um

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics

Do Multi-Fidelity Levels improve
Mockup-Driven Development?

René Milzarek

0

H

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics

Do Multi-Fidelity Levels improve
Mockup-Driven Development?

Verbessern Multiple Detailgrade das
Mockup-Driven Development?

Author: René Milzarek
Supervisor: Prof. Dr. rer. nat. Florian Matthes
Advisor: M.Sc. Adrian Hernandez-Mendez

Submission Date: 15th of December 2016

D

I confirm that this master’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 15th of December 2016 René Milzarek

Acknowledgments

First and foremost I want to thank my family for always being there for me and help-
ing me in various ways. A very special thanks is due to my girlfriend Franziska, who
had to step back over the last weeks, but gave me the room and her understanding to
complete this thesis. Furthermore her strength to overcome inhuman challenges and
her will of life is inspiring to experience every day.

Secondly I want to thank my Mentor Xaver Zerreis, who gave me the possibility for
the industry cooperation, for the trust and freedom I received. Without this it would
not have been possible to create the thesis in this form. Especially the conversations,
discussions and idea exchanges at the beginning set a solid base for the further research.

Furthermore I also want to thank my colleagues, who supported me with their feed-
back and their time to participate in the interview and evaluation of the concept. Es-
pecially Dominik Speicher always had an open mind for the discussion of new ideas
and gave valuable hints and tips for the implementation of the prototypical component
catalog.

A big thanks also goes to my advisor Adrian Hernandez-Mendez, who guided the
academic research, for the stimulating discussions and the constant suggestion of new
ideas and view points. He helped me with his guidance to put the academic research
on a broader basis, whilst not losing the relation to the industry partners problem. Fur-
thermore I also want to thank Prof. Dr. Florian Matthes for the possibility to create this
thesis in cooperation with Siemens.

Finally I want thank all my friends for their feedback, their proofreading and also
understanding over the last weeks. You are appreciated, although you are not all men-
tioned by name. Thank you!

Abstract

In dieser Arbeit wird anhand einer umfangreichen Literaturrecherche eine grundle-
gende Definition fiir den Begriff des Detailgrades bei Prototypen und fiir den Mockup-
Driven Development Prozess gefunden. Hierbei wurden zwei hauptsdchlich verwen-
dete Detailgrade identifiziert und weitverbreitete Usability Artefakte dementsprechend
klassifiziert. Des Weiteren wurde der Entwurf von Prototypen mit multiplen Detail-
graden als der gezielte Prozess der Erhohung des Detailgrades durch das Hinzufi-
gen neuer Designeigenschaften definiert. Der Mockup-Driven Development Prozess
beschiftigt sich ausschlieflich mit dem Ubergang von Prototypen mit einem hohem
Detailgrad zum eigentliche Produkt und entspricht somit nicht dem zuvor beschriebe-
nen kontinuierlichen Prozess der Detailgraderhohung. Ein weiterer Mockup-Driven
Development Ansatz, welcher als Cascading Tree Sheets bezeichnet wird, erwies sich als
mehr oder weniger irrelevant fiir das Themengebiet der Prototypen-Entwicklung.

Eine Anforderungserhebung beim Industriepartner Siemens identifizierte die Ver-
besserung der Zusammenarbeit und die Ermoglichung einer systematischen Wiederver-
wendung von Komponenten als Hauptkriterien an einen nutzerzentrierten Entwick-
lungsprozess fiir Prototypen. Auf Basis dieser Anforderungen wurde ein solcher Prozess
entworfen und gemifs der eingefiihrten Begriffsdefinitionen als Prototype-Driven De-
velopment Prozess bezeichnet.

Der Ausschnitt der Komponentenverwaltung und -erstellung aus dem definierten
Prozess wurde mithilfe einer prototypischen Implementierung eines Komponentenkat-
aloges umgesetzt. Das Gesamtkonzept wurde im Rahmen eines Usability Walkthroughs
und eines nachgelagerten Fragebogen mit Mitarbeitern bewertet. Der vorgeschlagene
Prozess trug zu einer Erh6hung der Zusammenarbeit und Wiederverwendung existieren-
den Komponente bei, jedoch konnte ein Mehrwert bei der Unterstiitzung multipler
Detailgrade nicht festgestellt werden.

vii

Contents

Acknowledgments v

Abstract vii

Contents viii

I. Introduction and Problem Identification 1

1. Introduction 3

1.1. Motivation 3

1.2. The Cooperation Partner and Scope of Application 4

1.2.1. Software Development Process 5

1.2.2. Consumerization Trend 5

1.2.3. State of Usability Engineering Adoption 6

1.3. Research Methodology and Organisation 7

2. Problem Identification 9

2.1. Requirements Elicitation 9

2.2, ExpertInterviews 11

2.3. Prototyping Software Comparison 15

2.4. Research Gap Identification 17

2.5. Research Questions i i e 18

II. Solution Design 19

3. Definition of Terms 21

3.1. Fidelity-Level 21

3.2. Multi-Fidelity 25

3.3. Mockup-Driven Development 27
3.3.1. Mockup-Driven Development: Providing agile support for Model-

Driven Web Engineering 27

3.3.2. Mockup Driven Web Development 29

3.3.3. Assessment of the Approaches 30

X

Contents

4.

Prototyping Process
41. Process,

41.1. Component Specification Subprocess

4.2. Prototyping Case Studies

42.1. Case Study 1: SIPCA - Web Application

4.22. Case Study 2: Siemens Corporate
4.2.3. Evaluation of the Case Studies .

Implementation

5.1. Component / View Model

5.2. System Architecture

5.3. Technical Implementation
5.3.1. Third Party Libraries / Software
5.3.2. Execution Instructions

II1. Evaluation

6.

7.

8.

Evaluation

6.1. Suitability
6.2. Usability
6.3. Feedback

Summary

Outlook and Future Research

List of Figures

List of Tables

Glossary

Bibliography

Appendix

A.

Evaluation of the Semi Structured Interview
A.1l. General Information
A.2. User Centered Design

Degree of Fidelity Analysis

. Prototyping Process Charts

Directory - Mobile Application .

31
33
35
35
35

41

43
43
46
46
47
49

51

53
54
57
58

59

61

63

65

67

69

77

77
77
79

83

85

Contents

D. Third Party Libraries 91
E. Evaluation of the Online Questionnaire 93
E.1l. Suitability 93
E2. Usability 97
E.3. Feedback e 102

xi

Part I.

Introduction and Problem
Identification

1. Introduction

1.1. Motivation

Mobile devices accounted for 60% of the media time spent by U.S. users in 2014, which
reflects an absolute increase of 9% to the previous year (see figure 1.1). The usability
of apps in a more and more competitive market is increasingly becoming a key differ-
entiator in the Business-to-Consumer (B2C) market. According to Gartner this trend
also affects businesses and results in an increasing "demand for apps in the enterprise
[which are expected to] meet the high performance and usability of consumer apps"
[52]. Another term used for this phenomenon is the “Consumerization” of enterprise IT
and vividly describes that employees expect the same user experience from enterprise
software as they are experiencing from the software used in their private life.

Share of U.S. Digital Media Time Spent by Platform

Source: comScore Media Metrix Multi-Platform & Mobile Metrix, U.S., March 2013 - June 2014

65%
60%
55%

50%
== Desktop
= Mohile

== Mobile App

45%

40%
35%

30%
Mar 2013 Jun 2013 Sep 2013 Dec 2013 Mar 2014 Jun 2014

Figure 1.1.: Share of U.S. digital media time spent by platform [20].

1. Introduction

Instead of taking a defensive position against this trend, enterprise IT should em-
brace it as a chance “[...] to introduce new business efficiencies and innovations and
[to] increase ITs relevance to employees” [51]. This could be achieved by the introduc-
tion of User-Centered Design (UCD) methods like personas, prototyping or usability
interviews and questionnaires. These techniques are not only valuable to support in-
ternal software development projects, but also during the evaluation of Commercial
Off-the-Shelf (COTS) solutions from external vendors [51].

The enduring discussion about the Return on Investment (ROI) of usability engineer-
ing from a qualitative as well as from a quantitative perspective [18, 30, 26, 16, 5, 66]
combined with the expectations of the end users seems to have had an impact on de-
cision makers in enterprises. Rather then thinking about the if, companies are actively
looking for solutions on how to implement and integrate a user-centric approach in the
existing development environments.

Especially in the case of internal software development projects the budget is lim-
ited and does often not account for the involvement of a dedicated usability expert. It
should be noted, that this is not valid for the core business, where UCD is an essential
aspect and external agencies are often supporting the product development. Internally
the activities of the usability engineering process are often spread over multiple per-
sons and roles. The analysis phase of the usability process is mainly supported by the
requirements engineer whereas the software engineer implements activities of design
phase [14]. This already indicates that there might be challenges in the collaboration be-
tween these roles. Depending on the established process the stakeholders are working
on the same artefacts, but potentially on different degrees of fidelity. A potential so-
lution for the transition from mockups to code was proposed with the mockup-driven
development approach [4, 46]. The idea of an efficient and integrated UCD process is
a key factor for the acceptance in enterprises and environments were the development
budget is very limited.

1.2. The Cooperation Partner and Scope of Application

A big part of the research was motivated by and executed in cooperation with the
industry partner Siemens AG. The company had 351.000 employees worldwide in the
fourth quarter of 2016, which of 113.000 were located in Germany [49]. Concretely the
cooperation was established with the central IT department for human resource and
supply chain management applications. The department implements IT demands by
buying and adapting Commercial Off-the-Shelf (COTS) solutions from vendors or the
internal development of individual solution in the Java competence center.

1.2. The Cooperation Partner and Scope of Application

1.2.1. Software Development Process

The department’s software development process is divided into 3 phases — the start, the
initialisation and the implementation phase — and is followed by a transport to the test
system (see figure 1.2). After the tests were executed positively another transport to
the production system is performed. The start phase’s main focus is to ideate and iden-
tify reusable components, which could be added to the department’s “Basic Component”
catalog. The initialisation phase takes care about the organisational and infrastructural
aspects of a new software project. This, for example, includes granting access to the
development systems and project repository as well as the setup of a build plan on the
internal Continuous Integration (CI) server. The implementation phase does not only
involve the implementation of source code, but also the configuration and integration
of standard services like the authorisation and role management service.

Development

1 T
Start | Initialisation 1 Implementation
1 i

|
I I

I i

1 i

H New project |

| (incl. Cl) '

I i

i

'
| Migration of !
[l existing project |
' i

i
! Application

0 role management
i

Onboarding

i B m

i
H Nexus dependency
| management

1

Schedule Revise Sonar
Jenkins Build Report
Access to project

Access to development systems

Figure 1.2.: Software development process of the industry partner’s engineering depart-
ment.

Currently, the software development process is heavily oriented around technolog-
ical aspects. Especially the setup of the development stack for new employees and
external consultants is introduced. User-centered design methods are not mentioned
in the development guidelines, which does not reflect the actively practiced process.
Several activities of the usability engineering methodology are indeed regularly used
and the collected feedback impacts design decisions. The current situation is going to
be examined in greater detail in chapter 2 as part of a semi-structured interview with
experts.

1.2.2. Consumerization Trend

Siemens also experiences the previously described trend of a growing mobile user base,
which comes along with an increasing demand for usable mobile applications and a

1. Introduction

stronger awareness for usability in general. Since the start of the company’s Mobile
Device Management (MDM) service in July of 2015 the amount of enrolled devices in-
creased to a total amount of 30.831 in November 2016. This reflects a growth of 17.3%
during the last month. The overall number of mobile devices was 161.000 in November
2016, which comprises all devices with access to the corporate email servers and is a
superset of the MDM enrolled devices (see figure 1.3). Supported by the rollout of a
company internal social network, the users are more empowered and actively express
their opinions and requirements through the new communication channel. This comes
with the benefit of a faster communication, broader reach and thus higher probably
of reaching a responsible colleague, who is able to consider the feedback for a future
release.

Number of Mobile Devices at Siemens AG

180
160
140

120

.
S}
=}

=3}
=}

60

Number of Devices
(thousands)

40

20 /

==NDM enrolled Devices Overall Mobile Devices

Figure 1.3.: Number of mobile devices at Siemens AG.

1.2.3. State of Usability Engineering Adoption

The efforts to more intensively include the feedback of the end users started already in
2008 with an open usability survey encompassing the whole HR tool landscape. The
results were 729 proposals for improvement from 139 employees and motivated my
bachelor’s thesis “Analysis of the added value of innovative usability and dynamic
visualization concepts for the graphical representation of Siemens AGs KPIs and pro-
totypical implementation of a native iOS-application”, which addressed the demand
for supporting approval processes on mobile devices [37]. In February of 2015 another

1.3. Research Methodology and Organisation

initiative was started in the form of a survey in the company’s internal social network.
The goal of the survey was to identify future mobile app use cases, which could sim-
plify the work life of Siemens” employees. Within 7 days 200 ideas and more then 2.200
votes were collected. A top ten list was extracted of which 4 ideas addressed apps in
the area of communication and real time collaboration. Another 4 ideas addressed top-
ics, which are located in the direct responsibility of the industry partner’s department.

One request was the ability to access the employee’s contact details via mobile de-
vices (especially from Android devices, as a solution for iOS already existed). A concept
for this use case was developed in the form of paper-based sketches and is going to be
presented in section 4.2.1 as part of the solution design to evaluate the suitability of the
prototyping processes. Another example for the current utilization of usability engi-
neering was the extension of a web application by a new module for the management
of the employee’s variable compensation (see section 4.2.2). The user interface was con-
ceptualised with the prototyping tool Justinmind in the form of high-fidelity mockups.

1.3. Research Methodology and Organisation

The thesis follows the “Design Science” research approach, which uses the creation and
evaluation of IT artefacts as a mean of solving existing, organisational problems [17].
This approach focuses on the close cooperation between researchers and practitioners
and is in the very nature of this thesis as it is motivated by an industrial application.
Nonetheless, Offermann’s research process, consisting of the three phases of problem
identification, solution design and evaluation, was utilised to ensure a correct, compre-
hensible and transparent approach during all phases of this research.

In chapter 2 and following this approach, the problem and its relevance for the prac-
tical application is presented. Furthermore, the research questions, which are guiding
the rest of the thesis, are introduced. Therefore, informal interviews with the depart-
ment’s head, the head of development and a requirements engineer were conducted to
get a basic understanding of the problem domain and gather Siemens’ requirements.
Afterwards a guide for a semi-structured interview was developed to support a second
round of interviews with 11 employees to validate the previously collected require-
ments. The roles of the employees were spanning from demand manager, requirements
engineer, software tester, software engineer, software architect to project lead.

Afterwards, in part II, the solution design is developed. The part is divided into 3
chapters. The first chapter 4 introduces the mockup-driven development process and
compares it to other prototyping processes. Subsequently, two corporate development
projects, which applied UCD methods, are presented and assessed on their degree of
adherence to the presented processes and on their suitability for adaption to the pro-

1. Introduction

totyping processes. In section 3.2, the term multi-fidelity is analysed and defined on
the basis of a profound literature research. Afterwards the connection between the
mockup-driven development process and multi-fidelity prototypes is illustrated and a
transition to the implementation of a prototypical solution is made in chapter 5.

Finally, in part III the added value of a multi-fidelity component catalog is evaluated.
Therefore, a usability study was carried out with a total of 8 participating employees.
The overall usability of the suggested prototyping process (including the developed
web application) was examined with the System Usability Scale (SUS) questionnaire.
After summarising the results, issues and ideas for future work (e.g. further integration
potentials of the web application) conclude the thesis.

2. Problem Identification

As mentioned in the introduction this thesis was motivated by a concrete problem of the
industry partner’s department. Section 1.2.2 and 1.2.3 have already briefly described
the situation, which is going to be analysed in greater detail in this chapter.

The department was actively looking for a software solution allowing them to inte-
grate the UCD approach into their software development process. The management
had several requirements mainly targeting a software tool, which were collected in an
informal interview and summarised in the form of a slide deck. Section 2.1 is going to
introduce and explain the requirements. In the next step a semi-structured interview
with several experts of varying roles was conducted to evaluate, if the collected require-
ments are also relevant for the employees. The results of the second interview are going
to be presented in section 2.2. Finally, an analysis of existing prototyping tools with
respect to their suitability to fulfil the specified requirements was made.

2.1. Requirements Elicitation

The informal interview for the first collection of requirements was conducted with the
head of the department, followed by a second interview with the head of development.
The motivation of the industry partner was to design a solution, which improves the
integration of the usability engineering methodology into their software development
process. The expectation was to be able to stronger involve the user (e.g. by designing
prototypes and collecting user feedback), while not generating a huge amount of addi-
tional work. The focus was placed on the systematic reuse of user interface prototypes
for the generation or scaffolding of user interface code. The current practice of design-
ing mockups and solely using them as a requirements specification for the software
engineers should be avoided.

Below the requirements are listed by their priority and shortly described in the fol-
lowing section.

1. Collaboration
2. Shared and reusable component catalog

3. Export or generate code for the Ul

2. Problem Identification

4. Integration with the Application Lifecycle Management (ALM) software
5. On-premise solution
6. Test on target platform

7. Platform support of the prototypes

The support and enhancement of collaboration between the stakeholders of the develop-
ment process was stated as the most important feature. This rating could be explained
by the internal structure of the department. There are individual teams for the different
functions: demand management, requirements engineering, software testing and soft-
ware development. Furthermore the spatial separation of the software development
team, which is located in Paderborn, from the remaining team, which is residing in
Munich, even increases the challenge of an intensive collaboration between all stake-
holders.

One interface between the requirements engineer and the software engineer is the ex-
isting user interface components. During the analysis phase of a new software project
they have to identify existing components, which could be reused, and agree on com-
ponents, which have to be newly created. Internally, the components are called “Basic
Components” and are maintained by the software developers. However, this catalog
is not linked in any way to the prototyping tool of the requirement engineers. The
consequence is, that they have to create another component catalog within the tool and
manually assure the consistency.

Thus, a component used within a user interface prototype either has a counterpart
in the form of an existing user interface component or its purpose is to specify the
creation of new user interface components. The only difference between the representa-
tions is, that during the requirements engineering a lower fidelity might be used. The
envisioned solution supports a transition from prototype to user interface code. The
management emphasised the importance of this idea and wants to avoid the currently
existing sharp division.

As described in the introduction, there is an established software development pro-
cess, which is mapped to the ALM tool. Currently, the usability measures are decou-
pled from the development process. Not only the UCD process, but also the prototyp-
ing tool should be able to integrate with the existing ALM solution or at least offer
interfaces, which allow the integration.

The management preferred an on-premise solution, which could be operated in the
internal data center. However, the information derivable from a user interface proto-
type is not confidential, if certain requirements are met. The prototype must not contain

10

2.2. Expert Interviews

intellectual property or personal data, which is applicable for the projects in most cases.
Therefore, this requirement has a lower priority and does not represent an exclusion
criterion.

Another requirement was the ability to test the prototypes on the target platform of
the respective application. As mentioned in the introduction the increasing demand of
mobile application is a trend, which also could be observed internally. Thus the proto-
typing tool should be able to execute a mobile prototype on a real mobile devices. The
importance of this feature is based on several studies, which have shown that the en-
vironmental conditions are heavily influencing the collected feedback of the users [13,
3]. The following example should illustrate this issue: Imagine that you are collecting
feedback for a mobile application by presenting it to a user on your smartphone. The
user criticises that he is not able to hit a specific button as several buttons are placed too
close to each other. This kind of feedback could not be collected on a desktop computer
as it does not provide the typical touch interface.

The final requirement is directly linked to the previous one and does not address the
operating system support of the prototyping tool, but the support of target platforms.
It should be possible to create prototypes for web applications as well as for mobile
applications. This feature was of minor importance as it is often possible to represent
the mobile platforms by importing existing component catalogs.

2.2. Expert Interviews

In a second stage the collected requirements were additionally examined with a semi-
structured interview with N = 11 experts of different professional and organisational
backgrounds. In chapter A of the appendix the comprehensive evaluation of the inter-
view can be found. However, this section will only present the key results. The figures
on the following pages follow the convention of depicting the absolute number of per-
sons in round brackets.

The majority (72.7%) of the interviewees were employees of the industry partner, thus
worked for a large company. Additionally, one employee of a micro, small and medium
company was interviewed (see figure 2.1).

A variety of 6 different roles was covered by the interview assuring the representa-
tivity of the results (see figure 2.2). The two requirement engineers also have the roles
of software testers, but spent the majority of their work time in the requirement engi-
neer’s role. That is why the role of a software tester does not occur in the analysis.

The years of professional experience ranged from 0 to 23 years. The median was 10
and the mean 11.82 years (0 = 7.93). This proves that the interviewed experts have a

11

2. Problem Identification

Company size of employer

9% (1)
9% (1)
H Micro
9% (1) B Small
B Medium
M large

Figure 2.1.: Company size of the interviewee’s employer.

Role within the company

9% (1
W 18% (2)

B Requirements Engineer
B Team Lead

B Management

B Software Developer

M Operations Manager

Demand Manager

9% (1)

Figure 2.2.: Role of the interviewee within the company.

12

2.2. Expert Interviews

sound basis of professional experience, which is often considered to be one of the key
characteristics of an expert [34].

Almost all interviewees (81.8%) have used UCD methods in their professional lifes.
Only two software developers (18.2%) have never actively applied any usability method
(see figure 2.3). However they both reported to have received high-fidelity mockups as
a specification document. During the evaluation of the personal experience with the
user-centered design approach the possible implications of this practice is going to be
described in detail.

Application of UCD methods

18% (2)

M Yes

H No

82% (9)

Figure 2.3.: Number of persons applying UCD methods.

The majority of interviewees — namely 9 persons — worked with high-fidelity mock-
ups. Three persons reported to have utilised high-fidelity software prototypes and
another 3 persons interviewed users to systematically collect feedback. One person
commented that interviews are the preferred elicitation method, if the user’s occupa-
tion is not IT-related. The reason for that is the possibility to ask additional questions,
if the feedback was not clear enough. Surprisingly, the cheap method of paper-based
low-fidelity sketches was only used by one interviewee. However, it is not clear, if
this method is not applied or if it was valued to not be worth mentioning due to its
low-fidelity character. For future interviews in the context of UCD methods one should
consider to collect a list of common methods and let the interviewee chose known ones
instead of asking an open question.

During the requirement elicitation 10 persons employed UCD methods. Whereas
only 5 interviewees used them throughout the whole development phase of the project.

13

2. Problem Identification

The feedback given indicated that the difference is connected to the software develop-
ment approach applied in the project. Classical waterfall projects tend to focus the
application on the requirement elicitation and rarely during later phases of the project.
In contrast agile software development projects utilise UCD method during the whole
development phase. This finding is interesting but not surprising as the iterative ap-
proach of agile development requires the team to repeatedly cope with new require-
ments.

Respectively 4 interviewees saw the purpose of applying UCD method in the defi-
nition of a shared language between the stakeholders through the discussion as well
as the visualisation of the requirements and the better understanding of problem and
process at hand. The following reasons were each identified by 2 interviewees. The ap-
plication of user-centered design methods helps to avoid late changes of requirements,
which are — as we are all aware of — connected with exponentially higher costs the later
they are introduced. Furthermore the usability artefacts help to examine if the proposed
solution actually solves the identified problem. Another aspect was the improvement
of internal team communication and the management of expectations. This accounts
for the expectations of the own management as well as the expectations of the customer.

In total 9 persons (81.8%) applied 8 different usability engineering methods, but also
9 persons (81.8%) reported to not have an established development process or guideline,
which integrates the user-centered design approach. Only one interviewee answered
this question positively and explained that there is an established process, which re-
quires the creation of mockups and UI designs for requirements before handing the
specification over to the development. One person reported that some methods are
mentioned in the company wide project management guidelines, but not in the inter-
nal development guidelines. These results will taken up in the course of the discussion
at the end of this section.

Finally the personal experience with UCD methods was rated to be predominantly
positive by 9 persons. It enables a better understanding of user’s needs and the addi-
tional effort invested is justified by the benefits generated (both reported by 3 employees
each). The methods were perceived as inspiring and creative. Furthermore their appli-
cation is very simple and enables faster feedback cycles and better planning. However,
the weak points and negative experiences are of special importance to this thesis as
they represent the room for improvements. Mockups could create the expectation that
the user interface is almost finished and ready for production use. This risk of making
a false impression is higher for non IT-related stakeholders, as they do not know the
technological difference between a mockup and the real UI code. Furthermore this also
addresses one pain point of the management, which is the disposable character of pro-
totypes. The aspect of communication and cooperation between the different involved
stakeholders was also seen as a challenge. Usually there are boundary conditions,

14

2.3. Prototyping Software Comparison

which have to be considered by the software developers like the technological feasi-
bility or the reuse of existing components. These conditions might be ignored, if the
mockup is created independently by a requirements engineer without regular coordi-
nation with the development team. This situation is going to be more closely examined
in the course of the case studies in section 4. Another interviewee, who started using
UCD methods several weeks ago, reported that the lack of a standard component cata-
log was seen negatively. It would have been useful, especially at the beginning, to know
which components could be supported out of the box and how the general style looks
like without reading through several hundred pages of the corporate design guidelines.
Finally the difference between the customer and the real user is often neglected during
the usability interviews. Most of the time the customer is also a user of the application
and the only person, who is giving feedback. However, this dual role might create the
a risk of biased analysis, which does not reflect the opinion or experience of a real user.

In summary UCD methods are regularly applied by a variety of different roles.
Though, the focus heavily lies on the creation of high-fidelity mockups. Despite the
wide application and the generally positive feedback UCD is currently not integrated
in most of the development processes. This interview confirmed the importance of the
top three requirements identified in the informal interview of the previous section. The
collaboration between the stakeholders is of major importance. Especially the commu-
nication and coordination between the requirements engineers as the creators of the
mockups and the software developers as the implementors of the solution is crucial
to avoid designing overly complicated mockups and enabling the systematic reuse of
existing software components. Although the approach carries the word user its name,
one has to ensure that differentiation between the customer and the user of the soft-
ware is consciously made. The creation of personas, which was not as established as
the creation of mockups, could help to raise the awareness for this distinction. Di-
rectly connected to the previous point is the creation of a shared component catalog,
which provides an orientational guide of the existing development landscape. Usually
IT projects do not start on a green field and have to obey to certain boundary condi-
tions. These ideas of a systematic reuse of existing components is remotely linked to
the management’s request of the ability to export prototypes to UI code, but it was not
mentioned concretely during the expert interviews.

2.3. Prototyping Software Comparison

After the confirmation of the basic requirements with the help of the expert interviews,
existing prototyping software tools were evaluated (see figure D.1). The checkmark
(“v”) indicates that the requirement is fulfilled by the application. The circle (“o”) de-
scribes that the feature is only partially supported or that it could be supported with
an additional effort (e.g. by using available APIs to extend the tool). The cross (“X”)
means that the application does not support the requirement at all and the question

15

2. Problem Identification

mark indicates that there was no information available about the specific feature.

Two prototyping applications stand out with a high degree of requirement fulfilment.

iRise Pixate Visual
Justinmind Studio Balsamiq Studio Paradigm
Beta
Collaboration 4 v o o o
(deliver to end users, col-
lect feedback)
Custom Component v v v/ X ?
Catalog
Export Code X v/ X X X
Integration with ALM o 4 ° X ?
(link to requirements, sin-
gle source for reporting)
On-Premise Solution v v v X X
(host collaboration plat-
form internally)
Test on the Target Plat- 4 v X v X
form
Platform-Support 4 4 v v v/
(create mockups for mo-
bile and desktop applica-
tion)
Multi-Fidelity Mock- X X o X X
ups
(support transitions

between fidelity levels)

Table 2.1.: Comparison of prototyping tools according to the specified requirements.

The first solution is Justinmind (https://www.justinmind.com) and is currently used
within the department. However, it does not offer the possibility to export the created
prototypes to user interface code. Furthermore the integration into ALM tools does
not come “out of the box”, but there is an open plugin API, which could be utilised to
extend the software. It should be noted that after this comparison was made, Justin-

16

https://www.justinmind.com

2.4. Research Gap Identification

mind released their own Atlassian JIRA (https://www.atlassian.com/software/jira)
plugin [23]. Furthermore the product page was updated and now claims that an inte-
gration into Microsoft TFS and Doors is possible as well.

The second solution - iRise Studio - offers all specified features. It integrates into 9
different ALM solutions and allows the export of prototypes to code with the help of
a template engine. The negative aspect of this solution is the price tag, which will be
presented in a comparison in the following section.

Unfortunately the vendors did not reply to price requests for their enterprise versions,
thus a comparison could only be made with publicly available data. The Justinmind
Professional version has a one time cost of 495,00 USD and the price of iRise Studio
starts with the Professional version at 6.995,00 USD [9]. In 2004 the price for 10 iRise
Studio Enterprise licenses was 250.000,00 USD [24]. However, these prices are probably
outdated and do not represent the enterprise versions, which were the basis for the
comparison.

In summary there is a solution on the market — iRise Studio —, which fulfils all re-
quirements, but comes with a very high price. As this does not represent an interesting
scenario for an academic thesis further possibilities for the enhancement of a tool sup-
ported UCD development approach were searched.

2.4. Research Gap Identification

The process of creating prototypes usually starts on a low-fidelity level, e.g. with a
sketch on paper, and advances towards more and more rich prototypes till the final
user interface is reached. This issue was also identified by Coyette, Kieffer, and Van-
derdonckt in [11], but they focused on mainly on the transition from sketches, which
they defined as having “no-fidelity”, to the first digital representation with a gesture
recogniser. The prototyping tools were also examined for the support of a transi-
tion between multiple fidelity levels. The result was that only one tool — Balsamiq
(https://balsamiq.com/) — partially supports this feature. It is possible to switch be-
tween a “Wireframe” and “Mockup” view, which implemented by switching between
two stylesheets for the predefined components. Thus the systematic support of a multi-
fidelity approach was identified as a research gap.

In [47], [4] and [46] the mockup-driven development process was introduced, which
closely adheres to the idea of a systematic reuse of mockups for the generation of code.
This paradigm should be integrated into the UCD process to be developed in the course
of this thesis. In section 3.3 a comparison of the three approaches is presented as each
one has a slightly different focus.

17

https://www.atlassian.com/software/jira
https://balsamiq.com/

2. Problem Identification

2.5. Research Questions

Finally the in section 2.4 identified research gap lead to the establishment of the follow-
ing three research questions:

RQ1 What is the definition of mockup-driven development and the different fidelity
levels?

RQ2 What are the requirements for a multi-fidelity mockup-driven development sys-
tem and how could an implementation look like?

RQ3 How to evaluate if a multi-fidelity mockup-driven development system improves
the software development process?

18

Part II.

Solution Design

19

3. Definition of Terms

To answer RQ1 (see section 2.5) the existing definitions found in literature are described
in this chapter and a definition, which is used within this thesis is formulated.

3.1. Fidelity-Level

The first impression that there has to be a clear definition for the term fidelity in the
context of user-centered design has not been confirmed. The different papers and arti-
cles analysed in the course of this thesis used a variety of terms and sometimes even in
a contradictory way within the same article. There are sketches, wireframes, mockups
or prototypes, which might have a low-, medium-, high- or even no-fidelity.

The Oxford dictionary defines the term fidelity as “the degree of exactness with
which something is copied or reproduced” [42]. This provides an useful basis for a
fidelity definition in the context of usability engineering. Thus the fidelity of a proto-
type is the degree of which it corresponds to the final user interface. This definition is
consistent with the one of Coyette, which defines “the prototype fidelity [as] the simi-
larity between the final user interface [..] and the prototyped UI” [11]. However, this
immediately poses the question of how to measure this degree of fidelity. Therefore
a basic button element was analysed on different fidelity levels. The first and lowest
fidelity representation of a button was a paper-based sketch (figure 3.1). The highest
fidelity level was examined on the basis of the two frontend frameworks Twitter Boot-
strap (figure 3.3) and Material Design (figure 3.4). The last representation was created
on a “medium fidelity level” with the prototyping tool Justinmind (figure 3.2). Then a
comparison of the number of style properties was made.

The sketch had 7, the prototype 37, the Twitter Bootstrap implementation 42 and the
Angular Material implementation 71 style properties. Although the identification of
the style properties for the paper-based sketch were subjective, the general trend of a
growing number of properties with a higher degree of fidelity cannot be denied. The
detailed analysis could be found in the appendix B.

In the course of the increasing fidelity different artefacts like sketches, wireframes,
mockups or prototypes are utilised. In literature there is no consistent understanding
of their fidelity levels and respectively their field of application. One article defines a
wireframe as a “low-fidelity blueprint represented by with grey boxes and placeholders

21

3. Definition of Terms

for detailed content”, whereas another one describes it as a high-fidelity artefact [40].
This inconsistency of terms, which spans from blogs to scientific research motivated
the following thorough analysis (see table 3.1) [58, 40, 21, 57, 10, 36, 12, 55, 56, 25, 33,
28, 63, 62, 27, 67, 48, 31].

] Submit

Figure 3.1.: Sketched button Figure 3.2.: Justinmind’s button

BUTTON

Figure 3.3.: Button of Twitter Boot- Figure 3.4.: Button of Material De-
strap sign

Analog to the previous table the checkmark (“v”) indicates that the criterion was ful-
filled. The circle (“o”) describes that the criterion is only partially fulfilled and the cross
(“X”) means that it does not apply at all. The criteria were organised in the categories
general, fidelity, behaviour, structure, information and style. The last four categories
were inspired by the User Interface Modeling Language (UIML), which uses the same
structure to model user interfaces and is going to be presented in section5.1 in detail.
The results illustrated in table 3.1) are based on a literature research. First a set of rel-
evant articles was collected by searching for the artefact’'s name and the terms fidelity
and definition (e.g. “sketch fidelity definition”). The search was executed on Google’s
search engine and Google scholar. Afterwards the literature was assessed with regard
to the collected criteria. If a new criterion was identified during the analysis the list
was extended and a second assessment round was performed afterwards. A full list
and the extensive analysis can be found on the enclosed CD.

22

3.1. Fidelity-Level

The common understanding of the examined literature was, that a sketch or wire-
frame is a low-fidelity prototype, which is often created with pen and paper. Whereas
a mockup or software prototype has a high-fidelity and is usually developed on the
computer. Furthermore the low-fidelity prototypes merely have any interactive be-
haviour and only a reduced style. The difference between a software prototype and the
real product might not be apparent on the side of the user interface, but rather on the
technological side (e.g. the code quality). If you visualise the dimensions of the arte-
facts with a radar chart one could see that they could be clustered into two groups (see
figure 3.5). The low-fidelity group consisting of sketch and wireframe (see figure 3.6),
and the high-fidelity group consisting of mockup and software prototype (see figure
3.7).

Fidelity

Information
(Text & Images

¥ Software Prototype
= Mockup

B \Vireframe

B Sketch

Style Cost
Responsiveness Navigation

Interactivity

Figure 3.5.: Analysis of UCD artefacts on various dimensions.

Fidelity Fidelity
Information
(Text &

Images)

Information
(Text &
Images)

Speed

Style Cost Style

Responsive "Navigation Responsiv Navigation

ness

Interactivity

" Wireframe ™ Sketch

Figure 3.6.: Low-fidelity artefact
group.

ness

Interactivity

B Software Prototype ®Mockup

Figure 3.7.: High-fidelity artefact
group.

23

3. Definition of Terms

Prototype

Category Criterion Product
Sketch Wireframe Mockup Software Prototype
. paper- paper- computer- computer- software-
General Technique based based based based based
Speed fast fast slow slow slowest
Cost cheap cheap expensive expensive most expensive
Fidelity Low-Fidelity v v X X X
Medium-Fidelity X v/ v X X
High-Fidelity X X 4 v v/
Behaviour Navigation X v v v v
Interactive Elements X X v v v/
Stract . e E:E.Hu_m Eiﬁ.ﬁ_o .mwbmﬂm. CSS Other CSS Other
ructure esponsive Design static static Interactive Technology Technology
screens screens screen
Placeholders X X o ° v
Information Label v v v v v/
Text X X o v 4
Images X X v 4 4
Style Colors v v/ X X X
Icons X v v 4 4
Typography X X v v v

Table 3.1.: Evaluation of fidelity level criteria.

24

3.2. Multi-Fidelity

In conclusion this research defines the fidelity of a prototype as the average number
of properties used to describe the individual components. A sketch and a wireframe
have a low fidelity while the mockup and software prototype have a high fidelity. The
medium fidelity level is omitted as it could not be distinctly defined and the results
of the analysis on the examined dimensions suggest a classification into two fidelity
levels.

3.2. Multi-Fidelity

One central idea of the thesis is to develop a process and tool, which allows an easy
transition between different levels of fidelity. The initial concept was to enable the
forward and backward transitioning between all fidelity levels, which is illustrated in
figure 3.8. It was hypothesized that especially the transformation of an artefact to a
lower fidelity level could be of interest to systematically steer discussions. For example
if a usability walkthrough of a mockup is stuck at the color of a specific button, one
could reduce the fidelity and continue the discussion with a wireframe, which would
allow to regain the focus on the basic user interaction instead of the design details.

Protoypes

Low-Fidelity Prototype High-Fidelity Prototype

Sketch I Wireframe I Mockup I Software Prototype I

Figure 3.8.: Initial vision for a multif-fidelity prototyping process.

Product

A similar approach was pursued by Coyette in [11], who used four fidelity levels
(no-fidelity, low-fidelity, medium-fidelity and high-fidelity) and a tool, which had “a
slider [...] [to allow] the user to easily switch between any fidelity level to another” [11].
They focused on the transition between the sketch and the first digital representation
of the user interface. Therefore they used a stylus (digital pen input device) and shape
recognition algorithm to match the drawn user interface components to a predefined
catalog of components. The higher fidelity representations of the component had to be
defined explicitly. The export to the final user interface code on the respective platform
was enabled through the support of the user interface specification languages UIML
(www.uiml.org) and UsiXML (www.usixml.org). In the course of a semi structured in-
terview the authors analysed the window development time for the different fidelity
types. The result had shown, that the times for all four fidelity levels were quite close

25

www.uiml.org
www.usixml.org

3. Definition of Terms

with the high-fidelity level being the fastest with an average window development time
of 261 seconds. The Computer System Usability Questionnaire (CSUQ) conducted after-
wards suggested a moderately appreciated system usefulness and information quality.
The additionally collected feedback indicated that the shape-recognition was to slow
and a drag-and-drop support of the sketched components was missed. Furthermore
most of the participants preferred the high-fidelity level over the no-fidelity level as it
makes the impression of being a draft [11].

These results as well as feedback received during the initial thesis presentation at the
chair laid to a reevaluation of the previously presented idea for a multi-fidelity proto-
typing process. The expert interviews presented in section 2.2 also indicated that the
current practice is rather to iterate on one specific fidelity level and then transition to
a second fidelity level or immediately to the product. This process rarely involves two
tidelity levels, most of the time after incorporating the feedback the results are directly
passed to the product development. Figure 3.9 illustrates the refined multi-fidelity pro-
totyping process, which more closely resembles the real practice. It should be noted
that the transitive relations between the artefacts are possible as well, e.g. immediately
continue on the product level after creating a sketched prototype.

Protoypes
Low-Fidelity Prototype High-Fidelity Prototype

Mockup Software Prototype

-

- ~

Wireframe

Figure 3.9.: Vision for a multi-fidelity prototyping process.

The dashed and grey coloured transition was extensively analysed in Coyette’s pa-
per and was not examined in detail in the course of this research. Nevertheless a short
discussion of the results is considered appropriate at this point. The systematic reuse
of prototyping artefacts is a key idea of this thesis and thus the approach of recognis-
ing Ul components drawn with a stylus to transition to the next fidelity-level is well
appreciated. However, the analysis of the fidelity-levels in section 3.1 has shown that
there is not only a separation into two fidelity groups, but also a separation in the
medium used to create them. Typically low-fidelity prototypes are paper-based and
high-fidelity prototypes computer-based. Coyette introduced a computer-based tech-
nique for the creation of low-fidelity prototypes, which did not yield a positive user
acceptance. Interestingly the author himself provided a possible explanation in the
course of the related work. User interfaces designed on paper tend to iterate more
often and thus create more solution proposals, whereas the prototypes created with a
tool on the computer typically tend to work out one solution it its very detail [61]. Fur-

26

3.3. Mockup-Driven Development

thermore “[low-fidelity] prototyping [...] encourage[s] the stakeholders to focus on the
Ul interaction rather than on details irrelevant at this level which do not influence the
usability” [11]. Low-fidelity prototyping also supports the expectation management as
the stakeholders clearly recognise the user interface as not being the final one [35]. This
was also one feedback received during the expert interviews. When developing high-
fidelity prototypes the polished UI might provoke the expectation that the final user
interface is almost finished (see appendix A). The medium paper might support the
last two points by communicating a certain non-binding nature. This research argues
that there are strong reasons to not “digitise the low-fidelity prototyping” and rather
develop a technology, which allows the transformation from paper-based sketches to
digital wireframes. With todays visual recognition capabilities and machine learning
algorithms this might has become achievable. However, this approach was excluded
from the scope of the thesis, but the idea is going to be continued in the course of the
outlook (see chapter 8).

In conclusion the multi-fidelity prototyping process is defined as the systematic ap-
proach of increasing the fidelity of prototyping artefacts. Typically iterations take place
on one fidelity-level and after surpassing a certain maturity level continue to a higher
fidelity-level. In practice this often starts with a low-fidelity prototype and continues
with high-fidelity prototype till passing over to the product development. Two case
studies performed with the industry partner will illustrate this process in section 4.

3.3. Mockup-Driven Development

The transformation of prototyping artefacts to the final user interface code is the last
step in the previously introduced multi-fidelity prototyping process and was also spec-
ified as an requirement by the industry partner (see section 2.1). During the initial
literature research two core papers introducing a “Mockup-Driven Development” ap-
proach were identified. The following two sections present the two approaches and
subsequently chapter 4 is going to introduce the prototyping process, which combines
the multi-fidelity prototyping process with the mockup-driven development approach.

3.3.1. Mockup-Driven Development: Providing agile support for
Model-Driven Web Engineering

The paper is motivated by the idea of integrating the benefits of agile software develop-
ment with the Model-Driven Web Engineering (MDWE) process. Their proposal is to
use UI prototypes as a starting point for the modelling process as MDWE “tend[s] to
leave User Interface aspects to the end of the development cycle” [47]. Mockups were
identified as a key factor in driving the efficiency of agile software development. How-
ever, “instead of discarding mockups, [they] transform them into platform-independent
UI specifications” [46].

27

3. Definition of Terms

The mockup-driven development process, which the authors named MockupDD pro-
cess, starts with the creation of a mockup according to specified requirements (see
figure 3.10). Afterwards a Structural User Interface (SUI) model is derived from the
mockup. This is performed in step 2 and supported by the Mockup Processing Engine
(MPE), which detects widgets (sets of logically grouped Ul elements), determines the
hierarchical structure of the widgets and finally detects the layout of the widget within
its parent widget. This processing could be skipped, if the mockup was already present
in a structured form (e.g. HTML). In the next step a mapping between the requirements
in the form of user stories and the SUI model is created by tagging the mockups with
annotations. Finally the enriched SUI model is utilised to generate a demo version of
the web application and the MDWE models, which are later used for further refinement
and the generation of the final web application [46].

Mockup Processing

Custom mockups forma =
Mockup- . (p)
Construction == .
based on User — Relevant widget
Stories detection ==
Mockup files (HTML mockups)
(HTML/ Custom format) SUI Model
Step 4.a i \ == ™ Including:
Code E — Feature - Navigation specs
* | : E— i i - Content specs
Generation Specification
Running Web Applicati through SUI -Con_ten(Management specs
PP \& g/ - Business rules specs
Demo Sandbox Environment enrichments
Enriched SUI
S Model
Model Step 3
Generation
Step 4.b

MDWE Models
(e.g., WebML, UWE, etc.)

Figure 3.10.: The mockup-driven development (MockupDD) process, including techni-
cal steps [46].

This approach of introducing UCD to MDWE solves the issues mentioned at the
beginning of the section in an interesting way. Especially the derivation of a struc-
tural model from the inherently unstructured mockups is a recurring problem, when
enabling a systematic reuse of UCD artefacts, which was elegantly solved. The eval-
uation has shown that the MockupDD process is easier to learn and more efficient to
use then the plain MDWE processes. However, they did not address several issues,
which are characteristic for the model-driven approach. Usually the development of
user interfaces is not a green field approach and constrained by a given frontend frame-
work like Twitter Bootstrap or Angular Material. Furthermore development departments
might have catalogs of existing widgets to stick to their terminology. The article does

28

3.3. Mockup-Driven Development

not address this problem. Perhaps the reuse of existing user interface elements could
be enabled by the introduction of additional annotations connecting them to elements
of the mockup. Model-driven approaches are require a complex tool chain, which has
to be adopted to the environment [38]. In this example the tool chain consists of a
mockup tool, the MockupDD engine itself and at least one MDWE transformator. The
modelling languages are often quite complicated and not suitable for all stakeholders
[38]. This is also a valid critique as the authors confessed that their sample users were
all experienced MDWE engineers, which might explain the very positive rating on the
learnability scale. Nevertheless the MDE approach could provide significant produc-
tivity gains, if the knowledge for its establishment is present and potential issues are
addressed early on [19].

3.3.2. Mockup Driven Web Development

The second article introduces a declarative approach for mockup-driven development
(MDD) with the Cascading Tree Sheets (CTS) language. The idea behind this custom
language is “the ability to describe the relationship between content and structure on
the web” [4] and thus decoupling the content from the structure. The CTS annotated
structure is parsed on the client side with JavaScript and enriched with the dynamically
loaded content. One aspect of the evaluation is the migration cost from existing CMS
systems like Wordpress to the mockup-driven system. The results were not available yet,
but the prepatory scrapping of Wordpress themes was completed. A usability study
indicated that the approach is significantly faster for reuse tasks. Furthermore a perfor-
mance analysis has shown that it could yield a four-fold throughput improvement for
queue-heavy workloads (e.g. blogs) [4].

In summary this research introduces an advanced client-side templating engine. The
term mockup-driven development is used in a quite different context then in the previ-
ously presented article. In the course of this work a mockup depicts the structure and
thus an input for a web application, which has to be combined with its content. The
term of fidelity is not mentioned, but considering that the mockup is the template for
the real application one could assume that it has to have a extremely high-fidelity, if not
even being the real product without its content. Furthermore this approach requires
the use of HTML-based mockups as the CTS language annotates the HTML-tags. In
comparison to the MockupDD approach this article lacks the consideration of mockup
tools, which do not operate on HTML code. Furthermore the MDD technology is not
embedded in a process. Nevertheless the decoupling of content and structure is an
interesting aspect for a mockup-driven development approach. More advanced pro-
totyping tools like Justinmind allow the injection of data into the mockup following a
similar approach. However, an export of UI code or the data model is not supported.

29

3. Definition of Terms

3.3.3. Assessment of the Approaches

First of all the Cascading Tree Sheets concept has a very different understanding of the
term mockup then the one established in this thesis. Instead of an artefact of the UCD
process a mockup is rather treated as an abstraction of a user interface, which is lacking
the content. However, this separation enables the reuse of existing UI elements, which
was a prominent requirement for the solution design. In the course of the following
chapter this idea is going to be considered as part of the definition of reusable compo-
nents.

With regard to the multi-fidelity approach both articles are focusing on the transi-
tion of a high-fidelity mockup to the final product. This step is only one part of the
whole UCD process to be developed and did not receive the highest priority during the
requirement elicitation. The MockupDD process is embedded into the agile software
development, but the CTS are rather described as a technology then a part of the UCD
process. This thesis is going to consider a multi-fidelity approach and not only the
final transition to Ul code. Furthermore its focusing on the collaboration between all
involved stakeholder and incorporate the surrounding environment.

30

4. Prototyping Process

Under the consideration of the management’s requirements (see section 2.1) and the
results of the expert interviews (see section 2.2) as well as the related work about
mockup-driven development a custom prototyping process was developed. Figure 4.1
gives an overview over the participating systems and roles. In section 4.1 the process is

explained in detail.

Usability Requirements
Engineer Engineer

Create and
Improve Prototypes

A — > e
Ul Component Include Prototyping
Catalog Tool
Specify
new component
Software Usability Requirements
Engineer Engineer Engineer

Figure 4.1.: Overview of the prototyping process the participating systems and roles.

Generate

\

Customer

Ul Code

Software
Engineer

4. Prototyping Process

As emphasised before the mockup-driven development approach is too narrow to
solve the identified problem. Thus a custom prototyping process was defined and
according the term definitions introduced before is called prototype-driven development.
The process is independent of the utilised fidelity-level and could, with some con-
straints, be executed with any prototyping tool (sketch, wireframe, mockup, etc.). In
figure 4.1 the participating roles are marked by grey dashed lines and associated with
the process steps, which they are involved in.

The requirements or usability engineer identifies a requirement which involves the
creation of an user interface. This process does not make any assumptions of how
these requirements are organised to allow the independence of the applied software
engineering process. Depending of the structure of the requirements and project the re-
quirements engineer creates a new prototype for the feature or adds an additional view
to an existing one. The prototyping tool used for this purpose supports the engineer by
providing a catalog of existing Ul components. It is now the task of the requirements
engineer to identify and layout the components, which are necessary to implement
the requirement. If the component catalog does not suffice, a new component could
be specified. At this point the software engineer joins the process to discuss the new
component together with the requirements engineer. This collaboration is extremely
important to assure, that the new component could be implemented under considera-
tion of the prevalent constraints (technology, security policies, corporate design, etc.).
Furthermore the aspect of reusability has to be discussed. Is the component specific for
the current project or could it be generalised for different use cases? The requirements
engineer adds a placeholder component to the prototype, so that he is not blocked
until the new component is available in the catalog. Within this placeholder any form
of representation of the new component could be created and he is encouraged to do
so, because this reflects the basis for the discussion of the new component with the
software engineer. After completing the prototype the requirements engineer shares
the draft with the users or customer to collect feedback. Depending on the received
comments or performed assessment the prototype is refined or released for the imple-
mentation. The refinement step is executed iteratively till a specified maturity level of
the prototype is reached (e.g. if an interview was conducted the prototype could be
passed to the development department, if less then two comments for improvement
were expressed). Obviously this threshold is dependent on the concrete environment
and needs to be balanced with a cost-benefit analysis. If too few iterations were per-
formed, changes might not be detected and occur in later stages of the project. If too
many iterations are performed one might end up applying the “design-paralysis” anti-
pattern (analog to the “analysis-paralysis” anti-pattern [7]), delay the project and / or
exceed the budget. In the final step of the prototyping process the software engineer
receives the prototype and is able to transform it to UI code and scaffold the further
development.

32

4.1. Process

4.1. Process

After giving an overview in this section the prototype-driven development process is
presented in detail. Therefore the process was formalised using the Business Process
Management Notation (BPMN) (see figure 4.2). An enlarged version of the process
chart could be found chapter C of the appendix.

There are three roles participating in the process. The role of requirements engineer,
which could also be taken by an usability engineer, but is omitted for simplification rea-
sons. Furthermore there is the software engineer and the user of the future system. The
process starts with the receipt or analysis of a new requirement by the requirements
engineer. In the first step he has to decide if the requirement affects the user interface of
the system. This means, that he has to identify, if the feature requires the adjustment of
an existing Ul or the creation of a new one. If the decision is negative, the requirement
is not of interest for the prototype-driven development approach and could be handed
on to the conventional requirements engineering process (e.g. for prioritisation and
assignment). In the positive case the subprocess for the creation of a new prototype
is instantiated. The attached chart only considers the creation of a new prototype, but
it is trivial to extend the process with a task for the retrieval of the existing prototype.
The circular icon on the bottom of the subprocess indicates that it could be executed
iteratively. This refers to the dimension of time — the feedback loop to incorporate the
comments of the users — as well as to the structural dimension, which means that sev-
eral iterations for the different components of one view might be necessary. For each
of those components the requirements engineer has to check if there is an existent com-
ponent in the catalog. In the positive case the component is reused and laid out into
the view. Otherwise, in the negative case, the subprocess for the specification of a new
component is initiated, which is described in section 4.1.1. After finishing the design of
the prototype it is shared with the users of the system. The user reviews the prototype
and provides feedback to the requirements engineer, who after reviewing decides if he
has to improve the prototype or if it is stable and ready for the handover to software
engineer. Finally the developer utilises the prototype to generate the code of the user
interface and continues with the conventional development process.

The description of the process was intentionally formulated in an abstract way to be
independent of a concrete implementation with certain software tools or UCD methods.
In section 4.2 two case studies conducted during projects of the industry partner will
be presented. These case studies serve two purposes. Firstly they are used to discuss,
if the suggested process could be actually implemented in an enterprise environment.
Secondly the case studies, although not yet complying with the proposed process, par-
tially illustrate how specific steps of the process could look like in reality.

33

Requirements Engineer

@lV X Affects the UI?

New
Requirement

Requirements

Process

4. Prototyping Process

Software Engineer

Create a prototype

Is there an
existing component?

| Reuse existing
Component
yes

Layout
Component

Specifiy

new Component

O

ves
Necessary to create
anew prototype?
Improve
Prototype X
no no
s
o Waltfor X " ﬁ Pass Prototype _ Requirements
Prototype Feedback _ o Development _ ngineri
? LY Requirement stable? 9
1
1
1
1
I
T
|
|
w | e

User

O—

v

4

Review
Prototype

I

Send

Feedback

O

Figure 4.2.: The prototype-driven development process.

34

4.2. Prototyping Case Studies

4.1.1. Component Specification Subprocess

Before continuing with the case studies the subprocess for the specification and cre-
ation of a new component should be shortly introduced (see figure 4.3). Just as with
the previous chart, an enlarged version could be found in the appendix (see chapter C).

The subprocess involves the same roles as the parent process and has a similar struc-
ture. Instead of the single feedback loop with the user an additional one with the
software engineer is upstream to analyse the technical feasibility of the specified com-
ponent. After passing this quality gate the usability of the component is analysed with
the user. In both cases a negative result leads to an improvement of the component
with the aid of the received feedback. In the case of a positive usability the component
is passed on to the software engineer. Analog to the parent process the developer uses
the prototype to generate the user interface. Afterwards he implements and connects
the business logic to the Ul Finally the software engineer publishes the component to
the shared component catalog. It should be noted that the specification of the compo-
nent’s business logic is not covered within this approach and needs to be addressed by
the conventional development process. Furthermore an additional verification of the
component’s usability after the completion is imaginable and reasonable, but for the
sake of simplicity not considered in the subprocess chart.

4.2. Prototyping Case Studies

This section introduces two case studies of projects which relied on UCD, but were
not yet implementing the suggested prototyping process. Each case already considered
partial steps of process and serve as an example, but the main goal of this presenta-
tion is to analyse, if the process could be theoretically implemented in a real world
scenario. During both projects prototypes of a varying degree of fidelity were created
and informally discussed with the stakeholders. The measures were executed by the
author of the thesis in the role of a usability engineer. Time-wise the UCD activities
were conducted at the beginning of the project and in the case of the mobile appli-
cation stretched far into the development phase. This was possible due to the agile
development approach, which facilitated the consideration and implementation of user
teedback during all stages of the project.

4.2.1. Case Study 1: SIPCA - Web Application

SIPCA is an application, which processes the variable compensation of employees ac-
cording to their personal goals. This tool should be extended to incorporate the target
setting for whole countries and departments as well as the management of special ef-
fects, which prevent or affect the achievement of the targets. The demand was based
on an existing software solution, thus the functional requirements were quite stable.

35

4. Prototyping Process

Requirements Engineer

Improve

Prototype

Share Prototype
with
Software Engineer

|

Wait for
Feedback from
Software Engineer

?
1
|

yos ﬁ

Technical feasible?

Share Prototype Wait for
with Feedback from
User User
Q A

_

yes

_

X

Component usable?

Pass Prototype

to Development

Software Engineer

1
L
I
1

v

- —=4-----

O

Review
Prototype

a

Send
Feedback

5

Software Engineer

O—

Generate
Ul code

-

Implement
Business Logic

T

Publish Component
to Catalog

J—O

User

vy

1y

O

Review
Prototype

A

Send
Feedback

O

Figure 4.3.: The subprocess for the specification of a new component.

36

4.2. Prototyping Case Studies

However, the user interface of the application should be redesigned to follow the cor-
porate design guidelines and address several usability issues, which occurred in the
existing solution. Thus the rational behind the creation of high-fidelity mockups was
primarily to communicate the new application design and in the course of this improve
the usability the existing solution.

The requirements were collected and documented in the form of a slide deck during
a workshop with the customer and a requirements engineer. Afterwards the require-
ments were preprocessed by a second requirements engineer and a first draft was en-
tered into the department’s ALM solution — HP Quality Center. The application was
split into two bigger modules and several feedback meetings between the usability and
requirements engineer took place to clarify open issues. First paper-based sketches
were discussed and afterwards recreated as high-fidelity mockups with the prototyp-
ing tool Justinmind (see figure 4.4 and 4.5). After finishing the mockups for the first
module a meeting with the responsible software developer was scheduled to discuss
the technical feasibility of the created designs. There were only minor adjustments
necessary as the author of the thesis also has the role of a software engineer and thus
is familiar with the available UI components. Following this, a walkthrough with one
user and two customers was performed. The walkthrough was realised with the inter-
nal live conferencing solution and not in person. However, during the session several
improvements were identified and incorporated into the second version of the mockups.
Furthermore the requirements were updated accordingly by the requirements engineer,
who took part in the walkthrough as well. Finally the mockups for the second module
were completed and the just described process was repeated with the small distinction,
that the previously discussed adjustment were shortly presented at the beginning of
the second walkthrough.

The usability approach was viewed very positively by all participants and the require-
ments engineer made the comment that especially the early feedback from a second
person with a different perspective helped to identify ambiguous and unclear require-
ments. In this case the high-fidelity mockups did not create the expectation of an almost
finished product. The UI of the final solution only differed slightly from the mockups
and no major changes in the requirements ocurred during the development.

If one compares the presented case with the proposed process, one could see that
the feedback loop with the user was established and executed in the form of a usability
walkthrough. Furthermore the collaboration between the requirements engineers and
the software development department was successfully established through the usabil-
ity engineer. Two coordination meetings ensured that the imagined solution could be
implemented with the given constraints. However, the creation of the mockups and also
the previously mentioned coordination could have been faster, if the Ul components
were already present in a shared catalog as suggested. The utilised tool Justinmind

37

4. Prototyping Process

SIEMENS & Max Mustermann > Logout

» Contact » Help

> Home

Targets

Lorem ipsum dolor sit amet, sapien etiam, nunc amet dolor ac odio mauris justo. Luctus arcu, uma praesent at id quisque ac. Arcu es massa vestibulum
malesuada, integer vivamus elt eu mauris eus, cum eros quis aliquam wisi.

Target Setting (TS) Target Achievement (TA)
N Create and evaluate targets. Lorem ipsum Lorem ipsum dolor sit amet, sapien etiam,
Ve \ dolor sit amet, sapien etiam, nunc amet dolor nunc amet dolor ac odio mauris justo. Luctus
ac odio mauris justo. Luctus arcu, uma {:)» arcy, urna praesent at id quisque ac. Arcu es
\ j‘ praesent at id quisque ac. Arcu es massa massa vestibulum malesuada, integer vivamus
> vestibulum malesuada, integer vivamus. elit eu mauris eus.
Special Effects (SE)

Lorem ipsum dolor sit amet, sapien etiam, nunc amet dolor ac odio mauris justo. Luctus arcu, urma praesent at id quisque ac. Arcu es massa vestibulum
malesuada, integer vivamus elit eu mauris eus, cum eros quis aliquam wisi

Create Special Effects Approve Special Effects
v, Lorem ipsum dolor sit amet, sapien etiam, L~ Lorem ipsum dolor sit amet, sapien etiam,
D nunc amet dolr a odio mauris justo. Luctus AN\ nuncametdolor ac odo maursjust Luctus
I s arcu, urna praesent at id quisque ac. Arcu es. I ” Y arcu, urna praesent at id quisque ac. Arcu es.
I massa vestibulum malesuada, integer vivamus. I; % massa vestibulum malesuada, integer vivamus
et eu mauris eus. d

elit eu mauris eus.

Administration

Lorem ipsum dolor sit amet, sapien etiam, nunc amet dolor ac odio mauris justo. Luctus arcu, ura praesent at id quisque ac. Arcu es massa vestibulum
malesuada, integer vivamus elit eu mauris eus, cum eros quis aliquam wisi

O Lorem ipsum dolor sit amet, sapien etiam,

nunc amet dolor ac odio mauris justo. Luctus
arcu, urna praesent at id quisque ac. Arcu es
a massa vestibulum malesuada, integer vivamus.

elit eu mauris eus.

Figure 4.4.: High-Fidelity mockup of SIPCA’s landing page.

supports the creation of a custom component catalog, but it is has to be maintained
manually.

4.2.2. Case Study 2: Siemens Corporate Directory - Mobile Application

The second use case was the creation of a new concept and implementation for a mobile
app to access the contact information of all Siemens employees. There was an existing
solution, which only supported the iOS-platform. Thus one major requirement was to
additionally support Android and improve the usability of the existing solution (see
figure 4.6). The critique of the existing app was that it does not comply with the corpo-
rate design, the functional scope was very narrow and the detail screen of the employee
was crowded with unnecessary information. Furthermore the search failed to find cor-
rect entries in many constellations, which were successful on the corresponding web
application.

For this scenario paper-based sketches were created to collect ideas and feedback.
Besides that the internal social network was scanned to collect user feedback and im-
provement suggestions. The concept proposed to include the employee’s image in the
detail page and to reorganise the contact details by starting with the commonly used
ones. Furthermore the local time of the employees home location as well as the com-
plete address should be listed. The sketches were the basis for a first presentation of the

38

4.2. Prototyping Case Studies

& Max Mustermann > Logout

SIPCA » Contact » Help

> Home > Create Special Effects

Create Special Effects

1 Select or Create Special Effect General Informatio 3 Calculation 4 Questionnaire

General Information

ID:
Target RC-GB DF CP Bundle Free Cash Flow (abs.

Calculation
Metric as per 4Success:
BOSE (bonus sensitivity): |0.00

0%:

100%:

200%:

Actuals (as reported): 20
numerator. 1.00
denominator: 200

Special Effect Value:
Marked as final: 7]

Impact on numerator: 2,00

Impact on denominator: 4.00

Hordlo Tost T R
Actuals (adjusted) 205.00

Comment:

Figure 4.5.: High-Fidelity mockup of SIPCA’s special effect creation process.

veco Vodafone.de 3G 15:38
Q milzarek \v‘ Results in All
e = o
ch Results - am Py
m o e s =
<

2 Name

X E-Mail

@

SCD iPad App

Figure 4.6.: Screenshot of the old Siemens Corporate Director app on an iPad.

39

4. Prototyping Process

improvement potentials at a meeting with the head of the department responsible for
the service. On the technological side the decision was made to use a new hybrid app
framework to be able to address the cross-platform requirement. This also accounted
for the decision to evaluate the technology in the course of a software prototype, which
was comprehensively implemented by two interns.

ss @cO .00) “

SC \TCX/‘\ . C(’.L‘_l‘. milzarek () Q
I — n __; More search options v
]
- el PR Search results
Al Dok o =
| ‘] " REY‘\Q ; J\Ji(: 1"1)-\/-. Rene Fred Milzarek
-,y > GSITHR23
| G ol >
B -
Max MUSIK X Wnainn, \
5 et e ¥ ¢ p Q @
Search History More
Figure 4.7.: Sketch of the search re- Figure 4.8.: Search result view

sult view. implementation.

The prototype created the impression of being a production ready solution, but the
impression was misleading. After the handover of the app to two software engineers
a major instability was detected, which caused random crashes of the whole applica-
tion. The cause of the defect could not be identified precisely and did not leave any
stack traces. The code imported several unused libraries and the overall code quality
made the error detection difficult. Finally the solution was a rewrite of the app, which
resolved the instability. Despite these issues the new app was able to implement the
suggested improvements and the users were very satisfied.

Regarding the prototyping process this case had a transition from a low-fidelity
sketch to a high-fidelity software prototype and did not systematically assess the usabil-
ity with users of the app. However, several improvement suggestions were indirectly
collected from the user through the internal social network. In contrast to the first
example the project had a explorational character on the dimension of the functional

40

4.2. Prototyping Case Studies

{ Search Details

Rene Fred Milzarek
d
el T "
Add to contacts e
Contact
Conversation Circuit G
1eief hane — No information provided \
e - (¥
RS AL R L ikt i " mgem - Mobile D
, @
{10 47 L 1 = = = m EEEE ® Email
wai E——
) M ganlzatlon
fene :‘.(::;gl Sl zdie @ Giewens. cona
e _@ SIEMENS o
MM P UE.LFde LA GSITHR23 Department Q&
. e -
LR X Q. ©
Search History More
Figure 4.9.: Sketch of the em- Figure 4.10.: Detail view im-
ployee’s detail view. plementation.

scope as well as the dimension of the technology. A software prototype is the perfect
mean to evaluate these aspects. However, the conduction of a standardised usability
questionnaire with the old and new solution would have provided the chance to exactly
measure, if the assumed usability improvements were created.

4.2.3. Evaluation of the Case Studies

Both cases illustrated that certain steps of the process are individually implemented,
but there is no coherent integration of the steps. The prototyping tool Justinmind has
a component catalog, which is not synchronised with the actually available UI compo-
nents. In the first example the mockups are unfortunately only used as a requirements
document, although they are based on existing components. The missing association
between the prototypes and the real components complicates a systematic reuse of the
artefact.

41

5. Implementation

The case studies also supported the prioritisation of the requirements elicitation and
attributed a high priority to the aspect of collaboration and the shared component cat-
alog. Following the suggested prototype-driven development approach, the systematic
creation and maintenance of such a catalog is a key prerequisite to enable the reuse
of prototypes for the Ul generation. Therefore, the Ul component catalog was further
analysed in the course of a prototypical implementation. The following requirements
were deducted from the prototyping process and, if applicable, inherited from the re-
quirements identified in chapter 2.

Create a component catalog

Specify new components

Enable the reuse of existing components

Allow collaboration

Support multiple fidelity levels

5.1. Component / View Model

An important aspect of the implementation was to identify and implement a model for
the components / views. Jonathan Allen defines the view model “[..] as a surrogate
data context” [2]. The real data is passed to the view via one or multiple properties.

Initially, a user interface modelling language had to be identified for the applica-
tion or adaption. Over time a variety of user interface modelling languages have been
developed: Maria [43], UML (http://www.uml.org/), UMLI [45], UsiXML [29] (http:
//www.usixml.org/), DiaMODL (http://www.idi.ntnu.no/ hal/research/diamodl),
Himalia [60], UIML [1] (https://www.oasis-open.org/committees/uiml/). The choice
of the suitable modelling language itself is an individual research topic [39]. The deci-
sion on a view model was not only relevant for this thesis, but also for two more, which
were supervised by the same advisor. During a joint workshop the User Interface Mod-
eling Language (UIML) was defined as a basis for the view model and slightly adapted.
The UIML provides a structure, which excellently fits the problem. An interface ele-
ment consists of a structure, a style, a content and a behaviour (see figure 5.1). Thus,

43

http://www.uml.org/
http://www.usixml.org/
http://www.usixml.org/
http://www.idi.ntnu.no/~hal/research/diamodl

5. Implementation

one component is defined by its structure, data or content properties, style properties
and behaviour definitions.

elements in

bold

structure content ‘ behavior ‘

L

\ 4 3 ’ v
part ﬁ property —’{ constant ‘ ‘ rule ‘

| reference | | condition action |

Figure 5.1.: The elements of the UIML2_0e DTD [44].

The relevant elements for the definition of a component were extracted from the
UIML and are illustrated in 5.2. Within this thesis the behaviour of a component was
omitted and the focus was set on the style properties. The relationship between a prop-
erty and the abstract part, which could be a reference to another component, allows the
overwriting of the style properties of an instantiated component. The properties were
not constrained in any way, e.g. the names have not to be chosen from the set of valid
Stylesheet attributes. In the concrete implementation the structure was stored in the
form of a JSON object, which referenced other component instances by their identifier.
By default a new component has a structure consisting of exactly one element, which
is an instance of the component itself.

44

5.1. Component / View Model

Component
1 0.* 1 1
Structure Content Style Behaviour
-id: String
AbstractPart Constant Property Rules
-id: String < -id: String -id: String
~class: Strin -value: String -name: String
-value: String A
Reference Part Action Condition
0.* 1
Call Event
-componentld: String -class: String
-methodld: String -partName: String
1

Param
-name: String
-value: String

Figure 5.2.: Class diagram for the specification of components.

45

5. Implementation

5.2. System Architecture

The component modeller — called Proteon — relied on Parse (https://parse.com/),
which is a “backend as a service” solution, to quickly and easily define a REST API. The
backend was deployed in the form of a Docker container composition. Internally Parse
communicates with a Mongo database to persistently store the classes. As containers
do not have a persistent storage, Mongo’s data was stored on an external data volume
mount. Furthermore, Parse provides a web frontend — the Parse Dashboard — to com-
fortably create classes and maintain objects. Through this web application the classes
were iteratively refined and the so defined REST API was consumed by an Angular]S
frontend.

> Parse g
Proteon
Dashboard oteo
REST API
Y
° ul
E ik
2 Parse
o
2 Server
m
MongoDB Wire
Protocol
\ 4
2 o
File Mount d‘ """
s Mongo > Data
% Database Volume
(=]

Figure 5.3.: System architecture of Proteon.

5.3. Technical Implementation

The user interface of the web application was designed with paper-based sketches,
which were then discussed with the advisor (see figure 5.4). The development followed
an agile approach with multiple iterations. A first version of the user interface was
created on basis of the sketches. In figure 5.5 the detail view of a component is shown,
which provides the option to drag and drop new child components from the list on the

46

https://parse.com/

5.3. Technical Implementation

lefthand side to the component structure tree on the right side.

@ r. Adeoo |

< k) LA !
‘ & T e [G

g c‘u(

—p ot T 4 How

Figure 5.4.: Paper-based sketch of Proteon’s component’s structure tree.

During the the presentation of this screen the feedback was collected, that the com-
ponent structure tree, as the core element of this view, should receive more space in
the Ul The decision was made to improve the layout by replacing the drag and drop
interaction with a submenu. A button at each component of the structure tree allows
the access to the submenu. Within this menu the user could search for components
and through a click on the component add a new child component to the respective
element of the structure tree (see figure 5.6). This redesign allowed the tree to occupy
the whole width of the central content area of the application.

Finally the tool was presented in the context of the prototyping process and the us-
ability was measured with the System Usability Scale (SUS) questionnaire. The results
of the evaluation is going to be introduced in chapter 6.

5.3.1. Third Party Libraries / Software

As previously mentioned, the software prototype relied on several third party libraries.
This section gives an overview of the included libraries and software tools. The back-
end as a service — Parse Server — is licensed under the BSD license. The Parse Dash-
board has an individual license agreement, which allows the non-exclusive royalty-free
use, reproduction, distribution and modification for internal use. The Docker Compose
setup was repurposed from the Github user “yongjhih”, who licensed the scripts and

47

5. Implementation

e e x !
< C O localhost:8080/#/compone
pps k Bookmarks wr MVV . DevDocs

@® Proteon

DASHBOARD

& TRACK
6]

General Information

=]

Name Track

Ta track

Audio and Video

Defines text tracks for

escrpton media elements

(<video> and <audio>).

4y Unspecified

11/10/2016 20:42

wstChange By Unspecified

11/21/2016 17:06

talog/uOFFy 1zHrs/NbDfpamZc7
tackShare [} Designer

Structure

ive Proto x
*OQ@U S

3 Other Bookmarks

MAX MUSTERMANN
P} e MAX MUSTE! N

PROTOTYPE MODELER

PROPERTIES

EXPANDALL GOLLAPSE ALL
v Track track
Area area
v Article article> X
Atticle article:
Button <button> X
Audio audio
Butt . v Button <button> X
utton utton 9 Please select a component from the
structure tree.
Canvas <canvas> X
Canvas canvas:
Column Group <colgroup

Column Properties <col

Description List dl

Description List Term <dt

Figure 5.5.: Implementation
interaction.

e o /p < (B

of the component’s structure tree with a drag and drop

x\ Rene.
< C © localhost:8080/webpack-dev-server/ *O2BO S H
i Apps J Bookmarks w7 MWV (. Devbocs [Stackshare [} Designer 3 Other Bookmarks

App ready.

MAX MUSTERMANN
@® Proteon + = O
DASHBOARD PROTOTYPE MODELER
< TABLE Structure PROPERTIES
6} a @ EXPANDALL COLLAPSE ALL
General Information .
v Table <sebis-table> table x
Nam Table
o ‘ Search results
Ta sebis-table Teble Row sidle
Table Header Cell <th>
Gategor Tables Table Cell <td> X
- Customised table with Table Header Content <thead>
optional pagination. Table Cell <td> X
Table Body Content <tbody
v Table Row <> X Table Footer Content toot
ated By Unspecified
Table Cell <td> X
ant 11/15/2016 10:22 \ 4
ast Change Unspecified Table Cell <td> X °
stChange At 11/24/2016 00:39 Pagination <sebis-pagination> X °

Figure 5.6.: Implementation

of the component’s structure tree with the interaction

through a submenu.

48

O 0 NI O O B~ W N -

e
N = O

1
2

5.3. Technical Implementation

configurations under the Apache license, version 2.0 (https://github.com/yongjhih/
docker-parse-server). Furthermore the frontend relied on 9 different libraries, which
were with the exception of one all licensed under the MIT license. The complete list
could be found in the appendix D.

5.3.2. Execution Instructions

The project was managed in a public Git repository on BitBucket (https://bitbucket.
org/neotreat/masters-thesis-code) and is licensed under the MIT license to allow
further research and the continuation of the development and integration at the indus-
try partner. As mentioned before the web application’s backend is based on a setup
of multiple Docker containers. The relationship between the containers is configured in
a Docker Compose file and the environment variables were extracted to an environment
file (see listing 5.1).

#it

Qauthor René Milzarek <rene.milzarek@in.tum.de>
Qcopyright Copyright 2016 by René Milzarek.

#it

APP_ID=<<APP_ID>>
MASTER_KEY=<<MASTER_KEY>>

PARSE_DASHBOARD_ALLOW_INSECURE_HTTP=1
SERVER_URL=http://localhost:1337/parse
USER1=<<USER>>
USER1_PASSWORD=<<PASSWORD>>

Listing 5.1: Environment configuration in backend/.env-default.

Create a copy of the environment file in backend/.env and provide the missing pa-
rameters. It is recommended to use the application identifier “Proteon”. The master
key should be chosen randomly and only shared with trusted parties. The user cre-
dentials will be used to access the Parse Dashboard. Afterwards the backend could be
started with the following commands.

cd ./backend
docker-compose up

Listing 5.2: Startup commands for the backend.

49

https://github.com/yongjhih/docker-parse-server
https://github.com/yongjhih/docker-parse-server
https://bitbucket.org/neotreat/masters-thesis-code
https://bitbucket.org/neotreat/masters-thesis-code

O 0 NI O O B W N -

[y
o

5. Implementation

The same configuration has to be provided to the frontend. For this purpose open
the frontend/src/app. js file and go to line 44 where the code snippet of listing 5.3 is
located. Copy the master key to the marked location and save the change.

/] ...

// Setting global constants

appModule. constant (’CONFIG’, {
>APP_ID’: ’proteon’,
>API_KEY’: °<<MASTER_KEY>>’, // = JavaScript key
>APT_URL’: ’http://localhost:1337/parse’

s

/] ...

Listing 5.3: Environment configuration in frontend/src/app. js.

Before starting the web application the third party libraries need to be installed by
the execution the following commands (see listing 5.4). This has to be done only once.

cd ./frontend-web-app
npm install

Listing 5.4: Installation of the frontend’s third party libraries.

Finally, the frontend could be started by running the webpack-dev-server. After
several seconds the web application is going to be available at http://localhost:8080.
Please note, that the Parse Dashboard is going to reachable at http://localhost:4040
and requires the previously defined credentials for the first access.

50

http://localhost:8080
http://localhost:4040

Part III.

Evaluation

51

6. Evaluation

The prototype-driven development process and the software prototype Proteon were
evaluated in the course of a usability walkthrough and a subsequent conduction of the
System Usability Scale (SUS) questionnaire. At the beginning of the walkthrough the
prototyping process was explained on the basis of the process overview diagram (see
figure 4.1). Special attention was paid to the description of the participating roles so
that the interviewee was able to identify where he or she is interacting with or execut-
ing certain steps of the process. It was explained, that the whole process should be
evaluated, but one aspect — the component modeller — was additionally implemented
in the form of a software prototype. Afterwards the modeller was presented to the in-
terviewee and the following aspects were explored with the user. The dashboard of the
web application was always presented as the first screen. Afterwards the overview of
component catalogs was opened and it was explained that there are several predefined
component catalogs (e.g. HTML5 elements), which could be used as building blocks
for new components. In the next step the company specific component catalog was
accessed and the details of the table component viewed. The comment functionality
on the component level was demonstrated afterwards and finally the user explored the
creation of a new component and properties on various fidelity-levels.

The walkthrough was concluded by an online questionnaire, which consisted of the
standard usability questionnaire SUS and additional 7 items to analyse, if the sug-
gested process solves the identified problems. The decision for the SUS questionnaire
was made for its simplicity and thus ability to be performed quickly. The questionnaire
consists of 10 items and could be conducted in a short period of time. This aspect
was important to assure that the complete walkthrough does not exceed 30 minutes.
The custom questions intentionally followed the structure of the questionnaire in the
form of “I think that...” questions to not irritate the interviewee. Furthermore the same
5 point Likert scale was used (1 indicating strong disagreement and 5 strong agree-
ment) for the answer options. Also the evaluation scheme of the SUS questionnaire
was considered, which causes the fact, that the values only range from 0-4 in the fol-
lowing sections. Please refer to [6] for a complete explanation of the applied evaluation
method.

The detailed analysis of the collected answers and feedback could be found in the
appendix E. At this point the most relevant results should be discussed. Overall N = 8
persons participated in the usability walkthrough. They were all employees of Siemens
and represented 4 different roles (software engineer, requirements engineer, team lead

53

6. Evaluation

and operations manager). The completion rate of the interviews and subsequent ques-
tionnaire was 100%. There occurred no issues during the elicitation, which would have
invalidated a data entry. The following evaluation is structured according to the online
questionnaire in the three sections suitability, usability and feedback. The first section
encompasses the custom questions, which were designed to examine the fulfilment of
the identified requirement. The second section covers the SUS questionnaire and the
final one presents the feedback, that was additionally provided by the participants.

6.1. Suitability

An improvement of the collaboration between the department and participating roles
of the software development process was the requirement with the highest priority.
Therefore the answers to the question, if the collaboration could be increased with
the suggested prototyping process and the component modeller should be presented
first. Overall 6 (75%) of the persons strongly agreed, that the collaboration could be
improved by the suggested solution (see figure 6.1). The mean value was 3.5 (¢ = 1.07)
and supports the hypothesis that the collaboration could be improved.

Collaboration Improvement

Number of Persons

| . .

1 (Strongly disagree) 2 3 4 S (Strongly agree)
Degree of agreement (Likert scale)

Figure 6.1.: Evaluation of the collaboration improvement.

The second most important requirement was the establishment of a shared compo-
nent catalog. During the interviews in the course of the problem identification the
increased collaboration and a more systematic reuse of existing components was asso-
ciated with this requirement. Thus the question asked targeted the enhancement of
component reuse. Here the interviewee had the exact same impression and overall

54

6.1. Suitability

75% (6 persons) strongly agreed to the statement, that the component reuse could be
improved (see figure 6.2). Accordingly the mean had the same value of 3.5 (¢ = 1.07).

Reuse Enhancement

Number of Persons

| . .
0
1 (Strongly disagree) 2 3 4 S (Strongly agree)
Degree of agreement (Likert scale)

Figure 6.2.: Evaluation of the reuse enhancement.

The next questions asked the participants to evaluate, if the prototyping process
could accelerate the software development. This questions is related to the previous
one, but had the intention to verify, that the suggested solution is not too complex
and slowing down the stakeholders. The majority of 4 persons (50%) agreed with the
statement, that the software development could be accelerated (see figure). The mean
was with a value of 3 (¢ = 0.76) lower, but nevertheless indicates an average agreement.
However, the distribution of the answers was slightly smaller.

Afterwards the error-proneness was examined. It should be noted that this statement
was negatively formulated: “I think that the system is prone to errors”, which requires
the given answers to be evaluated inversely with the formula 5 — x. For more details on
the evaluation method, please refer to [6]. Overall 4 persons (50%) disagreed with this
statement (see figure 6.4). The mean had a value of 2.5 (¢ = 1.07), which is considerably
closer to an average rating.

The question about the ability of the process to be integrated into the work life
yielded interesting results. The participants had a perfect split in their opinions. Exactly
as many persons as were agreeing to the statement had the opposite opinion. Thus the
mean was 2 (¢ = 1.41) and the distribution was consequently very large (see figure 6.5).

There were two more questions, which are not illustrated with a chart. They par-
ticipant should evaluate, if the process could improve the onboarding process. This

55

6. Evaluation

Accelerrate Sofware Development

45

Number of Persons

1 (Strongly disagree) 2 3 4 5 (Strongly agree)
Degree of agreement (Likert scale)

Figure 6.3.: Evaluation of the software development acceleration.

Error-Proneness
45
4
35
w 3
c
o
2
Qs
o
o
5
o 2
£
=]
Z 35
1
) .
0
1 (Strongly disagree) 2 3 4 5 (Strongly agree)

Degree of agreement (Likert scale)

Figure 6.4.: Evaluation of the error-proneness.

56

6.2. Usability

Integration into Work Life

35

3
l l I l
2 3 4

- ~
« ~ 0

Number of Persons

o
o

0

1 (Strongly disagree) 5 (Strongly agree)

Degree of agreement (Likert scale)

Figure 6.5.: Evaluation of the process’ ability to be integrated into the work life.

targeted the verification of the need for a shared component catalog. 37.5% of the par-
ticipants (3 persons) agreed with the statement. The mean was 2.6 (¢ = 1.30), which
indicates a slight overall agreement. The last question about the production readiness
of the proposed solution caused comprehension questions by the participants in three
cases. Since the statement was obviously formulated ambiguously it is not considered
in the course of this evaluation. However, the answer are nevertheless attached in the
appendix.

In summary this part of the questionnaire revealed that the key requirements are
fulfilled by the designed prototyping process. The majority of participants did not per-
ceive the process and tool as too complex or error-prone. However, the opinions about
the integration into ones daily work was split. A possible reason for this result might
be the composition of the participant group. Approximately 50% of the participants
— namely the team lead(s) and operation manager(s) — might not immediately use the
process and thus see no reason for an integration into their work life.

6.2. Usability

The usability of the proposed solution was measured with the System Usability Scale
(SUS) and the detailed calculation of the SUS score could be found on the enclosed CD.
The average SUS score was 67.19, thus it almost exactly corresponds to the overall aver-
age SUS score of 68, which was determined by research (https://www.usability.gov/
how-to-and-tools/methods/system-usability-scale.html). Considering the through-
out positive impression of the first part it is surprising that the usability score is slightly

57

https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

6. Evaluation

below the average. The feedback, which was additionally provided at the end of the
questionnaire and collected during the walkthrough could help to better understand
this result.

6.3. Feedback

At end of the questionnaire two participants provided additional written feedback. One
participant emphasised that the process “would enhance [the] collaboration and speed
up [the] software development”. The second participant highlighted the benefits of the
component library, which was described as “a great tool [improve] transparency and
[enable a] better reuse of existing code over team boundaries”. The participant also
criticised the code generation as potentially being “very complicated an error prone
[...]”. The original feedback of the questionnaire in its unedited form could be found in
section E.3 of the appendix.

The opinion that the developed component modeller could significantly improve the
collaboration between departments was verbally expressed by two more participants.
The aspect of multi-fidelity was not mentioned by a single person during the walk-
through or feedback of the questionnaire. Even upon request the participants reacted
with moderately with the confirmation that multi-fidelity is an interesting feature.

58

7. Summary

In chapter 3 a broad literature research, covering academic as well as professional re-
sources, was utilised to define the terms fidelity and mockup-driven development. Two
major fidelity-levels were identified and common usability artefacts assigned to them.
This thesis established the understanding that a prototype could have a low- or high-
fidelity level. Thus mockups are an example for a high-fidelity prototype. Furthermore
the multi-fidelity prototyping was defined as the systematic process of increasing the
fidelity of a view or component by the addition of new properties. The definition of
mockup-driven development found in literature did not follow this idea and only cov-
ers the transition from a high-fidelity mockup to the final product or was in the case of
the Cascading Tree Sheets more or less unrelated to the presented concept.

This insight and the core requirements of a collaboration improvement and the sys-
tematic reuse of existing components, which were identified together with the industry
partner in chapter 2, lead to suggestion of a custom prototyping process. Under the
consideration of the established term definitions the process is called prototype-driven
development. The inclusion of the application’s or component’s user takes an essential
role in the defined process. Furthermore should the systematic specification and de-
sign of components improve the communication between departments and speed up
the development through a better alignment with the requirement engineers and the
facilitation of a repurposing of prototypes for the Ul code generation.

During the implementation a software prototype for a multi-fidelity component mod-
eller and catalog was developed. The evaluation confirmed that the focus on this aspect
of the whole mockup-driven development process was set correctly and that the devel-
oped solution helps to improve the collaboration and reuse of components. However,
the last and prominent question, which formed the title of this thesis, is not answered
yet. Do multi-fidelity levels improve mockup-driven development? Following Rivero’s
definition of mockup-driven development in [46] this approach takes care of the tran-
sition from a high-fidelity mockup to the final user interface. Reducing the fidelity of
the mockup will also reduce the one of the generated product. This approach is diffi-
cult to reconcile with the presented multi-fidelity process and the reuse of components.
Thus the mockup-driven development process as defined does not profit from a multi-
fidelity approach as it requires an annotated high-fidelity artefact as input.

If one views the mockup-driven-development process embedded in the prototype-
driven development process as the last step, one has to consider the results of the

59

7. Summary

previously presented evaluation. No participant identified any benefit in the integra-
tion of multiple fidelity-levels. A potential explanation could be that firstly the aspect
of multi-fidelity was not motivated by concrete requirements of the industry partner,
but identified as a research gap from the academic perspective. Secondly one has to
consider the currently established UCD activities, which were described in the problem
identification and the two case studies. The definition and introduction of a collabo-
rative UCD process is more urgent then the seamless support of fidelity transitions.
Furthermore the existence of such a process could be seen as a requirement for the in-
stallation of a multi-fidelity process. This aspect was also considered during the design
of the prototyping process and influenced that the process could be applied indepen-
dently of the fidelity-level.

Finally the results should be reviewed from a critical view point. The results of the
evaluation might be criticised, because they did not evaluate the real prototyping pro-
cess with all its steps, but only present a walkthrough and one aspect — the component
modeller — as a concrete solution. However, it was impossible to design and install such
a complex process at a large company within the 6 month duration of a master’s thesis.
Wherever necessary and possible the requirements and steps of the process were pri-
oritised according to the needs of the industry partner and technological requirements.
Finally the feedback impressively confirmed that the prioritisation was made correctly.
The envisioned process provides room for a variety of future research. The following
section is going to present several options as part of the outlook.

60

8. Outlook and Future Research

Andreas Tielitz presented in his master’s thesis an approach for the automatic extrac-
tion of view-models from components [54]. This technology could be utilised to analyse
a existing component base and to automatically create representations in the compo-
nent modeller. Following the idea of continuous integration one could even go one
step further and enhance the prototyping process by the automatic maintenance of the
UI component catalog on the basis of the source code. This would ensure that no more
manual efforts are necessary to always keep the catalog up to date.

The defined components have to be made available for the prototyping tool used by
the requirements engineer. In the case of Siemens, this would require the development
of a custom plugin for the prototyping software Justinmind. At this point it might also
make sense to connect the tool to the ALM solution, which would enable a direct access
to the requirements and allow the requirements engineer to complete his part of the
prototyping process within one application.

After the handover of the prototype to the software engineer a code generator needs
to parse and analyse the prototype’s data structure to identify the utilised components.
Then a representation of the prototype in the form of the specified view model has
to be made, which subsequently allows the generation of the UI code. The developed
component modeller has only very basic support for this approach. Furthermore the
“prototype parser” has to be developed for each prototyping tool as they use propri-
etary data formats (this aspect was also analysed during the thesis and several tools
used JSON-based data formats with custom structures).

Finally the idea of multi-fidelity could be reconsidered. A paper-based sketch is
also a prototype, which basically uses the tools of pen and paper. It is imaginable to
use image recognition to match a sketched component to its low-fidelity counterpart
in the component catalog. This would finally enable the envisioned multi-fidelity pro-
cess. The connection would to the digital component would allow the transition to any
other fidelity-level or even to the implementation of the component. Imagine the fol-
lowing scenario: After sketching a user interface one takes a picture of the low-fidelity
prototype with a smartphone and uploads it to a cloud service. Image recognition al-
gorithms match the drawn UI components to a existing catalog of components. The
system automatically transforms the matched digital representation of the sketch to a
realistic software prototype, which could be used as the basis for the development.

61

List

1.1.
1.2.

1.3.

2.1.
2.2.
2.3.

3.1.
3.2
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.

4.1.
4.2.
4.3.
44.
4.5.
4.6.
4.7.
4.8.
49.
4.10.

5.1.
5.2.
5.3.
54.

of Figures

Share of U.S. digital media time spent by platform [20]..
Software development process of the industry partner’s engineering de-

partment.o
Number of mobile devices at Siemens AG.

Company size of the interviewee’s employer.
Role of the interviewee within the company.
Number of persons applying UCD methods.

Sketched button o o oo
Justinmind’sbutton
Button of Twitter Bootstrap
Button of Material Design,
Analysis of UCD artefacts on various dimensions.
Low-fidelity artefact group.
High-fidelity artefact group.
Initial vision for a multif-fidelity prototyping process..
Vision for a multi-fidelity prototyping process.
The mockup-driven development (MockupDD) process, including tech-

nical steps [46].

Overview of the prototyping process the participating systems and roles.
The prototype-driven development process.
The subprocess for the specification of a new component.
High-Fidelity mockup of SIPCA’s landing page.
High-Fidelity mockup of SIPCA’s special effect creation process.
Screenshot of the old Siemens Corporate Director app on an iPad.

Sketch of the search result view.

The elements of the UIML2_ 0e DTD [44].
Class diagram for the specification of components.
System architecture of Proteon.
Paper-based sketch of Proteon’s component’s structure tree.

12
13

23

44

63

List of Figures

5.5.

5.6.

6.1.
6.2.
6.3.
6.4.
6.5.

B.1.
B.2.
B.3.
B.4.

C.1.
C.2.
C3.
C4.

Implementation of the component’s structure tree with a drag and drop

interaction. 48
Implementation of the component’s structure tree with the interaction

throughasubmenu., 48
Evaluation of the collaboration improvement. 54
Evaluation of the reuse enhancement. 55
Evaluation of the software development acceleration. 56
Evaluation of the error-proneness. 56
Evaluation of the process’ ability to be integrated into the work life. . . . 57
Sketched button L oo 83
Justinmind button 83
Button of Twitter Bootstrap 83
Button of Material Design 83
The prototype-driven development process (enlarged part 1). 86
The prototype-driven development process (enlarged part2). 87

The subprocess for the specification of a new component (enlarged part 1). 88
The subprocess for the specification of a new component (enlarged part 2). 89

64

List of Tables

2.1. Comparison of prototyping tools according to the specified requirements. 16

3.1. Evaluation of fidelity level criteria. 24
A.l. Evaluation of the company size. 77
A.2. Evaluation of role within the company. 78
A.3. Evaluation of the years of professional experience. 78
A.4. Evaluation of application of user-centered design approaches. 79
A.5. Evaluation of establishment of a UCD process. 81

B.1. Comparison of the number of CSS attributes between different button
representations L L o 84

D.1. Comparison of prototyping tools according to the specified requirements. 92

E.1. Evaluation of the collaboration improvement. 93
E.2. Evaluation of the reuse enhancement. 94
E.3. Evaluation of the software development acceleration. 94
E.4. Evaluation of the error-proneness. 95
E.5. Evaluation of the ability to be integrated into the everyday work. 95
E.6. Evaluation of the onboarding improvement. 96
E.7. Evaluation of the production readiness. 96
E.8. Evaluation of the frequency of use. 97
E.9. Evaluation of the system’s complexity. 97
E.10. Evaluation of the easeof use. 98
E.11. Evaluation of the need for technical support. 98
E.12. Evaluation of the integration of the system’s functions. 99
E.13. Evaluation of the system’s inconsistency. 99
E.14. Evaluation of the learnability. 100
E.15. Evaluation of the fussiness. 100
E.16. Evaluation of the user’s confidence. 101
E.17. Evaluation of the amount necessary knowledge to collect before using
thesystem. 101

65

Glossary

Application Lifecycle Management (ALM) “[..] The product lifecycle management
(governance, development, and maintenance) of computer programs. It encom-
passes requirements management, software architecture, computer programming,
software testing, software maintenance, Change management, continuous integra—
tion, project management, and release management” [65]. 10

Business Process Management Notation (BPMN) “[...] A graphical notation that de-
picts the steps in a business process.” [41]. 33

Business-to-Consumer (B2C) “The business-to-consumer market is the common form
of the market, where enterprises supply the demand of consumers” [50]. 3

Commercial Off-the-Shelf (COTS) “Commercially available specialized software de-
signed for specific applications (such as legal or medical billing, chemical analysis,
statistical analysis) that can be used with little or no modification” [8]. 4

Consumerization “The invasion of innovation in the enterprise context, which actually
originates from the consumer sector” [64]. 3

Continuous Integration (Cl) “[...] A development practice that requires developers to
integrate code into a shared repository several times a day. Each check-in is then
verified by an automated build, allowing teams to detect problems early” [53]. 5

Mobile Device Management (MDM) “[...] includes software that provides the fol-
lowing functions: software distribution, policy management, inventory manage-
ment, security management and service management for smartphones and me-
dia tablets. MDM functionality is similar to that of PC configuration life cycle
management (PCCLM) tools; however, mobile-platform-specific requirements are
often part of MDM suites” [15]. 6

Return on Investment (ROI) “A performance measure used to evaluate the efficiency
of an investment or to compare the efficiency of a number of different invest-
ments. ROI measures the amount of return on an investment relative to the in-
vestments cost” [22]. 4

System Usability Scale (SUS) “[..] A simple, ten-item scale giving a global view of
subjective assessments of usability” [6]. 8, 48, 53, 57

67

Glossary

User-Centered Design (UCD) . 4, see Human-Centered Design (HCD)

68

Bibliography

[1]

(2]

3]

[4]

[5]

[6]
[7]

[8]

[9]

[11]

M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and J. E. Shus-
ter. “UIML: An appliance-independent XML user interface language.” In: Com-
puter Networks 31.11 (1999), pp. 1695-1708. 1ssN: 13891286. por: 10.1016/51389-
1286(99)00044-4.

J. Allen. So What Exactly is a View-Model? 2012. URL: https://www. infoq. com/
articles/View-Model-Definition.

M. K. Azham Hussain. “Apps vs Devices: Can the Usability of Mobile Apps be
Decoupled from the Device?” In: International Journal of Computer Science Issues
9.3 (2012), pp. 11-16.

E. Benson. “Mockup Driven Web Development.” In: Proceedings of the 22nd inter-
national conference on World Wide Web companion (2013), pp. 337-341.

R. G. Bias and D. J. Mayhew. Cost-justifying usability: an update for an Internet age.
Ed. by R. G. Bias and D. J. Mayhew. Vol. Second. 2006-7. Morgan Kaufmann, 2005,
p- 687. 1sBN: 0120958112. po1: ISBN-10:0120958112.

J. Brooke. “SUS - A quick and dirty usability scale.” Early, 1986.

B. Bruegge and A. H. Dutoit. Object-oriented software engineering : using UML, pat-
terns and Java. 2003, p. 762. 1sBN: 0130471100.

Business Dictionary. Commercial Off The Shelf Software Definition. 2016. URL: http:
//prod.sandia.gov/techlib/access-control.cgi/2006/060478.pdf (visited
on 11/30/2016).

Business Wire. iRise Joins Microsoft Visual Studio Industry Partner Program. 2009.
URL: http://www.businesswire . com/news/home/20090309005394 /en/iRise -
Joins-Microsoft-Visual-Studio-Industry-Partner (visited on 12/07/2016).

A. Chen. Why low-fidelity prototyping kicks butt for customer-driven design. URL: http:
//andrewchen . co/why-every- consumer - internet - startup- should-do-more-
low-fidelity-prototyping/ (visited on 07/10/2016).

A. Coyette, S. Kieffer, and J. Vanderdonckt. “Multi-fidelity prototyping of user
interfaces.” In: Human-Computer Interaction INTERACT 4662 (2007), pp. 150-164.
1ssN: 0302-9743. po1: 10.1007/978-3-540-74796-3_16.

Design Modo. The What, Why and How of Mockups. 2015. URL: http://designmodo.
com/mockups/ (visited on 07/10/2016).

J. S. Dumas and J. C. Redish. A practical guide to usability testing. Vol. Rev. ed.
Intellect, 1999, p. 404. 1sBN: 1841500208.

69

http://dx.doi.org/10.1016/S1389-1286(99)00044-4
http://dx.doi.org/10.1016/S1389-1286(99)00044-4
https://www.infoq.com/articles/View-Model-Definition
https://www.infoq.com/articles/View-Model-Definition
http://dx.doi.org/ISBN-10: 0120958112
http://prod.sandia.gov/techlib/access-control.cgi/2006/060478.pdf
http://prod.sandia.gov/techlib/access-control.cgi/2006/060478.pdf
http://www.businesswire.com/news/home/20090309005394/en/iRise-Joins-Microsoft-Visual-Studio-Industry-Partner
http://www.businesswire.com/news/home/20090309005394/en/iRise-Joins-Microsoft-Visual-Studio-Industry-Partner
http://andrewchen.co/why-every-consumer-internet-startup-should-do-more-low-fidelity-prototyping/
http://andrewchen.co/why-every-consumer-internet-startup-should-do-more-low-fidelity-prototyping/
http://andrewchen.co/why-every-consumer-internet-startup-should-do-more-low-fidelity-prototyping/
http://dx.doi.org/10.1007/978-3-540-74796-3_16
http://designmodo.com/mockups/
http://designmodo.com/mockups/

Bibliography

[14]

[15]

[16]

[17]

(18]

[19]

[24]

[25]

[26]

X. Ferré, N. Juristo, H. Windl, and L. Constantine. “Usability basics for software
developers.” In: IEEE Software 18.1 (2001), pp. 22-29.

Gartner. IT Glossary - Mobile Device Management. URL: http://www.gartner. com/
it-glossary/mobile-device-management-mdm/ (visited on 12/06/2016).

J. Herman. “A process for creating the business case for user experience projects.”
In: CHI'04 extended abstracts on Human factors in ... (2004), pp. 1413-1416.

A. R. Hevner, S. T. March, J. Park, and S. Ram. “Design Science in Information
Systems Research.” In: MIS Quarterly 28.1 (2004), pp. 75-105. 1ssN: 02767783. por:
10.2307/25148625.

K. Holtzblatt, J. B. Wendell, and S. Wood. Rapid Contextual Design: A How-to Guide
to Key Techniques for User-Centered Design. Vol. 2005. 2005, p. 320. 1sBN: 0123540518.
DOL: 10.1145/1066322.1066325. URL: http://books . google . com/books 7hl=
en{\&}1r={\&}id=V;j06n9stHzUC{\&}pgis=1.

J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen. “Empirical as-
sessment of MDE in industry.” In: 2011 33rd International Conference on Software
Engineering (ICSE) (2011), pp. 471-480. 1ssn: 0270-5257. por: 10.1145/1985793 .
1985858.

comScore Inc. The U.S. Mobile App Report. Tech. rep. 2014.

Interaction Design. Interaction Design Foundation: Mockup Definition. URL: https :
//www.interaction-dedsign.org/literature/book/the-glossary-of - human-
computer-interaction/mock-ups (visited on 07/11/2016).

Investopedia. Return on Investment - ROI. (Visited on 12/06/2016).

Justinmind. Integration with Atlassian JIRA: importing and exporting JIRA issues
in Justinmind Enterprise. 2016. URL: https : //www . justinmind . com/ support /
integration-with-atlassian- jira-importing-and-exporting- jira-issues-
in-justinmind-enterprise/ (visited on 12/07/2016).

K. Kidd. iRise provides a way for users to test-drive Web-based software. 2004. URL:
http://www.techrepublic.com/article/irise-provides-a-way-for-users-
to-test-drive-web-based-software/ (visited on 12/07/2016).

K. Kohler and T. Hochreuter. “Let’s compare prototypes for tangible systems.”
In: Proceedings of the 8th Nordic Conference on Human-Computer Interaction Fun,
Fast, Foundational - NordiCHI '14. New York, New York, USA: ACM Press, 2014,
pp- 323-332. 1sBN: 9781450325424. por: 10 .1145/2639189 . 2639229. URL: http:
//dl.acm.org/citation.cfm?id=2639189.2639229.

A Lancaster. “Paper Prototyping: The Fast and Easy Way to Design and Refine
User Interfaces.” In: leee Transactions On Professional Communication 47.4 (2003),
pp. 335-336.

70

http://www.gartner.com/it-glossary/mobile-device-management-mdm/
http://www.gartner.com/it-glossary/mobile-device-management-mdm/
http://dx.doi.org/10.2307/25148625
http://dx.doi.org/10.1145/1066322.1066325
http://books.google.com/books?hl=en{\&}lr={\&}id=VjO6n9stHzUC{\&}pgis=1
http://books.google.com/books?hl=en{\&}lr={\&}id=VjO6n9stHzUC{\&}pgis=1
http://dx.doi.org/10.1145/1985793.1985858
http://dx.doi.org/10.1145/1985793.1985858
https://www.interaction-dedsign.org/literature/book/the-glossary-of-human-computer-interaction/mock-ups
https://www.interaction-dedsign.org/literature/book/the-glossary-of-human-computer-interaction/mock-ups
https://www.interaction-dedsign.org/literature/book/the-glossary-of-human-computer-interaction/mock-ups
https://www.justinmind.com/support/integration-with-atlassian-jira-importing-and-exporting-jira-issues-in-justinmind-enterprise/
https://www.justinmind.com/support/integration-with-atlassian-jira-importing-and-exporting-jira-issues-in-justinmind-enterprise/
https://www.justinmind.com/support/integration-with-atlassian-jira-importing-and-exporting-jira-issues-in-justinmind-enterprise/
http://www.techrepublic.com/article/irise-provides-a-way-for-users-to-test-drive-web-based-software/
http://www.techrepublic.com/article/irise-provides-a-way-for-users-to-test-drive-web-based-software/
http://dx.doi.org/10.1145/2639189.2639229
http://dl.acm.org/citation.cfm?id=2639189.2639229
http://dl.acm.org/citation.cfm?id=2639189.2639229

Bibliography

[27] Y.-K. Lim, A. Pangam, S. Periyasami, and S. Aneja. “Comparative analysis of
high- and low-fidelity prototypes for more valid usability evaluations of mobile
devices.” In: Proceedings of the 4th Nordic conference on Human-computer interaction
changing roles - NordiCHI '06 October (2006), pp. 291-300. 1ssN: 1595933255. por:
10.1145/1182475.1182506.

[28] Y.-K.Lim, E. Stolterman, and J. Tenenberg. “The anatomy of prototypes.” In: ACM
Transactions on Computer-Human Interaction 15.2 (2008), pp. 1-27. 1ssn: 10730516.
DOI: 10.1145/1375761.1375762.

[29] Q. Limbourg,]J. Vanderdonckt, B. Michotte, L. Bouillon, and V. Lépez-Jaquero.
“USIXML: A Language Supporting Multi-path Development of User Interfaces.”
In: Ehci/Ds-Vis (2005), pp. 200-220. 1ssn: 03029743. por: 10.1007/11431879_12.

[30] A. Marcus. “User-centered design in the enterprise.” In: interactions 12.1 (2005),
p- 18. 1ssN: 10725520. por: 10.1145/1041280.1041293.

[31] M. McCurdy, C. Connors, G. Pyrzak, B. Kanefsky, and A. Vera. “Breaking the
Fidelity Barrier - An Examination of our Current Characterization of Prototypes
and an Example of a Mixed-Fidelity Success.” In: Proceedings of the International
Conference on Human Factors in Computing Systems (CHI'06) (2006), pp. 1233-1242.
DOIL: 10.1145/1124772.1124959.

[32] T. Memmel, F. Gundelsweiler, and H. Reiterer. “Agile Human-Centered Software
Engineering.” In: Proceedings of the 21st British HCI Group Annual Conference on
People and Computers: HCL...but not as we know it - Volume 1 (2007), pp. 167-175.
1ssN: 0040-5736. por: 10.1177/004057368303900411.

[33] T. Memmel, F. Gundelsweiler, and H. Reiterer. “Prototyping Corporate User In-
terfacesTowards A Visual Specification Of Interactive Systems.” In: Proceedings of
the Second IASTED International Conference on Human-Computer Interaction. 2007,
pp- 177-182. 1sBN: 9780889866546 (ISBN). URL: http: //www . actapress . com/
PDFViewer.aspx?paper1d=30110.

[34] M. Meuser and U. Nagel. “The expert interview and changes in knowledge pro-
duction.” In: Interviewing Experts. 2009, pp. 17-42. 1sBN: 9780230220195. por: 10.
1017/CB09781107415324.004. arXiv: arXiv:1011.1669v3.

[35] J. Meyer. Creating Informal Looking Interfaces. 2005. URL: http://www.cybergrain.
com/tech/pubs/lines{_}technote.html (visited on 08/05/2016).

[36] Microsoft - User eXperience. Lo-Fi or Hi-Fi mockups? Blend Ressource Dictionar-
ies mean not having to chose. 2008. URL: https : //blogs . msdn . microsoft . com/
shanemo/2008/03/15/1o-fi-or-hi-fi-mockups-blend-resource-dictionaries-
mean-not-having-to-choose/ (visited on 07/10/2016).

[37] R. Milzarek. “Analysis of the added value of innovative usability and dynamic
visualization concepts for the graphical representation of Siemens AGs KPIs and
prototypical implementation of a native iOS-application.” PhD thesis. Technical
University Munich, 2013.

71

http://dx.doi.org/10.1145/1182475.1182506
http://dx.doi.org/10.1145/1375761.1375762
http://dx.doi.org/10.1007/11431879_12
http://dx.doi.org/10.1145/1041280.1041293
http://dx.doi.org/10.1145/1124772.1124959
http://dx.doi.org/10.1177/004057368303900411
http://www.actapress.com/PDFViewer.aspx?paperId=30110
http://www.actapress.com/PDFViewer.aspx?paperId=30110
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1017/CBO9781107415324.004
http://arxiv.org/abs/arXiv:1011.1669v3
http://www.cybergrain.com/tech/pubs/lines{_}technote.html
http://www.cybergrain.com/tech/pubs/lines{_}technote.html
https://blogs.msdn.microsoft.com/shanemo/2008/03/15/lo-fi-or-hi-fi-mockups-blend-resource-dictionaries-mean-not-having-to-choose/
https://blogs.msdn.microsoft.com/shanemo/2008/03/15/lo-fi-or-hi-fi-mockups-blend-resource-dictionaries-mean-not-having-to-choose/
https://blogs.msdn.microsoft.com/shanemo/2008/03/15/lo-fi-or-hi-fi-mockups-blend-resource-dictionaries-mean-not-having-to-choose/

Bibliography

[38] P. Mohagheghi, M. A. Fernandez, J. A. Martell, M. Fritzsche, and W. Gilani.
“MDE adoption in industry: Challenges and success criteria.” In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). Vol. 5421. 2009, pp. 54-59. 1sBN: 9783642016479.
DOIL: 10.1007/978-3-642-01648-6_6.

[39] E Morais and A. R. da Silva. “Assessing the Quality of User-Interface Modeling
Languages.” Lisbon, 2015.

[40] U. movement. 4 Things No One Told Me About High-Fidelity Wireframes. URL: http:
/ /uxmovement . com/wireframes /4 - things - no - one - told - me - about - high -
fidelity-wireframes/ (visited on 07/10/2016).

[41] Object Management Group Inc. Business Process Modeling Notation - Specification.
URL: http://www.bpmn.org.

[42] Online Oxford English Dictionary. Definition Fidelity. URL: https://en.oxforddictionaries.
com/definition/fidelity (visited on 12/07/2016).

[43] F Paterno, C. Santoro, and L. D. Spano. “MARIA: A universal, declarative, mul-
tiple abstraction-level language for service-oriented applications in ubiquitous
environments.” In: ACM Transactions on Computer-Human Interaction 16.4 (2009),
pp- 1-30. 1ssN: 10730516. por: 10.1145/1614390.1614394.

[44] C.Phanouriou. “UIML: A Device-Independent User Interface Markup Language.”
Dissertation. Virginia Polytechnic Institute and State University, 2000.

[45] P. Pinheiro, D. Silva, and N. W. Paton. “UMLIi: The Unified Modeling Language
for Interactive Applications.” In: International Conference on the Unified Modeling
Language. 2000, pp. 117-132.

[46]]. M. Rivero,]. Grigera, G. Rossi, E. Robles Luna, F. Montero, and M. Gaedke.
“Mockup-Driven Development: Providing agile support for Model-Driven Web
Engineering.” In: Information and Software Technology 56.6 (2014), pp. 670-687. 1sSN:
09505849. por1: 10.1016/j.infsof .2014.01.011.

[47]]. M. Rivero, G. Rossi, J. Grigera,]. Burella, E. R. Luna, and S. Gordillo. “From
mockups to user interface models: An extensible model driven approach.” In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics). Vol. 6385 LNCS. 2010, pp. 13-24. 1sBN:
3642169848. por1: 10.1007/978-3-642-16985-4_2.

[48] R. Sefelin, M. Tscheligi, and V. Giller. “Paper prototyping - what is it good for?: a
comparison of paper- and computer-based low-fidelity prototyping.” In: CHI'03
extended abstracts on Human factors in computing systems. ACM (2003), pp. 778-779.
1ssN: 1581136374. por: 10.1145/765891.765986.

[49] Siemens AG. Earnings Release Q4 FY 2016. Tech. rep. Munich, 2016.
[50] Springer Gabler Verlag. Business-to-Consumer-Markt.

72

http://dx.doi.org/10.1007/978-3-642-01648-6_6
http://uxmovement.com/wireframes/4-things-no-one-told-me-about-high-fidelity-wireframes/
http://uxmovement.com/wireframes/4-things-no-one-told-me-about-high-fidelity-wireframes/
http://uxmovement.com/wireframes/4-things-no-one-told-me-about-high-fidelity-wireframes/
http://www.bpmn.org
https://en.oxforddictionaries.com/definition/fidelity
https://en.oxforddictionaries.com/definition/fidelity
http://dx.doi.org/10.1145/1614390.1614394
http://dx.doi.org/10.1016/j.infsof.2014.01.011
http://dx.doi.org/10.1007/978-3-642-16985-4_2
http://dx.doi.org/10.1145/765891.765986

Bibliography

[61] G. Susan Moore. Closing the User Experience Gap. 2015. URL: http://www.gartner.
com/ smarterwithgartner / closing - the - user - experience - gap/ (visited on
11/29/2016).

[52] G.Susan Moore. Gartner Says Demand for Enterprise Mobile Apps Will Outstrip Avail-
able Development Capacity Five to One. 2015. URL: http : / /www . gartner . com/
newsroom/id/3076817 (visited on 11/29/2016).

[63] ThoughtWorks. Continuous Integration Definition. URL: https://www.thoughtworks.
com/continuous-integration (visited on 12/05/2015).

[54] A. Tielitz. “Automatically extracting view models from component-based web
applications.” Master’s Thesis. Technical University of Munich, 2016.

[55] Usability Geek. Smart UX: High-Fidelity Wireframes. 2016. URL: http://usabilitygeek.
com/smart-ux-highy-fidelity-wireframes/ (visited on 07/10/2016).

[56] Usability Geek. When To Prototype, When To Wireframe - How Much Fidelity Can You
Afford? 2014. URL: http://usabilitygeek . com/when-to-prototype-when-to-
wireframe-fidelity/ (visited on 07/10/2016).

[57] Use Tree. Mockup, Wireframe, Prototyp - was, wann und wie? 2014. (Visited on
07/10/2016).

[58] UXPin. Why Designers Shouldn’t Neglect Mockups. URL: https : //studio . uxpin.
com/blog/designers-shouldnt-neglect-mockups/ (visited on 07/10/2016).

[59]]. Vanderdonckt. “Model-Driven Engineering of User Interfaces : Promises , Suc-
cesses , Failures , and Challenges.” In: Proceedings of the National Conference on
Human-Computer Interaction. 2008, pp. 1-10. URL: http: //rochi . utcluj . ro/
rrioc/en/rochi2008.html{\#}Model{_}Driven{_}Engineering.

[60] L. Vernazza. “Himalia: Model-driven user interfaces using hypermedia, controls
and patterns.” In: IFAC Proceedings Volumes (IFAC-PapersOnline). Vol. 10. PART
1. 2007, pp. 477-482. 1sBN: 9783902661371. DOL: http://dx.doi.org/10.3182/
20070904-3-KR-2922.00085.

[61] R Virzi, J. L. Sokolov, and D Karis. “Usability problem identification using both
low- and high-fidelity prototypes.” In: Proceedings of the SIGCHI conference on Hu-
man factors in computing systems common ground (1996), pp. 236-243. por: 10.1145/
238386.238516.

[62] R. a. Virzi,]. L. Sokolov, and D. Karis. “Usability problem identification using
both low- and high-fidelity prototypes.” In: Proceedings of the SIGCHI conference
on Human factors in computing systems common ground. 1996, pp. 236—243. ISBN:
0897917774. por: 10.1145/238386.238516.

[63] M. Walker, L. Takayama, and J. a. Landay. “High-Fidelity or Low-Fidelity, Paper
or Computer? Choosing Attributes when Testing Web Prototypes.” In: Proceedings
of the Human Factors and Ergonomics Society Annual Meeting 46.5 (2002), pp. 661-
665. 1ssn: 1071-1813. por: 10.1177/154193120204600513.

73

http://www.gartner.com/smarterwithgartner/closing-the-user-experience-gap/
http://www.gartner.com/smarterwithgartner/closing-the-user-experience-gap/
http://www.gartner.com/newsroom/id/3076817
http://www.gartner.com/newsroom/id/3076817
https://www.thoughtworks.com/continuous-integration
https://www.thoughtworks.com/continuous-integration
http://usabilitygeek.com/smart-ux-high­-fidelity-wireframes/
http://usabilitygeek.com/smart-ux-high­-fidelity-wireframes/
http://usabilitygeek.com/when-to-prototype-when-to-wireframe-fidelity/
http://usabilitygeek.com/when-to-prototype-when-to-wireframe-fidelity/
https://studio.uxpin.com/blog/designers-shouldnt-neglect-mockups/
https://studio.uxpin.com/blog/designers-shouldnt-neglect-mockups/
http://rochi.utcluj.ro/rrioc/en/rochi2008.html{\#}Model{_}Driven{_}Engineering
http://rochi.utcluj.ro/rrioc/en/rochi2008.html{\#}Model{_}Driven{_}Engineering
http://dx.doi.org/http://dx.doi.org/10.3182/20070904-3-KR-2922.00085
http://dx.doi.org/http://dx.doi.org/10.3182/20070904-3-KR-2922.00085
http://dx.doi.org/10.1145/238386.238516
http://dx.doi.org/10.1145/238386.238516
http://dx.doi.org/10.1145/238386.238516
http://dx.doi.org/10.1177/154193120204600513

Bibliography

[64] F Weifs and J. M. Leimeister. Consumerization: Herausforderungen fiir das betriebliche
Informationsmanagement durch iPhone und Co. de. 2013. URL: https://www.alexandria.
unisg.ch/224109/1/JML{_}434.pdf.

[65] Wikipedia. Application lifecycle management. 2016. URL: https://en . wikipedia.
org/wiki/Application{_}lifecycle{_}management (visited on 12/06/2016).

[66] C. E. Wilson and S. Rosenbaum. Cost-Justifying Usability. Elsevier, 2005, pp. 215-
263. 1sBN: 9780120958115. por: 10.1016/B978-012095811-5/50008-0.

[67] A.-U.-H. Yasar. “Enhancing experience prototyping by the help of mixed-fidelity
prototypes.” In: Proceedings of the 4th international conference on mobile technology,
applications, and systems and the 1st international symposium on Computer human
interaction in mobile technology - Mobility ‘07 (2007), p. 468. por: 10.1145/1378063.
1378137.

74

https://www.alexandria.unisg.ch/224109/1/JML{_}434.pdf
https://www.alexandria.unisg.ch/224109/1/JML{_}434.pdf
https://en.wikipedia.org/wiki/Application{_}lifecycle{_}management
https://en.wikipedia.org/wiki/Application{_}lifecycle{_}management
http://dx.doi.org/10.1016/B978-012095811-5/50008-0
http://dx.doi.org/10.1145/1378063.1378137
http://dx.doi.org/10.1145/1378063.1378137

Appendix

75

A. Evaluation of the Semi Structured
Interview

A guideline for a semi structured interview was developed and tested with one subject.
The test run did not indicate any problems of understanding or with the planned time
frame of 30 minutes. The semi structured interview was conducted with N = 11
persons of different professional and organisational backgrounds. Due to the setting
of the thesis the majority (72.7%) of the interviewees were employees of the industry
partner. 6 different roles were covered by the interview and ensure the representativity
of the results. It should be noted that the interviewed requirements engineers also have
the role of software testers, but spent the majority of their working time in the role of
an requirements engineer.

A.1. General Information

a) What is the size of your company?

Company size Number of persons
Micro (1 - 9 employees) 1
Small (10 - 49 employees) 1

Medium (50 - 249 employees) 1

Large (> 250 employees) 8

Table A.1.: Evaluation of the company size.

77

A. Evaluation of the Semi Structured Interview

b) What role do you have within the company?

Role Number of persons
Software Developer 3
Team Lead 3

Requirements Engineer 2

Demand Manager 1
Management 1
Operations Manager 1

Table A.2.: Evaluation of role within the company:.

¢) How many years of professional experience do you have?

Years of professional experience Number of persons

0 1
1 1
8 1
10 2
15 1
20 3
23 1

Table A.3.: Evaluation of the years of professional experience.

78

A.2. User Centered Design

A.2. User Centered Design

a) Did you apply user-centered design methods in your professional life?

Applied UCD methods Number of persons

Yes 9

No 2

Table A.4.: Evaluation of application of user-centered design approaches.

b) Which user-centered design methods did you apply?
o Low-Fidelity sketches (1)
o Low-Fidelity wireframe (1)
o High-fidelity mockup (9)
o High-fidelity software prototypes (3)
o Usability walkthrough (1)
e User interviews (3)
e Persona (2)
e Controlled study in usability lab (1)
Comments:

e Prefer interviews if the user/customer’s occupation is not IT-related

¢) At what point in time of the project were the user-centered design methods
applied?

e Requirement Elicitation (10)
e During the development (5)
e Evaluation of the developed solution (2)
Comments:
e The later the less usage of UCD method
e In agile projects during the whole development
e For internal development projects mostly at the beginning of the project

e Not yet used for comparing external software vendors — respectivley their
software solutions

79

A. Evaluation of the Semi Structured Interview

Provided by the designers as a specification document

d) What was the purpose / rationale behind applying a specific user-centered de-
sign method?

Introduce the Corporate Design (1)

Collect early feedback about the user interface (1)
Avoid changes of the requirements late in project (2)
Speak the same language through discussion and visualisations (4)
Better understand the problem and process (4)
Evaluate if the software solves the problem (2)
Measure the usability (1)

Inspiration (1)

Create trust (1)

Support the project planning (1)

Support the internal team communication (2)
Expectation management (2)

Comprehensibility for decision makers (2)

Comments:

Identify features which are more stable, group and prioritise them accord-
ingly
Find a focus for someones own development project. This comment was not

considered as it was very specific to the role of a freelance developer working
on custom projects

e) Is the application of user-centered design methods defined or regulated by a
project execution / software development guideline? Are they integrated into
the process?

80

A.2. User Centered Design

Established UCD process Number of persons

Yes 1
Partially 1
No 9

Table A.5.: Evaluation of establishment of a UCD process.

f) How was your personal experience during the application of the user-centered
design method?

Predominantly positive experiences (7)
Inspiring and creative (2)
Better understanding of the user’s needs (3)

Easier to comprehend for the customer compared to classical requirement
documents (1)

Additional time effort justified by its benefits (3)

Better planning (1)

Very simple methodology (1)

Better foundation for the communication (1)

Expectations clarified (1)

Fast feedback (1)

Might cause too high expectations (reality vs. mockup) (2)
Not considering boundary conditions (1)

No UI component templates available (1)

Content of the prototypes must be tailored to the target group (experts expect
realistic data) (1)

Difference between customer and user often neglected (1)

Management might be hard to convince of the benefits, because the primarily
see additional costs (1)

Comments:

Advantages could not be evaluated properly, as the interviewee was not
involved in the later stages of the project

Usability expert separate from the requirements engineer gave a new per-
spective and valuable feedback

81

A. Evaluation of the Semi Structured Interview

Use the falsification principle, which requires you to know what you want
to measure or analyse

Mockups are usually not a green field approach and have to consider which
UI elements could be reused and what is technically feasible

Disposable mockups should be avoided!
Possibility to use mockups to create video guides for the manual tests
One additional method of requirement elicitation (use cases, mockupts, etc.)

A cohesive style guide instead of multiple mockups/design could increase
the development speed and assure a consistent look and feel

82

B. Degree of Fidelity Analysis

For the analysis of the different degrees of fidelity a comparison between a plain button
element was made. Therefore a sketched button (figure B.1), Justinmind’s representation
of a button (figure B.2) and the button element of the Twitter Bootstrap (figure B.3) and
Material Design (figure B.4) framework were compared.

Colowmit | Submit

Figure B.1.: Sketched button Figure B.2.: Justinmind button

BUTTON
Figure B.3.: Button of Twitter Boot- Figure B.4.: Button of Material De-
strap sign

In table B.1 the number of stylesheet attributes, which were necessary to create the
previous visualisations are listed. For the sketch the attributes were defined by the
author and thus might be subjective. However, even if the actually necessary number
of attributes is twice as large, this does not alter the trend. The attributes for the proto-
typing tool Justinmind were derived from the generated HTML code of the mockup.

83

B. Degree of Fidelity Analysis

Sketch Justinmind B:) “(;ittsttil;;p 113/[2%;1;1;

position position color color

height top background-color background-color

width left border-color background-image

bottom width display background-position-x

right height padding-top background-position-y

left background-color padding-right background-size

top background-image padding-bottom background-repeat-x
border-top-color padding-left background-repeat-y
border-top-style margin-bottom background-attachment
border-top-width font-size background-origin
border-left-color font-weight background-clip
border-left-style line-height box-shadow
border-left-width text-align border-top-color
border-bottom-color white-space border-top-style
border-bottom-image vertical-align border-top-width
border-bottom-style touch-action border-left-color
border-right-color cursor border-left-style
border-right-style user-select border-left-width
border-right-width background-image border-bottom-color
border-top-left-radius border-top-style border-bottom-image
border-top-right-radius border-top-width border-bottom-style
border-bottom-left-radius ~ border-left-style border-right-color
border-bottom-right-radius border-left-width border-right-style
padding-top border-bottom-image border-right-width
padding-right border-bottom-style border-top-left-radius
padding-bottom border-right-style border-top-right-radius
padding-left border-right-width border-bottom-left-radius
transform border-top-left-radius ~ border-bottom-right-radius
box-shadow border-top-right-radius position

y 7 37 12 71

Table B.1.: Comparison of the number of CSS attributes between different button repre-
sentations

84

C. Prototyping Process Charts

On the following two pages you find an enlarged version of the prototype-driven devel-
opment process, which was presented in figure . Furthermore the original and a digital
version of the chart could be found on the enclosed CD.

85

C. Prototyping Process Charts

Requirements

> Engineering
Process

no

=
@
2 ®||V\Xv Affects the UI? g y
2 Create a prototype
w New
7] Requirement
c
(7] Is there an
m existing component?
= ' N\
=
W Reuse existing o Layout
o Component = Component
yes L)
A
D —
yes
o Specifiy
(Ll
new Component
no
=
@
1]
£
<)
c
w
o
4
<
- P
E=
o
@ .
_

Figure C.1.: The prototype-driven development process (enlarged part 1).

User

86

‘(7 3red padrequa) ssavoid yuawrdofaaap uaarrp-adAyojord ayy gD a3y

)oeqpas4

adAjojoid

MaInaYy

§S800.1d

8pod N

swdojanaqg oloUo
21eMl0S ¥ 9
|
|
)
|
t
|
|
|
|
¢9|qelS Juswaiinbay 4 nw
$S900.d 4 ﬂ
Buussuibug juswdojeneg o} sjoeqpaay » adAj0j1014

sjuawalinbay

adAjojo1d ssed

10} NEM

¢adAjojoid mau e
91ea10 0} AessSa0aN

sk

aleys

adAjoj0id
anoidwj

87

w
4 A
3 Improve -
o Prototype -
£ no
[=)] \. J
[
w
[7)
= \i
: ‘ J
o Share Prototype Wait for yes
'S Create prototype > with > Feedback from
o ; Software Engineer ﬁ Software Engineer
o _ J
mv * Technical feasible?
|
|
! |
. “ _
' I
1] 3\
! |
5 _ !
g v S
<)
[.
w Review 4 Vﬁ Send
m Prototype ; ﬁ Feedback
2
N
]
(]
- J
12
-~
=~
= .
Q
wn
192)
Q
Q
S
™~
o0
o
=
—_~
)
-~
S
™~
al
C -

Figure C.3.: The subprocess for the specification of a new component (enlarged part 1).

88

89

‘(7 3red padrepud) yusuodwiod mau e jo uonedyads ay3 105 ssedoxdqgns oy D) 2In3L]

yoeqpaa4 gk ﬁ adAjojoiq
O puag _1 F malnay ¢

9 A
| |
| |
. T »
| |
— | |
| |
| |
_ |
|
5 1 !
@ [}
Bojeren oy . 01607 ssauisng . apoo | “._ |
jusuodwo) ysiignd ;A F yuswajduw) ;A F ajesausn) 5 | "
& |
3
Iy § _ i
O |
| | |
| | |
T ~ | 1
| | |
4 '
- + T
| | |
| | |
¢olqesn jusuodwo) < mv

10} epn adAjojoid aseys

juswdojanaq o} wo hMM: o ;k ﬁ awﬂu
adAjoj01d4 ssedq } YoBQqpesy ;A F yy | «—

D. Third Party Libraries

91

D. Third Party Libraries

Library License Website

Angular]s MIT license https://github.com/angular/angular

Angular Material Design MIT license https://github.com/angular/material

Angular UI Router MIT license https://github.com/angular-ui/ui-router

Angular Ul Tree MIT license https://github.com/angular-ui-tree/
angular-ui-tree

Angular NVD3 MIT license https://github.com/krispo/angular-nvd3

NVD3 Apache License, https://github.com/novus/nvd3

Version 2.0

Angular UI Codemirror

MIT license

https://github.

com/angular-ui/ui-codemirror

Codemirror

MIT license

https://github.

com/codemirror/CodeMirror

Fontawesome

MIT license, SIL
OFL 1.1 and CC
BY 3.0

https://github.

com/FortAwesome/Font-Awesome

Table D.1.: Comparison of prototyping tools according to the specified requirements.

92

https://github.com/angular/angular
https://github.com/angular/material
https://github.com/angular-ui/ui-router
https://github.com/angular-ui-tree/angular-ui-tree
https://github.com/angular-ui-tree/angular-ui-tree
https://github.com/krispo/angular-nvd3
https://github.com/novus/nvd3
https://github.com/angular-ui/ui-codemirror
https://github.com/codemirror/CodeMirror
https://github.com/FortAwesome/Font-Awesome

E. Evaluation of the Online Questionnaire

The questionnaire was prepared with Lime Survey (https://www.limesurvey.org) and
hosted on the author’s webspace. In advance to the questionnaire a usability walk-
through, which explained the prototype-driven development process, took place. Over-
all N = 8 employees participated and 100% completed the survey.

E.1. Suitability

a) I think that the system could increase the collaboration between departments.

Answer Count Percentage
Strongly disagree 1 0 0.00%

2 1 12.50%

3 0 0.00%

4 1 12.50%
Strongly agree 5 6 75.00%

No answer 0 0.00%

Table E.1.: Evaluation of the collaboration improvement.

93

https://www.limesurvey.org

E. Evaluation of the Online Questionnaire

b) I think that the system enhances the reuse of existing components.

Answer Count Percentage
Strongly disagree 1 0 0.00%

2 1 12.50%

3 0 0.00%

4 1 12.50%
Strongly agree 5 6 75.00%

No answer 0 0.00%

Table E.2.: Evaluation of the reuse enhancement.

¢) I think that the system could accelerate the software development.

Answer Count Percentage
Strongly disagree 1 0 0.00%

2 0 0.00%

3 2 25.00%

4 4 50.00%
Strongly agree 5 2 25.00%

No answer 0 0.00%

Table E.3.: Evaluation of the software development acceleration.

94

E.1. Suitability

d) I think that the system is prone to errors (fehleranfillig).

Answer Count Percentage
Strongly disagree 1 1 12.50%

2 4 50.00%

3 1 12.50%

4 2 25.00%
Strongly agree 5 0 0.00%

No answer 0 0.00%

Table E.4.: Evaluation of the error-proneness.

e) I think that the system could be easily integrated in my everyday work.

Answer Count Percentage
Strongly disagree 1 1 12.50%

2 3 37.50%

3 0 0.00%

4 3 37.50%
Strongly agree 5 1 12.50%

No answer 0 0.00%

Table E.5.: Evaluation of the ability to be integrated into the everyday work.

95

E. Evaluation of the Online Questionnaire

f) I think that the system improves the onboarding of new employees.

Answer Count Percentage
Strongly disagree 1 1 12.50%

2 0 0.00%

3 2 25.00%

4 3 37.50%
Strongly agree 5 2 25.00%

No answer 0 0.00%

Table E.6.: Evaluation of the onboarding improvement.

g) I think that the system is not ready for production use.

Answer Count Percentage
Strongly disagree 1 2 25.00%

2 3 37.50%

3 0 0.00%

4 2 25.00%
Strongly agree 5 1 12.50%

No answer 0 0.00%

Table E.7.: Evaluation of the production readiness.

96

E.2. Usability

E.2. Usability

a) I think that I would like to use this system frequently.

Answer Count Percentage
Strongly disagree 1 0 0.00%

2 1 12.50%

3 2 25.00%

4 4 50.00%
Strongly agree 5 1 12.50%

No answer 0 0.00%

Table E.8.: Evaluation of the frequency of use.

b) I found the system unnecessarily complex.

Answer Count Percentage
Strongly disagree 1 1 12.50%

2 4 50.00%

3 0 0.00%

4 2 25.00%
Strongly agree 5 1 12.50%

No answer 0 0.00%

Table E.9.: Evaluation of the system’s complexity.

97

E. Evaluation of the Online Questionnaire

¢) I thought the system was easy to use.

Answer Count Percentage
Strongly disagree 1 0 0.00%

2 1 12.50%

3 2 25.00%

4 1 12.50%
Strongly agree 5 4 50.00%

No answer 0 0.00%

Table E.10.: Evaluation of the ease of use.

d) I think that I would need the support of a technical person to be able to use

this system.

Answer Count Percentage
Strongly disagree 1 2 25.00%

2 2 25.00%

3 1 12.50%

4 3 37.50%
Strongly agree 5 0 0.00%

No answer 0 0.00%

Table E.11.: Evaluation of the need for technical support.

98

E.2. Usability

e) I found the various functions in this system were well integrated.

Answer Count Percentage
Strongly disagree 1 0 0.00%

2 1 12.50%

3 1 12.50%

4 4 50.00%
Strongly agree 5 2 25.00%

No answer 0 0.00%

Table E.12.: Evaluation of the integration of the system’s functions.

f) I thought there was too much inconsistency in this system.

Answer Count Percentage
Strongly disagree 1 4 50.00%

2 1 12.50%

3 1 12.50%

4 2 25.00%
Strongly agree 5 0 0.00%

No answer 0 0.00%

Table E.13.: Evaluation of the system’s inconsistency.

99

E. Evaluation of the Online Questionnaire

g) I would imagine that most people would learn to use this system very quickly.

Answer Count Percentage
Strongly disagree 1 0 0.00%

2 2 25.00%

3 0 0.00%

4 4 50.00%
Strongly agree 5 2 25.00%

No answer 0 0.00%

Table E.14.: Evaluation of the learnability.

h) I found the system very cumbersome to use.

Answer Count Percentage
Strongly disagree 1 4 50.00%

2 1 12.50%

3 1 12.50%

4 2 25.00%
Strongly agree 5 0 0.00%

No answer 0 0.00%

Table E.15.: Evaluation of the fussiness.

100

E.2. Usability

i) I felt very confident using the system.

Answer Count Percentage
Strongly disagree 1 0 0.00%

2 1 12.50%

3 1 12.50%

4 4 50.00%
Strongly agree 5 2 25.00%

No answer 0 0.00%

Table E.16.: Evaluation of the user’s confidence.

j) I needed to learn a lot of things before I could get going with this system.

Answer Count Percentage
Strongly disagree 1 3 37.50%

2 1 12.50%

3 1 12.50%

4 2 25.00%
Strongly agree 5 1 12.50%

No answer 0 0.00%

Table E.17.: Evaluation of the amount necessary knowledge to collect before using the
system.

101

E. Evaluation of the Online Questionnaire

E.3. Feedback

Furthermore 3 persons (37.50%) provided additional feedback, although one only en-
tered “no”.

e I think the first part of the component library is a great tool this will help for
transparency and better reuse of existing code over team boundaries. But the
code generation will be a very complicated an error prone part. Data handling
and quick changes to the mock up will be harder. Personally i would recommend
to start creating the first part to have the technology oriented components in a
library and if possible a generator for the components to use in tools like just in
mind. The code generation for the developer i din’t see as needed as here the
requirements for a clean mock up are to high. Mock up should be quick and easy
and not have to much dependencies.

® NO

e nice idea and good framework/system, would enhance collaboration and speed
up software development!

102

	Acknowledgments
	Abstract
	Contents
	Introduction and Problem Identification
	Introduction
	Motivation
	The Cooperation Partner and Scope of Application
	Software Development Process
	Consumerization Trend
	State of Usability Engineering Adoption

	Research Methodology and Organisation

	Problem Identification
	Requirements Elicitation
	Expert Interviews
	Prototyping Software Comparison
	Research Gap Identification
	Research Questions

	Solution Design
	Definition of Terms
	Fidelity-Level
	Multi-Fidelity
	Mockup-Driven Development
	Mockup-Driven Development: Providing agile support for Model-Driven Web Engineering
	Mockup Driven Web Development
	Assessment of the Approaches

	Prototyping Process
	Process
	Component Specification Subprocess

	Prototyping Case Studies
	Case Study 1: SIPCA - Web Application
	Case Study 2: Siemens Corporate Directory - Mobile Application
	Evaluation of the Case Studies

	Implementation
	Component / View Model
	System Architecture
	Technical Implementation
	Third Party Libraries / Software
	Execution Instructions

	Evaluation
	Evaluation
	Suitability
	Usability
	Feedback

	Summary
	Outlook and Future Research
	List of Figures
	List of Tables
	Glossary
	Bibliography

	Appendix
	Evaluation of the Semi Structured Interview
	General Information
	User Centered Design

	Degree of Fidelity Analysis
	Prototyping Process Charts
	Third Party Libraries
	Evaluation of the Online Questionnaire
	Suitability
	Usability
	Feedback

