
Department of Informatics
Technical University of Munich

Master’s Thesis in Robotics, Cognition, Intelligence

Design and Implementation of a
Bikesharing Service as part of
an open Mobility-Ecosystem

Lucas Weidner

Department of Informatics
Technical University of Munich

Master’s Thesis in Robotics, Cognition, Intelligence

Design and Implementation of a
Bikesharing Service as part of an open

Mobility-Ecosystem

Entwurf und Realisierung eines
Bikesharing Dienstes als Bestandteil
eines offenen Mobilitätsökosystems

Author: Lucas Weidner
Supervisor: Prof. Dr. rer.nat. Florian Matthes
Advisor: Felix Michel
Submission Date: 15.11.2016

I assure the single handed composition of this Master’s thesis only supported
by declared resources.

Lucas Weidner

Acknowledgement

First and foremost, I would like to thank my supervisor Prof. Dr. rer.nat.
Florian Matthes and the Technical University Munich for the opportunity to
write this thesis.

I would also like to show my greatest appreciation to my advisor Felix Michel.
He gave me great help and I learned a lot from him. His encouraging words,
the discussions and all the comments on my thesis have been very beneficial.

Also a special thanks to the iteratec GmbH, specifically to Daniel Stahr and
Anton Brass. I learned so much in the past year and I am happy that I could
write my thesis together with you.

I am also grateful to my friends Marleen Vetter and Hammad Khan for their
efforts in reading through this thesis.

Last but not least, I would like to thank my family. Especially my parents
Astrid and Matthias Weidner and my sister Theresa for their endless love and
support. They keep me grounded and I am blessed to have them.

I

Abstract

There is an influx of various sharing services in the market at the moment.
Yet none of them have a general interface which can be used by various plat-
forms. Each customer therefore ends up with many different applications on
their smartphone just for traveling alone, examples being: public transport,
carsharing, bikesharing etc. An open mobility ecosystem would be an ideal
solution, which would allow the integrations of all these services in one ap-
plication. This one application would be able to calculate the routing and
combine other factors depending on the different means of transport and al-
lowing the user to purchase tickets etc.
This thesis not only shed light on the proposed system, but also focuses on
defining a generic REST interface and implementing it on a bikesharing ser-
vice called Sharelock from the iteratec GmbH. This interface provides all the
necessary gateways and functions that an open mobility ecosystem needs to in-
tegrate the service. Furthermore, the different needs and possibilities for locks
which are online or offline are also characterized, since they each have their
own advantages and disadvantages. Additionally, this thesis also covers the
development of the backend as well as the administration frontend to operate
the bikesharing and the client application (Android) to use it.
Finally, Sharelock was evaluated by working students from the iteratec GmbH
and scored a high usability score. However, not all functionalities could be
tested due to the lock technology still being under development. Nevertheless,
this thesis shows that it is possible to build a system for an open mobility
ecosystem.

III

Zusammenfassung

Immer mehr Sharing-Dienste kommen aktuell auf den Markt. Allerdings hat
keiner dieser Dienste ein Interface, dass von mehreren Plattformen benutzt
werden kann. Somit müssen Nutzer weiterhin für jeden Service eine eigene
App auf dem Smartphone installieren. Allein zur Routenfindung innerhalb
von Städten zum Beispiel Applikationen für die öffentlichen Verkehrsmittel,
Car-Sharing und Bike-Sharing. Ein offenes Mobilitätsökosystem wäre die ide-
ale Lösung um alle Dienste zu kombinieren. Der Nutzer könnte dann alle
Services aus einer App benutzen. Diese würde das Routing, die Navigation
und den Kauf der Services beinhalten.
Diese Arbeit ist allerdings nicht auf das beschriebene System fokussiert. Es
geht vielmehr um die Definition eines generischen REST-Interfaces und die Im-
plementierung dessen am Beispiel des Firmen-Bike-Sharing Sharelock der iter-
atec GmbH. Dieses Interface stellt alle benötigten Funktionen zur Verfügung,
die ein offenes Mobilitätsökosystem benötigt, um den Service zu integrieren.
Außerdem werden die verschiedenen Notwendigkeiten und Möglichkeiten von
Schlössern die offline und online sind charakterisiert, da jedes seine eigenen
Vor- und Nachteile besitzt. Zusätzlich behandelt diese Arbeit die Entwick-
lung eines Servers mit zugehörigem Administrations-Bereich zum Betreiben
des Bike-Sharing-Dienstes. Ebenfalls wurde eine Android-Applikation zur Be-
nutzung des Service entwickelt.
Zum Schluss wurde Sharelock von Werkstudenten der iteratec GmbH evaluiert
und mit einer hohen Benutzerfreundlichkeit bewertet. Allerdings konnten nicht
alle Funktionalitäten getestet werden, da die Entwicklung des Schlosses noch
nicht beendet ist. Nichtsdestotrotz zeigt diese Arbeit, dass es möglich ist ein
System für ein offenes Mobilitätsökosystem zu entwickeln.

V

Contents

Acknowledgement I

Abstract III

Zusammenfassung V

List of Figures X

List of Tables XI

1. Introduction 1
1.1. Challenges of an open mobility ecosystem 3
1.2. Motivation . 3
1.3. Structure of this thesis . 4

2. Related Work 6
2.1. Types of Sharing Provider . 6
2.2. Sharing Provider . 8

2.2.1. Open Source Bike Share 8
2.2.2. Nextbike . 9
2.2.3. JCDecaux . 9
2.2.4. Call A Bike . 10
2.2.5. StadtRAD Hamburg . 10
2.2.6. Konrad . 10
2.2.7. metropolradruhr . 11
2.2.8. NorisBike . 11
2.2.9. MVG Rad . 11
2.2.10. Fächerrad . 12
2.2.11. MVGmeinRad . 12
2.2.12. Chemnitzer Stadtfahrrad 12
2.2.13. BiCiBUR . 13

VII

Contents

2.2.14. Melbourne Bike Share 13
2.2.15. CERN . 14
2.2.16. Google . 15
2.2.17. Cargo Bikesharing . 15
2.2.18. Comparison Sharing Provider 16

2.3. Projects . 18
2.4. Best Practice workflow from existing bikesharing provider 19

2.4.1. MVG Rad . 19
2.4.2. Call A Bike . 19

2.5. Related technical systems . 20
2.5.1. OpenBike . 20
2.5.2. I LOCK IT . 20
2.5.3. BitLock . 22
2.5.4. CityBikes . 22
2.5.5. RideTap . 22

3. Conceptual Approach 23
3.1. Fundamental Architecture of the Service 23

3.1.1. Offline Architecture . 23
3.1.2. Online Architecture . 25
3.1.3. Hybrid Architecture . 25
3.1.4. Assessment of the different architectures 26
3.1.5. Summary . 29

3.2. Use-Case Definition . 29
3.2.1. Register New User . 30
3.2.2. Register New Lock . 31
3.2.3. Open Lock . 32
3.2.4. Close Lock . 33
3.2.5. Update Bike Location 34
3.2.6. Show bill . 35
3.2.7. Create/Delete Maintenance 36
3.2.8. Create/Delete Fleet . 37
3.2.9. Create/Delete Price Model 38
3.2.10. Use-Case Overview . 38

3.3. Sharelock User Workflow . 39
3.4. Summary . 41

VIII

Contents

4. Technical Approach 42
4.1. Internal Workflow . 42
4.2. Server Structure . 44

4.2.1. Server . 44
4.2.2. Security Backend . 48

4.3. Administration Frontend Structure 49
4.4. Mobile App Structure . 55

4.4.1. Android Introduction . 56
4.4.2. Application Structure . 56
4.4.3. App Workflow . 58

4.5. REST interface . 60
4.6. Summary . 63

5. Evaluation 64
5.1. Usability . 64
5.2. Feedback . 64
5.3. Summary . 66

6. Discussion and Outlook 67
6.1. Contribution . 67
6.2. Conclusion . 68
6.3. Outlook . 69

Bibliography 71

A. Appendix i

IX

List of Figures

1.1. Bikesharing provider on the world 2
1.2. Bikesharing provider in Germany 2

2.1. Melbourne Bike Share . 14
2.2. Cargo Bike from "Freie Lastenradler" 16
2.3. Call A Bike on-board computer 20
2.4. MVG Rad workflow . 21

3.1. Offline Architecture . 24
3.2. Online Architecture . 26
3.3. Hybrid Architecture . 27
3.4. Use-Case Overview Sharelock 39
3.5. Basic Sharelock Workflow . 40

4.1. Sharelock Workflow . 43
4.2. System Structure of Sharelock 45
4.3. First part of the server class diagram 46
4.4. Second part of the server class diagram 47
4.5. Sharelock Entity Model . 48
4.6. Login Administration Frontend 49
4.7. Frontend Lock Overview . 51
4.8. Frontend Fleet Overview . 52
4.9. Frontend Price Model Overview 53
4.10. Frontend User Information . 53
4.11. Frontend Fleet Overview . 54
4.12. Activity flow of the Android application 57
4.13. Sharelock App workflow . 59
4.14. SWAGGER REST endpoints Part 1 61
4.15. SWAGGER REST endpoints Part 2 62

A.1. Firebase Notification Process . ii

X

List of Tables

2.1. Comparison of different bikesharing provider against selected
factors . 17

3.1. Comparison of different possible architectures for Sharelock . . . 28
3.2. Use-Case 1: Register new user 30
3.3. Use-Case 2: Register new lock 31
3.4. Use-Case 3: Open lock . 32
3.5. Use-Case 4: Close lock . 33
3.6. Use-Case 5: Update bike location 34
3.7. Use-Case 6: Show a specific bill 35
3.8. Use-Case 7: Create a maintenance for a bike 36
3.9. Use-Case 8: Create a fleet for bikes 37
3.10. Use-Case 9: Create a price model 38

4.1. Price Comparison between Google and HERE 55

XI

1. Introduction

Sharing platforms get more and more popular every year. Recent companies
like DriveNow, Car2Go or Flinkster are typical examples for carsharing in
Germany. However, there are also other means of transportation which are
proficient for sharing services.
A growth in one of these kinds of sharing systems can be seen for a few years
now. As city councils are searching for ways to decrease air pollution and
traffic jams inside cities bikesharing becomes more and more interesting for
them. By investing a comparable small amount of money, they can influence
different factors dramatically. That is why more and more cities discover the
big advantages of bikesharing for themselves.
At the moment, there are approximately 1,328,100 bicycles and pedelecs in use
for bikesharing in 1,029 cities around the world. 319 cities are in the planning
phase or under construction of a bikesharing system1. There is a blog [Bib]
which documents everything related to bikesharing at the moment. Addition-
ally, there is a world map which shows bikesharing cities [Bic] globally.
Bikesharing is a comparatively new business and therefore under heavy devel-
opment. Established companies went bankrupt and new ones are entering the
field with new ideas on how to solve different problems.
There are several challenges with bikesharing. One of the main problems is
the distribution of bikes. In other terms, bikes will agglomerate in some places
whereas in other areas, no bikes are available. As this limits the availability
of bikes for customers in certain areas, it reduces the income of the shar-
ing provider. Additionally, costumer satisfaction is reduced. However, this
thesis is not about the solution of this problem. References for this issue
are discussed by Raviv, Tzur and Forma [TR11] and Contardo, Morency and
Rousseau [CC12].

1According to https://www.google.com/maps/d/viewer?mid=1UxYw9YrwT_
R3SGsktJU3D-2GpMU&hl=en from 18/05/2016

1

https://www.google.com/maps/d/viewer?mid=1UxYw9YrwT_R3SGsktJU3D-2GpMU&hl=en
https://www.google.com/maps/d/viewer?mid=1UxYw9YrwT_R3SGsktJU3D-2GpMU&hl=en

1. Introduction

Figure 1.1.: Bikesharing provider on the world

Figure 1.2.: Bikesharing provider in Germany

2

1. Introduction

1.1. Challenges of an open mobility ecosystem

Nowadays, everyone has several applications on the smartphone. Some of
these applications include navigation apps, renting cars or bikes or ticketing
apps for public transport. For security reasons, each of these services should
ideally have another login. At minimum, each service should have a different
password to protect the customers from privacy or financial fraud. Yet, this
means the user has to remember all this data, which is potentially a difficult
task.
Another issue is switching between several applications. Using different appli-
cations parallel can be dangerous while riding a bike.
Having all these features in only one application would decrease the complex-
ity of the usage enormously. In addition, it increases the user-friendliness and
security while riding.
Therefore, the interfaces for all the different services have to be almost generic
to implement them in an open mobility ecosystem. Users could then search for
different routings, buy tickets or rent means of transportation. In the perfect
case, the user just has one username and password to use all these services
without being concerned about the digital security. Additionally, the billing
would be integrated so that the user only has to enter their data once.

1.2. Motivation

Iteratec is a software development company near Munich. One of their inter-
nal projects is “Sharelock”. Sharelock is an electrical bike lock, which can be
opened and closed via Bluetooth. Actually, it is in an early stage of develop-
ment. However, when it is ready for operation the company will provide bikes
to the employees with this lock for short rides. The company will behave like a
bikesharing provider but with other goals then typical bikesharing companies.
The objective is not to make money but to increase the health of employees
and to decrease the time for typical or daily paths and commutes.
Even though Sharelock’s bikesharing will be used only within the company,
it’s aim to build a sharing software to use for different means can easily be
integraed into an open mobility ecosystem as it is designed as a generic sharing
platform.

3

1. Introduction

That the use of bicycles for the journey to work is increasing shows an article
[Co] about company bicycles in Germany. More and more people are leasing
bikes over the company. Since end of 2012, having a company bicycle does
not interfere with the ownership of a company car. Furthermore, employees
can even lease two bikes, for example like a normal one and an electric bicycle.
Company bikes have several advantages for the employees and in fact also for
the company. It is much more healthier and not as stressful as driving a car
in the rush hour. In addition, the employees can use the bike for private rea-
sons. Some companies even let their employees choose bikes they want. The
company buys the bike for them and just decides about the painting, like the
online language school Babbel.

1.3. Structure of this thesis

This document starts with a short introduction. It describes the challenges of
an open mobility ecosystem and the motivation for myself to write this thesis.
The next chapter is about related work. It outlines the types of sharing
provider and gives several examples for sharing provider mainly in Germany.
It also shows projects related to bikesharing and and the workflow from the
bikesharing system in Munich. At the end are some examples for technical
systems which are in some relation to bikesharing.
Subsequently is a chapter about the conceptual approach where the basic archi-
tecture is described. In the beginning is an evaluation for the lock technology.
Then follows a list of basic use cases which are important for the Sharelock
system. Last is a sketch of the developed workflow with the different interfaces.
In the fourth chapter is the description of the technical approach. It covers in
depth the internal workflow of the Sharelock system. It also shows how the
messages are sent from device to device and what these messages contain. In
addition, the structure of the server software and of the client software are
visualized. The developed REST interface for an open mobility ecosystem is
displayed at the end.
Chapter 5 covers the evaluation of the system. Sharelock was tested by sev-
eral working students at iteratec. Based on their feedback, the SUS (System
Usability Score) for the frontend and for the smartphone application was cal-
culated.

4

1. Introduction

The discussion and outlook is in the last chapter. It starts with general ob-
servations. Last, a summary of further possibilities for improvement of the
system is described.

5

2. Related Work

This chapter gives a short introduction to bikesharing. In the beginning is a
small summary about the history and then a description of the different types.
A list of various bikesharing provider with a comparison of them is in the next
section followed by projects related to bikesharing. Afterwards, an example of
the workflow of a bikesharing provider will be given. At the end is a list of
related technical systems from hardware to software.

2.1. Types of Sharing Provider

There are several options to distinguish sharing providers. The first one is by
assigning a generation. Following is a short summary of the different genera-
tions of sharing providers in history which are outlined in [De09].

Generations of bikesharing

There are four diffenent generations of bikesharing considered in literature.
The first one was in Amsterdam in 1965. It was called “Witte Fietsen”. This
means White Bikes, because they were all white painted. All the bikes were
placed in Amsterdam and everyone could use them for free. No locks or sta-
tions were needed. However, people did not use them appropriate, for example
they stole or damaged it.
To reduce these problems, the second generation of bikesharing was introduced
in 1991 in Farsø and Grenå, Denmark [De09]. This time, the bikes were more
robust to resist the hard use. The system was station based with a coin de-
posit, through still free to use. Unfortunately, there was also ongoing theft.
Due to the anonymity of the users, there was a high theft and damage rate.
That is why the third generation improved the tracking of the customer [De09]
with different types of authorization methods. The first one of these was Bike-
about (1996 at Portsmouth University in England). The authorization was

6

2. Related Work

done with magnetic stripe cards. Subsequently, different technologies were
used like electronically locking racks, smartcards, mobile phone access and
others.
Starting with this inventions, bikesharing systems became more and more pop-
ular all over Europe and the world. Currently, bikesharing is in its fourth gen-
eration with different additional functionalities like tracking of bike positions,
mileages and further improvements.

Business Models

A second option to distinguish sharing providers is by differentiation of the
business models or models of provision as in [De09]. First is the obvious one.
Generating money by renting the bikes. There are various forms like renting
per minute, per day or with special rates with free usage volumes.
Advertising companies like JCDecaux (see section 2.2.3) apply the second type.
These companies typically own displays on billboards, bus shelters or other
public spaces where they display their advertisements. Cities or regions who
cannot run a bikesharing service themselves can provide public spaces to ad-
vertising companies in exchange for the service.
Another possibility is typically for regions which own more money. This means
that they have enough money to afford building a system alone or with a part-
ner. They can run the service alone and therefore have full control over the
bikesharing. Nowadays, this model is rarely seen, because it is to expensive
and hard to build. However, one example for a city which builds the system
alone is BiCiBUR in Spain (see section 2.2.13). MVG Rad is an example for
bikesharing with a partner. One partner is the MVG (public transport in
Munich). It is partly owned by the city and includes the bikesharing in its
ecosystem. Bikesharing provider nextbike is the other partner which brings
the bikes and the know-how.
The next type is the transport agency model, which was done for example in
Germany. Deutsche Bahn (German Railway) is a quasi-governmental organi-
zation with a bikesharing subsidiary called “Call A Bike” (see section 2.2.4).

7

2. Related Work

2.2. Sharing Provider

In this section is a small selection of different bikesharing provider described.
At the beginning are a few provider which are also retailers. Following, bike-
sharing providers from German cities are discussed. Last are different bike-
sharing models with other business models, other kinds of clients or from other
countries. These models are not mainly focused on profit and have other main
focuses such as the increased health of its users.

2.2.1. Open Source Bike Share

“Open Source Bike Share” [Opa] is a project which provides software for pro-
viding station-based bikesharing. This system is cheap and easy to install
which makes it very interesting. It does not need any special equipment or
special bikes. Any bike can be used and all that is needed are combination
locks.
A customer who wants to use this system chooses a bike online. Then a mes-
sage with the PIN code is sent to the user. Now, the customer just has to open
the lock with the PIN code and can use the bike. At the end of the usage, the
client gets another message with a new PIN code. Now, the user just has to
change the combination lock to the new PIN code.
However, Open Source Bike Share has some disadvantages. Exact usage times
cannot be tracked because the lock cannot send any message. Therefore, lock
operations like opening and closing cannot be tracked. So the system cannot
bill the usage correctly as a user can still use the bike after the change of the
lock code. Additionally, the position of the bike cannot be sensed as there is
no location tracker available at the lock or the bike. Trusting the customer is
essential.
Open Source Bike Share is free to use, which means everyone can download
the source code from GitHub and use it. Only a standard server which can
run PHP and MySQL is needed.

8

2. Related Work

2.2.2. Nextbike

A company which provides all necessary equipment and software solutions is
“nextbike” [ne]. Founded in 2004, nextbike became one of the leading manufac-
turers and operators2. They have developed a bike with integrated technologies
for the sharing purpose. Additionally, they have different kinds of return sta-
tions with or without screens or with solar battery operation for all urban
situations. They provide the solution to possible partners who want to run a
bikesharing system. These systems can be for different purposes like normal
bikesharing, but also for campus, business or hotel bikes, for advertising or for
events. Furthermore, they are not limited to these functions, but they also
build tailor-made solutions for different types of customers. Usually, each cus-
tomer who uses nextbike can rent up to four bikes at the same time. At present,
they have 30,000 bikes in 18 countries on 4 continents. They are present in
over 100 cities and are the largest international bikesharing network3.

2.2.3. JCDecaux

Yet another operator is JCDecaux [JC] from France. JCDecaux is one of the
largest billboard advertising and street furniture design firms4 in the world
with nearly 2 billion Euro revenue in 20095.
JCDecaux is an example for the advertising business model. Cities provide the
company space where they can build their stations for free or cheap. These
stations and the bikes are painted with adverts. That means JCDecaux earns
money from the companies.
Cyclocity [Bid] is the bikesharing subsidiary of JCDecaux. It started by oper-
ating the bikesharing system Vélo’V from Lyon (France). JCDecaux received
the sole contract to use the transit shelters for advertisements in Lyon. In
return, Cyclocity operates the bikesharing system.
Vélo’V is integrated into the public transport system of Lyon. Customer need
a smart card which they swipe at the racks of a station to unlock a bike. Re-
turning the bike is done by pushing the bike in the next free rack.

2http://www.nextbike.net/products/
3http://www.nextbike.net/about/
4http://www.jcdecaux.com/en/Outdoor-Advertising/Billboard
5https://de.statista.com/statistik/daten/studie/163549/umfrage/umsatz-der-

fuehrenden-aussenwerber-weltweit-in-2009/

9

http://www.nextbike.net/products/
http://www.nextbike.net/about/
http://www.jcdecaux.com/en/Outdoor-Advertising/Billboard
https://de.statista.com/statistik/daten/studie/163549/umfrage/umsatz-der-fuehrenden-aussenwerber-weltweit-in-2009/
https://de.statista.com/statistik/daten/studie/163549/umfrage/umsatz-der-fuehrenden-aussenwerber-weltweit-in-2009/

2. Related Work

Using Vélo’V is very cheap. For 1 Euro per week or 5 Euro per year a cus-
tomer can buy a smart card. Then, the first 30 minutes of each ride are free.
If someone rides the bike longer, it costs an additional 0.50 Euro per half an
hour. However, commuters can upgrade their transit pass to use Vélo’V for
up to one hour for free.
Bikesharing was used extensively in Lyon. A bike was used by an average of
15 people per day with an average journey of 17 minutes6.

2.2.4. Call A Bike

Another operator of bikesharing system is “Call A Bike” [Ca]. It is a subsidiary
from the Deutsche Bahn company (German Railway). “Call A Bike” provides
bicycles in many cities in Germany. After registration on the platform, bikes
can be rent by calling a bike specific phone number. The caller receives a PIN
code for opening the bike. Call A Bike is station-based in most cities but in a
few there is also a flexible return zone. The price scheme starts at 1 Euro for
half an hour with additional monthly or yearly rates to reduce the costs.
Compared to the bikesharing from JCDecaux, it costs more due to the fact
that Call A Bike does not receive comparable benefits from the city.

2.2.5. StadtRAD Hamburg

StadtRAD Hamburg [St] uses the “Call A Bike” system and is only station-
based. However, without paying a monthly or yearly fee, the bike can be used
for free for the first half an hour after registration. The only fee is 5.00 Euro for
registration which will go into a virtual account. Each minute you ride longer
than the half an hour will be paid from the virtual account. For authentication
purposes, the customer needs a credit or debit card. For a small fee, a key
card can be purchased to make the booking even simpler.

2.2.6. Konrad

Next provider is “Konrad” [Ko]. It is the bikesharing system from Kassel/Ger-
many. Customers, who are registered at “Call A Bike” or Stadtrad-Hamburg

6http://www.bikesharephiladelphia.org/learn/history/

10

http://www.bikesharephiladelphia.org/learn/history/

2. Related Work

do not have to register, everyone else has to register for the service when first
using it. Afterwards, everyone can open one of the 500 provided bikes by call-
ing a bike-specific phone number which is displayed on the lock. Returning the
bike is as easy as closing the lock. The only important thing is that retrieving
and returning can only be done at one of 56 special bike stations in the city.
Students with a “Semester Ticket” can use the bikes one hour a day for free.
The normal price is 1 Euro per hour.

2.2.7. metropolradruhr

“metropolradruhr” [meb] uses the nextbike system and provides the bike in
the whole Ruhr region. Customers, who are already registered at nextbike
do not have to register at metropolradruhr. It has similar prices as nextbike.
Students from specific universities in the Ruhr region can use metropolradruhr
the first hour every day for free. metropolradruhr is very attractive as it covers
a big region.

2.2.8. NorisBike

Nextbike is also operator for NorisBike [No] in Nuremburg. It has same con-
ditions as nextbike operated cities. NorisBike has over 800 bikes at over 70
stations. Inside the inner city, bikes can be returned everywhere in public
(flexible zone).

2.2.9. MVG Rad

MVG Rad [MVa] is the bikesharing service from Munich. It is also operated
by nextbike and has 1200 bikes and 125 stations. However, the bikes can be
returned at special return stations or everywhere in the flexible return zone7.
A customer receives a bonus of 10 free minutes on the account if the bike is
returned to a station.

7http://www.nextbike.de/en/news/

11

 http://www.nextbike.de/en/news/

2. Related Work

2.2.10. Fächerrad

Another bikesharing system operated by nextbike is Fächerrad [Frad] from
Karlsruhe. It started in May 2014 and has around 330 bicycles. Since June
2015, 16 pedelecs are also part of the system8. Two extra stations with charging
possibilities where added too. Return options are similar to the MVG Rad
system. There is a flexible return zone inside the city and additional return
stations inside and around this zone. The pricing is also the same. Cheaper
prices apply to students, customer from the public transport or local carsharing
user.

2.2.11. MVGmeinRad

MVGmeinRad [MVb] is another station-based bikesharing service. It is in
Mainz and a chip card is needed for the renting process. This chip card is
necessary to open the lock at a station. There are over 100 stations with up to
1000 bicycles. The prices are a higher than nextbike prices, but with different
rates.
Currently, MVGmeinRad is considering adding cargo bikes to the fleet. Cus-
tomer experience is always tried to be increased and customer have been sur-
veyed to improve the service.

2.2.12. Chemnitzer Stadtfahrrad

An additional concept is made by “Chemnitzer Stadtfahrrad” [Ch]. The
station-based project from the city Chemnitz is mostly analog compared to
all the other bikesharing services. Customers go to one of ten bike stations
and show their identity card. For a small fee of 2 Euro per day or 20 Euro per
month, they can use the bike for the respective time. The bikes are provided
by different local shops and companies with special advertisement for them-
selves, therefore the costs for the project are very low which means that the
small fee is more a representation allowance.

8http://www.karlsruhe-macht-klima.de/klimaschutzvorort/mobilitaet/
faecherrad.de

12

http://www.karlsruhe-macht-klima.de/klimaschutzvorort/mobilitaet/faecherrad.de
http://www.karlsruhe-macht-klima.de/klimaschutzvorort/mobilitaet/faecherrad.de

2. Related Work

2.2.13. BiCiBUR

BiCiBUR is the bikesharing system from Burgos [Bia]. It was started in 2006
with a free so-called “Loan system” as part of the European CiViTAS [Cib]
project9. Citizens could hire a bike for two hours and tourists for three hours.
There was also a lock that tourists could visit attractions.
BiCiBUR is station-based (23 stations) with a contactless card to open the
bicycles. The availability can be checked in real-time over the internet.
In 2011, the system was joined with the local public transport to enable better
access to the bikes. This also increased the number of customers (ca. 12.000
users with about 150.000 rides) [Bub].
One year later, the city council introduced a subscription fee of 15 Euro per
year which dramatically decreased the number of customers and uses (ca. 500
user with around 5.000 rides). The new registration system was seen as too
complicated on the one hand and too expensive compared to the quality of the
bike (price of a bike was about 50 Euro) on the other hand. The new system is
also a reason that tourists cannot use it anymore because of language barrier
and the complexity.
BiCiBUR is part of the VeloCittà project [Bua] which will be described later
in section 2.3.

2.2.14. Melbourne Bike Share

Melbourne Bike Share [Mea] is an example for a foreign bikesharing service.
It is station based with about 50 stations and 600 bikes around Melbourne.
Customers can buy a daily, weekly or annual pass with an unlimited number
of 30 min rides (45 min for the annual pass) included. If the customer exceeds
this time, additional fees depending on the overtime apply. Registering is not
needed as the credit card hold for authorization. Every bike comes with a
helmet for safety reasons. Furthermore, subscribers of an annual pass can
purchase a personal helmet for just 5 $. If customers want to improve their
bicycle skills, Melbourne Bike Share offers discounted courses from a licensed
partner.

9CiViTAS (from City, Vitality and Sustainability) aims to create cleaner, better transport
in cities

13

2. Related Work

Figure 2.1.: Image of a station from Melbourne Bike Share

2.2.15. CERN

The CERN is a representative of bikesharing inside organizations and compa-
nies. It is located in switzerland and provides bikesharing and bike rental to
the employees10.

Bikesharing

CERN employees can borrow a Velopass bicycles for work-related purposes for
free. Therefore, they just have to receive a Velopass subscription card [CEb],
which is valid for one year. Opening and closing of the locks is done with the
subscription card at the bike stations.

10Source: http://smb-dep.web.cern.ch/sites/smb-dep.web.cern.ch/files/
documents/CarPool/CERN_Mobility_NewProcedures.pdf

14

http://smb-dep.web.cern.ch/sites/smb-dep.web.cern.ch/files/documents/CarPool/CERN_Mobility_NewProcedures.pdf
http://smb-dep.web.cern.ch/sites/smb-dep.web.cern.ch/files/documents/CarPool/CERN_Mobility_NewProcedures.pdf

2. Related Work

Bike Rental

There is also the possibility to rent bikes for a longer period of time for 1 CHF
per day [CEa]. This is applicable for members of the personnel in specific
periods and only up to three months. Summer students at the CERN can
borrow the bikes for free for the same period of time.

2.2.16. Google

Google provides bicycles on their campus in Mountain View for free [Go]. Not
only employees can use them but any visitor. It started in 2007 with just 100
bikes11. In 2009, Google provided multi-colored bikes. Nowadays, the bikes
are designed by engineers from Google.
They get maintained by a small division inside Google. The company does
not make any money out of them, but keeps the employees happy and healthy.
There is also the possibility to use special bikes with more seats for meetings.
The advantage for Google is that it decreases the unproductive time of the
employees while increasing mood.

2.2.17. Cargo Bikesharing

At the moment, bikesharing was just meant to provide normal bicycles for
customers for the last mile from public transportation or at least for short
time use. Actually, there is also a second possible use case for another type
of bicycles. Cargo bikes are designed to carry loads12. Figure 2.2 shows an
example for such a bike. As such bikes are more expensive than normal bikes
and they are not in constant use for a specific person, it makes sense to provide
cargo bikes also via bikesharing. Following is a short list of cities and providers
in Europe which have cargo bikes. Konstanz, Norderstedhe (both Germany),
the Lastenradkollektif in Vienna and Kasimir in Cologne, Hereford, London
Bike Hub in Ealing, Cambridge, Norwich and Carvelo2go in Bern.

11http://www.businessinsider.com/here-are-the-crazy-colorful-bikes-google-
employees-ride-around-campus-hq-2013-7?IR=T

12Source: http://www.shareable.net/blog/8-cargo-bike-sharing-programs-in-
europe

15

http://www.businessinsider.com/here-are-the-crazy-colorful-bikes-google-employees-ride-around-campus-hq-2013-7?IR=T
http://www.businessinsider.com/here-are-the-crazy-colorful-bikes-google-employees-ride-around-campus-hq-2013-7?IR=T
http://www.shareable.net/blog/8-cargo-bike-sharing-programs-in-europe
http://www.shareable.net/blog/8-cargo-bike-sharing-programs-in-europe

2. Related Work

Freie Lastenradler

Freie Lastenradler is an example for a provider of cargo bikes in Munich. At
several stations in Munich, a cargo bike can be rented for up to three days for
free. Customers only have to register on their website and book the bicycle for
the preferred dates and the preferred station in advance. An image of such a
cargo bike in Munich is figure 2.2.

Figure 2.2.: Cargo Bike from "Freie Lastenradler"

2.2.18. Comparison Sharing Provider

This section compares the several different sharing providers from above. The
comparison is displayed in table 2.1. One feature to compare is the type of
return. If it is just station-based or if it has a flexible return zone which makes
bikesharing much more attractive. Second, the type of lock which is used.
Some locks are more user-friendly than other locks. Third one is the business
model together with the price for a usage of 30 minutes. This is the normal
usage time for bikesharing and therefore the important factor. The last is the
type of clients which use the service. Is it possible for a tourist to use it. Some
are limiting the service to specific groups.
That Sharelock is a unique bikesharing service can be reasoned from table 2.1.
It is the only service where the bikes can be opened via application. Another
advantage is that bikes can be returned in a flexible zone. The pricing is not
determined right now and can be customized. In the beginning, it starts only
with the employees of iteratec. Later, it can be used for several other use
cases.

16

2. Related Work

St
at
io
n-
ba

se
d

or
fle

xi
bl
e

zo
ne

L
oc
ks

B
us
in
es
s
M
od

el
(p
ri
ce

30
m
in
)

C
lie

nt
s

O
p
en

So
ur
ce

B
ik
e
Sh

ar
e
(B

2B
&

B
2C

)
st
at
io
n-
ba

se
d

4
di
gi
t
P
IN

lo
ck
s

cu
st
om

iz
ab

le
pr
iv
at
e
us
er
s

N
ex
tb
ik
e
(B

2B
&

B
2C

)
bo

th
po

ss
ib
le

di
ffe

re
nt

ty
pe

s
(a
pp

,s
m
ar
tc
ar
d
or

lo
gi
n
at

on
bo

ar
d
co
m
pu

te
r)

cu
st
om

iz
ab

le
(1

E
ur
o)

di
ffe

re
nt

ty
pe

s
(p
ri
va
te
,e
ve
nt
s,

ho
te
ls
,b

us
in
es
s,
...
)

JC
D
ec
au

x
(C

yc
lo
ci
ty
)

(B
2B

&
B
2C

)
st
at
io
n-
ba

se
d

op
en
in
g
w
it
h
m
em

be
rs
hi
p
ca
rd

cu
st
om

iz
ab

le
(f
re
e
w
it
h

7
da

y
ti
ck
et
)

pr
iv
at
e
us
er
s

C
al
l
A

B
ik
e
(B

2B
&

B
2C

)
bo

th
po

ss
ib
le

ca
ll
a
nu

m
be

r
an

d
re
ce
iv
e
an

un
lo
ck

co
de

pa
y
pe

r
ti
m
e
(1

E
ur
o)

pr
iv
at
e
an

d
tr
ai
n
us
er
s

St
ad

tR
A
D

H
am

bu
rg

(B
2C

)
st
at
io
n-
ba

se
d

ca
ll
a
nu

m
be

r
an

d
re
ce
iv
e
an

un
lo
ck

co
de

pa
y
pe

r
ti
m
e
(f
re
e)

to
ur
is
ts

an
d
lo
ca
ls

K
on

ra
d
(B

2C
)

st
at
io
n-
ba

se
d

ca
ll
a
nu

m
be

r
an

d
re
ce
iv
e
an

un
lo
ck

co
de

pa
y
pe

r
ti
m
e
(1

E
ur
o)

pr
iv
at
e
us
er
s

m
et
ro
p
ol
ra
dr
uh

r
(B

2C
)

st
at
io
n-
ba

se
d

co
m
bi
na

ti
on

lo
ck

pa
y
pe

r
ti
m
e
(1

E
ur
o)

to
ur
is
ts

an
d
lo
ca
ls

N
or
is
B
ik
e
(B

2C
)

bo
th

po
ss
ib
le

co
m
bi
na

ti
on

lo
ck

pa
y
pe

r
ti
m
e
(1

E
ur
o)

to
ur
is
ts

an
d
lo
ca
ls

M
V
G

R
ad

(B
2C

)
bo

th
po

ss
ib
le

on
-b
oa
rd

co
m
pu

te
r

pa
y
pe

r
ti
m
e
(2
,4
0
E
ur
o)

to
ur
is
ts

an
d
lo
ca
ls

F
äc
he

rr
ad

(B
2C

)
bo

th
po

ss
ib
le

on
-b
oa
rd

co
m
pu

te
r

pa
y
pe

r
ti
m
e
(1

E
ur
o)

to
ur
is
ts

an
d
lo
ca
ls

M
V
G
m
ei
nR

ad
(B

2C
)

st
at
io
n-
ba

se
d

op
en
in
g
w
it
h
m
em

be
rs
hi
p
ca
rd

on
te
rm

in
al

pa
y
pe

r
ti
m
e
(1
,4
0
E
ur
o)

to
ur
is
ts

an
d
lo
ca
ls

C
he

m
ni
tz
er

St
ad

tf
ah

rr
ad

(B
2C

)
st
at
io
n-
ba

se
d

op
en
in
g
on

pr
es
en
ta
ti
on

of
id
en
ti
ty

ca
rd

pa
y
pe

r
da

y
(2

E
ur
o)

to
ur
is
ts

an
d
lo
ca
ls

B
iC

iB
U
R

(B
2C

)
st
at
io
n-
ba

se
d

op
en
in
g
w
it
h
m
em

be
rs
hi
p
ca
rd

on
te
rm

in
al

an
d
en
te
ri
ng

P
IN

fla
t
ra
te

fo
r
15

E
ur
o
pe

r
ye
ar

lo
ca
ls

M
el
b
ou

rn
e
B
ik
e
Sh

ar
e
(B

2C
)

st
at
io
n-
ba

se
d

en
te
ri
ng

P
IN

co
de

w
hi
ch

yo
u
re
ce
iv
e
fr
om

te
rm

in
al

w
it
h
yo

ur
cr
ed
it
ca
rd

fr
ee

to
ur
is
ts

an
d
lo
ca
ls

C
E
R
N

(B
2C

)
st
at
io
n-
ba

se
d

op
en
in
g
w
it
h
m
em

be
rs
hi
p
ca
rd

on
bi
ke

st
a-

ti
on

fr
ee

or
1
C
H
F
pe

r
da

y
be

tw
ee
n

01
/0
6
an

d
30
/0
9

em
pl
oy
ee
s

G
oo

gl
e
(B

2C
)

fle
xi
bl
e
zo
ne

no
lo
ck
s

fr
ee

ev
er
yo
ne

C
ar
go

B
ik
es
ha

ri
ng

(F
re
ie

L
as
te
n-

ra
dl
er
)
(B

2C
)

st
at
io
n-
ba

se
d

op
en
in
g

on
pr
es
en
ta
ti
on

of
id
en
ti
ty

ca
rd

an
d
co
de
w
or
d

fr
ee

lo
ca
ls

Sh
ar
el
oc
k
(B

2C
)

fle
xi
bl
e
zo
ne

op
en
in
g
vi
a
ap

p
pa

y
pe

r
ti
m
e
(n
ot

st
at
ed
)

it
er
at
ec

em
pl
oy
ee
s

Ta
bl
e
2.
1.
:C

om
pa

ris
on

of
di
ffe

re
nt

bi
ke
sh
ar
in
g
pr
ov

id
er

ag
ai
ns
t
se
le
ct
ed

fa
ct
or
s

17

2. Related Work

2.3. Projects

There are several projects with the aim to improve and support bikesharing.
These projects are not providers themselves. They are for example funded
from the European Union with the goal to help existing provider.

One example for a project is VeloCittà [Ve]. It is a co-funded programm
from the European Union with the aim to improve existing bicycle sharing
systems. It runs from March 2014 until February 2017 and combines the five
bikesharing system from Szeged (HU), Krakow (PL), Padua (IT), Burgos (SP)
(see section 2.2.13) and London (UK).
Szeged’s bikesharing is called CityBike13. It has a similar system to Call A
Bike (see section 2.2.4) where the customer calls a phone number to receive a
PIN code. CityBike is a station-based system.
Krakow had BikeOne for bikesharing. However, the contract ended in 2013
and a new system is under development. It will have a swipe card technology
to unlock the bikes.
GOODBIKE PADOVA14 is the bikesharing from Padua/Padova. It has several
different subscription models and is station-based.
London’s bikesharing, Santander Cycles15, has over 11,000 bicycles at over 750
stations. It costs £2 per day with 30 min free per usage. Longer usages cost
another £2 per 30 min. There is no need for registration as everything is done
by credit or debit card.
VeloCittà wants to build an experience and knowledge base for the five systems,
but also for others. The main goal is to adopt the most effective solutions for
bikesharing.

13http://www.citybikeszeged.hu/en
14http://www.goodbikepadova.it/
15https://tfl.gov.uk/modes/cycling/santander-cycles

18

http://www.citybikeszeged.hu/en
http://www.goodbikepadova.it/
https://tfl.gov.uk/modes/cycling/santander-cycles

2. Related Work

2.4. Best Practice workflow from existing
bikesharing provider

Following sections explain the workflow of the existing bikesharing provider in
Munich (Germany). First provider is MVG Rad. It is operated together with
public services of Munich. Second provider is Call A Bike. It is the bikesharing
subsidiary of Deutsche Bahn (German Railway).

2.4.1. MVG Rad

This section outlines the actual workflow of a booking from MVG Rad [MVa].
In the beginning, the customer receives a map with an overview of the locations
of the bikes and the different stations (see fig. 2.4a). Now, the customer can
choose a station or bike to receive further informations about the price or the
availability of bikes (in case of a station) as you can see in fig. 2.4b. There are
two possibilities if the user decides to use a bike. The first one is to reserve the
bike for starting the ride in a few minutes (for example if the customer has to
reach the bike first). Starting the usage immediately is the second one. The
user receives the PIN code to open the lock (see fig. 2.4c) after the start of the
usage. At the bottom, the app shows how long the user has the bike.
The usage ends when the customer parks the bike and locks it. He confirms
the end at the local bike computer and waits until the application finishes the
booking by emptying the view (fig. 2.4d). The customer can now see a history
of all rides with their times and prices (fig. 2.4e).

2.4.2. Call A Bike

Using Call A Bike is a little bit different to the workflow of MVG Rad. At
the beginning, the customer has to call the phone number which is displayed
on each bike. Afterwards, the user receives a four digit PIN code for opening.
This code has to be entered into the on-board computer (see figure 2.3). If it
was successful, the lock opens and the bike is ready to ride.
Returning the bike is possible everywhere inside the flexible zone (at least in
Munich). A customer just has to park the bike, push the locking button and
the booking is finished.

19

2. Related Work

Figure 2.3.: Call A Bike on-board computer.16

2.5. Related technical systems

Sharelock is not only a digital solution. It also includes hardware parts like
the physical lock. In the following sections, related technical systems from
hardware to software are described. There are special bikes and locks. Fur-
thermore, there is a project for an online database of bikesharing provider and
bikes. At the end is a software kit for integration into a mobility system.

2.5.1. OpenBike

OpenBike [Opb] develops an operating system for bicycles. The goal is to
build a bike with just one battery for all components. It should also have only
one network to combine everything and one connection for access to apps.
Therefore, the maintenance of the bike should be much easier. Overall, it will
be easier to work with it for bicycle enthusiasts.
Right now, it is in a very early stage and no information about when the bikes
will be released is available.

2.5.2. I LOCK IT

The bicycle lock “I LOCK IT” is build by haveltec, a startup company from
Berlin. It is an electronical lock with GPS tracking, mounted to the frame of
a bike. It opens and closes automatically when the smartphone of the owner
arrives to the bicycle or leaves it. Furthermore, it is secured by an alarm
system and sends a theft notifications, when someone wants to steal it. The
communication to the lock is done via bluetooth signals. “I LOCK IT” can

16Image source: https://www.callabike-interaktiv.de/index.php?id=397&f=
500]

20

https://www.callabike-interaktiv.de/index.php?id=397&f=500]
https://www.callabike-interaktiv.de/index.php?id=397&f=500]

2. Related Work

(a) (b) (c)

(d) (e)

Figure 2.4.: Booking workflow from MVG Rad a) Map overview for bikes and
stations. The customer has to click on a marker. b) Further
information about bike or station like price or number of bikes.
c) Usage of bike with PIN code and actual time of use. The PIN
code has to be entered at the on-board computer of the bike. d)
Overview over all actual rides. There are no rides after finishing
a tour. e) Overview over all finished rides. This is the history.

21

2. Related Work

also be used to share the bike with family and friends or for usual bikesharing
by using the smartphone application.
Interestingly, “I LOCK IT” was successfully funded by a campaign on kick-
starter17.

2.5.3. BitLock

Another electronical bike lock is BitLock [Bie]. It also has a GPS tracker and
communicates via bluetooth with the smartphone of the user. For opening and
closing, the user just has to press a button on the lock when the smartphone
is nearby. In comparison to “I LOOK IT”, the main focus of BitLock lies on
the track activity. Factors like trip length, duration and burnt calories are
measured by the app.
BitLock is able to be used as a bikesharing system from the beginning. Sharing
with friends and family does not cost any money, but you have to pay for
extensive use. In return, you get a fleet management system for a bikesharing
service.

2.5.4. CityBikes

CityBikes [Cia] is an API which provides data about the different bikesharing
systems, their stations and the bikes. The received data are in JSON format
and real-time. Therefore, you can easily integrate data about sharing systems
into your own system or can display the location from bikes in specific cities.

2.5.5. RideTap

RideTap [Ri] is an SDK which combines APIs from different transportation
services like public transportation, car and bikesharing or rideshare. It gives
the possibility to integrate the functionality of finding a transportation solu-
tion inside an app immediatly. By adding a few lines of code, developer can
implement RideTap into their app. The user of the app can find the right
transportation which suits them with just one click.

17Kickstarter campaign: https://www.kickstarter.com/projects/742922560/i-lock-
it-the-worlds-first-fully-automatic-bike-lo/description

22

https://www.kickstarter.com/projects/742922560/i-lock-it-the-worlds-first-fully-automatic-bike-lo/description
https://www.kickstarter.com/projects/742922560/i-lock-it-the-worlds-first-fully-automatic-bike-lo/description

3. Conceptual Approach

This chapter explains the different possibilities for the architecture of Sharelock
(section 3.1). An overview about all the essential use-cases for bikesharing are
described in section 3.2. Finally, a short description of how the workflow would
look like is given.

3.1. Fundamental Architecture of the Service

When talking about the fundamental architecture, it is important to outline
the different kinds which are possible for sharing services. They all differ mostly
in their capability to connect to the internet. Many sharing services have all
their objects directly connected to the internet. Nevertheless, sharing services
with devices which are offline are still possible. Each of them has different
advantages and disadvantages. This chapter will describe all possibilities and
summarize their pros and cons. Afterwards, an evaluation will show what kind
of architecture fits best for Sharelock.

3.1.1. Offline Architecture

The first possible architecture consists of devices which are offline. This means
they do not have a direct communication to the internet. However, they con-
tain communication technologies like Bluetooth, WLAN, NFC or others with
which they can connect to the internet respectively the server indirect via the
client.
This architecture implies that the client (smartphone) has to connect to the
sharing server via internet and to the sharing device with one of its communi-
cation technologies (e.g. Bluetooth). The big advantage of this setup is that
there are no running costs for mobile internet for the locks. Moreover, the lock

23

3. Conceptual Approach

is more difficult to hack as a potential offender has to be nearby.
A big disadvantage is that the provider cannot maintain the lock from remote.
Thus, he has to physically access the device which normally raises costs for
transportation purposes. I addition the whole logic for the opening and closing
has to be implemented in the application from the client (smartphone appli-
cation). This makes it hard to integrate such a sharing service into an overall
mobility platform, because this platform would always have to adapt to the
logic if it changes.
Another one is that the exact position of the lock has to be send by the client
and it has to be trusted that it is correct. Furthermore, inside cities the ac-
curacy of GPS is often not very precise. Therefore, it is possible that the
uploaded position is not precise enough.

Figure 3.1.: Offline Architecture: The lock can only communicate with the
smartphone. It cannot directly communicate with the application
server.

24

3. Conceptual Approach

3.1.2. Online Architecture

An online architecture is the second possible setup, which means that the
lock is directly connected to the internet. This can be done for example with
a GSM module attached to the hardware. Because of that, the lock could
communicate over mobile internet.
Big advantage of this architecture is that the whole procedure of opening
and closing is programmed on the server. The user does not need to know
anything about the logic or the technology. He just knows the REST interface
from the server with which he can open and close every lock. Hence, he only
needs a device which is connected to the internet and can send data. Other
communication technologies like Bluetooth, WLAN or NFC are unnecessary.
Thus, a long list of supported devices for the client besides smartphones is
possible like independent smartwatches, smart TVs, old mobiles and so on and
so forth. All important routines and data is saved on the server side as well
as all necessary algorithms for the lock procedure and for handling the user.
Another advantage is the maintainability. In a pinch, an administrator could
control the lock from afar. In combination with a GPS tracker, he is also
capable of receiving mostly accurate positions.
Disadvantages of this setup are the higher vulnerability to offender from the
internet (hacker) and the running costs for the mobile internet.

3.1.3. Hybrid Architecture

Last possible setup is hybrid architecture. It combines the technology from
the offline and the online setup. This means that the lock is directly connected
to the internet, but also has bluetooth or a similar technology that the client
can use to communicate with the lock. Thus, it is possible to make use of
the lock over a generic REST interface for all kinds of independent services.
However, the sharing provider can distribute a special application for clients
which communicates directly with the lock (for example via bluetooh). This
application could provide extra services for the user or just reduces the needed
amount of internet volume.

25

3. Conceptual Approach

Figure 3.2.: Online Architecture: The lock can communicate directly with the
application server.

3.1.4. Assessment of the different architectures

To choose an appropriate architecture it takes a complete assessment of all
above mentioned types. Therefore, it needs a clear definition of special param-
eters for which the assessment will be performed.
First of all, it is important to judge the number of needed communication
technologies. As more technologies are needed the worse is the solution, be-
cause not all are always available in every device. This means, that an online
solution is highly preferred compared to a solution where the lock is not in the
internet and has to be reached for example by bluetooth.
The next parameter is the price for such an architecture. An offline one is
clearly better for that, because the locks do not generate costs for mobile in-
ternet traffic.
Sustainability is a next interesting factor for the assessment. It does not
make sense to develop something which does not have a future. To rate the
different architectures against this parameter is more difficult. It is not pos-
sible to predict how the future will proceed. There is a high chance that in
the Internet of Things all devices are connected to the internet. However, it

26

3. Conceptual Approach

Figure 3.3.: Hybrid Architecture: The lock can directly communicate with the
smartphone and the server.

is not certain how the devices are connected whether directly or indirect via
Bluetooth, WLAN or other technologies. Therefore, this parameter does not
give an advantage.
Furthermore, the maintainability should be as good and easy as possible. If
errors get detected, the time to fix and update should be quick. The advan-
tage of the online structure is that updates can be uploaded over the air (if
the hardware allows that) and changes on the logic are just on the server. For
the offline structure, the service provider has to physically access the device
to update it. Besides, a new logic would have to be implemented on the client
application. The distribution of it cannot be handled by the provider, because
the client has to manually download the new release.
Last factor to evaluate is the convenience factor. That splits into the three
aspects - convenience for the client, for the service provider and for a mobility
platform provider. The first point is about the user (client). If the user owns
a device, which can communicate with the lock in some way (over internet,
bluetooth or something similar), he does not care about the rest. If the user
cannot access the service, there is no customer and therefore the provider will
not profit. With an architecture which is online, the user can utilize the service

27

3. Conceptual Approach

Factor \Architecture Online Offline Hybrid
Number of needed communication technologies + - o
Price - + -
Sustainability o o +
Maintainability + - +
Convenience for user + - +
Convenience for service provider o o o
Convenience for mobility platform provider + - +
Result of aggregated factors 3 -3 3

Table 3.1.: Comparison of different possible architectures for Sharelock

and therefore the provider can obtain a profit. The next important party is
the service provider. They mostly are not interested in the structure of the
architecture. Depending on their goal they care more about factors like the
overall profit, the customer satisfaction or others (see section about bikesharing
providers). The last party is a mobility platform provider. They are interested
in integrating all possible sharing services and other transportation solutions.
Therefore, they need a well-designed generic interface for the sharing services.
Integrating should be as easy as possible for them and their customers.

Conclusion

As outlined above, there are several parameters to consider when deciding
about a setup architecture. Online and offline have both their advantages and
disadvantages. Therefore, it would make sense to develop a hybrid architec-
ture. This means that the locks are connected to the internet directly, but also
have a communication technology like bluetooth on-board. Hence, it is easy
to integrate into an overall mobility platform in the future.
However, the Sharelock prototype will have an offline architecture to show the
feasibility of the system. The online functionality can then be added later.

28

3. Conceptual Approach

3.1.5. Summary

If the lock is online or offline has strong impact on the development of Share-
lock. Considering the lock to be offline means that the client (the smartphone)
would contain the whole opening logic. Also the smartphone would be the con-
nection between backend and lock and has to establish the internet connection.
From this follows that an open mobility platform would have to implement the
logic for the locks from each sharing service. Otherwise, the user has to down-
load the special application from each sharing provider. Changing something
on the opening logic or adding a new service would in that case mean that the
application has to be updated every time.
If the lock is online (directly connected with the internet) it would only have to
communicate with the backend. This time the backend would be the interface
between the lock and smartphone. Advantage of this type is that the whole
opening logic would run on the server and can be updated right there. This
means that an open mobility ecosystem does not have to change anything as
long as the REST interface persits. The mobility ecosystem just needs to know
the URL of the backend server and can use every method.

3.2. Use-Case Definition

Sharelock is a bikesharing service with an electrical bike lock which can be
opened and closed with a smartphone application. It is meant to provide iter-
atec employees a cheap possibility to use bikes to facilitate transportation and
healthy living. However, it is not the intention to generate a profit with it.
In detail, users have the possibility to search for bikes in a smartphonee ap-
plication (Android App). If they want to rent one of the bikes, they walk to
the bike and unlock the bike lock. After their usage, they return the bike to
a station or somewhere inside a predefined business district. Then, they close
the lock and the booking ends. Afterwards, they are charged for the usage
automatically. In the application, the user can see a list of the last bookings
in an overview.
The following use-cases describe the possibilities more comprehensive.

29

3. Conceptual Approach

3.2.1. Register New User

This use-case is just theoretical. Iteratec will use its own list of employees as
user database (LDAP). Hence, there is no need for iteratec to register user for
Sharelock. All in all, connections to databases via LDAP or active directory
are possible.

Name Register new user in the system
Actors Client
Description A new client has to register first in the system to use

Sharelock. Therefore, he or she has to provide his or
her user details that a new user gets created.

Precondition Client has no account.
Main Scenario Interaction System Reaction

Client goes to a registering
form

New form appears on the
screen (on a smartphone or
on a computer).

Client provides information
like name, address, date of
birth, username, password,
bank account . . .
Administrator submits en-
try.

System saves new user.

Post Conditions Client can now use Sharelock.

Table 3.2.: Use-Case 1: Register new user

30

3. Conceptual Approach

3.2.2. Register New Lock

Another use-case is for registering locks. Before someone can use a bike, it has
to be registered in the system (see table 3.3). This lock cannot be deleted.
However, it can be deactivated for further usages.
Before the administrator can register a lock, it has to be created by an external
server. Then, the administrator can choose this lock in an administration
frontend (see section 4.3). At the beginning, there are no information about
the lock except of the id and name. Entering all information like fleet, price
model and others puts the lock into the running stage. From now, the lock
can be booked and used.

Name Register new lock in the system
Actors Administrator
Description The administrator wants to register a new bike lock

(Sharelock) in the database as part of a new shared bike.
Therefore, the administrator has to fill out a form with
all information about the lock. These information are:
lock number, device address, price for usage, business
district and information about the bike model.

Precondition Administrator has a Sharelock.
Main Scenario Interaction System Reaction

Administrator choose ”Reg-
ister New Lock”

New form appears on the
computer window.

Administrator enters all in-
formation (see Description)
Administrator submits en-
try.

System saves new bike in
the database.

Post Conditions Newly registered data are shown.

Table 3.3.: Use-Case 2: Register new lock

31

3. Conceptual Approach

3.2.3. Open Lock

Opening the lock is the main use-case for using Sharelock. First, the user has
to find a bike and must connect to the lock. Opening the lock means always
starting a booking process. It can only be opened if it was closed before and
if the user is authorized for the bike.

Name Open lock process.
Actors Client
Description User searches for a nearby bike and walks to it. At

arrival, the client opens the lock and starts the booking.
Precondition The user wants to use a bike and is registered in the

platform.
Main Scenario Interaction System Reaction

Client starts application
on the mobile phone and
searches for a nearby bike.

System sends all/nearby
bikes.

Client selects one bike in the
application and walks to it.

System sends further infor-
mation about the bike.

Client starts booking. System creates a booking.
Client opens lock.
Client starts usage of the
bike.

Post Conditions Start time of booking is shown.

Table 3.4.: Use-Case 3: Open lock

32

3. Conceptual Approach

3.2.4. Close Lock

Beside opening the lock, closing the lock is another essential use-case for Share-
lock. Closing the lock can only be done by the user who is at the lock. Pre-
condition for that case is that the lock is open. Also the user who wants to
close the lock must be the one who opened it.

Name Close lock after usage
Actors Client
Description Client ends the usage of the bike and the booking.
Precondition Lock is open and the client is the actual user of the bike.
Main Scenario Interaction System Reaction

The client closes the lock. The system stops the
booking.

Post Conditions User sees all relevant information about the last usage.

Table 3.5.: Use-Case 4: Close lock

33

3. Conceptual Approach

3.2.5. Update Bike Location

There are several events where it is important to have the functionality of
relocating a bike. For example when a mechanic has to repair a bike and places
it at another position. Also in case that the bikes agglomerate in one region.
Then, the operator may have to relocate them for balancing purposes.

Name Update bike location
Actors Client
Description In the case that someone relocates the bike, it must be

possible to update the position.
Precondition A client senses a bike at a position where it should not

be. Proper positioning sensor must be available.
Main Scenario Interaction System Reaction

User senses a lock and asks
for correct position.

System sends saved loca-
tion of the lock.

User checks if saved location
is correct or if the lock is at
another position from where
it should be.
If lock is at another loca-
tion, the client sends the
new position.

Post Conditions User sees updated position on the map.

Table 3.6.: Use-Case 5: Update bike location

34

3. Conceptual Approach

3.2.6. Show bill

After using a bike, customers want to have the possibility to check their rides
and bills. This use-case is essential when an application should fulfill all im-
portant ones. Bills are created automatically by the system and cannot be
deleted.

Name Show a bill
Actors User/Administrator
Description A user or an administrator wants to read a bill from a

booking.
Precondition Booking must be created.
Main Scenario Interaction System Reaction

Client asks for a specific bill. System sends bill with all
relevant data.

Post Conditions Client receives bill.

Table 3.7.: Use-Case 6: Show a specific bill

35

3. Conceptual Approach

3.2.7. Create/Delete Maintenance

Every bike needs some kind of maintenance. This maintenance has to be doc-
umented and created in a way. This can be done by the bikesharing operator
or by customers when they realize broken parts (see table 3.8). After the
maintenance is finished, the administrator can also delete the task.

Name Create Maintenance
Actors Customer/Administrator
Description A user or an administrator creates a maintenance for a

bike.
Precondition Bike must exist in the database.
Main Scenario Interaction System Reaction

Client sends reason for
maintenance.

System shows maintenance
task.

Administrator or mechanic
assigns the task.

Post Conditions System notifies mechanic.

Table 3.8.: Use-Case 7: Create a maintenance for a bike

36

3. Conceptual Approach

3.2.8. Create/Delete Fleet

Usually, products in sharing systems are joint together in fleets. In that way,
changes to relevant data can be done once by changing the according fleet.
An administrator can create and delete fleets accordingly. In table 3.9 is an
example for the creating use-case.

Name Create Fleet
Actors Administrator
Description The administrator creates a fleet for all bikes which be-

long together.
Precondition
Main Scenario Interaction System Reaction

Administrator creates a
fleet.

System shows created
data.

Post Conditions

Table 3.9.: Use-Case 8: Create a fleet for bikes

37

3. Conceptual Approach

3.2.9. Create/Delete Price Model

Consistency is hard to maintain, especially when changing prices for the bikes.
Therefore, there are different price models which you can assign to bikes.
Changing the price of many bikes is then easily done by changing the un-
derlying price model. Hence, it is possible to create and delete price models.
An example for the creating is table 3.10.

Name Create Price Model
Actors Administrator
Description An administrator creates a price model.
Precondition
Main Scenario Interaction System Reaction

Administrator creates a new
price model.

System shows the created
price model.

Post Conditions

Table 3.10.: Use-Case 9: Create a price model

3.2.10. Use-Case Overview

Figure 3.4 displays a use-case overview of Sharelock. There are different use-
cases in the first row which are independent from each other.
Register a new lock is done once to create a new lock in the system. Another
one is to update the position of a lock manually. That is needed, when for
example a bike has to be moved to another location due to balancing of the
system. Otherwise, the bikes agglomerate in some time on different hotspots.
Third one is for showing the rides and bills of each customer that they get an
overview.
Important for the administrator is the middle row. It shows the use-cases for
creating maintenances, fleets and price models. However, the customer can
also create maintenances when a defect is detected.
Usually, a customer follows the flow in the bottom row. Typically, a customer
would have to register first which is the left use-case. In case of Sharelock from
iteratec, there is no registering needed. Sharelock uses the existing employee
database with LDAP. That is the reason why the box is highlighted.

38

3. Conceptual Approach

After registering and log in, the customer can book and open a bike. This is
the first usual use-case in the Sharelock application. At the end of the ride,
the user just has to lock the bike which is the last box in the row.

Figure 3.4.: Use-Case Overview of Sharelock. The first two rows show various
use-cases. In the last is the typical flow of the customer. "Register
New Customer" is highlighted because it is not needed at iteratec.

3.3. Sharelock User Workflow

Following is a general description about the main application workflow of
Sharelock. It is also visualized in figure 3.5. A more specific description of
the intenal message workflow can be read in section 4.1.
At the beginning (1), a potential user of the app has to login against the au-
thentication system of the service to receive a token. With this token, access
to relevant resources is now allowed.
The next step (2) of the app is to download all available locks and display
them in the map view. The customer can now choose a lock from the map to
load specific data like price or business district.
After decision to use the bike, the user sends a booking request to the server
(3) and receives the opening code for the lock. This code will be forwarded to
the lock via bluetooth (4).
While the customer uses the bike, the application can download and upload
further information about and for the ride (5). These additional information
can be locations for charging or return stations. Also the application could
upload location points for calculating the driven distance.

39

3. Conceptual Approach

For finishing the usage, the user requests the end of the booking (6) and re-
ceives the code to lock the bike. Forwarding the code to the lock (7) initiate
the closing. At the end, the customer can download the bill for the ride (8).

Figure 3.5.: Visualization of the basic Sharelock workflow. A smartphone uses
the endpoints from the backend and communicates with the lock.
Furthermore, the backend communicates with Iterasec (security
backend).

40

3. Conceptual Approach

3.4. Summary

This chapter is about the conceptual approach of the Sharelock bikesharing
system. Firstly, an overview over the different possibilities of how to contact
the lock are presented. In an online architecture, the lock is directly connected
to the internet. In the offline case, the lock is just reachable via bluetooth
or similar technology. Connection to the internet would then be done via
smartphone.
The evaluation showed that an hybrid solution would have the advantages
of both architectures. However, Sharelock will only be offline to check the
feasibility of the system.
Section 3.2 outlines the different basic use-cases which have to be implemented.
These use-cases are for example registering a new lock, opening and closing
it or showing the bill. At the end was a little use-case flow for Sharelock
displayed.
Last, section 3.3 describes the workflow which was developed for Sharelock. It
displays the different interfaces of the system and which interface is used at
which time.

41

4. Technical Approach

Following chapter describes the technical part of Sharelock. It starts with
section 4.1 which explains the internal message flow between server, smart-
phone and lock. Afterwards, in section 4.2, 4.3 and 4.4 are the descriptions of
the server, the administration frontend and the client structure. At the end,
section 4.5 shows the generic REST interface for the open mobility platform.

4.1. Internal Workflow

Sharelock’s whole software system architecture consists of two parts. It can
be deduced from the workflow figure 4.1 on the right side. First part is the
usual server which handles all requests from the client. It stores all information
about the products, the customers and processes all data. It is the heart of
the whole bikesharing system. Iterasec is the second system. It is the security
backend which is on the right in figure 4.1. This is a specialized computer
for cryptographic tasks like encryption or signing of messages. In the actual
stage, it is just used for signing data or checking signed data for authentication
purposes.
If a customer decides to book a bike and starts the usage, the displayed work-
flow from figure 4.1 begins. It starts by sending a request to the lock from the
smartphone (1). The lock answers by sending a signed message for the backend
(2). This message contains the request (for example for opening) and some
additional data. Further information about the structure of the message can
be read in section 4.2.2. This message has to be approved from the security
backend (Iterasec). After receiving the message, the smartphone automati-
cally forwards it to the backend (3). Before the backend forwards the message
to the security backend, it checks if the user is allowed to use that bike (4).
When the user is allowed to use the bike, the backend forwards the message
to Iterasec (5). It checks the signed message if it comes from the lock. When

42

4. Technical Approach

the check is passed, the security backend generates an approval message which
is also signed (this time by Iterasec). Iterasec sends the generated message
to the backend server (6) which forwards it to the smartphone (7). Next, the
smartphone sends the message to the lock (8). At the end, the lock checks the
message if it is from Iterasec. After passing that check, the lock opens and the
usage starts. It is possible to send a maintenance task from the smartphone
to the server if the customer realizes a broken part or an error at the lock or
bike.

Figure 4.1.: Intenal Sharelock workflow. 1) Smartphone requests lock to open.
2) Lock sends signed message to smartphone. 3) Smartphone for-
wards message to server. 4) Server checks if user is allowed to
open and use the lock. 5) Server forwards message to Iterasec if
check passed. 6) Iterasec sends confirmation message to server if
message from lock is ok. 7) Server sends confirmation message to
smartphone. 8) Smartphone forwards message to lock which opens
if the message is ok. Smartphone can also send a maintenance task
to the server.

43

4. Technical Approach

4.2. Server Structure

This section is divided into two parts. The first one describes the normal server
and the second one the security backend (Iterasec).

4.2.1. Server

Sharelock’s backend side is based on Spring Boot18 which creates runnable
Spring Applications. This system consists of three layers (API, Controller,
Model & Database) which can be seen in figure 4.2.
On the bottom is the layer for the interface to the database. It handles all
methods to create, alter and delete data in the database.
Incoming HTTP requests treats the top layer. It is the controller. Each request
will be checked and filtered for security and authentication purposes. When
the request passes through the filters, it will be processed by the controller.
Between both layer is the service layer. It is called by the controller and checks
all calls for correctness. For example if data are in the right type or if they
make logic sense.
Illustrated in figure 4.2 is that there is a connection to a payment service.
This is not implemented yet but needs to be there in the future. It bills the
customer after a ride.

18https://projects.spring.io/spring-boot/

44

https://projects.spring.io/spring-boot/

4. Technical Approach

Figure 4.2.: System Structure of Sharelock. On top are the clients who connect
to the backend. Bottom row shows external parties. Google Maps
is used to display maps in the frontend. A payment service is not
yet implemented but would be used to bill the customer. Lock-
Hardware is the actual lock. In the middle are the three layers of
the backend displayed.

A deeper insight into the system can be seen in figure 4.3 and figure 4.4. It is
divided into two separate figures for better visualization purposes. Figure 4.3
displays the relevant classes for the generic REST interface.
Both class diagrams do not show all but the important classes of the backend.
Displaying all classes would radically decrease the readability and understand-
ability. Therefore, only relevant files are presented.
It can be seen in both diagrams that the structure is divided in four layers.
The first layer is the controller (resource classes) for all incoming REST calls.
At the bottom are the repository classes. They are the connection to the
database. In between are the service files. They are all divided into the inter-
face (second layer) and the implementation (third layer).

45

4. Technical Approach

Figure 4.3.: First part of the server class diagram from the backend. It shows
all relevant classes for the generic interface. It is divided in four
layers. The top layer is the controller for all incoming REST calls.
At the bottom are the repository classes. They are the connection
to the database. In between are the service files. They are all
divided into the interface (second layer) and the implementation
(third layer).

46

4. Technical Approach

Figure 4.4.: Second part of the server class diagram from the backend. It
is divided in four layers. The top layer is the controller for all
incoming REST calls. At the bottom are the repository classes.
They are the connection to the database. In between are the
service files. They are all divided into the interface (second layer)
and the implementation (third layer).

Sharelock’s database entity model is presented in figure 4.5. Entities have an
own table in the database. All attributes of the entities are in the diagram.
For communication with the database are the repository classes from figure 4.3
and figure 4.4.

47

4. Technical Approach

Figure 4.5.: Database Entity Model of Sharelock. All major entities extend
BaseEntity and therefore have an id and a creation date.

4.2.2. Security Backend

The security backend runs on another computer (Raspberry Pi19). It is only
used to check signatures of messages and create confirmation messages for
requests. The responses are signed with the key from the security backend.
Iterasec (the security backend of Sharelock) receives the lock messages from
the Sharelock server. A message consists of five different parts.
First part (4 bytes) is the ID of the sender of the message. 0x0000 is reserved
for the security backend and the rest for all locks.
The next part (2 byte) is the type of the message. For example, if it is a
status message or a request. In addition, it can contain the information that
the message is a request for a key generating or distribution.
Third part (2 byte) holds the data field. It depends on the type of the message
(status or request) if the data describe that the lock is open or closed or if
it should lock or unlock. Furthermore, it can signalize that the lock has an
internal error.
At the end of the main data message is a random number attached to make it
unique. The reason for that lies in the need for security. Sharelock would work
with just that. However, everyone could write messages to open and close the

19https://www.raspberrypi.org/

48

https://www.raspberrypi.org/

4. Technical Approach

lock without any restrictions. Also without paying for the service. That is why
a signature is added to the main data message. This signature authenticates
the sender of the message. Therefore, nobody can fake a message to illegal use
or change a lock.
The signature is based on an elliptic curve algorithm which uses public and
private keys. The private key are only stored at the specific sender to maintain
the correct authentication. Thus, Sharelock can just be used from customers
and no one can use the locks for somebody else.
Further information about the security backend can be found in the master
thesis from Rolf Sotzek from iteratec [So].

4.3. Administration Frontend Structure

The administration frontend is written with Angular 2.020 which was being
highly developed at the time of the thesis. In September 2016 was the first
stable release published. There are several advantages over the older Angular
version which can be found on the official website21.
Actually, the frontend is just for the administrator. In the beginning, the
administrator has to login to the system with the login credentials. This is
visualized in figure 4.6.

Figure 4.6.: Login to the administration frontend with the login credentials.

20https://angular.io/
21Angular 2: https://angular.io/

49

https://angular.io/
https://angular.io/

4. Technical Approach

Afterwards, it shows different information about the products (figure 4.7),
fleets (figure 4.8) and price models (figure 4.9). According to the relevance,
these information can be changed and deleted. For example locks cannot be
deleted. They are just deactivated for the system to keep all relevant data.
As the bikes can only be returned in a specific region, they get assigned to
fleets. Fleets have a business districts which is a polygon in which the bikes
can be returned. For adding polygons, KML22 files are needed. Additionally,
the administrator can see a list of users (figure 4.10) with the bills of each
ride and maintenance tasks for the locks (figure 4.11). There is the possibility
to change information about the maintenance or giving the user various rights.

22KML (Keyhole Markup Language) is the standardized file type for geographic data and
information.

50

4. Technical Approach

(a) Map overview of all bikes which are belong to the fleet "Taufkirchen"

(b) All information to the selected bike on the right side. Performed rides
would be shown at the bottom. Editing or deactivating of the lock can
be done with the button in the top right corner.

(c) Editing information about the bike. Last user is the customer who used
the bike before. Last service is the date of last maintenance. Price, fleet
and allocation can be choosed from a dropdown.

Figure 4.7.

51

4. Technical Approach

(a) Map which shows the business district of the fleet "Munich". Pressing the add
button in the bottom left corner leads to the next screen.

(b) Adding a new fleet. It needs a name for the fleet and an uploaded KML file.

Figure 4.8.

52

4. Technical Approach

Figure 4.9.: Information about the price model. These information can be
edited or deleted by the buttons in the top right corner. A new
price model can be added with the button in the bottom left cor-
ner.

Figure 4.10.: Relevant information about the customer. At the bottom is a
table which shows the performed rides of the user. It displays
the bill number, starting time, departure and arrival point and
the price for the ride.

53

4. Technical Approach

(a) Actual information about a maintenance. On the left side is a list with all
maintenance tasks.

(b) Changing relevant information of a maintenance like reason, status or mechanic.

Figure 4.11.

There are two different map providers which were considered for visualization
of the bike locations and the business districts. The first one is HERE and the
second one is Google Maps. A comparison of the prices23 from both provider
is in table 4.1. At the end, Google Maps is used because it is cheaper and has
all the needed functionality. In addition, it has the better support.

23Source of the Google maps prices: https://developers.google.com/maps/pricing-
and-plans/

54

https://developers.google.com/maps/pricing-and-plans/
https://developers.google.com/maps/pricing-and-plans/

4. Technical Approach

Today Future (B2B) Future (B2C)
Who pays for the ap-
plication?

iteratec customers or
company

customers

How will the applica-
tion be distributed?

online storage App Store or on-
line storage

App Store

How much users do the
application has?

< 100 > 1000 > 1000

Online or offline usage
of the map?

online online online

Do we need naviga-
tion?

no maybe maybe

Is it B2B or B2C? B2C B2B B2C
Price HEREmap with-
out navigation

> 1.500 e > 16.000 e > 1.900 e

Price HERE map with
navigation

> 1.900 e > 31.000 e > 5.900 e

Price Google maps
without navigation

∼ 0 e ∼ 375 e ∼ 375 e

Price Google maps
with navigation

∼ 0 e ∼ 750 e ∼ 750 e

Table 4.1.: Price Comparison between Google and HERE

4.4. Mobile App Structure

This section covers all relevant information about the Android mobile appli-
cation. It starts with a short introduction about the Android system. After-
wards, the structure of the app is described. At the end is the workflow of the
application visualized.

55

4. Technical Approach

4.4.1. Android Introduction

Android applications are based on activities which are the corresponding file
to the open window on the smartphone. An activity handles all important
events and updates the window respectively. For example, it handles button
events or screen loading. Methods inside activities should not block, because
the application would crash.
There are other possibilities when an application runs tasks which are block-
ing. Async tasks are an usual approach for blocking tasks like waiting for a
response from a website. They run on another thread and do not block the UI
thread (the activity).
A third thing which is often used is a fragment. An activity can load different
fragments which are running inside the activity. They are easily to exchange
and are faster to load compared to an activity.

4.4.2. Application Structure

Last section introduced the three main things which are needed in Sharelock’s
Android application. In figure 4.12 are the important classes displayed, to-
gether with their flow. All tasks which are at the bottom of each activity or
fragment are AsyncTasks. They are used for non-blocking calls to the backend
of Sharelock.
At the beginning is the StartScreenActivity. It checks if there is an ongoing
usage or if the customer is still logged in. When the user is not logged in, the
next activity is automatically the LoginActivity. Actually at iteratec, a user
can login with the own employee credentials. When the user is still logged
in without any actual ride, the application goes to the MainActivity which
instantly loads the MapFragment. If the customer is still logged in and has an
actual ride, the application jumps to the LockControlActivity.
The MapFragment displays the map with all available bikes. Therefore, it
loads all bikes with the LoadLocksTask. If the application realizes that a bike
is located on a wrong position, it updates the location with the UpdateLock-
PositionTask.
For switching purposes, a navigation drawer is included in the MainActivity.

56

4. Technical Approach

From there, the ScanActivity (scanning for nearby bikes) and the BillListAc-
tivity (history of all rides/bills) can be reached. By clicking on a bike on the
map or by choosing one in the ScanActivity, the user comes to the LockCon-
trolActivity. This activity handles all communication between the lock and
the backend server. It starts and ends bookings and displays the actual usage
time. It can also send maintenance tasks to the backend over a dialog. In this
dialog can the user choose a reason for the maintenance from a list. Uploading
is done by the BlockLockTask.
A list of all bikes which are nearby will be created by the ScanActivity. It
checks with the CheckLockTask if surrounding bluetooth devices are locks
from Sharelock and if they are free to use.
At the end of each booking, the application shows all bills automatically. The
list displays important information like the start and end time or the price.

Figure 4.12.: Activity flow of the Android application. All tasks inside an
activity or fragment are AsyncTasks.

57

4. Technical Approach

4.4.3. App Workflow

The final version of the Sharelock Android application can be seen in figure
4.1. In the beginning, the customer has to login to the application (4.13a). If
that was successful, the user gets forwarded to the map of bikes. While the
smartphone searches for the GPS location, the customer starts with a default
position. Finding the GPS location changes the view to the actual position
(4.13b). On the map view are all bikes displayed which can be rented at this
time. Bikes which are in use from someone else are not visualized. If there are
too many bikes nearby, the customer can change to a list view.
After choosing a bike, a new activity is loaded which displays the price of
the bike. In the background, the smartphone tries to connect to the bike via
bluetooth (4.13c). In the top right corner is a button for sending information
about bike issues like a flat wheel, no light or other problems (4.13e).
For booking and unlocking the bike, the user just has to use the slider at the
bottom. This is only possible, if the connection to the bike is successfully
established. For better explanation what to do changes the text on the slider
from “Wait for connection” to “Slide to unlock” .
As visualized in figure (4.13d), the actual usage time is displayed during the
whole journey. The customer can decide to close the app without any problems.
After restarting, the user gets directed to the actual usage. Furthermore, the
customer receives a reminder after every 30 min about the running usage.
For ending the usage, the customer just has to use the slider again for closing
the lock. Sharelock updates the position of the lock with the position of the
user. That is why the lock has no internal GPS chip. If the ending was
successful, the lock closes and the user gets to the next screen which shows a
history of all rides in a list (4.13f).
At the end, the customer could logout to delete the access token which causes
a new login. Or the user just closes the app. In that case, the customer is
remembered next time in the application.

58

4. Technical Approach

(a) (b) (c)

(d) (e) (f)

Figure 4.13.: a) Login screen b) Map overview for all bikes c) Connecting to
a bike and opening via sliding at the bottom d) Already run-
ning usage which can be ended by sliding again at the bottom e)
Maintenance dialog f) Overview over all finished rides (history)

59

4. Technical Approach

4.5. REST interface

One core element of Sharelock is the possibility to integrate it in an open mo-
bility ecosystem. It was special designed for a clear REST structure.
Sharelock’s REST interface is roughly divided into two parts. The first one is
the generic interface for the open mobility ecosystem. Second part contains the
remaining endpoints which are needed to fully operate the bikesharing. For
example creating price models or fleets are important operations. However,
they are not important for the open mobility ecosystem. This platform needs
the essential possibility to load available bikes, create bookings and to load
generated bills.
First important REST endpoint is for authentication purposes. As response
comes a JSON Web Token (JWT)24. This token handles the authentication of
the user for all other endpoints.
Another important interface is the list of products. Amongst others, it provides
methods to register locks, update their information and of course receiving a
list filtered against different options.
The next endpoint is for booking. This is used when the customer decides to
ride the bike. It starts or ends a booking depending on the request method.
Fourth interface (usage) is for further information while the usage is running.
This can be information to download like the next return station, the business
district or points of interest. Though it is also possible to upload data like the
actual position that the backend can calculate the driven distance.
Last interface for the generic purpose is billing. Obviously, it makes sense to
provide the customer all bills for past rides. A concrete list of all methods and
endpoints is displayed in figure 4.14 and figure 4.15. It is automatically gener-
ated by Swagger25. They are divided into two parts to increase the readability.
Please refer to the enclosed CD for a complete documentation of all the listed
methods and endpoints.

24https://jwt.io/
25Source: http://swagger.io/

60

https://jwt.io/
http://swagger.io/

4. Technical Approach

Figure 4.14.: First part of the swagger generated output of the REST interface
from Sharelock.

61

4. Technical Approach

Figure 4.15.: Second part of the swagger generated output of the REST inter-
face from Sharelock.

62

4. Technical Approach

4.6. Summary

This chapter outlines the main structure of Sharelock. Firstly, an overview
about the internal workflow is described. It shows how the messages from the
lock and the backend are send between all devices.
Afterwards is the description of the server structure. This is divided into the
backend and the security backend side.
Section 4.3 focused on the administration frontend structure. A description
of the mobile application is in section 4.4. It begins with a short introduc-
tion about the kind of files which were used in the Android application. Then
follows the description of the Sharelock application with smartphone screen-
shots. At the end is a short summary of how a generic REST interface looks
like which can be used inside an open mobility ecosystem.

63

5. Evaluation

The developed systems were evaluated with the system usability scale (SUS)
[Br13]. Furthermore, a questionnaire were taken to ask about the pros and
cons of the application and the administration system.

5.1. Usability

All in all, nine working students from iteratec tested the Sharelock application
and the administration frontend. They received a task which they should fulfill
without any prior knowledge. First one was to use the application for renting
a bike. While using the bike, the user would recognize that a wheel is flat and
has to communicate the issue. The second task was to use the administration
frontend to assign the just created maintenance to a mechanic. Afterwards,
the status of the lock has to be put to unblocked. At the end, the students
had to fill out a questionnaire to calculate the system usability score. The
result was a score of around 80 points for the application and approximately
79 for the frontend. In comparison, a score above 68 is considered better than
average with good usability.

5.2. Feedback

All working students from iteratec were asked several questions about the
system and about bikesharing in general. First question was, if they used
bikesharing before which all participants negated. Next one asked about how
the perfect bikesharing should be. There were a lot of different answers. Most
students said, that it has to be easy to use. For example, it should only need
a few clicks to book a bike. Furthermore, the registration should be quick and
easy and the business district should have enough bikes with return stations at

64

5. Evaluation

points of interest. Also mentioned was the possibility to reserve bikes, security
issues, a nice layout, a fast and easy process to unlock (maximum 10 seconds
until start cycling), that it is mostly automatically and easy to find bikes, that
it is clear when the usage starts or ends and that it is reliable.
Next question was if they would use it at iteratec. Seven out of nine would
use it. The two remaining students would not use it because they do not need
it or do not cycle at all.
If it would be more interesting if Sharelock is integrated in another application
such as from the public transport was the next question. Most students agreed
on that. One student disagreed and wanted to separate both and another one
was unsure.
Last question asked for ideas for further possibilities to use Sharelock. At
the moment, Sharelock is just a lock which can be opened and closed via a
smartphone application. It is not limited to use it with bikes. There was a
wide range of answers. Suggestions were to use it with wheel chairs, cars,
doors, lockers, rooms/offices, fitness studios, trailer and parcel services.

In the second part of the survey, the students were asked for feedback to the
application and the frontend. What was good, what has to be improved, what
was missing and what was unclear.
Related to the smartphone application, it was good that it was fast and easy to
choose and rent a bike. Additionally, it was noted that the layout was nice and
focused on the main parts of the application. Also positive mentioned was the
showed usage time, that the bikes can be seen on a map and that maintenance
tasks can be send. All in all, it was perceived to be very intuitive.
Nevertheless, there are things which can be improved like showing the status
of the lock or the slider. In addition, a better feedback was mentioned and
that the application start at the last known location. One student criticized
the layout of the usage screen and that the maintenance dialog looks like an
error. When the smartphone is offline or GPS is turned off, the application
was not warning the user. Therefore, the customer could not rent or return
a bike and does not know the reason for that. Last point that was made was
that it is hard to come back to the usage screen when the user went back to
the map.
Missing elements are an introduction screen for the application or the actual
price like a taximeter. Additionally, it was noted that the price per minute
could be shown on the map. An important feedback was also to visualize

65

5. Evaluation

the actual business district in the application to know where it is allowed
to return the bike. Two other missing elements are the possibility to change
account settings and that in the nearby bikes screen a message appears if there
are no bikes.
Unclear was sometimes the slider and where the bikes can be used. Also that
there was no feedback from the slider or that no internet or GPS is available.
In addition, it is unclear which marker on the map belongs to which bike. Last
was that the nearby bikes screen showed no information at all when there are
no bikes.

For the administration frontend, most students liked the design and that it is
easy to use. They could see all bikes, it is clearly arranged and consistent.
Nonetheless, some students found it could be improved by rearranging ele-
ments and put related information together. For example that a bike can be
unblocked directly in the maintenance view. A few students would change the
design completely or at specific sides like the editing views.
Just one student was missing something in the frontend. One thing was a small
introduction feature and second one was the possibility to edit field directly in
the view.
Unclear was for some students where to find specific elements and how to un-
block a bike. Sometimes, the student found it unclear which maintenance they
have to choose when there were multiple with the same name. It was also
found to be information overloaded and unclear that the administrator has to
choose a fleet before seeing a list of locks.

5.3. Summary

Sharelock was evaluated with nine working students from iteratec. They had to
use the smartphone application and the administration frontend with a usual
case (using a bike and maintaining). The students gave positive and negative
feedback to both systems which helps for later improvement.
All in all, both systems scored a very high SUS (system usability scale) of 80
points for the application and 79 for the frontend. A score above 68 is con-
sidered above average. However, the students are smart developers at iteratec
with a highly technological background. Therefore, the score has a bias and is
in reality maybe lower.

66

6. Discussion and Outlook

6.1. Contribution

This thesis was not started from scratch. However, most of Sharelock was
developed in this thesis. Only the security backend and its message structure
were developed by Rolf Sotzek (working student at iteratec) in his master
thesis [So]. A skeletal structure with Spring Boot was the basis from which
Sharelock was developed. This basic structure involved a few entities like the
lock and their connections to the database.
Certainly, this basic structure was expanded and improved in this thesis. Many
important functionalities were missing like booking and billing. However, to
correctly use the bikesharing, fleets, price models and maintenance were also
missing. All these functionalities were implemented in this thesis. In addition,
a cloud messaging system (firebase) was integrated to notify a user after each
30 min of a ride. Therefore, if the customer forgets to return the bike the
smartphone receives a notification. A short description of the notification
workflow from firebase is in appendix A. Also the REST interface was newly
modeled. It should easy integrate into an open mobility ecosystem.
In the beginning, the frontend was based on some bootstrap files which was
obsolete. So the new system is based on Angular 2 with material design which
was completely new created during this thesis.
On the smartphone side was also a basic application provided. This application
was able to scan and connect to the bluetooth locks. It could also send and
receive messages. Nevertheless, the application was changed to a mostly new
design, a better user experience and some additional features. For example
the map, the navigation drawer or the list of bills. In addition, the whole
communication with the backend had to be implemented as well as the login
was integrated later.

67

6. Discussion and Outlook

6.2. Conclusion

Developing a bikesharing system is a complex task. There are different open
questions like what kind of lock is needed or which technology should be used.
Sharelock was specifically developed for iteratec employees. However, Share-
lock should be also customizable for other needs. On the one hand, it should
be useable for different purposes. Not only for means of transportation but
also for offices, lockers or something else which could be shared. On the other
hand, it should be usable for different providers. Examples are companies or
universities (on campus).
Certainly, using bikesharing requires usually another smartphone application.
This includes typically a new account on a new platform. Routing for public
transportation from one point to another is then often difficult or not complete.
This is due to the fact that not every means of transportation is integrated in
the routing application.
Sharelock is a prototype for a system which can be easily integrated into an
open mobility ecosystem. Therefore, a generic REST interface was developed.
Staying on the convention of this interface enables the possibility to use Share-
lock.
However, the actual system is developed for a lock which is not connected to
the internet. Therefore, an extra smartphone application is needed to commu-
nicate with the lock (for opening and closing). Anyway, a routing application
can integrate the data from Sharelock to show the locations of the bikes. It
could use this information while calculating the best route. Just the last step
of using the bike has to be executed from Sharelock’s smartphone application.
This is due to the fact that the messaging logic is programmed on the client
side.
Indeed, the feature to open and close the bike from insight a mobility applica-
tion is possible. Therefor, the lock only has to receive an internet connection.
Then the lock can communicate directly with the backend server which sends
the commands for opening and closing. This means that the complete logic
would be programmed backend side. Commands for the backend server would
in that case come from the mobility platform.
All in all, Sharelock is in its current state an executable project. It is deployed
in the company (iteratec GmbH) and can be used. However, there are cur-
rently no bikes and billing is not integrated. Though, all rides are saved and

68

6. Discussion and Outlook

can be listed in the administration frontend. Therefore, all customers can be
billed manually. Thus only the bikes are missing. This is due to the fact that
the development of the physical locks is not finished right now.

6.3. Outlook

There are several features which can be implement into a bikesharing system,
but which are out of scope for this thesis. These features can improve the
usability or satisfaction of the customer or the provider.
One example is to monitor the state or condition of the bike by for example
asking the customer before or after the usage about it. Optionally, the cus-
tomer should also have the opportunity to give feedback.
Monitoring the battery of the bike lock should always occur in the background
after each ride to make sure that the lock will be charged sufficiently early.
There are many possibilities to increase the maintainability. The first one is
to add an email notification when a new maintenance is created. In the best
case, the email would only be send to the nearest mechanic who can repair
the bike quickly. Improving the maintainability for the fleet management can
also be done by calculating the best route through all bikes which are blocked
for maintenance. Also machine learning techniques could predict when a bike
needs maintenance that a mechanic could maintain the bike earlier to reduce
the unused time. Another improvement would be to declare a service phone
number for every fleet where customers get further help of any kind.
There are also different extensions for the central office. In the administrator
frontend are several possibilities to not only show data, but also to change and
delete them if the customer had problems.
At the moment each ride is saved with the start and end position. These posi-
tions are latitude and longitude which make them difficult to read for humans.
Therefore, displaying the locations as addresses would increase the readability
enormously.
Actually, every lock represents a bike. However, there is no information about
the bike itself. In the future, it makes sense to add information to the lock
about its assigned object. Like what kind of bike it is or what color it has. It
also can contain images of the object to display them in the frontend or in the
smartphone application.

69

6. Discussion and Outlook

An interesting feature for the provider of Sharelock is a statistic. There are
different possibilities what can be measured like how much usages per day or
month in total or by bike. Also how much maintenance is needed, which bike
was least used, etc. All these parameters can be used to improve the service
for the customer, reduce costs or increase the income.
All in all, Sharelock is a runnable system which is deployed. It is stable and can
be used. There is an administration frontend and an application for the smart-
phone to use the system and it has the capability to implement the previously
discussed improvements.

70

Bibliography

[Bia] BiCiBUR: http://www.bicibur.es/. Accessed: 2016-09-11. 2.2.13

[Bib] Bike Sharing Blog: http://bike-sharing.blogspot.de/. Accessed:
2016-05-12. 1

[Bic] Bike Sharing Google Map: https://www.google.com/maps/d/
viewer?mid=1UxYw9YrwT_R3SGsktJU3D-2GpMU&hl=en. Accessed:
2016-05-12. 1

[Bid] BikeSharePhiladelphia: http://www.bikesharephiladelphia.org/
learn/history/. Accessed: 2016-09-11. 2.2.3

[Bie] BitLock: http://bitlock.co/. Accessed: 2016-09-11. 2.5.3

[Br13] Brooke, J.: SUS - A quick and dirty usability scale. Technical
report. February 2013. http://uxpajournal.org/wp-content/
uploads/pdf/JUS_Brooke_February_2013.pdf; Accessed: 2016-11-
03. 5

[Bua] Burgos: http://velo-citta.eu/cities/burgos/. Accessed: 2016-
09-11. 2.2.13

[Bub] Burgos Case Study: http://mobility-workspace.eu/geosearch/
burgos/. Accessed: 2016-09-11. 2.2.13

[Ca] Call A Bike: https://www.callabike-interaktiv.de/. Accessed:
2016-05-18. 2.2.4

[CC12] Claudio Contardo, Catherine Morency, L.-M. R.: Balancing a Dy-
namic Public Bike-Sharing System. Technical report. CIRRELT -
Centre interuniversitaire de recherche sur les réseaux d’entreprise, la
logistique et le transport. March 2012. https://www.cirrelt.ca/
DocumentsTravail/CIRRELT-2012-09.pdf; Accessed: 2016-05-12. 1

71

http://www.bicibur.es/
http://bike-sharing.blogspot.de/
https://www.google.com/maps/d/viewer?mid=1UxYw9YrwT_R3SGsktJU3D-2GpMU&hl=en
https://www.google.com/maps/d/viewer?mid=1UxYw9YrwT_R3SGsktJU3D-2GpMU&hl=en
http://www.bikesharephiladelphia.org/learn/history/
http://www.bikesharephiladelphia.org/learn/history/
http://bitlock.co/
http://uxpajournal.org/wp-content/uploads/pdf/JUS_Brooke_February_2013.pdf
http://uxpajournal.org/wp-content/uploads/pdf/JUS_Brooke_February_2013.pdf
http://velo-citta.eu/cities/burgos/
http://mobility-workspace.eu/geosearch/burgos/
http://mobility-workspace.eu/geosearch/burgos/
https://www.callabike-interaktiv.de/
https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2012-09.pdf
https://www.cirrelt.ca/DocumentsTravail/CIRRELT-2012-09.pdf

Bibliography

[CEa] CERN bikes rental: https://smb-dep.web.cern.ch/en/Mobility/
CERN_bikes_rental. Accessed: 2016-09-11. 2.2.15

[CEb] CERN Velopass: https://smb-dep.web.cern.ch/en/Mobility/
Bike_sharing. Accessed: 2016-09-11. 2.2.15

[Ch] Chemnitzer Stadtfahrrad: http://www.chemnitzer-stadtfahrrad.
de/. Accessed: 2016-05-18. 2.2.12

[Cia] CityBikes API: http://api.citybik.es/v2/. Accessed: 2016-09-11.
2.5.4

[Cib] CiViTAS: http://www.civitas.eu/. Accessed: 2016-09-11. 2.2.13

[Co] Company bike leasing: http://www.spiegel.de/karriere/
dienstrad-statt-dienstwagen-radfahren-mit-steuervorteil-
a-974881.html. Accessed: 2016-09-11. 1.2

[De09] DeMaio, P.: Bike-sharing: History, Impacts, Models of Provi-
sion, and Future. Journal of Public Transportation. 12(4).
2009. http://scholarcommons.usf.edu/cgi/viewcontent.cgi?
article=1196&context=jpt; Accessed: 2016-05-12. 2.1

[Frad] Fächerrad: http://www.faecherrad.de/de/karlsruhe/. Accessed:
2016-05-18. 2.2.10

[Go] Google Bike Share: http://www.wired.com/2013/04/google-
bikes/. Accessed: 2016-06-27. 2.2.16

[JC] JCDecaux: http://www.jcdecaux.com/en/. Accessed: 2016-05-19.
2.2.3

[Ko] Konrad: https://konrad.dbcarsharing-buchung.de/
kundenbuchung/. Accessed: 2016-05-18. 2.2.6

[Mea] Melbourne Bike Share: http://www.melbournebikeshare.com.au/.
Accessed: 2016-08-13. 2.2.14

[meb] metropolradruhr: http://www.metropolradruhr.de/de/. Accessed:
2016-05-18. 2.2.7

[MVa] MVG Rad: https://www.mvg.de/services/mobile-services/mvg-
rad.html. Accessed: 2016-05-20. 2.2.9, 2.4.1

72

https://smb-dep.web.cern.ch/en/Mobility/CERN_bikes_rental
https://smb-dep.web.cern.ch/en/Mobility/CERN_bikes_rental
https://smb-dep.web.cern.ch/en/Mobility/Bike_sharing
https://smb-dep.web.cern.ch/en/Mobility/Bike_sharing
http://www.chemnitzer-stadtfahrrad.de/
http://www.chemnitzer-stadtfahrrad.de/
http://api.citybik.es/v2/
http://www.civitas.eu/
http://www.spiegel.de/karriere/dienstrad-statt-dienstwagen-radfahren-mit-steuervorteil-a-974881.html
http://www.spiegel.de/karriere/dienstrad-statt-dienstwagen-radfahren-mit-steuervorteil-a-974881.html
http://www.spiegel.de/karriere/dienstrad-statt-dienstwagen-radfahren-mit-steuervorteil-a-974881.html
http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1196&context=jpt
http://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1196&context=jpt
http://www.faecherrad.de/de/karlsruhe/
http://www.wired.com/2013/04/google-bikes/
http://www.wired.com/2013/04/google-bikes/
http://www.jcdecaux.com/en/
https://konrad.dbcarsharing-buchung.de/kundenbuchung/
https://konrad.dbcarsharing-buchung.de/kundenbuchung/
http://www.melbournebikeshare.com.au/
http://www.metropolradruhr.de/de/
https://www.mvg.de/services/mobile-services/mvg-rad.html
https://www.mvg.de/services/mobile-services/mvg-rad.html

Bibliography

[MVb] MVGmeinRad: http://www.mvg-mainz.de/mainzigartig-
mobil/mit-mvgmeinrad. Accessed: 2016-05-18. 2.2.11

[ne] nextbike: http://www.nextbike.net/. Accessed: 2016-05-11. 2.2.2

[No] NorisBike: http://www.norisbike.de/de/nuernberg/. Accessed:
2016-05-18. 2.2.8

[Opa] Open Source Bike Share: http://opensourcebikeshare.com/. Ac-
cessed: 2016-05-11. 2.2.1

[Opb] OpenBike: https://openbike.com/. Accessed: 2016-09-11. 2.5.1

[Ri] RideTap: http://ridetap.io/. Accessed: 2016-09-11. 2.5.5

[So] Sotzek, R.: Development of a Security Solution for a Smart Bike Lock
of a Bike-Sharing Project. not published (Master Thesis at TUM).
4.2.2, 6.1

[St] StadtRAD Hamburg: http://stadtrad.hamburg.de/
kundenbuchung/. Accessed: 2016-05-18. 2.2.5

[TR11] Tal Raviv, Michal Tzur, I. A. F.: Static Repositioning in a
Bike-Sharing System: Models and Solution Approaches. Tech-
nical report. Industrial Engineering Department. August
2011. http://nacto.org/wp-content/uploads/2012/02/Static-
Repositioning-in-a-Bike-Sharing-System.pdf; Accessed: 2016-
05-12. 1

[Ve] VeloCittà: http://velo-citta.eu/. Accessed: 2016-09-11. 2.3

73

http://www.mvg-mainz.de/mainzigartig-mobil/mit-mvgmeinrad
http://www.mvg-mainz.de/mainzigartig-mobil/mit-mvgmeinrad
http://www.nextbike.net/
http://www.norisbike.de/de/nuernberg/
http://opensourcebikeshare.com/
https://openbike.com/
http://ridetap.io/
http://stadtrad.hamburg.de/kundenbuchung/
http://stadtrad.hamburg.de/kundenbuchung/
http://nacto.org/wp-content/uploads/2012/02/Static-Repositioning-in-a-Bike-Sharing-System.pdf
http://nacto.org/wp-content/uploads/2012/02/Static-Repositioning-in-a-Bike-Sharing-System.pdf
http://velo-citta.eu/

A. Appendix

Firebase Notification Process

Following is a short description of how the user receives a notification by the
server with firebase26. Figure A.1 displays the procedure with the application
server, the smartphone application and the firebase server.
(1) In the beginning sends the mobile application information about the smart-
phone to the firebase server. (2) Then, it receives a token which is dedicated
to this device. (3) Afterwards, the application sends this token to Sharelock’s
server which saves the token together with the user details. If the application
server wants to send information to the user, it searches for the token in the
database. (a) Subsequently, it sends the notification together with the token
to the firebase server. (b) Firebase sends the notification to the smartphone.

26https://firebase.google.com/
27Image Source: http://tguerin.github.io/cloud-messaging-gdg-2014/img/data_

flow_schema.png

i

https://firebase.google.com/
http://tguerin.github.io/cloud-messaging-gdg-2014/img/data_flow_schema.png
http://tguerin.github.io/cloud-messaging-gdg-2014/img/data_flow_schema.png

A. Appendix

Figure A.1.: Firebase Notification Process27. 1) App sends information about
smartphone to firebase. 2) App receives token from firebase. This
token is dedicated to the smartphone. 3) Application sends the
token to the application server. a) Server sends message and token
to firebase. b) Firebase sends message to the smartphone which
belongs to the token.

ii

	Acknowledgement
	Abstract
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Introduction
	Challenges of an open mobility ecosystem
	Motivation
	Structure of this thesis

	Related Work
	Types of Sharing Provider
	Sharing Provider
	Open Source Bike Share
	Nextbike
	JCDecaux
	Call A Bike
	StadtRAD Hamburg
	Konrad
	metropolradruhr
	NorisBike
	MVG Rad
	Fächerrad
	MVGmeinRad
	Chemnitzer Stadtfahrrad
	BiCiBUR
	Melbourne Bike Share
	CERN
	Google
	Cargo Bikesharing
	Comparison Sharing Provider

	Projects
	Best Practice workflow from existing bikesharing provider
	MVG Rad
	Call A Bike

	Related technical systems
	OpenBike
	I LOCK IT
	BitLock
	CityBikes
	RideTap

	Conceptual Approach
	Fundamental Architecture of the Service
	Offline Architecture
	Online Architecture
	Hybrid Architecture
	Assessment of the different architectures
	Summary

	Use-Case Definition
	Register New User
	Register New Lock
	Open Lock
	Close Lock
	Update Bike Location
	Show bill
	Create/Delete Maintenance
	Create/Delete Fleet
	Create/Delete Price Model
	Use-Case Overview

	Sharelock User Workflow
	Summary

	Technical Approach
	Internal Workflow
	Server Structure
	Server
	Security Backend

	Administration Frontend Structure
	Mobile App Structure
	Android Introduction
	Application Structure
	App Workflow

	REST interface
	Summary

	Evaluation
	Usability
	Feedback
	Summary

	Discussion and Outlook
	Contribution
	Conclusion
	Outlook

	Bibliography
	Appendix

