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Abstract

In the contemporary era, great quantities of legal texts are produced, stored digitally, and
retrieved for work later, to the extent that manual classification of these documents, and the
manual processing of the content, has become unfeasible. This study provides support for this
business need by implementing a microservice (LexML) for legal document and norm
classification, which applies the concept of active machine learning. Following the evaluation
of possible solutions for (legal) text classification and (active) machine learning in the existing
literature, LexML was implemented using Apache Spark MLIib as the machine learning
framework. Within the scope of this study, the existing functionality of the legal data-science
environment called Lexia was utilized. Various classifiers and query strategies were
implemented and evaluated using German legal data. Overall, active learning strategies
outperform traditional machine learning in terms of the speed of learning and maximum
accuracy. The results of the document and norm classification experiments vary greatly: while
for document classification, Naive Bayes and Multilayer Perceptron outperform Logistic
Regression, the latter is undoubtedly superior to the other two for norm classification.

Keywords: Active Learning, Machine Learning, Apache Spark MLIib, Legal Text
Classification
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1 Introduction

1.1 Motivation

“There seems to be little question that machine learning will be applied to the legal
sector. It is likely to fundamentally change the legal landscape. ” [1]

Digitization has already brought disruptive transformation to numerous business sectors, and it
is likely that it will also substantially transform the legal domain, as the citation above predicts.
The amount of data currently produced per day is immense, and it will increase considerably in
the future. At present, 2.5 quintillion bytes of data are created daily from various sources, such
as audio, video or text files. Furthermore, in 2015, 90% of the world’s data had been created in
the preceding two years!. This trend is reflected in the legal domain, where the amount of
written information has increased exponentially, resulting in stresses to the legal system [2].
Thousands of legal documents such as judgments, contracts, patents, among others are
produced by governments, firms, law offices and the like every day. In the era of globalization
and digitization, these documents are usually made available online via the internet or stored in
an internal database so that they can be shared, retrieved and easily utilized again later. For
instance, many people working in the legal environment use online legal portals such as “juris™?
and “beck-online”? in Germany, or “westlaw”* in the United States for their daily work. They
all provide quick access to a vast selection of online legal texts. Additionally, these databases
improve the public’s accessibility to legislation.

Sharing legal data on a particular platform (e.g. on a website on the internet) is an important
collective task. To retain the document overview and to retrieve these legal documents in a
proper manner, it is essential that their categorical classification is correct. The task of analyzing
and organizing legal texts can be understood as a document classification task. This document-
level classification is in itself a complex task, and the amount of data that requires classification
is considerable. Manual classification of such documents is time-consuming and costly,
especially as legal knowledge is required. For instance, in the study of [3], attorneys engaged
in litigation proceedings spent in excess of four months reviewing and classifying documents
as either responsive or nonresponsive, resulting in a total cost of US$13.5 million.

Both the number of legal documents and the volume of their content is increasing. For example,
in Germany alone in the 2009-2013 period, more than 500 new laws were introduced or
updated®. Additionally, laws become increasingly complex in order to correspond to economic
and social complexities [4]. Such complexity manifests in long sentences with complex clauses,
cross referencing, and amendments such as changes in definitions over time [5]. Thus, while
document classification enables people such as attorneys to find the relevant documents

L http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillion-bytes-of-data-created-daily/
2 https://www.juris.de

3 https://beck-online.beck.de

4 http://legalsolutions.thomsonreuters.com/law-products/westlaw-legal-research/

5 https://www.bundestag.de/dokumente/textarchiv/2013/46598866_kw37_statistik/213446



relatively quickly via online databases, they may have problems finding the pertinent passages
within the document or understanding it. To simplify and speed up the search for the relevant
provisions within a legal text, it is advantageous to assign individual sentences of a document
to particular classes (norm classification). For example, an attorney would then be able to
rapidly ascertain the norms or paragraphs of the document in which a legal definition is to be
found. Again, manual classification of a legal text’s content is not practically achievable. For
instance, the German Civil Code (Biirgerliches Gesetzbuch (BGB)) alone has 2,385 paragraphs
and hence, a considerably greater number of sentences. Additionally, the person who would
undertake such a classification of the text would be required to possess a robust knowledge of
the domain. Consequently, labeling the legal document’s content manually is unfeasible. To
overcome the problem of having to manually classify documents and their content, one can use
computer-aided support.

One way to achieve this is to use rule-based text annotation software like Apache UIMA Ruta®
to classify documents or sentences. These methods analyze the text and check whether defined
rules can be applied to the document or single sentences. For instance, one can define a rule to
the effect that if “im Sinne des Gesetzes” occurs, the sentence is always classified into the class
“legal definition”. These rule-based classifiers perform very well in many cases. However, the
problem is that minor variations (which are not defined ina rule) may result in misclassification.
Furthermore, this approach requires comprehensive prior semantic analysis of the legal text to
calculate linguistic patterns for each rule.

Another method of classification supported by computers is the application of various machine
learning techniques. The drawback of traditional (supervised) machine learning techniques is
that they often require a relatively large set of already labeled training instances to train the
classification algorithm appropriately. As already indicated, for norm classification especially,
this is very time-consuming and costly to achieve which makes it still hardly viable. Therefore,
active machine learning, a technique aimed at creating a good classification algorithm with
fewer training instances, is the focus of this research. Active machine learning in the text
domain is a promising approach that has already been successfully applied to a number of tasks,
including classification [6, 7], named entity recognition [8], and spam filtering [9], as well as
in the legal domain [5, 10, 11] .

The objective of this study is to attain better insight into text classification and machine
learning, especially active machine learning. Having gained deeper knowledge about these
subjects, this understanding should be applied to develop an active machine learning
microservice for legal-text classification using a carefully selected machine learning
framework. In the final step, the quality of the service in the classification of legal documents
and its norms are evaluated.

8 https://uima.apache.org/ruta.html
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1.2 Research Questions

In order to achieve these objectives, the thesis orients itself by means of the following research
questions:

I.  What are common concepts, strategies and technologies used for text
classification?

Text classification is a comprehensive and complex task that includes several steps, such as
preprocessing, transforming the text into a suitable format, feature selection, and the
classification itself. With regard to classification, many classifiers with different advantages
and drawbacks, depending on various factors, exist. The goal is to understand the text
classification process and gain insights into existing approaches. Later in the work (see Chapter
3), machine-learning technologies used for text classification are introduced and analyzed.

Il.  How can (active) machine learning support the classification of legal documents
and their content (norms)?

Once a basic understanding of text classification has been achieved, the next step is to introduce
active machine learning. As with text classification, active machine learning is a complex
method that requires the consideration of many different influencing factors. Achieving an
overview of the concept of active learning and how these influencing factors can be managed
are within the scope of this question. In the literature review, the term textual data is often used
to refer to both entire documents as well as individual norms.

I11.  What form does the concept and design of an active machine learning service
take?

The comprehensive literature review answers research questions one and two. The next step is
to calculate the requirements for developing an independent active machine-learning prototype
(microservice). This prototype should be able to conduct text classification and active machine
learning using imported legal textual data. Following this, a suitable concept and design for a
technical solution implementing these requirements is developed.

IV. How well does the active machine learning service perform in classifying legal
documents and their content (norms)?

In the final step, the performance of the built prototype is evaluated in terms of the quality of
classification of documents and their content. Common evaluation measures discovered in
literature review are applied to compare different classifiers and active-learning strategies. That
is, not only the final classification results are compared, but also the “learning”.



1.3 Research Method

The objective of this thesis is to report on the building of a prototypical implementation of an
active machine-learning microservice. In order to be able to develop an appropriate concept for
the implementation, this study is primarily oriented to the design science approach depicted by
[12]. They describe the two concepts, behavioral science and design science. Figure 1 provides
a conceptual overview that combines design science and behavioral science paradigms to
understand and evaluate information systems (IS) research. In contrast to behavioral science,
where the objective is the development and justification of theories explaining or predicting
issues related to identified business needs, the aim of design science approach is to develop and
evaluate artifacts created to meet these needs. Although no own research was conducted to
identify specific business needs, they were calculated in the course of the literature research.
As already indicated in Chapter 1.1, these business needs for the improvement of the current
state of legal-text classification have been identified. To improve this situation, this work
focuses on the design artifact. In doing so, a prototypical implementation of an active machine-
learning microservice (i.e. the artifact) is developed and evaluated. The development is based
on the theories, frameworks and methods discussed in a literature study. The built prototype is
evaluated by means of data-analysis techniques and specific evaluation measures. The results
obtained principally provide additions to the knowledge base, but may eventually also be
applied in an appropriate environment to address the business needs identified.

Environment IS Research Knowledge Base

People - Foundations
* Roles Developf.B uild * Theories
» Capabilities ' The.oncs * Frameworks
» Characteristics * Artifacts * Instruments

* Constructs
Organizations Business Applicable |« Models
+ Strategies Needs Knowledge |« Methods
* Structure & Culture :‘ > :l: = Instantiations

Assess Refine

* Processes

Methodologies

echnology Justify/Evaluate * Data Analysis
* Infrastructure * Analytical Techniques
» Applications * Case Study * Formalisms
* Communications  Experimental * Measures
Architecture * Field Study * Validation Criteria
* Development *  Simulation
Capabilities
Applications in the Additions to the
Appropriate environment Knowledge Base

Figure 1: Information Systems Research Framework
Source: Own illustration based on [12]

To attain the basic knowledge required to develop the appropriate concept for the microservice,
as a first step a comprehensive literature study was performed [13]. The results of the literature
study have been the following:



e Develop an overview of machine learning, its various forms and processes, and the
terminologies used.

e Learn how (legal) text classification can be applied and which factors must be
considered.

e Understand how active machine learning works and which influencing factors must
be taken into account.

e Discover and assess machine learning frameworks that can be used for text
classification and active machine learning.

Several sources, such as conference papers, journals, blogs and books were consulted in the
course of the literature review. To access the pertinent literature, online platforms such as the
following were utilized:

e Google Scholar,

e Web of Science,

e Institute of Electrical and Electronics Engineers (IEEE),
e Online Public Access Catalogue (OPAC),

e and Google Books.

A variety of search queries were conducted using these online platforms, with the searches
dependent on the platform’s respective thematic areas (text classification, (active) machine
learning, etc.). Additionally, relevant work within academic papers germane to the subject
matter was investigated in greater detail (backwards search). The objective was to find relevant
work from the past as well as current research studies. The identified papers were managed by
means of a reference management system.

The results of the literature study were used as starting point to develop a suitable concept for
an active machine learning prototype for the classification of legal documents and norms,
implement the prototype, and evaluate it.

1.4 Outline

This thesis comprises three main parts: in the first, a comprehensive literature review on topics
pertinent to the classification of legal texts is conducted. Based on this literature study, the
second part deals with the development of a machine-learning prototype that is suitable for
legal-text classification. In the third part, both the prototype itself and the classification results
obtained are evaluated. The work is structured as indicated below.

First, in Chapter 2.1 the fundamental terminology and concepts of machine learning and the
text-classification process are explained. These understandings form the basis for the discussion
on active machine learning and the factors that influence it in Chapter 2.2. Both concepts are
brought together and transferred to the legal domain in Chapter 2.3. As the basis for the practical
part, the suitability of selected machine-learning frameworks for the prototype is assessed in
Chapter 3. The most suitable one is used for the building of the prototype.

The development of the prototype is a component of the chapters that follow, the second main
part. First, the concept and design are described in Chapter 4, addressing subjects like the
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environment of the prototype, its requirements, and the resulting architecture. Then, important
details about the implementation of the prototype are presented in Chapter 5.

Thereafter, the implementation of the prototype and the results obtained in classifying legal
texts applying active machine learning are evaluated in Chapter 6.

Finally, the results relevant to the research questions from all three parts are discussed in
Chapter 7.



2 Knowledge Base

2.1 Background
In this chapter, the terminology and concepts relevant to this study are explained and discussed.

2.1.1 Machine Learning

Machine learning (ML), a research area related to artificial intelligence (Al), is concerned with
answering the question of how one can build computer systems that automatically improve their
performance in a certain task through experience, or training data [14, 15, 16]. That is, ML uses
a set of methods to detect patterns in data and then employs the patterns discovered to make
predictions about future data [17]. ML was developed on the basis of the ability to use
computers to analyze the structure of data, even if the manner in which the data is presented is
not clear. ML could therefore be regarded as a “natural outgrowth of the intersection of
Computer Science and Statistics”; it also incorporates approaches from neuroscience and
related fields [14, p. 1].

Traditionally, ML is divided into two main categories:

e predictive or supervised learning
e descriptive or unsupervised learning

In predictive or supervised learning, a system learns a mapping of inputs x to outputs y based
on given (labeled) input-output pairs D = {(X,Y)}, known as a training set. This training data
comprises instances of the input vectors along with their corresponding target vectors. In this
manner, the learning algorithm?’ uses the input data along with the received correct output to
teach itself a matching classification function (classifier) by comparing its actual output with
the correct outputs in order to find errors. That means there is a function f: X ~ Y that, given
the input data x € X, returns a certain prediction y € Y, a so-called label or class. The label y
is usually a categorical or continuous value. Generally, there exist the following three different
kinds of classification settings [18]:

e Dinary classification: y is associated with a single label [ from a set of disjoint labels L
and | L|=2

e multiclass classification: y is associated with a single label [ from a set of disjoint labels
Land|L|>2

o multilabel classification: y is associated with a set of labels [ € L from a set of disjoint
labels L and | L |>2

In contrast to a label, each input variable x is a multidimensional vector representing a certain
feature or attribute of the instance to be classified (feature vector).

" The term “learning algorithm” is often also used for the resulting classifier, depending on the context.



In descriptive, unsupervised learning, also known as knowledge discovery, the training data
consists of input data vectors without any corresponding target value. The objective is to find
patterns of interest in the data based on a given input set D = {X} in which the input examples
are not labeled. Here, the system does not know the correct answer, and a fully correct answer
may not exist. Typical applications of supervised learning include classification and regression
problems; however, the goal of unsupervised learning is to discover clusters and group the data
into different categories based on the similarities discovered (clustering), or to determine the
distribution of data (density estimation). In comparison to supervised learning, the problem is
less clearly defined, the process not predictive but descriptive, and there is no obvious error
metric [14, 15, 19].

The following two figures (Figure 2 and Figure 3) present and compare the basic workflow of
the two ML approaches, first the supervised approach, followed by the unsupervised learning
approach.

Figure 2: lllustration of the supvervised ML process
Source: Own illustration based on [20]

In both approaches, existing training data is first processed into several feature vectors. As these
vectors serve as input for the ML algorithm, they are decisive for the resulting model quality.
It is for this reason that appropriate preprocessing steps are often conducted in order to improve
the quality of the feature vector (see Chapter 2.1.2.4). Depending on the context, feature vectors
typically consist of a set of real numbers, integers or Boolean values (see Chapter 2.1.2.3).

In a next step, the feature vectors (and the corresponding labels, in case of supervised learning)
are used by a ML algorithm to create a predictive (supervised) or descriptive (unsupervised)
model. The selection of a suitable ML algorithm is another crucial yet difficult decision and
remains a major research topic [14]. In addition to the strengths and weaknesses of each
algorithm, influencing factors like the context of classification, the dependency of features, and
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the distribution and noise of data must be considered in reaching this decision (see Chapter
2.1.2.6).

&8,

=10

Figure 3: Hlustration of the unsupervised ML process
Source: Own illustration based on [20]

The output of the ML algorithm generates the two models mentioned. They are the result of
what is being learned from the data. Optimally, when adding new data, this model should then
be able to either label instances of the new data correctly (supervised learning) or to categorize
them in the appropriate cluster (unsupervised learning). This means that the re-usability of the
model is a concern. As the model is mostly trained on very specific training instances (e.g. using
a set of emails to train a model to recognize spam emails), it can only classify new instances in
the same, or at least a similar, context (emails). Applying the model in another context, for
example, to classify news into the categories “sport” or “no-sport” (similar to “spam” and “no-
spam”), would result in failure [21].

A third form of ML that has garnered attention in recent years is semi-supervised learning. It is
midway between supervised and unsupervised learning and uses both labeled and unlabeled
data for training. In this case, the training set D = {(X,Y), (X)} can be divided into two
components: one for which labels are provided: D := (X,Y); and the other for which the labels
unknown: D := (X). Semi-supervised learning is often useful if the costs of labeling data are
excessive, or if the amount of data that needs to be labeled is unduly large [22, 23].

Important ML terminology and artifacts discussed in this chapter are summarized in Table 1.
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Term Definition

Data Set A schema and a set of instances matching the schema
Training Set A larger part of the data set used for training the classifier

A smaller part of the data set used for checking the quality of the learned
UGSiEEE classifier

A single object of the data, mostly described as a feature vector from which the

Instance/Example model will be learned, or by means of which a model will be used for prediction.

Attribute/Field/ A quantity describing an instance and its value, depending on its domain type
Variable (categorical or continuous)

The specification of an attribute and its value (sometimes used as synonym for
Feature .

attribute)
Learning . . . L
Algorithm/L earner An algorithm that takes instances as input and produces a predictive model
Classifier Mapping from unlabeled instances to (discrete) classes
Label/Class A target class

A model generated by learning algorithms that can be used as classifier. It has a
structure and corresponding interpretation that summarizes a set of data
A learning technique used to learn relationships between independent attributes

Predictive Model

Unsupervised Learning

and labels
Supervised Learning A Iearmng technique that groups instances without pre-defined labels (e.g.
clustering)
Semi-supervised A hybrid form of supervised and unsupervised learning using labeled and
Learning unlabeled instances

Table 1: Machine Learning Glossary
Own illustration based on definitions from [24]

Following this presentation of the basic workings of ML and the relevant terminology, the
subsequent section demonstrates how ML is applied in practice in the context of text
classification.

2.1.2 Text Classification

Text classification (TC) (also called text categorization; see Chapter 2.1.2.1) describes the
problem of automatically assigning predefined categories to textual data based on their content
[25, 26]. TC is a subfield of natural language processing (NLP) that has gained considerable
importance as a result of the availability of the vast amounts of textual data available in
electronic form, such as in digital libraries or from news articles. Typically, TC problems can
be solved by applying supervised learning methods [26] in which a text classifier is built
automatically by learning from a set of predefined (i.e. labeled) textual data [27, 28]. This
learned model should then be able to classify unlabeled textual data with the correct label.
Before addressing the TC process more thoroughly, the terms ‘“classification” and
“categorization” are defined and differentiated.

2.1.2.1 Categorization vs. Classification

While in the ML literature the terms categorization and classification are principally used as
synonyms (e.g. [27, 29, 30]), Jacob [31] postulates a significant difference between the two
terms.



Categorization is defined as “the process of dividing the world into groups of entities whose
members are in some way similar to each other” [31, p. 518].

Classification describes three related concepts: (1) a system of classes, ordered according to a
predetermined set or principles and used to organize a set of entities;” (2) “a group or a class in
a classification system;” (3) “and the process of assigning entities to classes in a classification
system” [31, p. 522].

In principle, both categorization and classification pursue the objective of establishing order
by grouping related appearances; the difference lies in how that order is achieved. Classification
arranges entities into an arbitrary system and creates a taxonomy with non-overlapping classes.
The result is that an entity can only be member of a single class. On the other hand,
categorization divides entities into groups having some similarity within a given immediate
context. This means the latter does not require predetermined definitions, but rather uses the
existing context to cluster the entities into categories [31, 32].

Some of the major differences between the two terms are summarized in Table 2.

Categorization

Classification

Process

Boundaries
Membership

Criteria for Assignment

Creative synthesis of entities
based on context or perceived
similarity

Systematic arrangement of entities
based on analysis of necessary and
sufficient characteristics

Fuzzy

Fixed

Based on generalized knowledge
and context

Based on the intension of the class
(either entity is member or not)

Context dependent and context
independent

Criteria are predetermined
guidelines or principles

Table 2: Differences between Categorization and Classification
Source: Own illustration according to [31]

The table illustrates that categorization is a more flexible process that draws non-binding
associations between entities based on recognized similarities, while traditional classification
strictly differentiates based on predefined rules.

In the context of ML, categorization may be understood as a type of unsupervised learning
technique, such as clustering; whereas classification is related to supervised learning.

Strictly speaking, only binary- and multiclass classifications (but not multilabeling) can
therefore be understood as traditional classification according to [31]. However, as the intention
of this work is to conduct multiclass classification with clear boundaries generated by humans,
the term classification is used in this work henceforth.

2.1.2.2 The Text Classification Process

Text classification is an extensive research topic that has been explored in combination with
ML techniques in a number of fields, including spam filtering [33, 34], in which emails are
assessed as to whether they are inappropriate and unrequested. Other applications include
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sentiment analysis [35], by means of which the overall attitude (e.g. positive or negative) of a
text is examined; and named entity recognition, where certain entities (e.g. the names of people)
are extracted from a document [36, 37]. The basic classification process is similar for all
applications.

Typically, the TC process consists of several steps (see Figure 4): (1) the text is preprocessed;
(2) unnecessary features are removed and relevant features are selected by means of a feature
vector; (3) the vector is used to train the classifier (learning algorithm) so that (4) new textual
data can be classified accordingly [26].

B =

=
94—-
—

3

Figure 4: Illustration of the TC process
Source: Own illustration based on [38]

The individual elements of this process are explained in the following sections.

2.1.2.3 Text representation

When classifying textual data (e.g. a document or norms), it must be represented in a form that
the ML algorithm can process [26]. A text is defined as a sequence of words that is usually
represented as a vector of words or terms (feature set) [26]. This vector-space model assumes
that each word is a dimension of the feature space and the dimension of the word (term) space
is the number of words in the corpus (the bag of words representation). In this regard, the
significance of a certain word in a document has to be considered and must be reflected by a
word weighting to manage the following antagonism: on the one hand, the greater the frequency
of a word, the greater its relevance to the topic; however, on the other hand, the word
discriminates more poorly between documents [39]. To overcome this problem, several
approaches have been developed (see Chapter 2.1.2.5) [40].



The most common approach to illustrate the weighting of a word in a document is the term
frequency/inverse document frequency (TF-IDF). Here, the term (word) frequency (TF) states
how often a certain term occurs in a text. The rationale behind the inverse document frequency
(IDF) is that features that appear rarely in a collection of texts are particularly valuable. That
is, the IDF of a feature is inversely proportional to the number of documents in which it occurs
[41]. Hence, the TF-IDF approach weighs infrequent terms higher, as they are probably more
informative for the learning algorithm. A disadvantage of TD-IDF is that the length of the text
is not considered [26, 38]. The TFC-weighting is a similar approach that takes length into
account and performs a length normalization as part of the word-weighting formula. Another
method called LTC-weighting aims to reduce the effects of large differences in word
frequencies by using the logarithm of the word frequency instead of counting raw word
occurrences [39]. A completely different approach is used by [42] who used only a binary
feature vector for expressing whether a term is present in the text or not.

An essential problem in the field of TC is the high dimensionality of the feature space (word
vector) that cannot easily be managed by computational systems [39]. Hence, feature reduction
is applied with the intention of removing irrelevant features and decreasing the dimensionality
of the feature space. This usually compromises two methods: feature extraction (preprocessing)
and feature selection [26, 38].

2.1.2.4 Preprocessing

The process of preprocessing, also known as dimensionality reduction or feature reduction, is
applied to “make clear the border of each language structure and to eliminate as much as
possible the language dependent factors™ [43, p. 3814]. Preprocessing is an important step in
the TC process, as redundant or irrelevant attributes can reduce both the speed and classification
accuracy [38]. Uysal and Gunal [40] confirm this theory in their study, in which they examine
the effect of preprocessing in TC tasks in two different text domains (news and emails) and
languages (English and Turkish), although the actual necessity for preprocessing is
controversial in the literature [44, 45, 46, 47]. They [40] also found that there is not one unique,
perfect combination of preprocessing steps and tasks that provides promising results for every
domain or language. To achieve a constant performance when creating a low-dimension vector,
the setup must be analyzed and tested accordingly for each domain and language.

Typically, preprocessing consists of several steps (although it is not necessary to conduct all of
them): (1) tokenizing the text, (2) removing stop words, (3) converting words into their root
form (known as stemming) and (4) transforming words into lowercase characters [26, 40, 42,
43].

(1) Tokenizing is a form of text segmentation that describes the procedure of splitting a text
(documents, sentences, etc.) into words, certain phrases, or context-dependent
meaningful parts. Typically, non-alphanumeric characters like white spaces are used to
separate these components in the text [26, 40].

(2) The objective of stop-word removal is to eliminate words that are assumed to be
irrelevant for the classification process. Stop words are language-specific terms that are
highly frequent, for example, articles or conjunctions such as “the” and “or” in English,
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and “der” and “oder” in German [26, 38]. While [44, 45, 47] see no or only an
insignificant improvement when eliminating stop words, [40, 46] enhanced their
classification accuracy when eliminating stop words.

(3) In stemming, different forms of the same word (e.g. singular, plural or different tenses)
are converted into a similar canonical form. This is, words are returned to their root
form (e.g. connection to connect, computing to compute) [26, 38]. The significance of
stemming has been questioned in various papers, for instance, [44, 45, 46, 47]
recognized no significant improvement when using stemming. Furthermore, the
significance of stemming can also be correlated to the language analyzed. For instance,
in German, one word can have more forms than a comparable English word.

(4) It is assumed that whether words are uppercase or lowercase has no bearing on the
results of text processing. Therefore, all uppercase words are usually converted to
lowercase form. This supports both achieving eventually a better accuracy or at least a
reduced feature size (see Chapter 2.1.2.5)[40].

2.1.2.5 Feature Selection

Feature selection (FS) describes the “process of selecting a subset of the features occurring in
the training set and using those selected features in the text classification” [48, p. 283].
Typically, the main benefits are to (1) reduce measurement and storage cost, (2) avoid
overfitting, and reduce noise and redundancy, (3) reduce training and utilization time, and (4)
facilitate data understanding [42, 49, 50]. FS methods usually involve one of two different
approaches — wrappers and filters — depending on the manner in which they select features from
the vector”.

With the wrapper approach, various subsets of dependent features are built, evaluated and
compared to a specific classifier (e.g. the recognition rate for a specified classifier). Wrappers
are usually not suitable for TC as their application to large datasets is excessively time
consuming [26, 38].

In the filter approach, features are treated independently. The core idea is to rank, and then
select top-ranked, features based on a particular criterion calculated by a function [43]. The
low-ranked features are removed from the vector. This approach is more suitable for TC: it is
faster and simpler as the FS step is performed once and then the reduced feature vector may be
used with any classifier [26]. Studies have demonstrated that none metric consistently performs
better than others, as the result of the score (rank) is highly dependent on the type of classifier,
and the sparsity and balance of the training data, among other matters [42, 50, 51, 52]. Some
commonly used FS methods in TC are summarized in Table 3.



Method Explanation
Words occurring less than a defined threshold are removed from the word vector (see Text
TD-1DF representation). As an unsupervised method, it does Tgt| require class labels
idf; = log
' [#(f)l
IG measures the decrease in entropy when the feature value is given. In other words, it measures
the number of bits of information obtained for category prediction by calculating the presence or
| absence of a term in a document. Terms that have an 1G below a predefined threshold are
Informati | removed from the vector
?IEC)Bam 1G(t) = H(C) — H(C|T)
P(t,c)
P(t,c) *log———
c €{ci,Ci} t E{tktk} PO =P
By measuring the independence of a term in relation to a class, chi square identifies the ones that
are most dependent on a certain class. Chi square is a normalized value and therefore comparable
. across terms for the same category
Chi 2 —
C., . =
Square 2o f;)
) . N e )2
DI x (#(co ) #(e0 ;) = #(cu ) #(e0 f;))
(#(Ci’fj) + #(Ci'fj)) X (#(C_i’fj) + #(C_i'fj)) X (#(Ci’fj) + #(C_i'fj)) X (#(Ci’f;') + #(C_i'fj))
OR is a measure of association between an exposure and an outcome. It is based on the
assumption that the distribution of features is different in relevant and non-relevant documents.
Odds OR is the proportion of the word’s occurrence in the positive class normalized by that of the
Ratio negative class. As a result, features that occur rarely in a positive document but never in a
(OR) negative obtain a relatively high score
P(file;) @ = P(fi|~c;
OddsRatio fic; = log (fll ]) ( (fllﬁ 1))
(1= P(filg)) (P(fi|=¢))
c A class of the training set
C The set of classes of the training set
D The set of documents of the training set
t A term or word
P(c) / P(ci) | The probability of class c or c; appearing in the training set
@) The probability of the class not occurring in the training set
[P(=€)
P(c|t) The probability of class ¢ given that the term t occurs.
P(—c)|t Denoting the probability of class ¢ not occurring given the term t occurs
P(c, t) The probability of class ¢ and term t occurring simultaneously
H(C) The entropy of set C
#(c) #(t) The number of documents which belong to class ¢ or contain term t, respectively
#(c, t) The number of documents containing term t and belonging to class ¢

Table 3: Filter Feature-Selection Methods
Source: Own illustration based on [25, 39, 42, 48, 52, 53]

Rogati and Yang [54] compared in their study these filter FS methods using four different
classifiers; they conclude that a combination of metrics should be used. That is, Chi Square
especially, in combination with IG or TF should be selected as FS methods as these had
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constantly performed better across classifiers. Several common classifiers are described in the
following section.

2.1.2.6 Classifiers for TC

Automatic TC in the area of ML is a comprehensive research field that has been extensively
studied. As described in Chapter 2.1.1, there are two main methods — supervised and
unsupervised — to classify textual data. For both approaches, various classifiers have been
researched. Several surveys exist that provide a good overview of important learning algorithms
[27, 38, 55, 56]. As mentioned in the previous chapter, there is no single best classifier. As a
first step, for each application, factors like context, objectives and other influences must be
analyzed. Thereafter suitable classifiers can be selected and tested.

Figure 5 provides a short overview or taxonomy of often-used TC classifiers. Generally, a clear
distinction between classification algorithms is not simple, as they may have been modified or
combined in various ways [38], or there may be special conditions in which classifiers behave
differently. For example, the three linear classifiers presented in Figure 5 may also be
implemented in a non-linear manner [55] (e.g. the Support Vector Machine (SVM) [57, 58]),
or the Naive Bayes may adopt a linear form. Those in blue are introduced in greater detail.

Linear Classifier Bayesian Classifier | Logical Classifier Proximity Classifier

¥ ¥
Support Vector Artificial Neural Naive Baves
Machine Networks ¢

Figure 5: Classification of ML Algorithms
Source: Own illustration based on [55, 59, 60]

Generally, one can distinguish between linear and nonlinear classification problems. A
classifier is linear if the feature space can be separated into different classes by a linear margin.
Typical examples of originally linear classifiers are SVMs or perceptron-based techniques such
as artificial neural networks (ANNSs). The perceptron-based algorithm (single layer perceptron)
is originally a binary classifier using a linear prediction function that multiplies a word vector
(feature values) with a weight vector to yield the class label. Linear classifiers may also have a
probabilistic basis, as does Logistic Regression (LR). LR uses the characteristic that the
probability of observing the true label (logit transformation) can be modelled as a linear
combination of the attributes [55, 59]. Bayesian Classifiers, such as the Naive Bayes (NB),
make use of the Bayes’ theorem which assumes independence between the features. Although
typically having a nonlinear decision boundary, it can also be modeled in a linear way.



Another statistical learning method is instance-based learning using distance (proximity)
measures. A popular form of an instance-based algorithm is the k-nearest neighbor algorithm
(KNN). It assumes that similar instances are close to each other as they have related properties.
Several measures exist to calculate this relatedness, like the Euclidean or Minkowsky Distance
[38].

Kotsiantis [59] compared existing theoretical and empirical studies and illustrated the strengths
and weaknesses of the respective classifiers (see Figure 6). However, it bears reiterating that
the performance of each classifier can vary significantly, depending on various factors. For
instance, classifiers like the NB can yield excellent performance better than other classifiers
[61].

Decision | Neural Naive kNN SVM Rule-
Trees Networks Bayes learners
Accuracy in general ok T * ok kR ok
Spced Oflemlng WIth e ¥ LRSS e ek e * ¥ ¥
respect to number of
attributes and the number of
instances
Speed Ufclassiﬁcatiﬂn LE L] FEEE LE L L] ¥ ¥R E e sk
Tolerance to missing values *k* * ok * *H **
Tolemce to mle‘;aﬂt e ¥ Lk ok o e ek ¥ ¥
attributes
Tolerance to redundant ** *x * *k Ak *k
attributes
Tolerance to highly ok ok * * ok ok
interdependent attributes (e.g.
parity problems)
Dealing with ok **%(not **¥(not **¥(not **(not 4% (not
discrete/binary/continuous discrete) continuous) | directly discrete) directly
attributes discrete) continuous)
Tolerance to noise ok *# wkx * * *
Dealing with danger of ** * kk *xE ok **
overfitting
Attempts for incremental *k ok P *AEk ** *
learning
Explmation ek * LE L 2 ] * ¥ * R
ability/transparency of
knowledge/classifications
Model parameter handling k% * ook *kk * Fkk

Figure 6: Comparing learning Algorithms (****best, *worst)
Source: [59]

Below, the algorithms (1) NB, (2) SVM, and (3) ANN are introduced in greater detail.
(1) Naive Bayes

Naive Bayes is a simple and commonly used probabilistic generative® classifier applying the
Bayes’ theorem. The algorithm is naive as it assumes strong independence between the single

8 Generative models are full probabilistic models of all variables. In other words, they learn the joint probability
distribution (e.g. p(x,y)) [62].
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features. This means that the occurrence of a certain feature (e.g. a word) does not influence the
appearance of another word.

The probability that feature d belongs to class ¢ can mathematically be illustrated by

P(d|c)P(c)

P(cld) = 10

whereby P(d) is a constant, as each feature has the same probability of being in the dataset [63].
The difficulty lies in estimating P(d|c), as there are a vast number of possibilities [60].

For the classification itself, usually two models, the Multivariate Bernoulli Model and the
Multinomial Model (Multinomial Naive Bayes (MNB)) are used in practice. Both calculate the
posterior probability of a feature (word) belonging to a class based on the distribution of the
word in the text, while ignoring the position of the word. The feature is then assigned to the
class having the highest posterior probability [55, 60].

The Multinomial Model incorporates the frequency of a word by means of a vector containing
a count of the words in the textual data (the bag of words representation). Then, for each class,
each text is modeled by means of a multinomial distribution of words. Thus, the conditional
probability of textual data given a certain class, is the product of all probabilities of the observed
words in that class [55, 60].

In contrast, the Multivariate Bernoulli Model does not quantify word frequencies, but uses a
binary vector to ascertain the presence or absence of a word. The probability of textual data
given a certain class, is then the product of the probability of the feature values for all words
[55, 60].

McCallum and Nigam [64] compared these two models and asserts that the Multinomial Model
regularly outperforms the Multivariate Bernoulli Model and is therefore used more frequently
in research. For this reason, it is also used in this thesis. Hence, in this study the abbreviation
NB refers to the Multinomial Model of the Naive Bayes.

Although feature independence is often not given in textual data and NB has the lowest
accuracy according to [27, 59], [63] show that even in the presence of strong feature
dependencies NB performs reasonably well, and outperforms other classifiers such as decision
trees or KNN. Various TC studies confirm that NB classifier performs reasonably well despite
its simplicity [61, 63]. Rennie, Shih, Teevan [65] introduced a modified Transformed Weight-
normalized Complement Naive Bayes (TWCNB) in their work and achieved the same accuracy
as SVMs. A further advantage of the NB classifier is its short computational training time and
ease of implementation.

For further reading, refer to [64] and [60] where more extensive overviews of the Bayesian
classifier are provided.



(2) Support Vector Machine

An SVM is a frequently used discriminative® TC classifier. SVMs have sound theoretical
foundations, and have achieved good results in empirical research.

Originally, an SVM is a linear classifier that assumes that the training data is linearly separable.
The basic proposition is to create a hyperplane through a multidimensional input space Z given
by the feature representation X of an instance x. The optimal hyperplane is the one having the
maximum distance (margin) from the feature vectors. In other words, the goal of the algorithm
is to maximize the distance between the hyperplane and the instances on each side [59]. Given
a labeled training data set (y1, X1),...,(yn, Xn), this optimal hyperplane can be defined as

(Wg,x1) + by =0
whereby w is a weight vector, and b the offset [66].
The feature vectors can then be classified according to the following two equations [59]:
xi-w+ b= +1 fory, = +1
xi*w+ b< -1 fory,= -1
resulting in the following general SVM classifier:
fwp(x) =sgn(<w,X >+ b)

Hence, the optimization problem is to minimize the squared norm of the separating hyperplane.
This can be seen as a convex quadratic programming problem [59]:

1
Minimize 5 [lw]|? by adapting w and b

Figure 7: Possible Hyperplanes of an SVM illustrates a binary classification setting (possible
labels yi € {-1,1}) with three possible hyperplanes: A, B and C. All instances lying below the
hyperplane (blue dots) belong to class -1; the others (green crosses) to class 1. The instances
lying closest to this hyperplane are called support vectors (framed with black circles in Figure
7). Only these data points are used for optimization (minimization problem). The other
instances are ignored. In this example, although all three hyperplanes split the two classes, A is
the best separator as the distance from the support vectors to the hyperplane is the greatest.

% Discriminative models directly model the conditional probability distribution, without assuming anything about
the input distribution (e.g. p(y|x)) [62].
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Figure 7: Possible Hyperplanes of an SVM
Source: Own illustration based on [55, 67]

As previously stated, SVM classifiers can also handle nonlinearly separable problems by
mapping the data onto a higher dimensional space (transformed feature space or Hilbert space
H), using a converting function @ [59, 68]:

b:7Z > H

The result is that a nonlinear problem in the original input space is now equivalent to a linear
separation in the Hilbert space [59]. Hence, the nature of the training algorithm would depend
on the data points through dot products, for example, functions suchas @ (x;) * ®(x;) [59, 68].
Thus, by using a kernel function K in the form of

K(xl',xj') = (D(xl') ' CD(x]),

an explicit determination of @ by the training algorithm is not necessary, leading to the
following nonlinear general decision function:

f(x) =sgn <Z yia; - k(x, x;) + b).
i=1

where X represents support vectors with non-zero «; values [69].

Kernels can be classified into the two main classes: stationary kernels (e.g. a Gaussian Kernel
as an example of a radial basis function), and the most general form, nonstationary kernels (e.g.
a Polynomial Kernel) [70]. Souza [71] provides a good overview of many possible kernel
functions, such as the often-used linear kernel or sigmoid kernel.

Although SVMs are defined for binary problems, there are approaches for multiclass
classification. The basic proposition is to reduce the multiclass problem into a set of binary
problems. One way to do this is the one-against-all method in which one class is trained with
positive labels, and all others with negative labels. Alternative methods are, for example, the
one-against-one method, or the directed acyclic graph SVM [72].



One advantage of SVMs is their robustness when confronted with high feature-dimensionality,
as they search for a suitable combination of features and only support vectors are included in
the learning algorithm. This the reason they mostly yield high accuracy and good results in TC.
One drawback is that, as they include an optimization problem, they come with time-consuming
computations as a quadratic programming problem has to be solved [55, 59].

For further information, refer, for example, to Vapnik’s book (e.g. [67]) or to Burges [68], who
provide an extensive tutorial on SVMs.

(3) Artifical Neural Networks

An Artificial Neural Network is a discriminative linear classifier related to SVMs [55]. The
basis of the network is a so-called neuron or unit designated as either input or output. When an
input unit receives a set of inputs denoted by a vector ()7{), it is propagated through the network
using the edges between the nodes (units). Additionally, there are weights, A, associated with
each neuron, or rather on the edges between the individual neurons.

In order to predict the class label, various decision functions can be applied. The simplest form
of an NN is based on a linear function as follows [55]:

pi=A-X,
X, = (t1, f) o (tn f)

where f;, ..., f, are normalized frequencies of the word’s occurrence in the text [73]. The
perceptron learning algorithm, proposed by [74] [75], is a simple binary algorithm making use
of this linear function. At the beginning, all weights (w,, ..., w,) € A have the same positive or
a random value. During the learning process, the weights are modified (increased or decreased
by the learning rate o) in case a misclassification had taken place (additive weight-updating)
[27]. Hence, the goal of a perceptron is to find a set of weights so that

n
i

n
Zwl.*fijse = x;ow+b £0 fory = —1
i

xiw+b =0 fory= +1

where y represents the respective class labels, © is a defined threshold, and b the bias (0 = -b)
[73, 76]. This definition is similar to the one for SVMs.

The Positive- and Balanced Winnow [77] are other linear algorithms similar to the perceptron.
However, in contrast to perceptrons they use multiplicative weight-updating algorithms. As the
name indicates, this algorithm does not add or subtract the weights by a, but multiplies them
[78]. All three learning algorithms have shown good results in practice, especially when noise
and irrelevant features are present [27].
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Instead of having a step function with the output {0,1}, it is possible to use a linear transfer
function like the logistic function 10 to get continuous output. Typically, real numbers between
[-1,1] are used, resulting in the following output: a(x; - w + b). This has the positive effect
that weight modifications do not have such grave effects. The logistic function o can be defined
as

_ 1
TT1¥ e

where n = x; - w + b is the linear combination of input features [79]. For that step, ANN are
the same as a LR [80]. The main difference between the two algorithms lies in the optimization
[81].

Figure 8 illustrates two possible variants of ANN: on the left, a single-layer perceptron
consisting of two layers, input and output; and on the right, a feed-forward (where no cycles
are allowed) multilayer perceptron (MLP). In additional to the input and output layers, MLPs
have one or more hidden layers. The nodes of the “upper layer” are usually connected to all the
nodes of the “lower layer” so that numerous combinations are possible. Though weights of the
multlayer perceptron are not illustrated here, each edge has a certain weight.
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Figure 8: Illustration of a Single-layer Perceptron (left) and a Multilayer Perceptron
(right)
Source: Own illustration based on [55]

In a manner similar to SVM, the use of these hidden layers allows the modeling of nonlinear
relationships between the input and output variables. Each higher level represents input based
on the feature combinations of the previous levels [79]. The number of nodes in such a hidden
layer is not easy to define as on the one hand, insufficient neurons can result in poor

10 This is sometimes also called a sigmoid function.



generalization and approximation capabilities. On the other hand, too many nodes lead to
overfitting and can make the search for the global optimum more difficult. Among other
reasons, this is why neural networks usually implement some type of stopping criterion [59].

The most widely used learning algorithm for MLPs is Back Propagation. This is an iterative
process, that, at a basic level, functions in the following manner: in the forward phase, weights
are fixed and training instances are propagated through the network. In the backward phase, the
desired output is compared to the actual output at each output neuron to calculate the error rate.
Following this, the local error and a scaling factor are calculated for each node on the hidden
layer. In a next step, for each neuron in the network, all weights are adjusted so that the actual
output better approximates the desired output. This is especially challenging for the hidden
nodes. Hence, as the process continues, neurons connected with a stronger weight gain more
responsibility [59, 76].

Weights are updated based on this general rule [82]:

AVV] = a6j0i

where O; is the output computed by neuron i and

6; = Oj(l — Oj)(Tj - Oj) for output neurons
6 = Oj(l - Oj) (Z Sjij> for internal (hidden)neurons.
K

As with SVMs, neural networks have the advantage of robustness when confronted with high
feature-dimensionality: they can also manage a wide range of distributions accurately.
However, this characteristic can also lead to overfitting and a lack of generalization capabilities
in the trained model [81]. Another disadvantage is that, due to the back propagation algorithm,
the learning algorithm may be time consuming to complete.

In summary, although, according to [27, 59], ANNs cannot achieve the same accuracy as
SVMs, they still function well in the context of TC.

For a more detailed introduction, refer to Haykin [76].

Several performance measures have been proposed to test the performance of classifiers. The
most common ones are introduced in the following section.

2.1.2.7 Performance Measures

The evaluation of a textual classifier’s performance is typically conducted experimentally,
rather than analytically. The problem with an analytical performance evaluation is that a formal
specification of the problem is not given in most cases. Hence, usually the effectiveness (not
efficiency), meaning the ability to classify the text into the correct category, is evaluated [27].

To determine the effectiveness, precision, recall, as well as the harmonic mean of recall and
precision, called F1, as well as accuracy are generally used. The basis of these measures is a
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contingency table (also called confusion matrix). In this matrix, the four possible classification
results are illustrated. These four terms are used to compare the classification assigned to an
item (e.g. the predicted label of a word or document) with the desired correct classification (the
class the item actually belongs to). Table 4 shows an example of a confusion matrix for a binary
classification scenario with the two categories “A” and “B”. To the left of the table, the four
alternative classification results are explained.

If the outcome of a prediction is positive True Class

and the actual label is positive, then it is

called a true positive (TP); however, if the A B
actual label is negative, it is said to be a false A T Ep
positive (FP). A true negative (TN) Predicted

prediction occurs when negative examples class 5 N ™

. . Table 4: A Confusion Matrix
are correctly predicted to be negative, and a Source: Own illustration

false negative (FN) when positive examples
are incorrectly labeled negative.

Table 5 explains this evaluation technique when transferred to the context of TC.

Class Definition

TP Textual data that is correctly assigned to a category by the system

FP Textual data that a system incorrectly assigned to a category

FN Textual data that is not assigned to a category but should be

TN Textual data that should not be marked as being in a particular category and is not

Table 5: Evaluation of the Classification of a Document
Own illustration based on [39, 42, 48]

Based on these definitions, the following evaluation criteria can be defined:

Precision =
TP+FP

TP
TP+FN

Recall =

2*xPrecision*Recall

F1 (F-score) =

Precision+Recall

TP+TN

ACCUraCY = o FPiTn

Additionally, in a non-binary classification problem, micro- and macro-averaging are used to
calculate precision and recall across a set of categories [39]. In macro-averaging, precision and
recall (or other performance measures) are first calculated for each category, and then the
results are averaged across all different categories to compute the global means. In micro-
averaging, the total number of correct and incorrect predictions (TP, FP, FN, TN), including
all categories, are calculated first and then used to compute performance measures such as
precision and recall. Hence, while micro-averaging gives equal weight to every document,
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macro-averaging gives equal weight to each category, and therefore has the ability to perform
adequately on categories with low generality [27, 39] .

Another way to evaluate and visualize the performance of a classifier is Receiver Operator
Characteristic (ROC) curves. A ROC curve is a two-dimensional depiction of classifier
performance. It plots the TP-rate on the y-axis against the FP-rate on the x-axis to confront the
correctly classified positive examples with the incorrectly classified negative instances. One
advantage compared to other evaluation measures such as precision and recall is that ROC
curves decouple classifier performance from class skew and error costs [83]. Another common
method to compare the classifier performance is to calculate the Area Under the ROC curve
(AUC). This measures the quality of the classification averaged across all possible probability
thresholds, expressing the performance in a single scalar value between 0 and 1 [84, 85].

When there are n classes (multiclass classification) — that is, more than two — the situation
becomes more complex as the n * n confusion matrix then has n correct classifications (diagonal
entries), and n?-n possible errors (off-diagonal entries). One solution for this issue is to produce
n different ROC graphs (one for each class). To compare the performance of classes, one class
IS as assumed to the positive class (reference class) and all other as the negative class [83]. The
same problem applies for AUC for multiple classes and has been addressed by, for example
[86, 87]. The latter used an approach similar to ROC and computed the AUC by using the
weighted average of the AUCs obtained when taking each class as a reference class. The weight
of a reference class AUC is their frequency in the data.

2.1.2.8 Summary

This chapter aimed to answer the first part of research question one: What are common
concepts, strategies and technologies used for text classification? To this end, the basic
concepts, approaches and terms of TC in the context of ML have been discussed (see Table 6).

TC is one of the central research fields in ML as it facilitates various applications, such as spam
filtering and sentiment analysis. Typically, based on a labeled training set, classifiers like SVM
or Naive Bayes attempt to create a suitable mapping function from textual data to preexisting
classes or labels. For this purpose, the textual data must be processed and developed into an
adequate format for further processing.

While there is a vast amount of textual data available online, the problem in supervised TC is
that the classifiers need large amounts of labeled training data to perform well. This labeling
process incurs much time and effort as it involves reading the text and determining the correct
category it should be assigned to. While the goal of ML typically is to learn automatically
without human assistance or intervention, Active Learning or sometimes also called Active
Machine Learning (AL), is an ML strategy that utilizes human support to reduce the number of
training examples needed for classifier training and hence, for the labeling effort. The following
chapter provides a more detailed overview of AL, and aims to answer research question two.

Keyword Summary
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Text Classification

Describes the problem using supervised ML methods to automatically assign
predefined categories to text documents based on their content.

Text Representation

A text is usually represented as a vector of word terms. Often, the TF-IDF form is
used as the representation form to include the weight of a certain word.

Preprocessing

Different methods, mostly tokenizing, stop-word removal, stemming and lowercase
conversion are applied to remove redundant or irrelevant attributes.

Feature Selection

Based on certain feature-selection methods (e.g. IG, TF-IDF), features that are
below a defined threshold are removed from the vector and not used for
classification.

A variety of classifiers, including modified, have been proposed in theoretical and
practical research. Although there is evidence that some have, in principle, a higher

Classifier accuracy than others, there is no one best classifier that can handle all influencing
factors. In certain settings, even simple classifiers can perform better than complex
ones.

Performance The performance of a classifier is usually evaluated in terms of its effectiveness for

Measures precision and recall, or by ROC curves and the AUC.
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2.2 Active Machine Learning

This section provides a general review of the core ideas, concepts, methods and issues in AL
based on existing literature. For a more comprehensive review, refer to Settles [88, 89], and
Olsson [90].

2.2.1 Basic Concept

The key hypothesis of AL is that if the learning algorithm (in AL often called a learner) can
select the data from which it learns (i.e. the most informative data), it will perform well with a
small training set. As we saw in the previous chapter, supervised ML algorithms require large
sets of labeled data which, especially in (legal) TC, is very expensive and time-consuming to
produce. In contrast, AL does not necessarily assume a pre-existing training set (a Seed Set)*?,
but creates the training data in an interactive loop with the support of an “oracle” (e.g. human
expert). More precisely, the system asks queries in the form of unlabeled instances to be labeled
by the human annotator. Those labeled instances are then used to train the predictive model and
the loop recommences (see Figure 9). As a result, it is likelier that the classifier will perform
well although it uses a minimum of labeled instances, thereby reducing the cost of the
classification process [88].

~ Learn amodel * Predict the labels of
‘ applying a ‘ the unlabeled
classifier on the instances using the
_ training set model

. Sclcct
Add labeled instances based
instances to on a query
training set Oracle (e.g. human annotator) ~ strategy _

Figure 9: The Pool-based Active Learning Process
Source: Own illustration based on [88]

1t is also possible to use an existing labeled training set as seed set, and assist the model with the unlabeled
instances in cases where it errs in assigning a label to a class.
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Based on this concept, several AL scenarios and frameworks have been considered in literature.
The main scenarios and query frameworks, as well as further terminology, are introduced in the
following sections.

2.2.2 AL Scenarios

In the literature, three main scenarios have been proposed for how the learner can access the
data (see Figure 10).

membership query synthesis

stream-based selective sampling

Sample an instance

..................

-
LA
-

pool-based sampling

Sample a large

i...poolofinstances N

Figure 10: Main Active Learning Scenarios
Source: Own illustration based on [88]

(1) (Membership) Query Synthesis

The first approach investigated is active learning with membership queries [91]. Here, the
learner is allowed to request labels for any unlabeled instance in the input space. In this case,
queries are not sampled from some natural underlying distribution, but generated de novo. This
approach is not particularly suitable for TC as the text produced by the algorithm may not be
readable for human annotators as the learner may select arbitrary values [88, 89].

(2) Stream-Based Selective Sampling

In stream-based (or sequential) active learning, the learner is given access to an input stream
underlying a natural distribution. The learner can then decide whether to request the instance to
label it or discard it depending on the strategy used (see Chapter 2.2.5)[92]. The disadvantage
here is that the learner does not have the option of selecting the most informative instances from
the set of examples as a whole. On the other hand, this scenario may be suitable for settings
where storage or processing power is limited (e.g. a smartphone) as there are no comprehensive
calculation processes required [89]. Usually, however, a large amount of unlabeled data is
available at once, and instances vary in value (information quality). It is for this that the pool-
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based approach is more commonly used in applied AL research, especially for TC (e.g. [7, 93,
94]).

(3) Pool-Based Sampling

In pool-based active learning, used for the first time in the study of [95], the learner has access
to the whole pool ‘U of unlabeled instances from the beginning. The learner can analyze those
and evaluate all instances in the pool according to some defined informativeness measure (see
Chapter 2.2.5). The most “informative” instance(s) (depending on the Batch Size) are then
queried by the oracle so that they may be labeled. The labeled examples are removed from the
pool and added to the labeled training set £. This labeled training set is then used to train the
learner and the process begins anew (see Figure 11).

Select the best
instance(s) in

1
Oracle (e.g. human annotator) the poo

Figure 11: Pool-based Sampling
Source: Own illustration based on [89]

2.2.3 Batch Size

The batch size, the number of instances queried for subsequent classification per round, would
in an ideal situation be one. This would allow future queries to be based on decisions from an
optimally trained model. In order to increase efficiency, it is usually set higher than one, also
depending on the data size [96]. Using a larger batch and querying several instances at once is
known as batch-mode AL. The challenge here is the manner in which to arrange the query set
in order to avoid generating an overlap in information [88]. In their study using “greedy”
heuristics to ensure that instances in batch are both diverse and informative, Hoi, Jin and Lyu
[28] demonstrate that large batch sizes can also lead to a good performance.
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2.2.4 Seed Set

Another issue in AL is how to pick the first instances, also called seed set, for the initial training
data. In many studies, the seed set is generated by random sampling from the whole unlabeled
pool of data [11, 97, 98]. The problem, however, is that when a seed set does not contain a
certain class, the learner may grow overconfident about class membership. This can be
especially problematic if the class distribution in data is skewed or imbalanced. In such a
scenario, a typical random example will possibly not contain rare classes, which can result in
the missed class effect [99]. As a solution, Nguyen and Smeulders [100] suggest performing
pre-clustering aimed at selecting informative examples from each class (cluster). Dligach and
Palmer [98] recommend enriching the data with rare class examples. In their study, they achieve
better accuracy at the beginning of the AL process; however, as the number of examples from
the predominant class increases, the accuracy worsens. Nevertheless, the overall classification
of accuracy was still higher than for random sampling.

Once an initial training set has been established, the subsequent question is which instances
should be queried next to improve the model. Some of those possible query strategies are
introduced in the following section.

2.2.5 Query Strategy Frameworks

Generally, there are two main learning strategies and approaches to combining them. The
exploitation-based strategy reaches a decision predicated on the output generated by the
classifier, focusing on examples near the current decision boundary in order to refine the
decision boundary. On the other hand, exploration-based strategies search for regions in the
version space that the algorithm might classify incorrectly [101]. This thesis focuses on
exploitation-based learning strategies, as described below.

(1) Uncertainty Sampling

Due to the relative ease of implementation and intuitive appeal, uncertainty sampling (US) is
probably the most widely used AL strategy in practice [8, 89, 95]. The core idea is that the
instances about which the learner is most uncertain, or least confident, are queried. US has been
realized with both probabilistic-base learners such as Naive Bayes and non-probabilistic-base
learners such as SVMs. These classifiers produce usually output scores or probabilities,
indicating class membership (an informativeness measure). In case of output scores, studies
have demonstrated that these scores can successfully be converted to probabilities [102, 103,
104]. These probabilities can then be utilized as a measure of uncertainty to find examples for
the classifications that are the least certain [88]. For example, in a binary probabilistic
classification, the algorithm queries the example which has a posterior probability nearest 0.5
[95]. Generally, the following three main approaches have been developed for measuring the
uncertainty (see [89]):

Least Confident: The instances for the predicted output of which there is least confidence are
queried:

xjc = argmax1 — Pg (§]x),
x



is the prediction with the highest posterior probability under the model g. Therefore, it selects
instances of the label about which it is most unsure. One disadvantage of this approach is that
it considers only the best prediction and discards the rest of the information. For this reason,
this approach is only suitable for binary classification problems.

Margin: Another AL strategy based on the output margin:

xy = argmax| Pg (9,1x) — Pg (P11x)],
X
as ¥, and y, are the two most likely predictions in terms of the model, it addresses the drawback

of the LC method by also including the second-best labeling. Ambiguous instances with small
margins should help the model to discriminate between them. However, for many classes this
approach still does not include much of the output distribution.

Entropy: A more general approach based on Shannon entropy, measuring the variable’s
average information content:

xy; = argmax — ) Pg (y|x)log P (y|x),
x y

where y incorporates all possible labels of x, and (Pg (y|x)) is the posterior probability. Based
on this classifier distribution, xj;is the uncertainty measurement function.

While all three strategies constantly outperform passive classifiers, there is no generally
superior strategy and performance quality is application-dependent. Nevertheless, in a study of
[105], the margin-based approach was most promising.

Another method is not to use the direct output of the classifiers, but to convert the output into a
confidence value [102]. This can be challenging in case of non-probabilistic classifiers.

An interesting approach was conducted in the study by [11], who executed exactly the opposite
of the common US process. They selected instances having the highest certainty (i.e. the lowest
entropy) to avoid incorrect assumptions made by the model having a small dataset.

Although US provides simplicity and speed, the fact that probabilities are based on the output
of a single classifier is a disadvantage, especially if the classifier has only been trained with
minimal data [89].

(2) Query by Committee

Query by committee (QBC) is a second widely used selection strategy proposed by [106],
grounded in a committee of several classifiers c. In this original form they used a selective
sampling algorithm with a committee of |C| = 2 that sequentially gets an instance X at each
iteration. Then, two random hypotheses are created in the version space containing all unlabeled
data and the output, and the respective labels of x are compared. If there is a disagreement
between the two hypotheses, the oracle must label the input x and it is added to the training
data. This method is inefficient for real-world applications with an outsized version space and
a high-dimensional feature space.
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To overcome this problem, different modifications of this QBC have been developed, which
relate especially to efficient means of creating committees, and how disagreement of these
committees may be measured accurately.

Committee Creation

Freund and Schapire [107], [108] develop a strategy called AdaBoost that uses an additional
“WeakLearner” classifier that aims to find examples that are hard to classify and assign higher
weight to them.

Mamitsuka [109] proposes a new query learning approach called Query-by-Boosting and
Query-by-bagging, combining the idea of QBC and “boosting” [110] or “bagging” [111].
“Boosting” and “bagging” are both techniques to improve classification by running the learning
algorithm repeatedly on a set of re-sampled data. The resulting output hypotheses are combined
to create predictions of greater accuracy. Query-by-bagging is equivalent to the original QBC,
except that it utilizes “bagging” on the input sample (uniform distribution) and selects
subsamples at which the hypotheses of the predictions are most evenly split. Query-by-Boosting
is founded on “boosting”, and AdaBoost focuses on misclassified instances. In this manner,
hypotheses are created iteratively whereby for each subsample the distribution is adapted
according to a misclassification rate. These subsamples are then drawn based on the re-weighted
distribution [109].

Further ensemble-based methods have been proposed, for example, the Decorate and Active-
Decorate strategies [112, 113]. The Decorate algorithm focuses explicitly on creating diverse
ensembles by adding artificially generated examples to the training set. The Active Decorate is
a variant of the original QBC using the Decorate algorithm to create the committees resulting
in more effective sample selection than Query-by-Boosting or Query-by-bagging.

Disagreement Measures

Once a committee of classifiers has been created, the next question is the manner in which the
disagreement of the committee’s member can be measured and quantified. As with committee
creation, many heuristics have been introduced. Some of the widely used measures are
described below:

The vote entropy strategy proposed by [114] is similar to the one for US applied to QBC. It can
be defined as:

Viy,x)  V(yx)

x§E=argmax—Z IC] log il
X y

where y involves all possible labeling, V(y,x) is the number of committees that “voted” for
label y for instance x, and |C| is the committee size. This formulation can also be rewritten in a
“soft form” taking the confidence of the decision into account:

Xsyg = argmax — Pc(y|x) logPc(y|x),
X



where P (y|x) = %ZC ec P. (¥]x) is the average (“consensus™) probability that y is correctly
labeled according to the committee. Further adaptions of these uncertainty measures for QBC
on a probabilistic basis have been proposed by [115] who combines margin-based disagreement
with the maximal class probability normalized by the number of class values.

Another approach called f-complement is used by [116], who apply the F-score to measure the
disagreement between the committees. It can be calculated as:

=z Y A= B (MG,M))

MiMjEC

where F; (Ml-(x),Mj(x)) is the F-score of the predictions of instance x, by a committee i
relative to the prediction of a committee j.

Kullback-Leibler (KL) divergence D [117] is a third variant to measure the disagreement by
quantifying the difference of two probability distributions P and Q:

Py

D(PIQ) =KL(P,.Q) = ) P()log E507

Yy EY

This definition is used by [93] in a modified version called KL divergence to the mean (KLM)
which is the KL divergence between each distribution P.c.(y|x) and the average of all
distributions P, ,(y|x) defined as

Fiaw = argmax iy = "D (Peec Y1) I Py (1),

cecC

A high KLM score indicates diverging distributions.

Melville and Mooney [113] successfully use a similar score to KLM called Jensen-Shannon
divergence in their Active-Decorate algorithm.

(3) Alternative Learning Strategies

While US and QBC are the learning strategies that are used mostly in practice, other approaches
like Expected Model Change, Expected Error Reduction or Variance Reduction have been
proposed as well. As these methods require a relatively high computational effort or bring
restrictions on the learning algorithms that can be applied, they are only summarized briefly.

Expected Model Change

The expected model-change framework aims to select the instances that would cause the
greatest model change if we knew its label [88]. Settles, Craven and Ray [118] propose a way
to implement this by defining the expected gradient length (EGL) using gradient-based
optimization. In so doing, those instances are selected where the model change measured by
the length of the training gradient is the greatest. As the algorithm does not know the correct
label in advance, the length is calculated as an expectation over all possible labeling. Although
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the results in this work are promising, it is computationally expensive in case of large datasets.
Another precondition is that the features are properly scaled [88].

Expected Error Reduction

AL with expected error reduction [119] considers the unlabeled data pool in its entirety to
estimate the expected error of the current learning algorithm. Furthermore, the effects on the
expected error of all potential labeling requests are determined. This is done by considering, for
each unlabeled instance x, all possible labels y and adding these pairs (x, y) to the existing
training set. Following this, the classifier is retrained on the remaining unlabeled data set, the
expected loss is estimated (e.g. by log loss or 0/1 loss), and the average expected losses for each
possible labeling y are assigned to x. The instance x with the lowest expected error is selected
to be labeled by the oracle.

According to [119], this approach performs better than US or QBC. Nevertheless, they also
state that it is computationally more complex compared to other QBC algorithms and totally
inefficient when implemented naively. They propose some solution strategies, for instance,
using heuristics such as Monte Carlo sampling for error estimation and the choice of query, or
using only a subsample of the pool.

Variance Reduction

Variance Reduction tries to improve the previous method by reducing the generalization error
indirectly by minimizing the output variance. It assumes that learner’s expected error can be
decomposed into the three factors: noise, bias and output variance. As the first two factors are
invariant given a fixed model-class, the objective is to reduce the model’s output variance for
the unlabeled instances [89]. Although it is more efficient than expected error reduction and
several heuristics have been proposed [28, 105, 120], there are still practical drawbacks in terms
of computational complexity. Additionally, it can’t be used with classifiers like k-nearest-
neighbor or decision trees [89].

2.2.6 Classifiers in the Context of Active Learning

In Chapter 2.1.2.6, possible classifiers for TC were introduced. The basic principle is that a set
of labeled training examples is used by the classifier to predict the class of unlabeled examples.
In this chapter, those classifiers are further investigated in the context of AL and some related
studies are introduced.

Additionally, in contrast to traditional supervised machine-learning, in AL people are involved
in the classification loop. This is the reason for both the pure accuracy being decisive, and for
the efficiency of the classifiers having an even more important role. As it is often necessary that
people conducting such research have a domain knowledge, it may become very expensive
should there be long waiting times in front of the computer waiting for the classifier to finish.
That is the reason that the choice of a specific classifier must be carefully balanced: to ensure
having both an accurate and a user-friendly application.

In this section, the three classifiers introduced are examined in the context of AL.



(1) Naive Bayes in the Context of Active Learning

Naive Bayes is a probabilistic classifier that assumes independence between the instances of
the training data. It is often used in AL and TC environments due to its simplicity and speed, in
addition to its frequently good accuracy.

Generally, NB can be used with several query selection strategies like US [9, 11, 121] or QBC
[93]. The uncertainty of an example in a binary classification problem could be determined as
follows:

uncertainty(c) = 1 — |p(x € class1l) — p(x € class2)]|

where p(x € class1) and p(x € class2) are the outputs of the NB classifier [122]. When
applying QBC one can use the classification scores of NB to calculate the differences between
the committees (e.g. Kullback-Leibler divergence) [93].

Segal, Markowitz and Arnold [9] use US with NB as a classifier in their work on the grounds
that it is efficient on larger datasets and still yields good results. They apply a modified variant
utilizing the geometric mean instead of the arithmetic mean to join the conditional probabilities
of the words for labeling the content of a large email corpus as spam or not spam utilizing AL.

Cardellino, Villata, Alemany [11] use reversed US together with the NB when applying AL to
classify legal licenses, opposed to their regular ML setting where they use the SVM classifier.
Applying feature selection and using the one vs. all strategy, they achieved better results using
NB.

Settles [121] created the open-source AL application, “Dualist”, using entropy-based US and
NB that allows the classification of textual data into categories (e.g. newsfeed into the
categories hockey and baseball). He also relies on NB due to its abovementioned advantages.

Often, NB is combined with Expectation-Maximization (EM) algorithms to improve the
estimates of the classifier [93, 121, 122, 123].

(2) SVM in the Context of Active Learning

The maximum margin-based classifier SVM is, according to the web survey of [124], the most
widely used classifier in AL. That is probably due to the fact that SVMs generally achieve the
highest accuracy.

A widely used approach for classification using the version space was proposed by [125]. The
fundamental idea is that uncertainty can be defined as the distance from the separating
hyperplane, which means that the examples with the larger distance to the hyperplane belong
to the class with greater confidence:

uncertainty(c) =d(x) =<w,x > +b

Alternatively, the instances closest to the hyperplane are the most informative examples as they
halve the version space. [7], Tong [125] [7], proposed three approaches for achieving this.
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1) Simple Margin: select the unlabeled instance in the pool closest to the current
decision hyperplane (smallest margin).

2) MaxMin Margin: for all unlabeled instances, compute the margins m- and m* of the
SVMs obtained when x is labeled -1 and +1, respectively. Then, the unlabeled
instance for which the quantity min(m-, m*) is greatest should be chosen.

3) Ratio Margin: in a manner similar to the MaxMin margin, compute the two margins
m- and m*, but rather than considering the relative sizes, use the instance for which
. . (m~ mt\ .
the proportion min (F?) is largest.
The Simple Margin strategy for AL is essentially the same as the US method that has already
been introduced as the instance about which the SVM is most uncertain is chosen [7].

The Simple Margin has efficiency advantages as it needs only one SVM compared to MaxMin-
and Ratio Margin. On the other hand, as it is only an approximation, it has the lowest accuracy
[7, 125].

Variants of the Simple Margin have been proposed in the context of AL, for example, by [51,
126, 127]. Bordes, Ertekin, Weston [126] introduce LASVM, an online algorithm that randomly
selects a small subset of examples from the whole pool. Within this subset, the instance closest
to the hyperplane is used to train the classifier. The results are comparable to those for which
the whole dataset was queried to find the closest instance. In the experiment of [127], a setup
was created in which the oracle had to label both instances (e.g. documents) and features (e.g.
words).

Nevertheless, Schohn and Cohn [128] use the Simple Margin strategy in their experiment
utilizing AL having a small and actively selected set of training instances, and accomplished a
better result than those in which the whole dataset was labeled. Although they remark on the
time problem with SVMs, the running times of the AL experiment on large datasets were
comparable or even faster than training all available data.

Guo and Wang [129] presents a multiclass-classification approach based on SVM active
learning (MC_SVMA) which first computes possible pattern classes using the discrepancy
between unlabeled and labeled instances. Thenceforth, their algorithm does not only use
uncertainty as informativeness measure, but also includes rejection and compatibility to search
for the most valuable instances.

Yang, Sun, Wang [130] introduce another selection strategy called Maximum loss reduction
with Maximal Confidence (MMC). To solve a multiclass problem, they use binary SVMs
classifiers (a one vs. all strategy) and the sigmoid function to convert the SVM output into
probabilities in order to assign classification probabilities to all training instances. Thereafter,
they use LR in addition to this to train the predictive model. Using this method, they achieved
good results; however, they state that their approach would be expensive for large datasets due
to the many iterations in AL.

(3) Artificial Neural Networks in the Context of Active Learning



An ANN is a classifier related to SVM, and is based on a net of connected and weighted
neurons.

For multilayered NN, the classification of some regions of the input space may sometimes be
determined implicitly by several ANNs. Nevertheless, there may be other regions where the
ANNs disagree — the so-called region of uncertainty [131, 132]:

R(S™) ={x:3cy,c, €EC c4,c, are consistent with alls € S™,and c;(x) # c,(x)}
whereby C is a class and S™ a set of examples.

Freund, Seung, Shamir [133] proves in his work that the QBC strategy is an efficient algorithm
for the perceptron concept in cases where the distributions of prior examples are close to
uniform.

Cohn, Atlas and Ladner [131] introduce a selective sampling query strategy similar to the QBC
strategy. They used a strategy called SG-net, a type of version-space search algorithm. They
define the two concepts “most specific” network and “most general” network as a type of
committee in their AL implementation. Those examples where the two networks disagree the
most are then selected [89].

Lu, Rughani, Tranmer [134] use an informative-sampling algorithm (an evolutionary
algorithm), a combination of ANN and EM, in order to locate the most informative data points
in an explorative way in the context of large unbalanced datasets. The algorithm also
incorporates the data points that result in the largest disagreement among the models into the
training set.

Wang, Kwong, Jiang [135] describe an uncertainty-based AL method for single hidden-layer
networks using an extreme learning machine algorithm (the weights connecting input and the
hidden layer are never updated). To calculate the uncertainty, the outputs of the ANN are
transformed into a probabilistic form using the entropy strategy.

Another AL algorithm in the context of ANN is introduced by [132]. They create the algorithms
called “active learning based on existing examples” (ALBETE) and ALBETE/NI (where NI is
“network inversion”), that aim to refine the classification boundary by taking reliability into
account. They want to focus the training data on the more reliable classification boundary (e.g.
near the decision boundary) in order to avoid misclassification.

2.2.7 Stopping criterion

As the goal of AL is to minimize labeling costs, an important part of an AL application is the
consideration regarding when to discontinue the labeling process. A stopping criterion is used
to end the learning process automatically [90]. Most of the approaches proposed are based on
the principle of stopping once the accuracy of the learner will only increase with excessively
high costs or not at all go beyond a certain level (target accuracy) [89]. A very simple approach
is to stop when no more uncertain instances are inside the pool. As the amount of textual data
is generally extremely large, this is rarely achievable. Another option is to use cross-validation
or a hold-out set, and stop when the classifier performance reaches some target threshold in a
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randomly selected validation set, separated from the training set [102]. Schohn and Cohn [128]
developed a margin-exhaustion stopping criterion (only applicable for margin based classifiers
like SVM) that stops when all remaining unlabeled instances are outside the model’s margin
(soft-margin SVMs [66]). Vlachos [136] employs a confidence-based stopping criterion that
uses the average uncertainty of the unlabeled set and stops when the model’s confidence starts
to decrease. Other confidence-based ideas are the minimum expected error strategy [137],
overall-uncertainty [138], and performance convergence/uncertainty convergence using
gradients [8]. An additional concept is stabilizing predictions introduced by [139], which tests
whether the predictions of a so-called stop set have stabilized.

In general, there is no single best stopping criterion. The question of when to discontinue the
labeling process is difficult to answer and depends on a number of factors, including the kind
of classifier used, and the natural distribution of the data, among others.

2.2.8 Evaluation

In addition to classical TC performance measures such as precision and recall, or the ROC
curve evaluating the fully labeled data set, an AL system requires a more detailed analysis of
the labeling process. For this reason, learning curves are typically used to monitor and visualize
the progress of the AL system according to some classifier performance [140]. The learning
curve is usually plotted with the number or percentage of instances labeled by the annotator on
the x-axis, and a performance measure like accuracy, precision or F1 on the y-axis (see Figure
12) [125, 128, 140, 141]. This curve can then be utilized to calculate a global assessment score
like the Area under the Learning Curve [140, 142, 143].

Perfect learning curve

Typical learning curve

0

Accuracy

N
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making random predictions
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Figure 12: Learning Curves
Source: Own illustration

Another approach is called deficiency, a measure using accuracy to evaluate the learning speed
of an AL algorithm [144]. Raghavan, Madani and Jones [127] modified this definition and use
the F1 score to define efficiency as “1- deficiency” to indicate the learning rate as a value ranging
between 0 and 1.



A further issue in the context of AL is to keep the simplicity and duration of the annotation
process in mind, as the costs of labeling are often quite high. For example, [145] examined the
impact of user interfaces in AL (e.g. showing features or instances), while [123] analyzed the
waiting time of the user during processing.

2.2.9 Summary

In this chapter, research question two — “How can (active) machine learning support the
classification of legal documents and their content (norms)?”” — has been partially answered. To
that end, the basic concept, classifiers, query strategies and other terms in the context of AL
and TC have been discussed, but the focus has not been on the legal domain.

AL is a subfield of machine learning that involves people in the learning process to reduce the
need for having a large set of labeled data to create an accurate classifier. The objective is to
find and label those instances that best assist the learning algorithm to differentiate between the
labels. Therefore, only a small amount of labeled data is needed. In this learning process, many
different influencing factors must be considered. The most important factors are summarized
in Table 7.

Keyword Summary
Depending on various factors, such as the scenario used and query framework,
AL Process unlabeled instances are queried and labeled with the support of an oracle (e.g. human

expert) in an interactive loop.
Instances are either queried one-by-one in a sequential manner (stream-based), or

Scenarios batch-wise (pool-based).
. The number of instances that are queried in the first learning round. Usually, these
Batch Size . :
instances are taken by a random sampling of the whole pool of unlabeled data.
The number of instances that are queried simultaneously is, in an ideal situation, one.
Seed Set Due to performance considerations, usually two or more instances are queried at

once.
To select those instances that should be queried, several strategies have been
proposed depending on different factors like the choice of classifier. The most
commons ones used in practice are uncertainty sampling (US) and Query by
Committee (QBC).

Many common TC classifiers have also been part of AL research. As people are in
Classifier the loop in AL, efficiency becomes more important. For each classifier, different
ways exist to find those instances about which the classifier is unsure.

The goal of a stopping criterion is to stop the learning process to avoid waste of
Stopping Criterion effort. Several approaches have been developed to find the right point to stop

Query Framework

learning.
Performance In addition to the original TC measures, additional measures such as learning curves
Measure or deficiency are used to visualize the learning performance of the system.

Table 7: Active Learning Concepts
Source: Own illustration

AL has already been successfully applied to various topics in TC. In the chapter that follows,
TC in the legal domain generally, and in the context of AL, is studied more closely.
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2.3 Text Classification in the Legal Domain

While the last chapter gave a general overview how AL can support the classification of textual
data, in this chapter the focus lies on legal textual data. First, the motivation is briefly
recapitulated. Then, the two use cases, document classification and norm classification, are
investigated.

2.3.1 Rationale for Classification

As indicated in Chapter 1.1, the legal landscape is likely to undergo major changes in the near
future. For instance, current research deals with, inter alia, predicting the legal outcomes of
cases at court, and automated legal document classification [146].

The latter is an important task with regard to digitization as a vast number of legal documents,
such as judgments, contracts, patents and other legal texts, in a relatively unstructured format
(e.g. emails) are produced daily by different types of firms and organizations. For a variety of
reasons (e.g. legal reasons), these legal documents must be stored internally or made publicly
available via online portals like “juris”. Hence, to retain the document overview and provide
fast access in order to enable working with them (see norm classification), it is necessary to
organize in a proper manner all documents produced. This organization process, referred to as
document classification (DC), is a crucial daily task. For instance, Gruner [147] analyzes a
lawsuit and states that much time and cost are involved in document discovery and research
tasks. Appropriate DC could reduce the time and cost required to complete these tasks. In the
classification process, the most important problems are, on the one hand, the sheer number of
legal documents that require labeling. On the other hand, correct classification requires
knowledge and understanding of the content of the document and of the taxonomy of legal
texts. Additionally, as the person who undertakes the classifying might not be the producer of
the document (e.g. receiving an email with a legal document), the document must be read first
in order to be classified correctly. This is in itself considerably time-consuming and requires
legal-domain knowledge. Hence, the (partially) automatic classification of legal documents
would generate big relief in many use cases. Fortunately, legal texts have some common
characteristics that can facilitate such a classification (see Chapter 2.3.2).

Most legal documents must not only be classified into certain categories as a matter of form,
but are also required for further work. Merely reading the many types of legal documents
already mentioned to find relevant norms and provisions would require a substantial amount of
time. However, it is usually not sufficient to skim a text; rather, it must be read carefully and
the details understood. Legal documents are often very comprehensive and contain complex
expressions that had become more complex over time [4]. Such complexity manifests in long
sentences with complex clauses, cross referencing and amendments, such as changes in
definitions over time [5]. The result is that people working with legal content require much time
to find and understand core statutes and provisions. This problem should be addressed by norm
classification (NC). The objective of NC is to organize the individual sentences into classes so
that important sections of the text are already annotated for the user, and fast access to the
information sought can be provided. As this classification is even more complex, time-
consuming, and requires strong legal-domain knowledge, in practice it is not typically
undertaken. Hence, a (partially) automatic classification of the sentences in a legal document



would be an appropriate solution that could enhance work with legal content in terms of time
and work quality. A more detailed introduction is given in Chapter 2.3.3.

Although legal texts may appear complex to the ordinary human eye, compared to other texts
like newsfeeds or social media posts, they have the advantage that the language is very formal
so that the variations normally observed in written texts are relatively limited. In addition, legal
texts such as laws are unlikely to contain grammatical or spelling errors. Legal texts therefore
appear to be a very promising data source for applying ML algorithms. The theoretical and
practical study of the classification algorithms used in ML, as discussed in the previous
chapters, provide a convenient starting point for such an endeavor.

2.3.2 Classification of Legal Documents

In the previous section, the rationale for DC in the legal domain was presented. In this section,
an overview of the structure and various kinds of legal texts is provided and current research
projects in the context of legal DC are discussed.

At the macro-level, legal documents are usually highly structured documents. While there is a
multitude of different legal texts, such as a variety of laws, different kinds of contracts, patents,
and the like, they are all structured in a similar manner: they are organized into chapters and
sections, often having a meaningful title that reveals much information about the content of the
document [148].

The classification of legal documents into categories has not been investigated intensively. For
an overview of the most important legal text types (document classes), a heuristic classification
is presented in Figure 13 (in the figure, the text-type names are kept in the original language,
German, in order to avoid translation errors). Busse [149] distinguishes the following nine super
classes of legal-text types, emphasizing that this taxonomy is not final, and that several of these
classes may overlap at some point:

1. Textsorten mit Normativer Kraft (formlich verabschiedete Normtexte) (“text types having a
normative power”): legal texts in this super class are text types possessing the force of law,
such as like laws or international contracts.

2. Textsorten der Normtext-Auslegung (“texts having a standard text interpretation form”):
texts in this super class have usually many quotations or references to other texts, for
example, legal commentaries or judgmental commentaries.

3. Textsorten der Rechtsprechung (“jurisdiction”): legal texts aiming to craft legislation such
as court decisions or orders.

4. Textsorten des Rechtsfindungsverfahrens (“texts arising in the findings of justice process”):
all texts and documents that are produced during a trial, for instance, legal opinions and
judicial transcripts.

5. Textsorten der Rechtsbeanspruchung und Rechtsbehauptung (“texts in the context of legal
claims”): legal texts in which the producer of the text is not an agent of a legal institution
(e.g. petition).

6. Textsorten des Rechtsvollzugs und der Rechtsdurchsetzung (“texts in the context of legal
enforcement”): texts of this type are typically produced by an institution and directed at
non-institutions (e.g. warrants).

41



42

Super class

1 : H
i
1
]
i
‘
‘
|

Legal &
Text T : : e : 4
o i i 5 / | Beschiuss | | Petition

Verhsm Guetx ! . :

| Gerichtsurteil A

-’1 ’:‘ '

Gesetzes-Kommentar Anldueum;t
: )
+

Urtells-Kommentar Gerichtsprotokoll

Figure 13: Classification of Legal Texts
Sonrce: Own illustration based on [149]

7. Textsorten des Vertragswesens (“contracts™): this super class compromises all types of
contracts, such as those from civil law, or notarial contracts.

8. Textsorten der Beurkundung (notarielle und amtliche Textsorten) (“certificates”): texts
having a notarial and official certifying character issued in an independent institutional
context (e.g. certificate, testament, land register entry)

9. Textsorten der Rechtswissenschaft und juristischen Ausbildung (“texts in the context of
legal sciences and legal education”): legal texts used in university science, such as like
educational books, case collections, and judgment commentaries.

This classification of legal text types into super classes provides valuable insight in the variety
of legal texts. In practice and in this work, the classification within the text-type level, for
example, the classification of a document as a certain judgment or a certain law, is of greater
significance than the simple allocation of a text type to a super class.

In the following, some attempts at legal DC in research projects are described:

In their study, Goncalves and Quaresma [150] used a training set of 8,151 legal documents
representing the court decisions of the Portuguese Attorney General’s Office. These documents
were categorized into one or multiple classes (multilabeling), such as “military” or “army
injured”. For the classification, they applied several preprocessing steps, including feature
reduction and stemming, and use a linear SVM as a classifier, executing it in the ML tool Weka.
They performed two experiments: one using all words, and one using only specific word types
or combinations (e.g. only nouns and adjectives). They observed better results with the latter
than with the initial base setup which included all words.

Ratner [151] compared several classifiers (i.a. LR, SVM and MNB) in the classification of
10,000 legal contract documents having in total 77 categories, such as ‘Arbitration
Agreements” or “Manufacturing Contract”. He also applied preprocessing to the training data
and used the TF-IDF text representation. He achieved a test accuracy of 82% with the LR and
the linear SVM, while the SVM with the radial basis function kernel accomplished only 25%.



Although the training accuracy of MNB is comparable to the one of Logistic Regression and
SVM, it reaches a test accuracy of “only” 70%.

Roitblat, Kershaw and Oot [3] compared the classification accuracy of computers relative to
traditional human manual review. All documents that are potentially relevant for the litigation
were labeled responsive, and the irrelevant documents, non-responsive (i.e. a kind of binary
classification problem). For this study, they used a random sample of 5,000 documents from
the original review for a second review. This was accomplished by two human teams and two
commercial electronic discovery systems. The result was that the two computer systems used
were in every measure at least as accurate (measured against the original review) as the human
re-review.

2.3.3 Classification of Legal Norms

We have observed that legal documents may be comprehensive, and statutes and their
provisions may often be difficult to find and to understand. Hence, it would be beneficial to
classify the content of legal texts, the sentences, into predefined categories in order to enhance
organization within a certain law text and to find similar components among laws.

De Maat and Winkels [152] provides a taxonomy of possible sentence types based on the
analysis of Dutch laws. This taxonomy, illustrated in Table 8, may also be used as a common
reference; it was used in a similar manner by, for instance, [153] or [154].

Sentence I .
Type Description Typical Pattern
L Definitions are used to describe terms that are used in the legal
Definitions and
Type Source. . - " _ “By x is understood y”
. Type extensions are additional definitions that expand or limit
Extensions .
earlier ones.
Deemnin Sentences that declare one situation equal to another situation
Provisiogns within a certain context. Often like definitions, but usually “Is deemed to”
involve some kind of legal fiction.
Norms form the actual content of legal texts. Norms can by “May” (rights)
Norms grouped into rights, permissions, obligations and duties. Rights | “must” (obligation)
and permissions are difficult to distinguish, as are duties and Duties infrequently
obligations. follow a pattern
. Delegations confer the power to create additional rules to some “May create rules,
Delegation : may adopt
legal entity. SR
provisions
Application Application provisions specify situations in which other « ,
Provisions legislation (e.g. an article) does or does not apply. dlozs () argphy
Penalization In case of a violation of norms, the law specifies the penalties. W‘?tﬂ},be punished
Value A value assignment is a sentence that provides an initial value go:r;atlir;rgi?ematlcal
Assignments for a concept. rg) duce increé%é) and
and Changes Changes are modifications of these values in a later step. "
comparisons (at most)
Rule Sentences that deal with the maintenance of a legal text. ?
Management

Table 8: Sentence Types in Legal Texts
Sonrce: [152]
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De Maat and Winkels [152] used these developed patterns associated with a certain sentence
type to classify the content of 18 different Dutch regulations. They achieved an accuracy of
91% using this pattern-based classifier. One year later, de Maat, Krabben and Winkels [155]
performed a similar study using ML techniques to classify Dutch sentences. Sentences with
mixed types were discarded so that they used 584 sentences for the experiment in total applying
multiclass classification. They executed the experiment in various settings, using different
combinations of preprocessing steps and text representations applying a linear SVM as
classifier within the Weka framework. With the optimal setup, they achieved enhanced
accuracy of almost 95%. In a second experiment, they analyzed the generalization capabilities
of a certain classifier across law texts. In other words, they examined whether a classifier trained
with certain law(s) could perform as well on different legal texts. However, they found that, in
this case, the ML approach performed worse than in the original experiment in which the same
data had been used for training and testing.

A similar study was conducted by Savelka, Trivedi and Ashley [10] who examined the
relevance and applicability of the individual statutory provisions. Their objective was to
identify relevant provisions within a specific medical context (a binary classification problem).
They conducted two experiments using an interactive ML framework similar to AL. In total,
they utilized 403 statutory documents with 4,022 provisions for the “Kansas” experiment, and
135 documents with 1,564 provisions for the “Alaska” experiment. As a classifier, they chose
a linear SVM. In the “Kansas” experiment, they created a new predictive model having a final
classifier accuracy of 82%. In the “Alaska” experiment, in which they re-used this model, the
“cold start problem” could be skipped (discovery of version space). They achieved from the
beginning on improved outcomes, resulting in a final accuracy of 83%. They also state that AL
techniques are very helpful and outperform the traditional manual assessment.

Francesconi and Passerini [153] used ML techniques to detect different provision types (e.g.
Repeal, Delegation, Prohibition) in 582 Italian legislative texts (provisions). They applied
preprocessing and attempted several methods of document representation (e.g. TF-IDF) using
NB and SVM as classification algorithms. With the best combination of document
representation and feature selection strategies, they obtained an accuracy of 88% with NB and
92% with the SVM. Di Silvestro, Spampinato and Torrisi [154] conducted a similar study with
what was probably the same data set. They used the NB as classifier and obtained an accuracy
of 82%.

Cardellino, Villata, Alemany [11] created a multiclass AL test setting to classify 433 licenses.
While they achieved only an average accuracy of 76% using an SVM in their default supervised
ML setting, with AL they attained an improved accuracy of 83% using NB as the classifier,
and reverse US to query the next instance. For the interactive classification process, they built
a hybrid application with Perl, Scala and Java, using libraries within Weka like LibSVM for
classification.

Within the scope of the ACILA project, [156, 157] studied automatic recognition of an
argumentation structure in legal texts and the subsequent classification of these arguments in
the relevant category (e.g. counter argument, rebuttal). In one of their first studies, they
examined sentences from different kinds of texts (i.a. newspapers, magazines, court reports or



parliamentary reports) to search for arguments. They attempted several means of representing
the text, and used the two classifiers MNB and the Maximum Entropy model. They obtained
similar results with both classifiers. In terms of text types, the most arguments were found in
non-legal texts (newspapers, with an accuracy of 76%), and the fewest in legal judgments (68%
accuracy). However, they had a small number of legal texts in the training data.
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3 Assessment of Machine Learning Frameworks

In the previous chapters, research question two — “How can (active) machine learning support
the classification of legal documents and their content (norms)?”” — was answered. Regarding
research question one — “What are common concepts, strategies and technologies used for text
classification?” — common concepts and strategies in the context of TC have been discussed.
This chapter presents the overview of technologies normally used within this field, and
introduces several machine learning framewaorks to answer the rest of research question one.

As there is a multitude of machine learning frameworks!? with advantages, drawbacks and
overlapping issues, a pre-selection was conducted. The problem is that many ML libraries are
aligned to a very specific use case and lack broader functionality. Hence, decisive criteria in the
pre-selection were, inter alia, whether the framework is applicable to TC (e.g., the popular ML
framework H20O is not aligned for TC), the application programming interface (API), the quality
of the documentation, the license conditions and the stability of the framework. Furthermore,
frameworks providing a Java API are preferred.

3.1 Machine Learning within the Hadoop Ecosystem

Apache Hadoop?® is an open-source ever-present big-data framework for reliable, scalable and
distributed computing released by the Apache Software Foundation. It aims to distribute large
datasets across clusters of computers to increase the processing efficiency. The project includes
the following four main modules*® [158]:

e Hadoop Common: a set of common utilities like 1/O methods and error detection.

e Hadoop Distributed File System (HDFS): a file system (not a database) aligned to
store large amounts of data at several computer nodes having a master-slave
architecture.

e Hadoop YARN (Yet Another Resource Negotiator): a framework for job scheduling
and cluster resource management.

e MapReduce: a parallel data-processing engine.

Besides these main components, there are many other related Apache projects like the databases
HBase or Cassandra, the processing engine Spark, and ML libraries like MLIib or Mahout. A
section of the architecture of the Hadoop ecosystem is shown in Figure 14.

12 A valuable listing of existing machine learning frameworks separated by language and context can be found
here: https://github.com/josephmisiti/awesome-machine-learning
13 Apache Hadoop: https://hadoop.apache.org/
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Storage

Figure 14: The Hadoop Ecosystem
Source: Own illustration based on [158]

The storage layer is the lowest level of the ecosystem. The ecosystem can work with several
databases that run on top of HDFS or work as standalone systems. Further, support for non-
relational databases is also given. The latter are especially suitable for ML, as databases like
MongoDB also support unstructured data [158].

The processing layer is the area where the data analysis takes place. Within Hadoop, this layer
is founded on the YARN framework. This in turn enables the running of data processing engines
like MapReduce or Spark, and additional tools like ML libraries (e.g. MLIib, Mahout) on top
of it. Examples for other processing engines are H20, Flink or Storm [158]. Within the scope
of this work, the processing engine Spark is described more precisely as it can be used with the
two ML libraries, MLIlib and Mahout.

Apache Spark

Apache Spark* is a fast and general open-source cluster-computing framework for large-scale
data processing currently available under version 2.1%5. Spark began as a research project at the
University of California, Berkeley, in response to the limitations of MapReduce, and was
designed to be fast for interactive queries and interactive algorithms. It was open-sourced in
March 2010 and was released under the Apache Software Foundation (ASF) license in June
2013 [159].

14 Apache Spark: http://spark.apache.org/docs/latest/index.html
15 Date: January 25%, 2017
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Spark provides an ecosystem consisting of several components that can be utilized in the same
application. It is written primarily in Scala but also provides APIs in R, Python and Java (see
Figure 15). It can run in various ways, such us in a standalone cluster mode, on Hadoop YARN,
or just locally, supporting iterative computations.

The Spark core component is the foundation of the overall project and contains the basic
functionality, including components for memory management, task scheduling, fault recovery
and for interaction with storage systems [159].

Another component called Spark SQL enables work with structured data within the Spark
ecosystem. Spark is designed to process the data directly in the memory of the individual cluster
nodes (in-memory processing) and is fault-tolerant. Only if the data size becomes too large is
it stored on external sources. In this manner, the Spark SQL component is compatible with
HDFS and various other data storages such as Apache Hive, Cassandra, Java Database
Connectivity (JDBC) databases, or any other Hadoop data source. By means of the SQL or
DataFrame interface, it supports operations on a variety of data formats, for example,
JSON, Parquet, LibSVM, CSV and TXT. A DataFrame can be understood as a collection of
data (i.e. the Dataset) distributed into named columns conceptually equivalent to a table in a
relational database.

Spark SQL +

DataFrame Spark Streaming MLlib GraphX

Spark Core Engine

Figure 15: Spark Ecosystem
Sonrce: Own illustration based on [160]

Spark Streaming allows the processing of data streams during run time, and GrapX provides a
library for the treatment of graphs. In the following section, two machine-learning libraries
utilizing the Spark environment are evaluated.



3.1.1 MLlIib

MLIib, a Machine Learning Library currently available in version 2.1, is a component on top
of the Spark core that can be easily combined with its other modules. As it is founded on Spark’s
iterative batch and streaming approach and in-memory capabilities, it is well suited for large
datasets. Through integration with Spark SQL and the DataFrame API, these tools can be used
for reading the data and for further processing.

The MLIib library consists of a variety of efficient and scalable implementations of common
ML settings. It incorporates various learning algorithms for classification (e.g. NB, SVM,
ANN, LR) or clustering (e.g. k-means). However, not all classifiers are able to perform
multiclass classification out of the box, but Spark implements the one vs. all strategy in order
to conduct multiclass and multilabel classification.

In additional, the library offers methods to transform the unstructured text data into structured
data, such as the common bag of words representation and additionally, FS methods (e.g. TF-
IDF). Furthermore, there are possibilities to apply preprocessing (e.g. stop-word removal).

The library also includes common evaluation measures like precision, recall and accuracy, and
visualization measures like ROC and AUC curves (but only for binary classification). As it is
based on Spark, it provides APIs in R, Python, Scala and Java. However, not every tool is
available for all languages.

With the update to MLIib 2.0 end of July 2016, fundamental changes were made to the API.
These were the result of the switch from the Resilient Distributed Datasets (RDD)-based API
(spark.mllib package) to the DataFrame-based API (spark.ml package). This resulted, among
other things, in a more user-friendly and uniform API, and better storage management.
Additionally, the ML Pipeline concept was further improved. It allows the execution typical
steps of TC (preprocessing, feature selection, classification) in one ML Pipeline!’. The resulting
pipeline models can be persisted subsequently. One disadvantage of ML Pipelines is that not
all algorithms can be used within a ML Pipeline. For instance, the SVM classifier, commonly
used in TC, cannot be utilized within this environment and is only available via the old RDD-
API. However, according to Spark, feature-parity between the two APIs should be reached with
the next, larger, update to version 2.2.

In terms of efficiency, Spark and MLlIib have set new standards. In 2014, in a benchmark test
to assess the speed at which a system could sort 100TB of data, Spark was three times faster
using ten times fewer machines than the Hadoop MapReduce implementation (see Chapter
3.1.2). This is even more surprising as all the sorting took place on the HDFS disk without using
Spark’s in-memory capabilities [161]. When executing an algorithm in-memory (e.g. LR), it is
up to one hundred times faster than Hadoop. Considering only the execution of algorithms,
Spark MLIib shows excellent performance and is being advanced even further. In the
experiment run by [162] comparing the machine-learning frameworks Apache Mahout, running

16 Date: March 15", 2017
17 http://spark.apache.org/docs/latest/ml-pipeline.html (last accessed: May 12, 2017)
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on Hadoop MapReduce, and MLIib, both the efficiency advantage of MLIlib and improvement
over time are clearly observable (see Figure 16).
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Figure 16: Benchmarking Results for Mahout vs. MLlib Using Alternating Least

Squares

Sonrce: Own illustration based on [162]

Spark’s rapid development was pushed by its strong community and the large number of
contributors. It is used in a wide range of organizations, such as Opentable, in production, and
more than 1,000 developers have contributed to Spark since 20009.

In addition to the JavaDoc, an extensive documentation is provided, including code examples

and details for implementing certain algorithms, on their website for all four APIs. However,

in the community forums, the most discussed language is Scala.

We have not found research studies that use Spark MLIib for legal TC, or for AL. However,
according to [163], the framework has the potential to develop own machine learning
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3.1.2 Mahout

Apache Mahout!® is, like Apache Spark, an open-source project by the ASF. It started as a
subproject of Lucene®® in 2008. Initially, it was driven by the MapReduce distributed-
computing framework and implemented with the Hadoop framework focusing on the key-areas
recommender engines, clustering and classification [164]. As shown in Figure 16 in the
previous section, the MapReduce implementation is no longer up-to-date in terms of efficiency.

Mahout 0.12.0 Features by Engine

Mahout Math-Scala Core Library and Scala DSL

Mahout Distributed BLAS. Distributed Row Matrix AP with R and Matlab like
operators. Distributed ALS, SPCA, SSVD, thin-0R. Similarity Analysis

Mahout Interactive Shell

Interactive REPL shell for Spark optimized Mahout DSL

Collaborative Filtering with CL/ drvers
User-Based Collaborative Flltering

hem-Based Collaborative Filtering

Malrix Factorzation with ALS

Matrix Factorization with ALS on Implicit Feedback

Waighted Matrix Factorization, SWVD++

Classification with CLI drivers
Legistic Regression - trained via SGD
Maive Bayes | Complementary Naive Bayes

Hidden Markov Modeks

Figure 17: Part of Mahout's Ecosystem

Single
Machine

deprecated
X

B

deprecaled

depracaied

MapReduce

deprecated

deprecaled

Source: http:/ | mahout.apache.org/ users/ basics/ algorithms.hinl (Accessed 30.1.2017)

18 Apache Mahout: http://mahout.apache.org/
19 Lucene: http://lucene.apache.org/core/

Spark H2O Flink
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For this reason, with the release 0.10 in April 2015, the Mahout project shifted away from using
MapReduce?®. The focus is now on a math environment called Samsara, which provides
statistical operations, linear algebra, and data structures. Unlike most of the other ML libraries,
the objective of Mahout-Samsara is to provide an extensible programming environment for
Scala so that users can develop their own distributed algorithms, instead of providing a
machine-learning library with existing algorithms. Furthermore, different distributed engines
such as Spark or H20 are supported.

Mahout can, therefore, be seen as an “add-on” to Spark and its technologies. It is possible to
utilize Spark’s components, such as the DataFrame API, or even combine MLIib methods with
Mahout algebra?.

Currently?!, Mahout is available in version 0.12, released in June 2016. Figure 17 gives an
impression of how the concept of Mahout has changed away from being a machine-learning
library for classification to being an “add-on” for other processing engines. All three
classification algorithms of the original library (before v0.10) are now marked as deprecated.
Only an implementation of MNB is provided by the Mahout ML library, which is further
optimized in the Spark module??.

The environment now consists of an algebraic backend-independent optimizer (Mahout math-
Scala core library), and a Scala domain specific language (DSL) consolidating the distributed
and in-memory algebraic operators.

Hence, Mahout is an ML engine that requires deeper knowledge of both mathematical and
programming skills. Moreover, due to the many dependencies, the initial configuration of
Mahout may be difficult. The sparse documentation makes this even more challenging.
Especially with regard the method for applying TC with Mahout and Lucene, hardly any
documentation is available.

For evaluation of NB, Mahout provides common metrics, such as the confusion matrix or the
ROC curve.

Compared to Spark, and thus also MLIlib, community support is low with only 24 contributors.
The result is that the development of the project has moved relatively slowly; for instance, the
current stable version is only 0.12, although the project is more than 9 years old.

20 http://www.weatheringthroughtechdays.com/2015/04/mahout-010x-first-mahout-release-as.html
21 Date: March 15", 2017
22 https://mahout.apache.org/users/algorithms/spark-naive-bayes.html



3.2 Weka

Waikato Environment for Knowledge Analysis (Weka)?® is a general-purpose open-source
software workbench incorporating several ML techniques for data-mining tasks. It was
originally developed as an internal project written in C at the university of Waikato in New
Zealand. It was made publically available in 1996 and rewritten in Java for the 3.0 release in
1999 [165]. Today, it is available as version 3.8 under the GNU General Public License?.

Weka provides a comprehensive collection of data-preprocessing tools and ML algorithms that
are widely used in combination with related projects for research purposes?. One reason for
this prevalence is the graphical user interfaces (Ul) (e.g. Explorer, Workbench) that facilitate
easy access to the underlying functionality for data analysts who are not particularly familiar
with programming (see Figure 18). Using the Weka Explorer can result in problems when
training large datasets as the Explorer always loads the entire dataset into the computer’s main
memory.

Preprocess

| Openfile.. || OpenURL.. || OpenDB.. || Generate.. |

Filter

| Choose [None

Current relation Selected attribute
Relation: None Attributes: None Name: None Type: None
Instances: None Sum of weights: None Missing: None Distinct: None Unique: None
Attributes
VJ| Visualize All |
Status
Welcome to the Weka Explorer | Log | w x0

Figure 18: Weka Explorer
Source: Own screenshot

23 Weka: http://www.cs.waikato.ac.nz/ml/index.html

24 Date: March 15", 2017

%5 For a list of publications in which WEKA or a related project like MOA, MEKA or Mulan are used or at least
mentioned see: http://www.cs.waikato.ac.nz/ml/publications.html +
http://weka.wikispaces.com/Related+Projects
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However, Weka also offers a Java interface to integrate it in one’s own application?®. The
problem with large datasets is addressed by providing an interface called
“UpdateableClassifier”. Classifiers implementing this interface can be trained incrementally.
That way the data does not have to be loaded into memory all at once. Unfortunately, only a
small  selection  of  classifiers is implementing  this  interface  (e.g.
“NaiveBayesMultinomialText”, a MNB implementation for text data). Alternatively, one can
make use of the library accessing the related MOA data stream software to handle large datasets.

In principle, Weka on its own provides implementations of all relevant preprocessing steps
(stemmer, stop-word remover, etc.), as well as unsupervised and supervised ML algorithms,
such as NB, Perceptron or SVMs. For the evaluation of the classifier’s performance, common
measures such as precision, recall and Fi-Measure and the ROC-curve for visualization are
available.

Additionally, there are many software projects that are related to Weka, which they use in some
form?’. Most of these use regular Weka classifiers and enhance the functionality in some
manner. On its own, Weka provides only algorithms for binary and multiclass classification.
However, Mulan?® and Meka?® extend the original functionality of Weka and allow multilabel
classification. As these projects are often relatively small, the documentation is frequently
sparse and a full stability is not always given.

Weka can access files, URLs and both SQL data sources like MySQL or Oracle, and NoSQL
databases like MongoDB using JDBC. Furthermore, since release 3.8, there have been attempts
to apply distributed data mining using, for instance, Hadoop- or Spark-specific wrappers in
order to improve the efficiency by offering access to distributed computing. For classification,
Weka usually uses its own Attribute-Relation File Format (ARFF) consisting of a header
section (e.g. information about the attributes and their types) and a data section. Additionally,
LibSVM, CSV, C4.5, TXT or JSON formats are supported directly or indirectly. Although
Weka was originally not designed for TC, it can handle textual data’. The textual data
(“String”) must first be processed using suitable filters such as the “StringToWordVector” that
converts the text into a word vector. This enables further processing, for example, applying FS
using the common TF-IDF method and the subsequent use of classification algorithms.

A suitable benchmark for classification efficiency with Weka could not be found. However, as
computations with datasets that are not excessively large are performed in the computer’s main
memory, it should be quite fast. For large datasets, the efficiency decreases as the data must be
retrieved iteratively from external storages. These shortcomings are addressed by the recent
addition of the aforementioned wrappers for distributed computing or the related MOA project.

% https://weka.wikispaces.com/Use+WEKA+in+your+Java+code
27 http://weka.wikispaces.com/Related+Projects

28 Mulan: http://mulan.sourceforge.net/

29 Meka: http://meka.sourceforge.net/

30 http://weka.wikispaces.com/Text+categorization+with+WEKA



Weka provides extensive documentation about ML in general, and about the implementations
of these algorithms in Weka [166]. Apart from the Javadoc documentation, there is also some
documentation that includes Java code examples on how to integrate Weka in one’s own
application. However, this documentation is quite sparse and could be more detailed. As it is a
part of many research projects, Weka has active communities, such as pentaho3! behind it and
is still under active development.

The Weka toolkit has already been used successfully in the context of legal TC [150, 155] and
in an AL environment [11].

31 Pentaho: http://community.pentaho.com/
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3.3 scikit-learn

The scikit-learn framework3? is an open-source general-purpose ML library for the Python
programming language (there is no API for Java). It is currently available under version 0.18.1
released under the Berkeley Software Distribution (BSD) license®. The project started as a
Google Summer of Code project in 2007, aiming to provide non-ML experts with access to an
efficient tool that is reusable in different scientific areas and various contexts. As it is built upon
NumPy34 and SciPy® (scientific Python), these libraries must be installed in advance.

Scikit-learn incorporates with several options for data mining, data analysis and visualizations
(see Figure 19). They have a vast choice of both supervised and unsupervised algorithms for
classification (e.g. SVM, NB), regression algorithms (e.g. LR, Bayesian Regression) and
clustering (e.g. KNN). A further advantage of scikit-learn is that all classifiers do multiclass
classification out-of-the-box. To conduct multilabel classification, the library offers an
implementation of the one vs. all strategy.

HPPL] ) scikit-learn
- BHORERS

~~-IIHrWIIH
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Classification Regression Clustering
Identitying to which category an object be- Predicting a continuous-valued atiribute asso- Automatic grouping of semilar abjects ino
longs to. ciated with an object. sets.
Applications: Spam detection, image reco- Applications: Drug response, Stock prices Applications: Customer segmentation, Grou-
gnition Algorithms: SVR, rigge regression, Lasso, ... ping experiment cutcomes

Algorithms: SVM, neares! neighbors, ran- Exarmples Algorithms: k-Means, spectral clustering,
dom forest, .. Exarnplas mean-shift, ... Exampies

Dimensionality reduction Model selection Preprocessing
Reducing the number of random varables 1o Comparing, validating and choosing parame- Foature extraction and normalization,
consider ters and models. Application: Translorming input data such as
Applications: Visuatzation, Increasad effici- Goal: Inproved accuracy via parameter tu- text for use with machine leamning algorithms.
ency ning Modules: preprocessing, feature axtraction
Algorithms: PCA, feature selacton, non-ne- Modules: grid search, cross valdation, Examples
gatve matrix factorization, Exampies metrics Exampgies

Figure 19: Overview of scikit-learn
Source: Screenshot of the homepage’

For large datasets, additional incremental implementations of classifiers (e.g. NB, Perceptron)
are provided, for which incrementally only a small number of instances is loaded into the main
memory.

32 Scikit-learn: http://scikit-learn.org/
33 Date: March 15, 2017

3 NumPy: http://www.numpy.org/
35 SciPy: https://www.scipy.org/



Although it is a general-purpose ML framework, scikit-learn offers appropriate instruments for
working with textual data®. The text is transformed into a feature vector (bag of words
representation) in order to generate a suitable text representation for further processing. Besides
this simple word vector, FS techniques, such as the TF-IDF methods, are also supported.

In order to improve the quality of the training set, scikit-learn offers a few (but not all) common
tools for the preprocessing of text data, such as the filtering of stop-words and stemming.
Generally, the library comes along with a useful selection of FS methods®’.

Like MLlIib, scikit-learn also supports the pipeline concept, in which several steps (e.g.
conversion into feature vector, preprocessing, classification) can be combined.

For evaluation of the model38, scikit-learn includes all common classification evaluation
metrics such as accuracy, F1, precision and recall, and the AUC.

Besides text data, scikit-learn also provides utility functions to load datasets in the
SVMLIGHT/LibSVM format. Furthermore, it is possible to convert external datasets, such as
pandas DataFrame, that support common formals including CSV, JSON or SQL.

To provide reusability, it is possible to save and load created models by using Python’s built-in
persistence model for object serialization, called pickle or joblib, especially suitable for large
datasets.

The documentation provided by the scikit-learn developers is quite extensive and covers all
important parts of the API, including code examples, explanations and tutorials. Additionally,
it offers a 2007-page pdf-documentation text with a very detailed description of scikit-learn, as
well as of common ML topics and algorithms.

With 100 contributors® since 2010, scikit-learn has a remarkable and very active community
that is also used for commercial purposes, e.g. by Spotify.

36 http://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

37 http://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction
38 http://scikit-learn.org/stable/modules/model_evaluation.html

39 https://github.com/scikit-learn/scikit-learn/graphs/contributors
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3.4 Mallet

The MAchine Learning for LanguagE Toolkit (Mallet)* is an open-source ML package written
in Java, aligned for statistical NLP, especially for DC and other NLP-related methods, such as
topic modeling. It was developed at the University of Massachusetts, Amherst, by Andrew
McCallum and his team, and released in 2002 [167]. Currently, it is available in version 2.0
under the Common Public License*!.

Unlike the other general-purpose ML frameworks, Mallet is specifically designed for NLP and
thus textual data-like documents. It incorporates several useful tools for TC. To embed Mallet’s
ML tools into one’s own application, a Java APl is provided. However, compared to the other
frameworks, Mallet is a relatively small project having no extensive functionality.

‘ MALLET UMASS
MAchine Learning for LanguagE Toolkit AMHERS

Home Document Classification Developer’s Guide

Tutoral slides  video

Downiosd MALLET provides a simpie interface to a large collection of dassification algorithms

APY The examples provided here include some of the common tasks requined ta add
dlassification techniques to your software.

Quick Start

SPONSOrs Al classifiers (MaxEnt, NaiveBayes, DecisionTree, etc.) extend the Cassfier object
Mailing List Each type of dassfier has its own trainer dass, all of which extend the

CazcfierTrainer class. In this exampie, we train a MaxEnt classifier using a st of
About training Instances (for infarmation on creating instance lists, see the data import
developer's guide)

Imperting Data
Classification
Sequence Tagging
Topic Modeling
QOptimization
Graphical Models

[t often makes sense to train a dassifier once and use it repeatedly. The next
examples show how to restore 3 saved classifier

Figure 20: Part of Mallet’s Developer Documentation
Source: Own screenshot

Similar to the other libraries, Mallet offers routines to transform text documents into numerical
representations (feature vectors) so that the classifiers can process them efficiently. Commonly
used FS methods, such as the TF-IDF method, are not possible with Mallet.

To work with textual content, the data must be transformed in a specific Mallet format called
an “instance”*2. An instance represents a training example and has the four fields: “name”
(identifier), “label”, “data” (feature vector) and “source” (original file or string). These
instances are stored in a “InstanceList,” utilizing the pipeline implementation in a manner

40 Mallet: http://mallet.cs.umass.edu/
4l Date: March 15™, 2017
42 http://mallet.cs.umass.edu/import.php



similar to Spark. Within this pipeline it is possible to apply several preprocessing steps, for
example, conversion into lowercase letters or the removal of stop-words.

The import of data is only possible via the local file system. Most Mallet classes therefore use
plain Java serialization to store and load models and data. Mallet only directly supports the data
formats text and SVMLight. In addition, it is possible to store the trained classifier on the local
file system and use it later for prediction.

With respect to classification algorithms, Mallet does not have that large range of options
compared to other frameworks. Of the classifiers described in detail in the previous chapters,
only NB is offered. Multi-label classification is not supported. However, for the evaluation of
classifiers, common measures like accuracy, precision and recall, and the F1 are available.

In contrast to Spark or Mahout, and similarly to Weka, Mallet is generally not aligned to import
or process extremely large amounts of data as this can lead to problems with the computer’s
main memory. Nevertheless, the library itself contains cleverly optimized code and algorithms.

On the homepage one can find tutorial presentations about the concept Mallet implements.
Additionally, there is a brief developer guide demonstrating the classification process, including
some code snippets (see Figure 20). However, most of the documentation is only available in
form of JavaDoc.

When looking at the project at github*3, one can observe that Mallet is still undergoing active
development, having more than 20 contributors in the last years.

Compared to the other ML frameworks described, Mallet has the advantage that it provides an
additional API for AL. By implementing the interface “ClassifierTrainer.ByActiveLearning”#4,
the classifier trainer will select certain instances and request that they be labeled. In the context
of AL, Mallet was used, for instance, as ML library by Settles for the implementation of the
aforementioned AL application “Dualist” [121]. However, he did not use the AL interface.

4 https://github.com/mimno/Mallet/graphs/contributors
4 JavaDoc: http://mallet.cs.umass.edu/api/cc/mallet/classify/ClassifierTrainer.ByActivelLearning.html
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3.5 Summary and Conclusion

The results of the previous evaluation chapters are summarized in Table 9. This table is not
complete and does not show all features of the respective ML framework. For instance, although
the processing engine H20 has also a powerful ML engine, it is not listed as it is not relevant
for this work.

In general, an evaluation and comparison of the ML frameworks discussed (as well as those not
mentioned) is quite difficult. Each ML framework has its advantages and disadvantages. The
larger libraries especially, such as MLIib and Mahout, that are part of a vast ecosystem have
various configuration possibilities. For instance, the efficiency certainly depends on the
implementation of the algorithm, but also on the setup used (standalone, as a cluster, etc.).
Therefore, although MLIib is, when used as a cluster-computing framework, superior to the
other libraries in terms of efficiency and suitability for big data, it is not particularly relevant
for this study as the classification is performed on a single computer. For this reason, terms
such as efficiency or scalability are not listed in this table.

Table 9 presents a general overview of the respective ML frameworks discussed in the previous

chapters.

: Scikit-
MLlIib Mahout Weka Mallet
learn
Current
Version (2" 2.1 0.12.2 3.8 0.18 2.0.8
Feb. 2016)
Apache Apache Berkeley Common

Li Software Software General Public Software Public License

ICense Foundation Foundation License (GPL) Distribution (CPL)

(AFS) (AFS) (BSD)
Open Source yes yes yes yes yes
Ponular Users OpenTable, " Pentaho Evernote, "
p Verizon ' Spotify '
: MapReduce
Processing (deprecated), Spark Wrapper for none none
Platform Spark available
Spark
Mainly Scala,

Interface ngar’]g:ag ’ Java (for older Java, R Python Java
Language ython, Versions)
Suitable for yes yes partially yes partially
large datasets
Community good moderate good good moderate
Support
Documentation very good moderate good very good good
Support for moderate
NLP/Textual good (via Lucene) good good very good
Data /AL
Configuration simple difficult © simple® simple very simple




: Scikit-
MLIib Mahout Weka Mallet
learn
Classification Algorithms
v v
NB v (Spark (batch, v v
optimized) incremental)
v
b : .
SVM v only via MLlib (batch) v /
. . . v
MLP v only via MLlib (batch) 4 /
Multiclass . . one vs. all, one vs. all,
. one vs. all only via MLlIib /
Classification one vs. one one vs. one
i by extensions
MUItI.Ia.beI. one vs. all / (e.g. Mulan, one vs. all /
Classification Meka)
Pipeline voa / / v v
Total
Algorithm very high high very high very high moderate
Coverage
Preprocessing
. (by extensions
Stemming (Snowball)) / 4 v
Stop Words v / 4
Coverage of
Feature . . .

. high | high high derat
Selection very hig ow very hig very hig moderate
Methods

Text Representation
Word Vector v v v v v
TF-IDF v v v

Evaluation
Confgsion v v v v v
Matrix
ROC/AUC v / v v v
Curve

Table 9: Comparison of Machine Learning Frameworks
*a: available via the DataFrame-API (new API) *b: available via the RDD-API (old API)
*¢: complexcity depends on the configuration (e.g. combination with other tools)

Mahout has changed significantly in the last years to adapt to Spark. With the new concept, it
does not fit very well for this use case.

While Mallet has the advantage that it can be used very easily and is aligned for TC, having
even an AL interface, it lacks the choice of classification algorithms and other TC techniques
(e.g. FS methods).
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Weka is also a widely used and useful tool for ML that has already been used in an TC
experiment applying AL. However, the documentation for TC is very sparse and for larger data
sets it also lacks suitable classifiers.

MLIib and scikit-learn are both libraries having a vast choice of tools for text processing,
classification, good documentation and an active community. Thus, both would be a good
option for implementing a ML application. But as noted, libraries having a Java AP1 are favored
for this study. Hence, MLIib version 2.1 is used as the ML framework for building a
prototypical implementation of an AL microservice for the classification of legal documents
and norms.



4 Concept and Design

Following the discussions of the TC process, the theory of AL in the context of legal TC, and
having analyzed and chosen a ML framework, these understandings are applied to the
prototypical development of an independent AL-microservice using Spark MLIib. For the work
with legal content, use will be made of an existing legal data science environment called Lexia
[168].

In the following chapters, both Lexia and LexML, the AL-prototype developed within the scope
of this thesis, are described in greater detail, as is the interaction between the two services.
Based on the existing Lexia framework described in this chapter (see Chapter 4.1) and the
findings in the theoretical component of this thesis, requirements for the LexML service are
derived (see Chapter 4.2). Thereafter, the fundamental architecture of LexML and its
communication interface (see Chapter 4.3) are discussed.

4.1 Lexia Framework

Lexia, developed within the scope of the interdisciplinary research program Lexalyze* at the
Technical University of Munich (TUM), is a “data science environment for the semantic
analysis of German legal texts” [168]. In what follows, a short overview of the system and the
components relevant to this thesis are provided. For a more detailed review, please refer to the
papers of Waltl et al. (e.g. [168, 169]).

User Interface Data and Text Mining Engine
| Navigation Processing Pipeline  |—+ Information .Exl:racl:lon Component
| Tokenizer | POSTagger |
| Exploration Dictionaries | — | Lemmatizer | NERecognizer |
[ Visualization Pattern Definitions - ‘ Sentence Splitter ‘
'\.\\ |
Importer — Data Access Layer H Exporter
Storage
Search Engine - - Database

Figure 21: Main Components of Lexia
Sonrce: Own illustration based on [168]

4 http://www.lexalyze.de/
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Lexia is a powerful collaborative web application consisting of the following main components:
an importer, an exporter, a data storage and access layer, a text-mining engine, and a user
interface. The project was implemented with a Java back-end using the web application
framework Play“*® and an Elasticsearch database to guarantee efficient access to the text data,
including a full-text search. An overview of major components is presented in Figure 21.

Through the Importer, legal texts in various formats such as HTML, XML or PDF can be
imported into the Elasticsearch database of Lexia. The system differentiates between several
legal document types such as laws, judgments, contracts, patents and miscellaneous (generic
legal documents). All types are derived from the abstract superclass LegalDocument. The
LegalDocument class, in turn, contains the document content stored in Section Containers and
then in Sections, or directly in Sections, to handle the nested structure of legal texts (e.g. in
laws). Sections represent the actual textual content (e.g. norms). Each of these Sections can
have Annotation objects of a certain type reflecting the outcome of the Data and Text-Mining
Engine.

The Data and Text-Mining Engine is the heart of Lexia, built primarily on the Apache
Unstructured Information Management Architecture (UIMA) Java framework*’. This
component contains an Information Extractor Component which has the capability to extract
and annotate semantic information in legal texts. This process is supported by, for instance,
dictionaries and by two kind of pattern definitions: (1) regular expressions (regex) and (2) ruta
scripts (rule-based text annotation). The latter enables means of specifying more elaborate rules
and also recognizes complex linguistic structures.

Further, the UIMA architecture utilizes the use of pipelines to process legal texts, meaning that
various tasks (e.g. Sentence Splitter, Tokenizer, POSTagger) of the aforementioned
Information Extractor Component can be concatenated and executed in “one step” (see Figure
22). This allows efficient processing of legal texts into both linguistic Annotations (e.g.
annotating a sentence as a sentence, or annotating the verbs of a specific sentence), and
semantic/legal Annotations (e.g. annotating a specific sentence as a legal definition). These
different Annotation types are illustrated in Figure 23 (Linguistic Entities and Legal Entities).

PO5-Tags |F=t3 L~ Lirguistic Patverrs &
- Somantic Entithes

Figure 22: Processing Pipeline for Determining Linguistic Patterns with Apache UIMA and Ruta
Source: [168]

4 https://www.playframework.com/
47 https://uima.apache.org/
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To enable simple access for legal experts, Lexia incorporates with a simple Ul. Here, a user can
import legal texts, select a certain pipeline and one or more ruta scripts to be processed, or see
the result of a processed pipeline. There are many additional routes of navigation that are not
relevant for this thesis and consequently not described here. An example of the Ul showing an
annotated/processed law can be seen in Figure 23.
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z
z
3
z

TR
- QUANT FICATON
SEMANTIC LARELY
- =
- -
. -

Figure 23: Lexia User Interface Showing Different Annotation Types
Sonrce: Own screenshot

In summary, Lexia is a powerful environment for analyzing legal textual data linguistically and
semantically. However, in its current state, this knowledge is only derived via rules. For
instance, a sentence is only annotated as a legal definition if a certain pattern defined in a ruta
script occurs. As stated previously, many patterns containing all the linguistic variations must
be defined to find most of the semantic information in a legal text. Furthermore, defining these
patterns requires strong legal-domain knowledge and a time-consuming analysis of the text.

Another issue is that the type of document (e.g. law, judgement) must be known before the
import, or it has to be noted in the document, so that Lexia can assign it to the correct class. If
a legal document could be assigned by a computer without its type having been stating
explicitly, the import could be simplified and speeded up.

To further enhance this functionality, it is part of this work to analyze whether AL is a promising
alternative for the classification of legal documents and their content (norms). To this purpose,
the infrastructure and features of Lexia’s existing legal data science environment are used to
develop an independent AL-prototype (microservice) in which the ML takes place. The
objectives of, and the resulting requirements for, this microservice are derived in the following
section.
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4.2 Objectives and Requirements

As described in the previous section, the objective of this work is to develop an independent
prototype in order to classify legal documents (DC) and their content (NC) by using a classifier.
The following essential objectives and requirements were derived from both the literature
review, and from the current state of Lexia and the technical prerequisites of Spark MLIib.

To clarify the relevance, the keywords shall, should and may specified by the 1ISO*® are used:
shall indicates a requirement, should a recommendation, and may is not mandatory, but useful
to have. Requirements that are essential, for instance for the evaluation of this work, receive
higher priority.

Furthermore, a distinction is made between functional requirements (FR) and non-functional
requirements (NFR).

4.2.1 Functional Requirements
First, the FR affecting LexML’s behavior, and hence design, are described in the following.
FRO1 Perform Legal Text Classification

LexML shall have the capabilities to perform legal TC on imported legal data (see FR02). The
imported legal data can be either a set of documents or a set of sentences from one document.

FRO2 Import of Legal Texts

Legal texts that are already imported in Lexia shall be used for classification in LexML. This
leverages the existing functionality of Lexia and complements it with the idea of performing
and evaluating the potential of AL for German legal texts. These legal texts shall be assigned
to a specific AL pipeline and saved in LexML’s database (see FR06).

Further, it may be possible to limit the number of legal documents to import into LexML.
FRO3 Utilize Lexia’s Existing Environment

As described in Chapter 4.1, the existing pipeline architecture of Lexia shall be utilized in three
ways.

First, it shall be possible to import the sentences of a legal document into LexML (see FR02).
For this purpose, Lexia’s sentence splitter is utilized to save each sentence of a legal document
as a single annotation object.

8 https://www.iso.org/foreword-supplementary-information.html (last accessed: May 7%, 2017)
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Second, it, should be possible to import only specific linguistic structures of a legal document
or sentence (e.g. to import only adverbs of a sentence). Ruta scripts allow one to find different
types of words, such as verbs, nouns and adverbs.

Both methods require that the legal document has been preprocessed by one of Lexia’s
pipelines.

Additionally, Lexia’s existing Ul should be complemented in a way to fulfil all FR and NFR in
the best possible manner.

FRO4 Multiclass Classification

As seen in Chapter 2.1.1, there are three types of classification problems (binary, multiclass,
and multilabel). LexML shall be designed to perform and evaluate multiclass classification.

FRO5 Use Spark’s ML Pipeline Concept

The Spark ML Pipeline concept discussed in Chapter 3.1.1, in which several tasks are
concatenated (e.g. tokenizer, stop-word removal, classifier) shall be used in LexML to perform
efficient AL and TC. The resulting pipeline model should be persisted in order to be reusable
later (see FR10, FR11).

FRO6 Use of AL Pipelines

It shall be possible to create and remove an AL pipeline in LexML from the Ul of Lexia. An
AL pipeline implements Spark’s ML concept for TC (see FR05). Each of these AL pipelines
shall have a unique identifier (name), be assigned legal textual data for training (see FR08) and
testing (see FR10, FR11), and contain options to configure specific AL settings (see FRO7).

FRO7 Configure AL Pipelines

In Chapter 2.2, the influencing factors of AL were discussed. To create a realistic AL
environment, it shall be possible to configure the following basic settings of an AL pipeline:

e type of pipeline (Document Classification or Norm Classification),
e labels,

e classifier (Naive Bayes, Logistic Regression, Perceptron),

e query strategy (Uncertainty Sampling, Query by Committee),

e size of seed set,

e batch size,

e minimum and maximum learning rounds (stopping criteria), and

e Lexia annotations used (see FRO3).
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FRO8 Train Classifier Using AL Pipeline

Only after the import and the configuration of the AL pipeline, shall it be possible to start this
AL pipeline to begin the iterative AL process and train the classifier. The first labeling round
shall be done with a set of randomly queried instances (the seed set). Following this, the actual
learning by the model and the labeling shall take place iteratively, based on the specified
configurations until one stopping criterion is met.

FRO9 Save Classifier/AL Pipeline Model

At the end of a learning process, the resulting classifier/pipeline model shall be persisted due
to FR10 and FR11. Furthermore, this is also a precondition to proceed with the learning at a
later point of time without having to restart the process with random instances.

FR10 Predict with AL Pipeline

For testing the performance of a classifier, it may be possible to predict the labels of the
remaining unlabeled textual data. The difference from FR11 is that in this case the imported
documents or sentences do not have any test set to evaluate the performance. This implies that
the correctness of the predictions must be checked manually.

FR11 Evaluate AL Pipeline

It shall be possible to evaluate the trained model with a test set independent of the training set
in order to obtain evaluation metrics discussed in Chapter 2.1.2.7. In contrast to FR10, for the
evaluation of an AL pipeline a sufficiently large test must be available. For this purpose, the
following multiclass evaluation measures offered by Spark MLIib#° should be incorporated:

e Accuracy,

e Weighted precision (macro-averaging),
e Weighted recall (macro-averaging),

e Weighted F-measure (macro-averaging),
e Precision by label,

e Recall by label,

e F-measure by label, and

e Confusion matrix.

Additionally, it shall be possible to indicate whether the data necessary to create learning curves
(see 2.2.8 Evaluation) should be exported during learning (see FR13). This implies that the
system shall be able to evaluate the model obtained from each learning round against the test
set.

49 http://spark.apache.org/docs/latest/mllib-evaluation-metrics.html (last accessed: May 7, 2017)
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The evaluation is more highly prioritized than the prediction (FR10), as the evaluation of DC
and NC is an important part of this study.

FR12 Transparency

The system should give feedback during the learning process, for example, showing the
prediction (label) of the model for each instance and its confidence about it. Further, it should
be possible for the user to see the evaluation results in detail, for instance, which document or
sentence was predicted or evaluated correctly.

FR13 Export of Evaluation Results

To evaluate the learning process, it shall be possible to export the evaluation metrics described
in FR11 in an xIsx file. This export shall be possible after each learning round and at the end of
learning process.

4.2.2 Non-Functional Requirements

There are also several non-functional requirements (NFR) that influence the system’s
architecture primarily that are defined below.

NFRO1 Simple User Interface

It shall be easy for the user to create, configure and process (train, evaluate and predict) an AL
pipeline. Therefore, there should be a clear separation between these three steps at the UI. The
user shall only navigate in the Ul of Lexia as LexML does not provide an own Ul.

NFRO02 Maintainability of Software Architecture
The software architecture should support the reuse of the components.
NFRO3 Extensibility of Software Architecture

The adding of new functionality like additional classifiers or query strategies should be possible
without considerable refactoring.

NFRO04 Data Exchange

Lexia and LexML shall communicate via Rest APl using the standardized data-exchange
format JSON.

NFRO05 Use Spark MLlIlib as ML Framework

As analyzed in Chapter 3, Spark MLIib is an efficient ML framework, also suitable for TC.
Hence, it shall be used in LexML.
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NFRO06 Simulation of AL

It shall be possible to simulate the AL process (when having a sufficiently large training and
test set) in order to speed up the evaluation process for this study.

4.2.3 Summary and Prioritization

Table 10 provides an overview of the FR and NFR requirements described and their priority.

The priority column reflects the 1SO-keywords as a number scaled from 1 to 5, where 5
indicates highest priority:

e may ~ priority 1 — 2

e should = priority 3

e shall = priority 4 — 5

ID Requirement Priority

FRO1 Perform Legal Text Classification 5
FRO2 Import of Legal Texts 5
FRO3 Utilize Lexia’s Existing Environment 4
FRO4 Multiclass Classification 5
FRO5 Use Spark’s ML Pipeline Concept 4
FRO6 Use of AL Pipelines 5
FRO7 Configure AL Pipelines 5
FRO8 Train Classifier Using AL Pipeline 5
FRO9 Save Classifier/AL Pipeline Model 5
FR10 Predict with AL Pipeline 2
FR11 Evaluate AL Pipeline 5
FR12 Transparency 3
FR13 Export of Evaluation Results 5
NFRO1 Simple User Interface 4
NFR02 Maintainability of Software Architecture 3
NFRO03 Extensibility of Software Architecture 3
NFR04 Data Exchange 3
NFRO05 User Spark MLIib as ML Framework 5
NFRO06 Simulation of AL 5

Table 10: Overview of LexML’s Requirements and their Priority

This concludes the analysis and specification of the requirements for the AL-microservice
LexML, and some of the implications for the existing legal data science environment Lexia.
The next step is to develop a suitable architecture that can handle these requirements.



4.3Architecture

In this section, the architecture of LexML is developed and presented from different
perspectives. First, a conceptual overview of the appearance of the two systems is presented.
Then the components and the data-model of LexML are described in greater detail. Finally, a
typical AL workflow is presented.

4.3.1 Conceptual Overview

Figure 24 provides a high-level overview of Lexia and LexML and how they interact.

On the left, the main components of Lexia are shown ina manner similar to Figure 21. Amongst
other features, Lexia has existing importers for legal data, an efficient database and a data-
access layer, a data- and text-mining engine based on the UIMA framework, a Ul, and a Rest
API. All of these components are re-used and complemented, considering the following: (1) the
Ul becomes an additional ML interface, where the user can execute all features specified in the
FRs and perform AL while fulfilling NFRO1. (2) The export functionalities are supplemented
by an additional xIsx exporter which exports the evaluation results (see FR13). (3) The existing
Rest API is extended to communicate with LexML. (4) Minor adaptions are made to the Data
Access Layer in order to transfer the required textual data (documents and sentences) to LexML
(see FRO3).
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| User Interface m ‘ Engine
—t
e ‘ Machine Learning Framewaork |
Y
= o — i
Legal Texts
I -*., Data And Text Mining Rest ™= ... > REE z
* |\ moorter Engine Interface lgsssnad Interface +
[ .|
| I ] Importer
| |
‘ Data Access Layer Data Access Layer

] |
I s

Elasticsearch Exporter Mango DB Exporter

Figure 24: Conceptual Overview of Lexia and LexML
Source: Own illustration

On the right, the conceptual architecture of LexML is demonstrated. To interact with Lexia,
LexML must also have a Rest API. The central component is the Active Learning Engine (ALE)
that contains the logic of AL. To perform the actual ML in LexML’s ALE, Spark MLIib is used
as Machine Learning Framework. Further, a Data Access Layer provides access to Mongo DB
in which the AL pipelines, including the legal textual data, are stored. The legal textual data is
transformed into a suitable format for ML with Spark by means of a specific importer.
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As a constant communication with Lexia is not necessary during simulation (NFR06), LexML
should have its own exporter (see FR13) to save bandwidth and time.

4.3.2 Modular Component Overview

Following this impression of the general concept, some of the aforementioned components and
the technologies used are described more detailed.

Rest API
A detailed overview about the Rest API of Lexia and LexML is given in Chapter 4.3.4.
Importer

To fulfil FRO2, LexML must have an importer that is able to receive the legal textual data as a
JSON request from Lexia and, create the training and test data that is suitable for TC with Spark
(using the Spark SQL Row format). To retrieve the document on Lexia side again at a later
point of time, not only the text itself but also the identifier (id) of the Lexia annotation must be
part of the request. Furthermore, in cases where a test set for the evaluation of the model should
be created during the import, the JSON request must also contain the type (class) of the legal
text (e.g. law or judgement in the context of DC).

Active Learning Engine

The ALE, conceptually illustrated in Figure 25, is the central component of LexML using
Apache Spark’s MLIib as ML framework. The components framed in grey highlight the
subcomponents of the MLIib framework that are used in the AL process in particular.

The ALE is based on the typical pipeline architecture of TC processes and, has a type of pipeline
architecture consisting of the three subcomponents, similar to that of Lexia:

The configuration subcomponent contains most of the logic for creating (FR06), configuring
(FRO7) and editing AL pipelines, such as specifying the query strategy, creating the test set and
training set, defining the stopping criteria, and selecting the classifier. Possible classifiers are
part of the MLIlib framework and should be applicable together with the ML Pipeline concept,
as well as suitable for TC (see Chapter 2.1.2.6). NB, LR and MLP fulfil this requirement, in
contrast to SVMs which cannot yet be used as pipeline stage of an ML Pipeline. All mandatory
configuration tasks of this component must be finished in order to commence the learning
process.
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Figure 25: Detailed Conceptual Overview of LexML’s AL Engine
Source: Own illustration

As discussed, preparing the datasets is a prerequisite during the configuration of an AL pipeline.
Hence, although the importer subcomponent is depicted outside of the ALE in Figure 24 to
allow better intelligibility, it may also be considered as part of the configuration subcomponent,
and thus of the ALE component.

In the training subcomponent, the actual learning process and the TC pipeline are implemented
(FRO1). There, the model is trained with the labeled training data set (FR08) and applied to the
remaining unlabeled training data to predict their label and to find the most informative
instances for the classifier based on a selected query strategy. These instances are then labeled
in the following round. Cross-validation ensures that these predictions are made with the best
model found. At the end of each round and at the end of the learning process, the resulting
pipeline model is persisted so that it can be used by the prediction component (FR09).

The prediction component requires a persisted pipeline model either to predict the labels of the
rest of the training data (FR10), or to evaluate the model against the test set (FR11) created at
import time. For evaluation purposes, the multiclass evaluator of Spark is used.

For both training and evaluation, Spark’s ML Pipeline concept (FR05) is employed in order
that several TC steps can be concatenated and executed at once.
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4.3.3 Workflow Overview

The previous chapters gave an overview of the architecture of LexML and Lexia and illustrated
how these two services interact at a higher-level. This chapter presents a more profound insight
into this interaction and demonstrates a typical AL process. The results of this workflow are
additional valuable information for the design of the required methods of the Rest AP presented
in Chapter 4.3.4.

To perform interactive AL, three actors are required: (1) the user utilizing the Ul and the
imported texts of the (2) legal data-science environment Lexia, and (3) the ML service LexML.
Figure 26 depicts the interaction between these three actors; the arrows illustrate the
communication messages and their direction. As described in Chapter 4.3.2, the AL process
consists of the following three main stages or components: (1) the configuration of the AL
pipeline (framed with blue), (2) the labeling and training (learning) of the classifier (bordered
with red), and (3) the evaluation of the classifier (surrounded with green).
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Figure 26: Conceptual Workflow Model of Norm Classification with LexML
Source: Own illustration

Inwhat follows, a detailed description of the three workflow stages exemplified for NC is given,
starting at the upper left corner of Figure 26.

Configuration Stage
The configuration consists primarily of the following four process steps:

1) In order to perform AL with legal texts, an AL pipeline must be created in a first step
by stating its name and specifying the pipeline type (DC or NC). The request is
forwarded to LexML via Lexia.

2) Then, all possible labels that the norms of the law that will be imported can have, must
be created. A selection of possible labels for NC is given in Chapter 2.3.2. These labels



3)

4)

are assigned to the created AL pipeline and persisted. In this manner, a mapping is
created to map the label name to a Spark specific value.

The next step is to select a law that is (1) already imported in Lexia and (2) has already
been annotated by the sentence splitter. In cases where only specific linguistic types
(e.g. verbs) should be imported, one can specify this here, too. This requires the prior
execution of additional ruta scripts. Having selected the law, Lexia queries the relevant
annotations (e.g. sentence or verb) from its database, and sends a suitable request
containing the texts to import, their identifier and if it exists, the sentence type to create
a test set. On the LexML side, this data is added to the unlabeled data set of the training
data and when labeled instances are available, a test set is created.

In the last configuration step, specific AL settings, such as the classifier, the query
strategy, the size of the seed- and query set, and the stopping criterion must be
configured. These configurations are also assigned to the AL pipeline and persisted in
LexML.

Following this, the actual interactive and iterative AL process begins.

Training Stage

1)

2)

3)

After the user has started the learning process for the configured AL pipeline, random
instances are queried and removed from the unlabeled training set at LexML. As the
Lexia id of the imported sentences is persisted in LexML as well, more information
about the origin of this sentence can be queried in Lexia and presented to the user in a
proper manner.

The user labels these presented instances with one of the defined labels. This
information is then sent back to LexML via Lexia. These examples are added to the
labeled training set which is then used to train the pipeline model with the selected
classifier. This model is used to make predictions about the unlabeled training set. By
applying the selected query strategy to the predictions, the instances that are especially
informative for the classifier are selected to be labeled next and sent back to Lexia.
There, the chosen instances are again enriched with information and presented to the
user.

The interactive process described in step 2 is repeated until a defined stopping criterion
is met.

At the end of this training process, the resulting model is persisted so that it can be used by the
prediction stage. In cases where the learning of the pipeline should be evaluated, the model is
persisted after each learning round so that the prediction pipeline stage can also be executed
each round.

Evaluation and Prediction Stage
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This stage has two possible execution options: (1) evaluation, and (2) prediction. As previously
stated, the evaluation of the classifier is prioritized over pure prediction using this classifier.
Hence, the evaluation process is described as follows:

1) In this step, the model received from the training stage is applied on the test set created
in the configuration stage. The predictions are evaluated with a multiclass evaluator of
Spark to obtain the stated evaluation metrics.

2) These evaluation metrics together with the respective prediction for each sentence are
sent back to Lexia and enriched with further information. Then, these common
evaluation measures (e.g. total accuracy, precision & recall) along with a comparison
of the prediction and correct label for each sentence are presented to the user.

The AL process having been illustrated in detail, LexML’s and Lexia’s necessary
communication interface can be designed.

4.3.4 Rest API

The Representational State Transfer (REST) API is a software architectural style that allows
distributed systems to communicate with each other in a stateless manner. It is the state-of-the-
art technology for web applications. Essentially, the transfer message consists of three
fundamental components: a constrained http-method (e.g. Get, Post), a resource identifier
(URI), and some constrained content type (e.g. JSON, XML) [170].

In what follows, Lexia’s and LexML’s communication APIs, necessary to allow ML as defined
in the previous chapters, are described in Table 11 and Table 12. The architecture and the
intention of each request are described, and the request parameters and the JSON nodes that
must be part of the request body are mentioned. The description of the JSON nodes does not
reflect the actual correct JSON architecture of this request, but provides a useful indication what
the actual request does and what it requires.

The requirements defined in Chapter 4.2 and the workflow described above in Chapter 4.3.3
Workflow Overview are reflected in the architecture of both APIs. They are composed of
several requests to create and configure an AL pipeline, to manage the labels, to import the
textual data, to conduct training and (simulated) evaluation. As it is the id of an AL pipeline,
the pipeline name must always be part of the request.

Except for the import, the APIs are fundamentally very similar and often a user request is only
forwarded from Lexia to LexML. For the import, Lexia has some additional APIs to guarantee
the flexible retrieval of legal documents and sentences persisted in Lexia’s Elasticsearch
database. These documents are then transmitted to LexML, which has only one standardized
API for the import of textual data. Additionally, Lexia has an interface to export the evaluation
results after learning.
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HTTP

Method URI Intention Mandatory content of request body or request parameter
GET Ipipeline/getAll Get all created AL pipelines /
GET Ipipeline/get Get specific AL pipeline by name pipeline name

# Pipeline and Settings

POST Ipipeline/create Creation of a new AL pipeline pipeline name, pipeline type
GET Ipipeline/remove Removal of AL pipeline pipeline name
POST Ipipeline/settings/save Save AL pipeline settings classifier, query strategy, stopping criteria, seed set, query size
POST Ipipeline/trainingsdata/clear Reset the training set pipeline name
# Label
POST [label/create Creation of one label pipeline name, label name
POST /label/remove Removal of label pipeline name, label name
POST /label/save Creation of label mapping pipeline name
POST /labels/create Creation of several labels pipeline name, node with labels containing label name
# Import
POST Ipipeline/import/legalDocuments | Import of documents or sentences ?elgte iknaet ?saums% dnf% drelglrzhirigg:r:ctjeex\t/z:tﬂ;?;/ntlr?gi:Tgll)rell_sema id, actual
POST Ipipeline/import/labelled/ \Ilvmh?;:ts(;m::ﬁmﬁgt;:;;gg;e?:fh%f pipeline name, node with_ legal texts containing their Lexia id, actual
legalDocuments labeled training set text that is used for learning and their labels
POST [pipeline/import/clear Removal of imported data pipeline name
# Training
POST Inipeline/startLabeling _Start labeling and query random pipeline name, boolean indicating whether learning should be
instances evaluated
POST Ipipeline/label Label queried instances pipeline name, Node with ids and selected labels of the instances
GET [pipeline/train Train the classifier pipeline name
T Get instances that are most informative T
GET Ipipeline/getinstances ToLabel based on a certain query strategy pipeline name
# Evaluation
POST | Ipipeline/evaluate | Evaluate the model based on the test set | pipeline name
# Prediction
POST | Ipipeline/predict | Predict the label of the unlabeled data set | pipeline name
# Simulation
POST Ipipeline/simulate Simulate training and evaluation SIS ETIS) | (Gel ) el g Winlet e Ui sl 08

random or based on a defined query strategy

Table 11: LexML’s REST API
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HTTP i
Method URI Intention Mandatory content of request body or request parameter
# Pipeline and Settings
forward to Lexia
# Label
forward to Lexia
# Import
POST Ipipeline/laws Get all laws that_ have been processed by /
the sentence splitter
POST Ipipeline/import/legalSentences Import of Sentences selected law, selected annotations (e.g. verb)
Import of Lexia sentences mapped to a
POST Ipipeline/import/csvSentences label obtained from a csv file (sentence selected annotations
evaluation)
L number of documents that should be imported, selected annotations,
POST Ipipeline/import/legalDocuments Import of documents selected feature (e.g. title, text, date)
POST [pipeline/import/clear Removal of the imported data pipeline name
# Training
forward to Lexia
# Evaluation
forward to Lexia
# Prediction
forward to Lexia
# Simulation
forward to Lexia
# Export
POST Inipelinefexport Export of evaluation results E)r:ggrl]r;sname, evaluation measures, labels, percentage of labeled
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Table 12: Lexia’s REST API




4.35 Data Model

With this presentation of the requirements and the workflow having been concluded, the next
step is to create a suitable data model for LexML. An overview of LexML’s data model is
depicted in Figure 27. It does not illustrate all attributes and methods, but gives a useful
indication of how the software is built.

The central component is the class ALPipeline, which reflects one specific AL process for either
DC or NC (ActiveClassificationType). It derives from PersistentEntiy where the functionality
for saving and deleting an entity in the Mongo DB is implemented.

The ALPipeline has an embedded list of at least three class labels (multiclass) created by the
user. These labels are mapped to a specific number that is used by Spark for learning. The class
ALPipelineConfigurations contains all possible configuration options that are specific to AL,
such as the size of the seed set, the number of instances that should be queried in each round
(query size), and whether certain annotations (e.g. verb, adverb) have been selected on the Lexia
side at the import (see FRO7).

Furthermore, the ALPipelineConfigurations class has an IClassifier attribute representing either
a  probabilistic  classifier  (Logistic Regression, Naive Bayes) or a
MultiLayerPerceptronClassifier.

Additionally, the ALPipelineConfigurations class contains a mapping to the IStoppingCriterion
interface to implement the strategies for stopping only after a minimum number of rounds
(MinRound), but at the latest after a certain number of rounds (MaxRound).

To register the selected query strategy, the ALPipelineConfigurations class has an
IQueryStrategy attribute. Both US methods MarginSampling and Entropy (AbstractEntropy) as
well as two QBC (AbstractQueryByCommittee) strategies implement this interface. The
AbstractQueryByCommittee is further abstracted to allow the simple adding of additional QBC
strategies that are not based on vote entropy (AbstractVoteEntropy). There is an extra class for
the processing of MLPs as this classifier does not provide a posterior probability.

The use of an interface for the classifier, stopping criterion and query strategy ensures that the
maintainability (NFR02) and especially the extensibility (NFRO3) of the ML service is given.

To assign the training and test data to an ALPipeline, each instance has a relation to
TrainingData and TestData. The TrainingData class has the following three attributes:

e labelledData — part of the imported textual data that is labeled and used for training,

e unlabelledData — part of the imported textual data that is not yet labeled but used for
prediction to find the most informative (“helpful”) ones,

e dataToLabelNext — part of the imported data that is based on the query strategy
particularly informative and sent to the user in order to be labeled.

The TestData class contains an independent labeled testData set for evaluation as well as the
labeled labelledTrainingsData that is necessary to simulate AL (see NFROG).
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5 Implementation

The previous chapter discussed LexML’s objectives and requirements, the effects on Lexia, and
presented the development of a suitable strategy; the next step is to implement it. How this
implementation is realized is described in this chapter.

5.1 Basics

Like Lexia, LexML is developed with the web application framework Play®°, which has a Java
back-end. To perform ML, the Spark MLIlib framework introduced in Chapter 3.1.1 is used.

The database used to persist the AL pipeline, its configurations and the textual data is MongoDB
version 3.2.10°, As a schema-free document database with high scalability and flexibility, it is
eminently suitable for this use case.

In order to map Java objects to the MongoDB documents and back, use is made of the Morphia
framework built on the MongoDB Java Driver®?, It is simple to use and as the configurations
can be made with annotations, the readability of the code is better. Furthermore, it is type safe
and incorporates an intuitive query interface. Morphia’s basic functionality is depicted in
Listing 1 using the class ALPipeline as reference, the central component in LexML’s data model
(see Figure 27). References to other classes are made with the @Embedded annotation.

1. @Entity("pipelines")

2. @Indexes(@Index(value = "name", fields = @Field("name")))
3. public class ALPipeline extends PersistentEntity {
4.

5. @Id

6 private ObjectId _id;

7

8. @Indexed

9. private String name;

10.

11. @Embedded

12. List<Label> labels;

13.

14. @Embedded

15. TestData testData;

16.

17. @Embedded

18. ALPipelineConfigurations alPipelineConfigurations;
19.

20. @Embedded

21. TrainingData trainingsData;

22. //further code

23. }

Listing 1: Functionality of Morphia

50 https://www.playframework.com/ (last accessed: May, 111 2017)
51 https://www.mongodb.com/blog/post/mongodb-3210-is-released (last accessed: May, 8" 2017)
52 http://mongodb.github.io/morphia/ (last accessed: May, 8™ 2017)

81


https://www.playframework.com/
https://www.mongodb.com/blog/post/mongodb-3210-is-released
http://mongodb.github.io/morphia/

82

5.2 Active Learning Engine

An outline of the implementation of the main components of LexML’s ALE, introduced in
Chapter 4.3.2, is provided in below. The implementation of the logic is similarly arranged as
shown in this chapter and as described in the workflow model (Figure 26). The ALE is
compromised by the four classes Importer, ConfigurationPipeline, TrainingPipeline and
PredictionPipeline. A more detailed insight to the implementation of the classifiers and query
strategies is provided in Chapter 5.3 and 5.4.

Importer

The task of the Importer class is to transform the JSON-request containing the legal texts into,
respectively, training and test data of an AL Pipeline which has the Spark SQL Row format that
is needed for ML with MLIib. A Row is a generic object with an ordered collection of fields.
The schema of a Row for attributes of the class TestData and for the attribute
labelledTrainingData of the class TrainingData consists of the following three fields: (1) a
document or a sentence’s annotation id in Lexia (String), (2) the label of this annotation
(double), and (3) the actual text of the annotation that is used for classification (String). A Row
of the TrainingData’s unlabelledData and dataToLabelNext attributes is built in a similar
manner, except that it does not have the label field.

Listing 2 shows the code for the creation of the Rows for the attributes of the classes TestData
and TrainingData. Most of the textual data is added to the unlabelledData attribute from which
the instances are queried during training, to be labeled by the user. Additionally, if desired, with
a certain percentage of the dataset (depending on size of the import), a labeled test set is created.
This test set is used for evaluation. In cases where no class for an instance is provided, a default
label “-1.0” is created. Additionally, TestData’s labelledTrainingsData attribute is filled with
the labeled training data. This is effected to create a labeled dataset that is not used for learning
but to find the correct label of an instance to make the simulation of AL possible.

1. if(testSet){

2 if(label != -1){

3. pipeline.getTestData().getTestData().add(

4. RowFactory.create(id, label.doublevalue() , text));

5 } else {

6 pipeline.getTestData().getlLabelledTrainingsData().add(

7 RowFactory.create(id, Double.valueOf("-1.0"), text));
8. }

9. } else {

10. pipeline.getTrainingsData().getUnlabelledData().add(

11. RowFactory.create(id, text));

12. if(label != -1){

13. pipeline.getTestData().getLabelledTrainingsData().add(
14. RowFactory.create(id, label.doubleValue() , text));
15. } else {

16. pipeline.getTestData().getLabelledTrainingsData().add(
17. RowFactory.create(id, Double.valueOf("-1.0"), text));
18. }

19. }

Listing 2: Schema for a Row for Test and Labeled Training Data



Configuration

The ConfigurationPipeline class contains most of the methods for the creation, configuration,
and editing of the AL pipeline, and affects especially the ALPipelineConfigurations class.
While the presence of most of the methods is very self-explanatory, the intention of the
createDummyEntriesinLabelledDataSet() method, depicted in Listing 3, should be described.

public void createDummyEntriesInLabelledDataSet(ALPipeline pipeline){
Integer i = 0;
for(Map.Entry<Integer,String> entry: pipeline.getLabelMap().entrySet()){
pipeline.getTrainingsData().getLabelledData().add(
RowFactory.create(String.valueOf (i), (double) entry.getKey(),dummyWord));
i++;
}

pipeline.save();

VLCoOoONOOTUTD WN R

}

Listing 3: Configuration of Dummy Entries

The raison d'étre for this method is based on the characteristic of AL that involves the fact that
often in the first learning rounds, not all defined labels are part of the labeled training set. This
means that the classifier does not know that these labels exist. During classifier training and
prediction, MLIib normalizes the label values starting from 0.0. The result is that the mapping
from the label name to its value (persisted in the attribute labelMap) is no longer correct. To
solve this problem, for each defined label, a Row instance in the labeled training dataset is
created containing the same dummy textual content. This overcomes the problem that involves
the fact that the classifier does not know all the possible labels from the start. Furthermore, as
the same word is used for all labels, the classifier is not distorted by it.

Training

The actual logic of the AL process is implemented in the TrainingPipeline class. It possesses
all the methods that empower the execution of the learning process described in the red-framed
section of the workflow model (Figure 26). Its attributes trainingData and unlabelledData are
the pendants to TrainingData’s labelledData and unlabelledData attributes transformed into a
DataFrame (Dataset of Rows). Such DataFrames can then be used for conducting ML with
Spark. The model attribute having the type PipelineModel is the resulting model that is persisted
(saveModel()) after training and used for prediction and evaluation.

To perform TC with it, a Spark ML pipeline must be prepared accordingly. This is effected by
means of the preparePipeline() method in which the stages (tokenizer, stop words, feature
vector, classifier) of the pipeline are set (see Listing 4). Additionally, the aforementioned
DataFrame objects for training are created. Hence, this method must be called for each learning
round as the training data requires updating.
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1. public void setStages(ALPipeline pipeline) {

2. Tokenizer tokenizer = DefaultTokenizer.get();

3. StopWordsRemover stopWordsRemover = new StopWordsRemover()

4. .setInputCol(tokenizer.getOutputCol())

Ba .setOutputCol("filteredwWords")

6. .setStopWords(StopWordsRemover.loadDefaultStopWords("german"));
7. hashingTF = DefaultHashingTF.get(stopWordsRemover.getOutputCol(),

8. numberOfFeatures);

9. PipelineStage classifier = ClassifierFactory.getClassifier(pipeline);
10. SparkSingleton.getInstance().getPipelineSpark()

11. .setStages(new PipelineStage[]{tokenizer, stopWordsRemover,

12. hashingTF, classifier});

13. }

Listing 4: Set Stages of a Spark ML Pipeline

At the beginning of the workflow, random instances must be queried from the unlabeled
training set. This is implemented by the method getRandominstances() in which a number of
instances (e.g. typically the size of the seed set) are added to the dataToLabelNext attribute of
the TrainingsData class and removed from its unlabelledDataSet attribute.

The labeling is handled in the label() method which has a Key-Value-Map as the parameter
containing the id and the label created by the user. The previously filled dataToLabelNext
attribute is used to quickly find these instances and add them labeled to the labelledDataSet.

Before the actual processing/training is started, the stopLearning() method checks whether a
stopping criterion applies. If this is the case, the learning process stops. Otherwise, the
prepareDataToLabelNext() method depicted in Listing 5 is called. Through the method call on
makePredictionsOnUnlabelledData(), the labeled training data is used to create a list of
predictions (DataFrames). With this method, the training data is used to train the ML pipeline.
For probabilistic classifiers, Spark offers cross-validation to tune the ML pipeline 3. This
concept implemented as five-fold cross validation in the getCrossValidatorModel() method
ensures that the predictions for the unlabeled data made with the ML pipeline are based on the
best model found. Depending on the classifier and query strategy chosen, either one prediction
DataFrame (for US strategies) or three prediction DataFrames (for QBC strategies) are created.
If the unlabeled dataset contains more than 400 legal documents, only 70% of randomly
selected instances are used to improve efficiency. Returning to the prepareDataToLabelNext()
method, the selected query strategy is applied to the obtained predictions to calculate an
uncertainty measure. The resulting list is sorted in ascending order based on the defined output
measure of the respective query strategy and added to the dataToLabelNext attribute. For the
perceptron, the predictions do not have any posterior probability. Hence, the field on which
sorting is performed (illustrated in Listing 5, lines 17-26) varies. Generally, as there are some
further minor differences between the both probabilistic classifiers and MLP, there are
sometimes minor specialized implementations for MLPs (e.g. getModelForMLP()).

53 http://spark.apache.org/docs/latest/ml-tuning.html (last accessed: May 12%, 2017)
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1. public boolean prepareDataToLabelNext(ALPipeline pipeline){
2
3. //make predictions on unlabelled data set with the best model found
4. List<Dataset<Row>> predictionsList = makePredictionsOnUnlabelledData(
5. pipeline);
6.
7o IQueryStrategy queryStrategy = pipeline.
8. getAlPipelineConfigurations().getQueryStrategy();
9. List<Row> uncertainRows = queryStrategy.getInstancesTolLabelNext(
10. predictionsList);
11.
12. if(uncertainRows.size() == 0) {
13. return false;
14. }
15.
16. //sort ascending
17. if (pipeline.getAlPipelineConfigurations().getClassifier()
18. instanceof IProbabilisticClassifier){
19. uncertainRows.sort(Comparator.comparingDouble(
20. o -> ( double) o.get(3)));
21.
22. } else if(pipeline.getAlPipelineConfigurations().getClassifier()
23. instanceof DefaultMultilayerPerceptron){
24. uncertainRows.sort(Comparator.comparingDouble(
25. o -> (double) o.get(2)));
26. }
27.
28. pipeline.getTrainingsData().setDataToLabelNext(uncertainRows);
29. pipeline.save();
30. return true;
31. }
Listing 5: Implementation of PrepareDataToLabelNext Method
To obtain the most informative instances within the

getMostUncertainInstancesFromPrediction() method, examples are selected from the
dataToLabelNext attribute. Depending on the query strategy, these instances are either the first
or the last elements of this list. A String-Array containing interesting information for the user
(e.g. classifier confidence) is prepared. The number of instances that are queried is based on the
configured query size.

Evaluation and Prediction

In the class PredictionPipeline the methods for both (1) evaluating the obtained pipeline model,
and for (2) using this model to only make predictions without an evaluation, are implemented.

For the first case, the method executeEvaluation() is called. There, the persisted model is loaded
and, in a manner similar to the TrainingPipeline, the test data is transformed into a DataFrame.
The loaded model is then used to make predictions on this test data. These predictions are
conveyed to the evaluator which uses Spark’s multiclass evaluator MulticlassMetrics®* to

54 https://spark.apache.org/docs/2.1.0/mllib-evaluation-metrics.html (last accessed: May 13™, 2017)
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compare the predictions with their actual label. The output of the specified evaluation measures
(see FR11) is written to a JSON object so that it can be exported or sent back to the user.

The operation of executePrediction() is essentially the same, except that the evaluator is not
used as no reference label exists to evaluate the predictions.



5.3 Classifier

An overview about possible TC classifiers was provided in Chapter 2.1.2.6. Additionally, in
Chapter 2.2.6, these classifiers were discussed in the context of AL. Several classifiers were
introduced and the three classifiers NB, SVM and MLP were described in detail. As the use of
Spark’s ML Pipeline is required, only NB, MLP, and additionally the LR were implemented.
In the current MLIib version, SVMs cannot be used as pipeline stage of an ML Pipeline.
However, as described in the data model (see Figure 27), the implementation was realized in a
manner that allows additional classifiers to be added without difficulty. This flexibility is
created through the use of the Interface IClassifier that must be implemented by all classifiers.

Naive Bayes

The implementation of Spark’s NBs classifier is effected in the class
DefaultMultinomialNaiveBayes (see Listing 6). As a probabilistic classifier, it additionally
implements the IProbabiliticClassifier interface. As mentioned above, there are differences
between these probabilistic classifiers (generative) and classifiers like MLP (discriminative).
Hence, the use of the interface is a further means to ensure readable code.

1. public class DefaultMultinomialNaiveBayes implements IClassifier, IProbabilisticClas
sifier {

public static NaiveBayes get() {
return new NaiveBayes().setFeaturesCol("features");

}

NouihbhwnN

Listing 6: Implementation of Naive Bayes

For the implementation itself, Spark’s default implementation of the Naive Bayes is used>®. The
defined feature input column is the output column of the feature vector column named features.

Logistic Regression

As a probabilistic classifier, LR also implements the respective IProbabiliticClassifier interface
(see Listing 7).

1. public class DefaultlLogisticRegression implements IClassifier, IProbabilisticClassif
ier {

public static LogisticRegression get() {
return new LogisticRegression().setMaxIter(10)
.setElasticNetParam(©.8).setRegParam(0.001);

NoulphwnN

Listing 7: Implementation of Logistic Regression

55 https://spark.apache.org/docs/2.1.0/ml-classification-regression.html#naive-bayes (last accessed: May 13™,
2017)
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Spark provides a multiclass implementation of LR® using multinomial logistics. The
conditional probabilities are modeled using the softmax function while a weighted negative log-
likelihood having an elastic-net penalty is applied to control for overfitting.

LexML’s default implementation of LR reduces the number of default iterations from 100 to
10 to increase the efficiency of the training process. The elasticNetParam is set to 0.8, which
leads to a combination of the L1 and L2 penalties, favoring the L1 penalty. The L1 penalty
should be especially helpful in cases of a high feature-dimensionality [171]. The regularization
parameter is set to 0.3.

Multilayer Perceptron

In contrast to both other classifiers, MLP is not a probabilistic classifier and does thus only
implement the IClassifier interface (see Listing 8).

=

public class DefaultMultilayerPerceptron implements IClassifier {

w N

public static MultilayerPerceptronClassifier get(int noOfFeatures, int numberOfC

lasses){
4 noOfFeatures = ((noOfFeatures == 0) ? (int) Math.pow(2,12): noOfFeatures);
5. int[] layers = new int[] {noOfFeatures, 20, 10, numberOfClasses};
6. return new MultilayerPerceptronClassifier()
7 .setFeaturesCol("features")
8. .setLayers(layers)
9. .setBlockSize(128)
10. .setSeed(1234L)
11. .setTol(1E-6)
12. .setMaxIter(100);
13. }
14. }

Listing 8: Implementation of Multilayer Perceptron

Spark’s MLP is an implementation of the described feedforward ANNSs applying the back-
propagation algorithm. While nodes in the intermedia layers use the logistic function, nodes in
the output layer use the softmax function.

LexML’s default implementation of the MLP has four layers: the size of the input layer is
specified in the ALPipelineConfigurations class by the numberOfFeatures attribute. Its default
value is 213, The number of nodes of the two intermediate layers is by default 20 and 10,
respectively, and the size of the output layer is equivalent to the number of defined labels. For
the other configurations, Spark’s default settings are used.

%6 https://spark.apache.org/docs/2.1.0/ml-classification-regression.html#multinomial-logistic-regression (last
accessed: May 13", 2017)


https://spark.apache.org/docs/2.1.0/ml-classification-regression.html#multinomial-logistic-regression

5.4 Query strategies

As described in Chapter 2.2.5, a variety of possible query-strategy frameworks for searching
for the most informative instances for the classifier exist. Each of those frameworks has
different advantages and disadvantages, which were discussed in that chapter. As indicated in
the illustration of the data model (see Figure 27), query strategies from both the US framework
and the QBC framework are implemented in LexML. All strategies have in common that they
implement the interface 1QueryStrategy to improve the flexibility, extensibility and readability
of the code. In this interface, the method getinstancesToLabelNext() that must thus be
implemented by all query strategy classes is defined. The purpose of this method is to apply a
query strategy in which a measure (the informativeness measure) is calculated that should
express the utility of each instance.

Uncertainty Sampling

Due to its simple implementation and its efficiency benefits compared to QBC strategies, US
IS in practice a very common AL query strategy. Two query strategies for this approach
introduced in Chapter 2.2.5 are implemented in LexML. As a discriminative classifier, the
predictions of MLP do not have any probability that can be used as an informativeness measure
to calculate a score. Hence, the two US strategies detailed below can only be used with classes
implementing the IProbabiliticClassifier interface. Classes implementing this interface receive,
via the getinstancesToLabelNext() method, a list containing one DataFrame with predictions.
Each instance of this DataFrame has several columns (fields) like the id, the text that was used
for learning, the predicted label, and a probability vector in which the probability for each
defined label is indicated. This vector is used for these learning strategies. The highest
probability in this vector reflects the actual predicted label for this instance.

Uncertainty Sampling — Margin Sampling Strategy

The margin sampling strategy is implemented in LexML as depicted in Listing 9. The basic
concept is that the classifier has difficulty in differentiating between instances for which the
margin between the highest and second highest probability in the vector is exceedingly small.

1. private double calculateMarginProbability(Vector probabilities){
2

3 // get highest probability

4. int maxIndex = probabilities.argmax();

5. double max1l = probabilities.apply(maxIndex);

6

7 // get second highest probability

8. double[] probabilitiesArray = probabilities.toArray();
9. probabilitiesArray[maxIndex] = 0.0;

10.

11. int maxIndex2 = probabilities.argmax();

12. double max2 = probabilities.apply(maxIndex2);

13.

14. return maxl - max2;

15.

16. }

Listing 9: Implementation of Margin Sampling
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Hence, the margin is calculated using the two highest probabilities in the probability vector.
The difference between these probabilities is then used as a informativeness measure in this
query strategy. The instances having the smallest distance are the most helpful ones.

Uncertainty Sampling — Entropy Strategy

In contrast to the margin sampling, the entropy strategy has the advantage that all probabilities
are used to calculate the informativeness measure, not only the two highest ones. This more
general approach is illustrated in Listing 10, in which the Shannon entropy is calculated.

1. protected static double calculateEntropy(double[] probabilities) {
2

3 double entropy = 0;

4 for (int i = @; I < probabilities.length; i++) {

5. entropy -= (probabilities[i] > 1le-7)

6. ? probabilities[i] * (Math.log(probabilities[i]))
7 . 0;

8 }

9

10. return entropy;

11. }

Listing 10: Implementation of Entropy Strategy

To improve efficiency, only probabilities above a certain threshold are included in this
calculation. The entropy is then calculated by iterating across the probabilities and adding the
product of each probability to the logarithm of this probability. The instances with the highest
resulting sum have the largest information content. Hence, knowing their label would best assist
the classifier in differentiating between the classes. The instances having the highest entropy
are selected to be labeled in a next step.

Query by Committee (QBC)

Compared to US methods, QBC strategies do not use only one classifier, but rather a committee
of classifiers (at least two). The idea is that by using several classifiers, the version space can
be better covered and the search for informative instances can be further narrowed. As this
method is time-consuming, its eligibility for AL and TC with a huge version/feature space is
limited. Nevertheless, as discussed in Chapter 2.2.5, it is a promising approach, and is therefore
implemented in LexML. AIll classes that use a QBC strategy have the
AbstractQueryByCommittee class as parent and implement the IQueryStrategy interface. As
several classifiers are used in this strategy, the list parameter of the getinstancesToLabelNext()
method here contains more DataFrames with predictions, depending on the size of the
committee.

For the committee creation, no enhanced strategy like AdaBoost or Query-by-Bagging/Boosting
is currently implemented for the creation of the individual classifier. Instead, each classifier
utilizes a minor variation of the training set. This is enough to create a set of different classifiers.



To measure the disagreements between this created committee, the two strategies below are
implemented in LexML. As both strategies refer to the vote entropy strategy, both methods are
implemented in the class AbstractQBCEntropy.

Query by Committee — VVote Entropy Strategy

The simplest QBC strategy discussed in the theoretical part of this work was vote entropy, in
which the fraction of the number of votes divided by committee size is multiplied by the
logarithm of this fraction and accumulated across all labels.

The implementation of this algorithm in LexML is depicted in Listing 11. In contrast to both
implementations of the US strategy, this QBC strategy does not have a probability vector as a
parameter, but a Key-Value Map called idVoteMap. The id of this map is equivalent to the id
of this instance in the training set. The int-Array has the same length as labels were created by
the user. In this Array, each Array-index represents a certain label based on the mapping defined
in the labelMap. For instance, assuming the idVoteMap is {“id 17, [2,0,0,1]}, there are four
defined labels and three committees. Two committees have predicted the label 0.0 for this
instance and one the label 3.0. This number can then be mapped to a label name via the
labelMap.

1. protected Map<String[],Double> countVotesPerLabel(Map<String,int[]> idVoteMap){
2o

3.

4. Map<String[],Double> idFinalVoteMap = new HashMap<>();
5.

6. for(Map.Entry<String,int[]> entry : idVoteMap.entrySet()){
7. int[] votes = entry.getValue();

8.

9. double fraction;

10.

11. double sum = 9;

12. int counter=0;

13. int max = ©;

14. String[] key = new String[2];

15.

16. for(int vote : votes){

17. fraction = vote / (double) getComitteeSize();
18.

19. if(vote != 0){

20. fraction *= Math.log(fraction);

21. }

22. if(vote > max){

23. key[1] = String.valueOf(counter);

24. max = vote;

25. }

26.

27. sum += fraction;

28. counter++;

29. }

30. key[0] = entry.getKey();

31. idFinalVoteMap.put(key, -sum);

32. }

33.

34, return idFinalVoteMap;

35. }

Listing 11: Implementation of Vote Entropy Strategy
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The map returned consists of a String Array of the length two as key, and the calculated vote
entropy as value. The first field of the key is the id received from the idVoteMap. The second
field is the index of the label that was selected most frequently — this is displayed to the user.
The algorithm itself is implemented as described above: it is iterated over each instance Array
containing the votes of the classifier. The entropy is calculated by adding up all the products.
The instances having the highest entropy are the most useful ones.

Query by Committee — Soft Vote Entropy Strategy

This strategy is similar to the previous one but also includes the output probability of the
classifiers for the predicted labels in the algorithm. Instead of taking the absolute number of
votes for a label, the average probability that an instance is labeled correctly is calculated.

1. protected Map<String[],Double> calculateSoftVoteEntropy(Map<String,
2 double [][]> idVoteMap){

3

4. Map<String[],Double> idFinalVoteMap = new HashMap<>();

Do double [] averageMaximumProbabilities = new double[idVoteMap.size()];
6

7 int counterEntrySet = 0;

8. for(Map.Entry<String, double[][]> entry : idVoteMap.entrySet()){
SH double [][] probabilityArray = entry.getValue();

10. double probabilitySum = 0;

11.

12. // get average maximum probability of probability vector
13. double [] averageProbabilities = new double[getNumberOfLabels()];
14.

15 for(int i = 9; i < getNumberOfLabels(); i++){

16.

17. for(double[] probabilities : probabilityArray){

18. probabilitySum += probabilities[i];

19. }

20.

21. double averageProbability = probabilitySum / (double)
22. getComitteeSize();

23.

24. if(averageProbability != 0){

25. averageProbabilities[i] = -averageProbability *
26. Math.log(averageProbability);

27. }

28. }

29.

30. double max = 0.09;

31. int counterSelectedLabel = 9;

32. String[] key = new String[2];

33. for(double maxAverageProbability : averageProbabilities){
34. if(maxAverageProbability >= max){

o averageMaximumProbabilities[counterEntrySet] =
36. maxAverageProbability;

37. max = maxAverageProbability;

38. key[1] = String.valueOf(counterSelectedLabel);
39. }

40. counterSelectedLabel++;

41. }

42. counterEntrySet++;

43.

44, key[@0] = entry.getKey();

45, idFinalVoteMap.put(key, max);



46. }
47. return idFinalVoteMap;
48. '}

Listing 12: Implementation of Soft Vote Entropy Strategy
The manner in which this algorithm is implemented in LexML in the
calculateSoftVoteEntropy() method is indicated in Listing 12. As with the vote entropy strategy,
the method receives an idVoteMap with an id as key. The value is a two-dimensional array
having the same number of rows as the number of committees created. The probabilities for
each predicted label are stored in the columns.

By iterating over these probability arrays and the labels, the average probability is calculated
as a first step. This averaged probability is then multiplied by the logarithm of this averaged
probability, as described above. The average probability of each label is then stored in the
appropriate index of the averageProbabilities Array. In the next step, this array is scanned to
find the maximum value. This value is then used as an informativeness measure — particularly
high values are assumed to be more supportive. The map returned is built in the same manner
as the previous strategy. Again, the instances having the highest entropy are selected to be
labeled in a later step.
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5.5 Frontend

To deliver an intuitive operation of AL service, Lexia was complemented with an additional
ML Ul, as indicated in Figure 24.

In Figure 28, the landing page of this additional Ul, the overall starting point, is depicted. From
there, the user can create a new pipeline or select an existing pipeline either to configure it or
use it for training. The latter is only feasible after configuration. Additionally, the user is
presented some information about the type of pipeline, the creation date, and the date of the last
training.

R R e st B 55 ]

Create new pipeline

ra— :ﬂ

Select a pipeline

Figure 28: Lexia's ML Landing Page
Source: Own illustration

To ensure the simple configuration of an AL pipeline, it is completed in a step-by-step process
on a supplementary configuration page. The first step in this process is to create the labels that
will later be possible classification classes. The next step is to import the textual data that is
used for learning. Figure 29 displays this step for NC. The user sees a list of laws for which
Lexia’s sentence segmenter has already created at least one sentence annotation. After selecting
one or more laws, the user has the option of narrowing the import to specific word types. For
instance, where the flag is set to “Verb”, then only the verbs of sentences, rather than entire
sentences, are imported into LexML. The button “Import BGB Mietrecht” refers to the
evaluation of NC (see chapter 6.1.3).
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Figure 29: Importing of Legal Texts
Source: Own Illustration

The importing of documents works slightly differently. Here, specific documents cannot be
selected, but the maximum number of each document type that should be imported into LexML
can be specified.

Once the legal data has been imported from Lexia into LexML, the number of imported
sentences or documents is visible to the user.

The last configuration step is to configure all necessary AL settings, such as the classifier, the
query strategy, stopping criterions, and the size of the seed set and query set (see Figure 30).
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Figure 30: Configuring AL settings
Source: Own illustration
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Once an AL pipeline has been configured, it is ready to be processed. The starting point for all
activities that refer to the training or the evaluation or prediction of an AL pipeline is the
processing page, which can be reached from the landing page. From here, the user can
commence the AL process either with or without evaluation of the learning progress. In cases
where this training process has been executed once so that a pipeline model has been created,
evaluation of this trained pipeline model is possible. Furthermore, this model can be used to
make predictions about the remaining unlabeled instances.

In Figure 31, the labeling of instances, exemplified for DC, is illustrated. As the id of a Lexia
annotation is persisted in LexML, more information about the legal document, such as its title
and the promulgation date, can be retrieved from Lexia and displayed to the user. As the user,
in this example, is already on the second learning round, the prediction made by the classifier
and its confidence are also visible to the user. To engender a degree of understanding of the
label of the legal document, the beginning of the content of the document is also made available.
The label must then be marked in the dropdown menu in the rightmost column so that it can be
used for learning in the next round.

Process your imported legal texts

Pipeline: Document_Classcation 4

Please continue learning untll a stopping criterion is met

Current Learning Rownd: 2 Minimum Rounds To Go: 0 Maximum Reunds To Go 1

the Promuigation Date Prediction Confdence %) Label

Unteyen nabeevortiog 0us der Zeit vor 1997 152 bei §4 Abs dg ESIG 20 berGohsichtigen | Fravis Wed Now 15 genericlegaidocument  O5714157137365261

mwerse sur IV -Cntscheidung IV R 4801 vom 01.04.2004 230000 CLT 2006

Figure 31: User View When Labeling Legal Documents
Source: Own illustration

Once the training process is complete, the resulting model can be used either for evaluation if
a test set was created, or for predicting unlabeled instances. On the evaluation page, all general
important evaluation metrics (see Figure 32) are visible to the user. In addition, these evaluation
measures can be exported in xIsx format for further analysis.
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Figure 32: Visualization of General Evaluation Measures
Source: Own illustration
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6 Evaluation

The evaluation chapter comprises two key sections. The first deals with the assessment of the
classification results obtained in DC and NC using Lexia and LexML. The second verifies the
that the built prototype achieves the objectives and requirements defined in Chapter 4.2.

6.1 Evaluation of Legal Text Classification

As LexML was constructed to be particularly flexible and customizable, both classification
objectives can be conducted with only minimal adjustments. The basic AL setting are the same
for both tests (see Chapter 6.1.1). Following a description of this basic experimental design, the
particularities and results of each type are detailed.

6.1.1 Experimental Design

This section provides an overview of the experimental design used for DC and NC. The
objective is to generate insight into how well DC and NC work utilizing Spark MLIib and
German legal texts. Furthermore, the effectiveness of each classifier is analyzed using different
query strategies. In LexML, three classifiers (NB, LR, and MLP) and four query strategies (US:
margin sampling, vote entropy; and QBC: vote entropy, soft vote entropy) were implemented.
As MLP does not produce an output score, only the QBC vote entropy approach could be used
with this classifier. At the end, nine different AL combinations are evaluated (see Table 13).
Additionally, for each classifier, the performance of random learning (RL), also called passive
learning (PL), is tested. Thereby, in each learning round random instances are queried from the
dataset without applying any query strategy.

Classifier Query Strategy
Multinomial Naive Bayes Entropy, Margin Sampling, QBC Vote Entropy, QBC Soft VVote Entropy
Logistic Regression Entropy, Margin Sampling, QBC Vote Entropy, QBC Soft VVote Entropy
Multilayer Perceptron QBC Vote Entropy

Table 13: Combination of All Evaluation Settings Used

To improve the significance of the classification, each of the 12 combinations was executed
five times. The average result of the five rounds was then used as reference value.

As LexML was designed to handle different kinds of TC, the basic process was the same for
both DC and NC and was conducted as described in Chapter 4.3.3. The only difference from
this chapter was that the labeling was not executed by a user, but by a computer simulating the
labeling process to shorten the duration of the experiment. This was possible as a large labeled
dataset for both classification types was available. In order to highlight a number of the specific
characteristics of this process, it is summarized below.

Essentially, for both experiments, the existing labeled dataset was divided into a training set
and an independent test set. The training set was composed of a dataset containing the unlabeled
data, and one containing the already labeled data. At the beginning, all training data was added



to the unlabeled dataset. The labeled dataset consisted only of the dummy variables created (see
Listing 3).

In the first round alone, several random instances were selected from the unlabeled training set,
labeled by the computer and added to the labeled training set. This labeled training set was used
to train a pipeline model using a Spark ML Pipeline (see Listing 4). The ML pipeline consisted
of four (DC) or rather three (NC) of the following stages. First, a tokenizer split up the textual
content into single words. In case of DC, these words were then searched for occurring German
stop words, which were removed. This action was not performed for NC, as certain word
sequences containing stop words there are meant to aid in distinguishing between classes. For
both experiments, the (remaining) sequence of terms was mapped to their term frequencies (TF
vector). In a final step, this feature mapping was used by the classifier for training. The resulting
pipeline was subsequently utilized to make predictions about the unlabeled dataset. For both
generative classifiers used, five-fold cross validation was applied to ensure that the predictions
were made with the best model found. Based on the selected query strategy, the most
informative instances were removed from the unlabeled dataset, labeled by the computer, and
added to the labeled dataset. This learning process was repeated until all instances from the
unlabeled training set had been labeled. After each round, the resulting pipeline model was
applied to the test data to evaluate the performance of the model used. The evaluation measures
obtained were exported to an xIsx file so that the learning could be analyzed in a suitable manner
(see Figure 33).
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Figure 33: Example of Exported Evaluation Results in DC
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6.1.2 Document Classification

The first classification objective was to classify multiple legal documents into created
categories (multiclass classification). An introduction about this topic is provided in Chapter
2.3.2. In what follows, the data used and AL settings, as well as the results of the evaluation are
described.

6.1.2.1 Data Used

The dataset for conducting DC was provided by DATEV®'. It consists of more than 132,000
xml documents. From this set, 1,000 documents were randomly selected and imported into
Lexia using its existent import functionalities. As these documents had been manually
annotated by DATEV, Lexia could already assign them to the correct class. While DATEV’s
classification is finely grained, Lexia consolidates this classification into three main document
types. This mapping is depicted in Table 14 where the column “Class” complies with Lexia’s
document classes, and the column “Sub-classes” with the classes used by DATEV. In this
experiment, the three labels provided by Lexia are utilized.

Class Sub-classes

” » Gesetzestext (Gesamttext), Richtlinie (Gesamttext),
Ly (o) EU-RichtIinié (Gesamtte)zt), ( :
Judgment (“Urteil”) Urteil, Beschluss, Gerichtsbescheid
Aufsatz, Anmerkung, Verfligung, Verfiigung (koordinierter Landererlass),
Kurzbeitrag, Erlass, Erlass (koordinierter Landererlass), Schreiben,
Schreiben (koordinierter Landererlass), Ubersicht, Mitteilung
Table 14: Lexia’s Legal-Document Mapping

Generic legal document
(“Sonstige Dokumente”)

The imported dataset comprised:

e 128 laws (12.8%),
e 655 judgments (65.5%) and
e 216 generic legal documents (21.6%).

This unbalanced distribution reflects common real-world scenarios and provides a realistic
sample. Although the number of labels (three) is low for a multiclass classification problem,
the unequal distribution makes the classification more complex.

As legal documents, especially laws, can be very long, the imported textual content that is used
for ML was limited to the first 4,096 characters to increase the efficiency of AL. Assuming an
average word length of 10 letters, approximately the first 410 words of each document were
imported into LexML and used for AL. After the stop-words had been removed, the textual
content was transformed into the TF vector described (bag of words representation) and used
by the classifier.

57 https://www.datev.de/



6.1.2.2 Data preparation

As the dataset available for DC is extremely large, a large test set with 500 randomly selected
documents was created in LexML. The remaining 500 documents were used for iterative
training. Consequently, the training dataset consisted of:

e 65 laws (13%),
e 327 judgments (65.4%) and
e 108 generic legal documents (21.6%),

and the test dataset of:

e 64 laws (12.8%),
e 328 judgments (65.6%) and
e 108 generic legal documents (21.6%).

6.1.2.3 AL Pipeline Preparation

While the selection of the classifier and query strategy changed every five rounds, the basic AL
pipeline configurations remained the same for each DC experiment. These basic configurations
are presented in Table 15.

Name Configuration
Number of learning rounds (stopping criterion) 97
Size of seed set 15
Size of query set 5

Table 15: Basic AL Pipeline Configurations Used in the DC experiment

In the first round, 15 random instances were queried from the unlabeled training set, labeled
and used for learning (seed set). In the next rounds, either the five most informative instances,
in the case of a query strategy, were used or otherwise, five random instances were removed
from the unlabeled training set, labeled and added to the labeled training set. As all documents
of the training set should have been labeled, 97 learning rounds were conducted (15 + 97*5 =
500).

6.1.2.4 Evaluation

As described in Chapter 6.1.1, each combination of classifier and query strategy was executed
five times (see A.1  Examples for Averaging the Learning Rounds). The average value for
five rounds was then used to answer the following four main questions:

1) Which implemented classifier performs best?

2) Is AL superior to PL?

3) Which implemented query strategy performs best?

4) Which documents are best recognized by the classifier(s)?
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To answer these questions, some of the common evaluation measures described in Chapter
2.1.2.7, and the learning curves described in Chapter 2.2.8 are used.

1) Which Implemented Classifier Performs best?

Figure 34 compares the three implemented classifiers performing PL in which the labeling
sequence is not considered and only random instances are queried (without using any query
strategy). While all classifiers have a good accuracy of between 70%-80% from the start (15
labeled instances), NB’s and MLP’s slope is steeper than LR’s one. Once about 50% of the
instances (250) have been labeled, the accuracy of all classifiers increases only marginally.
Both the NB and MLP yield continuously more or less the same accuracy, having a final
maximum accuracy of about 95,5%. By contrast, LR achieves only a final average accuracy of
~92%.

Hence, in case of DC, NB and MLP are undoubtedly the better choice, as they learn faster and
achieve a higher overall maximum accuracy.
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Figure 34: Comparison of Classifiers Conducting PL
Source: Own illustration

2) Is AL Superior to PL?

Figure 35 compares the PL curves, known from Figure 34, to the average accuracy of each
classifier consolidating the result of all query strategies used (consolidated accuracy). For
instance, in case of NB, the average accuracy obtained from the four query procedures — margin
sampling, vote entropy, QBC vote entropy, and QBC soft vote entropy — was again averaged
(see Table 13).

It becomes evident that AL is clearly superior to PL as the average accuracy of all classifiers
using AL is above the accuracy of PL until a certain point. Regardless of which classifier is



employed, AL methods result in a much faster learning. NB and MLP achieve their maximum
accuracy at already about 35%-40% of the labeled instances (175-200). Labeling the remaining
300 instances does not result in a better accuracy. Moreover, LR performs far better when using
AL. It attains its maximum at about 55% of the labeled instances (275), reaching an even higher
accuracy (~94,5%) than when labeling all instances.

Average Accuracy of Classifiers using AL vs. PL
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Figure 35: Average Accuracy of Classifiers Using AL vs. PL
Source: Own illustration

As the number of labeled instances increases, both curves of one classifier converge and
intersect at a certain point. Until this point, AL is superior to PL.

Hence, one can conclude that AL is markedly superior to supervised learning in the case of DC,
not only due to faster learning, but also because of the achievement of a higher maximum
accuracy while using more than 40% fewer instances. This is especially valid for LR. Other
evaluation measures depicted in appendix A.2 Overall evaluation of DC confirm these
findings.

3) Which Implemented Query Strategy Performs best?

Figure 36 shows the learning curves of the NB classifier together with each implemented
learning strategy, as well as the one conducting PL. It appears that it does not matter which
query strategy is used: AL is always superior. It is also observable that all four query strategies
show almost the same learning curve. In this case, the use of more elaborate and time-
consuming QBC procedures does not result in better learning for the classifier.
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Comparison of Query Strategies (NB)
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Figure 36: Comparison of Query Strategies (NB)
Source: Own illustration

Figure 37, in which the several learning curves of LR are compared, shows similar findings.
Apart from the vote entropy strategy, the other query strategies have the same curve
progressions, all superior to PL. The vote entropy strategy exhibits some problems at the
beginning, but, at around 30% of the labeled instances, it adapts to the other strategies and from
that point on is superior to PL.

Comparison of Query Strategies (LR)
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Figure 37: Comparison of Query Strategies (LR)
Source: Own illustration
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It is difficult to say whether the vote entropy strategy fits LR in case of DC. As the accuracy
increases sharply after =12%, it is more likely that the randomly queried instances at the
beginning misled the classifier to query in the “wrong direction”. The viewing of the individual
learning rounds (see Figure 49) strengthens this theory as the results from two rounds are very
good, and another two rounds yield results comparable to the other query strategies. Only in
one round does it initially show a poor performance, which, however, decreases the average
value considerably.

In summary, in the DC experiment it could not be concluded that one query strategy constantly
outperforms the others. Rather, it appears that all the query strategies work equally well.

4) Which Documents are best Recognized by the Classifier(s)?

Figure 38 illustrates the classification performance per document class, utilizing the average F1
of each classifier consolidating the result of all query strategies (consolidated F1 for NB, LR
and MLP). This consolidation can be accomplished without falsifying the outcomes, as the
previous evaluation analysis has demonstrated that all query strategies work equally well.
Judgments are recognized very well from the start. It may be that this the case because
judgments are by far the most frequent documents in the training and test sets. Hence, the
probability that judgments are initially queried is high. After 10%-20% of the labeled instances,
laws are recognized as well as judgments are, having an average Fi1 of more than 96%. In
contrast, all classifiers have problems recognizing generic legal documents. Although the curve
increases strongly in a manner similar to the one for laws, the average maximum F1 value never
exceeds the 90%. This might be on the result of the great variety of types of legal document
that are consolidated in this class (see Table 14). It is possible that some subtypes of these
documents in the test set might not have been part of the training set.
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Figure 38: Average Accuracy of All Classifiers per Class
Sonrce: Own illustration
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In the preceding pages, it was demonstrated that NB is most stable and most precise classifier.
Viewing only the averaged results of this classifier per document class, very similar curve
progressions are observable, except that the slope is slightly steeper and the maximum F1 value
is minimally higher for all three document classes. Nevertheless, the class generic legal
document (generic) does not achieve 90%.

Average F, of NB per Class
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Figure 39: Average F1 of NB per class
Source: Own illustration

These curves become clearer when the final confusion matrix of the NB classifier is viewed
(see Table 16). The predictions are illustrated in the columns while the rows reflect the correct
label. Hence, 63 laws were correctly classified, resulting in an average precision of 100% and
a recall of 98%. Only one law was misclassified as a generic legal document. All 328 judgments
in the test set were classified correctly, achieving a recall of 100%. However, as 20 generic
legal documents were also classified as judgment, the precision is only 94%. All other generic
legal documents were recognized as such, reaching a precision of 98% and a recall of 81%.
The distribution of the precision and recall curves for NB can be found in the appendix (see
A.3  Fi, Precision and Recall per Class for DC).

Generic Legal

Law Judgment Document
Law 63 0 1
Judgment 0 328 0
Generic Legal Document 0 20 88

Table 16: Final Confusion Matrix for DC Using NB as Classifier
Sonrce: Own illustration

In summary, it can be concluded that the document types law and judgment are recognized very
well by the classifier, especially by NB and MLP. In contrast, although almost 90% is still a
very good F1 score, the correct classification of generic legal documents was more difficult for
all classifiers.
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6.1.3 Norm Classification

The second classification objective was to classify the content of legal documents, as presented
in Chapter 2.3.3. As a result of the flexible design of LexML, the basic experimental settings
described in Chapter 6.1.1 differ only in one respect: the pipeline stage stop-word removal is
eliminated for the norm classification experiment. As in the previous section, the data used, the
adjusted AL settings, and the evaluation results obtained are described.

6.1.3.1 Data Used

In order to prepare a suitable dataset, a legal expert assigned to a specific category each sentence
in the law of tenancy section (“Mietrecht”) in the German civil code (BGB, 8535-8595)
published on March 1%, 2017. The result was 532 labeled sentences using 16 different labels.
As eight of the 16 labels had a support lower than 1.2%, they were removed from the dataset.
The 504 remaining sentences were composed of the eight classes presented in Table 17.

Class Sub-classes Occurrences | Support
Gebot (positiv/negativ/Soll-Pflicht (H)), o
Recht Verbot (/Duldung (U)) 126 25.00%
Pflicht Erlaubnis (/Erlaubnis beschrankt), Erméchtigung 109 21.63%
Unwirksamkeit (/Wirksamkeit beschrankt
Einwendung (sachlich)/(personlich)), Unzulassigkeit (/Zulassigkeit 92 18.25%
(Einw rh) beschrénkt), Ausschluss (/Ausschluss beschrénkt), ‘
Nichtigkeit
Rechtsfolge Rechtzuweisung (/Rechtsubergang), Pflichtzuweisung 50 9,920
(RF vAwW) (/Pflichterweiterung), Rechtseigenschaft, Freistellung oern
Form, Frist (/Falligkeit), MaBstab (inkl. .
VR Beriicksichtigung), Entscheidungskompetenz L S
. Direkt § /direkt VVorschriftenkomplex, Analog § 0
Verweisung /analog Vorschriftenkomplex, Negativ 46 9.13%
Fortfiihrungsnorm Aus_nahme, Erweiterung, Einschrankung, 19 3.77%
Gleichstellung
Definition Direkt, Indirekt, Negativ 13 2.58%
504 ~100%

Table 17: Taxonomy of Dataset Used for NC

The “class” column represents the label that was used as the classification class in this
experiment. As described for DC, all classes referring to one of the sub-classes are consolidated
to the parent class.

The data distribution was similar to that for DC — a high imbalance, with a range from only
~2.5% support to 25% support. Additionally, the number of labels increased from three to eight.
As additionally the textual content available to differentiate between the individual classes is
much less, this classification problem is far more complex than the DC experiment.

The 504 sentences listed were prepared in csv format and imported into LexML. An extract of
this csv file is provided in appendix B.1 Prepared csv-file for NC. The preparation of this
dataset for training and evaluation in LexML is described in the section that follows.
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6.1.3.2 Data preparation

As the available dataset for NC is smaller than the one used for DC, only 126 sentences of the
dataset (25%) were randomly added to the test set. The remaining 378 sentences (75%) were
used for iterative training. The detailed allocation of training and test data for the NC
experiment is presented in Table 18.

Class Training | Support Test Support
Recht 96 25.40% 30 23.81%
Pflicht 83 21.96% 26 20.63%
Einwendung rh 61 16.14% 31 24.60%
RF vAw 40 10.58% 10 7.94%
Verfahren 39 10.32% 10 7.94%
Verweisung 39 10.32% 7 5.56%
Fortfilhrungsnorm 11 2.91% 8 6.35%
Definition 9 2.38% 4 3.17%

378 126
(75%) ~100% (25%) ~100%

Table 18: Allocation of Training- and Test Data
Source: Own illustration

6.1.3.3 AL Pipeline preparation

While the possible combinations of the classifiers and query strategies remained the same, the
basic AL pipeline configurations were adapted to the modified training set. The configurations
used for NC are presented in Table 19.

Name Configuration
Number of learning rounds (stopping criterion) 72
Size of seed set 18
Size of query set 5

Table 19: Basic AL Pipeline Configurations Used in the NC Experiment

Due to the more complex situation, the size of the seed set was increased from 15 to 18 to
increase the probability of discovering more class types. These 18 random instances were
queried from the unlabeled training set, labeled and used for learning in the first round (seed
set). In the subsequent rounds, again either the five most informative instances in the case of a
query strategy were used; or five random instances were removed from the unlabeled training
set, labeled and added to the labeled training set. As all sentences of the training set should
labeled, 72 learning rounds were conducted (18 + 72*5 = 378).
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6.1.3.4 Evaluation

The evaluation process and the evaluation measures are the same as described for DC. Each
combination of classifier and query strategy was executed five times. The average value of five
rounds was then used to answer the same four questions:

1) Which implemented classifier performs best?

2) Is AL superior to PL?

3) Which implemented query strategy performs best?

4) Which norms are best recognized by the classifier(s)?

1) Which Implemented Classifier Performs Best?

Surprisingly, in this case is the performance of the classifiers in reverse order to that for DC.
From the start, LR achieves the highest accuracy, obtaining an average maximum accuracy of
~73%. The MLP attains about 66%, and NB only about 55%.

However, that the classification task is more complex than DC is clearly observable. Both the
slope of the learning curve is much flatter and the maximum accuracy of the best classifier is
more than 20% lower than the one attained with the best classifier in DC.

Comparison of Classifier conducting PL
100.00
90.00
80.00
70.00 . .............. ®eceegece®®

6000 —eeee :
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40.00 *
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1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73

Labeled Instances (%)

------ Naive Bayes (random) eeee°< | ogistic Regression (random) Perceptron (random)

Figure 40: Comparison of Classifiers Conducting PL
Source: Own illustration

Nevertheless, in case of NC, LR is clearly the best choice as it consistently achieves the highest
accuracy.
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2) Is AL Superior to PL?

As with DC, the consolidated accuracy (using the average accuracy of all four combinations
of LR and NB) is opposed to the accuracy obtained from PL (random approach) to evaluate
this question (see Figure 41).

Average Accuracy of Classifiers using AL vs. PL
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Labeled Instances (%)

Naive Bayes @~ eeeeee Naive Bayes (random)
e | ogistic Regression ~ ececee Logistic Regression (random)
Perceptron Perceptron (random)

Figure 41: Average Accuracy of Classifiers Using AL vs. PL
Source: Own illustration

The evaluation again emphasizes that AL is superior to PL, although the differences are not as
strong as they were for DC. Particularly for MLP, there is hardly any difference between PL
and AL learning using the QBC vote entropy strategy.

However, the use of AL results in faster learning and a higher overall maximum accuracy for
the classifiers LR and NB. The impact of AL first becomes visible after labeling about 10%-
20% of the instances (=37-75). This is probably caused by the large version space that must be
discovered by the classifier before it can be searched for useful instances to delimit it in a
meaningful way. After that point, the AL procedures consistently achieve a higher accuracy
until 70%-80% of the labeled instances. The accuracy at the point of having labeled about 40%
(NB) and 55% (LR) is even minimally higher than the final accuracy using the whole training
set. Labeling the remaining instances is not useful for the classifier: it is unhelpful due to
overfitting of the classifier.

Hence, the results of the NC show that AL is preferable to PL, even if the results are not

significant for MLP. The classifiers NB and LR yield a better result having labeled only about

half of the instances in the training set. Other evaluation measures are depicted in appendix B.2
Overall evaluation of NC.



At this point, the importance of having a seed set of a high quality should be reconsidered.
Figure 42 shows the curve progressions of the five AL rounds using LR as classifier and US
vote entropy as query strategy. It is observable how essential an early discovery of the version
space is. As the seed set was created randomly, these progression curves exhibit major
differences in the beginning. A balanced seed set having higher coverage of the version space
results in an almost 20% higher accuracy having labeled only 17% of the instances. Further, a
maximum accuracy of almost 80% can be achieved having labeled only 35% of the instances.
This represents an increase of more than 6% compared to PL while using 65% fewer instances.

Average Accuracy of LR using Vote Entropy Strategy
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Figure 42: Average Accuracy of LR Using Vote Entropy Strategy
Sonrce: Own illustration

3) Which Implemented Query Strategy Performs best?

Figure 43 and Figure 44 provide an overview of the performance of the individual query
strategies applicable for NB and LR. The outcome of the previous questions is again confirmed.
After a certain discovery phase, compared to random learning, all query strategies are almost
always predominant until a specific point.

When using NB, the vote entropy strategy showed the best performance, reaching an average
maximum accuracy of 60% in the five rounds. All other strategies exhibit a very similar curve
so that no noticeable difference is observed at the beginning. But after approximately 50% of
the labeled instances, the margin sampling strategy intersects with the random learning curve,
whereas the other learning curves intersect much later (at 80%-90% of the labeled instances).

Looking at the curve progressions of LR, again no noticeable difference is observable. After
the discovery phase, all classifiers have a very similar form and intersect with the random
learning curve roughly at the same point (=65% of the labeled instances). Only the QBC vote-
entropy strategy shows a short downturn at ~30%, but adjusts in relation to the other strategies
quite soon.
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Comparison of query strategies (NB)
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Figure 43: Comparison of Query Strategies (NB)
Sonrce: Own illustration

In summary, in the evaluation of NC, no query strategy has been shown to be predominant
relative to the others. However, the superior results of the vote-entropy strategy when using NB
as classifier again demonstrate that the more elaborated QBC strategies are not necessarily
better.

Comparison of query strategies (LR)
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Figure 44: Comparison of Query Strategies (LR)
Source: Own illustration



4) Which Norms are best Recognized by the Classifier(s)?

To answer this question, the results of the best classifier, LR, are discussed below. A short
overview about the results of the other classifiers is given in appendix B.3 F1, Precision
and Recall per class for NC.

Average F; of LR per class
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Figure 45: Average F; of LR per Class
Source: Own illustration

Figure 45 illustrates the classification performance per class (norm) using the average F1of LR
consolidating the result of all query strategies (consolidated F1). This consolidation can also be
performed for NC again without falsifying the outcomes as all query strategies work equally
well.

The different results of the individual labels are very noticeable. While norms belonging to the
class Einwendung rh (Einw rh) are well recognized, soon having an F1 of almost 90%, towards
the end, norms referring to the class Definition or Verfahren cannot be classified easily by a
classifier. The reason for the low end-value for the class Definition might be their low support
— less than 3% — resulting in only a very small training set. However, the training set for the
class Fortfuhrungsnorm contains only two more instances and this has an F1 value of more than
80%. Hence, the classifier might have problems distinguishing a Definition from another class,
or the kind of Definitions in the training set vary from those of the test set (e.g. a different sub-
class). As the class Definition has 100% precision but a low recall (see Figure 46 and Figure
47), the reason is probably the latter. As the argument that the training set is too small does not
apply for the class Verfahren (which comprises almost 10% of the instances in the dataset), and
both the precision and recall are low, the reason for the poor performance is probably caused
by a lack of distinction. Although the number of training instances is high for the class Pflicht,
the classifier has problems recognizing them. As both precision and recall are low, possible
inaccuracies might be based on both the lack of distinction between other classes and diverse
formulations within this class. The class Recht had the highest recall towards the end, but a
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rather low precision. This could be a result of the fact that the class Recht is the most frequent
class in the data set.

Average Precision of LR per class
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Figure 46: Average Precision of LR per Class
Sonrce: Own illustration

Average Recall of LR per class
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Figure 47: Average Recall of LR per Class
Source: Own illustration
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The previous illustrations again highlight the advantages of AL, as well as the fact that all
progression curves have their maximum at between 30%-70% of the labeled instances. After
that, hardly any class attains a better value; indeed, some fare worse.

As discussion above has focused on especially the end-values, Table 20 presents a confusion
matrix at a point where, due to the use of AL, an accuracy of about 77% was achieved. It refers
to the third round using LR as classifier, and US vote entropy as query strategy having labeled
52% of the instances (see Figure 42). Round three is slightly superior compared to the other
rounds, but close enough to the average that it provides valuable insight.

Recht  Pflicht Einwrh RFVAw  Verfahren VerWeisu Fortftihrun — Definitio

ng gshorm n
Recht 27 1 0 1 1 0 0 0
Pflicht 2 19 2 0 1 2 0 0
Einw rh 1 2 28 0 0 0 0 0
RF vAw 2 1 0 7 0 0 0 0
Verfahren 2 3 0 0 4 1 0 0
Verweisung 0 0 1 1 0 5 0 0
Fortfiihrungs 0 1 1 0 0 1 5 0
norm
Definition 0 1 0 0 0 0 0 3
Table 20: Confusion Matrix Using LR having labeled =52% of the Training Data in the
NX Experiment

Source: Own illustration

The predictions are illustrated in the columns while the rows reflect the correct label. The table
shows that though the classes Fortfiilhrungsnorm and Definition have only low support in the
dataset, both have very high precision as well as good recall. This high level of Definition-
detection is in disagreement with what has been discussed above for this class. The reason is
that, at this point, the classifier was very well trained with the existing Definition classes in the
training dataset. Thereafter, the frequent occurrences of the other classes resulted in overfitting
of the classifier to the other classes. Thus, at the end, only one Definition is found (see Table
21). Both confusion matrixes show that the class Verfahren is generally difficult to distinguish
from the others. Nevertheless, the outcomes of the matrix above are marginally better. The
precision of the class Recht, with 72% at this point, is also higher than at the end. However,
due to overfitting, the recall of this class increases towards the end. The result is that seven
instances of the class Pflicht are labeled as a Recht at the end. The results of the classes Einw
rh and RF vAw remaining relatively constant, apart from minor deteriorations.

Recht  Pflicht Einwrh RFvAw  Verfahren Verweisu  Fortfuhrun  Definitio

ng gshorm n

Recht 28 0 0 0 2 0 0 0

Pflicht 7 16 1 1 1 0 0 0

Einw rh 2 2 27 0 0 0 0 0

RF vAw 2 2 0 6 0 0 0 0

Verfahren 2 5 0 0 3 0 0 0

Verweisung 0 0 1 1 0 5 0 0

Fortfiihrungs 0 0 2 0 0 1 5 0
norm

Definition 1 1 0 0 1 0 0 1

Table 21: Final Confusion Matrix using LR in the NC Experiment
Source: Own illustration
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It can be concluded that, due to increased granularity, the classification of legal norms is much
more difficult. However, despite this complexity, a notable accuracy of almost 80% can be
achieved using AL procedures. The five classes Recht, Einw rh, Verweisung, Fortfuhrungsnorm
and Definition are recognized best, attaining an F1 of above 70%.

6.2 Requirement Verification

Below, the extent of the achievement of the objectives and requirements defined in chapter 4.2
are presented. The defined requirements can be said to be either completely fulfilled (v'),
partially fulfilled, (1) or unfulfilled ().

ID Requirement Priority Fulfillment
FRO1 Perform Legal Text Classification 5 v
FRO02 Import of Legal Texts 5 v
FRO3 Utilize Lexia’s Existing Environment 4 v
FRO04 Multiclass Classification 5 v
FRO5 Use Spark’s ML Pipeline Concept 4 v
FRO6 Use of AL Pipelines 5 v
FRO7 Configure AL Pipelines 5 v
FRO8 Train Classifier Using AL Pipeline 5 v
FRO9 Save Classifier/AL Pipeline Model 5 v
FR10 Predict with AL Pipeline 2 v
FR11 Evaluate AL Pipeline 5 v
FR12 Transparency 3 v
FR13 Export of Evaluation Results 5 v
NFRO1 Simple User Interface 4 v
NFR02 Maintainability of Software Architecture 3 v
NFRO03 Extensibility of Software Architecture 3 v
NFR04 Data Exchange 3 v
NFRO05 User Spark MLIib as ML framework 5 v
NFR06 Simulation of AL 5 v

Table 22: Verification of LexML’s Requirements

Table 22 provides an overview of the defined requirements and their degree of fulfillment. As
indicated by the number of ticks, all the requirements were successfully implemented. In
LexML, an environment for conducting multiclass legal TC (FRO1 and FR04) with Spark
MLIib (NFRO05) was created, utilizing the existing Lexia environment (FR02 and FR03) and a
REST API (NFRO04). A Spark ML Pipeline containing various steps like a tokenizer, a stop-
word remover and a classifier was employed (FR05) and the obtained model can be persisted
(FR09), in order to apply it for later prediction and evaluation purposes (FR10 and FR11). The
multiclass TC process using MLIlib’s ML Pipeline was implemented using some kind of AL
pipeline in LexML. In doing so, the three use cases of the (1) creation of AL pipelines (FR06),
(2) configuration of AL pipelines (FRO7), and (3) processing of AL pipelines (FR08, FR10 and
FR11) have been fulfilled. To provide a simple Ul for users, these specific applications are built
on individual pages in Lexia (NFRO1). Furthermore, the user has not only the possibility to



export and analyze the evaluation and learning results (FR13), but also obtains feedback about
it during the labeling process (e.g. confidence about prediction) (FR12). As it is possible, for
instance, to use only the ML component when not conducting AL without significant changes
to the code, the maintainability of LexML is ensured (NFR0O2). Additionally, the use of
interfaces provides a good starting point to complement the functionality, for example, by
adding more classifiers or query strategies (NFRO3).
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7 Discussion

The possibility of the automatic classification of legal textual content is driven by the impact
of the rapid development of digitization. This trend contributes to the need of improving the
current way of working with legal data. A vast amount of legal content is created daily, which
must be properly classified so that it can be located, retrieved and worked with again at a later
point in time.

In the age of digitization, content is usually stored in a computational medium. While the
uploading time and data storage of the legal content is no obstacle, the subsequent manual
classification process is very time consuming and expensive, mostly due to the number of legal
documents produced.

However, even in cases where the documents are classified correctly and can be recovered
easily, reading and understanding the content of a legal document remains an elaborate process,
especially as such content has tended to become more complex in recent times. To support the
search for relevant details, the document content (norms) can be assigned to certain classes.
Having a document classified by its legal norms allows users to rapidly filter out irrelevant
subjects.

Several computer-aided support approaches exist for both methods of classification. One
common way to do this is to use rule-based text-annotation software to identify specific
linguistic patterns. Due to improved technical capacities, machine learning (ML) techniques
have gained more attention in the context of (legal) text classification (TC). In this work, active
(machine) learning (AL), a promising semi-supervised machine learning approach was
introduced and applied to German legal data. Thereby, the research questions discussed below
were investigated and answered.

7.1 Reflection on the Research Questions

In the paragraphs that follow, a brief summary of the results of this work, referring to the
individual research questions defined in Chapter 1.2, is provided.

I.  What are common concepts, strategies and technologies used for text
classification?

TC is a use case for ML with the objective of assigning textual content to predefined categories.
Typically, a TC process consists of the three principal steps: (1) preprocessing, including
tokenizing, stop-word removal, and occasionally stemming; (2) transforming the textual
content into a feature vector (e.g. TF format), and eventually narrowing the feature space by
applying FS methods (e.g. TF-IDF format); and (3) using this feature vector to train a classifier.
For the latter, several generative and discriminative classifiers exist. Each of them has certain
advantages and disadvantages in terms of accuracy, capabilities of dealing with unbalanced
data, and speed of learning, among other issues. The classifiers NB, SVM and MLP were
introduced in greater detail. In theory, and often in practice, it is claimed that LR, MLP and
especially SVMs achieve a higher accuracy in TC than does NB. However, NB has other



benefits, such as its speed of learning, and its tolerance against noise. In addition, practical
experiments have shown that by using NB, a suitably high accuracy can be achieved. Hence,
there is not one classifier that is always markedly better than the others. Their suitability to a
task depends on numerous factors that are difficult to estimate in advance. To evaluate the
performance of these classifiers, common evaluation measures like accuracy, F1, precision, and
recall were introduced in this work.

It was also determined that a variety of ML frameworks exist that enable the classification of
textual content. The wide choice of possible frameworks makes the selection of a suitable one
difficult. Thus, after a preselection, five common ML frameworks (Weka, scikit-learn, Mallet,
Mahout, and MLIib) were compared in terms of suitability as implemented classifiers for TC,
means of representing the textual content, general applicability for TC, community support, and
quality and extent of available documentation. It was concluded that Spark MLIib is a promising
framework, and this was used for the development of the AL prototype (microservice).

Il.  How can (active) machine learning support the classification of legal documents
and their content (norms)?

TC was originally effected using traditional supervised ML, which is expensive and time
consuming as it requires many labeled instances. AL is another subfield of (semi-)supervised
ML that provides a more efficient way of conducting TC. AL is an interactive and iterative
process during which, based on small amount of labeled data (a seed set), a classifier is trained.
This trained classifier is used to make predictions regarding the remaining unlabeled dataset.
From these predictions, the instances that aid the classifier the most in distinguishing between
the classes are selected to be labeled next. A specific algorithm (a query strategy) is used to find
those instances. They are then labeled and added to the training dataset. This growing labeled
training set is used to improve the model and the process is repeated. Hence, by labeling only
“informative” instances, it is more likely that the classifier will perform well while using fewer
labeled instances to achieve its aim, thereby minimizing the cost for the classification process.

To find those most informative instances, several query strategies have been proposed. Many
of the strategies utilize the output scores of the classifiers (e.g. posterior probability) to calculate
these uncertain measures. The most prominent versions refer either to uncertainty sampling
(US) or to the more elaborated query by committee (QBC) methods. While the former uses only
one classifier model, the latter creates a committee of classifiers with the intention of covering
a larger area of the version space. Hence, QBC strategies are more expensive than US methods.

Further issues that must be considered when applying AL are the number of instances that
should be queried every round, the choice of the classifier, and when the learning process should
be stopped (by means of a stopping criterion). For all these matters, several common theoretical
and practical solutions have been discussed in this work. Additionally, learning curves, a way
to visualize the progress of the classifier, were introduced and discussed.

How helpful AL can be in the legal domain is assessed later. Although the taxonomy of legal
textual content can be complex, legal texts have the advantage that they are written in extremely
formal language. To provide an overview of the legal classification task, common legal
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document types and a typical taxonomy of norms were introduced. In this context, results of
current studies referring to legal TC using ML techniques were presented.

I11.  What form does the concept and design of an active machine learning service take?

Based on the literature review and the objectives of this work, a set of requirements were
defined to develop a suitable AL-prototype named LexML. LexML was implemented as an
independent ML microservice in a very flexible and extendible way so that it can handle all
kind of (legal) textual content using Spark MLIib as ML framework. LexML has a REST API
to initiate necessary tasks, such as the importing of the textual data, the creation and
configuration of an AL Pipeline, the iterative training and improvement of the ML pipeline
(classifier), and the evaluation of the trained ML pipeline (classifier). To assess the learning
levels of the classifier, suitable evaluation measures such as the Fi1 or accuracy were
implemented. The evaluation results can be exported as a xlsx file so that the learning can be
readily analyzed.

To provide an extensive ML service, the classifiers MLP and NB were introduced in detail, and
additionally LR was implemented and can be selected by the user. Furthermore, two query
strategies of each of the US (vote entropy, margin sampling) and QBC (vote entropy, soft vote
entropy) methods were implemented. As MLP does not provide a posterior probability, only
the QBC vote-entropy strategy is provided for selection.

LexML does not have an own Ul. Instead, it was integrated into Lexia, an already existing data
science environment for the analysis of German legal texts. The communication between Lexia
and LexML is managed by the REST API. LexML employs Lexia’s available functionality, for
example, its importers and sentence splitter, in order to receive the respective sentences for
norm classification.

IV.  How well does the active machine learning service perform in the classifying legal
documents and their content (norms)?

To evaluate LexML and AL for the purpose of legal TC, the three questions that follow have
been discussed for both document classification (DC) and norm classification (NC). For both
experiments, each combination of classifier and query strategy was executed five times to get
a significant and comparable result.

1) Which implemented classifier performs best?

As discussed in the theoretical part of this study, it was determined that there is not a single best
classifier for all use cases. In the DC experiment, documents were classified into one of three
classes by using approximately the first 400 words of the document content. In this case, NB
and MLP perform most effectively, having a final accuracy of 95%, while LR achieves only
92%. In contrast, for the more complex NC experiment, with eight classes with a very
unbalanced distribution, LR is undoubtedly the best performing classifier, achieving a final
accuracy of 72%, while NB obtains only 55%. Apart from the fact that different data used, the
only difference between the two experiments was that stop-words were removed in the DC
experiment.



An explanation for the varying performance of NB may be, first, NB’s assumption of strong
feature independency and secondly, its low tolerance to redundant features. Hence, as in the
DC experiment frequent stop-words were removed, the number of unnecessary redundant
features was reduced. Further, when classifying whole documents, word order is generally not
relevant; rather, whether a certain word occurs in the text at all is of major importance. Thus,
the independence assumption of NB should also be no problem. Consequently, despite its
simplicity, NB achieved good results in the first experiment.

In contrast, in the NC experiment, stop words were not removed, and certain word sequences
are important for recognizing the class of a norm. Hence, both weaknesses take effect and NB
performed worse than the other classifiers.

2) Is AL superior to PL?

Both classification experiments have shown that AL is markedly superior to PL, similar to
traditional supervised learning, where the instances are queried randomly each round. The use
of AL increased not only the speed of learning, but also resulted in a higher maximum accuracy
obtained during the classification process. In both experiments, the average accuracy was after
a short “discovery phase” between 5%-10% higher once 20%-70% of the instances had been
labeled, compared to the PL (random) approach. Additionally, the obtained (intermediate)
accuracy was often higher than when all instances had been labeled (traditional supervised
learning). With an increasing number of AL rounds, the problem of overfitting become
observable, so that after a certain proportion of instances have been labeled (70%-95%), both
approaches align to the same final accuracy.

When viewing the results of the individual learning rounds for a specific combination, the
importance of having a “high quality seed set” becomes clear. The term quality refers, on the
one hand, to having a balanced distribution of instances to prevent the missed class effect. On
the other hand, it is useful to have meaningful instances that support the classifier in
distinguishing between classes and to find the truly most informative ones in the next rounds.

As the seed set used in the experiments was composed of randomly queried instances, the
learning differs especially in the initial phases. Hence, it was after a discovery of the version
space (discovery phase) that AL was significantly superior to PL.

3) Which implemented query strategy performs best?

Although it is claimed that the more elaborated QBC strategies are superior to US methods, no
significant difference could be observed. With only slight fluctuations, all four query strategies
worked similarly well and were superior to PL. A reason for the lack of superiority of the QBC
strategies could be that the attention was on the committee’s disagreement measures rather than
on committee creation. No specific algorithm discussed in the theoretical section of this work
to create an optimal committee was implemented. Instead, only the composition of the trainings
data was adapted for each committee.
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4) Which norms and documents are best recognized by the classifier(s)?

A simple summary of the classes found most frequently is not reasonable in this case. Instead,
some general results that were noticeable when this question was discussed are described.

In general, it is claimed that traditional supervised learning has problems with unbalanced data
so that classes that occur infrequently are rarely classified correctly. This study has shown that
under suitable conditions, AL can handle unbalanced data very well. In the NC experiment, the
two classes with the lowest support (Definition, Fortfihrungsnorm) temporarily had the highest
F1 score. This advantage disappeared when the frequent classes led to overfitting of the
classifier.

A second point addresses the reusability of a trained model for which the results of the
document classification experiment might provide some insights. Although two of the three
classes (judgment and law) obtain a very high F1 very soon, the class of generic legal document
never exceeds never a certain threshold (=90%). The supposed reason is that this generic class
covers too many different document types, only some of which are in the test dataset. Hence,
the classifier cannot learn that this kind of document belongs to the generic document class.
This outcome can be transferred to the concept of the reusability of a model. It means that a
model can only be reused if the textual content is very similar to the one the model it was trained
with. For instance, the model trained with the law of tenancy of the German civil code could
hardly be used to classify norms from other civil code sections.



7.2 Conclusion

In this work, an independent service for conducting (legal) multiclass TC using AL was
designed and implemented utilizing Apache Spark MLIib as ML framework. Common concepts
and strategies found in the literature study form the basis for the developed requirements and
solutions. Three classifiers (NB, LR and MLP) as well as four query strategies (US vote
entropy, US margin sampling, QBC vote entropy, and QBC soft-vote entropy), and other
configuration options create a comprehensive microservice to perform legal TC. To provide the
groundwork for further development, LexML is built in a very maintainable and extendible way
so that further functionality can be easily added (e.g. additional classifiers, query strategies).
Additionally, LexML has an integrated evaluator using common TC measures such as accuracy
and F1 to evaluate the trained model and pursue the learning progress. These measures can be
exported to an xIsx file so that they can be analyzed further in a proper manner.

While LexML is an independent ML component, within the scope of this research it made use
of Lexia, an existing data-science environment for the analysis of German legal. Lexia provides
functionality such as available importers for legal documents, possibilities to split and export
the sentences of an imported law using Apache ruta, and an uncomplicated Ul [168, 169]. This
existing Ul was complemented by a Ul for conducting AL with the legal texts imported in
Lexia. Nevertheless, LexML is an independent microservice that can be used for other
multiclass TC problems and AL without much adaption.

Within the scope of this work, two TC experiments using German legal content were conducted
to evaluate (1) the potential of AL compared to PL (similar to traditional supervised ML), and
(2) the quality of legal TC when using ML/AL techniques. The objective of the first experiment
was to classify three different kinds of documents as one of three possible classes (DC). In a
more complex second experiment, norms of the law of tenancy section of the German civil code
were classified as one of eight possible classes (NC).

(1) Both experiments show that AL is clearly superior to PL (random approach). The use of AL
increases not only the speed of learning, but also results in a higher maximum accuracy
obtained during the classification process. Classifying too many instances frequently results
in overfitting, and a lower final accuracy. Consequently, no single best classifier for all use
cases exists. While NB and MLP were the superior classifiers in the document classification
experiment, LR was significantly better than both other classifiers in the norm classification
experiment. Although QBC strategies purportedly work better due to their greater coverage
of the version space, no significant difference could have been found between the US and
QBC query strategies implemented. However, LexML still has the potential to improve the
committee creation process.

(2) As discussed in literature review, both experiments show that the quality of legal TC
depends strongly on numerous influencing factors that cannot always be detected in
advance. Nevertheless, in the DC experiment, NB and MLP achieve a very high average
accuracy of 96%. In contrast, for the NC experiment, a maximum average accuracy of only
74% was attained with LR. However, by using AL, an accuracy of almost 80% was
temporarily achieved in a few rounds. This is a result comparable to other studies using a
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similar experimental setup (see Chapter 2.3.3), especially due to the complex setup that
included an unbalanced dataset with some instances having support of less than 5%.

The LexML artifact and the outcomes of this work are an addition to the knowledge base and
provide a suitable starting point for future research in the fields of AL, TC in general, and
especially TC of German legal texts.

7.3 Limitations and Future Work
124



Although this work provides a good starting point for future work, some limitations described
below must be kept in mind.

Even though each possible combination of an experiment was conducted five times in order to
obtain a significant result, and even though the resulting learning curve is certainly a meaningful
indicator for the superiority of AL, the experiments require further replication to attain a
statistically significant value. This is reinforced by the fact that the classifiers used for AL are
black-box classifiers that do not provide any appropriate explanation of how the classification
results are obtained.

Furthermore, the power of MLIib was not completely utilized as primarily only one default
setting was used for the evaluation of the experiments. As MLIib provides many levers to adjust
classifier settings, FS techniques (e.g. TF-IDF), and the like, further experiments using different
configurations should be conducted and evaluated. For instance, no specific FS method was
evaluated within the scope of this study. Nevertheless, as MLIib was built in a maintainable and
extendible way, there is much opportunity for future work, such as integrating additional query
strategies, classifiers, further pre-processing steps, and so on.

It was asserted that a “high quality seed set” leads to a faster and better learning. As the seed
set in this study was created randomly for each experiment, a certain “discovery phase” was
needed until AL became superior to PL. One component of future work could be to apply
unsupervised learning methods before starting the learning process, in order to identify clusters
in the dataset and allocate a number of instances from each cluster to the seed set. Further
options are to integrate in LexML exploration-based strategies that search for regions in the
version space that the algorithm would classify incorrectly [101].

A known problem of ML that has also partially occurred in this study concerns the reusability
of a trained model. Once a classifier has been trained with a certain kind of content or domain,
the resulting model only works well with content that is similar.

Additionally, in the document classification experiment only three different classes are used.
As shown in Chapter 2.3.2, the taxonomy of legal documents is usually more complex and more
accurate.

Nevertheless, using AL for the classification of legal content is a promising approach to
supporting the work in the legal domain and must be investigated further. An interesting
approach could be to combine the AL with other classification technigues, such as the use of
rules applying a hybrid concept. The idea is that the outcome of the rules provides the input of
the training set (the seed set) to conduct AL. In this manner, the discovery problem mentioned
could be resolved.
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A Document Classification

This appendix describes further evaluation measures obtained in DC.

A.l  Examples for Averaging the Learning Rounds

Average Accuracy of NB using Vote Entropy Strategy
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Figure 48: Average Accuracy of NB Using Vote Entropy Strategy
Source: Own illustration

Average Accuracy of LR using Vote Entropy Strategy
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Figure 49: Average Accuracy of LR Using Vote Entropy Strategy
Sonrce: Own illustration
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When using NB, the distribution of the curve progressions for all five learning rounds is nearly
the same; however, the ones from LR exhibit greater difference. As the query strategy works in
two of the five rounds well, this is probably mainly caused by a “bad” seed set that misleads
the classifier. Although the variations between the individual learning rounds using LR and
another query strategy are not as strong as in the case presented, it becomes generally evident
that NB operates in a more stable manner than LR in the context of DC. In addition, MLP,
which is not shown here, performs better than LR, but slightly worse than NB.

A.2  Overall evaluation of DC

As with Figure 35, Figure 50, Figure 51 and Figure 52 compare AL with PL, similar to
traditional supervised learning, in which the labeling sequence is not considered and instances
are queried randomly. Again, the average outcome of all query-strategy possibilities for one
classifier is averaged.

On this occasion, instead of using accuracy as evaluation measure, the weighted metrics Fu,
precision and recall are utilized. In this case, all progression curves exhibit a similar course
analog to the one for accuracy. Hence, the statements made in Chapter 6.1.2 for the question
“2) Is AL Superior to PL” are confirmed by these evaluation measures.

Average F1 of Classifiers using AL vs. PL
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Figure 50: Average F1 of Classifiers Using AL vs. PL
Source: Own illustration



Accuracy (%)

Accuracy (%)

Average Recall of Classifiers using AL vs. PL
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Figure 51: Average Recall of Classifiers Using AL vs. PL
Source: own illustration
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Figure 52: Average Precision of Classifiers Using AL vs. PL
Source: Own illustration
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A.3  Fy, Precision and Recall per Class for DC

As the evaluation results have shown that all query strategies work equally well, the four results
obtained from the combinations of LR and NB when conducting AL have been consolidated in
the following illustrations.

Average F, of LR per class
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Figure 53: Average F; of LR per Class
Source: Own illustration

Average F; of MLP per class
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Figure 54: Average F1 of MLP per Class
Sonrce: Own illustration
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Precision (%)

Recall (%)

Average Precision of NB per class
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Figure 55: Average Precision of NB per Class
Source: Own illustration

Average Recall of NB per class
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Figure 56: Average Recall of NB per Class
Source: Own illustration
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Average Precision of LR per class
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Figure 57: Average Precision of LR per Class
Source: Own illustration
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Figure 58: Average Recall of LR per Class
Source: Own illustration
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Average Precision of MLP per class
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Figure 59: Average Precision of MLP per Class
Source: Own illustration
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Figure 60: Average Recall of MLP per Class
Source: Own illustration
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B Norm Classification

This component of the appendix provides further insights about NC.

B.1  Prepared csv-file for NC
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Figure 61: Prepared csv file for the NC experiment
Sonrce: Own illustration

Column A corresponds to the eight labels, while column E contains the textual content that was
used for training the classifier.

134



B.2

Overall evaluation of NC

In a manner similar to Figure 41, the following illustrations compare AL with PL. The
consolidated outcome is used for the weighted metrics Fi, precision and recall in these
illustrations. All progression curves exhibit a very similar course analog to the one of accuracy.
Hence, the statements made in the chapter 6.1.3 for the question “2) Is AL Superior to PL” are
confirmed by these evaluation measures.
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Figure 62: Average F; of Classifiers Using AL vs. PL
Source: Own illustration
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Figure 63: Average Precision of Classifiers Using AL vs. PL
Source: Own illustration
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Average Recall of Classifiers using AL vs. PL
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Figure 64: Average Recall of Classifiers Using AL vs. PL
Source: Own illustration
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B.3  Fy, Precision and Recall per class for NC

Naive Bayes:

It is noticeable that the classes Fortfuhrungsnorm and Definition that temporarily obtain the
highest F1 when using LR have the lowest recognition, with an F1 of more or less zero
throughout. Although the average recognition rate is lower than the one with LR, the “order”
of the other classes is similar to the one described for LR.

Multilayer Perceptron:

The various “jumps” show that MLP reacts the most sensitively to a modified training set.
Nonetheless, the “order” of the other classes is similar to the one described for LR when
neglecting the average recognition rate.
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Figure 65: Average F1 of NB per Class
Source: Own illustration
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Figure 66: Average F1 of MLP per Class
Source: Own illustration

Average Precision of NB per class
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Figure 67: Average Precision of NB per Class
Source: Own illustration
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Figure 68: Average Precision of MLP per Class
Source: Own illustration

Average Recall of NB per class
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Figure 69: Average Recall of NB per Class
Source: Own illustration
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Average Recall of MLP per class
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Figure 70: Average Recall of MLP per Class
Source: Own illustration
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