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Abstract

Nowadays, enterprises have recently entered a new era which is characterized by the
exploration of Big Data to uncover yet unreachable knowledge. Big Data concerns mas-
sive data sets in the range of exabytes — highly variable, complex, and growing data
sets from multiple data sources with difficulties of storing, analyzing, and visualizing
for further processes. With the rapid development of networking, data storage, and
data collection capacity, Big Data is now swiftly expanding in various domains, includ-
ing manufacturing, healthcare, and retail, by the increasing volume and detail of infor-
mation captured by companies, the rise of social media, and the Internet of Things. The
process of researching massive amounts of data reveals hidden patterns and enables
companies to gain richer and deeper insights into invaluable information. The result
of Big Data analytics underpins new waves of productivity growth, innovation, and
becomes a key basis for competition.

However, a vast number of Big Data technology vendors has emerged providing tech-
nologies to support companies for harnessing the intended value of Big Data. Within
the huge Big Data vendor landscape, companies seek end-to-end solutions that can
store, analyze, and visualize mass data quickly and reliably. The open-source Elastic-
search, Logstash, and Kibana (ELK) stack developed by Elastic is a search-based data
discovery tool that provides a promising set of tools that can be used for near real-time
analytics and fast full-text searches. It helps to glean actionable insights from almost
any type of structured and unstructured data from almost any data source and faces
the daunting task of harnessing the intended value of Big Data. Since the challenges
in Big Data technology selection are non-trivial, evaluating the applicability of the ELK
stack for different Big Data use cases seems inevitable.

The goal of this master’s thesis is to assess the applicability of the ELK stack for vari-
ous Big Data use cases. For that reason, this work aims to juxtapose the ELK stack in
opposition to related search-based data discovery tools and to crystallize out its key
features and capabilities by conducting a structured literature review and a descriptive
study. Within the scope of four experiments, the ELK stack is implemented and its per-
formance is assessed by various performance benchmarks. Based on the results of the
experiments, distinct characteristics of the ELK stack are elicited. These characteristics
indicate strengths and weaknesses of the ELK stack and provide guidance for better
decision making in Big Data technology adoption.
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1. Introduction

This chapter describes the motivation for the thesis by revealing the emerging Big Data
phenomenon and the necessity of evaluating the Elasticsearch, Logstash, and Kibana
(ELK) stack as a search-based data discovery tool for Big Data use cases (see Section 1.1).
Following this, the objectives and the corresponding research questions of the thesis
are highlighted in Section 1.2. The succeeding Section 1.3 delineates the underlying
research approach of the thesis.

1.1. Introduction

Many of the most extraordinary inventions throughout human history, from natural
languages to modern computer systems, were those that facilitated people to better
generate, gather, and consume data and information. In the recent years, the world has
witnessed explosive growth of data. This Big Data has obtained critical mass in every
domain, and the brisk development and diffusion of digital information technologies
have intensified its rise. With the passage of time, Big Data may become a new kind of
corporate asset that will cut across business units, representing a key basis for compet-
itive edge. Companies have to perceive this phenomenon by excogitating Big Data’s
potential and threats [74]. Big Data may improve the productivity and competitiveness
of companies and create huge benefits for consumers. For instance, by the creative and
effective utilization of Big Data for improving efficiency and quality, the potential value
of the U.S. medical sector gained through data may exceed $300 billion; retailers that
fully use Big Data may enhance their profit by more than 60% [16]. Today, data has
become a vital factor of production that can be compared with intrinsic assets and hu-
man capital. As multimedia, social media, and IoT are growing, companies will collect
more information, leading to an exponential growth of data volume [74]. [79] estimates
that there will be 26 billion connected devices communicating together to create the IoT
by 2020. While the amount of large datasets is rigorously ascending, it also gives rise
to many challenging problems demanding prompt solutions, e.g., collecting and inte-
grating massive data from various distributed data sources, surpassing the capacities
of IT architectures and infrastructure of existing enterprises in terms of data volume, or
providing findings in real-time. This swiftly growing data causes a problem of storing
and managing huge heterogeneous datasets with moderate requirements on hardware
and software infrastructures [74]. In consideration of the aforementioned challenges,
the ability to process and analyze this data and to extract insight of knowledge that
enables intelligent services is a critical capability. The 5 V’s: volume, velocity, variety,
veracity, and value are often used to describe the requirements of Big Data applications
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and the characteristics of Big Data [73].

Volume: The word ”Big” in Big Data itself defines the volume. Automotive industry
sources estimates that more than 480 TB of data was collected by every automotive
manufacturer in 2013. It is expected that this size will increase to 11.1 PB per year in
2020 [55]. This amount of data is difficult to be handled using existing traditional sys-
tems, since it requires distributed and parallel processing that most traditional DBMS
were not designed for. Velocity: Data is created at an increasing speed. Velocity re-
quires real-time processing of raw fast data to facilitate real-time decision making and
risk management. This characteristic is limited to the speed at which the data flows.
For instance, data from sensor devices is constantly moving to the database store and
this amount is not small enough. Traditional systems are not sufficiently capable of
performing the analytics on the data which are constantly in motion. Variety: Het-
erogeneous data — structured, semi-structured, and unstructured — comes in from
various sources and not only includes the traditional data but also the semi-structured
data from various resources like web pages, log files, social media, documents, and
sensor devices. All this data is totally different and is difficult to handle by existing tra-
ditional analytic systems. Veracity: Due to increasing amount of data and various data
sources, the probability of inconsistency and abnormality in the data is growing. Thus,
the trustworthiness of the data becomes questionable, which is a major challenging fac-
tor of Big Data. Value: The value of Big Data is described as the extent to which Big
Data generates economically worthy insights and benefits through actionable insights
and business decisions. Extracting value from Big Data requires capabilities beyond
traditional data warehouse and OLAP technologies [61, 80, 15, 22, 99, 118].

The swift proliferation and development of open source and commercial Big Data tech-
nologies have added a new dimension of complexity to Big Data system development
[15]. [90] lists more than 350 tools in the Big Data ecosystem. Furthermore, [90] cat-
egorizes the plenty of Big Data tools into 21 layers, which include technologies for
distributed coordination, security & privacy, monitoring, workflow-orchestration, and
application & analytics, to name a few. Each technology has many vendors and prod-
ucts. For that reason, selecting an eligible Big Data tool for extracting meaningful and
actionable insights from data is challenging — the variety of existing tools is very large
[73]. The classification by [90] reveals that not all Big Data technologies are directly de-
signed for analyzing data. Accordingly, a preselection of the application and analytics
layer provided by [90] is an appropriate starting point for selecting Big Data and an-
alytics technologies. Search-based data discovery tools facilitate users to develop and
refine views and analyze multi-structured data using search terms to find relationships
across structured, unstructured, and semi-structured data. They also have a proprietary
data structure to store, model, and correlate structured and unstructured data minimiz-
ing reliance on predefined meta data. Additionally, search-based data discovery tools
feature a performance layer to lessen the need for aggregates and pre-calculations. Ac-
cording to [11], search-based data discovery tools raise huge expectations and promise
high benefits for organizations among Big Data and analytics technologies. [11, 96] list
some sample vendors for search-based data discovery tools, including Attivio, IBM, Or-




1.2. Objectives

acle, Splunk, and ThoughtSpot. The combination of the three open source projects Elas-
ticsearch?, Logstashz, and Kibana?, also known as the ELK stack, developed by Elastic
(formerly, Elasticsearch Inc.)?, is an outstanding alternative to commercial search-based
data discovery tools.

The ELK stack is an end-to-end stack that gleans actionable insights in near real-time
from almost any type of structured and unstructured data source. Deep search and
data analytics are performed by Elasticsearch, whereas Logstash is responsible for cen-
tralized logging, log enrichment, and parsing log files. Kibana is used to visualize data
from Elasticsearch [30, 27]. Due to the fact that the ELK stack is used by many organi-
zations for a variety of business critical functions [30], an evaluation of its applicability
for Big Data use cases seems auspicious and indispensable.

1.2. Objectives

Resulting from the aforementioned motivation in Section 1.1, this thesis aims to de-
scribe the ELK stack and to assess its applicability for Big Data use cases. With concep-
tualizing this research topic, two objectives are derived (see Figure 1.1).

1. Objective 1: aims to extract the capabilities of both individual technologies and
the corresponding ELK stack.

2. Objective 2: targets to juxtapose the capabilities of the ELK stack in opposition to
various Big Data use case experiments.

Based on the denoted objectives, two research questions are deduced:

1. Research question 1 (RQ1): What are capabilities and key features of the ELK
stack?

2. Research question 2 (RQ2): For which type of Big Data use cases is the ELK stack
applicable?

In order to assure the rigor and relevance of this thesis, a research approach is devel-
oped (see Section 1.3).

1.3. Approach

This thesis” research approach comprises two research questions, which were intro-
duced in Section 1.2, and appropriate research design methodologies for answering
them. Figure 1.2 illustrates the research approach of this thesis. Firstly, the first re-
search question, namely RQ1, is answered by using the research design methodologies

'http:/ /www.elastic.co/products/elasticsearch
*http:/ /www.elastic.co/products/logstash
*http:/ /www.elastic.co/products/kibana
*http:/ /www.elastic.co/
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Figure 1.2.: Overview of underlying research approach

literature review and descriptive study. According to [8], reviewing the existing litera-
ture relating to a topic is an essential first step and basis when undertaking a research
project. A literature review attempts to uncover relevant sources to a topic under study
and, thereby, makes a vital contribution to the relevance and rigor of research [116].
This thesis does not aim to conduct a systematic literature review, e.g., [62], since it re-
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quires considerably more effort than traditional literature review, which is sufficient for
this work. However, [116] provides a framework for literature review, which consists
of five distinct phases, namely phase I: definition of review scope, phase II: conceptual-
ization of topic, phase III: literature search, phase IV: literature analysis and synthesis,
and phase V: research agenda. This framework is used for RQ1 for identifying related
works, related technologies, and related information about the ELK stack.

By stating the key objective of this thesis and creating a conceptualization of the re-
search topic, phase I and II are accomplished. In phase III, a literature research was
conducted in terms of querying the scholarly online search catalogues: SpringerLink®,
ScienceDirect®, IEEE Xplore Digital Library”, Code4Lib Journal®, ACM Digital Library’
and Emerald Insight!? as well as on Google Scholar and the online search of the li-
brary of the Technische Universitiat Miinchen using the search term: “Elasticsearch” OR
“Logstash” OR “Kibana” OR "ELK stack”. The use of the OR operator is meaningful,
since the majority of academic works that concentrate on the whole ELK stack do not
provide much detailed information on its individual technologies. Additionally, it pre-
vents missing important contributions if one of the mentioned technologies should not
be available in the search query. Furthermore, the method of concentric circles was per-
formed on the basis of relevant sources. In total, the search resulted in 222 potentially
relevant classified information sources. Initially in phase IV, the literature was syn-
thesized by using inclusion and exclusion criteria. The inclusion criteria of identified
sources are that the source must belong either to the group of academic works, e.g.,
published paper, master’s, bachelor, or PhD thesis, or to the group of market research
application presentations. However, blog entries and advertisements were excluded for
subsequent analyses due to the limited ability to verify a non-biased view and interests
contrary to this research. This led to a total distinct number of 214 relevant informa-
tion sources. The results of the analyzed remainder literature can be found as related
work in Chapter 3, as related technologies in Chapter 4, and as related information or
key features of the ELK stack in Chapter 5. Last but not least, this thesis utilizes the
research agenda in phase V for revealing the necessity of investigating the applicability
of the ELK stack for Big Data use cases.

Based on the literature review, a descriptive study is realized for the second part of
the research question RQ1. According to [53], the purpose of a descriptive study is to
examine a phenomenon as it naturally occurs, rather than studying the impacts of the
phenomenon or intervention. Descriptive studies typically examine questions of a uni-
variate, normative, or correlative nature, e.g., describing only one variable, comparing
the variable to a particular standard, or summarizing the relationship between two or
more variables. Furthermore, descriptive studies may ask ‘'what” questions [46], e.g.,
what are capabilities and key features of the ELK stack? This research design methodology

5h’c’cp: / /link.springer.com/

®http:/ /www.sciencedirect.com/
"http:/ /ieeexplore.ieee.org/

Shttp:/ /journal.code4lib.org/
*http:/ /dl.acm.org/

http:/ /www.emeraldinsight.com/
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is appropriate for corroborating related information about the ELK stack, describing
the realization of the ELK stack in its natural environment, and comparing with related
technologies. Thus, the key capabilities and features of the ELK stack can be crystal-
lized out (see Chapter 5).

For answering research question RQ2, the research design methodology experiment is
applied. However, it is not utilized in its classical manner in which one or more vari-
ables are controlled, measured, or changed. In this thesis, this methodology aims to
demonstrate the characteristics of the object of investigation in its potential usage en-
vironment. This methodology is valuable for exploring and describing observed char-
acteristics of the ELK stack and to assess its applicability for Big Data use cases. The
conducted experiments for assessing the ELK stack’s applicability for Big Data use cases
are revealed in Chapter 6. In the following chapter, the foundations of this thesis are
presented.




Part I1.

Foundations and Related Work






2. Foundations

Section 2.1 provides a fundamental terminology of this thesis. In addition to the un-
derstanding of search-based data discovery tools, Section 2.2 presents the four types of
data analytics capability in order to establish a unified understanding, which is of big
importance for interpreting the results of the experiments in Chapter 6.

2.1. Search-Based Data Discovery Tools

The term search-based data discovery tool was originally introduced by the U.S. based IT
consultancy Gartner!!. Gartner defines search-based data discovery tools as tools that
facilitate users to develop and refine views and analyses of structured and unstructured
data applying search terms. Search-based data discovery tools have, like visualization-
driven data discovery tools, the following three attributes:

1. a proprietary data structure to store and model data collected from various
sources, which minimizes reliance on predefined business intelligence meta data,

2. a built-in performance layer using random-access-memory or indexing that di-
minishes the demand for aggregates, summaries, and pre-calculations, and

3. an intuitive user interface, enabling users to explore data without much training.

However, search-based data discovery tools differ in two aspects from visualization-
driven data discovery tools. First, search-based data discovery tools have a broader
scope than visualization-driven data discovery tools, which focus exclusively on quan-
titative data. Second, search-based data discovery tools use text search inputs and re-
sults to guide users to the required information [42]. Figure 2.1 represents the hype
cycle for business intelligence and data analytics that demonstrates the importance
of search-based data discovery tools for organizations. According to the hype cycle,
search-based discovery tools are on the rise and act as innovation triggers. They are ex-
pected to reach their plateau within two to five years of productivity, where the rapid
growth phase of their adoptions will begin. Gartner classifies search-based data discov-
ery tools as high-benefit technologies within its priority matrix for business intelligence
and data analytics. This means that search-based data discovery tools are less likely
to change an organization’s business model, but have a significant impact on the orga-
nization’s business intelligence and data analytics program. Gartner also expects that
these tools will provide high benefits during the next two to five years [96]. Also among

http:/ /www.gartner.com/
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Figure 2.1.: Hype cycle for business intelligence and data analytics 2015 [96]

Big Data technologies, search-based discovery tools are classified as highly beneficial
for organizations [11]. This is justified by their capability to analyze greater volumes
and variety of data with increased sophistication, which means that they apply to the
challenges of the Big Data era [95]. Most vendors of search-based data discovery tools
provide keyword search to initiate queries and exploration. Furthermore, some emerg-
ing vendors are offering an natural-language query interface where a user initiates a
query or asks a question in a search interface using natural language rather than spe-
cific keywords and Boolean logic. Sample Vendors of search-based data discovery tools
are Attivio, HP Autonomy, IBM, Oracle, Splunk, and ThoughtSpot, to name a few [96].
Besides commercial search-based data discovery tools, there are also open source solu-
tions available, e.g., the ELK stack.

2.2. Four Types of Data Analytics Capability

This thesis utilizes the data analytics definition provided by [56] that defines data ana-
lytics as “the scientific process of transforming data into insight for making better decisions.”
Based on this definition, data analytics is distinguished in four sub-categories: Descrip-
tive Analytics, Diagnostic Analytics, Predictive Analytics, and Prescriptive Analytics. The
first is about providing tools in order to look at the data, e.g., aggregating, querying

12



2.2. Four Types of Data Analytics Capability

and drilling down data. In particular, it includes business intelligence. Descriptive an-
alytics helps to understand what happened so far. Diagnostic analytics includes OLAP,
interactive visualization, and descriptive modeling. It helps to understand why things
happened. Predictive analytics comprises statistics, machine learning, data mining,
and predictive modeling. It helps to understand what is most likely to happen next.
The last is about making decisions or recommending actions. It includes decision/-
mathematical modeling, simulation, and optimization. Prescriptive analytics helps to
decide the implementation of next actions. The business value provided by data an-
alytics increases as the understanding of the data and the capability of data analytics
are increasing [13, 87]. Figure 2.2 provides an overview of the sub-categories of data

Descriptive Analytics
What happened?

Diagnostic Analytics
Why did it happen?
Data Decision Action
Predictive Analytics
What will happen?
Prescriptive Analytics Decision support
What should | do? Decision automation

Figure 2.2.: Four types of data analytics capability [13]

analytics.
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3. Related Work

This chapter comprises key findings of the literature review in Section 3.1, insights into
the ELK stack in research in Section 3.2, and research gaps of the related work in regard
to the underlying key objective in Section 3.3.

3.1. Key Findings of Literature Review

During the literature analysis and synthesis phase of the literature review, 214 distinct
information sources were analyzed. Table 3.1 provides an overview of the distinct lit-
erature source types. Papers represent the majority of the relevant information sources

Literature source type

Characteristic Count
Paper 133
Master’s thesis 22
Project study/Project report 18
Book 16
Presentation 13
Bachelor thesis 7
PhD thesis 4
Survey 1
Total 214

Table 3.1.: Overview of literature source type distribution

with a count of 133. Papers are followed by master’s theses with a number of 22. Fur-
thermore, 18 information sources are project studies or projects reports, 16 information
sources are books, and 13 information sources are presentations. Bachelor theses, PhD
theses, and surveys form only a small part of the relevant information sources.

Table 3.2 shows that only 23 information sources address the whole ELK stack. Further-
more, 22 information sources address all the individual components of the ELK stack
without naming the ELK stack itself, whereas 169 information sources do not mention
the ELK stack or all of its individual components. The greater part of the informa-
tion sources address Elasticsearch, totally 131 sources. Only a fractional part address
Logstash, namely 13, or Kibana with a count of 1. The results of Table 3.1 and Table 3.2
are not very surprising. Since February 2010, Elasticsearch’s first release, it has rapidly
gained popularity [91]. This fact is also true for the scientific community by considering

15



3. Related Work

Mention of the ELK stack

Characteristic Count
Yes 23
No, total 169
-No, but only Elasticsearch addressed 131
-No, but only Logstash addressed 13
-No, but only Kibana addressed 1
No, but all addressed 22
Total 214

Table 3.2.: Overview of literature source distribution in relation to the ELK stack

the amount of available papers, bachelor, master’s, and PhD theses shown in Table 3.1.
Elasticsearch, which constitutes the essential component of the ELK stack, has gained
more attention in scientific research than Logstash and Kibana combined, as shown in
Table 3.2. A plausible reason for this fact is that Elasticsearch can be used in highly
diverse use cases and can be complemented with many other technologies, which is
the reason why it is so popular. For example, [109] uses CouchDB and Elasticsearch
for querying graphical music documents. Herein, Elasticsearch indexes data stored in
CouchDB and acts primarily as a search engine for highlighting relevant music docu-
ments. Another example is provided by [121], which merges gene object documents
in MongoDB and then indexes them with Elasticsearch in order to make them search-
able. Generally, relevant books provide deep insights into the power of Elasticsearch
and its features and capabilities. Since Elasticsearch is a huge topic and its features
are multifarious, exploring it in depth would fill up several books [110]. For example,
[45] describes the features of Elasticsearch within 724 pages in depth. Other examples
are [67], [91], and [84], which characterize Elasticsearch in detail. While books focus
more on its features, in general, scientific works compare Elasticsearch’s performance
with other search engines like Xapian'? or Apache Solr'3 (hereafter Solr) and NoSQL
databases like HBase!* or MongoDB™. For example, [47] compares Elasticsearch with
Xapian and Solr and assesses its applicability for a digital library software suite. An-
other example is [2], which juxtaposes Elasticsearch in opposition with other NoSQL
databases like HBase or MongoDB and assesses its performance with the use of KPIs
like loading time of records, execution time for workloads, or overall execution times.
Scientific works also describe Elasticsearch’s functionality within a given usage sce-
nario. For instance, [115] delineates the role and functionality of Elasticsearch, which
acts here primarily as a database, within an IoT platform.

In contrast to Elasticsearch, the ELK stack is not very popular yet. This circumstance
is also reflected by the amount of available information sources, as shown in Table 3.2.

Phttp:/ /xapian.org/

Bhttp:/ /lucene.apache.org/solr/
Yhttp:/ /hbase.apache.org/
Bhttp:/ /www.mongodb.org/
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3.2. ELK Stack in Research

Out of 16 books, only [17] describes the ELK stack in depth. Additionally, there are
only in total 23 information sources which addresses the whole ELK stack. Primarily,
scientific works describe the distinct components of the ELK stack and illustrate the
applicability of the ELK stack for log analysis and log monitoring use cases. For exam-
ple, [52] describes how big log files, created by a PostgreSQL!® server, can be analyzed
by the ELK stack in near real-time. One more example provides [113], which uses the
ELK stack for collecting and reporting technical security metrics. These two papers also
show that the denotation "ELK stack” do not have to be necessarily mentioned, despite
the fact that all its components are described.

Last but not least, Table 3.3 depicts the information source’s level of detail of describing
the ELK stack or its components. Only 28 information sources elaborated the exami-
nation object in detail. The majority of the information sources are too superficial, e.g.,
[44], [59], or [75], which are therefore not utilizable for the descriptive study.

Information source level of detail
Characteristic Count

Detailed 28
More detailed 36
Not detailed 150
Total 214

Table 3.3.: Overview of information source distribution in relation to level of detail

3.2. ELK Stack in Research

In this section, related scientific works on the ELK stack and its implementations are
presented:

¢ [64] uses the ELK stack within the context of cyber attack detection. Herein,
Logstash automatically reads log files of iptables, Suricatal’, and syslog. After-
wards, it ships them to Elasticsearch. Elasticsearch stores and indexes the parsed
log files. Kibana visualizes information from iptables, Suricata, and syslog events
given by Elasticsearch. Thus, the ELK stack provides valuable information from
captured cyber attack data.

¢ [5] utilizes the ELK stack for collecting and searching logs created by a distributed
hierarchical storage management system. Messages are sent from the source
nodes of this system to the Logstash-forwarder!8. The Logstash-forwarder trans-
ports the log events to Logstash, which are then processed and tokenized. In a

http:/ /www.postgresql.org/

Yhttp:/ /suricata-ids.org/

'®The Logstash-forwarder is a lightweight client and server, which is responsible for sending messages to
Logstash over the network [111].
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next step the log events are forwarded to Elasticsearch. Kibana’s custom dash-
boards are used for visualizing volume of messages of the system for a given
time frame, displaying number of client connections, or presenting the average
wait time for requests.

[125] takes advantage of the ELK stack for monitoring and analyzing EZproxy'?
logs in near real-time. In this setup, the Logstash-forwarder works with an
EZproxy server and monitors any changes of log files on the server. Subsequently,
it sends new log entries to the monitoring server. On the monitoring server,
Logstash listens for new log events from the Logstash-forwarder. New log events
are then sent by Logstash to Elasticsearch. Kibana is used to visualize the indexed
logs and presents them to server administrators.

[6] operates the ELK stack as a monitoring system for inspecting site activities
both in terms of IaaS and applications running on hosted virtual instances. Ac-
counting information of IaaS and applications are stored in MySQL?® databases.
Logstash listens to the MySQL databases for new accounting information which
are sent afterwards to Elasticsearch for indexing. Kibana dashboards with pre-
defined queries are created for monitoring relevant accounting information, e.g.,
displaying queries per user, showing the number of workers requested by each
user, or presenting CPU efficiency.

3.3. Limitations of Related Work

The synthesized information sources provide a stable foundation for accomplishing the
descriptive study of the ELK stack. Consequently, the key features and capabilities of
the ELK stack and its individual technologies can be deduced. On the one hand, books
provide deep insights into the prowess of the ELK stack, whereas on the other hand,
scientific works contain in fact less detailed information about its features but in turn
illustrate highly diverse use cases of the ELK stack.

However, the literature synthesis has revealed the following limitations:

¢ None of the analyzed scientific works highlighted explicitly the key features of the

ELK stack adequately. In general, scientific works either provide too superficial
information about the ELK stack or include more detailed information about Elas-
ticsearch without addressing the remaining components of the ELK stack prop-
erly. This limitation hampers of gaining a holistic view of the capabilities of the
ELK stack.

Present scientific works also neglect of investigating the applicability of the ELK
stack for varying kinds of Big Data use cases. Mostly, the ELK stack is imple-
mented within a given use case without making inferences and assessing its ap-

Yhttp:/ /www.oclc.org/ezproxy.en.html/
Dhttp:/ /www.mysql.com/
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plicability for other types of use cases. Thus, additional detail and guidance for
selecting the ELK stack for a given type of Big Data use case is missing.

These enumerated limitations unveil a research gap and corroborate the need for this
thesis, revealing the key features of the ELK stack on a holistic view and assessing its
applicability for Big Data use cases.
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4. Related Technologies

During the literature synthesis process, several related technologies for Elasticsearch
has been identified. For example, Solr is mentioned a few times as a related competitor
search engine to Elasticsearch, e.g., in [44], [117], and [40]. Lucidworks?! provides an
open source end-to-end solution, similar to the ELK stack, which is called Solr integrated
with Logstash and Kibana®, or shortly SiLK. Besides Solr and the SiLK stack, Splunk® is
also mentioned as a commercial rival with its Splunk Enterprise?* (hereafter Splunk)
solution to the ELK stack, e.g., in [57] or [103]. DB—Engine525, which is an initiative for
collecting and presenting information on DBMS, provides a ranking that ranks DBMS
according to their popularity. Particularly, it also provides an exclusive ranking for
search engines. Table 4.1 provides an excerpt of the ranking with the five most popular
search engines. As Table 4.1 shows, Elasticsearch has surged in January 2016 to be the

1. 2 2. Elasticsearch 77.21 +0.65

2. 1 1. Solr 75.39 -3.75 -1.35
3. 3 3. Splunk 43.12 -0.74 +10.05
4. 4 5. MarkLogic 9.92 -0.44 +0.89
5. 5 4. Sphinx 8.98 -0.02 -1.16

Table 4.1.: Ranking of the five most popular search engines [19]

most popular search engine, followed by Solr, Splunk, MarkLogic?®, and Sphinx?’. The
calculation of the popularity ranking is based on specific parameters like the number of
mentions of the system on websites, the general interest in the system, or the relevance
in social networks (for the complete explanation of the popularity calculation, see [20]).
Besides the mention in the literature review, the aforementioned ranking reinforces the
eligibility of Solr and Splunk as related technologies for the subsequent Section 4.1 and
Section 4.2. Following, Section 4.3 juxtaposes Elasticsearch in opposition with Solr and

Zthttp:/ /lucidworks.com/

Zhttp:/ /lucidworks.com/products/silk/

Zhttp:/ /www.splunk.com/

*http:/ /www.splunk.com/en/products/en_us/splunk-enterprise.html/
Phttp:/ /db-engines.com/en/

26http: / /www.marklogic.com/

http:/ /sphinxsearch.com/
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Splunk. Last but not least, Section 4.4 compares the end-to-end solutions of the previ-
ously selected search engines.

4.1. Solr

Solr is one of the most popular open source search platforms from the Apache Lucene
(hereafter Lucene) open source project® [51]. Solr is written in Java and is built on top
of Lucene, which offers core functionality for data indexing and search [97, 47]. Solr
was initially started in 2004 at CNET, a well-known website for news and reviews on
technologies, and became in 2007 an Apache project. Since then, due to its scalable and
highly reliable nature, it has been used for many projects and world’s largest websites
like Netflix, Ticketmaster, or SourceForge [98, 51]. Internally, Solr uses a NoSQL-like
document store database system. Solr extends Lucene by providing many useful fea-
tures related to full-text search, e.g., keyword highlighting, spelling suggestions, com-
plex ranking options, geospatial search, or numeric field statistics, to name a few. Fur-
thermore, its features also include near real-time indexing, dynamic clustering, query
language extension, caching, and rich document handling [47, 51, 66]. Solr also sup-
ports distributed indexing by its SolrCloud functionality [41]. The most important key
features are elaborated in the following.

4.1.1. Key Features

¢ Advanced full-text search: Solr can be used as an internal search engine for web-
sites and applications. Due to its design, it offers more flexibility than internal
search capabilities of classic databases. It enables performing fast searches. More-
over, it gives some flexibility on terms that are useful to intercept a natural user
search. Searches can be also combined with out of the box capabilities to perform
searches over value intervals or by using geocoding functions.

* Faceted search: Solr can automatically perform faceted search over fields in order
to gain information, e.g., how many documents have a specific value for a given
tield. Faceted search is a particular type of search based on classification, which
is useful to construct some kind of faceted navigation.

* Spelling suggestions: Solr comprises components for creating autosuggestion
results using internal similarity algorithms.

* Language analysis: Solr permits configuring various types of language analysis
with the possibility to configure them specifically for a certain language [98].

¢ Highlighting: Solr supports optical highlighting of found search terms.

¢ Near real-time search: After indexing, data can be searched immediately in Solr.

Shttp:/ /lucene.apache.org/
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* Multiple client APIs: Various client APIs for different languages, e.g., Java, PHP,
or JRuby, can be used for integrating Solr with other applications.

® Scalability: With the SolrCloud, Solr can scale linearly. Herein, a new mas-
ter/slave architecture can be created for distributing data over multiple nodes.
Furthermore, SolrCloud enables flexibility with the use of the current Solr archi-
tecture [63].

4.1.2. SiLK Stack

The SiLK stack includes a custom packaging of Solr, Banana and a Solr Writer for
Logstash. It is a data analytics tool for analyzing and visualizing log data. Banana is
the name of the open source port of Kibana 3. Banana is a data visualization tool that
allows the creation of dashboards to display contents stored in Solr indices. It is com-
monly used with Logstash for log data. However, any content stored in a Solr index is
eligible for visualization in a Banana dashboard. Banana provides panels such as his-
tograms, geomaps, heatmaps, and bettermaps for analyzing data. The Solr Writer for
Logstash is an implementation of Logstash specifically designed for indexing logs or
other contents to Solr. Particularly, Logstash provides the conversion from the raw log
file format to documents that can be index by Solr. Stored and indexed data in Solr can
be queried in near real-time by data visualization tools provided by Banana. The SiLK
stack can be used for different use cases, such as for Apache weblogs or data analytics
[72, 71].

4.2. Splunk

Splunk is a log-, monitoring-, and reporting tool, which is developed using C/C++ and
Python [77, 78]. Splunk manages searches, inserts, filters, and deletes. It analyzes Big
Data that is created by machines, as well as other types of data sources [100]. The free
version of Splunk allows users to index up to 500 MB of data per day. However, the free
version is restricted in some functions, such as drawbacks on scheduling, automated
generation, and delivery of reports and dashboards, or monitoring and alerting for
individual and correlated near real-time events. The commercial version offers full
functionality and its price is not determined by the amount of users, but by the amount
of indexed data per day [77]. Splunk utilizes a role-based security model to offer flexible
and effective ways to protect all the data indexed by Splunk by controlling searches and
results in the presentation layer [100].

4.2.1. Key Features

Splunk possesses the following key features:

¢ Search: Search is the primary way users navigate data in Splunk. With Splunk’s
searching features, users are able to write searches, to retrieve events from an in-
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dex, use statistical commands for calculating metrics and creating reports, search
for specific conditions within a rolling time window, and identify patterns in data.

Reports: In Splunk, reports are saved searches and pivots. Users can run reports
on an ad hoc basis, schedule reports to run on a regular interval, or set a scheduled
report to generate alerts when the results meet particular conditions.

Dashboards: Dashboards consist of panels that cover modules such as search
boxes and data visualizations. Dashboard panels are usually connected to saved
searches or pivots. They can display the results of completed and near real-time
searches.

Alerts: Alerts are triggered when search results meet certain conditions. Users
can utilize alerts on historical and near real-time searches. Alerts can be config-
ured to trigger actions such as sending alert information to specific e-mail ad-
dresses or posting alert information to a web resource [105].

4.2.2. Use Cases

Splunk can be utilized for various types of use cases, which are enumerated below:

¢ Investigational searching: The practice of this use case usually refers to the pro-

cesses of analyzing an infrastructure or large collection of data to look for an oc-
currence of certain events or incidents. Moreover, this process can include locat-
ing information that portends the potential for an event or incident. By indexing,
Splunk allows to search and navigate through data and data sources in near real-
time. This includes, among others, logs, configurations, scripts, and almost any
kind of metric, in almost any location. Splunk’s searching capabilities comprise
functionalities such as a search bar, time range picker, and a summary of the data
previously read into and indexed by Splunk. In addition, there is a dashboard of
information that includes quick action icons, a mode selector, event statuses, and
several tabs to show various event results. With these functionalities, a user can
create searches that combine time and terms, can find errors that cross multiple
layers of an infrastructure, and can locate and track configurations changes.

Monitoring and alerting: Monitoring various applications is a typical require-
ment of any organization’s data center. The ability to monitor any infrastructure
in near real-time is fundamental to identify issues and attacks before they im-
pact customers, services, and ultimately profitability. With Splunk’s monitoring
capabilities, certain patterns, trends, and thresholds can be defined as events for
Splunk to keep an alert for. Splunk can also trigger notifications in near real-time
so that appropriate actions can be taken to follow up on an event or even avoid it
as well as avoid the downtime and the cost potentially caused by an event. Fur-
thermore, Splunk has the power to perform actions based on certain events or
conditions. These actions include activities such as sending an e-mail, running a
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4.3.

program or script, or creating an organizational support or action ticket. In ad-
dition to searching and monitoring Big Data, Splunk can be configured to alert
anyone within an organization, when an event occurs or when a search result
meets specific conditions.

Decision support analysis: Using Splunk as a near real-time decision support
system has several advantages, such as increasing productivity, improving effi-
ciency, reducing costs, or gaining operational intelligence. As a decision support
system, Splunk can be used to answer both structured and unstructured questions
based on data, permit a scheduled-control of developed processes, and possess
the ability to gather near real-time data with details of this data. Also, it does not
require data to be specifically extracted, transformed, and then (re)loaded into an
accessible model for it to get started [78].

Elasticsearch vs. Solr vs. Splunk

Table 4.2 provides an overview of the previous introduced related technologies and
Elasticsearch. As mentioned previously, Elasticsearch and Solr are search engines,
while Splunk is a complete end-to-end data analytics platform for Big Data without
the need for additional components. Nevertheless, Elasticsearch and Solr form the cen-
terpiece of their own end-to-end data analytics solutions, namely the ELK and SiLK
stacks.

The core statements of Table 4.2 are:

License: FElasticsearch and Solr are open source technologies, whereas Splunk is
commercial and chargeable.

Implementation language: Elasticsearch and Solr are both written in Java, while
the implementation language of Splunk is unknown.

Server operating systems: Elasticsearch can run on all OS with a JVM. Solr ex-
hibits the same properties, except that it also can run as a servlet in a servlet
container, such as Tomcat and Jetty. Splunk can run in Linux, OS X, Solaris, and
Windows.

Data schema: Elasticsearch is schema-free, since it provides implicit mappings.
In contrast, according to [20], Solr and Splunk share the same property, namely
that they have a data schema. However, this is not true for Splunk. The manu-
facturer homepage of Splunk promotes that Splunk is schema-less and it does not
necessarily need a definition of an upfront schema [20].

Secondary indices: All of the compared technologies have secondary indices. In
Solr and Elasticsearch, all search fields are automatically indexed.

APIs and other access methods: In order to access data in Elasticsearch, Elastic-
search provides a Java and a RESTful HTTP/JSON API, whereas Solr provides
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License open source open source commercial
Implementation Java Java
language
. All OS with . .
Server operating All OS with a JVM aJVM and a Linux, OS. X, Solaris
systems . and Windows
servlet container
Data schema schema-less yes (sche}r/::—less)
Secondary yes yes yes
indices
Java API and Java API and
aACI;Z :rrfef}tlgzrs RESTful RESTful HTTP REST
HTTP/JSON API HTTP API
NET, Erlang, Java,
Supported NET, Erl.a ng, Java, JavaScript, XML, C#, Java,
. JavaScript, Perl, :
programming JSON, Perl, JavaScript, PHP,
PHP, Python, Ruby,
languages PHP, Python, Ruby, | Python, and Ruby
and Scala
and Scala
Partitioning . . .
methods Sharding Sharding Sharding
no .
MapReduce (with Hadoop no V\;g’il_izfizﬁp
integration) &
Consistency Eventual Eventual Eventual
concepts consistency consistency consistency
Iransaction no optimistic locking no
concepts
Concurrency yes yes
Access rights for
User concepts users and roles

Table 4.2.: Properties comparison of the search engines Elasticsearch, Solr, and Splunk
[21]

a Java and RESTful HTTP APIL By contrast, Splunk only offers a HTTP RESTful
interface.

* Supported programming languages: Elasticsearch and Solr support many pro-
gramming languages, such as .NET, Erlang, Java, JavaScript, Perl, PHP, Python,
and Scala. Splunk is more limited and supports the programming languages C#,
Java, JavaScript, PHP, Python, and Ruby.
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* Partitioning methods: All of the analyzed technologies utilize the concept of
sharding for storing different data in different nodes.

* MapReduce: For optimizing its search language, Splunk makes the use of the
MapReduce model for paralleling executions, which is accomplished by a Apache
Hadoop (here after Hadoop) integration?”. According to [20], Elasticsearch and
Solr do not use the MapReduce model. However, this is not true for Elasticsearch,
because it can be integrated with Hadoop and therefore also provides an integra-
tion with MapReduce [31].

¢ Consistency concepts: All technologies guarantee eventual consistency, which
means that they informally guarantee that, if no new updates are made to a given
datum, eventually all accesses to that item will return the last updated value.

¢ Transaction concepts: Elasticsearch and Splunk do not support data-integrity af-
ter non-atomic manipulations of data, whereas Solr provides optimistic locking.

¢ Concurrency: Solr and Splunk promote concurrent manipulation of data.

¢ User concepts: In their standard configurations, Elasticsearch and Solr do not
provide users concepts for access control. However, the chargeable Shield*® plu-
gin for Elasticsearch can be used for access control. Splunk provides access rights
for users and roles for data access control [20].

4.4. ELK stack vs. SiLK stack vs. Splunk

The previously compared search engines can be integrated with other technologies in
order to build end-to-end solutions, except Splunk which already provides out of the
box data ingestion and data visualization capabilities. By collating the three attributes
of search-based data discovery tools (see Section 2.1), namely the provision of a pro-
prietary data structure to store and model data collected from various sources, the pro-
vision of a built-in performance layer, and the provision of an intuitive user interface,
one can realize that the ELK stack, SiLK stack, and Splunk provide these attributes. For
the remainder of this thesis, the end-to-end solutions are denoted as search-based data
discovery tools.

Table 4.3 provides a tabular synopsis of some important evaluation criteria based on
personal experiences during the implementation and benchmarking of the search-
based data discovery tools. By comparing the maturity of features of all three tools,
Splunk provides the most variety of features. Splunk is an established player in the Big
Data analytics market and also has existed for a few years longer than the other stacks.
Although Solr was initially started in 2004, the SiLK stack is relatively young, currently
release version 1.3. The SiLK stack uses Kibana version 3 and Logstash version 1.3.3. In

*http:/ /hadoop.apache.org/
%http:/ /www.elastic.co/products/shield
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contrast, this thesis, uses Logstash version 2.1.0, Elasticsearch version 2.1.1, and Kibana
version 4.3.0. Since the SiLK stack uses older versions of Kibana and Logstash, it pro-
vides less features than the ELK stack, e.g., ELK stack is capable of using custom map
providers or provides a server status page that gives an overview of Kibana’s actual
status. The individual technologies of the ELK stack are well documented on Elas-
tic’s homepage providing examples for real Big Data use cases and detailed elaboration
of their features. Splunk is also very well-documented whereas the SiLK stack pro-
vides only a 17 pages long documentation which is partially uncompleted. During
the implementations and benchmarks of the search-based data discovery tools, some
technical questions occurred. Some of the questions regarding Solr and the individ-
ual technologies of the ELK stack could be answered by existing Stack Overflow ques-
tions. While Splunk and the ELK stack provide exclusive discussion pages, similar to
Stack Overflow, SiLK stack does not. Unresolved questions regarding the ELK stack
were responded quickly and appropriately, whereas some technical questions regard-
ing Splunk, e.g., Splunk’s search functionalities in the command line, remain still unan-
swered. Additionally, some questions were resolved directly by some developers and
founders of the ELK stack. Since the ELK stack is an open-source project, it has a very
active community which propagates ideas and proposals for improving and extending
the ELK stack’s features. This is not true for Splunk, since it is licensed and therefore
the active community is constrained on Splunk contact persons of industry companies.
This constraint is corroborated by the hidden implementation of Splunk. Splunk is
very easy to install. It is directly ready for ingesting and analyzing data. This fact is
not valid for the ELK and SiLK stacks. In both stacks, Logstash’s configuration file has
to be configured in order to be able to ingest data from various sources. Additionally,
both stacks require Banana and Kibana configurations in terms of specifying Solr’s and
Elasticsearch’s domains and the ports.

Development status 0 - +
Documentation + - +
Product support/

. + - 0
Community
Setup complexity 0 0 +

Table 4.3.: Properties comparison of search-based data discovery tools
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The ELK stack is an integrated and complete logging platform that is built on the com-
bination of the three open-source tools Elasticsearch, Logstash, and Kibana. It tries to
address common problems in log analysis, such as the existence of non-consistent log
formats, decentralized logs, or expert knowledge requirements. The ELK stack utilizes
the open-source stack of:

¢ Elasticsearch: For deep search and data analytics.

* Logstash: For centralized logging management, which includes shipping and for-
warding of logs from multiple servers, log enrichment, and log parsing.

¢ Kibana: For powerful data visualizations.

ELK stack is currently maintained and actively supported by the company called Elastic
[17]. The application of the ELK stack supports various use cases such as free and struc-
tured search, data analytics, log and event analysis, and visual exploration via Kibana
[54]. Figure 5.1 shows a typical ELK stack data pipeline. Usually, logs from multiple

Application server #1

Logstash
(Shipper)

Application server #2 Indexer Storage and index based querying
Logstash Logstash . Kibana
(Shipper) (Indexer) FU (Visualization)

Application server #3

Logstash
(Shipper)

Figure 5.1.: Overview of ELK stack data pipeline [17]
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application servers are shipped through Logstash shippers to a central Logstash in-
dexer. Afterwards, the Logstash indexer outputs data to an Elasticsearch cluster that
are queried by Kibana to build visualizations and build dashboards over the log data
[17]. For assessing the applicability of the ELK stack for Big Data use cases, this thesis
looks at the ELK stack in its entirety. This is an important point to mention, since indi-
vidual components of the ELK stack can be combined without using the whole stack.
For instance, [12] uses Elasticsearch as an indexation server and Kibana as an output
interface with Couchbase®! as a database server for creating a social mining architec-
ture. However, in this example Logstash is not utilized. Another example is provided
by [107], which uses RabbitMQ?? and Graylog2* with Logstash for creating a central
logging system. However, Elasticsearch and Kibana are not used in this use case. In
short, such types of combinations are not considered for the remainder of this thesis.
In order to extract the key features of Elasticsearch, Logstash, and Kibana in the abun-
dance of relevant information, a methodology was created which is elaborated in Sec-
tion 5.1. Following this, the individual technologies Logstash (Section 5.2), Elastic-
search (Section 5.3), and Kibana (Section 5.4) are analyzed in depth. Key findings based
on the descriptive study can be found in Section 5.5.

5.1. Key Feature Extraction

Section 3.1 has already mentioned that information sources, which provide too superfi-
cial information about the ELK stack or its individual technologies, are not eligible for
the descriptive study. However, there are still 64 information sources remaining. Due
to reproducibility, rigor, and relevance reasons, a key feature extraction methodology
has been created. This methodology is illustrated in Figure 5.2. First of all, detailed
and more detailed information sources serve relevant raw information of Elasticsearch,
Logstash, and Kibana. In the next step, relevant contents of the information sources
are determined and are summarized by creating corresponding keywords. The key-
words are cleaned by the Text Mining Package®* (tm) in R. The data cleaning step com-
prises classical text mining functions: Lowercasing, elimination of stopwords and punc-
tuation, and stemming®. After performing text mining methods, the term frequency® of
bigrams® are calculated by using the tm Package in R. As a result, a term document
matrix is created which contains a sorted list of bigrams and their corresponding fre-
quencies. Due to the fact that some relevant information sources originate from the
same author and also mostly utilize the same information for describing the technolo-

3http:/ /www.couchbase.com/

*http:/ /www.rabbitmq.com/

Bhttp:/ / github.com/Graylog2/ graylog2-server

¥http:/ /cran.r-project.org/web /packages/tm/index.html

®The term stemming is used in information retrieval to describe the procedure for reducing inflected
words to their word stem or base [83].

%The term frequency is the standard notion of frequency in corpus-based natural language processing. It
counts the number of times that a type (term/word /ngram) appears in a corpus [122].

37 A bigram is a sequence of two adjacent elements in a string of tokens.
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Term document
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if [term] != capability y if [term] == capability

or feature or feature
Result | |
Related information Key feature
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Figure 5.2.: Overview of key feature extraction methodology

gies, e.g., [69] and [58], [10] and [9], or [119] and [120], the threshold value for the
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frequency of a bigram has to be at least three in order to be considered for the next
step. This threshold value is appropriate, since it decreases the aforementioned bias of
duplicate information, and as well as forms the lower limit of recurring information.
Subsequently, the bigram is marked as a key feature or related information dependent
on whether the bigram comprises characteristics of a technology capability/feature or
not. Within the conceptualization, firstly, related bigrams are merged. For instance, the

aii aii i

bigrams for Logstash like “filter output”, ”input filter”, ”output plugin”, ”"input output” are
joined together into the unigrams “input”, “filter”, “output”, and “plugin”. Naturally,
the merging of bigrams is performed with caution in order to prevent information loss.
Secondly, the context of the remaining bigrams are identified by using relevant contents
and created keywords of input information sources. For example, the Logstash bigrams
“output plugin”, "input plugin”, "input filter”, and "filter output” can be found within the
"event processing pipeline” context, which consists of the three plugins "input”, "filter”,
and "output”. Accordingly, the context of all key features are determined, which then
set into relation. Finally, based on the first and second conceptualization steps, visu-
alizations are generated. One important remark on the visualizations is that not all
relationships between key features are illustrated for reasons of clarity and comprehen-
sibility. For that reason, only the most important relationships are demonstrated.

Important to mention is that the ELK stack is very actively developed and strongly pro-
moted by a large community. For this reason, each new release may cause big changes
in the capabilities, features, and performance. For instance, as a result of the key feature
extraction, river plugins are identified as key features of Elasticsearch. However, in the
current Elasticsearch version, rivers plugins are deprecated and already removed from

it.

5.2. Logstash

Logstash is a open-source® tool engine developed by the American developer Jordan
Sissel that provides an integrated framework for log collection, centralization, parsing,
and analysis of a large variety of structured and unstructured data and events gener-
ated across various systems. It has the ability to parse both multiline and single line
logs of various types, including common formats like syslog and JSON formatted logs,
as well as to parse custom logs. Logstash is relatively easy to set up in large environ-
ments and is designed to efficiently and flexibly process logs, events, and unstructured
data sources for distribution into a variety of outputs [94, 17, 111]. It can be easily cus-
tomized via plugins for input, output, and data-filters [6].

It supports:

¢ Centralized data processing: Logstash uses a data pipeline that can centralize
data processing. With the use of a collection of input and output plugins, it can
convert many different input sources to a single common format.

3 Logstash is free under the Apache 2.0 license [111].
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¢ Custom log formats: Logs generated by different applications often have certain
formats specific to the application. Logstash helps to parse and process custom
formats on a large scale. It provides support to write custom filters for tokeniza-
tion as well as ready-to-use filters.

¢ Plugin development: Custom plugins can be developed and published, and there
is a large variety of proprietary developed plugins already available [17].

Logstash is written in Ruby and runs on JRuby. Logstash is easy to deploy, because
it is a Java-based utility where a graphical user interface and embedded Elasticsearch
engine are encapsulated in a standalone jar-file that can be started directly using a JVM.
It is most commonly used to index data in Elasticsearch [52, 54]. [111] elaborates the
functionalities of Logstash in more than 220 pages. However, this thesis aims to provide
a holistic view on the key features of Logstash, wherefore some functionalities are not
described in depth.

5.2.1. Conceptualization of Logstash

Figure 5.3 illustrates the conceptualization of Logstash. In total, Logstash consists of
the three plugins “Input”, "Filter”, and ”Output”, which are used within Logstash’s
”Event processing pipeline”. ”Grok” and ”Mutate” are special kinds of ”Filter” plugins.
"Elasticsearch” is a special type of an “"Output” plugin. “Plugins” are specified within
Logstash’s configuration file. In total, Logstash has two “Host classes”, namely ”Central
server” and ”Event forwarder”. Furthermore, Logstash consists of four ”Ecosystem compo-
nents”, namely ”"Web interface”, " Broker and indexer”, ” Search and storage”, and " Shipper” .
The first three mentioned components represent “Central servers”, which belong to the
"”Central server” ”"Host class”. The ”Shipper” conforms with the ”Event forwarder”. These
key features are elaborated on in Section 5.2.2.

5.2.2. Key Features
In the following, Logstash’s key features and capabilities are elaborated:

¢ Event processing pipeline: Figure 5.4 illustrates Logstash’s three phase event
processing pipeline that deals with the collection of events from various input
sources like syslog or Twitter, parsing, among others filtering, of events, and for-
warding of the parsed events to various outputs like Elasticsearch or Cassandra®
in order to store them there [57].

* Configuration file: The logstash.conf folder contains the configuration file for
Logstash. The Logstash configuration file utilizes a custom JSON-like language
in which the inputs and the outputs have to be specified, whereas the filter part
is optional [60, 34]. Inside each component’s block, one can specify and configure
plugins [111]. Listing 5.1 illustrates its most basic form:

¥http:/ /cassandra.apache.org/
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Figure 5.4.: Overview of Logstash’s event processing pipeline [57]
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Listing 5.1: Basic form of Logstash’s configuration file

input {

}
filter {

}
output {

}

¢ Plugin: Logstash’s plugin architecture provides an easy way of extension of func-
tionalities in each phase using plugins that consist of a large scale of inputs and
outputs which can be utilized to create flexible event processing services [10, 52].

¢ Input: Input plugins are the mechanism for passing log data to Logstash [103].
The input phase collects logs and forwards the collected events to the filter phase
[52]. One advantage of Logstash is that it supports many different input plugins.
Currently, Logstash provides 49 official inputs developed by the Logstash team.
There are also many input plugins developed by the Logstash community and
released for public use [4]. Table 5.1 provides an excerpt of available official input
plugins and a short description. The full list can be found in [104]. When defining
an input, certain parameters have to be specified in Logstash’s configuration file.
Each input plugin can contain different parameters, but most inputs share a few
common parameters such as tag, source, host, port, and type. These parameters are
vital in routing, tagging, and retrieving data from hosts [88].

The file input streams events from files, normally by tailing and

file optionally reading them from the beginning.

This input plugin is created as a way to ingest data in any database

jbe with a JDBC interface into Logstash.

The lumberjack plugin receives events using the lumberjack protocol.
lumberjack | This is mainly to receive events shipped with lumberjack, now
represented primarily via the Logstash-forwarder.

This input reads events from a Kafka topic.
kafka It utilizes the high level consumer API provided by Kafka to read
messages from the broker.

stdin This plugin reads events from standard input.

twitter This input helps to ingest events from the Twitter Streaming APL

Table 5.1.: Excerpt of available input plugins [104]
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csv it as individual fields.

* Filter: Filter plugins are workhorses for processing inputs in the Logstash chain

[103]. Logstash comprises a large collection of filters which allow for flexible
recognition, filtering, parsing, and conversion of events, before they are pushed to
an output destination, e.g., Elasticsearch [52, 88]. For example, filters allow con-
verting multiline messages into single line format, filtering out events regular ex-
pressions, adding new fields to events from external queries, and accomplishing
many other advanced message manipulation tasks. They are often combined with
conditionals in order to perform a certain action on an event, if it matches partic-
ular criteria [114, 103]. Due to Logstash’s powerful event filtering and conversion
capabilities, it is used mostly as an event preprocessor for different systems, in-
cluding other log visualization systems [114]. Table 5.2 provides an excerpt of
official filter plugins with their corresponding descriptions. A full list of filters
can be found in [28].

This filter takes an event field containing CSV data, parses it, and stores

The CSV filter can also parse data with any separator, not only commas.

date

The date filter is utilized for parsing dates from fields, and then using
that date or timestamp as the Logstash timestamp for the event.

geoip

This filter adds information about the geographical location of IP
addresses.

grok | Grok is currently the best way in Logstash to parse unstructured log data

The grok filter parses arbitrary text and structures it.

into something structured and queryable.

mutate

The mutate filter allows to perform general mutations on fields, e.g.,
rename, remove, replace, and modify fields of events.

xml

The XML filter takes a field that contains XML and expands it into an
actual data structure.

Table 5.2.: Excerpt of available filter plugins [28]

* Grok: The grok filter plugin is one of the most commonly used in Logstash. While

most log management tools use regular expression language for event matching
and parsing, grok filters exert many predefined patterns that represent regular
expressions for common matching tasks. Using predefined grok patterns, inexpe-
rienced users with the regular expression language can accomplish event parsing
tasks in an easier way [114].

Mutate: The mutate filter allows performing of regular expression pattern match-
ing and replacement for general transformation of event fields [52].

* Output: After the event is passed through the filter, it moves onto the output
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phase. Output is the final phase of the Logstash’s event processing pipeline
and represents the feature how Logstash interacts with the storage subsystem
[88, 103]. The output indicates where the resulting data structure is going to be
sent [60]. An event can pass through multiple outputs during processing [103].
Again, Logstash provides a large set of output plugins. Table 5.3 provides an
overview of existing official outputs with their descriptions. A full list of output
plugins can be found in [33].

The elasticsearch plugin is the recommended method of storing

elasticsearch logs in Elasticsearch.
email This plugin sends an email when an output is received.
The kafka plugin writes events to a Kafka topic.
kafka It uses the Kafka Producer API to write messages to a topic on
the broker.

This plugin is a simple output which prints to the STDOUT of the

stdout shell running Logstash.

Table 5.3.: Excerpt of available output plugins [33]

¢ Elasticsearch: The elasticsearch plugin is one of the most commonly used output
plugins of Logstash. It enables to save the data in an efficient, convenient, and
easily queryable format, namely JSON [103]. Moreover, this output is necessary,
when Kibana should be used as web interface [26].

* Host class: In most cases there are two broad classes of Logstash hosts. The first
one is the host which runs the Logstash agent as an event shipper that forwards
application, service, and host logs to a central Logstash server. The second one
is the central Logstash host which implements a combination of components for
pre-processing and filtering of events [103, 52].

* Central server: The central Logstash server runs some combination of archiver,
indexer, search, storage, and web interface software which receive, process, and
store logs [103].

* Broker and indexer: A broker or indexer is another Logstash index which is con-
figured to parse, filter, and route logs and events. The indexer or broker then
exports parsed logs to an output destination [120].

¢ Search and storage: Elasticsearch is the search and storage in the Logstash ecosys-
tem that allows to search and store events [111].

* Web interface: Kibana represents the web interface of the Logstash ecosystem.
In order to use Kibana, it must be configured to insert events into its embedded
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Elasticsearch database. With the web interface, it is possible to carry out basic
searches from log messages in Elasticsearch [114, 111].

* Event forwarder/shipper: The Logstash-forwarder, formerly Lumberjack, is an
event forwarder, or respectively a shipper, is a Logstash instance which is config-
ured to take input from various remote sources and then ships them as events to
a central Logstash server [120, 111].

Any of these ecosystem components can be scaled by adding computing resources.
When Logstash routinely throttles incoming events, one should consider adding a mes-
sage queue. It serves as a buffer to hold ingested data and serve as failover protection.
Alternately, the Elasticsearch cluster’s rate of data consumption can be increased by
adding more Logstash indexing instances [25].

5.3. Elasticsearch

Elasticsearch is a distributed, multitenant-capable, and highly scalable open-source*’

full-text search engine that was first released by Shay Banon in 2010 [50, 54, 76, 85].
Elasticsearch is a fairly new project that is built on top of Lucene that itself is a very ma-
ture open-source Java based indexing and search technology [97, 47, 89]. Elasticsearch
is a Java search server that runs in a Java application server [47]. Although Elastic-
search is mainly used by Java applications, applications do not necessarily have to be
written in Java in order to work with it, since it can send and receive data over HTTP in
JSON to index, search, and manage the Elasticsearch cluster [52]. Elasticsearch is best
suited for the applications that are built to handle near real-time data that needs to be
processed and analyzed in a rapid manner, e.g., software analytics applications. Many
organizations worldwide, including Netflix, Facebook, GitHub, and Stack Overflow,
have adopted Elasticsearch in order to handle new demands of agile data processing
and storage. While Elasticsearch is currently mainly used by industrial organizations,
research communities are also evolving and exploring solutions such as Elasticsearch to
be able to mine modern data repositories [65]. Elasticsearch’s main focus is to provide
a fast and powerful search and explicitly addresses issues of scalability, availability, Big
Data search, and performance that relational databases were simply never designed to
support [65, 50]. Elasticsearch goes beyond free-text search and provides structured
search, hit word highlighting, aggregations, facets over the data, and more. These ca-
pabilities enable users and developers to extract valuable information from their data
regardless of the form [23, 1]. While Elasticsearch makes it possible to perform vari-
ous types of searches and aggregations, it is not suitable to provide advanced analytics
and data mining features [10]. Elasticsearch is primarily designed as a search engine,
but since Elasticsearch is also able to retrieve documents by IDs, it can also be used as
a regular non-relational document based data store rather than a database [112, 106].
Although Elasticsearch has been given functionalities to act as a data storage solution,

“0E]asticsearch is free under the Apache 2.0 License [111].
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in summary, concurrency control, lack of backup functionality, transactions, and dura-
bility seem to be some of the weaknesses of Elasticsearch as a storage solution at the
moment. This is also why Elasticsearch is in the first place still a search engine and not
a database [106, 24]. Elasticsearch is the main component of the ELK stack and provides
its storage and search engine capabilities [7, 57].

5.3.1. Conceptualization of Elasticsearch

Figure 5.5 illustrates the conceptualization of Elasticsearch. Elasticsearch’s main feature
is the provision of Search capabilities. In order to accomplish sophisticated searches,
Elasticsearch provides the two key features Query and Filter. There exist multiple types
of queries, the most important being Full-text, Term, Match, and Prefix. The Geo filter
is also one of most important features of Elasticsearch. Since Elasticsearch is built on
top of Lucene, Elasticsearch makes use of all features provided by Lucene and extends
them by providing additional features. The Query Domain Specific Language (Query
DSL) can be used in order to support the creation of advanced queries of Elasticsearch.
Elasticsearch uses the Inverted index structure for allowing fast full-text searches. An
Elasticsearch Shard, which contains the data, is an index of Lucene. There are two types
of shards, Primary and Replica. These shards are built of multiple segments which can
be optimized by the Segment merging capability. An Elasticsearch Node can contain mul-
tiple shards. There are four types of nodes, namely Tribe, Master, Data, and Routing. By
creating an Elasticsearch node, it automatically searches for other existing nodes by us-
ing the Zen discovery feature. This means that Zen discovery enables nodes to build
an cluster. The Cluster state provides actual information about the cluster. An Elastic-
search Index uses Lucene in order to index and store data in Elasticsearch. Although,
Elasticsearch is schema-free, Elasticsearch’s Mapping feature can be used in order to
define the structure of an index. An index can contain multiple Document types that
in turn can contain multiple JSON documents. In Elasticsearch, JSON documents can
be also Nested. A JSON document consists of Document fields that have special Data
types. Elasticsearch provides an Auto detection feature in order to determine automati-
cally the data type of a document field. Furthermore, Elasticsearch provides Transaction
log and Circuit breaker features for improving its performance and recoverability. An
Elasticsearch Plugin enhances the core capabilities of Elasticsearch. For communicating
with Elasticsearch, Elasticsearch’s RESTful API feature can be used. There exist multi-
ple APIs, including Bulk and Java. Finally, Elasticsearch has the Aggregation capability
which can be used in order to aggregate stored data. There exist two types of aggre-
gations, namely Metric and Bucket. Metric aggregations include Average, Unique count,
Count, Percentile, Percentile ranks, Min, Max, and Sum. Bucket aggregations comprise
Histogram, Data histogram, Range, Date range, IPv4 range, Terms, Filters, Significant terms,
and Geo. Kibana makes the use of these aggregations in order to build its visualiza-
tions. For that reason, the aggregations are elaborated in Section 5.4.2. Because Kibana
only supports a specific type of geo-aggregations, namely the Geohash aggregation and
Elasticsearch provides further geo-aggregations, Section 5.3.2 describes the additional
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ones. Furthermore, in contrast to Kibana and Logstash, some aforementioned key fea-
tures are described cohesively due to reasons of comprehensibility. These key features
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Figure 5.5.: Conceptualization of Elasticsearch

are described in Section 5.3.2.

5.3.2. Key Features

In

the following Elasticsearch’s key features and capabilities are elaborated:

* Node and Cluster: The single instance of the Elasticsearch server is called a node.
The node is responsible for storing data and helps in the indexing/searching ca-
pabilities. Elasticsearch can work as a standalone and single-search server. A
single node in Elasticsearch deployment can be sufficient for many simple use
cases. Due to reasons of fault tolerance and sufficient storage, the Elasticsearch
server can be run on many cooperating servers. These servers are called a clus-
ter that consists of one or more multiple nodes with the same cluster.name
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[67, 65,91, 45]. They are working together to share data and workload. As nodes
are added to or removed from the cluster, the cluster reorganizes itself in order
to distribute the data evenly [45]. In Elasticsearch, nodes can play four types of
roles: the master node, the data node, the routing/load balancer node, the tribe
node [91, 17, 10]. The master node acts as a supervisor of the cluster and is respon-
sible for the management of the cluster. The data node indexes documents and
performs searches on indexed documents. In order to improve the performance
or scaling out, data nodes can be added to the cluster. The routing/load balancer
node is responsible for balancing the load, routing the requests for searches, and
indexing the documents to appropriate nodes. The tribe node can join multiple
clusters and thus casts as a bridge between them [91, 17]. By default, after starting
a node in Elasticsearch, it will search for other nodes in the same network with
the same cluster.name. This mechanism is called zen discovery. It enables Elas-
ticsearch to take core of discovering nodes on the network and to bind them into
a cluster [65, 91]. The default zen discovery configuration uses multicast to find
other nodes. Herein, a node sends UDP pings across a local network to discover
nodes and other Elasticsearch nodes will receive these pings and respond, and
a cluster is formed shortly after. However, sometimes this discovery type is not
preferable, because other Elasticsearch nodes can join to the cluster by mistake.
Also, some networks do not support multicast. Due to these reasons, zen discov-
ery also provides the unicast discovery type. This method works by providing
Elasticsearch a list of nodes that it should try to contact. Once the node contacts a
member of the unicast list, it will receive a full cluster state that lists all nodes in
the cluster. Afterwards, it will then proceed to contact the master node and join.
Since unicast and multicast can operate in parallel, the multicast setting in Elastic-
search’s configuration file has to be disabled in order to use ensure that only the
unicast method is used [91, 67, 49]. Elasticsearch provides detailed information
for checking and monitoring a node or the cluster as a whole. This information
includes statistics, information about cluster, servers, nodes, indices, and shards.
This information can be accessed by the Cluster Health API [67, 45].

Shard: A shard is the physical entity that stores the data for each index. Each Elas-
ticsearch index consists of one or more shards, also called Lucene indices. Thus,
each index has a number of primary and replica shards. The shards are spread
among all the nodes in the cluster and can be moved from one node to another
in the case of node failures or the addition of new nodes to the cluster. The size
of a shard has no technical upper limit, however, there is a limit to how big a
shard can be with respect to the underlying hardware [35]. There are two types
of shards, namely primary shards and replica shards. Every document is stored
within a primary shard and by default, every index has five primary shards. This
parameter is configurable and cannot be changed after index creation. A replica
shard is a full copy of the primary shard and replica shards can be dynamically
altered, also after index creation. Replica shards are automatically promoted to
primary shards if a primary shard fails. By default, every primary shard has one
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replica shard. The number of replicas per primary shard can be changed as re-
quired. Replica shards will typically reside on a different node than the primary
shard in order to help in case of primary shard failure and for reasons of load bal-
ancing of incoming requests [17, 49, 65]. These features can be summarized as the
sharding feature of Elasticsearch. Particularly, sharding refers to the horizontal
partitioning of an Elasticsearch index by the use of shards which may in turn be
located on separate database or physical location. The advantage of this feature
is that it allows horizontal scaling of the content volume and improves the per-
formance of Elasticsearch by providing parallel operations across various shards
that are distributed on nodes [88, 48, 49]. Each primary and replica shard is built
of multiple segments (with at least one segment). Elasticsearch makes the use of
segment merging for reducing the number of segments in order to allow faster
searching and for reducing the size of the index because of removing deleted doc-
uments when the merge is finalized [91]. Figure 5.6 illustrates an example of an
Elasticsearch cluster. The cluster consists of two nodes with four primary shards
and four replica shards. As mentioned before, the replica shards usually reside
on different nodes than the primary shards, e.g., Replica shard 1, which belongs
to the Primary shard 1, resides on Node 2, whereas the primary resides on Node
1.

Elasticsearch cluster

Node 1 Node 2
1 1
1 1
Primary shard 1 : Replica shard 2 Primary shard 2 : Replica shard 1
1 1
1 1
1 1
1 1
1 1
Primary shard 3 : Replica shard 4 Primary shard 4 : Replica shard 3
1 1
1 1

Figure 5.6.: Example of an Elasticsearch cluster [108]

¢ Index: An index in Elasticsearch is the logical place where a collection of docu-

ments, which share a number of common characteristics, is stored. Due to this, an
index can be divided into smaller pieces, namely shards, and its structure is opti-
mized for fast and efficient full-text searching. A cluster can contain any number
of indices. Indices are conceptually similar to databases in traditional relational
database systems [17, 88, 123]. While Lucene has only one index, an Elasticsearch
index consists of many shards and each shard could be considered to be an Lucene
index [57]. Each index comprises multiple document types, which in turn contain
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multiple JSON documents, and each document contains multiple document fields
with an associated data type [17, 123].

* Mapping: Elasticsearch provides implicit and explicit mapping capabilities.
Mapping, or schema definition, is the process of defining how a document should
be mapped to the Elasticsearch search engine, including the definition of what
kind of fields the document can have and of which field type the fields are [85].
Mappings are quite similar to a schema in a traditional relational database sys-
tems. If the Elasticsearch server has not been handed a mapping before a docu-
ment is inserted, the server will try to infer the type of the document based on
the values in the fields of the document and add this type to the mapping, also
called implicit mapping. Types such as numbers and dates are automatically de-
tected and treated accordingly (auto detection). While implicit mapping might be
an adequate solution in some cases, the use of explicit mapping provides an op-
portunity to configure Elasticsearch types to match requirements more precisely.
By default, the Elasticsearch server indexes and analyzes all fields, but explicit
mapping allows the disabling of indexing of some fields in a document, which
reduces the amount of the disk space needed and increases the performance of
adding new documents [3, 48, 47, 65]. Setting the value of an index parameter to
not_analyzed of a document field in the explicit mapping disables the capability
of including this field into the inverted index. Consequently, on this field full-text
search cannot be performed. This is in particular of interest to numeric document
fields or to document fields where full-text search is not meaningful. Setting an
index parameter to analyzed of a document field in the explicit mapping enables
full-text search on this document field.

¢ Document type, JSON document, Document field and Data type: A document
type is utilized to provide a logical partition inside Elasticsearch indices. It repre-
sents a class of similar types of documents. A document type is like a table in tra-
ditional relational database system. A JSON document is the main entity stored in
Elasticsearch. A document equals a row of data in a table in traditional relational
database systems. All documents in Elasticsearch are schema-less. This means
that two documents of the same type can have different sets of fields [65]. Fur-
thermore, Elasticsearch offers so-called multi-tenancy which allows documents to
be divided into separate indices [47]. Every document contains key-value pairs,
which are referred as document fields. A document field is the smallest single unit
of data stored in Elasticsearch. A field is similar to a column in a traditional rela-
tion database system. Each field has a data type. Elasticsearch’s core data types
are: string, integer, long, float, double, boolean, date, and geo_point41
[17,67,101, 65]. Elasticsearch also allows to connect multiple documents together,
with a main document having multiple dependent documents (called nested doc-
uments). Nested documents are treated as individual components but are stored
together with the outer documents to improve read performance [24, 67]. Lastly,

“The geo_point data type is used for latitude and longitude values [49].
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Elasticsearch provides the versioning feature for conflict management and con-
currency control between different document versions. Every indexed document
has an associated version number in Elasticsearch, which is increased with every
update. By indicating a version number with the update, conflicting updates can
be prevented. However, old versions of documents are not accessible anymore —
such feature has to be built by the user. Due to this, it requires significantly more
work from the user in comparison to other storage solutions. This is certainly a
disadvantage of Elasticsearch as a data storage solution in scenarios where some
form of transactional support and concurrency control is important [12, 106]. Ta-
ble 5.4 juxtaposes Elasticsearch’s architectural features in opposition to the archi-
tectural features of traditional relational database systems. Figure 5.7 summa-

Index Database
Mapping Schema
Document type Table
JSON document Row
Document field Column

Table 5.4.: Elasticsearch vs. traditional relational database systems

rizes the aforementioned architectural features of Elasticsearch and depicts the
relations between the individual components.

Index Document type Document
Document Document field
type Document Name — Value
Document Document field
type Document Name —» Value
Document Document field
type Document Name — Value

Figure 5.7.: Elasticsearch’s data model [86]

* API Elasticsearch offers three ways in order to communicate with it: a RESTful

API, a Java API, and a Groovy API [97]. Since, Logstash and Kibana makes the
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use of Elasticsearch’s RESTful API [17], the other APIs are neglected. The usage of
the RESTful APl is quite simple: it expects JSON encoded parameters, and can be
accessed using HTTP. The returned results are also encoded in JSON. The REST-
ful API supports requests in order to manage the index, check the server health,
update the node, search data, and manage the cluster. Since REST is built upon
HTTP protocol, it supports all methods of HTTP like GET, PUT, POST, DELETE,
and so on. By default, Elasticsearch does not provide any authentication or au-
thorization method to its REST API [97, 101]. However, the chargeable Elastic-
search plugin Shield*? provides functionalities for encrypting communications
and a role-based access control [37]. The REST API provides the speeding up of
atomic operations with the Bulk API. It allows to make multiple create, read,
update, and delete requests of documents at once [45, 84].

* Lucene: Lucene is a high-performance, full-featured text search engine Java li-
brary that has become the standard reference for building a powerful and easy
integrable open-source search library. Lucene has to be wrapped with an interface
so that its features can be used by an application. Many such interfaces have been
built for different platforms and use cases, e.g., Solr and Elasticsearch. Lucene’s
main component is its inverted index. Herein, words in a document are stored
in a dictionary, and with each word, the documents that contain this word are
stored. By default, Lucene uses the term frequency-inverse document frequency
algorithm for calculating the relevance of a document in the context of a search
query [23, 57, 67]. Figure 5.8 depicts the functional principle of Lucene’s inverted
index. On the left-hand side, there are four documents, each with a title of a
film. The inverted index on the right-hand side consists of a list of all the unique
words that appear in any of the left documents, and for each word, a list of the
documents in which it appears. Lucene uses the analysis process for creating the
inverted index. This process includes tokenization, lowercasing, and stemming
of words. This inverted index is particular of interest, since Elasticsearch uses this
structure and therefore allows very fast full-text searches [45, 49].

¢ Search: As mentioned before, Elasticsearch provides search and analysis capa-
bilities. The search in Elasticsearch is near real-time. This means that although
documents are indexed immediately after they are successfully added to an in-
dex, they do not appear in the search results until the index is refreshed. Elas-
ticsearch does not refresh the indices after each update. Instead it makes the use
of a specified time interval, also called refresh interval, to perform this operation.
By default, the refresh interval is one second. Since refreshing is costly in terms
of disk I/0O, it can affect the indexing performance. For that reason, increasing
the refresh interval before updating a large number of documents is useful [65].
Elasticsearch provides a Search API supports GET and POST methods and enables
to search across multiple indices [23]. However, more complex searches can be

“http:/ /www.elastic.co/products/shield
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Figure 5.8.: Lucene’s inverted index [57]

accomplished by using the Query DSL which allows for using Queries and Filters
[67].

Query DSL, Query and Filter: The Query DSL is Elasticsearch’s flexible and ex-
pressive search language that exposed most of the power of Lucene through a
simple JSON interface. This language allows for complex queries and is accessible
over the REST interface [97, 49]. Although, it is denoted as a "Query” DSL, it also
contains a “Filter” DSL [45]. A search can be performed in two ways: in a form of
a query or in a form of a filter. The main difference between them is that a query
calculates a relevance score of the returned documents whereas the filter does
not. Due to this, and the fact that filter can be cached, searching via filters is faster
than via queries [65, 45]. A filter asks a yes/no question of every documents,
whereas the query also asks the question: "How well does this document match?’
In Elasticsearch, there are different types of queries, like basic queries, compound
queries, full-text search queries, and pattern queries, to name a few [49, 45]. Basic
queries allow for searching for a part of the index. Furthermore, they allow for
nesting other queries inside the basic query. Compound queries allow combining
multiple queries or filters inside them. Full-text search queries support full-text
searching, analyzing their content and providing Lucene query syntax. Last but
not least, pattern queries support various wildcards in queries. Basic queries in-
clude e.g., term, match, and indices queries. The aforementioned match query
can be also categorized to the group of full-text search queries. This also applies to
the prefix query that can be included to the group of pattern queries [49, 67, 69].
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Since Elasticsearch provides numerous queries, only queries that were identified
during the key feature extraction are described in the following in more detail:

Term: The term query allows to search for an exact word. For instance, it can
be used for situation when the whole content of the index has to be returned
in order to create aggregations [91].

Match: The match query is used when a full-text search query is required. It
takes the query’s input parameters, analyzes them, and constructs an appro-
priate output of the query. It is a high-level full-text query, meaning that this
query knows how to deal with full-text and exact-value fields [67, 49, 91].

Prefix: The prefix query allows to match documents that have the value
in a certain field and starts with a given prefix. This query is commonly
used for the autocomplete functionality where the user provides a text and
all documents are returned that have terms that start with the given text
[67,91].

A filter is used for fields that contain exact values and its goal is to reduce the
number of documents that to be examined by the request. The most important
filters are the term filter, terms filter, range filter, and the bool filter, to name a
few. Additionally, Elasticsearch provides four geo_point filters that can be used
in order to include or exclude documents by geolocations:

geo_bounding_box: This filter finds geo-points that fall within a specific
rectangle.

geo_distance: This filter finds geo-points within a specified distance of a
central point.

geo_distance_range: This filter finds geo-points within a specified mini-
mum and maximum distance from a central point.

geo_polygon: This filter finds geo-points that fall within a specified polygon
[45].

Geo-aggregations: Geo-aggregations can be used to cluster geo_point docu-
ments into manageable buckets and thus be able to provide the user information
on a map. Geo-aggregations belong to the group of bucket aggregations (see Sec-
tion 5.4.2). In total, Elasticsearch provides three geo-aggregations:

geo_distance: This aggregation groups documents into concentric circles
around a central point.

geohash_grid: This aggregation groups documents by geohash cell in order
to display them on a map. This is the only geo-aggregation which is used by
Kibana.

geo_bounds: This aggregation returns the latitude and longitude coordi-
nates of a bounding box that encompasses all of the geo-points. This ag-
gregation is especially useful for choosing the correct zoom level on a map
[45].
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¢ Circuit breaker: Elasticsearch provides circuit breakers that help prevent Elas-
ticsearch from using too much memory in certain functionalities. Elasticsearch
has a family of circuit breakers, all of which ensure that memory limits are not
exceeded:

¢ Field data circuit breaker: By default, this circuit breaker limits the size of
field data to 60% of the heap. This means that no more than 60% of heap is
allows to be used for the field data cache.

* Request circuit breaker: By default, this circuit breaker estimates the size
of structures required to complete other parts of a request, such as creating
buckets and limits them to 40% of the heap. This means that the execution
of requests are rejected if the total estimated memory used is higher than the
40% of the heap.

¢ Total circuit breaker: By default, This circuit breaker wraps the field data
and request circuit breakers in order to ensure that the combination of them
do not use more than 70% of the heap [45, 84].

* Transaction log: The transaction log records every operation in Elasticsearch as
it happens. After an Elasticsearch index failure, transaction logs are replayed
in the recovery process to make sure that none of the changes regarding to the
Elasticsearch index are lost. The creation of transaction logs and the recovery
process happen automatically [91, 45].

* Plugin: Elasticsearch provides a way to enhance its core capabilities by adding
custom function in form of plugins. Plugins include analysers, mapping types,
native scripts, and so on [102]. Well known Elasticsearch plugins are:

* Bigdesk plugin: The Bigdesk*? plugin helps to analyze the nodes across the
cluster with the help of charts and various statistics to the JVM.

* Head plugin: The Head* plugin is capable of generating statistics of the
cluster. It also browses and performs structured queries on Elasticsearch
indices.

5.4. Kibana

Kibana, which is developed by Rashid Khan, is the open-source45 front end system in
the ELK stack. It is a highly scalable and near real-time web based interface for Logstash
and Elasticsearch that allows one to efficiently search, graph, and analyze a mountain of
collected log data. Kibana is a data analysis portal that interacts with the Elasticsearch
RESTful interface to retrieve data from Elasticsearch and uses data visualization and
analysis techniques to gain a deeper insight into the information gathered by Logstash

Shttp:/ /bigdesk.org/
“http:/ /mobz.github.io/elasticsearch-head /
“Kibana is free under the Apache 2.0 License [17].
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[57,12,5,111]. Kibana is based on HTML, JavaScript, and Bootstrap. It requires a web
server, included in the Kibana 4 package, and it is fully compatible with any modern
browser. Despite the strong integration between Elasticsearch and Kibana, the latter is
not a requirement for querying the search cluster. Kibana supports time-based compar-
isons, easy creation of graphical data representations like plots, charts, and maps, flex-
ible and responsive web interface, and a powerful search syntax [64, 89, 7, 88, 52, 49].
By default, Kibana does not provide any authentication or authorization mechanism
[6]. However, the chargeable Elasticsearch plugin Shield*® provides a role-based access
control so that Kibana users have to authenticate in order to access to Elasticsearch data
[37]. [49] describes the functionalities of Kibana in more than 200 pages. However this
thesis aims to provide a holistic view on the key features of Kibana, therefore some
functionalities are not described in depth. Furthermore, in this thesis Kibana version
4.3.0 is used. It provides many more features than Kibana 3.

5.4.1. Conceptualization of Kibana

Figure 5.9 delineates the conceptualization of Kibana. Kibana has a “Web interface”.
Kibana provides two main capabilities, namely ”Aggregation” and " Visualization type”.
An ”Aggregation” consists of the two classes ”Metric” and ”Bucket”. The former consists
of the ”Average”, ” Unique count”,”Count”, ” Percentile”, ” Percentile ranks”, ”Min”, " Max",
and "Sum”. ”Bucket” aggregations comprise Histogram”, ”Date histogram”, ”Range”,
"Date range”, "IPv4 range”, "Terms”, "Filters”, ”Significant terms”, and ”Geohash”. The
" Pie chart”, ” Area chart”, ”Line chart”, " Vertical bar chart”, ”Data table”, ” Markdown wid-
get”, "Tile map”, and ”Metric” belong to the class ”Visualization type”. Hereby, the " Vi-
sualization type” ”Metric” is used to visualize a single number for various “Metric” ag-
gregations. Furthermore, Kibana provides ”"Dashboard”, " Time filter”, and ”Search bar”
capabilities. These key features are described in the following.

5.4.2. Key Features

In the following, Kibana’s key features and capabilities are elaborated on:

o Web interface: Kibana’s web interface consists of four main tabs:

* Discover: The discover page gives an overview of the data including listings
of indices, listings of fields, and showing text contained in fields. In addition,
this page allows the user to view all data stored in various indices by chang-
ing the index pattern. This page is used to perform interactive searches like
free text searches, field-based searches, and range-based searches on the in-
dexed Elasticsearch data [17, 49]. Particularly, Figure 5.10 shows that the
discover page consists of a toolbar, an index name, a field list, a histogram, a
hits counter, and document data. The toolbar comprises the search bar, and
option buttons such as new search, save search, load saved search, and set-
tings. Furthermore, search query results highlight the matching documents.

“http:/ /www.elastic.co/products/shield
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Figure 5.9.: Conceptualization of Kibana
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The time filter specifies which data of a particular time interval is contained.
The discover page also contains a histogram, which shows the distribution
of all documents matching the time filter in the selected index. The index
name shows the name of the selected index. The fields list presents all fields
within the selected index. The hits counter display the number of matching
documents in the selected time interval. Last but not least, the document
data displays all the documents along with the date in the entire field as
selected [49].
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Figure 5.10.: Kibana’s discover page

¢ Visualize: The visualize page is the most important page in Kibana 4. This
page supports the creation of a visualization based on the selection of differ-
ent visualization types or to load a saved visualization. The Visualize page
provides an overview of different types of visualization provided and how to
create a new visualization from a new search or saved search. Visualizations
can also be shared with other users who have access to the specific Kibana
instance. There are several different Visualization types, including area chart,
data table, line chart, markdown widget, metric, pie chart, tile map, and ver-
tical bar chart. The aforementioned visualizations can be saved and viewed
individually or can be utilized in multiple dashboards. All visualizations in
Kibana are using the aggregation features of Elasticsearch [17, 49]. Figure
5.11 provides an insight into the initial Visualize page which consists of two
parts. The first part deals with the creation of new visualizations. Herein,
all visualization types with their descriptions are listed. The second part
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Figure 5.11.: Kibana’s initial visualize page

enables opening already created and saved visualizations. Furthermore, it
provides an index tab for switching between the different main tabs. Figure
5.12 illustrates the visualize page after the selection and creation of a visu-
alization type. The main part of this page is the aggregation designer and
visualization canvas. The aggregation designer is displayed on the left-hand
side of the visualize page. The aggregation designer is utilized for configur-
ing metric and bucket aggregations. The builder consists of two tabs, namely
data and options. The first tab is used for specifying the metric and bucket
aggregations. The second part is used to display the various types of view
options associated with each visualization type. The preview canvas is uti-
lized for displaying a preview of the visualization which is created by using
the aggregation designer. Changes in the aggregation designer are automat-
ically propagated to the preview canvas.

Dashboard: The dashboard page represents collections of saved visualiza-
tions and searches that can be arranged in any order. Visualizations can be
used on multiple dashboards and changes on the visualization are reflected
to all of them automatically. A dashboard is used to combine different types
of created visualizations and display them on a single page. The visualiza-
tions added to the dashboard can be arranged in any way as per the user’s
requirements. The visualizations can easily be moved, resized, edited, and
removed. A dashboard can be saved and shared easily [17, 49]. Figure 5.13
shows that the dashboard page contains a dashboard canvas which consists
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Figure 5.12.: Kibana’s visualize page after creation of a visualization
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Figure 5.13.: Kibana’s dashboard page

of multiple visualizations.
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* Settings: The settings page provides various functionalities of configur-
ing index patterns, scripted fields, and saved objects followed by informa-
tion about the current Elasticsearch server status, installed plugins and the
Kibana version. The settings page contains in total four tabs, namely indices,
advanced, objects, and about.

The indices tab is the default tab that opens whenever the user starts Kibana
or clicks on the settings page. As Elasticsearch uses an index to process data,
it represents the most important component, without which the user can-
not analyze data, create visualizations, or build dashboards [49]. Figure 5.14
presents the initial indices tab when opened. On the left-hand side, it pro-
vides an overview of available index patterns. The center of the indices tab
allows configuring an index pattern. By default, an index contains time-
based events. If the data does not contain any time-based event, then the
checkbox can be unchecked in order to configure an index. While configur-
ing indices, the user can use patterns such as ». The user can also use the
date format pattern to add indices that have the event timestamp attached
to it [49]. For displaying additional properties related to an index, the in-

-
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Index Patterns i tabs
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Index contains time-based events

Use event times to create index names [DEPRECATED]

Index name or pattern

Patterns allow you to define dynamic index names using * as a wildcard. Example: logstash-*

logstash-*

configuration

Figure 5.14.: Kibana’s settings page with index pattern configuration

dex can be clicked. Figure 5.15 illustrates the indices tab after an index is
clicked. This page lists every field in the index and the field’s associated
core type as recorded by Elasticsearch. This page allows changing the core
types of fields and also enables setting the index as default index, refresh-
ing the field list of the index and removing the index pattern. The advanced
tab provides the option of editing the settings that directly control Kibana.
The settings which are listed on this page can be either undocumented, un-
supported, or experimental. Tweaking this settings can cause unexpected
behavior [49]. Figure 5.16 provides a list of advanced settings. For instance,
the discover:sampleSize can be changed in order to adjust the number of
rows to show in a table. Figure 5.17 shows the objects tab that is used to
view, edit, export, and import saved objects, such as saved searches, saved
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Figure 5.15.: Kibana’s settings page with index pattern settings
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Figure 5.16.: Kibana's settings page with advanced settings

visualizations, and saved dashboards. Figure 5.18 illustrates the Status tab.
This tab provides information about the current status of the Elasticsearch
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Figure 5.17.: Kibana’s settings page with saved objects settings

server, including the total heap size, used heap size, average response time,
max response time, and requests per seconds, to name a few. Furthermore,
this page shows installed Kibana plugins. The about tab provides details of

Server Status

Server
status

Installed
plugins

—
Status:
Heap Total (GB) Heap Used (MB) Load
1.03 970.73 3.77,2.73, 2.55
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S—
—
Installed Plugins
Name Status
‘ plugin:kibana Ready
‘ plugin:elasticsearch Kibana index ready
‘ plugin:kbn_vislib_vis_types Ready
‘ plugin:markdown_vis Ready
‘ plugin:metric_vis Ready
‘ plugin:spyModes Ready
‘ plugin:statusPage Ready
‘ plugin:table_vis Ready
S—

Figure 5.18.: Kibana’s settings page with Elasticsearch’s server status

Kibana, such as the running version, the build number, and the commit hash
(see Figure 5.19).

¢ Time filter: The time filter is a powerful component that helps to drill down on
data on a per time basis. The time filter supports seeing data of a specified range.
By default, it displays data of the last 15 minutes. The time range can be changed

by

using the time picker. After clicking on the time picker, three options for select-

ing a time filter are displayed: quick, relative, and absolute. Figure 5.20 provides

an

insight into the various time filter options. The quick time filter helps to fil-

ter data quickly on some already available time ranges like today, this week, this
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Figure 5.19.: Kibana's settings page with information about Kibana version

year, or last 5 years, and so on. The relative time filter supports to filter data based
on relative time from the current time. By default, the this filter is set to relative
with 15 minutes ago from now. The absolute time filter selects data based on a
range of dates selected for from and to a date and time. The auto-refresh setting is
used to set a refresh interval. However, the timer filter can also specified by using
click and drag on an area of a histogram or other charts [17].

¢ Search bar: The user can query Elasticsearch data by using normal text queries or
the Query DSL syntax in the search bar [88]. The Query DSL syntax can be found
in [70]. The search bar provides the following types of searches among others:

¢ Free-text searches: This search is aimed at filtering documents containing
the search term. It searches in all the documents for all the fields containing
the searched term. For instance, by specifying the search term " ELK’ in the
search bar, all documents are filtered which contain the term ELK.

* Boolean searches: Kibana provides Boolean searches, including AND, OR, and
NOT Boolean operators. Moreover, this operators can be combined together
in order to perform more sophisticated searches. For example, the Boolean
search "Learning" AND "ELK" will search for all documents that contain
both terms: "Learning" and "ELK".

* Wildcard searches: Kibana also provides single and multiple character wild-
card searches within single terms. For example, using the term "plan«"
will search for all documents that have terms, such as "plans", "plant™",
"planet", or "planting", and so on.

¢ Field searches: Field searches allow searching for specific values or ranges
of values for fields in the indexed document. Field searches are performed
by using the field name and the : character, followed by a value for the
field which should be filtered on. For instance, the search term: title
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Figure 5.20.: Kibana’s time filter settings

"Learning ELK" AND category : "technology" will search for all docu-
ments that have the title Learning ELK and the category technology.

* Range searches: Range searches aim to search for a range of values for a
field. For instance, volume : [ 100000 TO 200000] will filter all docu-
ments which have a volume range from 100,000 to 200,000.

Additionally, the performed searches can be saved or already created searches can
be loaded [17].

* Aggregation: In Kibana, aggregations are collections of data that are stored in
buckets. Aggregations have grown from Elasticsearch’s facets module. Aggre-
gations are used for generating analytical information over stored documents.
Aggregations are used for near real-time data analytics. There are different types
of aggregations, namely metric and bucket aggregations [49].

* Bucket aggregation: Inside the bucket aggregations, buckets are created to store
various documents and to group the stored documents. The specification of
which bucket contains a document is based on the value of a specific field. Buck-
ets are very similar to the GROUP BY functionality in SQL. Bucket aggregations can
be combined with other types of aggregations, creating sub-aggregations. Bucket
aggregations comprise date histogram, histogram, range, date range, IPv4 range,
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terms, filters, significant terms, and geohash [17, 49].

Histogram: The histogram bucket aggregation buckets documents for a particular
numeric interval specified in a selected numeric value field. This aggregation is
like a range aggregation with equal intervals [17, 49].

Date histogram: The date histogram is similar to histogram aggregation except
that date histogram is used for a date/time field, whereas histogram is used for a
numeric value field [49].

Range: The range bucket aggregation is used to specify an interval of range in
which each interval represents a bucket and to aggregate numeric or date/time
fields. It is like a histogram except that the range bucket aggregation allows con-
figuring different ranges as per the requirements, manually [17, 49].

Date range: The date range bucket aggregation is utilized to specify an interval of
range in date format in which each interval represents a bucket and to aggregate
date/time fields. The interval size has to be specified manually [49].

IPv4 range: The IPv4 bucket aggregation is utilized to specify an interval of range
in IP format in which each interval represents a bucket [49].

Terms: The terms bucket aggregation is utilized to create buckets based on the
values of a field. Hereby, the buckets are created dynamically. In this aggregation,
a field has to be specified that creates a bucket for all values that exist in the field
and puts in each document that has a value in this field. This aggregation is
similar to the GRoUP BY functionality in SQL [49].

Filters: The filter aggregation helps to create visualizations based on search
queries. Hereby, a filter is specified for each bucket on the basis of which of the
documents match the filter that fits into that bucket [49].

Significant terms: The significant terms aggregation is utilized in order to find
uncommonly common terms in the existing data. For instance, if a term is present
in 10 documents out of 10,000 indexed documents, but occurs in 8 documents out
of 50 documents returned from the search query, then this term is significant.
This aggregation is helpful for creating subsets of the data to detect outliers and
find anomalies. Possible use cases include finding trending topics on Twitter or
detecting credit card fraud [49].

Geohash: The geohash aggregation is utilized to create buckets based on
geo_point fields and categorizes those points into buckets [49].

Metric aggregation: The metric aggregation represents computations performed
over a number of documents. This aggregation is utilized after creating a bucket
aggregation. Subsequently, the metric aggregation is specified to calculate the
value of each bucket, so this aggregation runs on each bucket and returns a single
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value result per bucket. In visualizations, bucket aggregation usually determines
the first dimension of the chart, whereas the value calculated by the metric aggre-
gation is referred as the second dimension. Types of available metric aggregations
are average, sum, unique count, count, min, max, percentile, and percentile ranks
[17, 49].

Average: The average metric aggregation is utilized to compute the average value
of a numeric field stored in each bucket. The result for each bucket is the average
of all values in that field [49].

Unique count: The unique count metric aggregation is used to count the number
of unique values for a field stored in each bucket. The result for each bucket is the
total number of unique values for that field [49].

Count: The main purpose of the count metric aggregation is to calculate the count
of the number of fields in each bucket in a bucket aggregation [17].

Percentile: The percentile metric aggregation is utilized to compute percentiles
over numeric fields stored in buckets. Its main difference to other metric aggre-
gations is that it stores multiple values per bucket. This is the reason why it is
included to the category of multivalue metric aggregations. When specifying the
percentile metric aggregation, a numeric value field has to be specified along with
multiple percentage values. The result of this aggregation is the value for which
a certain percentage of documents is inside the value [49].

Percentile ranks: The percentile ranks metric aggregation is utilized to compute
single or multiple percentile ranks over a numeric field, which has been extracted
from documents and stored in buckets. Besides the percentile metric aggregation,
the percentile ranks metric aggregation is also categorized as multivalue metric
aggregations. This aggregation is used to present the percentage of values occur-
ring that are below a certain value [49].

Min: The min metric aggregation is utilized to compute the minimum value of a
numeric field stored in each bucket. The result for each bucket is the minimum
value for that field found in documents stored [49].

Max: The max metric aggregation is utilized to compute the maximum value of
a numeric field stored in each bucket. The result for each bucket is the maximum
value for that field found in documents stored [49].

Sum: The sum metric aggregation is utilized to compute the sum of a numeric
field stored in each bucket. The result for each bucket is the sum of all values in
that field [49].

Visualization type: There are several different visualization types, including area
chart, data table, line chart, markdown widget, metric, pie chart, tile map and
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vertical bar chart. All visualizations in Kibana are using the aggregation feature
of Elasticsearch [17, 49].

* Pie chart: Occasionally, pie charts are used to show parts of a whole or a per-
centage relationship. The relationship represents the distribution of data over
multiple slices in a pie chart. A slice of the pie chart is determined by metrics
aggregations, which can have the values count, sum, or unique count. Bucket ag-
gregation specifies the type of data that has to be represented in one chart. The
pie chart can be visualized either as a pie or as a donut [17, 49].

* Area chart: The area chart displays a line chart with filled areas below the lines. It
can be used to visualize the total contribution of several different series, which is
why it is especially useful to create stacked timelines. The areas can be displayed
as stacked, overlapped, or some other variations. It uses metrics as y-axis and
buckets for x-axis. Moreover, it enables defining sub-aggregations in buckets. It
provides the functionality of split charts*” or split area®® [17, 49, 68].

¢ Line chart: The line chart displays aggregated data in the form of lines. The lines
can be visualized on a scale of linear, logarithmic, or square root scale. The line
chart can be used to display data over a period of time like high density time
series and is often useful when comparing one series with another [17, 49, 68].

¢ Vertical bar chart: The vertical bar chart can be used for a variety of purposes and
is suited to both time-based data and non-time-based data. It can be displayed
either as stacked, percentage, or grouped. The y-axis is used for metrics, whereas
the x-axis is used for buckets [17, 49].

¢ Data table: The data table displays tables of aggregated data stored in Elastic-
search. It provides the results of raw data in tabular format and supports to iden-
tify Top-N kinds of aggregations [17, 49].

¢ Markdown widget: The markdown widget is a text entry field that is used to
display free-form information or instructions related to the dashboard and can be
utilized for any requirements for text on dashboard. The markdown widget acts
as additional information and can be used easily. Kibana renders the entered text
and visualized the result on the dashboard [17, 49].

¢ Tile map: The tile map displays a map for results which are based on a geo-
hash aggregation, which groups multiple coordinates into one bucket. The tile
map is utilized to locate geographic locations based on coordinates. It requires a
geo_point type field with latitude and longitude inputs. By default, the tile map
displays the data points in the form of circles, where the size depends upon the
selected precision. The color of the data point is signified by the actual values
calculated by a metric aggregation [17, 49, 68].

¥Split charts are multiple charts based on different aggregations [17].
Split area is a split based on different aggregations [17].
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* Metric: The metric visualization displays a single number for various metric ag-

gregations without bucket. For instance, it can be utilized to compute the total
number of hits or the sum or average of a field [17, 49, 68].

5.5. Key Findings

Based on the aforementioned key features of the ELK stack, the following key findings
are deduced:

* Scalability: The ELK stack provides several possibilities of scaling. First of all,

Logstash and Elasticsearch can be scaled by adding computing resources (vertical
scaling). Additionally, Logstash can be scaled by adding a message queue or
by adding more Logstash indexing instances. Elasticsearch can easily scale out
horizontally by adding additional Elasticsearch nodes to the existing Elasticsearch
cluster. Thus, the ELK stack is capable of vanquishing increasing data volume and
data velocity.

Support of various data sources and data formats: Walking along Logstash’s
event processing pipeline, Logstash’s various input plugins determine the ELK
stack’s support for various data sources. Currently, Logstash comprises 49 dif-
ferent input plugins which help Logstash to tap a huge amount of data sources.
Logstash’s filter plugins represent the ELK stack’s capabilities for ingesting vari-
ous data formats. At the moment, the number of Logstash’s filter plugins amount
42. However, many more different data formats are supported by using the grok
filter plugin. On the one hand, specific filter plugins, e.g., csv, xml, and elastic-
search, can be used for structured data whereas on the other hand grok can be
utilized for reading unstructured data by making the use of regular expressions
and custom/predefined patterns.

Capabilities for geospatial analyses: Geospatial analyses can be performed
in Elasticsearch by using various filters and aggregations specially geared for
document fields which have the geo_point data type. These comprise the
geo_bounding_box, geo_distance, geo_distance_range, and geo_polygon
filters, and additionally the geo_distance, geohash_grid, and geo_bounds ag-
gregations.

Lack of data protection mechanisms: By default, the ELK stack does not ship
with any security functions. This is dangerous when users have free access to
Elasticsearch via Kibana’s user interface without any authentication. Due to this
fact, stored data in Elasticsearch would be accessible for anyone in that network.
For that reason, Elastic provides the chargeable Shield plugin in order to protect
the whole ELK stack. This plugin has a 30 day trial license. At the end of the
trial period, one have to subscribe in order to access to the Elasticsearch Clus-
ter Health, Cluster Stats, and Index Stats APIs, since they will be automatically
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blocked if the new license is not installed. The Shield plugin provides an authen-
tication mechanism for Elasticsearch so that username and password have to be
provided in order to communicate with Elasticsearch, a login and session man-
agement for Kibana, which provides user authentication and session support, and
a field- and document-level security so that individual fields of documents are re-
stricted for unintended users, to name a few.

Provision of basic visualization types: The descriptive study of Kibana already
illustrated that Kibana is only capable of basic visualization types, namely pie
chart, area chart, line chart, vertical bar chart, data table, metric, tile map, and mark-
down widget. Each visualization provides customization functionalities which are
constrained. [49] demonstrates all visualization types with their possible cus-
tomized realizations. However, many other visualization types are not supported
in Kibana, e.g., radar charts, time lines, reports, matrices, layer diagrams, cluster
maps, or gauges. Also, statistical graphics are not provided by Kibana, e.g., box
plots, control charts, scatter plots, or Q-Q plots.

Limited data analytics capabilities: Based on the stated attributes of search-
based data discovery tools in Section 2.1, one can realize that the focus of search-
based data discovery tools lies on the conflation of structured and unstruc-
tured data from various sources, creation of aggregations, summaries, and pre-
calculations, and provision of an intuitive user interface for data exploration. By
contrasting the aforementioned attributes with the four types of data analytics
capabilities in Section 2.2, the data analytics capabilities of search-based data dis-
covery tools cover descriptive analytics. This is also true for the ELK stack. It
helps to drill down, query, and aggregate data with the help of bucket/metric
aggregations and Query DSL. All in all, the ELK stack facilitates exploratory and
descriptive data analytics and is not capable of performing diagnostic, predictive
and prescriptive analytics. This means that the ELK stack does not support func-
tionalities for interactive visualization, machine learning, data mining, predictive
modeling, decision modeling, simulation, and optimization.
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The increasing digitalization of business processes and models of companies broadens
the access to yet not accessible meaningful knowledge that enables intelligent services.
As the raising digital footprint of customers emerges in an outstanding number and
variety of Big Data use cases, numerous technologies and tools in the area of Big Data
ecosystem accrue [73, 43]. For the reason that technologies are not ordinarily designed
for providing all-inclusive capabilities, their applicability for the different Big Data use
cases has to be verified. In order to assess the applicability of the ELK stack for Big Data
use cases appropriately, two types of experiments are selected. Firstly, the ELK stack’s
applicability should be verified with real use cases in the form of implementation ex-
periments. This type of experiment aims to unveil qualitative characteristics of the ELK
stack and to demonstrate how it could be used for data analytics. In total, three distinct
data analytics experiments should be performed. The selection of the data analytics
experiments is based on the conducted survey of [93]. The majority of the survey re-
spondents are analyzing structured data (92%), semi-structured data (54%), e.g., XML,
complex data, e.g., hierarchical or legacy sources, event data (54%), unstructured data
(45%), and social media data (35%). Since the implementation of structured data is not
very challenging, this type of data is neglected. Unfortunately, within this thesis, there
is no access to hierarchical or legacy sources so that complex data is also neglected. The
remaining four data types are selected for the following experiments:

¢ Textual data analysis: for assessing the ELK stack’s capability for semi-structured
data (see Section 6.1).

* Machine-generated data analysis: for assessing the ELK stack’s capability for
both semi-structured data and event data (see Section 6.2).

¢ Social media data analysis: for assessing the ELK stack’s capability for both un-
structured data and social media data (see Section 6.3).

The second type of experiment targets to assess the ELK stack’s capability for Big Data
use cases quantitatively. This includes the assessment of ELK stack’s data ingestion,
data indexing, and data querying performances. Thus, three benchmarks are per-
formed within the performance benchmark analysis (see Section 6.4).

6.1. Experiment 1: Textual Data Analysis

This experiment aims to assess the ELK stack’s applicability for semi-structured textual
data. As a pioneer of this data type, one of the most prominent data file formats in the
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field of Big Data, namely CSV, is selected [124]. One major goal of this experiment is to
find out whether the ELK stack requires time-based data in order to be able to perform
analytics or not.

6.1.1. Data Basis and Data Overview

The Research Data Exchange (RDE) is a transportation data sharing system provided
by the U.S. Department of Transportation Intelligent Transportation Systems (ITS). It
promotes sharing of both archived and near real-time data from multiple sources and
multiple modes [82]. The RDE presently has connected vehicle and ITS data from 14
locations to support the analysis and development of connected vehicle applications.
The road weather demonstration data environment was created during the Integrated
Mobile Observations project demonstration during the 2014 ITS World Congress. For
public demonstration, participants were driven in a specially instrumented demo van
in a short loop on Belle Isle, Detroit, Michigan, USA. Vehicle sensor data like GPS,
wiper status, temperature, humidity, etc., were gathered for the simulated road weather
conditions. This data triggered advisories to be issued to the passengers within the van
[81]. Data collected by various sensors onboard the van during the demonstration was
compiled into a CSV file. The CSV file contains in total 572,030 sensor data entries. The
CSYV file consists of 33 attributes. The most important attributes are presented below.

* ObsTypeName: This field contains a text description for the type of observation
made in that record. For instance, observations of air temperature, air pressure,
wiper status, and traction control state.

¢ Timestamp: This field contains the UTC date and time at which the observation
was recorded at the source sensor.

¢ Latitude: This field is the latitude value of the location at which the recording
sensor recorded the observation.

* Longitude: This field is the longitude value of the location at which the recording
sensor recorded the observation.

e Observation: This field contains the recorded data value for that observation in
metric units.

e Units: This field contains the name of the metric unit for the observation.

6.1.2. Implementation of the ELK Stack
Logstash

Listing 6.1 presents the configuration file of the road weather demonstration data
pipeline.
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Listing 6.1: Configuration file for textual data analysis

input {
file {
path => "/Users/oemeruludag/Desktop/rwd.csv"

}
filter{
csv |
columns => ["SourceID", "ObsTypeID", "ObsTypeName",
"SensorID", "SensorIndex","SiteID",
"PlatformID", "Category", "ContribID",
"Contributor", "PlatformCode", "Timestamp",
"Latitude", "Longitude", "Elevation",
"Observation", "Units", "EnglishValue",
"EnglishUnits", "ConfValue", "Flag 1",
"Flag 2", "Flag 3", "Flag 4", "Flag 5",
"Flag 6", "Flag 7", "Flag 8", "Flag 9",
"Flag 10", "Flag 11", "Flag 12", "Flag 13"]
separator => ", "

}

if ([Sourceld] == "SourceId") {
drop { }

}

ruby {
code =>"

if levent[’'Latitude’].nil?
event [/ Latitude’] =
(event [ Latitude’].to_f* 100) .round / 100.00
end
if !event[’Longitude’].nil?
event [’ Longitude’] =
(event [’ Longitude’].to_fx 100) .round / 100.00

end"
}
mutate {
add_field => [ "[Location]", "%{Longitude}" ]
add_field => [ "[Location]", "%{Latitude}l" ]

}

date {
match => ["Timestamp" , "YYYY-MM-dd, HH:mm:ss"]
target => "@timestamp"

}
output {
elasticsearch {
hosts => "localhost:9200"
index => "road_weather_demonstration"
document_type => "rwd"
template => "/Users/oemeruludag/Desktop/rwd_temp.json"
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template_name => "road_weather_demonstration"
}
stdout {
codec => rubydebug
}
}

Within the input block, the input plugin file is used. It enables streaming of events
from files. However, the input plugin file requires specification of the path of the
to-be-selected file.

Within the f£ilter block, various filter plugins are utilized, namely csv, ruby, mutate,
and date. Since the road weather demonstration data is stored in the CSV format, the
csv filter plugin is very helpful due to its capability to take an event field in the CSV
format, and subsequently to parse and store it as individual fields. The columns field
enables definition of a list of column names, in the order they appear in the CSV, which
are afterwards transformed to event fields. The separator is self-explanatory, which
defines the column separator value. The drop function is required in order to delete
the header line of the data, otherwise Elasticsearch will include them into the data. For
executing Ruby code in Logstash’s configuration file, the ruby filter plugin is utilized.
It requires to specify the code parameter, which contains the Ruby code. Within this
section, the Latitude and Longitude event fields are adjusted. Particularly, in a first
step the if clause checks whether Latitude and Longitude are ni1* or not. In case
that both event fields are not nil, they are parsed with the function .to_f to the data
type float. In addition, their decimal places are rounded to two decimal places. The
reason for this conversion is that Elasticsearch requires a certain format for geolocation
fields, namely the fields have to belong to the field data type float and they have to
possess maximal two decimal places. The mutate filter is utilized in order to create a
new field Location with the add_field parameter. The Location field consists of the
fields Longitude and Latitude. The order of the specification is nontrivial because
Elasticsearch uses the first parameter as the longitude, whereas the second parameter
is used as the latitude. A wrong specification results in an erroneous geolocation. As
mentioned before, the date filter is utilized for parsing dates from fields and then using
that date or timestamp as the Logstash timestamp for the event. By default, Logstash
chooses a timestamp based on the first time it sees the event, particularly at input time.
For that reason, the originally created Timestamp event field replaces Logstash’s de-
fault setting and is utilized as the event timestamp.

The output block contains the elasticsearch and stdout output plugins. The
elasticsearch plugin is used in order to forward parsed road weather information
data to Elasticsearch, where they are stored. The hosts parameter sets the host of the
remote instance, in this case localhost with Elasticsearch’s standard communication port
number 9200. The index parameter defines to which index™ the events are written.

*nil is a special Ruby data type that means “nothing”. It's equivalent to null or none in other program-
ming languages [92].
%0 An Elasticsearch index is like a database in a relational database where data is stored [39].
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The document_type parameter specifies to which Elasticsearch document type®® the
events are written. The template®® and template_name parameters are utilized for
setting the path of the custom template and defining how the template is named inside
Elasticsearch. The used template can be found in Appendix A.1. The second output
plugin stdout with the codec => rubydebug specification outputs event data using
the ruby awesome_print library®®. Figure 6.1 illustrates an example output of an event
in the command line. The "message" field contains the raw event data followed by
parsed event fields.

Elasticsearch

The application of the ELK stack and the road weather demonstration data does not
require any specific configurations in Elasticsearch. By default, it is directly ready
to store the incoming data by Logstash. Its REST API can be used by Kibana for
data analytics and discovery. Within the ELK stack, Elasticsearch’s index is speci-
tied by Logstash’s elasticsearch output plugin. Herein, the index should be called
road_weather_demonstration. By executing the command in Listing 6.2, all available
Elasticsearch indices can be displayed.

Listing 6.2: Command for listing all Elasticsearch indices

curl ’"localhost:9200/_cat/indices?v’

Listing 6.3 provides an excerpt of Elasticsearch’s response to the aforementioned com-
mand:

Listing 6.3: List of available Elasticsearch indices

health index pri rep docs.count store.size
yellow .kibana 1 1 6 35.3kb
yellow road_weather_demonstration 1 1 572030 174 . 6mb

It illustrates that currently Elasticsearch has two indices: .kibana and

road_weather_demonstration. The first index is created automatically by Kibana
which stores saved searches, visualizations, and dashboards. The second index is
created within the data processing process. This index currently contains 572,030 doc-
uments which matches with the number of sensor entries of the road weather demon-
stration data. Additionally, Listing 6.3 shows that the road_weather_demonstration
index has one primary and one replica shard, and has a yellow health, means that
some replica shards are not yet allocated. Listing 6.4 demonstrates an example usage
of Elasticsearch’s Count API. Within this example, it used with the term auery in order
to count the number of the ObsTypeName document field with the value canspeed.

L A document type in Elasticsearch represents a class of similar documents [36].

2 An index template allows to define templates that will automatically be applied to new created indices.
Templates include both settings and mappings, and a simple pattern template [29].

Bhttp:/ / github.com/michaeldv/awesome_print/
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| BON logstash-2.1.1 — java — 82x46
{

"message" "1,2000008, canSpeed, 426987,0,9642,5710,M,26,MI_State_DOT,1
FX1EF2EKD69821,\"2014-09-10,15:15:00\",42.33691,-82.99779,471,8.986,m/s,206.1,mph
srrrrarrrrraa \I

"@version" ",
"@timestamp" '2014-09-10T19:15:00.0002",
"host" "Oemers-MacBook-Pro-2.1local",
"path" "/Users/oemeruludag/Desktop/rwd.csv",
"SourceId" ",
"0bsTypeID" ''2000008",
"0ObsTypeName" "canSpeed",
"SensorID" '426987",
"SensorIndex" "o",
"PlatformID" "9642",
"SiteID" "5710",
"Category" e
"ContribID" 126",
"Contributor" "MI_State_DOT",
"PlatformCode" "1FTFX1EF2EKD69821",
"Timestamp" "2014-09-10,15:15:00",
"Latitude" 42.34,
"Longitude" -83.0,
"Elevation" "471",
"Observation" "8.986",
"Units" "m/s",
"EnglishValue" "20.1",
"EnglishUnits" “"mph",
"ConfValue" "o",
"Flag 1" nit,
"Flag 2" nit,
"Flag 3" nit,
"Flag 4" nil,
"Flag 5" nit,
"Flag 6" nit,
"Flag 7" nit,
"Flag 8" nilt,
"Flag 9" nit,

"Flag 10" nit,

"Flag 11" nit,

"Flag 12" nilt,

"Flag 13" nit,

"Location" [
-83.0,
42.34
1
}

Figure 6.1.: Example of an event output

Listing 6.4: Example of Elasticsearch’s Count API

curl -XGET ’"localhost:9200/road_weather demonstration/rwd/_count’ -d '

{
"query" : {

"term" : { "ObsTypeName" "canspeed" }

}I

Listing 6.5 presents Elasticsearch’s count response. It shows that the
road_weather_demonstration index contains in total 572,030 documents which
have the canspeed value for the ObsTypeName document field.
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Listing 6.5: Elasticsearch’s Count API response

"count" : 572030,

" _shards" : {
"total" : 1,
"successful" : 1,
"failed" : O

}

}
Kibana

Firstly, an index pattern has to be configured in order to access to the road weather
demonstration data. Listing 6.1 shows that the index parameter of the elasticsearch
output plugin is specified with the value road_weather_demonstration. This means
that all of the processed data is stored in the road_weather_demonstration index.
Consequently, the index pattern road_weather_demonstration can be specified in
Kibana’s settings page (see Figure 6.2). Additionally, the @timestamp field is speci-
fied as the time-field name in order to filter events with the global time filter. Fig-

Indices Advanced Objects Status About

Index Patterns

% road_weather_demonstration Conflgure an IndeX pattern

In order to use Kibana you must configure at least one index pattern. Index patterns are used to identify the Elasticsearch index to run search and analytics against. They are also used to configure
fields.

Index contains time-based events

Use event times to create index names [DEPRECATED] Index pattern specification

Index name or pattern

Patterns allow you to define dynamic index names using * as a wildcard. Example: logstash-* l

[ road_weather_demonstration ]

Time-field name @ refresh fields

@timestamp

Figure 6.2.: Index pattern specification of road weather demonstration data

ure 6.3 presents the discover page for the road weather demonstration data. The rel-
ative time filter is specified as 2 years ago in order to see all processes sensor data
appropriately. The hits counter for the search character » shows that 572,030 docu-
ments are in the actual filter. This indicates that all raw sensor data from the CSV
file are successfully stored in Elasticsearch. On the left-hand side the available fields
of the road weather demonstration data is present. Figure 6.4 shows that the field
search: ObsTypeName : "canSpeed" is applied. In total 218,460 documents have the
"canSpeed" value for the ObsTypeName field. In addition, the results of the field search
are highlighted in yellow in the document data. For this example, also the click and
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Figure 6.3.: Index pattern specification of road weather demonstration data

drag function is applied on the area of the histogram. It illustrates the distribution of the
matching documents over a time period of 12 days. On the left-hand side, important
fields, including Englishvalue, EnglishUnits, @timestamp, Longitude, Latitude,
ObsTypeName, and Location are selected. This results in the creation of a data table
which provides a compact view on important fields of the data. Based on the Location
field, a tile map is created by using the visualize page. Figure 6.5 presents the tile
map configuration after the initial visualize page. Within the aggregation designer,
the count metric aggregation is selected with the geohash bucket aggregation on the
Location field. This configuration allows viewing of the geographical distribution of
sensor data. As expected, Figure 6.6 demonstrates that the demonstration configuration
was on Belle Isle, Detroit, Michigan, USA. After the creation of various visualizations,
a dashboard is created. Figure 6.7 shows that this dashboard uses the dark theme con-
figuration of Kibana. The dashboard consists of a pie chart, metric, line chart, and tile
map. The pie chart presents the distribution of different sensor observation types with
the donut setting. The metric visualization displays the actual number of documents for
the given time frame. The line chart provides an overview of the temporal distribution
of the road weather demonstration data creation. The tile map shows the geographical
distribution of the road weather demonstration data.

6.1.3. Key Findings

Based on the first experiment, the following key finding is elicited:
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* Timestamping of events: Logstash automatically creates a timestamp for each
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Figure 6.7.: Dashboard of textual data analysis

event at input time. However, Logstash also allows use of custom date fields as
the timestamp of events by providing the date filter plugin. This indicates that
Logstash is capable of assigning all events with timestamps so that Elasticsearch
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and Kibana can perform time-based analyses.

6.2. Experiment 2: Machine-Generated Data Analysis

This experiment deals with analyzing semi-structured machine-generated data from
vehicles with the ELK stack. In 2014, machine-generated data was one of the most
fundamental data sources for Big Data environments. Machine-generated data within
vehicles is the basis for real-time data analytics [43]. This data may also contain sen-
sitive information, e.g., vehicle identification number, which has to be protected. In
order to assess the capability of the ELK stack for performing real-time data analytics

and able to protect sensitive information, semi-structured machine-generated data in
the XML format is synthesized.

6.2.1. Data Basis and Data Overview
As a sample data source, randomly-generated 2.16 million events are used. Messages
each are 525 bytes in size and the events contain string values. The sample data source
is representing the following attribute fields:

¢ level: This attribute is comprised of an unvarying string value.

¢ time: This attribute has a timestamp of the event.

¢ timel: This attribute represents the UNIX timestamp of the event

¢ id: This attribute contains the unique identifier of the event.

e cat: This attribute includes an unvarying string value.

* host_org: This attribute provides information about the hostname.

¢ vin: This attribute contains the vehicle identification number.

¢ clat: This attribute represents the current latitude value of event.

¢ clon: This attribute represents the current longitude value of event.

¢ msg_txt: This attribute includes event-related information.
Some of the fields, namely timel, id, vin, clat, and clon are randomly generated as realis-

tically as possible, e.g., the range of clat and clon values are within the bounding box of
the USA, and other fields are created fixed using Python version 2.7.11.
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6.2.2. Implementation of the ELK Stack

Logstash

Listing 6.6: Configuration file for machine-generated data analysis

input {
file {
path => "/Users/oemeruludag/Desktop/xml_data/data_#*.xml"
start_position => "beginning"

}
filter {
xml |
store_xml => false
source => "message"
xpath => [
"/log/@level", "level",
"/log/@time", "time",
"/log/Q@timel", "timel",
"/log/@id", "id",
"/log/Qcat", "cat",
"/log/@host", "host_org",
"/log/@vin", "vin",
"/log/@msg", "msg",
"/log/Qclat", "clat",
"/log/@clon", "clon",
"/log/msg/@msg_txt", "msg_txt"
]
}
anonymize {
algorithm => "MD5"
fields => ["vin"]
key => "longencryptionkey"
}

mutate {
replace => [ "[clat]", "%{[clat]l}" ]
replace => [ "[clon]", "%{[clon]}" ]
}
if [clon] !'= "7 {
ruby {
code => "
if levent[’clon’].nil?
event ["clon’] = (event[’clon’].to_f % 100).round / 100.
end
}
}
if [clon] != " {

mutate {

00
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add_field => [ "[location]", "%{clon}" ]
}
}
if [clat] !'= "7 |
ruby {
code => "
if levent[’clat’].nil?
event ["clat’] = (event[’clat’].to_f * 100).round / 100.00
end
}
}
if [clat] !'= "7 {
mutate {
add_field => [ "[location]", "%{clat}" ]

}
}
}
output {
elasticsearch {
hosts => "localhost:9200"
index => "machine_generated-%${+YYYY.MM.dd}"
document_type => "mach_gen"
template => "/Users/oemeruludag/Desktop/mach_gen_template.json"
template_name => "machine_generated-x"
}
stdout {
codec => rubydebug

}

In contrast to the first experiment, the configuration of file of Logstash in Listing 6.6
uses a wildcard for the file name within the file input plugin so that all generated
files in the specified path can be ingested by Logstash. The filter block has several
important filter plugins. Firstly, the xm1 filter plugin uses XPath expressions in or-
der to retrieve the values of the specified fields. However, relying only on XPath can
be critical for log files which are highly variable since the XPath specifications have
to be predefined. The sole usage of the xm1 filter plugin is suitable for flat XML log
files, but deficient for multiple varying hierarchical log files. For that reason, it should
be used in combination with the multiline filter plugin in order to collapse multi-
line events and merge them into a single event and the ruby filter plugin for using
loops and conditions. The anonymi ze filter plugin helps to hash the sensitive informa-
tion of the vin field with MD5 algorithm. Logstash provides further algorithms such
as SHA1, SHA256, SHA384, SHA512, and MURMURS for protecting sensitive infor-
mation. If necessary, custom algorithms can be developed which can be used within
the anonymize filter plugin. As in the first experiment, the longitude, clon, and lati-
tude, clat, have to be adjusted so that Elasticsearch is able to use them as geolocation
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parameters. In opposition to the first experiment, the index specification within the
elasticsearch output plugin uses an index pattern with a timestamp pattern. With
this setting, for each day a new Elasticsearch index can be created. This is especially
important for daily machine-generated data, since in Elasticsearch unnecessary data in
a particular daily index can be deleted without deleting the whole Elasticsearch index.
In other words, older data can be deleted without deleting the whole data. Logstash
also supports the creation of index on yearly, monthly, and hourly basis, to name a
few. Lastly, the template_name specification also uses a pattern, since the configured
Elasticsearch template should not be only relevant for one index but also for all similar
indices. The utilized template can be found in Appendix A.2.

Elasticsearch

As in the first experiment, the application of the ELK stack does not require any spe-
cific configurations in Elasticsearch. With the specifications in the configuration file of
Logstash (see Listing 6.6), Elasticsearch stores the incoming events of Logstash in the
JSON format. By executing the indices command, the same as in Listing 6.2, all avail-
able present Elasticsearch indices can be displayed. Listing 6.7 provides an excerpt of
Elasticsearch’s response to the indices command:

Listing 6.7: List of available Elasticsearch indices

health index pri rep docs.count store.size
yellow .kibana 1 1 13 58.3kb

yellow machine_generated-2016.04.09 1 1 2160000 1.6g9b

It illustrates that currently Elasticsearch has two indices:  .kibana and

machine_generated-2016.04.09. The first index is created automatically by
Kibana which stores saved searches, visualizations, and dashboards. The second index
is created by Logstash. This index currently contains 2,160,000 documents which
matches with the number of events generated by the Python script. The latter index
name also shows that the index was created on the 9" of April, 2016.

Kibana

In order to be able to analyze the machine-generated in Kibana, an index pat-
tern has to be defined. Figure 6.8 presents the definition of the index pattern
machine_generated-«. The asterisk within the index pattern implies that all indices
which are created on the daily basis (see Listing 6.6) should be selected. This enables
aggregation and analysis of data across multiple indices. Figure 6.9 illustrates Kibana’s
click and drag functionality which can be done easily by hovering the cursor anywhere
over the histogram. In this figure, the cursor was dragged to select a specific time in-
terval, namely from 5 minutes to 30 seconds. Thus, the time interval specified has been
changed in the time filter, which is in the top-right corner, and the data in the data table
is changed as per the time range interval specified. Within Kibana, machine-generated
data can be queried while data is collected by Logstash and indexed by Elasticsearch.
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Figure 6.8.: Index pattern specification of machine-generated data

Figure 6.10 shows that the field search vin: Fx is applied. This is a wildcard search
which results in the selection of all documents, containing vins beginning with the “F”
expression. Automatically, the corresponding field in the data table is highlighted in
yellow. The two dots on the right upper corner in Figure 6.10 indicates that Kibana’s
discover page is currently reloading new indexed data. Besides the dots, the 5 seconds
implies Kibana’s selected refresh interval. In other words, every 5 seconds, Kibana is
rendered with new indexed data. By comparing the first screenshot with the second one
in Figure 6.10, one can see that Kibana automatically applies the previously specified
wildcard search and displays the resulting data. Moreover, the hits number is reloaded
which represents the matching documents for the specified search in the selected time
interval. In Listing 6.6, the MD5 algorithm was used in the anonymize filter plugin
for the vin field. Figure 6.11 illustrates that Kibana displays the hashed values for this
tield successfully. The ELK stack also supports data traceability by unique persistent
identifiers (see Figure 6.12). The _id field in Figure 6.12 represents the document’s
unique id which is automatically created by Elasticsearch whereas id field conforms
with the primarily unique identifier of the ingested event by Logstash. Besides the
creation of visualizations, Kibana also allows exporting underlying aggregated data
of visualizations. Kibana provides the export functionality that allows to download
the data as a raw or formatted CSV file. Moreover, Figure 6.13 demonstrates Kibana’s
visualization-related information. These include the data table, the aggregation request
from Kibana to Elasticsearch, the corresponding response provided by Elasticsearch,
and some statistics related to the execution of the request. Figure 6.14 shows the cre-
ated dashboard for the machine-generated data. The dashboard consists of a vertical
bar chart, metric, and an area chart. The vertical bar chart presents the time distribution
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Figure 6.9.: Click and drag functionality for drilling down data

of current latitudes. It categorizes the latitude values in buckets with the size of 2. It
shows that the distribution of the generated latitude values are almost constant over
time. The metric visualization displays the total number of documents, the average
and the upper/lower standard deviation values for the current latitudes and longi-
tudes, and the unique count of the unique vehicles for the given time frame. The area
chart provides an overview of the temporal distribution of the machine-generated data.
As mentioned in Section 6.2, one of the main goals of this experiment is to assess the
capability of the ELK stack for performing real-time data analytics. In order to evaluate
this, Logstash’s timestamp for events at input time and Kibana’s timestamp®* for events
visibility are juxtaposed in opposition. Table 6.1 displays the observed timestamps of
the comparison. By calculating the difference between those, one can determine how
long the whole ELK stack needs for data filtering, indexing, and visualization. For this

**Since Kibana does not provide an automatically created timestamp when it sees for the first time a new
event, a manually generated timestamp is used.
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Figure 6.10.: Querying data while data is collected and indexed

setting, the ELK stack needs on average 6.607 seconds in order to make an processed
event accessible. This delay is for the most part affected by Kibana'’s refresh interval
which makes up at least 5 seconds. However, this delay increases when data filtering
operations in Logstash become more complex or when the events are located on remote
servers and therefore e.g., the Logstash-forwarder has to be used. Independently from
Logstash’s and Elasticsearch data ingest and indexing performance, indexed data is
never be directly accessible for search and analytics since the Elasticsearch index has to
be refreshed in order to make data accessible. Due to this reason, the denotation “near
real-time data analytics” seems to be more appropriate than “real-time data analytics”
since indexed data is not instantly accessible in the ELK stack.

6.2.3. Key Findings

Based on the machine-generated data analysis experiment, the following key findings
are deduced:
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Figure 6.12.: Data traceability

High data variability may cause data parse failures: The solely usage of

Logstash’s xm1 filter plugin seems to be insufficient for highly-variable and multi-
ple hierarchical XML data since the usage of XPath alone is not capable of retriev-
ing fields which have inconstant positions. With the utilization of the multiline
and ruby filter plugins, Logstash becomes capable of handling this type of data
in some degree. However, programming languages such as Python provide more
appropriate library functions for parsing this type of XML data.

Data anonymization capabilities: Logstash provides an anonymize filter plugin

in order to protect and hash sensitive information of fields by providing various
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Figure 6.14.: Dashboard of machine-generated data analysis

selection of hashing algorithms. Kibana automatically displays the hashed sensi-
tive information.

¢ Data traceability capabilities: The ELK stack supports data traceability by using
originally created unique identifiers of events or by generating unique identifiers

for newly created Elasticsearch documents.

¢ Simultaneous indexing and querying of events: While data is ingested by
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1 00:15:54.230 00:16:04.000 00:00:09.770
2 00:16:04.999 00:16:12.000 00:00:07.001
3 00:16:13.757 00:16:20.000 00:00:06.243
4 00:16:22.832 00:16:28.000 00:00:05.168
5 00:16:31.145 00:16:36.000 00:00:04.855
Average - - 00:00:06:607

Table 6.1.: Illustration of data accessibility delay

Logstash and is indexed by Elasticsearch, various searches can be executed in
Kibana which directly provide adjusted results for new indexed data.

* Automatic update of web interface: While machine-generated data is ingested
by Logstash and indexed by Elasticsearch, Kibana automatically refreshes search
results and visualizations with the help of the Auto-refresh functionality by se-
lecting a refresh interval option.

¢ Fractional amount of supported output formats: Kibana provides only raw and
formatted CSV files as output formats for underlying aggregated data of visual-
ization which can be used as data input for further analyses.

¢ Near real-time data analytics: The ELK stack is capable of near real-time data an-
alytics since it needs time in order to filter, index, and visualize data. Regardless of
this data accessibility delay, data is never directly accessible in Kibana since Elas-
ticsearch’s index has to be refreshed in order to make data accessible for search
and analysis.

6.3. Experiment 3: Social Media Data Analysis

This experiment deals with analyzing unstructured social media data from Twitter with
the ELK stack. The value of social media can be used for many cases which has a great
impact on the effectiveness of the business and its strategies. This analysis can be per-
formed for a wide range of activities, such as marketing, brand building and manage-
ment, and customer focus, to name a few. For instance, automotive Companies can track
the heartbeat of the automobile market, e.g., whenever they launch a new model or a
new design. By making use of this power, companies can make changes on their mar-
keting strategies or help the customers for a better relationship management. Also, this
would be useful for a company to monitor their marketing campaigns [43, 49]. In order
to assess the capability of the ELK stack for analyzing social media data, unstructured
Twitter data is utilized. In order to create a meaningful context, tweets containing the
following key words: “Big Data”, “Elasticsearch”, “Logstash”, “Kibana”, “Elastic”, and
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"ELK stack” should be analyzed.
In this experiment, the ELK stack should answer the following questions:

How many times have the predefined key words been tweeted about in a time
interval?

Which are the top languages in which people tweet about the predefined key
words?

Which are the different geographical locations from where people are tweeting
about the predefined key words?

From which devices are people mostly tweeting about the predefined key words?

From which countries, using different devices, are people tweeting about the pre-
defined key words?

What are the top retweeted user screen names related to the predefined key words
tweeting from different devices?

What are the top user screen names tweeting about the predefined key words?

What are the most popular hashtags related to the predefined key words?

6.3.1. Data Basis and Data Overview

Unlike the previous experiments, the total size of the social media data and the num-
ber of fields are not predetermined. The first experiment has a total number of 33 fields
whereas this experiment has more than 800 distinct fields which are continuously grow-
ing. This increase is affected by Elasticsearch. In other words, whenever Elasticsearch
detects an unknown field which is not yet in Elasticsearch’s data schema, it adds the
new field into it. Some important attribute fields include:

@timestamp: This attribute represents the formatted creation date of the tweet.

coordinates: This attribute contains the latitude and longitudes values of the
tweet location.

lang: This attribute provides information about the used language for the tweet.

user.location: This attribute contains information about the user’s specified loca-
tion.

user.name: This attribute represents the Twitter user name.
text: This attribute equals the tweet message.

place.country_code: This attribute represents the double-digit country code.
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¢ retweeted_status.user.screen_name: This attribute indicates that the tweet was
retweeted and included the user screen name in the tweet.

¢ entities.hashtags.text: This attribute corresponds to the keywords entered in the
Logstash configuration file.

6.3.2. Implementation of the ELK Stack

Logstash

Listing 6.8: Configuration file for social media data analysis

input {
twitter {
consumer_key => "XXXXXXXXXXXXXXXX"
consumer_secret => "XXXXXXXXXXXXXXXX"
ocoauth_token => "XXXXXXXXXXXXXXXX"
ocoauth_token_secret => "XXXXXXXXXXXXXXXX"
keywords => [ "Big Data", "Elasticsearch", "Logstash",
"Kibana", "Elastic", "ELK stack" ]
full _tweet => true

}
output {
elasticsearch {

hosts => "localhost:9200"
index => "social_media-%{+YYYY.MM.dd}"
document_type => "sm"
template => "/Users/oemeruludag/Desktop/twitter_template.json"
template_name => "social _media-*"

}
stdout {
codec => rubydebug

}

In order to be able to fetch tweets from Twitter, a Twitter developer account has to
be created. During the creation process, Twitter provides the required values for
the consumer_key, consumer_secret, oauth_token, and oauth_token_secret
specifications within the twitter input plugin. Due to reasons of security, the original
values are hidden here. Following these, the keywords field accepts the aforemen-
tioned keywords within an array. For storing whole tweets, the full_tweet field
has to be set to true. Setting it to false would specify Logstash to fetch tweets with
limited fields. In this experiment, filter plugins are not specified since Logstash
parses the incoming Twitter into JSON. Since the incoming data should be stored in
Elasticsearch, the elasticsearch output plugin is utilized. Within this output plugin,
the social_media-* template is used, which can be found in Appendix A.3.
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Elasticsearch

This experiment does also not require any specific configurations in Elasticsearch as in
the previous experiments. By executing the indices command, the same as in Listing
6.2, all available present Elasticsearch indices can be displayed. Listing 6.9 provides an
excerpt of Elasticsearch’s response to the indices command:

Listing 6.9: List of available Elasticsearch indices

health index pri rep docs.count store.size
yellow social_media-2016.04.11 1 1 2684 13.6mb
yellow .kibana 1 1 15 143kb
yellow social_media-2016.04.10 1 1 872 3.7mb

It illustrates that currently Elasticsearch has three indices: social_media-2016.04.11,
.kibana, and social_media-2016.04.10. Both social media indices are created dur-
ing the Twitter analysis. Since in Logstash, the index pattern on a daily basis is selected,
Elasticsearch automatically created for both days new indices. In total, 3,556 tweets
are stored in Elasticsearch with a total size of 17.3 MB. As Logstash continues to run,
the number of documents is increasing since new Tweets are fetched continuously by
Logstash and stored in Elasticsearch.

Kibana

Figure 6.15 provides an excerpt of the previously mentioned fields. Since Elasticsearch
is schema-free, it automatically detects appropriate data types for fields and analyzes
them in order to make them available for full-text searches. In order to answer all of
the aforementioned questions in Section 6.3, two dashboards with appropriate visual-
izations are created. Figure 6.16 demonstrates the first dashboard. The line chart on the
top left corner helps to find out how many tweets are being tweeted over the last 12
hours for the key words “Big Data”, ”Elasticsearch”, “Logstash”, “Kibana”, ”Elastic”,
and "ELK stack”. The vertical bar chart on the top right corner provides the necessary
information in order to find out how many people are tweeting in different languages.
With the help of the area chart on the left, one can find out the number of people who
are tweeting in various languages using any Android, Web, iPhone, or iPad devices
over the last 12 hours. The vertical bar chart on the right visualizes the number of
people who are tweeting from various countries using any of Android, Web, iPhone,
and iPad devices. The line chart at the bottom helps to find out what the most popu-
lar retweeted user names are for the predefined key words. Figure 6.17 illustrates the
second dashboard. The vertical bar chart on the top left corner helps to find out the
most popular hashtags related to the predefined key words over the last 12 hours on
an hourly basis. With the help of the vertical bar chart on the top right corner, one
can compute the number of people who are tweeting from different geographical lo-
cations. The pie chart on the left computes the top tweeting user’s screen name, who
has tweeted the most tweets related to the predefined key words. The area chart on the
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I'kibana -~ == == -

Indices  Advanced  Objects  Status  About
-

Index Patterns Name of index
— pattern
. .
% social_media-* [+ 2] ]
This page lists every field in the social_media-* index and the field's associated core type as recorded by Elasticsearch. While this list allows you to view the core type of each field, changing field
types must be done using Elasticsearch's Mapping AP| %

Overview of
available index

patterns
Fields (805) Scripted fields (0)

name type format analyzed @ indexed controls
retweeted_status.quoted_status.entities.hashtags.text string v v o
quoted_status.extended_entities.media.video_info.duration_millis number v a
retweeted_status.in_reply_to_screen_name.raw string v n
retweeted_status.quoted_status.entities.media.sizes.medium.resize string v v a
Fields of the index retweeted_status.quoted_status.extended_entities.media.sizes.medium.h number v a
pattern =< retweeted_status.extended_entities.media display_url.raw string v a
retweeted_status.extended_entities.media.source_user_id_str.raw string v a
retweeted_status.place.bounding_box.coordinates number v a
retweeted_status.quoted_status.user.protected boolean v u
retweeted_status.extended_entities.media sizes.small.w number v a
retweeted_status.entities.media.sizes.large.resize.raw string v n
extended_entities.media.id_str.raw string v a
\axlsnded entities. media.sizes. medium.h number v m

Figure 6.15.: settings page with an excerpt of available fields

right helps to find out how many tweets are coming from any of Android, Web, iPhone,
and iPad devices over the last 12 hours. The metrics at the bottom provide some useful
statistical information, including the total count of documents in the index, the unique
count of used hashtags, languages, retweeted languages, screen names of people who
have tweeted, retweeted status user screen names, and time zones from which people
have tweeted, percentiles of user favorites count, and percentile rank of 5,000 for the
user status count.

6.3.3. Key Findings

With the help of social media data analysis experiments, the subsequent key finding is
derived:

¢ Schema-free data schema: Since Elasticsearch is schema-free, it is able to detect
appropriate data types for the document fields. Also, whenever Elasticsearch
identifies an unseen document field, it automatically integrates it into a docu-
ment type. Due to this functionality, the present data schema is continuously ex-
tended without any manual configuration. This is also called implicit mapping.
However, Elasticsearch has problems by detecting geo_point data types. It au-
tomatically assigns numeric documents fields with two-digits to the float data
type erroneously. Therefore, in Logstash an index template has to be provided so
that Elasticsearch assigns to a certain document field the specified data type. This
functionality is called explicit mapping.
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Figure 6.16.: First dashboard of social media data analysis

6.4. Experiment 4: Performance Benchmark Analysis

The previously presented experiments were of qualitative nature. However, this ex-
periment addresses the quantitative assessment of the ELK stack. This is especially
relevant for Big Data use cases which exhibit high data velocity. Figure 6.18 already
indicates which parts of the ELK stack are benchmarked. These are benchmarks for
Logstash’s data ingestion performance, Elasticsearch data indexing performance, and
Elasticsearch data querying performance. Kibana’s performance is neglected since it
only renders Elasticsearch’s search responses without providing any calculation or com-
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Figure 6.17.: Second dashboard of social media data analysis

putation logic.
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Figure 6.18.: Mapping between ELK stack architecture and performance benchmarking

6.4.1. Data Basis and Data Overview
Benchmark 1: Data ingestion performance of Logstash

For Logstash’s data ingestion performance, similar semi-structured machine-generated
data in the XML format as in the second experiment is used. Instead of synthesizing
data with a Python script, real machine-generated data is utilized for this benchmark
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which only consists of string values.

Benchmark 2: Data indexing performance of Elasticsearch

The data basis for Elasticsearch’s data indexing performance constitutes of synthesized
machine-generated data in the JSON format. The key-value pairs of the JSON files re-
semble the attributes and values of the XML files from the second experiment. One
difference is that the JSON files additionally have header parts which consist of corre-
sponding Elasticsearch index and document type key-value pairs. These header parts
are important, since they allow to use Elasticsearch’s Bulk API?,

Benchmark 3: Data querying performance of Elasticsearch

The benchmark for assessing Elasticsearch’s data querying performance uses the same
JSON files as in the second benchmark.

6.4.2. Benchmark Results
Benchmark 1: Data ingestion performance of Logstash

This benchmark analyzes Logstash’s ingestion performance. The evaluation time frame
amounts 30 minutes. The selection of the time frame equals the time frame in which the
data velocity is very high. Within this benchmark, the Logstash-forwarder with the cor-
responding lumberjack input plugin is used. In this context, the Logstash-forwarder
listens to a predefined directory on a remote server and directly forwards the newly
created XML files to the central Logstash server. Logstash applies some filtering op-
erations on the incoming events, namely the metrics filter plugin for providing data
ingestion rates (documents per second), the xml filter plugin with the xpath field in
order to extract attributes and their values from the XML files, the date filter plugin for
transforming the date format of a retrieved date field into Logstash’s predefined times-
tamp format, the grok filter plugin for extracting two more attributes with their values
by using regular expressions, and some conditions for recalculating some numeric val-
ues of fields. Within the output block, the elasticsearch output plugin is defined
in order to ship the filtered events to Elasticsearch. Furthermore, it also contains the
stdout filter plugin with a codec so that the data ingestion rates with corresponding
timestamps can be printed in the command line. This benchmark is based on the fol-
lowing settings:

* Logstash’s heap size amounts 10 GB,
¢ Logstash runs on a single thread,

¢ the benchmark runs on a single node,

“http:/ /www.elastic.co/guide/en/elasticsearch/reference/ current/docs-bulk.html
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¢ the OS of the underlying node is Ubuntu version 14.04.3, and
¢ the node has 8 CPUs with 2.40 GHz each.

Figure 6.19 delineates Logstash’s data ingestion performance. The lightly grey columns
represent the amount of newly created events at a specific minute. The green line illus-
trates Logstash’s ingestion performance retrieved by the metrics filter plugin. The er-
ror bars indicate the lower and upper standard deviations of Logstash’s performance.
For each data point of the green line, 12 ingestion rates at a specific minute are ob-
served. The mean and standard deviation are calculated based on observations. The
blue line represents the Logstash-forwarder’s performance for sending events from the
remote server to the central Logstash server. The Logstash-forwarder’s shipping per-
formance varies highly in the range of 600 to 800 documents per second. Logstash’s
data ingestion performance seems to be more stable — it is in the range of 400 to 500
documents per second. The number of created machine-generated events lies just over
400 events per second. In total, 28 of 30 data points show that Logstash is significantly
able to ingest more data events than created. Also, the Logstash-forwarder is able to
ship a lot of more events than are created. The creation of XML files and Logstash-
forwarder’s shipping performance reveal a positive correlation. Between Logstash and
other data points, there are no noteworthy correlations. In general, one can say that
Logstash is able to handle a high data velocity of events as well as in time frames in
which the amount of created machine-generated data is very high for a specific minute.
During some test benchmarks with synthesized data, Logstash was able to ingest 40,000
to 45,000 when no filtering operations were performed by Logstash and the data veloc-
ity was higher than in this benchmark. This indicates that Logstash’s performance is
highly dependent on both the incoming events and complexity of filtering operations.

Benchmark 2: Data indexing performance of Elasticsearch

In this benchmark, Elasticsearch’s data indexing performance is analyzed. It aims
to derive the indexing rate and the total indexing time for a given size of machine-
generated JSON files. Additionally, it targets to unveil performance differences when
fields should be analyzed (make them available for full-text search) or not. In order to
able to compare analyzed vs. not analyzed fields, explicit mappings have to be pro-
vided for Elasticsearch so that it does not automatically decide whether a field should
be full-text searchable or not. Particularly, in this benchmark 12 different number of
documents are created, namely: 100 K, 200 K, 400 K, 600 K, 800 K, 1 M, 2 M, 3 M, 4
M,5M, 6 M, and 7 M documents. Elasticsearch’s Bulk API allows to send these JSON
documents very fast to the responsible Elasticsearch node. However, an appropriate
Bulk size of a request has to be identified. The Elasticsearch community recommends
to use a Bulk size between 5 MB to 11 MB. For this benchmark, the Bulk size of 5.5 MB
is selected since it helps to evenly distribute the documents per Bulk request and has
demonstrated the best performance among other Bulk sizes in test benchmarks. This
benchmark is based on optimized settings for data indexing, which are stated in the
following:
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Figure 6.19.: Overview of Logstash’s data ingestion performance

¢ Elasticsearch’s heap size amounts 31 GB,

¢ Elasticsearch runs on a single thread,

¢ Elasticsearch’s replication factor amounts 1,

¢ the used Elasticsearch index consists of two shards,

¢ the throttle type of the index is disabled,

e the refresh interval of the index is disabled,

¢ the benchmark runs on a single node,

¢ the OS of the underlying node is Ubuntu version 14.04.3, and
¢ the node has 8 CPUs with 3.50 GHz each.

Figure 6.20 illustrates Elasticsearch’s data indexing performance in terms of indexed
documents per second. The red line represents Elasticsearch’s indexing performance
when fields are not analyzed whereas the green line shows Elasticsearch’s indexing
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performance when fields are analyzed. The error bars for both lines indicate the lower
and upper standard deviations of Elasticsearch’s performance. For each data point, 5
indexing rates are observed. The mean and standard deviation per data point are cal-
culated based on these observations. This figure already indicates that Elasticsearch’s
performance becomes more stable after 2 M documents while increasing number of in-
dexed documents. This can be recognized by the size of the error bars. After becoming
more stable, Elasticsearch performs significantly better when fields are not analyzed.
It is able to index 9,560 to 10,800 events per second after becoming stable. When Elas-
ticsearch should analyze fields, it is able to index 9,160 to 9,520 documents per second.
Furthermore, one can see that Elasticsearch’s performance fluctuates greater when Elas-
ticsearch does not analyze document fields. Figure 6.21 comes to similar conclusions
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Figure 6.20.: Overview of Elasticsearch’s data indexing performance (indexing rate)

since it uses the same results but a different point of view, namely total indexing time
instead of indexing rate. In general, one can say that Elasticsearch will need less index-
ing time when it does not analyze fields. However, within the range between 100 K
and 2 M documents, some overlaps of the error bars are present which indicate that at
these points the indexing time does not significantly differ. When Elasticsearch has to
analyze fields, it will need on average 755 seconds or 12.5 minutes in order to index 7
M documents with a total size of about 3.8 GB. In contrast, it will need on average 696
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seconds or 11.6 minutes in order to index 7 M documents when fields do not have to be
analyzed.
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Figure 6.21.: Overview of Elasticsearch’s data indexing performance (total indexing
time)

Benchmark 3: Data querying performance of Elasticsearch

Last but not least, Elasticsearch’s data querying performance should be analyzed within
the last benchmark. In total, two analytical queries are performed and their execution
times are ascertained. The analytical queries are explained below:

¢ Filtered geo distance query: Find all documents which their distances to a speci-
fied geographical location are less than 6,000 kilometers.

¢ Filtered range query with average aggregation: Find all documents within the
geographical location of the USA and calculate their average longitude and lati-
tude values.

Again, this benchmark also uses 12 different number of machine-generated JSON files
(see 6.4.2) and measures the query performance of Elasticsearch. All document fields
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are analyzed in this benchmark. This benchmark uses nearly the same settings as the
benchmark for Elasticsearch’s data indexing performance. However, in this benchmark
the throttle type of the index is not disabled and the Optimize API°® is used before per-
forming the benchmarks.

Figure 6.22 delineates the results of the filtered geo distance query. Again, for all data
points, 5 execution times are observed. The mean and standard deviation per data point
are calculated based on the observations. Section 5.3.2 has already highlighted that a
major difference between Elasticsearch’s queries and filters lies in the fact that filters
can be cached and therefore subsequent execution of the filters are faster than the first
one. The blue line represents the filtered query with including the first observation with
the high first execution time whereas the red line does not include the first observation.
One can see that the execution time is reduced when the first observation is neglected.
Furthermore, the error bars are smaller for the filtered query without the first observa-
tion. Elasticsearch needs on average 706.8 milliseconds for 7 M documents with a total
size of about 3.8 GB in order to find all documents which their distances to a specified
geographical location are less than 6,000 kilometers, when the first observation should
be considered. Otherwise, the average execution time for this query for 7 M documents
amounts 273.5 milliseconds. Although the number of documents is increased sharply,
the corresponding execution times do not increase in the same extent. The results for
second query, namely the filtered range query with average aggregation can be seen in
Figure 6.23. It shows in some degree the similar aspect of filtered queries but not with
the same extent. The reason for this is that the filtered range query is combined with an
aggregation which cannot be filtered. Therefore, the total execution times do not sig-
nificantly differ from each other. Elasticsearch needs on average 79.4 milliseconds for
7 M documents with a total size of about 3.8 GB in order to find all documents within
the geographical location of the USA and to calculate their average longitude and lati-
tude values, when the first observation should be considered. Otherwise, the average
execution time for this query for 7 M documents amounts 75.25 milliseconds.

6.4.3. Key Findings
Based on the performed benchmark analysis, the following key findings are deduced:

* High throughput of events: By considering Logstash’s data ingestion perfor-
mance and Elasticsearch’s data indexing performance, one can see that the ELK
stack is able to handle high data velocity. 28 of 30 observations show that Logstash
is able to ingest more events than generated on time frame which exhibits high
data velocity. Also, Elasticsearch is capable of indexing a vast amount of events
per second, in particular 9,160 to 10,800 events per second.

¢ Improvement of Elasticsearch’s indexing performance when document fields
are not analyzed: The second benchmark has demonstrated that Elasticsearch’s
indexing performance can be improved when document fields are not analyzed.

>http:/ /www.elastic.co/ guide/en/elasticsearch / reference / current/indices-optimize.html

101



6. Experiments
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Figure 6.22.: Overview of Elasticsearch’s data querying performance for geo distance
query

This is specifically important when Elasticsearch’s indexing performance should
be optimized and certain document fields should be not analyzed since a full-text
search would make no sense, e.g., numeric document fields.
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Figure 6.23.: Overview of Elasticsearch’s data querying performance for range query
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7. Conclusion and Outlook

This chapter summarizes the thesis in Section 7.1, highlights the key findings in Section
7.2, reveals the limitations of the thesis in Section 7.3, and provides a brief outlook of
possible future investigations in Section 7.4.

7.1. Summary

The aim of the thesis was to assess the applicability of the ELK stack for Big Data use
cases. At the beginning of this thesis, the motivation for the aforementioned problem
was described, followed by the deduced objectives and underlying research approach
in order to ensure rigor and relevance. Search-based data discovery tools and the four
types of data analytics capability were presented in order to establish a common com-
prehension for the subsequent analyses. Within the descriptive study, Solr with its
respective SiLK stack and Splunk were identified as similar technologies, which were
briefly described with their key features and potential use cases. Subsequently, the
search engines and search-based data discovery tools were juxtaposed in opposition
so that their characteristics could be differentiated from each other. Based on personal
experience within this thesis, additional criteria for further comparison were presented
for search-based data discovery tools. As the gist of the descriptive study, the indi-
vidual technologies of the ELK stack were analyzed by elaborating their key features.
With the help of four experiments, the ELK stack was implemented and benchmarked
in order to assess its applicability for Big Data use cases qualitatively and quantita-
tively. Based on the performed descriptive study and experiments, key findings were
deduced. The remainder of this thesis summarizes the key findings about the ELK
stack, describes the limitation of the conducted analyses, and touches upon possible
future work on the topic.

7.2. Results

The ELK stack is a serious competitor to commercial search-based data discovery tools,
e.g., Attivio, IBM, Oracle, or Splunk. It is actively developed by a strong team of devel-
opers and an actively engaged community. Although it is relatively young, it is able to
master the 5 Vs of Big Data very well due to its scalable architecture, data traceability
functionalities, support of various data formats and data sources, and its user-friendly
web interface for descriptive data analytics and full-text searches. Also by considering
the implementations and performance benchmarks, the ELK stack’s eligibility for Big
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Data use cases can be quickly noticed.
The following key findings are deduced based on the conducted descriptive study in
Chapter 5 and performed experiments in Chapter 6:

Scalability: The ELK stack can be scaled by adding computing sources (vertical
scaling). Logstash can be scaled by adding a message queue or by adding more
Logstash indexing instances (see Section 5.2.2). Elasticsearch can easily scaled
out by adding additional Elasticsearch nodes to an existing cluster (horizontal
scaling) (see Section 5.3.2).

Support of various data sources and data formats: Logstash provides 49 different
input plugins to tap a huge amount of data sources. Additionally, it offers 42 filter
plugins for ingesting various data formats. With the help of its grok filter plugin,
unstructured data can be ingested by making the use of regular expressions and
custom/predefined patterns (see Section 5.2.2).

Capabilities for geospatial analyses: Elasticsearch offers several geo filters and
aggregations in order to perform various geospatial analyses (see Section 5.3.2).

Lack of data protection mechanisms: By default, the ELK stack does not include
any authentication mechanisms. By using the chargeable Shield product of Elas-
tic, the ELK stack can be secured. It provides functionalities for encrypting com-
munications and a role-based access control (see Section 5.3.2).

Provision of basic visualization types: Kibana provides a set of basic visualiza-
tion types, including pie chart, area chart, line chart, vertical bar chart, data table,
metric, tile map, and markdown widget. However, more sophisticated or statisti-
cal graphics are not offered by Kibana (see Section 5.4.2).

Limited data analytics capabilities: The ELK stack’s data analytics capability is
determined by Elasticsearch. Elasticsearch is primarily designed as a search en-
gine which is why it provides only descriptive analytics capabilities, namely a set
of bucket and metric aggregations. Elasticsearch does not support functionalities
for interactive visualization, machine learning, data mining, predictive/decision
modeling, simulation, and optimization (see Section 5.3.2).

Timestamping of events: Logstash is able to add timestamps to incoming data
or use custom date fields as timestamps so that Elasticsearch and Kibana can per-
form time-based analyses (see Section 6.1.2).

High data variability may cause data parse failures: Logstash’s capabilities for
highly-variable and multiple hierarchical XML data seem to be insufficient. Al-
though it provides some appropriate filter plugins, programming languages such
as Python provide more appropriate library functions for parsing this type of
XML data (see Section 6.2.2).
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¢ Data anonymization capabilities: Logstash provides an anonymize filter plugin
in order to protect and hash sensitive information of fields (see Section 6.2.2).

Data traceability capabilities: The ELK stack supports data traceability by using
originally created unique identifiers of events or by generating unique identifiers
in Elasticsearch (see Section 6.2.2).

Simultaneous indexing and querying of events: Kibana can perform searches
and aggregations on continuously ingested and indexed data (see Section 6.2.2).

Automatic update of web interface: While data is indexed by Elasticsearch,
Kibana automatically refreshes search results and visualizations with the help of
its auto-refresh functionality (see Section 6.2.2).

Fractional amount of supported of output formats: Kibana only provides raw
and formatted CSV files as output formats which can be used as data input for
further analyses (see Section 6.2.2).

Near real-time data analytics: The ELK stack is capable of near real-time data
analytics. It needs time for filtering, indexing, and visualizing data. Regardless
of this data accessibility delay, data is never directly accessible in Kibana since
Elasticsearch’s index has to be refreshed (see Section 6.2.2).

Schema-free data schema: FElasticsearch is schema-free wherefore it is able to
detect appropriate data types for the document fields (see Section 6.3.2).

High throughput of events: By considering Logstash’s data ingestion perfor-
mance and Elasticsearch’s data indexing performance, one can see that the ELK
stack is able to handle high data velocity (see Section 6.4.2).

¢ Improvement of Elasticsearch’s indexing performance when document fields
are not analyzed: Elasticsearch’s indexing performance can be improved when
document fields are not analyzed (see Section 6.4.2).

7.3. Limitations

After the extensive descriptive study in Chapter 5 and performed experiments in Chap-
ter 6, the following limitations can be crystallized out:

* Neglected quantitative evaluation: The majority of the applicability assessments
of the ELK stack are based on qualitative evaluation, e.g., support of various data
sources and input data types. Adding more quantitative assessments of the stack
would improve the expressiveness of the conducted analyses. For instance, com-
paring the ingesting and indexing times in Logstash and Elasticsearch for dif-
ferent experiments would provide insights into the ELK stack’s performance of
handling different data structures and data formats. Also, monitoring the CPU
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and disk space usage would point out the strengths and weaknesses of the ELK
stack during data ingestion and storing. This would help to examine Logstash’s
limitations for different filter operations. Additionally, this would highlight how
Elasticsearch manages and stores different documents in its indices.

Neglected inspection of security aspects: The descriptive study has touched the
security weaknesses of the ELK stack lightly. It has mentioned that Elasticsearch
does not provide by default security mechanisms. Moreover, it also proposed the
usage of the chargeable Shield plugin for Elasticsearch in order to protect data.
However, it did not demonstrate the various security features of the Shield plugin
in detail.

Fractional amount of performed experiments: In this thesis, only four experi-
ments were carried out. Although they addressed various Big Data use cases ad-
equately, there are still use cases which are not examined. For instance, Logstash’s
capability for handling various data types was assessed with structured machine-
generated and textual data. An extensive assessment of its capability for unstruc-
tured, highly variable, and hierarchical log files is missing.

Limited expressiveness of conducted analyses for other technology versions:
The descriptive study has stated that the ELK stack is actively developed and
strongly promoted by a large community. This indicates that each new release
may cause big changes in the capabilities, features, and performance of the stack.
Due to this reason, some assessments may be irrelevant or invalid for newer ver-
sions. For instance, the Logstash-forwarder is replaced by Elastic’s new Beats®’
product. This replacement entails major performance and capability changes of
forwarding event data from remote servers to a central Logstash servers, e.g., pro-
vision of different types of beats which are optimized for sending different types
of operational data to Logstash. As a consequence, the performed benchmark for
Logstash’s performance may lose expressiveness.

Constrained level of detail: This thesis focused on providing an holistic view on
the ELK stacks key features and capabilities. For that reason, in depth analyses
of the underlying technologies were not possible. This is especially important
for Elasticsearch, because it provides many more querying capabilities than were
explored. For example, Elasticsearch provides a Validate API in order to allow a
user to validate a potentially expensive query without executing it [38]. Another
example is the Multi Search API which allows to execute several search requests
within the same API [32].

Missing evaluation of Big Data ecosystem integration: The evaluation of the
ELK stack was mostly focused on the holistic assessment of the ELK stack without
considering its integration within a Big Data software architecture. However, this
evaluation seems indispensable, since the data analytics capabilities of the ELK

http:/ /www.elastic.co/products/beats
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stack are limited on descriptive analytics and near real-time search. The usage
of additional Big Data technologies are necessary for subsequent data analytics
tasks.

7.4. Future Work

A sincere effort has been made in this thesis to delineate the key features and capa-
bilities of the ELK stack and to assess its applicability for various Big Data use cases.
This thesis has clearly demonstrated the strengths and weaknesses of the ELK stack,
with its main focus lying on descriptive analytics and full-text search. However, the
limitations of this thesis predesignate the direction for future research. The ELK stack
should not be considered in isolation without its integration with a Big Data ecosys-
tem. This is especially of interest, if a Big Data use case requires more advanced data
analytics capabilities than descriptive analytics. This limitation results in two future re-
search directions. Firstly, Elastic provides Elasticsearch for Hadoop (ES-Hadoop)®® that
is a two-way connector which provides a near real-time search for Hadoop while the
Hadoop ecosystem offers a multitude of analytics capabilities. It is designed for lever-
aging Hadoop’s Big Data analytics capabilities and the near real-time search of Elas-
ticsearch. Figure 7.1 provides an overview of the ES-Hadoop integration. Although,
Logstash is not provided in this figure, it can be used for collecting and parsing log
tiles which are sent to Elasticsearch and analyzed by different Hadoop technologies.
According to that, a future research direction may be analyzing the ELK stack’s inte-
gration with the Hadoop ecosystem. For instance, different Big Data use cases can be
implemented which involve the data transfer between the two ecosystems. Herein, dif-
ferent benchmarks can be performed in order to assess the reliability and performance
of the data transfer between those and uncovering potential risk points, e.g., scalability
of the connector. Secondly, a Big Data software architecture usually consists of multiple
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Figure 7.1.: Elasticsearch for Hadoop [14]

infrastructure layers and components in order to support a specific application domain.

*http:/ /www.elastic.co/ products/hadoop
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Figure 7.2 provides an overview of the infrastructure layers and components in order to
support connected transportation systems. In this architecture, each Big Data technol-
ogy is responsible for a certain task. For instance, Kibana can be used for data science,
Elasticsearch for search, and Logstash for data ingestion, loading, and integration. Fol-
lowing this, describing the ELK stack’s integration within this architecture may be a
future research direction. During this description, the ELK stack can be separated into
its three individual technologies in order to uncover meaningful combinations with
other technologies.
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Figure 7.2.: Big Data software architecture for connected transportation systems [18]
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A.1. Index Template for Textual Data Analysis

Listing A.1 comprise the index template which was utilized for the textual data analysis

in Section 6.1.2.

Listing A.1: Index template for textual data analysis in Section 6.1.2

"template": "road_weather_ demonstration",
"order": 1,
"settings": {

"number_of_shards": 1

}I
"mappings": {
"rwd": {
"dynamic_templates": [
{
"string_fields": {
"mapping”: {
"index": "analyzed",
"omit_norms": true,
"type": "string",
"fields": {
"raw": {

"index": "not_analyzed",

"ignore_above": 256,
"type": "string"

}
}I
"match_mapping_type": "string",
"match": "x"
}
b A
"boolean_fields": {
"mapping": {
"type": "boolean"
}I

"match" : "*is_* n
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"_all": {
"enabled": false
b

"properties": ({
"Location": {
"type": "geo_point"

A.2. Index Template for Machine-Generated Data Analysis

Listing A.2 presents the index template which was utilized for the machine-generated
data analysis in Section 6.2.2.

Listing A.2: Index template for machine-generated data analysis in Section 6.2.2

{

"template": "machine_generated-x",
"order": 1,
"settings": {
"number_of_shards": 1

}I
"mappings": {
"mach_gen": {
"dynamic_templates": [
{
"string_fields": {
"mapping": {
"index": "analyzed",
"omit_norms": true,
"type": "string",
"fields": {
"raw": {
"index": "not_analyzed",
"ignore_above": 256,
"type": "string"

}

}y
"match_mapping_type": "string",
"match": "x"

}

boo A

"boolean_fields": {

"mapping": {
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"type": "boolean"

by

"match": "xis_*"

}
]V
"_all": {
"enabled": false
}I

"properties": {
"location": {
"type": "geo_point"

A.3. Index Template for Social Media Data Analysis

Listing A.3 presents the index template which was used for the social media data anal-
ysis in Section 6.3.2.

Listing A.3: Index template for social media data analysis in Section 6.3.2

"template": "social_media-x",

"order": 1,

"settings": {
"number_of_shards": 1

b
"mappings": {
n Sm" . {
"_all": {
"enabled": false
b

"dynamic_templates" : [ {
"message_field" : {
"match" : "message",
"match_mapping_type" : "string",
"mapping" : {
"type" : "string",
"index" : "analyzed",
"omit_norms" : true
}
}
boo A
"string_fields" : {
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"match" . "*",
"match_mapping_type" : "string",
"mapping" : {

"type" : "string",

"index" : "analyzed",

"omit_norms" : true,

"fields" : {

"raw" : {

"type": "string",
"index" : "not_analyzed",

"ignore_above" : 256
}
}
}
}
Fol,
"properties": {
"text": {
"type": "string"
}l
"coordinates": {
"properties": {
"coordinates": {
"type": "geo_point"
}I
"type": {
"type": "string"
}
}
}
}
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