCRUM STEP BY STEP: ”THE MEGA FRAMEWORK”,
São Paulo, Brazil 2012.

[49] B Kent and A Cynthia. ”Extreme Programming Explained: Embrace Change, Second
Edition”. Addison-Wesley Professional, 2005.

[50] Richard Knaster and Dean Leffingwell. SAFe 4.0 Distilled: Applying the Scaled Agile
Framework for Lean Software and Systems Engineering. Addison-Wesley Professional,
2017.

[51] Henrik Kniberg and Anders Ivarsson. Scaling agile@ spotify. online], UCVOF, ucvox.
files. wordpress. com/2012/11/113617905-scaling-Agile-spotify-11. pdf, 2012.

[52] Janne J Korhonen and Konsta Luhtala. Upping the ante: Agile product development
at ray.

[53] Eetu Kupiainen, Mika V Mäntylä, and Juha Itkonen. Using metrics in agile and lean
software development–a systematic literature review of industrial studies. Informa-
tion and Software Technology, 62:143–163, 2015.

[54] M Laanti. Agile Methods in Large-Scale Software Development Organizations. PhD thesis,
Doctoral thesis. Oulu 2012. University of Oulu, Faculty of Science, Department of
Information Processing Science, 2012.

[55] Corey Ladas. Scrumban-essays on kanban systems for lean software development. Lulu.
com, 2009.

[56] Craig Larman. Scrum vs. Kanban vs. Scrumban: Team Members, Meetings, and
Roles. https://less.works/profiles/craig-larman. accessed: 2017-08-12.

[57] Craig Larman. Scaling lean & agile development: thinking and organizational tools for
large-scale Scrum. Pearson Education India, 2008.

[58] Craig Larman and Bas Vodde. Architecture & Design. https://less.
works/less/technical-excellence/architecture-design.html. ac-
cessed: 2017-08-12.

[59] Craig Larman and Bas Vodde. Lean primer. version, 1:1–46, 2009.

88

https://less.works/profiles/craig-larman
https://less.works/less/technical-excellence/architecture-design.html
https://less.works/less/technical-excellence/architecture-design.html

Bibliography

[60] Craig Larman and Bas Vodde. Practices for scaling lean & Agile development: large,
multisite, and offshore product development with large-scale scrum. Pearson Education,
2010.

[61] Craig Larman and Bas Vodde. Scaling agile development. CrossTalk, 9:8–12, 2013.

[62] Craig Larman and Bas Vodde. Large-scale scrum: More with LeSS. Addison-Wesley
Professional, 2016.

[63] Craig Larman and Bas Vodde. ”Large-Scale Scrum, 1st Edition”. dpunkt, 2017.

[64] D. Lasaite. Scrum vs. Kanban vs. Scrumban: Team Members,
Meetings, and Roles. http://www.eylean.com/blog/2013/05/
scrum-vs-kanban-vs-scrumban-team-members-meetings-and-roles/.
accessed: 2017-08-09.

[65] MM Leeuwen. Agile scaling@ topicus: s caling scrum with help of agile scaling
frameworks at topicus finance. Master’s thesis, University of Twente, 2015.

[66] D. Leffingwell. Implementing SAFe. https://www.scaledagile.com/
certification/courses/implementing-safe/. accessed: 2017-08-09.

[67] D. Leffingwell. Leading SAFe. https://www.scaledagile.com/
certification/courses/leading-safe/. accessed: 2017-08-09.

[68] D. Leffingwell. SAFe Advanced Scrum Master. https://www.scaledagile.
com/certification/courses/safe-advanced-scrum-master/. accessed:
2017-08-09.

[69] D. Leffingwell. SAFe Blog. http://www.scaledagileframework.com/blog/.
accessed: 2017-08-09.

[70] D. Leffingwell. SAFe Community. https://community.scaledagile.com/
CustomCommunityLogin. accessed: 2017-08-09.

[71] D. Leffingwell. SAFe for Teams. https://www.scaledagile.com/
certification/courses/safe-for-teams/. accessed: 2017-08-09.

[72] D. Leffingwell. SAFe Product Owner/Product Manager.
https://www.scaledagile.com/certification/courses/
safe-product-manager-product-owner/. accessed: 2017-08-09.

[73] D. Leffingwell. SAFe Release Train Engineer. https://www.scaledagile.com/
certification/courses/safe-release-train-engineer/. accessed:
2017-08-09.

[74] D. Leffingwell. SAFe Scrum Master. https://www.scaledagile.com/
certification/courses/safe-scrum-master/. accessed: 2017-08-09.

[75] Dean Leffingwell. Enterprise Scrum Introduction. http://www.
scaledagileframework.com/whats-new-in-safe-45/. accessed: 2017-08-
09.

89

http://www.eylean.com/blog/2013/05/scrum-vs-kanban-vs-scrumban-team-members-meetings-and-roles/
http://www.eylean.com/blog/2013/05/scrum-vs-kanban-vs-scrumban-team-members-meetings-and-roles/
https://www.scaledagile.com/certification/courses/implementing-safe/
https://www.scaledagile.com/certification/courses/implementing-safe/
https://www.scaledagile.com/certification/courses/leading-safe/
https://www.scaledagile.com/certification/courses/leading-safe/
https://www.scaledagile.com/certification/courses/safe-advanced-scrum-master/
https://www.scaledagile.com/certification/courses/safe-advanced-scrum-master/
http://www.scaledagileframework.com/blog/
https://community.scaledagile.com/CustomCommunityLogin
https://community.scaledagile.com/CustomCommunityLogin
https://www.scaledagile.com/certification/courses/safe-for-teams/
https://www.scaledagile.com/certification/courses/safe-for-teams/
https://www.scaledagile.com/certification/courses/safe-product-manager-product-owner/
https://www.scaledagile.com/certification/courses/safe-product-manager-product-owner/
https://www.scaledagile.com/certification/courses/safe-release-train-engineer/
https://www.scaledagile.com/certification/courses/safe-release-train-engineer/
https://www.scaledagile.com/certification/courses/safe-scrum-master/
https://www.scaledagile.com/certification/courses/safe-scrum-master/
http://www.scaledagileframework.com/whats-new-in-safe-45/
http://www.scaledagileframework.com/whats-new-in-safe-45/

Bibliography

[76] Dean Leffingwell. Safe ® 4.0 for Lean Enterprises. http://www.
scaledagileframework.com/. accessed: 2017-08-09.

[77] Dean Leffingwell. Safe ® 4.0 for lean software and systems engineering. http:
//v4.scaledagileframework.com/. accessed: 2017-08-09.

[78] Dean Leffingwell. Scaling software agility: best practices for large enterprises. Pearson
Education, 2007.

[79] Dean Leffingwell. Agile software requirements: lean requirements practices for teams,
programs, and the enterprise. Addison-Wesley Professional, 2010.

[80] Dean Leffingwell. SAFe® 4.0 Reference Guide: Scaled Agile Framework® for Lean Soft-
ware and Systems Engineering. Addison-Wesley Professional, 2016.

[81] Dean Leffingwell. SAFe® 4.0 Introduction, subtitle=Overview of the Scaled Agile
Framework® for Lean Software and Systems Engineering. Technical report, Scaled
Agile, 2016.

[82] Mikael Lindvall, Dirk Muthig, Aldo Dagnino, Christina Wallin, Michael Stupperich,
David Kiefer, John May, and Tuomo Kahkonen. Agile software development in large
organizations. Computer, 37(12):26–34, 2004.

[83] Rafael P Maranzato, Marden Neubert, and Paula Herculano. Scaling scrum step by
step:” the mega framework”. In Agile Conference (AGILE), 2012, pages 79–85. IEEE,
2012.

[84] E. Marks. ”Governing enterprise agile development without slowing it down:
Achieving friction-free scaled agile governance via event- driven governance,” Ag-
ilePath Corporation, Tech. Rep., 2014.

[85] Poppendieck Mary and Poppendieck Tom. Lean software development: an agile
toolkit, 2003.

[86] Peter Merel. The Manifesto for Agile Organization. http://xscalealliance.
org/. accessed: 2017-08-09.

[87] Peter Merel. XSCALE Structures. http://xscale.wiki/#XSCALE%
20Structures. accessed: 2017-08-09.

[88] John Noll, Abdur Razzak, Ita Richardson, and Sarah Beecham. Agile practices for
the global teaming model. In Global Software Engineering Workshops (ICGSEW), 2016
IEEE 11th International Conference on, pages 13–18. IEEE, 2016.

[89] Uludağ Ö., Kleehaus M., X.Xu, and Matthes F. : Investigating the Role of Archi-
tects in Scaled Agile Frameworks, 21th Conference on Enterprise Distributed Object
Computing (EDOC), Québec City, Canada 2017.

[90] Maria Paasivaara, Sandra Durasiewicz, and Casper Lassenius. Using scrum in a
globally distributed project: a case study. Software Process: Improvement and Practice,
13(6):527–544, 2008.

90

http://www.scaledagileframework.com/
http://www.scaledagileframework.com/
http://v4.scaledagileframework.com/
http://v4.scaledagileframework.com/
http://xscalealliance.org/
http://xscalealliance.org/
http://xscale.wiki/#XSCALE%20Structures
http://xscale.wiki/#XSCALE%20Structures

Bibliography

[91] Maria Paasivaara and Casper Lassenius. Challenges and success factors for large-
scale agile transformations: A research proposal and a pilot study. In Proceedings of
the Scientific Workshop Proceedings of XP2016, page 9. ACM, 2016.

[92] Maria Paasivaara and Casper Lassenius. Scaling scrum in a large globally dis-
tributed organization: A case study. In Global Software Engineering (ICGSE), 2016
IEEE 11th International Conference on, pages 74–83. IEEE, 2016.

[93] Frauke Paetsch, Armin Eberlein, and Frank Maurer. Requirements engineering and
agile software development. In Enabling Technologies: Infrastructure for Collaborative
Enterprises, 2003. WET ICE 2003. Proceedings. Twelfth IEEE International Workshops on,
pages 308–313. IEEE, 2003.

[94] S. Pahuja. ”What is Scrumban?”. https://www.agilealliance.org/
what-is-scrumban/. accessed: 2017-08-09.

[95] Akhila Pant. Agile methodology. 2016.

[96] Georgios Papadopoulos. Moving from traditional to agile software development
methodologies also on large, distributed projects. Procedia-Social and Behavioral Sci-
ences, 175:455–463, 2015.

[97] Kai Petersen. Is lean agile and agile lean. Modern Software Engineering Concepts and
Practices: Advanced Approaches, page 19, 2010.

[98] Kai Petersen and Claes Wohlin. The effect of moving from a plan-driven to an in-
cremental software development approach with agile practices. Empirical Software
Engineering, 15(6):654–693, 2010.

[99] Ron Quartel. About FAST Agile. accessed: 2017-08-09.

[100] Ron Quartel. Roles. http://www.fast-agile.com/method/fast-roles. ac-
cessed: 2017-08-09.

[101] Asif Qumer and Brian Henderson-Sellers. A framework to support the evaluation,
adoption and improvement of agile methods in practice. Journal of Systems and Soft-
ware, 81(11):1899–1919, 2008.

[102] Dolman R. and Spearman S. Agile scaling knowledgebase decision matrix. http:
//www.agilescaling.org/ask-matrix.html. accessed: 2017-08-09.

[103] D. Radigan, B. Huff, and S. Jain. Scaling agile with Atlassian and SAFe®. Technical
report, Atlassian, 2016.

[104] Mohammad Abdur Razzak. Transition from plan-driven to agile: An action re-
search. In Product-Focused Software Process Improvement: 17th International Conference,
PROFES 2016, Trondheim, Norway, November 22-24, 2016, Proceedings 17, pages 746–
750. Springer, 2016.

[105] Ajay Reddy. The Scrumban [r] evolution: Getting the Most Out of Agile, Scrum, and Lean
Kanban. Addison-Wesley Professional, 2015.

91

https://www.agilealliance.org/what-is-scrumban/
https://www.agilealliance.org/what-is-scrumban/
http://www.fast-agile.com/method/fast-roles
http://www.agilescaling.org/ask-matrix.html
http://www.agilescaling.org/ask-matrix.html

Bibliography

[106] Darrell K Rigby, Jeff Sutherland, and Hirotaka Takeuchi. Embracing agile. Harvard
Business Review, 94(5):40–50, 2016.

[107] Hina Saeeda, Fahim Arif, Nasir Mehmood Minhas, and Mammona Humayun. Agile
scalability for large scale projects: Lessons learned. JSW, 10(7):893–903, 2015.

[108] Ken Schwaber. Nexus™Guide: The Definitive Guide to Nexus: The ex-
oskeleton of scaled Scrum development. https://www.scrum.org/resources/
online-nexus-guide. accessed: 2017-08-09.

[109] Ken Schwaber. The enterprise and scrum. Microsoft Press, 2007.

[110] Ken Schwaber and Mike Beedle. Agile software development with Scrum, volume 1.
Prentice Hall Upper Saddle River, 2002.

[111] Ken Schwaber and Jeff Sutherland. The scrum guide. Scrum Alliance, 2011.

[112] Scrum.org. The Scrum Framework Poster. https://www.
scrum.org/resources/scrum-framework-poster?gclid=
EAIaIQobChMIqcLLspbb1QIVor_tCh2aEAHwEAAYASAAEgKQNfD_BwE. ac-
cessed: 2017-08-09.

[113] Fernando Selleri Silva, Felipe Santana Furtado Soares, Angela Lima Peres,
Ivanildo Monteiro de Azevedo, Ana Paula LF Vasconcelos, Fernando Kenji Kamei,
and Silvio Romero de Lemos Meira. Using cmmi together with agile software devel-
opment: A systematic review. Information and Software Technology, 58:20–43, 2015.

[114] Andy Singleton. How SAFe agile kills innovation. https://blog.maxos.ai/
how-safe-agile-kills-innovation-514673f6855e. accessed: 2017-08-09.

[115] Andy Singleton. Matrix of Services. http://www.continuousagile.com/
unblock/ea_matrix.html. accessed: 2017-08-09.

[116] Andy Singleton. Meet the Apex Competitors of Capitalism. https://blog.
maxos.ai/meet-the-apex-competitors-of-capitalism-75051baa9c21.
accessed: 2017-08-09.

[117] Andy Singleton. Unblock! A Guide to the New Continuous Agile. http://www.
continuousagile.com/unblock/ea_matrix.html. accessed: 2017-08-09.

[118] Igor Stojanov. Scaling agile using scaled agile framework. 2015.

[119] Igor Stojanov, Oktay Turetken, and Jos JM Trienekens. A maturity model for scaling
agile development. In Software Engineering and Advanced Applications (SEAA), 2015
41st Euromicro Conference on, pages 446–453. IEEE, 2015.

[120] Jeff Sutherland and Alex Brown. Scrum at Scale Framework™. https://www.
scruminc.com/scrum-scale-case-modularity/. accessed: 2017-08-09.

[121] K Thompson. Recipes for agile governance in the enterprise, 2013.

92

https://www.scrum.org/resources/online-nexus-guide
https://www.scrum.org/resources/online-nexus-guide
https://www.scrum.org/resources/scrum-framework-poster?gclid=EAIaIQobChMIqcLLspbb1QIVor_tCh2aEAHwEAAYASAAEgKQNfD_BwE
https://www.scrum.org/resources/scrum-framework-poster?gclid=EAIaIQobChMIqcLLspbb1QIVor_tCh2aEAHwEAAYASAAEgKQNfD_BwE
https://www.scrum.org/resources/scrum-framework-poster?gclid=EAIaIQobChMIqcLLspbb1QIVor_tCh2aEAHwEAAYASAAEgKQNfD_BwE
https://blog.maxos.ai/how-safe-agile-kills-innovation-514673f6855e
https://blog.maxos.ai/how-safe-agile-kills-innovation-514673f6855e
http://www.continuousagile.com/unblock/ea_matrix.html
http://www.continuousagile.com/unblock/ea_matrix.html
https://blog.maxos.ai/meet-the-apex-competitors-of-capitalism-75051baa9c21
https://blog.maxos.ai/meet-the-apex-competitors-of-capitalism-75051baa9c21
http://www.continuousagile.com/unblock/ea_matrix.html
http://www.continuousagile.com/unblock/ea_matrix.html
https://www.scruminc.com/scrum-scale-case-modularity/
https://www.scruminc.com/scrum-scale-case-modularity/

Bibliography

[122] Kevin Thompson. RECIPES FOR AGILE GOVERNANCE IN THE ENTERPRISE.
https://www.cprime.com/rage/. accessed: 2017-08-09.

[123] Oktay Turetken, Igor Stojanov, and Jos JM Trienekens. Assessing the adoption level
of scaled agile development: a maturity model for scaled agile framework. Journal
of Software: Evolution and Process, 29(6), 2017.

[124] Aashish Vaidya. Does dad know best, is it better to do less or just be safe? adapting
scaling agile practices into the enterprise. PNSQC. ORG, pages 1–18, 2014.

[125] Arie van Bennekum. The DSDM process. https://www.agilebusiness.org/
content/process. accessed: 2017-08-12.

[126] Satisha Venkataramaiah. Lean Enterprise Agile Framework - A Systems
Thinking approach to scale deliverables. https://confengine.com/
agile-india-2016/proposal/1677/. accessed: 2017-08-09.

[127] Satisha Venkataramaiah. Lean Enterprise Agile Framework LEAF. https:
//leanpitch.com/lean-enterprise-agile-framework-leaf/. accessed:
2017-08-09.

[128] Kati Vilkki. When agile is not enough. In Lean Enterprise Software and Systems, pages
44–47. Springer, 2010.

[129] B. Vodde and C. Larman. Communities. https://less.works/resources/
communities.html. accessed: 2017-08-09.

[130] B. Vodde and C. Larman. LeSS– More with LeSS. https://less.works/less/
framework/index.html. accessed: 2017-08-09.

[131] B. Vodde and C. Larman. LeSS– More with LeSS. https://less.works/. ac-
cessed: 2017-08-09.

[132] B. Vodde and C. Larman. LeSS Courses. https://less.works/courses/
less-courses.html. accessed: 2017-08-09.

[133] B. Vodde and C. Larman. The LeSS Blog. https://less.works/blog/index.
html. accessed: 2017-08-09.

[134] Jan Vom Brocke, Alexander Simons, Bjoern Niehaves, Kai Riemer, Ralf Plattfaut,
Anne Cleven, et al. Reconstructing the giant: On the importance of rigour in docu-
menting the literature search process. In ECIS, volume 9, pages 2206–2217, 2009.

[135] D. Wells. Extreme Programming: A gentle introduction . http://www.
extremeprogramming.org/. accessed: 2017-08-09.

[136] Mike West, Nathan Wilson, and Stefan Van Der Zijden. Market Guide for Enterprise
Agile Frameworks, 2016.

[137] Laurie Williams and Alistair Cockburn. Guest editors’ introduction: Agile software
development: It’s about feedback and change. Computer, 36(6):39–43, 2003.

93

https://www.cprime.com/rage/
https://www.agilebusiness.org/content/process
https://www.agilebusiness.org/content/process
https://confengine.com/agile-india-2016/proposal/1677/
https://confengine.com/agile-india-2016/proposal/1677/
https://leanpitch.com/lean-enterprise-agile-framework-leaf/
https://leanpitch.com/lean-enterprise-agile-framework-leaf/
https://less.works/resources/communities.html
https://less.works/resources/communities.html
https://less.works/less/framework/index.html
https://less.works/less/framework/index.html
https://less.works/
https://less.works/courses/less-courses.html
https://less.works/courses/less-courses.html
https://less.works/blog/index.html
https://less.works/blog/index.html
http://www.extremeprogramming.org/
http://www.extremeprogramming.org/

Bibliography

[138] Alex Yakyma. ”The Rollout: A Novel about Leadership and Building a Lean-Agile Enter-
prise with SAFe ®”. Addison-Wesley Professional, 2016.

94

	Abstract
	Outline of the Thesis
	Introduction
	Introduction
	Introduction
	Objectives
	Approach

	Foundations
	Foundations
	Agile Software Development
	Scrum
	Extreme Programming

	Lean Thinking
	Kanban
	Scrumban

	Large-scale Agile Software Development

	Scaling Agile Frameworks
	Scaling Agile Frameworks
	Scaling Agile Frameworks
	Crystal Family
	Dynamic Systems Development Method
	Scrum of Scrums
	Enterprise Scrum
	Agile Software Solution Framework
	Large Scale Scrum
	Scaled Agile Framework® 4.0
	Description of SAFe® 4.0
	Differences between SAFe® 4.0 and 4.5

	Disciplined Agile 2.0
	Spotify
	Mega Framework
	Event-Driven Governance
	Recipes for Agile Governance in the Enterprise
	Matrix of Services
	Scrum at Scale
	Enterprise Transition Framework
	ScALeD Agile Lean Development
	Exponential Simple Continuous Autonomous Learning Ecosystem
	Lean Enterprise Agile Framework
	Nexus
	Fast Agile

	Scaling Agile Frameworks in Research
	Limitations

	Comparison Table
	Comparison Table
	Comparison Criteria
	Consolidation of Comparison Criteria
	Comparison of SAFe® and LeSS
	Comparison based on Descriptive Information
	Comparison based on the Adoption
	Comparison based on the Scope
	Commonalities and Differences

	Conclusion
	Conclusion and Outlook
	Summary
	Results
	Limitations
	Future Work

	Appendix
	Detailed Descriptions
	Bibliography

