[

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Master’s Thesis in Information Systems

Empowering End-users to Support
Knowledge-intensive Processes with
the Case Management Model and
Notation

Manuel Gerstner

D

[

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Master’s Thesis in Information Systems

Empowering End-users to Support
Knowledge-intensive Processes with the Case
Management Model and Notation

Befdahigung von Endanwendern zur
Unterstiitzung von wissensintensiven
Prozessen durch die Case Management Model
and Notation

Author: Manuel Gerstner
Supervisor: Prof. Dr. Florian Matthes
Advisor: Matheus Hauder, M.Sc.

Submission date: December, 15 2014

D

I confirm that this master’s thesis is my own work and I have documented all
sources and material used.

Munich, December 15, 2014 Manuel Gerstner

Acknowledgments

I am using this opportunity to express my deepest gratitude to those people who
supported me throughout the course of this Master’s thesis. I am especially grateful
for the constant support given by my supervisor Matheus Hauder, who provided
strong guidance and useful feedback.

I would also like to thank my family and friends for their encouragement, which
helped me to stay focused. Special thanks go to my sister Laura and my friend
Dominique for proofreading this work.

Vil

Abstract

Next to the widespread use of workflow management solutions in practice, there
are many business processes that are currently not adequately supported. These
processes are often very data-driven, unstructured, unpredictable, and driven by
user decisions. In the literature they are usually referred to as Knowledge-intensive
Processes.

As a result the Object Management Group (OMG) has recently released the Case
Management Model and Notation (CMMN) as a specification that supports the
modeling of such processes. Similar to BPMN for traditional business processes this
standard provides a visual notation and the operational semantics for Knowledge-
intensive Processes.

Throughout the course of this master’s thesis, the CMMN specification will
be analyzed thoroughly in order to evaluate, whether it can support Knowledge-
workers with their problems, which are often very complex and unique.

The main goal is to use the insights gained throughout this analysis to implement
a subset of this notation in an existing research prototype. This includes an analysis
of advantages and disadvantages of the CMMN specification as well as the selection
of a subset that will be implemented based on existing workflow patterns and
requirements for process modeling.

Keywords. Case Management Model and Notation, Adaptive Case Management,
Knowledge-intensive Processes, Case Handling, Business Process Modeling

ix

Zusammenfassung

Trotz der allgegenwérten Benutzung von Workflow-Management-Systemen in
der Praxis, werden viele Geschéftsprozesse nur unzureichend durch die aktuellen
Losungen unterstiitzt. Diese Prozesse sind meist sehr datenorientiert und werden
von benutzerspezifischen Entscheidungen gelenkt. Auflerdem zeichnen Sie sich
haufig durch ein hohes Maf$ an Unstrukturiertheit sowie Unvorhersehbarkeit aus.
In der Literatur werden sie daher oft als wissensintensive Prozesse bezeichnet.

Aufgrund dieses Problems hat die Object Management Group (OMG) vor kurzem
die Case Management Model and Notation (CMMN) veroffentlicht, welche Adap-
tive Case Management (ACM) unterstiitzen soll. Vergleichbar mit BPMN fiir tradi-
tionelle Geschéftsprozesse, stellt dieser neue Standard eine visuelle Notation und
die operationelle Semantik fiir wissensintensive Prozesse bereit.

Im Verlauf dieser Masterarbeit soll die CMMN Spezifikation genau untersucht
werden, um herauszufinden ob sie Wissensarbeiter bei der Losung vielschichtiger
Probleme, welche sich hdufig durch ihre Komplexitt und Einzigartigkeit auszeich-
nen, unterstiitzen kann.

Das Ziel ist es, die gewonnenen Erkenntnisse fiir die Implementierung einer
Teilmenge der Notation in einen bereits existierenden Protoypen zu benutzen. Dies
beinhaltet sowohl die Analyse der Vor- und Nachteile der CMMN-Spezifikation,
als auch die Auswahl einer geeigneten Teilmenge zur Implementierung. Bei der
Auswahl der Teilmenge sollen bestehende Workflow Patterns und Anforderungen
aus der Prozessmodellierung verwendet werden.

Schlagworter. Case Management Model and Notation, Adaptive Case Manage-
ment, wissensintensive Prozesse, Case Handling, Geschiftsprozessmodellierung

xi

xii

Contents

Acknowledgements

Abstract

Zusammenfassung

Outline of the Thesis

I. Introduction and Theory

1. Introduction

1.1.
1.2.
1.3.
1.4.

Motivation
Problem Description
ResearchScope
Method and Outline
1.4.1. Methodical Research Approach
1.4.2. Research Objectives
1.4.3. StructureoftheThesis

2. Theoretical Background

2.1.

2.2.

2.3.

KnowledgeWork
211 Knowledge
2.1.2. Knowledge Work Definition.
21.3. KnowledgeWorkers
2.1.4. Knowledge-intensive Processes
Declarative Processes
2.2.1. Imperative ProcessModels
2.2.2. Declarative ProcessModels
CMMN

vii

ix

xi

xvii

13
13
14
15
17
17
20
21
21
24

xiii

Contents

3.

I1.

23.1. CaseManagement
2.3.2. Origin of the Specification
233. TargetUsers
2.3.4. Structure of the Notation
2.3.,5. Visual Elements of the Notation

Related Work

3.1. Process Models Supporting Knowledge Workers
3.2. Imperative vs. Declarative Process Models
3.3. Complexity Measurementof CMMN

Supporting Knowledge-intensive Processes with CMMN

Workflow Patterns

4.1. Control-Flow Patterns
4.1.1. Basic Control-Flow Patterns
4.1.2. Advanced Control Flow Patterns
4.1.3. Important Control Flow Patterns

42. Unsupported Patterns

Requirements for Knowledge-intensive Processes

5.1. Analysis of Requirements
51.1. Flexibilityo
5.1.2. Data-centricity
51.3. Goal Definition 0L
5.1.4. Reduction of Complexity
5.15. Supportof Constraints
516. Roles

5.2. Functional Requirements

Extraction of a Suitable Subset

6.1. Structuring Activities with Tasks and Stages
6.1.1. HumanTasks
6.12. CaseTasks e

6.2. Creating Relationships

6.3. Adding Constraints L.

39
39
40
42

47

49
49
50
52
54
57

59
59
61
61
62
62
63
63
64

Xiv

Contents

7. Complexity Measurement

7.1.
7.2.
7.3.
7.4.
7.5.

Analyz
Analyz
Analyz

ing the Number of Objects
ing the Number of Properties
ing the Number of Relationships

Calculating the Cumulative Complexity

Results

III. Implementation

8. Research Prototype
8.1. Technical Architecture
82. SystemDesign

8.2.1.
8.2.2.

Single Page Application
Interactive Frontend

9. Implementation of Requirements

9.1. BasicFunctionality
9.2. CMMN Functionality

9.2.1.
9.2.2.
9.2.3.
9.24.

10. Evaluation

Creation of Stagesand Tasks
Creation of Dependencies
Cycle Prevention
Progress Propagation.

10.1. The Innovation Management Process
10.2. Modeling of the Process

IV. Conclusion and Outlook

11. Conclusion

12. Future Outlook

Bibliography

75
75
77
77
77
79

83

85
85
87
87
88

91
92
92
93
94
95
96

97
97
100

105
107
111

113

XV

Contents

Outline of the Thesis

Part I: Processes for Knowledge Work with CMMN

CHAPTER 1: INTRODUCTION

This chapter gives an introduction to the thesis, as well as a basic overview of the
context. The motivation for this thesis is explained and the concrete problems are
described.

CHAPTER 2: THEORETICAL BACKGROUND

This chapter introduces the major topics discussed throughout this thesis and ex-
plains them in detail. While it starts with the most basic terminology, the specific
terms important for the understanding of this work are highlighted.

CHAPTER 3: RELATED WORK

This chapter focuses on the literature and research concerning the terms introduced
in Chapter 2. It summarizes the key literature with regard to the topic of this thesis.

Part II: Supporting Knowledge-intensive Processes
with CMMN

CHAPTER 4: WORKFLOW PATTERNS

The existing Workflow Patterns included in most of the contemporary modeling
software are analyzed thoroughly in order to generate basic requirements for the
implemented prototype.

CHAPTER 5: REQUIREMENTS FOR KNOWLEDGE-INTENSIVE PROCESSES

This chapter picks up the patterns derived as requirements in the previous chapter
and provides a list of requirements needed for a software implementation support-
ing Knowledge-intensive Processes.

Xvii

Contents

CHAPTER 6: EXTRACTION OF A SUITABLE SUBSET

With a strong focus on CMMN, this chapter uses the requirements analyzed in the
previous chapters to introduce a subset of the specification to be implemented in
the prototype.

CHAPTER 7: COMPLEXITY MESASUREMENT

The cumulative method complexity of the meta-model belonging to the extracted
subset is calculated in order to compare its complexity to other business process
modeling techniques.

Part III: Implementation

CHAPTER 8: RESEARCH PROTOTYPE

This chapter introduces the existing research prototype which the implemented so-
lution is based on and explains the technical architecture used for the development
of the new features.

CHAPTER 9: IMPLEMENTATION OF REQUIREMENTS

In this chapter, the implementation of the different requirements regarding the
integration of a process modeler into the research prototype is explained in detail.

CHAPTER 10: EVALUATION

Using a concrete Knowledge-intensive Process, this chapter evaluates the imple-
mented solution by describing the modeling of a popular case at one of Germany’s
biggest software companies.

Part I'V: Conclusion and Outlook

CHAPTER 11: CONCLUSION

Using the insights gained throughout the course of the previous parts of this thesis,
this chapter draws conclusions from the different findings. It also assesses whether

Xviii

Contents

the initial goals defined by the research questions have been reached.

CHAPTER 12: FUTURE OUTLOOK

The main objective of this chapter is to examine some of the areas which research
can focus on using the insights gained throughout this thesis. It also identifies
different aspects of the work in this thesis which require further evaluation.

XixX

Part 1.

Introduction and Theory

1. Introduction

"The most valuable assets of the 20"-century company was its production
equipment. The most valuable asset of a 21%'-century institution will be its

V4

knowledge workers and their productivity.
Peter F. Drucker, 1999 [8]

The industrialization which has taken place over the course of the last centuries,
has had a huge impact on the way people work. Processes that have been present
for thousands of years were modeled, adjusted, structured and improved. This
modernized not only the way people worked, but also the way in which tasks that
were executed repeatedly could be brought into order and connected to a set of
rules. This made such processes easy to structure and organize in a hierarchical
order in a way that allowed people to model and eventually share them.

This has more recently led to the definition of modeling languages such as the
Business Process Model and Notation (BPMN) which sets a common standard
for the modeling of routine processes. Because of the wide use of such model-
ing languages in modern enterprises, the BPMN standard was further improved.
Nevertheless the notation still had some disadvantages as soon as the process had
certain features making them especially hard to model before execution. Such
processes can mostly be described as weakly-structured and constantly changing
and are often categorized as knowledge work. They require people with a certain
expertise in the field as there is usually no strict process that provides them with
guidance.

An example for such a process would be the design of a complex system ar-
chitecture. Due to the high complexity of the task and the uniqueness of every
process iteration, only people with expert knowledge are able to come up with a
solution that solves the predefined problems. The major problem arising from such
processes is their complexity which makes it close to impossible to define a routine
process as a guideline for professionals to use. This results in a process definition
which cannot be used for similar problems concerning system architectures as they

1. Introduction

almost certainly have special requirements not considered in a predefined solution.

From this problem that notations such as BPMN, which are executed before
process execution, bring along, two requirements can be derived that are necessary
to allow the modeling of processes that have a weak structure. On the one hand
such processes should be highly flexible and need to allow each stakeholder to
contribute without restricting other people working on the same process. On the
other hand such processes need to provide ways for stakeholders to alter the process
before run-time but also especially at run-time. As knowledge-intensive processes
are constantly undergoing change, they should always allow for improvements
and also for the structure to be changed. This is also the main difference to routine
processes which do not require to be altered at any given time.

This need for a way to model knowledge-intensive processes in a very flexible
way lead to a new management field which is often referred to in literature as
Adaptive Case Management (ACM) or simply Case Management. The main goal of
this new paradigm is to make processes adaptive in order to achieve a high amount
of flexibility throughout the whole life-cycle of a process. Swenson defines such
systems as:

Case Management Systems: “Systems that are able to support decision
making and data capture while providing the freedom for knowledge
workers to apply their own understanding and subject matter expertise to
respond to unique or changing circumstances within the business environ-
ment” [39].

Such processes can be considered the exact opposite of routine work. They are
weakly-structured and as a result of that cannot be easily modeled using available
standards such as BPMN. The notation has proven to be useful for processes that
are predefined and are executed the same way many times, but it lacks the flexibility
needed by knowledge-workers especially when an alteration of a process is required
at run-time. Di Ciccio et al. share this opinion in their work on Knowledge-intensive
Processes:

Knowledge-intensive Processes: “Process management approaches are of-
ten based on the assumption that processes are characterized by repeated
tasks, which are performed on the basis of a process model prescribing the

1.1. Motivation

execution flow in its entire- ness. This kind of structured work includes
mainly production and administrative processes. However, the current ma-
turity of process management methodologies has led to the application of
process-oriented approaches in new challenging knowledge-intensive sce-
narios, such as health-care, emergency management, projects coordination,

case management” [6].

Due to this lack of a common specification for modeling such cases, the Object
Management Group (OMG) released the Case Management Model and Notation
(CMMN), which is a common specification for describing knowledge-intensive pro-
cesses and it aims to make them interchangeable throughout different applications
based upon their language specification.

With the theoretical specification of a standard for modeling knowledge-intensive
processes on the one side and huge technological improvements that benefit com-
puter supported collaborative work (CSCW) on the other, the focus of this thesis is
on the extraction of a subset of functionalities from CMMN and to integrate them
into a collaborative application to support knowledge workers. The application is
developed alongside and integrated into the Darwin application, which is currently
being developed at the sebis (Software Engineering for Business Information Sys-
tems) chair at the Technical University of Munich. The application is supposed to
serve as a basis for further evaluation of software supporting knowledge-workers.

1.1. Motivation

Drucker [7] argued in 1969 that one of the major management tasks will be to make
knowledge work productive. Even though a lot of progress has been made since
the release of Drucker’s work, a constant attempt to improve knowledge work is
still present nowadays. One of the biggest challenges is the support of knowledge
workers using modern information technology as well as the right level of guidance.
While a number of business process modeling languages have been released over
the years, there seems to be a growing need for something more flexible and less
restrictive in order to explicitly consider a knowledge workers environment.

The recent release of the CMMN definition in May, 2014 by the OMG moved
the specification out of the beta stage. While this shows the relevance of modeling
knowledge-intensive processes on the one hand it also shows that the research in

1. Introduction

the field has gained some maturity and is now at a stage where specifications need
to prove themselves in the real world on the other. By making use of notations
such as CMMN it should now be possible to create full-scale business applications
which rely on such concepts and ideally provide a way for exchanging information
between different solutions of the same kind.

Case management, the foundation of CMMN, is the result of a continuous at-
tempt to allow modern processes to be modeled, since contemporary workflow
management systems do not provide the functionality and flexibility needed by
knowledge-workers. Forrester [19] analyzed the following business trends as
drivers which make case management so important:

* anincreased need to manage the costs and risks of servicing customer requests

* the desire to automate and track inconsistent events which are weakly-structured
* agrowing pressure on government agencies to handle more customer requests

* external regulations which require businesses to repsond accordingly

* the use of technology such as collaborative tools and social media to support
business processes

Due to these developments this work focuses on CMMN from a practical point-
of-view. One of the goals is to analyze to which extent CMMN can be applied
to model knowledge-intensive processes in actual business cases and ultimately
support their constant improvement and alteration.

The fact that this area of research is still at an early stage makes it especially
interesting. Some of the most valuable papers cited in this thesis have just been
published and many authors state that there is still a lot of gaps which need to
be filled by future research. The motivation behind this thesis is to provide some
insights into this area of research and to also fill some of these gaps. Marin et al. ,
who have recently analyzed the complexity of CMMN, state: ” Another venue for
future research is to identify subsets of the CMMN notation. As process modelers
begin to use CMMN, it will be useful to identify the subsets of the specification that
start to emerge [...]” [22]. This can be regarded as the main goal of this thesis and
also the motivation behind it.

1.2. Problem Description

1.2. Problem Description

The attempt to define a common reference-model for the implementation of an
application supporting knowledge-intensive processes resulted in the definition
of a notation. It is up to the developers of applications which aim to tackle the
hardships faced throughout the execution of such processes, to make use of the
different elements and rules defined by a language like CMMN.

So far, a complex analysis of the applicability of the notation with regard to a
large variety of processes originating from many different fields of work is hard
to find. A lot of research has been focusing on different aspects of knowledge
intensive processes. When the term case management emerged the main focus was
on the improvement of contemporary workflow management systems as well as
the process modeling languages, such as BPMN, which they were using. Van der
Aalst et al. [44] introduced the name case handling in 2005, which can be regarded
as one of the key events concerning the research on case management. Due to the
complexity of BPMN 1.2 other experts in the field such as zur Muehlen created
subsets of BPMN in order for it to be more use-case specific and easy to understand
(cf. [49] [50] [51]). While this can be considered a good solution for making use of a
notation already available, it should also be seen as a temporary one. The problem
of the complexity of BPMN was rather concealed than solved. Fahland et al. [9],
[10] support this view by confirming that maintainability and understandability
are important when looking at knowledge-intensive processes.

The goal of the Case Management Model and Notation by the OMG is to solve
this problem. The release of the specification is a direct result of the ongoing
research in the area of case management. Researchers have become aware of the
problems contemporary process modeling languages bring along when handling
knowledge-intensive processes.

As a result of the release of CMMN a new problem arises. The new specification
still needs to be adapted by process modelers on the hand and prove that it is
capable of supporting different knowledge-intensive processes which are often
unique in nature and require a lot of flexibility.

This work addresses this problem in particular. It looks at the different devel-
opments that have led to the release of a new specification. Furthermore, the
disadvantages which many process modelers saw in contemporary languages such
as BPMN are analyzed thoroughly, in order to assess whether CMMN is capable of
handling these issues.

1. Introduction

1.3. Research Scope

While the main focus of this thesis is on CMMN and its support of knowledge-
intensive processes, a lot of related artifacts are analyzed if they contribute to the
understanding of the topics discussed. This makes it important to set the research
scope as a means of specifying what areas this thesis focuses on. Due to the constant
research going on in this field, this work focuses on one area rather than attempting
to fill all the gaps previously mentioned.

Generally, this work is focused on the extraction of a subset of CMMN and its
implementation into an application focused on supporting knowledge-workers. In
order to accomplish this, not only the CMMN specification needs to be considered,
but also the previous research which ultimately led to the release of it. This is
especially important as it helps to understand the gaps in process modeling that
CMMN tries to fill.

The subset which is extracted from CMMN is based on the research performed
over the course of this thesis. It should be considered a proposition rather than a
complete solution as the application is still being developed. An empirical analysis
concerning the usability of the implementation is not part of this work and can be
part of future research.

1.4. Method and Outline

The main focus of research in this thesis is on collaborative knowledge work and
the underlying processes. This requires this work to be structured in a way that
makes it understandable. Due to the novelty of this topic, a thorough introduction
is necessary to provide the required knowledge to understand the methods used
and choices made throughout this work.

The following sections describe the scientific structure of this thesis. A definition
of the methodical research approach is followed by a detailed analysis of the
research objectives which this work aims to address.

Finally, the structure of the thesis is described by providing an overview of the
chapters and topics addressed. This structure is based on three research ques-
tions which represent the logical outline and serve as a guideline for the research
performed throughout this project. They are explained in detail below.

1.4. Method and Outline

1.4.1. Methodical Research Approach

According to Hevner et al. [46] research regarding information systems can be clas-
sified into two different methodical approaches. On the one hand, the Behavioral-
science paradigm focuses on observation. Its main objective is to describe the
interaction of humans with a specific information system. On the other hand, the
Design-science approach does not observe what is already available, but intends to
develop new artifacts. Building on the available research for a certain field, those
newly created artifacts should contribute to the solution of a specific problem in
that area of research.

The fundamental scope of this thesis is defined by the Design-science approach.
The developed application represents the artifact which was built considering the
results of research in the area of adaptive case management. The fundamental
problem in this case is the need to support knowledge-workers efficiently and
purposefully, as well as the lack of available solutions that manage to solve this
problem.

1.4.2. Research Objectives

The primary objective of the research performed in this thesis is to analyze know-
ledge-intensive processes thoroughly, and to extract a list of items that an applica-
tion supporting knowledge-workers needs to provide. These items should represent
a subset of those offered by CMMN. As a pre-condition, the Case Management
Model and Notation needs to be analyzed and evaluated in order asses its applica-
bility. Due to the fact that at the time of writing, the CMMN 1.0 specification has
just been released and tools supporting it have not been published yet, this analysis
is often based solely on the document provided by the OMG itself. Thus, it should
only be regarded as an initial analysis which is not complete.

In order to create an exhaustive portrayal of the requirements of such an applica-
tion, another objective is to factor in the research previously performed in the area.
In many cases the authors described their own solutions, which makes it possible
to analyze their key features and compare them to those extracted in this thesis.

It is also important to match the key elements extracted in this work against
common workflow patterns. By doing so it is possible to evaluate the expressiveness
of the application and to calculate its complexity.

1. Introduction

1.4.3. Structure of the Thesis

This thesis is divided into three parts in a logical order. The first part focuses on the
thorough explanation of the terms and specifications used throughout the course of
the thesis. It also outlines the general structure and the methods used in order to
explain the research topic and the corresponding objectives.

Followed by the introduction, the second part of this work focuses on the concept
and addresses the research objective of finding a suitable subset of the CMMN
specification.

Addressing the final research objective of finding a way to integrate the findings
into an application based on the subset extracted from CMMN, the third part of this
thesis is focused on the implementation itself.

The last part of the thesis is intended to outline the conclusions drawn from
both the analytical as well as the implementational parts included. The focus is
also on the proposition of areas of future research that succeed this thesis. This is
especially important as the CMMN specification has just been released and needs
to be analyzed thoroughly in order to evaluate its applicability in actual use-cases.

The following three research questions represent the comprehensive structure
of this thesis based on the research objectives mentioned. They are analyzed
chronologically and will be evaluated in detail to produce an elaborate answer that
leads to a coherent theoretical and practical composition.

* Research Question 1: How can CMMN support users with the definition
of Knowledge-intensive Processes?

This question focuses on the analysis of the Case Management Model and
notation as defined by the Object Management Group and its pertinence for
the modeling of knowledge intensive processes. The different components of
CMMN are introduced, explained and evaluated. This analysis will be based
on the available literature on the one hand but also the use of actual examples
of knowledge intensive processes that are modeled using CMMN on the other
hand. In the end, this should result in a comprehensive evaluation of CMMN
highlighting the advantages and disadvantages of the specification with re-
gard to the broad range of fields in which knowledge intensive processes

occur.

¢ Research Question 2: What is a suitable subset of CMMN that can be used
for Knowledge-intensive Processes?

10

1.4. Method and Outline

As the CMMN specification is very complex in nature, the main focus is on
the extraction of a subset of elements included in CMMN that are suitable for
the implementation into a collaborative application that supports knowledge
intensive processes. This includes the evaluation of specific elements that
emerge as suitable for applications, providing a detailed analysis of the advan-
tages and disadvantages that they might implicate. If a specific element of the
specification is found not to be suitable for an integration into an application,
a detailed evaluation is used to support this decision. Throughout this process
the complexity of such an application is always included in the evaluation,
since the focus of the application in question should be less on completeness
with regard to functionality as specified by CMMN, and more on usability by
a wide range of knowledge workers that operate in different fields.

Research Question 3: What is a suitable software environment for CMMN?

While the previous research question mainly focuses on the theoretical analy-
sis of the different elements included in CMMN with regard to an application
supporting knowledge intensive processes, this final task represents the actual
implementation of a run-time system that incorporates CMMN. In order to
accomplish this, an actual research application which aims to support knowl-
edge intensive processes will be extended to support the previously extracted
set of CMMN elements. The main focus is on the analysis of the different
ways in which the elements can be implemented and an explanation of the
reasons for implementing a functionality in a certain way. The goal of this
approach is to evaluate the actual applicability of the specifications included
in CMMN to support knowledge workers that make use of a collaborative

run-time system.

11

1. Introduction

12

2. Theoretical Background

This chapter serves to give a detailed overview of the different terms used through-
out this thesis. They play an important role in the following parts and thus should
all be explained thoroughly. It starts with the definition of knowledge work, which
is considered the basis of this area of research and explains what types of profes-
sions and fields can be attributed to knowledge workers. Subsequently, knowledge
intensive processes which are executed by knowledge workers are outlined. In
addition, two common terms to distinguish processes are analyzed as they resemble
an important approach to categorize them. Finally, the Case Management Model
and Notation is explained and analyzed in detail in order to lay the groundwork
for a further evaluation.

2.1. Knowledge Work

"To make knowledge work productive will be the great management task of this
century, just as to make manual work productive was the great management
task of the last century.”

Peter F. Drucker, 1969 [7]

The term knowledge work has been used to describe the work done by workers
with special knowledge. As outlined in the quote above by Peter Drucker it is
considered to be one of the key success factors in modern companies. This is mainly
due to an increasing number business processes that rely heavily on knowledge
work. Routine processes can be executed, at least to some extent, by machines
and can be easily modeled. Knowledge-intensive processes on the other hand
are usually hard to model and cannot be turned into a routine. The following
sections aim to explain this condition in detail, in order to lay the foundation for a
more detailed analysis of the problems faced when modeling knowledge-intensive
processes.

13

2. Theoretical Background

2.1.1. Knowledge

In order to explain the term Knowledge Work it is important to start with the actual
definition of the word knowledge and how it differs from related terms such as
information or data. Data can be considered as a set of characters that is following
the rules of a predefined syntax (e.g. English language, a mathematical formula).
The fact that the data is materialized in a certain form and with a syntax does not
make it information yet. It is the process of putting the data at hand into a context,
which creates actual information that is useful to a person. The most significant part
is the creation of knowledge from the available information. This step involves the
integration of the information, making it relevant to the person that processes the
information. This relationship is illustrated in figure 2.1. The knowledge-creation
process can be seen as linear and a specific action is the facilitator between two

Integration

levels within the process.

Character Set

Figure 2.1.: How knowledge is created. Author’s own compilation based on Re-
huser, Krcmar 1996 [35]

Knowledge is strongly connected to a person and that person’s ability to put
information into context. A good example to explain this is a kid in primary school.
It is able to read and process information that it considers relevant, but if that kid
is shown a complex formula used in theoretical computer science, it will most
likely not be able to make use of that information. This would lead to a processing
of information without the creation of knowledge, as the contextualization is not
possible in this case (i.e. the school-kid does not know anything about informatics).

Nonaka and Takeuchi, 1995 nonakal995knowledge state that knowledge can
only exist in the context of a person and that person’s beliefs and experience.
Davenport and Prusak support this view of knowledge by giving the following

definition:

Knowledge: "Knowledge is a fluid mix of framed experience, values, con-
textual information, and expert insight that provides a framework for eval-

14

2.1. Knowledge Work

uating and incorporating new experiences and information” [3].

The differentiation between tacit and explicit knowledge is used by Polanyi
[33], in order to describe the ways in which knowledge can exist. While explicit
knowledge is easy to grasp and can be documented and distributed using an
appropriate way of codification, tacit knowledge resembles personal and context-
specific knowledge which is hard to formalize. Both terms are not exclusive and
explicit knowledge can be considered a part of tacit knowledge which can be
externalized (cf. [25, 12]).

2.1.2. Knowledge Work Definition

With the detailed definition of knowledge in the previous section, it is now possible
to define the scope of knowledge work and to demonstrate how it differs from
other types of work. Knowledge Work is strongly connected to the tacit part of
knowledge that was previously discussed, which cannot be easily extracted and
documented. It should also be noted that the literature on Knowledge Work often
states that it is sometimes difficult to define a certain area of work as exclusively
knowledge intensive and there are often different opinions about what can be
assigned to Knowledge Work.

One approach to better classify knowledge work, as proposed by Hube [15], is
shown in Figure 2.2. There are two dimensions which best describe the amount of
knowledge work in a specific process. On the one hand, the novelty of the required
tasks to complete a unit of work measures how much that process differs from its
predecessors. With an increase in novelty, the need for new approaches to complete
the work rises. On the other hand, the complexity of the work can measure the
level of expertise needed. A combination of work with a high degree of novelty
and complexity is the area where most processes can be classified as knowledge
work. It should be noted that knowledge work can be found in any combination of
the two dimensions. Nevertheless, it is important to be aware of the key indicators
that define the degree of knowledge work.

De Man at Cordys [4] uses a different approach by defining three categories to
rank cases according to their need for special knowledge.

* Mass cases The traditional view of a process. It allows a workflow manage-
ment system to fully automate and manage all activities executed.

15

2. Theoretical Background

Novelty A
of Work
S Primary Area of
£ Knowledge Work
% Rarely Knowledge
= Work
low high Complexity

of Work

Figure 2.2.: Different areas of knowledge work. Author’s own compilation based
on Hube, 1995 [15]

* Regular cases A process that involves the knowledge of human workers, but
which has certain constraints such as business rules that might restrict certain
activities from being executed.

* Special cases These processes are defined by a high degree of freedom and
an application does not restrict the user’s actions but is used for support. A
high degree of knowledge is required to execute these activities that are often
unique during each iteration.

The term case is discussed more thoroughly throughout the next chapters and
plays an important role in the theory behind knowledge intensive processes. While
the categorization of different business processes may differ a lot in literature, the
above classifications help understand the different types of processes that may exist
within a company’s environment. The latter two cases are both defined by their
high degree of knowledge that is at least partially required.

16

2.1. Knowledge Work

2.1.3. Knowledge Workers

Now that a clear definition of knowledge work has been outlined, it is important to
look at the people that are doing the actual knowledge work. In the literature they
are commonly referred to as knowledge workers for which Davenport gives the
following definition:

Knowledge Worker: "Knowledge workers have high degrees of expertise,
education, or experience, and the primary purpose of their jobs involves
the creation, distribution, or application of knowledge” [3].

This definition of knowledge workers shows that knowledge workers are often
found in areas where people have a high degree of qualification. This includes but is
not limited to knowledge-intensive industries. A manager in basically any company
can be considered a knowledge worker, as well as engineers and researchers in
industrial companies [3]. The fact that virtually any person doing work that requires
special knowledge can be considered a knowledge worker, makes it hard to set the
limits of what is still knowledge work. It is also important to note that there is an
increasing number of jobs that require special knowledge nowadays [3]. In order
to still distinguish them, Drucker defines a knowledge worker as “someone who
knows more about his or her job than anyone else in the organization” [8].

Another important aspect to consider is a knowledge workers way of doing
work. As there is often a lot of expert knowledge involved, a typical knowledge
worker might consider restrictions in a process as obstacles rather than assistance.
As workflow management systems, which are discussed in the following chap-
ters, rely heavily on such restrictions to model a business process, a knowledge
workers attitude towards such a system might be influenced a lot depending on
the consideration of knowledge work within a contemporary process modeling
application.

2.1.4. Knowledge-intensive Processes

As this thesis is especially focused on knowledge-intensive processes it is also
necessary to specify the characteristics of it. This is particularly important, because
not every task executed by a knowledge worker has to be also knowledge-intensive.

17

2. Theoretical Background

An important indicator of the importance of handling knowledge-intensive pro-
cesses adequately is the development of knowledge work over the course of time.
Figure 2.3 shows this development. In the past, most processes could not be at-
tributed to knowledge work as they mainly contained physical tasks. Nowadays
this condition has changed to the opposite with machines doing most of the physi-
cal activities, while human workers can focus on tasks which require their expert
knowledge.

>
L

Percentage of value-chain

\ 4

Time

Figure 2.3.: The role of knowledge work in the economy. Author’s own compilation
based on Pfiffner and Stadelmann 2012 [32]

The general understanding of a knowledge-intensive process in this thesis is
a process which includes activities that require human expertise in order to be
completed sufficiently. Furthermore, these activities are often unique in nature
and usually require a different approach during each iteration. Such processes rely
on human input in a special way, making it hard to predefine a set of activities
that reliably lead to their completion. Thus, it is also not possible to generate a
control-flow which is used by contemporary workflow management systems.

Ciccio et al. give the following definition for Knowledge-intensive Processes:

Knowledge-intensive Processes 1: “Processes are defined knowledge-intensive
when people/agents carry them out in a fair degree of “uncertainty”, where
the uncertainty depends on different factors, such as the high number of
tasks to be represented, their unpredictable nature, or their dependency

18

2.1. Knowledge Work

on the scenario. In the worst case, there is no pre-defined view of the
knowledge-intensive process, and tasks are mainly discovered as the pro-
cess unfolds” [5].

This definition shows that the main attribute of knowledge-intensive processes
is their uniqueness. In [6] they mention that their understanding of Knowledge-
intensive Processes is best described by the definition given by Vaculin et al. which
focuses on the data-centricity:

Knowledge-intensive Processes 2: "Processes whose conduct and execu-
tion are heavily dependent on knowledge workers performing various
interconnected knowledge intensive decision making tasks. KiPs are gen-
uinely knowledge, information and data centric and require substantial
flexibility at design- and run-time” [42].

In this more recent work, the authors also extract a set of characteristics of
Knowledge-intensive Processes [6]:

* Knowledge-driven Data and knowledge influence the process and human

decision making.

* Collaboration oriented Processes usually involve a number of people that
work together. Process participants usually have different roles.

* Unpredictable Activities within a process can change or be replaced at any
given time. This can be the case at design-time, during execution or among
different instances of a process.

* Emergent These types of processes cannot be defined beforehand and usually

emerge over time as more and more information becomes available.

* Goal-oriented Instead of focusing on the execution of specific activities, the
process is defined by goals that lead to the completion of it.

* Event-driven Different events occurring during the run-time of the process
define the nature of its execution.

19

2. Theoretical Background

* Constraint- and rule-driven The processes may have some rules that define
the way in which they can be executed.

* Non-repeatable Single instances of such processes usually differ from other
instances in a way making it hard to predefine a control-flow.

While they can have attributes that show certain patterns it is much more likely
that parts of the process are entirely unique to an iteration. A control-flow as it
is used in contemporary workflow management solutions usually doesn’t leave
room for maintainability. For that reason, a lot of research has been conducted by
experts in the area of process modeling, in order to come up with methods that are
specifically designed to handle knowledge-intensive processes. This issue will be
addresses in the following parts of this work.

2.2. Declarative Processes

The goal of this section is to show why declarative processes play an important role
when trying to model knowledge-driven environments. In order to understand
what declarative processes are, it is important to first look at their counterpart:
imperative processes. Examples will be taken from software development as similar
concepts also exist in programming. Fahland et al. [9] support this approach as they
also see many similarities and did not encounter any strong counter arguments.

In programming, imperative programming styles are concerned with specifi-
cally how an application or method is executed. O’Regan provides the following
description:

Imperative Programming: “"Imperative programming is a programming
style that describes computation in terms of a program state and statements
that change the program state. [...] Similarly, imperative programming con-
sists of a set of commands to be executed on the computer and is therefore
concerned with how the program will be executed. The execution of an
imperative command generally results in a change of state” [27].

The term imperative implies that the programmer is aware of the underlying
logic to achieve a certain task, providing the specific functions on his own. This

20

2.2. Declarative Processes

stands in contrast to the declarative programming style which rather “involves
stating what is to be computed, but not necessarily how it is to be computed” [20].

Both terms can be compared to the two types of processes discussed in the
previous chapters. The imperative programming paradigm can be compared to
Business Process Modeling (BPM), as the modeled processes are also specified in
an imperative manner. The different stages within such a process usually come
with a predefined order and contain a lot of information on how to perform its
different task to reach the specified goal. Declarative programming on the other
hand has strong similarities to knowledge-intensive processes in terms of goal
specification. As such processes are executed by experts, they predominantly
contain less information on how to achieve a certain task within the processes,
but rather leave it up to the knowledge worker to decide how to tackle a specific
problem. It is the final objective of the process that defines the actions taken by the
people involved.

2.2.1. Imperative Process Models

Traditionally business processes were modeled using a strictly imperative approach.
Workflow management systems assist a user by providing data derived directly
from an underlying control-flow. The user of such an application is usually not able
to make local decision and needs to follow the strict order of tasks. These types of
process models can be categorized as imperative due to their explicit nature.

Fahland et al. [9] argue that an imperative process model is most suitable for
repetitive processes that contain very little circumstantial information. “Given two
semantically equivalent process models, establishing sequential information will be
easier on the basis of a model that is created with the process modeling language
that is relatively more imperative in nature” [9].

2.2.2. Declarative Process Models

Pesic [30] argues that business processes have two opposing properties. On the
one side flexibility is seen as the possibility for users (the people who execute such
processes) to make ad-hoc “local” decisions during execution. Such decisions are
random and do not necessarily follow a certain pattern. On the other side support
is the enforcement of centralized decisions which a system uses to guide a user and
to create a set of predefined boundaries.

21

2. Theoretical Background

According to Pesic, the two extreme types of business process management (BPM)
systems are groupware and workflow management systems. While groupware
tools offer high flexibility they usually lack the support that is sometimes necessary
to efficiently work on certain problems that are still highly unstructured. Workflow
management systems on the other hand usually expose users to problems that
come with a large amount of predefined rules and constraints, making it hard to
individualize ones approach.

As a means of finding an optimal way to support knowledge intensive processes,
the challenge is to find a way to combine the two opposing sides in a way that
is suitable to solve highly unstructured problems. As a possible solution, Pesic
proposes the approach of declarative process models in which the main focus
is on the overall objective rather than the specific subtasks that are part of the
process. This is in contrast to the traditional control-flow model of workflow
management systems, which define the order of tasks making the users stick to the
order “explicitly specified in the control-flow” [30].

The need for a declarative process model becomes obvious, when looking at
todays knowledge-intensive business processes which often have a high level of
unpredictability. This view is also supported by Fahland et al. who propose that
"“establishing circumstantial information will be easier on the basis of the model that
is created with the process modeling language that is relatively more declarative in
nature” [9]. In many cases, it is not the control-flow that is previously available to
the user but a certain set of constraints that sets the boundaries of the process. Pesic
categorizes the activities executed throughout the life-cycle of a process into three
distinct groups:

¢ Forbidden scenarios

Even with the process being highly unstructured and sometimes unpre-
dictable, there are scenarios which can still be explicitly excluded from the
model. Those scenarios are outside the boundaries of the business process
and are never considered throughout the execution. The forbidden scenarios
resemble the constraints of a business process in the constraint-based process
models as opposed to the traditional model which predefines what is possible.

¢ Optional scenarios

Optional scenarios are not part of the core process, but can be applied if
necessary. As they are optional scenarios, they are part of the process and lie

22

2.2. Declarative Processes

within the boundaries of the constraint-based approach which is in contrast
to the traditional approach..

¢ Allowed scenarios

The allowed scenarios represent the core features of a process, and can be
executed whenever necessary. There is no explicit order, leaving the actual
control-flow up to the user, which creates a high level of flexibility. Further-
more it is not necessary for a user to go through all allowed scenarios. Instead
a substantial subset of those scenarios represents the anticipated outcome of a
process execution.

Figure 2.4 shows the difference between the traditional approach and the declar-
ative one. The traditional, imperative process contains a predefined control-flow
that gives the user a lot of support, while restricting the actions to the boundaries
defined at design-time.

|| forbidden
D optional
D allowed

(a) forbidden, optional and allowed
in business processes

(b) traditional approach (c) constraint-based approach
Figure 2.4.: Imperative and declarative approach [29].

Applying the three scenarios explained, the declarative or constraint-based ap-
proach uses these different types of scenarios to define more natural boundaries.
While the forbidden ones, which were extracted at design time, cannot be executed
by the user, there are no other artificial restrictions. The users are free to execute
tasks at their discretion, which offers a lot of flexibility.

23

2. Theoretical Background

2.3. CMMN

With the intention “to supplement the procedural perspective of BPMN" [22] the
Object Management Group (OMG) has released the Case Management Model and
Notation (CMMN) 1.0 specification in May, 2014 five years after the initial request
for proposal (RFP) in 2009. CMMN differs from other business process modelling
notations due to its focus on data. Furthermore, the specification incorporates the
aforementioned declarative process modelling approach. This chapter focuses on
the detailed analysis of the specification, evaluating some of the key elements and
features. It also explains the problems users of contemporary modeling languages
faced and how case management attempts to solve them.

2.3.1. Case Management

Case management or case handling was introduced due to the fact that experts in
the field criticized the restrictive nature of contemporary workflow management
systems. According to van der Aalst et al. [44] this results in a lack of flexibility
and consequently also usability. The authors highlight four problems that arise as a
result of this restrictiveness:

e Atomic activities

Since a workflow management system considers activities performed by a user
to be atomic, there is no possibility to handle activities that aren’t. Sometimes
activities are handled by users in a much more detailed and complex way, but
due to the requirements of workflow management systems need to be turned

into atomic ones.

* Routing for distribution and authorization

Generally, contemporary workflow management systems distribute work
according to the level of authorization of its users. While this approach is
useful for distributing activities only to users that have the right privilege it
lacks a strategy to distribute work using different logic. For example, a person
with a high authorization level does not necessarily need to see all the work
he is allowed to view.

* Context tunneling

24

2.3. CMMN

The context of the actual business case handled by a workflow is not at the
center of attention since the focus is on the underlying activities.

¢ Implicitness

Activities within the control flow are considered essential to the process. For
that reason, users are forced to complete those activities in order to complete
the workflow. This results in a decrease in flexibility.

As a result van der Aalst et al. “propose case handling as a new paradigm for
supporting knowledge-intensive business processes” [44]. Addressing the problems
mentioned, the authors come up with the following core features of case handling;:

* Context tunneling prevention

Preventing the user from losing focus due to an inappropriate integration of
the actual case handled.

* Using available information

Determining the order of execution by using the information available instead
of just following a pre-specified order of activities.

* Roles

Making use of multiple roles such that it is possible to efficiently and appro-
priately distribute information to the right resources.

¢ Always allow process alteration

Allowing users to add and change information at any given time, to allow for
more flexibility.

The result of this problem analysis is the proposition of a new case handling
paradigm that consists of a case as the central component. This case contains a
number of activities that users can execute. A major difference to contemporary
workflow management systems is the non-atomic way in which those activities
are specified. This was one of the major problems quoted above. The process is the
representation of the connections between such activities. The authors discourage
the use of too many precedence relations as they take away much of the flexibility
a knowledge worker expects. Furthermore the authors state thate a knowledge-
intensive process is “based on a collection of data objects”[44].

25

2. Theoretical Background

Another integral part of case management is the supporting use of roles. Van der
Aalst. et al. refer to these roles as actors that have certain abilities at their disposal:

e Execute role
e Redo role
* Skip role

The roles can be set for each activity according to its specific requirements [44].
The main differences between contemporary workflow management systems
and the case handling paradigm as proposed by [44] are outlined in Table 2.1.

Workflow management Case handling

Focus Work-item Whole case
Primary driver Control flow Case data
Separation of case data

o Yes No
and distribution
Separation of authorization
P o No Yes
and distribution
Types of roles associated)
yp Execute Execute, Skip, Redo

with tasks

Table 2.1.: The differences between workflow management and case handling. Au-
thor’s own compilation based on van der Aalst et al., 2005 [44]

2.3.2. Origin of the Specification

The need for a new specification to meet the demands of modern business processes
has been growing recently. As these processes often have certain attributes such
as a weak structure and a high grade of uniqueness, traditional languages do not
offer the required flexibility. For that reason, the OMG filed a request for proposal
in 2009 to define a standard [22]. Experts in the field have reinforced the need for
a different modeling approach for knowledge-intensive business processes years
before the RFP and the official release of CMMN. For example, the work of van der
Aalst et al. [44] on the aforementioned case handling deals with the problems of
most contemporary workflow management systems.

26

2.3. CMMN

Another important contribution that does not directly refer to case management
was the introduction of Business Artefacts at IBM Systems by Nigam and Caswell
[24] in 2003. These business artifacts as opposed to business objects “model the
lifecycle aspect” [21] which supports the view of a knowledge-intensive process
as a case. Marin et al. [21] also argue that the Adaptive Documents (ADocs)
introduced by Kumaran et al. [18] show many similarities to Business Artifacts.
Even though these concepts are not always explicitly mentioning case management,
they illustrate the growing need for a new paradigm throughout the past decade.

According to Marin et al. [21] another important development towards the
introduction of CMMN was the shift from a strictly procedural to a more declarative
lifecycle model. They refer to Vortex [16] which was introduced in 1999 as being
the first data-centric framework which “supports highly flexible workflows” [21].
Because of the specific development of Vortex for “personalization applications
in call routing and web store fronts” [21], the introduction of the guard-stage-
milestone (GSM) approach can be viewed as a generalized specification of the
features included in Vortex, which contains less restrictions. Due to the active
participation of the creators of the aforementioned specifications, such as IBM and
Cordys, many features have found their way into the final version of CMMN. An
example for this is the behavioral model of GSM which is used in CMMN as well
(cf. [21]).

2.3.3. Target Users

Just like other business process modeling languages, CMMN is intended for pro-
fessional users. While knowledge workers without specific expertise can create
Case models on their own, the actual task of extracting an optimized version using
multiple cases is intended for advanced users. The official CMMN 1.0 document
states that “business analysts are the anticipated users of Case management tools
for capturing and formalizing repeatable patterns of common Tasks, EventListeners,
and Milestones into a Case model. A new Case model may be defined as entirely at
the discretion of human participants initially, but it should be expected to evolve as
repeatable patterns and best practices emerge” [26].

This shows the presence of two different groups of users. The case workers on the
one hand, execute a process and keep adding information by creating information
items in CMMN whenever they need to. The professional case modelers on the
other hand try to make use of the various versions created by the case workers

27

2. Theoretical Background

continuously improve the process by extracting patterns.

2.3.4. Structure of the Notation

This section focuses on the introduction of the structure of CMMN. Some of the
specifications most important meta-models are used to explain the theory behind
the notation. While looking at the outermost structure of CMMN on the one hand,
the most important underlying components are analyzed thoroughly on the other.

Core and Case Model Elements

As shown in Figure 2.5, the Definitions class is the containing object of all elements,
while Definitions inherits from CMMNElement, making each object in CMMN
related to it. Generally, the definition of an object can be regarded as its basic
information containing things such as namespace, creation date, and author.

The Import class is used for referencing external type definitions. This makes
it possible for the CaseFileltemDefinition to reference these external elements. The
document of the specification does not provide a list for supported types but uses
XSD as an example, indicating that it should be the most commonly used.

A Case is the class that represents its equivalent in Case management. While it
contains information on its associated roles and defines the case’s name, it also
has optional input and output Parameters which enable other cases to make use
of the information produced by it. This can be compared to the input and return
parameters of methods in a programming language.

Information Model Elements

Each Case contains exactly one CaseFile and one casePlanModel, which is explained
below. Stages, which will be analyzed further in the next chapter, can be regarded
as container elements which help structuring a Case. The outermost Stage of a Case
is defined as its casePlanModel.

Roles are important feature of CMMN. As already mentioned by van der Aalst
et al. [44], they are necessary to provide context specific information for the right
resources efficiently. In the specification they are designed to authorize case workers
or a group of them to execute HumanTasks and to raise user events.

The document of the specification uses Doctor, Patient and Nurse as example
roles to illustrate the different types of authority and case specific knowledge.

28

2.3. CMMN

(CMMN Definitions

CMMNElement

+id : String
+ description : String

i
+ name : String ’Lorts + name : String

+ targetNamespace : URI 1 0..* + importType : String
+ expressionLanguage : URI + location : String

+ exporter : String + namespace : URI
+ exporterVersion : String
+ author: String

+ creationDate : DateTime

0.1
0.*
CaseFileltemDefinition
+ caseF\IeltemDefmmons_ + properties Property
o

+ name : String .1 0.*

+ definitionType : URI
+ structureRef : QName

+ cases Case
o —|
1 0.*

+ name : String

+ processes Process
@ ——
1 0.*

+ name : String
+ implementationType : URI

1 0.* + name : String

+ type : URI

Figure 2.5.: The main class diagram of the CMMN specification. Author’s own
compilation based on [26].

In CMMN the information model is an essential element of the specification,
which is mainly due to its data-centric nature. It contains all the classes required to
manage information, or data, that is part of a Case. Its main elements can be seen in
Figure 2.7.

A CaseFileltemDefinition’s relation to a CaseFileltem is comparable to the relation of
all elements to the global Definitions class. Each Case consists of exactly one CaseFile
which contains all the information added to that case. The CaseFile being a single
element, can contain many CaseFileltems. The document of the specification gives
the following definition for a CaseFileltem:

CaseFileltem: ”A CaseFileltem may represent a piece of information of any
nature, ranging from unstructured to structured, and from simple to com-
plex, which information can be defined based on any information modeling

29

2. Theoretical Background

CMMN Case
CMMNElement
+id : String
+ description : String
CaseFile +caseFileModel +case NoRRY) Role
Jcase +caseRoles
! + name : String 1 1 + name : String
+case +casePlanModel Stage
1 1
0.1 0.1
+inputs [o« +outputs [o «
CaseParameter
J

Figure 2.6.: The relations of the Case class in CMMN. Author’s own compilation

based on [26].

CMMNElement

+id : String
+ description : String

CMMN CaseFile

CaseFile +caseFileltems (&EEEFIEIETY]

0.1 1* 4+ name : String
+ multiplicity : MultiplicityEnum
+children
0.

+sourceRef
+parent § 0-1

<<enumeration>>

MultiplicityEnum
ZeroOrOne
ZeroOrMore
ExactlyOne
OneOrMore
Unspecified
Unknown

G CaseFileltemDefinition

0.* 1
+ name : String
+ definitionType : URI
+ structureRef : QName
0.*
+targetRefs
0.1

+importRef

+ name : String

+ importType : String
+ location : String

+ namespace : URI

Figure 2.7.: The elements of the information model in CMMN. Author’s own com-

pilation based on [26].

30

2.3. CMMN

language. A CaseFileltem can be anything from a folder or document stored
in CMIS, an entire folder hierarchy referring or containing other CaseFilelt-
ems, or simply an XML document with a given structure. The structure, as
well as the language (or format) to define the structure, is defined by the
associated CaseFileltemDefinition” [26].

It is part of CMMN’s flexible nature to not specify the format of a file further.
For that reason a CaseFile can be compared to a folder on a file system, which can
contain virtually any format as files.

Plan Model Elements

The casePlanModel previously mentioned contains the elements of both, the initial
structure of the case as well as those created throughout its continuous adaption dur-
ing run-time. As already mentioned, a casePlanModel is regarded as the outermost
Stage which “represents a recursive concept” [26].

The PlanltemDefinition is an abstract class as depicted in Figure 2.8. It is used to
construct Case plans. It contains some of CMMNs core elements such as EventLis-
teners, Milestones, Tasks and Stages. The PlanltemControl shown in Figure 2.8 is used
to specify control data.

The EventListener class as shown in Figure 2.8 handles the events which occur
during the run-time of a Case. Such events can be the changing of the state of a Task
or Stage as well as the completion of a Milestone.

In CMMN there are natural “standard events” (cf. [26]) which can be activities
such as the alteration of information within the CaseFile. These ”standard events”
represent transitions in the lifecycle defined by CMMN and are handled by Sentries.
The EventListener class is intended to handle those events that are not within the
boundaries of a Sentry.

The EventListener class has two subclasses which are used to differentiate between
two types of events:

» UserEventListener: The UserEventListener catches events that are triggered by
the users working on the Case.

o TimerEventListener: The TimerEventListener catches events that are triggered
according to a previously defined timer.

31

2. Theoretical Background

CMMN PlanltemDefinition

CMMNElement

+id : String
+ description : String

i

PlanltemDefinition PlanltemControl
+defaultControl

+ name : String 0.1 0.1

PlanFragment EventListener

Figure 2.8.: Plan items in CMMN [26].

The Milestone class represents a target, which can be achieved by a section of the
Case. It is used to calculate the progress of a Case at run-time. Next to the trivial
connection of a Milestone with the completion of multiple Tasks, it is also possible
to connect a Milestone with information contained in the CaseFile. As soon as this
deliverable is available, the Milestone is marked as achieved.

A Planltem refers to a PlanltemDefinition and is the result of the extraction of
patterns. This is usually the case when a best-practice has been discovered in a set of
process iterations. Planltems can be part of PlanFragments which represent patterns
such as a sequence of two Planltems. A Sentry indicates a possible dependency of
two Planltems within a PlanFragment.

Sentries handle various combinations of events and conditions. In CMMN an
event is handled by an OnPart while a condition is handled by an IfPart. The
following three scenarios are possible:

e If an event occurs, a certain condition is evaluated. If the condition evaluates
to true the action of the Sentry is executed.

* An event occurs which enables a Sentry. No condition is necessary.

* A condition evaluates to true enabling the Sentry. No event is necessary.

32

2.3. CMMN

A Sentry always refers to a Planltem. It can be either at the entry or exit point of a
Planltem. This will result in a Task or Stage being enabled or flagged as complete
respectively.

The two classes that case workers will use primarily to structure and add infor-
mation are Stages and Tasks. As mentioned before, a Stage is used to order and group
items while Tasks represent single “atomic” units of work. Both are explained in
detail below.

2.3.5. Visual Elements of the Notation

As mentioned in the previous sections, a big part of the CMMN specification
has its roots in the literature and the resulting technologies discussed. One of
the most important features is the “clear separation in CMMN between the case
folder (information model) and the case behavioral model (lifecycle)” [21]. This
section is focused on the analysis of the most important visual elements within the
CMMN specification as defined by the Object Management Group. It is important
to note that some of the elements in CMMN are discussed in detail while others
are intentionally left out or have been described in detail in the previous chapter.
The official document by the OMG [26] contains a detailed list of every available
element of the specification.

Visual Components

As per CMMN specification, only the behavioral model is depicted using model
elements. The information model is only visible if it is directly connected to the
behavior of a case (i.e. CaseFileltem).

The main element in CMMN which specifies the process, which is being handled
is a Case. The OMG defines a case as “a proceeding that involves actions taken
regarding a subject in a particular situation to achieve a desired outcome” [26]. An
important attribute of a case is its independent nature, making any iteration over it
potentially unique.

In CMMN, a case is modeled using the CasePlanModel shape as shown in Figure
2.9, which resembles a folder specifying the boundaries of a case. As mentioned
in the previous section, the CasePlanModel is “the outermost Stage that can be
defined for a Case” [26].

With the CasePlanModel being the outermost element in CMMN, the Stage, which

33

2. Theoretical Background

[<CaseName> \

Figure 2.9.: The CasePlanModel shape [26].

is shown in Figure 2.10, is another important element, which is primarily used to
group activities of a process. The specification also defines an option to collapse

am

and expand a stage indicated by a ”-” and ”+” icon respectively.

Figure 2.10.: A stage in its expanded state [26].

A Task in CMMN is defined as “an atomic unit of work” [26]. While a stage
can contain many tasks, a task is seen as an atomic activity that does not require a
further division. Due to the amount of possible tasks, different types exist in order
to specify the content of a task. Human tasks define tasks that are executed by a case
worker. An example of a human task is depicted in Figure 2.11.

3

Figure 2.11.: An example of a human task [26].

Furthermore, tasks can also be case tasks, which are a reference to another case,
and process tasks, which represent a reference to another business process. In CMMN,

34

2.3. CMMN

a process is an abstract representation of a model from another language such as
BPMN, XPDL or BPEL.

Stages and tasks can be both plan items and discretionary items according to
the CMMN specification. While plan items are considered items that are already
known during the design-phase, discretionary items can be executed at the case
workers discretion. Thus, plan items can be considered the result of an analysis of
best-practices, while discretionary items are left open for the case worker to decide
if they are necessary. A dashed borderline is used in CMMN to indicate that an
element is discretionary.

In order to visualize dependencies between two stages or tasks, CMMN uses
connectors which are represented by dashed lines as shown in Figure 2.12. The white
diamond shaped element is a sentry which specifies that the task has a dependency
and is cannot be completed. In the case of Figure 2.12 Task B depends on Task A
and is waiting for its completion.

Figure 2.12.: Dependency between two tasks using connector and sentry [26].

Making use of connectors and sentries, it is possible to model common depen-
dencies such as AND (see Figure 2.13) and OR (see Figure 2.16). The exclamation
mark, which can be seen on the tasks represents a CMMN decorator marking a task
or stage as required. There exist various decorators in CMMN, which are described
in detail within the specification.

Other important elements included in the CMMN specification are event listeners,
which wait for a timer or user event to occur, and milestones which have a specified
number of entry criteria which indicate dependencies that need to be completed
in order to finish them. As already mentioned in the previous section, either a
timer or a human event can trigger event listeners. Figure 2.14 shows the visual
representation of the the two types of EventListeners.

Milestones indicate the target of a section within the process. In Figure the connec-
tion of a milestone with a Task is shown.

The elements introduced represent the majority of items contained in CMMN.
Their goal is to enable modelers to visualize cases of many different kinds. It is

35

2. Theoretical Background

Task A feereene)

Task B feereees .

Figure 2.13.: AND dependency using connectors [26].

8 @

Figure 2.14.: Visual components to show presence of a TimerEventListener and
UserEventListener [26].

{ Mllestone A ' Task A

Figure 2.15.: A milestone connected to a Task. [26].

important to have an overview of the different elements contained in the CMMN
specification to understand the concepts discussed throughout the course of this
work.

36

2.3. CMMN

Task A
| D B ()
TaskC
....... ’ '
Task B freveess

Figure 2.16.: OR dependency using connectors [26].

Use Case Example

An example of an actual case modeled in CMMN is the claims management example
shown in Figure 2.17. It contains the majority of CMMN elements introduced and
illustrates how they can be used to model a knowledge-intensive process. This
section looks at this example in detail to explain the key elements in detail.

The Claims File represents the casePlanModel as well as the outermost Stage of
the Case. The fact that it is used as a file rather than a process shows the focus
on case management. With regard to the control-flow it can also be observed that
the focus is not on the sequential ordering of the different activities like in other
modeling languages, but rather on the input of data and the triggering of related
events. The use of the casePlanModel as a Stage allows modelers to directly connect
elements such as events and milestones to it. In Figure 2.17 this can be observed
looking at the UserEventListener and Milestone (”Claims Processed”), which are
directly connected to the casePlanModel.

The example also shows the use of Stages for the grouping of Tasks that belong
to the same set of activities. The use of plan and discretionary tasks shows how it is
possible to leave certain activities for the case worker to decide. The ProcessTask
Request Missing Documents for example is only necessary if there are documents
missing. By making that task discretionary it does not stop a case worker from
leaving it open but is available as soon as it is required.

Process tasks such as Identify Responsibilities indicate that its execution leads to
another workflow like BPMN. This gives CMMN the ability to reference a complex
process using the expressive power of other modeling languages whenever suitable.

37

2. Theoretical Background

’ Claims File \

jmmn
Identlfy Responsibilities N e e e m———

2 :

-0 Responsibilities '} _ _ __ __ 0 Change :

o ! Identified Responsibilities |
Identify ; ! ¥)

Responsibilities ’

Attach Base Information

ﬁ
o
A
™
w
w
a)
&,
3
w
_Q\

|
Review !
Documents |
g R o e] I

[

Create
Letter

ORI SSapp—

Figure 2.17.: Claims management example from the CMMN specification using
most CMMN elements introduced [26].

Similarly, the task Create Claim is a CaseTask, which refers to another CMMN case.
This is useful when the execution of a task has been modeled in CMMN as well.
Another aspect, which can be observed is the fact that connectors in CMMN can
be used to create dependencies between many different elements. Good examples
for this are the connection of a HumanTask with the Claims Processed milestone and
the connection of the Base Information Attached milestone with the Create Claim task.
This enables case modelers to create complex relations between a variety of CMMN

elements.

38

3. Related Work

This chapter picks up the terms introduced in the previous chapter and focuses on
the analysis of the scientific work related to them. Due to the recency of the topic,
this is particularly important as the analysis serves as a basis for the approach used
in the following chapters of this thesis. The goal is to create a timeline of the events
that ultimately resulted in the release of CMMN 1.0. This also includes events that
have indirectly contributed to the research on case management.

3.1. Process Models Supporting Knowledge Workers

Throughout the last two decades there has been a lot of research on process model-
ing languages that meet the requirements modern knowledge workers have. Many
researchers have come up with new methods to model processes with a weak
structure. This section combines some of the most notable work that has led to the
invention of case management and ultimately the release of CMMN.

One of the main issues researchers had with the approach of contemporary
process modeling languages such as BPMN was their attempt provide a notation
that is capable of modeling even the most complex of structures within buiness
processes. This can be regarded as one of the main reasons for experts in the area
to extract simplified versions of BPMN 1.2 (cf. [41], [49], [50]). Theses simplified
versions, which were basically subsets of the more complex parent, needed to exist
in order to allow modelers to actively use them in their area of expertise.

Due to this key problem with contemporary modeling languages, Fahland et. al
[9] raised the issue of understandability. They argue that there has not been enough
research on the understandability of process modeling languages, which leads to
new specifications being released in order to address certain issues not properly
handled in a similar language. They conclude with a set of two propositions:

* Proposition 1. Given two semantically equivalent process models, establish-
ing sequential information will be easier on the basis of the model that is

39

3. Related Work

created with the process modeling language that is relatively more imperative
in nature.

* Proposition 2. Given two process models, establishing circumstantial infor-
mation will be easier on the basis of the model that is created with the process
modeling language that is relatively more declarative in nature. Establishing
circumstantial information will be easier on the basis of a declarative process
model than with an imperative process model. [9]

Given these two propositions, they can be regarded as an indicator for the suit-
ability of a process modeling language. Using the definition of knowledge-intensive
processes from the previous chapter, their information can be regarded as mainly
circumstantial. According to Proposition 2 by Fahland et al. this indicates that
a process model best suited for knowledge-workers should be a declarative one.
This issue is the focus of the discussion in the next section. While the propositions
by Fahland et al. should only be regarded as an initial analysis of the issue at
hand, they strongly support the opinion of many other researchers addressing this
problem.

3.2. Imperative vs. Declarative Process Models

An important aspect of the research focused on case management is the shift from
traditional process modeling which was mostly of an imperative nature towards a
more declarative approach. Most researchers focusing on case management and
knowledge-work refer to more declarative approaches, as they seem more suitable
for their attributes.

Pesic and van der Aalst for example have focused their research on finding
better approaches to handle knowledge-intensive processes (cf. [30], [29]). Figure
3.1 shows the major problem when finding the best way to support knowledge-
workers with their processes. The diagram shows the issue of finding an optimal
trade-off between flexibility on the one side and support on the other. Both sides
can be seen as extremes that influence the behavior of software systems according
to their paradigm.

Pesic [29] puts two different types of business process support systems on each
side of the area of conflict by contrasting groupware with workflow management
systems. The perception of groupware in his approach describes it as a software

40

3.2. Imperative vs. Declarative Process Models

system, which facilitates a lot of flexibility. Due to the very soft nature of such
systems, their focus is on giving the user the freedom of choice instead of guiding
them by using restrictions. In contrast to such non-restrictive systems, workflow
management systems are depicted as strict due to their excessive support of users.

The two opposing sides, according to Pesic, either support centralized or local
decision making. Centralized being the approach used by workflow management
systems, which define are central control-flow that is not adaptable during run-time
and local being the flexible paradigm pursued by groupware systems. The central
problem, which is addressed in his research, is that “"BPM systems force companies
to implement either centralized or local decision making, instead of allowing for an
optimal balance between the two” [29].

/N

+—

C

o

(o)
g 8 o
= 55
o T o
S e 3
o = o
(o)) o

—

X

S

o

=

~— e
>

‘soft’ common ‘hard’

optimal

Figure 3.1.: Finding the optimal combination of flexibility and support [29].

Pesic continues his work by looking at the two paradigms from another per-
spective, perceiving the control-flow based approach as the traditional and a less
restrictive, constraint-based approach as the more recent one.

The traditional approach uses a predefined control-flow that is within the limits
of what is possible, but also restricts the users by not allowing any variation that
makes use of resources outside those boundaries. This is an example for a strictly

41

3. Related Work

imperative paradigm, which can be found in various contemporary workflow
management systems.

In contrast to the traditional approach, the constraint-based approach does not
define the process using a pre-specified control-flow. It is rather a lose boundary
which only specifies a set of rules that define what is possible and what is forbidden.
While the forbidden activities can still be considered a boundary, the constraint-
based approach offers a lot of flexibility, as the user is able to make local decision
within the realm defined by the possible constraints, which are included, and the
forbidden activities, which are excluded from execution.

This analysis supports the view that current solutions for business process mod-
eling do not meet the needs of today’s knowledge-intensive processes. They either
support a very strict, control-flow based approach or a flexible one, which does
not provide any support to the user. One of the main objectives addressed in the
following chapters is to find an optimal ratio between those two opposing forces.

3.3. Complexity Measurement of CMMN

When analyzing business process modeling languages, complexity is an important
figure and can be considered an indicator of the applicability of the language in an
actual business environment.

As already mentioned, Fahland et al. discussed the issue of understandability of
process modeling languages. They criticize, that there has not been much research
on issues such as model understanding and model complexity [9]. Yet, some authors
claim the superiority of one modeling language over another. An example for this is
[28], which claims that BPMN has advantages over UML Activity Diagrams simply
because it ”is more conducive to the way business analysts model”. Fahland et al.
mention that this assumption is not necessarily incorrect, but argue that it is not
based on a specific theory to support these kinds of statements (cf. [9]).

One possible solution to this issue of properly analyzing a business process
modeling language is to analyze its complexity and compare it to the complexity of
other languages competing in the same field. According to Siau and Rossi [38] there
are empirical and non-empirical techniques suitable for the analysis of modeling
languages. A non-empirical technique was proposed by Rossi and Brinkkemper
in [36]. Their meta-model-based method complexity analyses a process modeling
language by calculating the complexity of a model evaluating its meta-model.

42

3.3. Complexity Measurement of CMMN

Marin et al. [22] utilized this approach in order to compare the complexity of
CMMN with similar languages such as BPMN 1.2 and UML Activity Diagrams.
They argue that the majority of process modeling methods have overlapping func-
tionality, which results in a set of options modelers of business processes have. Even
though CMMN addresses case management in particular, the authors conclude that
it is still important to measure the complexity of CMMN and compare it to other
modeling techniques.

In order to calculate the complexity of the CMMN 1.0 specification, the authors
use the same subset of Rossi and Brinkkemper [36], which was already used by
Indulska et al. [17] to calculate the complexity of various subsets of the BPMN
specification and Recker et al. [34] to compare the complexity of BPMN with the
one of UML. Formula 3.1 was used to calculate the cumulative complexity.

C'(M) = \/n(Own)? +n(Rar)? +n(Par)? (3.1)
This formula calculates the complexity using the number of objects, relationships
and properties contained in the meta-model of the process modeling language with:

* n(Oy) being the number of objects in the method M
e n(Ry) being the number of relationships in the method A/

e n(Py) being the number of properties in the method M

The authors extracted 39 object types, four relationship types and 28 property
types. Using Formula 3.1 this results in a cumulative method complexity of 48.18.

This complexity was used by Marin et al. to compare CMMN 1.0 to other business
process modeling languages that have been evaluated using the same method. As
various subsets of BPMN 1.2 have been created for specific use-cases, they have been
included in the comparison. These are the BPMN versions by the U.S. Department
of Defense [41], as well as the subsets analyzed by zur Muehlen and Ho in their case
study [49] and the frequently used objects extracted by zur Muehlen and Recker
[50]. The results are shown in Table 3.1.

They show that BPMN 1.2 is the most complex of the modeling languages evalu-
ated, while EPCs and UML Activity diagrams are the least complex. The various
subsets of BPMN show that they manage to reduce the level of complexity. Most
importantly, CMMN 1.0 has a lower complexity than any of the four versions of

43

3. Related Work

Method Objects Relationships Properties Cumulatl've

Complexity
BPMN 1.2 90 6 143 169.07
BPMN 1.2 DoD 59 4 112 126.65
BPMN 1.2 Case Study 36 5 81 88.78
BPMN 1.2 Frequent Use 21 4 59 62.75
CMMN 1.0 39 4 28 48.18
EPC 15 5 11 19.26
UML 1.4 Activity 3 5 6 1118
Diagrams

Table 3.1.: Cumulative complexity of different business process modeling methods.
Author’s own compilation based on Marin et al., 2014 [22]

BPMN which can be considered an indicator for an improved understandability of
CMMN.

The results are visualized in Figure 3.2, which shows all process modeling lan-
guages, including the various subsets of BPMN 1.2, along the three dimensions.
This illustration highlights the difference in complexity between the different ap-
proaches and shows the general reduction achieved by creating subsets of a notation.
Nevertheless, these subsets of BPMN 1.2 still find themselves in the center of the
cube whereas the languages with the least complexity are found in the lower left
area of it.

While these results are a good way to get an understanding of the complexity
reduction, they can only be considered a starting point for further analyses. One
of the reasons for this is the difference of the languages compared. While sharing
some of the functionality there are key aspects of each language that distinguish
it from the others. Such differences might not get recognized using the metrics
applied in this approach.

Furthermore, the authors state that future research could focus on the extraction
of subsets based on the CMMN 1.0 specification (cf. [22]). This is one of the
key aspects of this thesis and will be discussed more thoroughly in the following
chapters.

44

3.3. Complexity Measurement of CMMN

200

BPMN

150

@ g
3 8 <
'8 - BPMNCS. 60 §
g
EPC BPMN DoD 5.5 ©
5 UMT o

0 CMMN ! 5.0

BPMN FU. 75
© + I + + + 4.0
0 50 100 150 200
Properties

Figure 3.2.: The cumulative complexity of CMMN compared to the other process
modeling notations in Table 3.1 in an Object-Relationship-Property cube.
Author’s own compilation based on Marin et al., 2014 [22].

45

3. Related Work

46

Part I1.

Supporting Knowledge-intensive
Processes with CMMN

47

4. Workflow Patterns

In their work on what the authors refer to as Workflow Patterns, van der Aalst et
al. [43] emphasize the importance of a common way to compare different business
process modeling techniques. They argue that ”if workflow specifications are to
be extended to meet newer processing requirements, control flow constructors
require a fundamental insight and analysis” [43]. Using this analysis, this chapter
focuses on the summary of basic workflow patterns as described by the authors
and the extraction of patterns that need to be part of an application supporting the
knowledge-work lifecycle. While the area of case management is focused more
on flexibility compared to contemporary workflow management systems, there
are still basic patterns, which need to be part of a software solution that supports
knowledge workers.

The following sections analyze some of the different patterns described by the
authors. Whenever possible, the same terminologies and methods of categorization
were used. These patterns can have different types of complexity and “range from
fairly simple constructs present in any workflow language to complex routing
primitives not supported by today’s generation of workflow management systems”
[43].

The main objective of this chapter is to use the analysis of different workflow
patterns in order to find a suitable subset of constraints to meet the requirements
of an application supporting Knowledge-intensive Processes. The two forces influ-
encing these requirements are the reduction of complexity on the one hand and the
creation of flexibility on the other. While these are not opposing forces, there are
some cases in which reasonable compromises are inevitable.

4.1. Control-Flow Patterns

In [37] Russel et al. mention the disparity between the control-flow patterns speci-
fied by a modeling language and the number of available patterns within a software

49

4. Workflow Patterns

implementation. As this section focuses especially on the original control-flow
pattern defined by van der Aalst et al. and the Workflow Patterns Initiative [43] it
is important to consider the ongoing changes concerning the different patterns. In
[37] this issue is addressed and the authors try to incorporate all the changes and
additions made to the original control-flow patterns.

The following sections analyze the available control-flow patterns in detail and
use the same means of categorizations as the authors of the original papers.

4.1.1. Basic Control-Flow Patterns

Basic control-flow patterns are typically very simple constructs, which users usually
expect to be available in any workflow management system. “They define the basic
modeling patterns of business processes” [47]. The most basic example for such a
construct is the creation of a sequence between multiple tasks, which results in the
creation of a hierarchy. A task, which has a predecessor, can only be executed once
the previous one has been completed. Basic constructs like this are discussed in this
secion.

Sequence

A Sequence, which is referred to as Sequential Routing in the specification of ter-
minologies by the Workflow Management Coalition [48], specifies the ordering of
activities in a sequential or hierarchical order. This pattern can be regarded as the
most basic one, representing a natural ordering of activities. In terms of CMMN
this would be the sequential ordering of Tasks or Stages, which can both be regarded
as activities, as they both contain information on what specific activity is to be
performed.

A motivation for the usage of this pattern is explained by Russel et al.: "The
Sequence pattern serves as the fundamental building block for workflow processes.
It is used to construct a series of consecutive activities, which execute in turn one
after the other” [37].

Figure 4.1 shows the implementation of a sequential structure using CMMN. The
notation uses Connectors and Sentries in order to create this basic control-flow.

50

4.1. Control-Flow Patterns

Figure 4.1.: Sequential ordering of two tasks using CMMN as specified by the
documentation of the Object Management Group [26].

Parallel Split

A Parallel Split pattern enables the concurrent execution of more than one activity,
by splitting the order of execution after the completion of an activity. It is also
referred to by [48] as AND-Split due to the possibility to execute two activities in
parallel. It is defined “as [...] a mechanism that will allow activities to be performed
concurrently, rather than serially. A single path through the process is split into
two or more paths so that two or more activities will start at the same time” [47].
According to [11] and [37] implicit as well as explicit implementations of this pattern
can be found. Both methods are used in recognized process modeling languages.

Synchronization

In order to synchronize two concurrent sequences, the Synchronization pattern
or AND-Join [48] combines multiple control-flows into one subsequent activity.
Just like the Parallel Split divides the process into two or more branches, the
Synchronization pattern is used to combine them at a later stage.

According to Atwood’s analysis of Workflow Patterns, “the Parallel Split and
Synchronization pattern speeds up the process by having the instance travel all the
parallel paths through it simultaneously” [1].

Multiple Choice

While the Parallel Split pattern focuses on the concurrent execution of multiple
branches, the Multiple Chose pattern does not need all branches to evaluate as
completed. It is also referred to by [48] as OR-Split, since either branch may allow
the overall process to continue. Nevertheless, this pattern is not restrictive as it also
allows multiple branches to be executed (see Exclusive Choice Pattern). According
to[43] the Multiple Choice pattern belongs to the group of patterns that do not

51

4. Workflow Patterns

have full support in all workflow engines, but occur frequently in real-life business

scenarios.

Multiple Merge

In order to provide a way of joining mutliple branches together, which were previ-
ously split by the Multiple Choice pattern, the Multiple Merge is used. “Sometimes
two or more parallel branches share the same ending. Instead of replicating this
(potentially complicated) process for every branch, a multi-merge can be used” [43].

Exclusive Choice

While the Parallel Split pattern does not specify which branch to execute and thus
requires the execution of all branches if necessary, the Exclusive Choice or XOR-Split
[48] creates multiple subsequent branches. It is only allowed for one of the branches
to be marked as completed for the process to continue with the successive activity.
The other parallel branches are no longer considered.

While the Parallel Split or the Multiple Choice patterns are not restrictive by
allowing various branches to be executed, the XOR-Split is an exclusive pattern,
limiting the execution of the process to just one branch. “The pattern is exclusive in
that only one of the alternative paths may be chosen for the Process to continue”
[47].

Simple Merge

The Simple Merge resembles the join operation for a previously instantiated XOR-
Split, which is why the Workflow Management Coalition refers to this pattern
as XOR-Join [48]. It enables two or more branches to collectively merge into a
subsequent activity. Just like the Exclusive Choice, this pattern is restrictive if
compared to the Multiple Merge due to the exclusive choice of one branch.

4.1.2. Advanced Control Flow Patterns

In addition to the basic control flow patterns described in the previous section, there
is also a large number of advanced control flow patterns that have been extracted by
van der Aalst et al. in their work on Workflow Patterns. They state that “as opposed

52

4.1. Control-Flow Patterns

to the [basic control flow patterns], these patterns do not have straightforward
support in most workflow engines” [43].

Nevertheless, some of them are especially interesting for environments that are
data-centric and unstructured. The patterns belong to semantic groups which are
explained below:

Structural Patterns

The structural patterns impose different restrictions on workflow models. Accord-
ing to [43] the decision whether or not to allow the creation of complex structures
such as cycles and implicit termination patterns. can be a challenging task. The
authors argue that “a real issue here is that of suitability. In many case the resulting
workflow may be unnecessarily complex which impacts end-users who may wish
to monitor the progress of their workflows” [43].

With regard to the issue of complexity, which will be addressed towards the end
of this conceptual part of the thesis, such structural patterns can be regarded as
unsuitable for Knowledge-intensive Processes where the focus is on flexibility and

not restrictions.

Multiple Instances

The ability to allow multiple instances of activities is another area of patterns
anaylzed by the authors. It can be regarded as a concept, which ”corresponds to
multiple threads of execution referring to a shared definition” [43]. The possibility to
allow multiple instances is a vital part to allow the proper support of the knowledge-
work lifecycle, which involves the extraction of patterns from multiple instances of
a process with the same definition (template).

The software prototype used for the implementation natively supports multiple
instances by providing features such as template and sub-page creation. This will
be analyzed further in the implementational part of this thesis.

State-based Patterns

State-based patterns should be regarded as important, since their focus is on the
analysis of the state of a process. With a focus on data-centricity the notion of an ac-
tivity’s state, such as contains-data and not-contains-data, is an important mechanism
also commonly used in computer science (cf. [43]).

53

4. Workflow Patterns

The most important pattern belonging to the group of State-based Patterns is the
Milestone, which is used to mark distinct sections of a process and to calculate the
current progress. The milestone is also a core part of the CMMN specification and
its visual notation. In the following chapter a different approach will be proposed
to allow the tracking of the progress imitating the milestone pattern.

Cancellation Patterns

Cancellation patterns allow the termination of activities within the workflow. In
[43] the authors distinguish between the cancellation of an activity, which can be
compared to a task or stage in CMMN, and the cancellation of a whole case. While
the former can be regarded as overly complex if connected to constraints, the simple
removal of a previously added activity should be regarded as a crucial functionality.
Cancelling an entire case on the other hand gives users the freedom to control the
progression of a case and its termination, making it important as well.

4.1.3. Important Control Flow Patterns

The control-flow patterns below represent the basic requirements proposed by the
author of this work. The list contains the different patterns explained in the previous
section, that should be regarded as a minimal subset of all available patterns that
workflow management systems, with a strong focus on runtime flexibility, should
contain. Reasons for the choice of the different patterns are also provided in order
to explain the decisions made.

CFP1 - Sequence

A sequence is one of the most basic constructs in a process. It can be used
to put different activities into order and should be be part of any process
modeling software that allows the structuring of information elements. “The
Sequence pattern is widely supported and all of the workflow systems and
business process modelling languages examined directly implement it” [37].

Reason: It is important for structuring multiple activities and offers many
ways for users to structure different units of work. It can also be found major
process modeling software and easy for end-users to understand.

54

4.1. Control-Flow Patterns

CFP2 - Parallel Split

Splitting a sequence into two or more flows that are executed simultaneously
is another pattern, which is often used and can be found in the major process
modeling specifications. Russel et al. mention that this pattern is used in both
an explicit and implicit way (cf. [37]).

Reason: The parallel split allows the concurrent execution of tasks and can be
found in all major process modeling tools. It is also a simple construct easy to
understand by end-users.

CFP3 - Synchronization

The Synchronization pattern is closely related to the Parallel Split and explicit
as well as implicit implementations can be found (cf. [37]). It allows the
creation of complex logical structures.

Reason: It is closely related to the Parallel Split and a logical partner for
creating basic control-flows.

CFP4: Multi-Choice

The Multi-Choice pattern is also found in most process models and can be in-
tegrated in an explicit or implicit way. It involves more logic than the Parallel
Split pattern, as the execution of one branch is sufficient to complete a whole
set of activities.

Reason: Closely related to a Parallel Split and usually part of other process
modeling techniques.

CFP5: Multi-Merge

Merges two or more branches of execution into one common successor. Just
like the Synchronization pattern it can be found in all major process models
and is implemented in explicit and implicit ways.

55

4. Workflow Patterns

Reason: Used in combination with the Multiple Choice pattern and, like the
Synchronization pattern, allows for the creation of a more complex logic.

CFP6: Implicit Termination

The Implicit Termination pattern allows for any branch within the process to
reach a final state without the need for all other parallel branches to be termi-
nated. It can be regarded as counterproductive for activities in a knowledge-
intensive environment if different paths of work cannot be completed.

Reason: With regard to flexibility the Implicit Termination pattern is a natu-
ral pattern and represents a behaviour that a Knowledge Worker is likely to
expect.

CFP7: Multiple Instances without Synchronization

The Multiple Instances without Synchronization pattern allows the same
activity to be part of multiple instances of the process. This pattern can be
compared to the creation of a template which is used for multiple processes
that share common features. While patterns exist that include synchronization,
this pattern explicitly disallows it. Consequently, the state of each instance is
not tracked by the siblings and does not influence their state.

Reason: With regard to the creation of templates and the usage of process pat-
terns which include best-practices extracted from previous process iterations,
the ability to run multiple instances of a process can be regarded as crucial for
knowledge-intensive environments.

CFP8: Deferred Choice

The Deferred Choice pattern represents a stage throughout the process in
which the user explicitly decides to execute or leave out a specific branch. By
doing so, the user influences the control-flow ad-hoc.

Reason: In order to allow the flexible execution of a process with only very
little restrictions imposed on the user, it is important to promote individual

actions.

56

4.2. Unsupported Patterns

CFP9: Milestone

The Milestone pattern requires the representation of different states to be
used adequately. However, this can be achieved by using the indicator of
completion for different activities to determine the state of a stage within the
process.

Reason: While the concept of a Milestone can be implemented explicitly, there
are also ways to support this pattern indirectly, which does not require the
representation of states.

CFP10: Cancel Case

The Cancel Case pattern allows for a case to be removed entirely, with all
running instances being terminated. While this is an important feature with
regard to creating a lean environment which only contains useful data, this
feature is designed for advanced users. Once a modeling expert recognizes
that a process is no longer needed, he can decide to erase it from the environ-
ment.

Reason: Important feature required by advanced users to control the cases
available to regular users.

4.2. Unsupported Patterns

With regard to the reduction of complexity and the specific requirements imposed by
Knowledge-intensive Processes, there are many patterns, which are not supported.
In many cases these unsupported patterns require the creation of complex processes,
which should be regarded as disadvantageous, due to the various types of users
working with a workflow management system handling unstructured and adaptive
cases.

Furthermore, the selection of important patterns introduced in the previous
section should not be regarded as exhaustive, but rather an initial proposal of basic
functionality, which can be useful for case management. Some of the patterns
presented in this section need to be reconsidered once the developed prototype

57

4. Workflow Patterns

has been evaluated further. The following is a compilation of the most significant
patterns, which have not been selected as part of the process modeler developed in
this thesis.

Cycles

Cycles are a powerful control-flow pattern, which allow the creation of complex
processes with repetitive activities. The logic is commonly defined by complex
expressions, which specify the truncation condition. Due to their complexity, cycles
can easily lead to deadlock scenarios in which a process gets stuck in endless
loops, making the continuation impossible. Thus, the ability to create cycles can
be regarded as a feature only available to expert users with advanced knowledge
in process modeling. However, the possibility for regular Knowledge-Workers
to create their own worklists requires a common approach, shared by end-users
and experts. For that reason, the creation of cycles is explicitly disallowed in the
implemented prototype.

Complex Instancing

Other modeling languages often make use of complex instancing feature which
allow modelers to specify not only the process itself but its various instances. In
most cases these patterns require a design time knowledge, in order to specify the
number of instances which can exist. With a strong focus on the ability to constantly
adapt a process, the ability to pre-define instances is counterproductive and does
not create any major benefits for Knowledge-Workers. Other instancing patterns
do not need a definition at design-time (cf. Pattern 15 in [43]), but use complex
logic to define the number of instances at run-time. CFP7 represents an exception
due to the flexibility it offers. It allows multiple instances of a case to exist and
does not require any more logic, as it does not attempt to synchronize processes
executed simultaneously. Furthermore, many of the instancing patterns also allow
the existence of multiple instances of single activities. In the implemented prototype,
the focus lies on the simultaneous execution of several instances of a whole process,
while each activity within a process can only have on instance.

58

5. Requirements for
Knowledge-intensive Processes

Requirements Engineering plays a vital role within the development process of
a new software solution. Broy [2] supports this view and emphasizes its impor-
tances, especially when developing novel and software-intensive systems. As the
developed prototype represents a new software system without a predecessor,
the thorough analysis of the requirements to support Knowledge-intensive Pro-
cesses is important. This chapter focuses on this analysis with a strong focus on
the functional requirements of a process-modeling application supporting case
management.

In addition to the support of Knowledge-intensive Processes, it is important to
analyze the specific requirements for the lifecycle of Knowledge Work. Based on
the research performed throughout the course of this thesis, Knowledge-intensive
Processes and the cases, which handle them, undergo a constant adaption in which
they are redefined, modified and improved. The basic idea behind this is the
perception that throughout this constant alteration process, patterns can be extracted
that help modelers to create process templates which can be used for similiar cases.

5.1. Analysis of Requirements

As mentioned before, there has been a lot of research focusing on knowledge-
intensive processes. In many cases, researchers presented their own compilation
of requirements for fostering these types of processes in a run-time application
supporting knowledge workers. In order to come up with a reasonable list of
requirements for the application developed in this work, this section analyzes the
key components found in the literature.

In their work on knowledge-intensive processes, Ciccio et al. [6] present a com-
pilation of important characteristics and requirements of these processes. This

59

5. Requirements for Knowledge-intensive Processes

compilation is then used to evaluate the power of currently available workflow
management systems concerning the handling of knowledge-intensive processes by
comparing the features of each solution to the requirements. The authors come to
the conclusion that “the characteristics and requirements of KiPs force to reconsider
the classical process life cycle based on the design execute & monitor analyze
re-design sequential steps. The boundary between process design and execution
gradually disappears, replaced by a continuous interleaving and overlapping be-
tween design, execution and adaptation activities” [6]. They also mention that none
of the software solutions evaluated fulfilled all the requirements compiled.

Environment

i Data & Knowledge | Knowledge
‘ Elements b Actions

: :

i ‘ Rules and Constraints ’ o

Knowledge-intensive Process

Figure 5.1.: The fundamental components of Knowledge-intensive Processes as
analyzed and illustrated by Ciccio et al. [6].

Figure 5.1 shows the fundamental components of Knowledge-intensive Processes
as proposed by the authors. It shows the “tight integration of data & knowledge
elements with knowledge actions” [6]. This information model is influenced by rules &
constraints which are often based on guidelines or best-practices. The goals specified
by knowledge-workers relate to the elements specified in the informational model
and are influenced by the completion of the actions specified and the evolution of
data and knowledge. Furthermore, the environment constantly changes all elements
of a Knowledge-intensive Process.

The following is an analysis of the key requirements for supporting Knowledge-
intensive Processes in a software system based on these findings. Support for the

60

5.1. Analysis of Requirements

different requirements found in the literature is provided along with a detailed
description of the specific attributes.

5.1.1. Flexibility

An important requirement which is often mentioned in the related literature is the
flexibility which is required when working in knowlegde-intensive environments.
This need has been well-covered in the previous chapters and can be regarded as one
of the main drivers for new approaches in the field of Adaptive Case Management.

In their own proposal for a framework supporting case management in social
networking environments, Nezhad et al. [23] reiterate the importance of flexibility
within their solution. They aim to achieve this by making important elements
such as tasks and templates adaptive and by allowing the adding, skipping and
removing of tasks.

This need for a constant ability to control and influence a business process that is
knowledge-intensive is also supported by Herrmann and Kurz [14] in their work
on Adaptive Case Management. They mention that the flexibility-to-use, which
describes “whether the system is able to cover new business requirements without
a major change” [14], is not adequately supported by current BPM systems.

In summary, the flexibility in a knowledge-intensive enviroment is very impor-
tant. While this can be partially achieved by adding adaptive features to certain
aspects of an application, the focus should be on the overall provision of flexibil-
ity throughout all stages of a process, which includes its design-time and more
importantly also its run-time phase.

5.1.2. Data-centricity

One of the main differences between the handling of Knowledge-intensive Processes
and contemporary workflow management systems is the focus on data objects rather
than the state of the workflow. This perception is supported by van der Aalst et al.
who state that ”in contrast to existing workflow management systems, the logistical
state of the case is not determined by the control-flow status but by th presence of
data objects” [45].

The objective behind this approach is the idea that the primary driver in a
knowledge-intensive environment is the presence and absence of different data
objects. Instead of determining a process’ state by looking at the activities, the value

61

5. Requirements for Knowledge-intensive Processes

of these data objects suffices to analyze the progress. Thus, data-centrictity is vital
to the proper handling of a case and should be a key concept in an application
supporting Knowledge-intensive Processes.

5.1.3. Goal Definition

As already discussed in Section 2.2 of Chapter 2 on Declarative Processes, a case in a
knowledge-intensive environement should be driven by the goals which lead to its
completion and not the specific activities that are required to get there. Furthermore,
Tran et al. [40] argue that a Knowledge Workers performance is driven by the goals
that have been defined. In other words, the process is required to be declarative.

This view is also supported by Fahland et al. in their second proposition for the
nature of a process modeling language: “Given two process models, establishing
circumstancial information will be easier on the basis of the model that is created
with the process modeling language that is relatively more declarative in nature.
Establishing circumstancial information will be easier on the basis of a declarative
process model than with an imperative process model” [9]. As the information han-
dled in Knowledge-intensive Processes can be regarded as mainly cirucmstancial,
the use of a declarative model is vital. With regard to the definition of goals, the
declarative model is more useful as it builds on this principle.

Even though a case is usually defined by an overall goal, there can be subgoals
which focus on a specific part of the process. Such goals are tied to a specified set of
elements which need data-input in order for it to be reached.

The ability to specify goals can be achieved in various ways. Specifically, it can
be done in an explicit or implicit way, either making use of constructs such as
milestones or simply using structural elements to create a goal-like environment.
For the implementation of a software system, either method can be regarded a
possible solution.

5.1.4. Reduction of Complexity

Another important aspect to consider when looking to implement a software system
which supports Knowledge Workers is the fact that the majority of users will not
have any modeling expertise. It is therefore vital to the successful integration of
such an application in a working environment, to consider method complexity and

the capabilities of its end-users.

62

5.1. Analysis of Requirements

In [9] Fahland et al. mention the importance of understandability in process mod-
eling environments. Especially in environments with a majority of circumstancial
information and ad-hoc activities performed by users, there should be a focus on a
declarative model instead of making the process logic overly complex internally.
The authors reconfirm this by stating that ”after all, not only designers are reading
process models but end users too” [9].

With the main objective of this thesis being the empowerment of end-users to
support Knowledge-intensive Processes, the reduction of complexity plays and
important role when analyzing the functional requirements for a software solution.
Due to this importance, Chapter 7 presents the actual complexity measurement of
the developed prototype, similar to the work performed by Marin et al. in [22].

5.1.5. Support of Constraints

With a strong focus on reducing the complexity of the developed prototype with
regard to modeling expertise, the support of constraints which can be applied
to the process needs to be conservative. Nevertheless, it is vital to the power
of the modeling tool to be capable of handling basic constraints which enable
modeling experts to make use of different techniques to add logic to the process
when necessary.

Even though on the of the main objectives for creating an environment for the
handling of Knowledge-intensive Processes is to consider end-users and their
requirements at all times, the view of a modeling expert needs to be regarded as
well. This expert needs to be enabled to extract important information created by
regular users in order to generate process logic whenever a pattern is encountered.
A CMMN-specific analysis of the possible constraints is discussed in a more detailed
tashion in the following chapter.

5.1.6. Roles

With regard to the problem of combining different views such as the one of a
typical knowledge worker and that of a modeling expert, a consistent and powerful
role management system is crucial. Van der Aalst et al. specifically mention the
importance of a role handling mechanism in [44].

The presence of these two distinct roles does not reflect the complete environment
of a Knowledge-intensive Process. Usually, there are many different types of roles

63

5. Requirements for Knowledge-intensive Processes

which need to be considered, with many of them requiring different views on the
process.

While the adding of roles can be regarded as a main feature, flexibility remains
a core requirement. In order to not restrict the users of a software system in any
way, the usage of a complete role model should be optional and at the end-users

discretion.

5.2. Functional Requirements

Using the analysis of requirements above, this section gives reasons to justify in
how far each requirement can have a positive impact on the implementation and its
way of supporting knowledge workers. While more requirements will be extracted
throughout the following chapters, the four basic ones presented here should be
regarded as important, since they reflect the core principles of Knowledge-intensive
Processes and Adaptive Case Mangement in general.

The following is a list of specific requirements compiled by the author. While
CMMN-specific requirements are analyzed in the following section, this list repre-
sents the most important functional requirements the developed prototype should
be based on.

Flexibility at run-time

Due to the constant adaption of a case and the specific need to be able to alter
information at any given time, the process needs to be handled in a flexible
way. In order to accomplish this a case needs to evolve over time, allowing its
users to add, remove, and edit data throughout all stages (e.g. design-time,

run-time).

Data-elements defining a case

In a knowledge-intensive environment, the state of a case is defined by data
being absent or available. The process should not only support the adding of
data elements, but should be built around the presence of different types of
data elements.

64

5.2. Functional Requirements

Declarative case definition

The definition of a case should be done in a declarative way using goals
instead of specific pre-defined activities to determine its objective. With
regard to an implementation, this requires the system to be designed in a
non-restrictive way allowing Knowledge-Workers to address a problem (case)
in an indepedent way. In other words, guidance should not be achieved by
restricting the users actions to a control-flow but solely by the goals specified.

Role management system

The role management system needs to consider the presence of various users
with different intentions. It also has to provide mechanisms to restrict the
access of regular Knowledge-Workers to the tools designed specifically for
expert users with modeling capabilities.

The requirement to support constraints as well as the non-functional requirement
to reduce complexity is not covered in this list. Both of them are discussed in detail
in the following two chapters, which generate a suitable subset of CMMN including
constraints (Chapter 6) and calculate the complexity of the developed application
(Chapter 7).

65

5. Requirements for Knowledge-intensive Processes

66

6. Extraction of a Suitable Subset

The aforementioned extraction of a subset of the CMMN specification is an impor-
tant task and resembles one of the main goals of this work. Marin et al. mention
this in their paper which analyses the complexity of CMMN: ” Another venue for
future research is to identify subsets of the CMMN notation. As process modelers
begin to use CMMN, it will be useful to identify the subsets of the specification that
start to emerge” [22]. They also state that this can be done in the same fashion as
the creation of subsets of BPMN 1.2 by zur Muehlen et al. in [49], [50], [51].

Using the requirements analyzed in the previous chapters, it is now possible
to propose a suitable subset of the CMMN 1.0 specification in order to support
Knowledge-intensive Processes. The subset can be regarded as the basis for the
implementation undertaken in this thesis.

6.1. Structuring Activities with Tasks and Stages

One of the major concepts for structuring activities in CMMN is the use of tasks, as
”an atomic unit of work” [26], and stages to help the users with the planning and
grouping of the work units (cf. [26]). In order to be able to implement patterns such
as sequences (CFP1) and hierarchies, the concept used in CMMN accomplishes this
with just two different types of elements. While in theory the same patterns could
be created only using tasks, the availability of a structural element (Stage) helps
grouping and organizing different work items.

6.1.1. Human Tasks

As already mentioned in the introduction of CMMN, HumanTasks are a way to
specify tasks that are specifically executed by a case worker. They stand in contrast
to CaseTasks which are discussed in the following section. As case workers will
usually start structuring a knowledge-intensive process by adding units of work

67

6. Extraction of a Suitable Subset

which they extract throughout the execution of this process, the HumanTask is an
important way for users to add the most atomic units of work to the worklist.

HumanTasks are an essentail feature of CMMN and should be part of any sub-
set as they represent atomic units of work and explicitly refer to the action of a
knowledge worker.

6.1.2. Case Tasks

7

According to the CMMN specification, CaseTasks are used “to call another case’
[26], which is an important feature to structure even the most complex processes.
As soon as a case is maturing, it is very likely that certain aspects of it are so complex
in nature, that it makes sense to create an entire case just for them. Through the use
of a CaseTask, a case can be refered to directly within another case.

6.2. Creating Relationships

Even though there are various scenarios in which a knowledge-intensive process
does not need any relationships due to a majority of tasks which are executed by
knowledge workers independently, it is important that end-users as well as modeler
have ways of bringing different tasks into relation. This section analyzes how the
features to create relationship between entities provided by CMMN can be added
to the subset created in this chapter.

In CMMN any relationship is represented by a Connector and a Sentry. While
the connector simply indicates the existence of a dependency, the sentries indicate
which element requires input from another one.

Figure 6.1.: Dependency between two Stages in CMMN using Connectors and
Sentries. [26].

68

6.3. Adding Constraints

6.3. Adding Constraints

The previous sections already analyzed the elements necessary to structure the
process data in different ways and provide methods for their grouping and ordering.
However, there are certain constraints which modelers should be able to use in
order to create a process that contains logic which helps to guide end-users to
complete their tasks in an adequate manner on the one hand, but also provides
enough flexibility to leave most of the decision making to the knowledge-workers.

The following is a compilation of the constraints extracted by the author, which
are based on the previous analysis of Workflow Patterns on the one hand as well as
the basic requirements listed in the previous chapter.

C1 - Completion of a simple task

There are certain tasks that represent an atomic unit of work, which does
not require the input of any data. Examples for such tasks could be simple
activities such as Inform supervisor or Review document, which do not contain
any attributes. The completion of these tasks is defined by a single attribute
which represents its binary state (incomplete / complete).

C2 - Completion of a task with attributes

In contrast to the simple task in C1, tasks can also have one-to-many attributes
attached to them. These attributes can be filled with values of various types
and are usually maintend by users currently working on the related task. The
completion of the task is defined by the state of the underlying attributes. As
soon as all attributes have been filled with information, the task should be
considered compelte. In order to prevent various forms of dead-locks, certain
users need to be able to skip and redo tasks.

C3 - Hierarchical organization of cases and tasks

The CaseTask which has already been explained at the beginning of this chapter,
refers to a separate case. Using this feature, complex structures can be created
by referencing entire sub-processes. The completion of a CaseTusk is triggered
by the completion of its underlying case.

69

6. Extraction of a Suitable Subset

(-

Referenced
Case

Figure 6.2.: The representation of a CaseTask in CMMN used to reference another

case based on [26].

C4 - Structuring tasks with stages

The CMMN spefication refers to stages as structural objects which can be used
to group and organize tasks. While it would be possible to create a different
case for each sub-goal represented by a stage, it is often necessary to define
different phases of a case. By allowing a stage to contain one-to-many Tasks,
this dependency can be created.

LH]

Stage A

=l

Figure 6.3.: A Task added to a Stage in CMMN used to order activities and create

hierarchies [26].

C5 - Producer-Consumer dependency between tasks and stages

In order to be able to create a sequential ordering of tasks and stages, which
has been analyzed as a core Workflow Pattern, the Producer-Consumer depen-
dency is used. Figure 6.4 shows how this dependency is created between two
tasks in CMMN. While this serves as a visual representation of the relationship
between elements, there needs to be additional logic concerning the order

of execution. If an element is the consumer of another element, it requires

70

6.3. Adding Constraints

input from its predecessor. Thus, the consumer can only be executed once
the producer has been completed. Skipping a task will have the same effect
as completing it. With regard to CFP1 this constraint is required to allow the
proper usage of the sequence pattern.

Figure 6.4.: A Producer-Consumer dependency between two tasks [26].

C6 - Multiple consumer tasks

In addition to a simple Producer-Consumer dependency, there exist various
scenarios in which multiple consumers are dependent on a single consumer.
All of the consumers are linked to the producer using a single connector
shown in Figure 6.4. Using the same logic explained in C5, each consumer
task should only be triggered once the producer task has reached the state
of completion. This constraint represents a combination of CFP1 and CFP2,
putting multiple tasks into a sequence and allowing the splitting into different
branches. Parallel execution is not handled by this constraint, as it is part of
the AND-Join described in C7.

C7 - AND-Joins between tasks

The AND-Join, which is also part of the aforementioned control-flow patterns,
is an important constraint which enables modelers to add a more complex
logic to processes. Dependencies can be created in which a task requires more
than one action to be completed before it can be executed.

While the AND-Join should be regarded as an essential tool for process mod-
elers, it comes at the price of user flexibilty. This is an important aspect to
consider before the creation of complex dependencies.

71

6. Extraction of a Suitable Subset

Task A Jeereere)

Task B feereees :

Figure 6.5.: An AND-Constraint created between two Producer tasks and one Con-
sumer task [26].

C8 - OR-Joins between tasks

Similar to the AND-Join, the OR-Join is also part of the control-flow patterns,
and can be regarded as equally important. An OR-join specifies that only one
of the preceeding tasks needs to be completed in order for the control-flow to
continue. It is not as restrictive to users as the AND-Join, since all possible
combinations of execution are allowed.

Task A
| D ()
TaskC
....... ’ '
Task B feereess

Figure 6.6.: An OR-Constraint created between two Producer tasks and one Con-
sumer task [26].

72

6.3. Adding Constraints

C9 - Dependency between tasks and stages

While dependencies between two tasks or two stages represent trivial depen-
dencies, relationships between a task and a stage need to be possible as well
A single task (e.g. a CaseTask) could be the predecessor of a whole stage and
thus needs to be executed beforehand. While the handling of this type of
constraint is identical to a normal connection between two elements of the

same type, it creates a more complex logic regarding the order of execution.

73

6. Extraction of a Suitable Subset

74

7. Complexity Measurement

Complexity measurement plays an important role when analyzing different process
modeling languages. In Section 3.3 of Chapter 3 the complexity measurement of
CMMN according to Marin et al. [22] showed that the complexity of the CMMN 1.0
specification is much lower than the complexity of BPMN 1.2 and its various subsets.
In fact, the CMMN 1.0 specification (48.18) had a cumulative complexity more than
three times lower than the one of BPMN 1.2 (169.07). This put CMMN 1.0 between
BPMN 1.2 and the less complex Event-driven Process Chain (EPC) and UML 1.4
Activity Diagrams. With the perception that CMMN 1.0 is still quite complex, the
focus during the definition of a suitable subset was to create a lighter version of
the full specification. In order to analyze in how far this goal was achieved, it
makes sense to calculate the cumulative complexity for the prototype developed in
this thesis using the same method. This chapter focuses on the calculation of this
complexity and documents the different steps performed throughout this approach.

7.1. Analyzing the Number of Objects

When counting the number of objects contained in the meta-model of the imple-
mented solution, it is important to distinguish between objects that are actually
part of the process model and such objects that were generated by a variety of tools
(e.g. a persistency library). In the calculation only the former ones were considered
in accordance with the approach used by Indulska et al. in [17]. The goal behind
this approach by Rossi and Brinkkemper [36] is to calculate a complexity given a
number of objects which a potential user of the process modeling application needs
to be familiar with. The authors reason that “a technique with many concepts is
more complex to learn, than one with fewer concepts” [36].

The objects in Table 7.1 have been extracted from the meta-model. It contains
trivial objects such as a task or a stage, but also different types of Attribute values
which represent different object entities. Types, attributes and tasks each have a

75

7. Complexity Measurement

Objects
1 | Case
2 | Type
3 | TypeDefinition
4 | Page
5 | State
6 | AttributeDefinition
7 | PageAttribute
8 | TaskAttribute
9 | TaskDefinition
10 | HumanTask
11 | CaseTask
12 | Task
13 | Role
14 | Validator
15 | Process
16 | BooleanValue
17 | StringValue
18 | IntegerValue
19 | DateValue
20 | PageValue
21 | EnumValue
22 | FileValue

Table 7.1.: List of the objects extracted from the meta model.

corresponding Definition object which are also part of the count. The complexity
measurement of CMMN 1.0 by Marin et al. [22] mentioned in Chapter 3 counted 36
objects for the specification. With regard to reducing the complexity of CMMN 1.0
using the suitable subset mentioned in the previous chapter, the count of 22 can be
considered a first indicator of a reduction in complexity.

76

7.2. Analyzing the Number of Properties

7.2. Analyzing the Number of Properties

The counting of properties contained in the meta-model of the developed ap-
plication does not consider any tool-generated types as well, since they are not
encountered at any given time by the end-user. This approach was also used for the
counting of objects, but is of paramount importance when indentifying the number
of properties as they are generated by tools or only used for internal software
specific mechanics more frequently.

Table 7.2 shows the properties which have been extracted from the meta model.
Properties such as name and value occur more than once, because they are part of
multiple objects. For example, most visible objects, such as tasks and stages, contain
the name property. The number of 26 properties in this model is very close to the
number of the CMMN 1.0 meta-model analyzed by Marin et al. [22], which counts
28 properties. Even though the two counts are almost equal, there is still a reduction
to be observed, especially because many of the properties are just basic information
such as names.

7.3. Analyzing the Number of Relationships

While the extraction of objects and properties can be performed easily using the
meta-model, the relationships which are available is not as trivial. The most obvious
relation is the linking which is possible between Tasks and Stages and amongst
themselves. Furthermore, it is possible to create constraints between Tasks. Two less
trivial relationships are the possible connections between a Page and a Type as well
as the definition of Attributes that are directly connected to a Page. Table 7.3 shows
the four relationships which can be found in the implemented prototype. When
analyzing the number of relationships, the same methods used when calculating
the complexity of CMMN were used in order to allow comparison. The number
of possible relationships in all process modeling languages ranges from 4 to 6 (cf.
[22]), which indicates the correctness of the method used in this calculation.

7.4. Calculating the Cumulative Complexity

The same formula defined by [36], which was used in Chapter 3, is used to calculate
the cumulative complexity:

77

7. Complexity Measurement

Properties
1 | name
2 | name
3 | name
4 | name
5 | name
6 | name
7 | name
8 | name
9 | name
10 | value
11 | value
12 | value
13 | value
14 | value
15 | value
16 | value
17 | type
18 | progress
19 | reader
20 | editor
21 | startDate
22 | endDate
23 | skip
24 | hasPredecessor
25 | hasPredecessor
26 | validationMessage

Table 7.2.: List of the properties extracted from the meta model.

!

The authors give the following explanation for their formula: “The cumulative
complexity returns a value that explains the total complexity of the method” [36].
Using Equation 7.1 it is now possibe to calculate the cumulative complexity of

C'(M) = \/n(Oum)? +n(Rar)? + n(Par)?

78

7.5. Results

Properties
StageLink
PageTypeLink
PageAttributeLink

TaskConstraint

Bl W|IN| -

Table 7.3.: List of the relationships extracted from the meta model.

the process modeling used within the Darwin application. The following metrics
have been counted in the previous sections:

°* n(Oy) =22
The cumulative complexity of objects equals 22.
* n(Py) =26
The cumulative complexity of properties equals 26.
e n(Ry) =4
The cumulative complexity of relationships equals 4.

Inserting these values in Equation 7.1 we get the following cumulative method

complexity:

/

C' (M) = \/n(On)? + n(Rar)? + n(Pa)? = V222 + 42 + 262 = 34,29 (7.2)

7.5. Results

With the cumulative method complexity of 34.29, the process modeling compo-
nent of the Darwin prototype can classified into the cumulative complexity table
referenced in Chapter 3. This results in the ranking shown in Table 7.4.

Compared to the cumulative complexity of 48.18 of CMMN 1.0 calculated by
Marin et al. [22], Darwins process modeler reduces the complexity by around 29%.
This shows the reduction of complexity for the chosen subset and indicates that as

79

7. Complexity Measurement

Method Objects Relationships Properties Cumulatl've

Complexity
BPMN 1.2 90 6 143 169.07
BPMN 1.2 DoD 59 4 112 126.65
BPMN 1.2 Case Study 36 5 81 88.78
BPMN 1.2 Frequent Use 21 4 59 62.75
CMMN 1.0 39 4 28 48.18
DARWIN 22 4 26 34.29
EPC 15 5 11 19.26
UML 1.4 Activity 3 5 6 11.18
Diagrams

Table 7.4.: The cumulative complexity of Darwin compared to other process mod-
eling notations. Author’s own compilation based on Marin et al., 2014
[22]

a result, the process modeling language will be less hard for users to get familiar
with. The fact that the subset of CMMN used in Darwins process modeler is still
more complex than UML Activity Diagrams and Event-driven Process Chains can
be attributed to the simplicity of the two notations.

While the complexity reduction is the most important property to be observed,
it is still important to emphasize the close relation between the two specifications.
This close relation is illustrated in the three-dimensional plot in Figure 7.1, showing
the same trend for the subset that can be observed for the three subsets created for
BPMN 1.2.

80

7.5. Results

o
o
« BPMN
o
Ko
- (7))
4| 2
o e
3 8 2
= o BPMN C.S. 60 &
O UWC BPMN DODI 5.5 3
31+ cumn ¢t 50 N
DARWINgpMN FU.
4.5
© :T } } « 4.0
0 50 100 150 200
Properties

Figure 7.1.: The cumulative complexity of Darwin compared to other process mod-
eling notations in an Object-Relationship-Property cube. Author’s own
compilation based on Marin et al., 2014 [22].

81

7. Complexity Measurement

82

Part I11.

Implementation

83

8. Research Prototype

The developed application is not standalone software, but serves as a module of an
existing prototype. The existing prototype, which was developed at the Chair of
Software Engineering for Business Information Systems at the Technical University
of Munich, is an extended wiki system named Darwin, which aims to support
Adaptive Case Management (cf. [13]). Users can create new cases and add pages
and types which are linked to it.

Data is added to a specific case in the form of unstructured as well as structured
information. Structured information can be added by creating new tasks and
attributes, which can be linked to either a task or a page. By making use of a role
management system, roles that are linked to a specific case get instant feedback on
the tasks and workitems that need to be completed. This way, different users can
work on cases in a collaborative fashion enabling an emergent design of processes.

The interactive CMMN process modeler is integrated into this application, to
allow process modelers to create dependencies and constraints between the different
activities of a case. The following sections describe the architecture, which the
process modeler is built on.

8.1. Technical Architecture

The main objective of this section is to give a detailed overview of the technologies
which were used in order to create the current prototype. As the prototype was
created as part of a web-application, there are many solutions available which are
capable of successfully implementing the requirements derived in the previous
part of this work. The reason for this is mainly the current popularity of web-
applications. This is especially true for applications which involve some sort of
distributed collaboration. This section describes the used technologies in detail and
tries to illustrate the advantages of it over another similar solution.

85

8. Research Prototype

The Play! Framework!, which is used for the implementation of Darwin, is a
full-stack web framework using the Java Virtual Machine. According to [31] it
is especially appealing to developers due to its use of state-of-the-art technology
and useful features such as hot reloading of source files. While the first version of
the framework only supported plain Java code, the second version has a strong
focus on the Scala programming language, which combines functional and object-
oriented programming. With regard to the implemented prototype, it is an ideal
framework, as it comes with a built-in Model-View-Controller (MVC) architecture
and provides a native REST (Representational State Transfer) interface. The latter
enables the communication between backend and frontend. Resources provided
by the backend can be accessed, modified, and deleted using simple URIs and
HTTP-Requests (mainly GET and POST).

The persistence layer of Darwin is based on a MongoDB database?, which is a
NoSQL-database using Document-Oriented Storage to store its data. In order for
Scala to support MongoDB, the Casbah interface?® is used to provide flexible access.
In order to use Object-relational mapping (ORM) for the objects created in Scala,
the Salat plugin® for Play! 2 was used, which provides a serialization library for
case classes.

In order to implement the required CMMN process editor in a web application,
a library which allows the creation of custom shapes and diagrams is necessary.
The open-source library Joint]S® uses modern web technologies such as HTML
5 and Scalable Vector Graphics (SVG). Joint]S was used in combination with the
Angular]S framework®, which is utilized throughout the entire Darwin application
to extend the functionality of HTML, providing more dynamic functionality for web-
applications. In the context of the process editor Angular]S provides the relevant
lifecycle data, while Joint]S uses this data to provide a graphical and dynamic
user-interface to visualize the process using the CMMN-specific notation.

Iprojects website available at: https:/ /www.playframework.com/, last accessed on 2014-12-03
projects website available at: http:/ /www.mongodb.org/, last accessed on 2014-12-03

3GitHub project available at: https:/ /github.com/mongodb/casbah, last accessed on: 2014-12-03
*GitHub project available at: https://github.com/leon/play-salat, last accessed on: 2014-12-03
Sprojects website available at: http:/ /www.jointjs.com/, last accessed on 2014-12-03

®projects website available at: https:/ /angularjs.org/, last accessed on 2014-12-03

86

8.2. System Design

8.2. System Design

While the previous section focused mainly on the technologies, which were used
for the implementation of the web-application, this section describes the design
choices made. Since the implementational part of this thesis is concerned with the
CMMN process editor, the main focus will be on its specific structure to provide a
complete overview of the developed application.

8.2.1. Single Page Application

Even though the Darwin application was built using multiple pages, the CMMN
module developed is following the Single Page Application (SPA) paradigm. An
SPA is a web-application which is different to the Client-Server architecture that was
formerly used by the majority of web-applications.

In a client-server architecture the client makes a Request for a resource and gets a
Response from the server. The client uses this response to render the data according
to the specific content of it. In most cases, this is done by a web-browser on the
client side. The communication happens strictly synchronous, which means that
there is no exchange of data between each Request-Response set.

More recently, the use of single page applications has grown rapidly, which
can be attributed to new technologies that allow the old-fashioned client-server
architecture to be extended to a more dynamic system. This new paradigm allows
the web-application to communicate asynchronously with the server to load only
specific parts of a page. This enables the web-browser to stay on a single page
without reloading the whole page, whenever an exchange of data happens between
the client and the server. The browser can now update the specific parts of the
page which have changes, while leaving the rest unchanged. This does not only
reduce the traffic between the two entities, but also enhances the user-experience
for web-applications which react to changes in real-time.

In order to implement an SPA, the logic contained on the client side needs to
be increased. This is mainly due to the fact that the server answers with specific
responses containing only the necessary information, as opposed to sending a
complete webpage which only needs to be rendered by the client. The use of
JavaScript libraries like Angular]S and Joint]S provides the foundation for this
logic-driven frontend.

87

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17

8. Research Prototype

8.2.2. Interactive Frontend

The interactive frontend used to implement the process editor makes use of the
aforementioned JavaScript libraries Angular]S and Joint]S. In the context of this
application, Angular]S provides the initial lifecycle data of the current process
through a directive. The specific directive used, is illustrated in Listing 8.1. It shows
how the new directive ngPageCmmn is connected to the processdata, which contains
the relevant information for the CMMN process to be rendered in Joint]S.

The creation of a new JavaScript prototype class is handled in line 10 of the code
listing. A new Process class is created, using the information provided by the pro-
cessdata element, which is formatted using a JSON object. Finally, the directive calls
the initPageLifecycle() method, which triggers the drawing of the CMMN process

model.
myDirectives.directive (' ngPageCmmn’, function() {
return {
replace : true,

link : function (scope, element, attrs) ({
attrs.Sobserve (' ngPageCmmn’, function (processdata) {
if (processdata) {

var p = JSON.parse (processdata) ;

var selector = angular.element (element) .attr (’id’);

angular.element (element) .empty () ;
var process = new Process (p.page, p.process,

selector, scope.loadPageData);

pageProcess = process;

process.initPagelLifecycle (p.page);

Listing 8.1: Angular directive to provide lifecycle data for the Process prototype

Within the Process prototype it is now possible to create the available objects using
Joint]S. Further actions by users are propagated to the backend using the available
REST interface. This way, the frontend is able to provide instant feedback to the
user.

An example for this is the creation of a new task. When a modeling user specifies

88

8.2. System Design

the name and type of the new entity, an AJAX call is made to the backend containing
the relevant information. Once the new task has been created in the backend and
persisted in the database, a response is sent back to the frontend. Provided that the
response was valid, a new task is visualized in the CMMN model. This enables
front- and backend to maintain a consistent state, which is especially important for
a collaborative application.

89

8. Research Prototype

90

9. Implementation of Requirements

This chapter focuses on the documentation of the steps taken throughout the
implementation of the requirements defined in Part II of this thesis. Figure 9.1
shows an image of the CMMN modeler implemented in the Darwin application.
It shows the tight integration of the modeler and the rest of the prototype using
the aforementioned SPA approach. The specific details of the different feature
implemented are described in detail below.

The chapter starts with a description of the basic functionality implemented to
provide an interactive interface for modelers to make use of CMMN. It is followed
by a detailed outline of the different CMMN-specific requirements which have been
implemented.

=102 Workist ¥ Groups @ Feed

ssssssssssssssss

Figure 9.1.: View of the CMMN modeler integrated in the Darwin prototype.

91

9. Implementation of Requirements

9.1. Basic Functionality

In order to be able to model processes using the CMMN modeler, users need to be
able to interactively create and structure a process. In the implemented solution
users have a number of operations at hand, which lets them influence the logic
and the visual representation of a process. An example of such operations is
illustrated in Figure 9.2, which appear whenever the user hovers over the main
process window.

Figure 9.2.: Case operations available to the Modeler role in the implemented
prototype.

Generally, the operations available to a specific user are influenced by the role
management system. A user with Admin rights will see all tools, while the Modeler
role is only granted access to specific features. The general Reader role only provides
read access and allows no process alteration.

As the structuring of a process relies heavily on the visualization, users can move
stages and tasks in order to restructure the process in an appropriate manner. The
current location of elements is propagated to the backend and stored in the database,
which assures a uniform model throughout all clients.

9.2. CMMN Functionality

Before the implementation of the CMMN modeler, the process in Darwin was
illustrated using simple elements to describe the different stages within a process.
While it enabled users to get instant feedback of structure of a process, it did not
make use of any concrete modeling techniques and CMMN-specific elements.

This section describes the different features which have been implemented
throughout the course of this thesis based on the requirements extracted throughout
the conceptual part.

92

9.2. CMMN Functionality

9.2.1. Creation of Stages and Tasks

The two most basic structural elements in CMMN are Tasks and Stages. As men-
tioned before, they enable modelers to create hierarchical structures between the
different activities of a case. Thus, the two concepts were implemented identical to
their specification in CMMN 1.0.

Using the process modeling operations described above, the user can create a
stage using the Create Local Stage action. In a modal window;, the user has to enter
the name of the stage. Once specified, the new stage appears in the process window.
An example of a new stage is shown in Figure 9.3. The figure also shows the stage
operations, which become available to modelers when hovering over it. As stages
are used for creating hierarchical structures, they can be connected to other stages
in sequence on the one hand and contain tasks on the other.

+
New Link Delete Stage Locally
L

New Local Task Stage

Figure 9.3.: New stage created in the CMMN process modeler, showing the available
stage operations.

The creation of tasks works similar to the creation of stages. An additional input
from the modeler is required, which specifies if the task is a HumanTask or CaseTask.
This process is shown in Figure 9.5, which results in the creation of a new human
task.

93

9. Implementation of Requirements

New local task

Task name:
Human task

Task type:
Human Task [

Ok || Cancel

7

Figure 9.4.: Modal window to specify the name and type of a task.

When hovering over a task, the user can create dependencies between the current
task and other stages and tasks. This state is depicted in Figure ?? which shows the
newly created human task including the available operation icon. The following
section describes the creation of dependencies in a more detailed way.

K=

’

/ Human task

Figure 9.5.: Visual representation of a new HumanTask in the CMMN process
modeler.

9.2.2. Creation of Dependencies

While Tasks and Stages enable modelers to create hierarchies, the creation of de-
pendencies in CMMN is handled using Connectors. There exists only one repre-
sentation of a connector in the specification which links any two elements of a case.
The dotted line shown in Figure 9.6 indicates the existence of a producer-consumer

dependency between the two tasks shown.

94

1
2

W

9.2. CMMN Functionality

8

Human task 2

8 |

Human task

Figure 9.6.: Creation of a sequential order between two tasks using a connector.

The same connector is also used to model the AND and OR dependencies which
are part of the implementation. In order to make these dependencies distinguishable
from normal connections, a small circle collecting all incoming connections specifies
the type of the constraint.

9.2.3. Cycle Prevention

As already mentioned before, the creation of cycles using connectors can lead to
dead-locks and unpredictable states. For that reason, they are disallowed in the
implemented process modeler. In order to enforce this requirement throughout the
entire application, each creation of a dependency between two tasks needs to be
checked for potential cycles.

In the implemented prototype, this is handled by the recursive isTaskLinkCyclic()
function shown in Listing 9.1. Initially, it checks if there is a direct link pointing in
the opposite direction between the source and target task. If this is not the case, the
recursive function checks all possible connections that are connected to either the
source or the target, if a cycle is present.

/+xx Checks if the taskLink would result in a cycle. x/
def isTaskLinkCyclic (sourcelId: TaskId, targetId: TaskId, linkList:
List [PageTaskLink]): Boolean = {
// Check if direct link between the two tasks exists
if (!linkList.filter(l => l.sourceld == targetId && l.targetId ==
sourceld) .isEmpty) return true
else {
val filteredList = linkList.filter(l => l.targetId == sourceId)
if (filteredList.isEmpty) return false

95

10
11

12

13
14
15
16
17

9. Implementation of Requirements

else {
var cycleDetected = false
for (link <- filteredList) {
// check recursively for all "relatives" if the new link
results in a cycle
if (isTaskLinkCyclic(link.sourceId, targetId, linkList.
filterNot (1 => l.targetId == link.targetId)))
cycleDetected = true
}

return cycleDetected

Listing 9.1: Scala method for preventing cycles

9.2.4. Progress Propagation

The constraints added to a case model using the CMMN modeler have a direct
impact on the logic of the underlying process. If, for example, a Producer-Consumer
dependency between two tasks is created, the consuming task needs to wait for
its predecessor to finish. Such dependencies need to be propagated to the specific
modules of the prototype handling the order of execution and the user-interface.
Due to the introduction of more complex constraints (AND and OR) the progress
propagation is required to consider much more advanced states of a process. The
checkIfTaskIsFinished() function, which usually just checked its predecessor for com-
pletion, needs to be able to observe the existence of such complex dependencies.

96

10. Evaluation

In order to evaluate the modeling capabilities of the implemented solution, the
modeling of an actual process using the new features was also part of this thesis.
It is based on the existing Innovation Management process at DATEV eG. The
following sections introduce the underlying process and describe the usage of
the implemented solution in order to model it in Darwin and create the logical
dependencies and constraints.

10.1. The Innovation Management Process

The DATEV eG is one of Europe’s largest software companies with almost 7000
employees ! Their main focus is on providing services for tax, accounting and
attorneys. Due to their constant need for new ideas, the company has developed an
internal Innovation Management process, which aims at fueling the generation of
innovation.

The company’s innovation management process contains many logical dependen-
cies between the different tasks that are part of it. Nevertheless, two independent
solutions are used due to the evolving of the process over an extended period of
time. One of these solutions is INITIATIV, a tool for the submission of ideas, which
follows a strict pre-defined process and has been used for more than a decade. In
contrast to this traditional solution, the DATEV Idea Pool (DIP) was developed
in 2012 as an open innovation platform to foster the creation of new ideas and to
promote collaboration. Even though DIP has many advantages over INITIATIV,
some of the core processes are not implemented in the new solution, which creates
some disadvantages over the traditional application. Due to the fact that both
solutions complement each other, they are being used in parallel creating the need
for a system combining both approaches.

!Based on the business year 2013. Information available at http:/ /www.datev.de/, last accessed
on 2014-12-06.

97

10. Evaluation

Since both tools show certain traits which are also part of the CMMN process
modeler developed throughout the course of this thesis, it makes sense to look at
the innovation management process employed at DATEV to analyze whether it
can be modeled using the available features. On the one hand Darwin provides
flexibility comparable to the collaborative DIP application, while on the other hand
the internal process modeler allows for the creation of the necessary constraints
which are mostly part of INITIATIV.

In order to be able to model the innovation management process in Darwin, the
process needs to be explained. The following is a summary of the most important
stages and the underlying tasks that are part of it.

Idea Generation

The initial Idea Generation stage mainly focuses on the creation of a new idea,
which requires the innovative user to describe his idea and add the required
attributes, presumably along with some more optional ones. Other tasks that
are part of the idea generation process are the specification of the responsible
department, which should be associated with the new idea, and the definition
of the privacy settings, that define rules like access rights. In summary, the
following three tasks are part of this stage: Describe idea, Define responsible
department, and Define privacy settings. Additionally, there is a dependency
between the Describe idea task and the other two. It is only possible to define a
department and the responsibilities once an idea has actually been created and
added to the workflow. For that reason, both definition tasks are consumers
of the Describe idea task and should only be available to the end-users upon its
completion.

Evaluation

The objective of the second stage of the process is the evaluation of the ideas
added throughout the first stage. In order to distinguish between useful and
useless ideas, the first task to be performed during this stage is Perform initial
check, which can be regarded as a first control mechanism that triggers the
following tasks, should the idea be regarded as innovative. The following two
tasks require the input of an expert familiar with the specific nature of the idea.
This expert can either be the person actually working on the idea evaluation
or an external expert which needs to be consulted. The tasks Create expert’s

98

10.1. The Innovation Management Process

report and Consult expert represent these distinct tasks. Both are dependent on
the initial check creating a multiple-consumer dependency, comparable to the
one in the first stage.

Finally, after the creation of an expert report, there is an option to Obtain user
feedback. This task is dependent on the existence of an expert’s report. For
that reason, one of the two tasks involving experts needs to be completed - at
least. A suitable constraint to be used for the creation of this dependency is
an OR-Join.

Decision Making

The final stage of the innovation management process focuses on decision
making. Here the ideas that have been evaluated in the second stage are
ranked in order to make a decision on the best ideas. These actions are
included in the Make and explain final decision task. As rewards are sometimes
given to submitters of innovative ideas, the Define reward for submitter task is
used to specify the relevant information.

There are also two important attributes of this stage which make it different
to the other two. As there are various entities involved in the decision making
process, there is also an option for users to file a protest (File protest). Never-
theless, this task cannot be attributed directly to the decision-making stage
and needs to be placed outside of its borders, while still being dependent on
the final decision task as a producer. Comparable to this situation, there is
the option to extend the decision making process using the Integrative decision
making approach, which requires to be connected to the whole stage referring
to another case.

The three stages, along with the two tasks that are not part of any stage, describe
the complete innovation management process, including its various dependencies.
It is now possible to model the process using the features provided by Darwins
process modeler, which is thoroughly explained in the following section.

99

10. Evaluation

10.2. Modeling of the Process

For the evaluation the innovation management process is modeled in this section.
The main focus is on the creation of the existing dependencies and constraints
between the different tasks that are part of the process.

In order to persist the innovation management process in Darwin, a new model
needs to be created along with a new type (Idea submission). Using this type, pages
can be created for each idea that refer to this type. Figure 10.1 shows what this initial
setup looks like in the web frontend of Darwin. Along with the type, a sample
page First idea has been created, which can both be seen in the panel to the left.
The content window shows the description of the model which can be filled with
context specific data.

= Darwin 102 Worklist W Groups. ® Feed +New & demot ~
\f * Innovation Management o
- A
e This demo realizes the innovation process employed at a leading German software company which currenty uses twio custom sofiware applications for that purpose. The applications complement each others [
W Enterprise Architecture Management functionalty but have significant drawbacks. The firsttool Implements the early stages of a rlgid stage-gate process that is shown in the following figure
& Innovation Management
Preliminary Detailed o Testing & Full Production &
! Validation Market Launch
! ‘ Stage 1 ‘ Stage 2‘ Stage 3‘ Stage 4 ‘ Stage 5 $
Initial Second Decisionon __Post Pre- Post-
Screen Screen Business
Review Business Analysis Review

The lack of

n between both tools is not desired and leads to problems for the innovation management at DATEV. Futher, the ins ty of the stage-gate process realized in the first tool does not
igure.

awmay hat s actually necessary. Therefore, we integrated both tools in one flexible innovation process that is shown i igure
Submit idea
Idea generation Evaluation e
Define Define Perform Create Leave
De;game rosponsible | | privacy | pe--nn=emn initial expert's user
department settings check report feedback
R

Decision making

Make and Define
explain final | | reward for

decision submitter
<>
File protesty---=====4 === Y

Figure 10.1.: The initial creation of the innovation management process in Darwin,
showing model, type and page.

With the basic structure of the innovation management process defined, it is now
possible to use the CMMN modeler in Darwin to describe the logic of the process.
The three different stages of the innovation management process explained above
represent an ideal structure to be modeled as different stages in the context of the
process modeler.

In order to be able to modify the process, the Modeler role is required. Using the
tools available to this role, the three stages can be created. This step is depicted

100

10.2. Modeling of the Process

in Figure 10.2, showing the stages in the process modeler. Also shown are the
Producer-Consumer dependencies between the stages, which were added using
the stage-linking tool.

=102 Workiist 48 Groups @ Feed _ +New & demo1 ~
Data [T Settings
/ Idea submission '\
Idea generation
Decision making
<>
Evaluation

Figure 10.2.: The three stages of the innovation management process added to the
CMMN model.

With the three necessary stages now modeled and linked, the necessary tasks
that are part of each stage can be added. The same goes for the two tasks which do
not have a stage and are added as tasks belonging to the whole case instead.

The next step is to create the numerous dependencies between the different tasks
of the process. Using the task-linking tool, the sequential dependencies of the Idea
generation and Decision-making stages can be created using the Normal link connector.

The connection of the CaseTask Integrative Decision-making with the Decision-
making stage can be created the same way, as stages are shown in the dropdown
menu for the target selection as well.

A more complex constraint is the OR-Join, which is part of the tasks in the
Evaluation stage. Just like a normal connector between tasks, the AND and OR
constraints can be added using the task-linking tool. Each of the two expert tasks
is linked to the target the same way, by selecting the OR-constraint as link type.

101

10. Evaluation

In order to indicate the creation of an OR-Join, a small bubble is added, joining
both incoming connectors. The resulting CMMN process is depicted in Figure 10.4,
showing the three stages, all available tasks and the different constraints added to
them.

=102 Worklist 4 Groups @ Feed _ +New & demo1 ~
Data Logic Settings
/ |dea submission \
Idea generation
: ‘
Gatins pr
sttngs
8
......... -
|8., —
‘ 50 Decision making
1 & ‘
L cmeran
: 8 ‘ |
! o gsctmon
<
Evaluation
8
Expart op
|
. &
8. 8. |
........ P [
o=
Conmut expert

Figure 10.3.: HumanTasks and CaseTask added to the three stages and the case.

With the process now modeled in CMMN, end-users, adding information in the
form of data to the Innovation Management case, will be influenced by the new
constraints instantly. Depending on the currently active stage, only the tasks that
do not have an unfinished predecessor appear in the worklist. This is illustrated in
Figure 10.5, which shows the different stages of a worklist. When the user finishes
on of the two tasks shown in (a) the subsequent task appears in the worklist as
shown in (b).

In summary, the modeling of the Innovation Management process at DATEV
illustrated some of the key features provided by Darwins interactive CMMN mod-
eler. Prior to the implementation of the modeler, only sequential processes could
be modeled, making the structuring of a Knowledge-intensive Process like the one
at hand impossible. By enabling users to create complex logical dependencies and
constraints, the Innovation Management process can be modeled including some of

102

10.2. Modeling of the Process

/ dea submission \

Idea generation

Intsgrative
dacision-making

'
'
'
1 [%I!\O 6
........... sibilttioe isi i
respon! o Decision making

Evaluation

: f 8
8. - 5 '
4& k |
[Consult expert o _—

Figure 10.4.: The complete Innovation Management process modeled using Dar-
wins CMMN editor.

Tasks for this page x

Add task to this page

Tasks for this page x

Add task to this page
Expert report Leave user feedback

Consult expert 2 completed tasks

(@) before (b) after

Figure 10.5.: The process logic directly influences the worklist of end-users.

the more advanced relations between the different activities.

Furthermore, end-users will be directly affected by the changes made on the
process level. As they go through the Innovation Management process by adding

103

10. Evaluation

new information, the order of execution strictly follows the pattern created by the
modeler. This enables modelers to control the execution of a process on the one
hand, and to extract patterns, as the end-users keep on adding information in the
form of tasks and attributes, on the other.

104

PartIV.

Conclusion and Outlook

105

11. Conclusion

This thesis focused on the thorough analysis of the Case Management Model and
Notation and Knowledge-intensive Processes. It evaluated the ways in which the
specification is able to support such processes and how it can be used in an actual
software environment. In order to explain the relevant topics, they were discussed
in detail throughout the first part of the thesis. Applying this relevant information,
the second part of the thesis analyzed the requirements for the software prototype
developed in the third part of this thesis. The developed prototype was then
evaluated using an existing Knowledge-intensive Process.

Throughout the course of the thesis some interesting and important insights were
gained which can be employed to further research performed in the area of Case
Management. Using the three research questions introduced in the first chapter, the
findings can now be compared to the objectives they specify.

Research Question 1: How can CMMN support users with the definition of
Knowledge-intensive Processes?

The detailed introduction of the CMMN specification as well as the thorough
analysis of the research performed by important experts in the area has shown
that the modeling notation factors in the most important attributes of Knowledge-
intensive Processes. It outlined some important events that ultimately resulted in
the release of a final version, which leaves it up developers and process modelers
to make use of the specification and render it usable in a software environment.

Furthermore, the complexity measurement performed for CMMN showed that
the complexity can indeed be significantly reduced compared to BPMN 1.2 and its
various subsets. While this serves as good evidence for the reduction of complexity
achieved by CMMN, it should only be used as an indicator which can be used as
the driver for performing further research.

It is also important to consider the fact that CMMN 1.0 has just recently been
released in May, 2014. While it is definitely possible to draw first conclusions on
its applicability for Knowledge-intensive Processes, it remains to be seen whether

107

11. Conclusion

the specification is capable of supporting them in actual business cases. Neverthe-
less, the two following research questions emblaze this issue in a more detailed way.

Research Question 2: What is a suitable subset of CMMN that can be used for
Knowledge-intensive Processes?

To begin with, the complexity measurement performed for the subset used in
Darwin showed that the complexity can indeed be significantly reduced compared
to CMMN 1.0 as well as BPMN 1.2 and its various subsets. The creation of subsets,
like the one used in the developed prototype, provide ways to reduce the complexity
even further. While the creation of a subset to reduce complexity can generally be
regarded as a reasonable approach, the extraction needs to be carefully executed in
order to remain compliant with the CMMN specification.

In order to generate this subset, workflow patterns, which were described by the
Workflow Management Coalition and further categorized by van der Aalst et al. at
the Workflow Patterns Initiative!, have been evaluated. In combination with the
general requirements of Knowledge-intensive Processes and the CMMN specifi-
cation, the workflow patterns which were found suitable for the implementation
have been turned into dependencies and constraints to be used in the developed
software environment.

Research Question 3: What is a suitable software environment for CMMN?

Using the identified subset of CMMN, the analyzed requirements were imple-
mented in an existing research prototype. In order to be able to evaluate the
implemented solution, an actual process used at a leading software company was
modeled using the features provided by the software environment. It showed that it
is indeed possible to create the necessary dependencies and constraints required by
a complex business process, eliminating some of the major problems other solutions
faced implementing the same model.

With regard to the great variety of Knowledge-intensive Processes, it is possible
to define processes providing different amounts of flexibility. Should a process
require only little guidance on the one hand, modelers can choose to not create any
dependencies. However, if a process has certain attributes that require the creation
of dependencies on the other hand, this can also be achieved using the constraints
provided by the application. It enables modelers to create a broad range of different

'Website of the initiative: http:/ /www.workflowpatterns.com, last accessed on 2014-12-03

108

processes, making the software system highly dynamic.

In summary, this thesis indicates that it is indeed possible to use the Case Man-
agement Model and Notation for supporting and structuring Knowledge-intensive
Processes in various environments. Due to the high amount of flexibility provided
to end-users as well as modeling experts, a broad array of different processes can

be supported.

109

11. Conclusion

110

12. Future Outlook

Due to the fact that the Case Management Model and Notation, and its approach
applied for handling Knowledge-intensive Processes, are still in their infancy, it
is likely that new insights will lead to new developments. Many of the findings
presented in this thesis leave room for further research and can be used as a starting
point.

A logical next step concerning the developed CMMN process modeler would be
to perform multiple case studies, in order to evaluate whether all processes can be
modeled adequately in the application without missing dependencies. Should the
need for more dependencies and constraints arise, the workflow patterns can be
analyzed further in order to implement the new features in a suitable way. Due to
the high flexibility required by Knowledge-intensive Processes, the implemented
constraints in this prototype represent rather basic workflow patterns. It is therefore
necessary to consider the issue of flexibility whenever new constraints are being
added.

Another area of research could be the definition and implementation of a learning
algorithm, in order to help modelers extract patterns from the information added
to a case by end-users. In the current prototype, the modeler needs to find and
extract patterns manually without any automation or guidance. Due to the constant
adaption of Knowledge-intensive Processes, learning algorithms can use the envi-
ronment already available in order to gain important insights and assist modelers
to constantly improve the process.

A similar approach, which focuses more on the regular Knowledge-workers,
would be the implementation of a recommendation system based on insights
gained from similar processes. Such a system would be able to use information
(e.g. naming of tasks and attributes) from prior executions of a process to give
recommendations to users on-the-fly. This could enhance the user experience
substantially and ultimately make Knowledge-workers more productive.

A more advanced area of research could explore methods to reduce complexity
of process models which have been constantly improved. At some stage, processes

111

12. Future Outlook

might become so complex that some dependencies turn into an obstruction. Once
specified, it becomes increasingly harder to detect new patterns that require the
removal of certain dependencies. While this issue could also be addressed by an
algorithm, it requires more research to be performed.

All in all, case management for Knowledge-intensive Processes with the help of
CMMN remains an interesting and novel field of research. Much of the research
performed throughout the course of this thesis was based on literature which also
mentioned this novelty. It will be exciting to track the further development of the
CMMN specification and its use in real-life business cases. It is very likely that
it will take some more time for it to move from a theoretical towards a practical
solution.

112

Bibliography

[1] Dan Atwood. BPM process patterns: Repeatable design for BPM process
models. BP Trends May, 2006.

[2] Manfred Broy. Requirements engineering as a key to holistic software quality.
In Computer and Information Sciences—ISCIS 2006, pages 24-34. Springer, 2006.

[3] T.H. Davenport and L. Prusak. Working Knowledge: How Organizations Manage
what They Know. Number 247 in EBSCO eBook Collection. Harvard Business
School Press, 1998.

[4] Henk de Man. Case management: Cordys approach. BPTrends, February, pages
1-13, 2009.

[5] Claudio Di Ciccio, Andrea Marrella, and Alessandro Russo. Knowledge-
intensive processes: An overview of contemporary approaches. Knowledge-
intensive Business Processes, page 33, 2012.

[6] Claudio Di Ciccio, Andrea Marrella, and Alessandro Russo. Knowledge-
intensive processes: Characteristics, requirements and analysis of contempo-
rary approaches. Journal on Data Semantics, pages 1-29, 2014.

[7] Peter F Drucker. The Age of Discontinuity: Guidelines to Our Changing Society.
Harper & Row, 1969.

[8] Peter F Drucker. Knowledge-worker productivity: The biggest challenge.
California Management Review, 41(2):78-94, 1999.

[9] Dirk Fahland, Daniel Liibke, Jan Mendling, Hajo Reijers, Barbara Weber,
Matthias Weidlich, and Stefan Zugal. Declarative versus imperative process
modeling languages: The issue of understandability. In Enterprise, Business-
Process and Information Systems Modeling, pages 353-366. Springer, 2009.

113

Bibliography

[10] Dirk Fahland, Jan Mendling, Hajo A Reijers, Barbara Weber, Matthias Weidlich,

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

and Stefan Zugal. Declarative versus imperative process modeling languages:
the issue of maintainability. In Business Process Management Workshops, pages
477-488. Springer, 2010.

Alexandra Fortis and Florin Fortis. Workflow patterns in process modeling.
arXiv preprint arXi0:0903.0053, 2009.

Martina E. Greiner, Tilo Bhmann, and Helmut Krcmar. A strategy for knowl-
edge management. Journal of Knowledge Management, 11(6):3-15, 2007.

Matheus Hauder, Dominik Miinch, Felix Michel, Alexej Utz, and Florian
Matthes. Examining adaptive case management to support processes for

enterprise architecture management. Enterprise Distributed Object Computing
Conference Workshops (EDOCW). IEEE, 2014.

Christian Herrmann and Matthias Kurz. Adaptive Case Management: Support-
ing Knowledge Intensive Processes with IT Systems. In S-BPM ONE-Learning
by Doing-Doing by Learning, pages 80-97. Springer, 2011.

Gerhard Hube. Beitrag zur Beschreibung und Analyse von Wissensarbeit.
2005.

Richard Hull, Francois Llirbat, Eric Siman, Jianwen Su, Guozhu Dong, Bharat
Kumar, and Gang Zhou. Declarative workflows that support easy modifi-
cation and dynamic browsing. In ACM SIGSOFT Software Engineering Notes,
volume 24, pages 69-78. ACM, 1999.

Marta Indulska, Michael zur Muehlen, and Jan Recker. Measuring Method
Complexity: The Case of the Business Process Modeling Notation. BPMcenter.
0rg2009, 2009.

Santhosh Kumaran, Prabir Nandi, Terry Heath, Kumar Bhaskaran, and Raja
Das. ADoc-oriented programming. In Applications and the Internet, 2003.
Proceedings. 2003 Symposium on, pages 334-341. IEEE, 2003.

Craig Le Clair and Connie Moore. Dynamic Case Management - An Old Idea
Catches New Fire. Forrester Research, 2009.

114

Bibliography

[20] John W Lloyd. Declarative programming in Escher. Technical report, Technical
Report CSTR-95-013, Department of Computer Science, University of Bristol,
1995.

[21] Mike Marin, Richard Hull, and Roman Vaculin. Data centric BPM and the
emerging case management standard: A short survey. In Business Process
Management Workshops, pages 24-30. Springer, 2013.

[22] Mike A. Marin, Hugo Lotriet, and John A. Van Der Poll. Measuring Method
Complexity of the Case Management Modeling and Notation (CMMN). In
Proceedings of the Southern African Institute for Computer Scientist and Information
Technologists Annual Conference 2014 on SAICSIT 2014 Empowered by Technology,
SAICSIT "14, pages 209:209-209:216, New York, NY, USA, 2014. ACM.

[23] Hamid Reza Motahari-Nezhad, Claudio Bartolini, Sven Graupner, and Susan
Spence. Adaptive case management in the social enterprise. In Service-Oriented
Computing, pages 550-557. Springer, 2012.

[24] Anil Nigam and Nathan S Caswell. Business artifacts: An approach to opera-
tional specification. IBM Systems Journal, 42(3):428-445, 2003.

[25] I. Nonaka and H. Takeuchi. The Knowledge-creating Company: How Japanese
Companies Create the Dynamics of Innovation. Oxford University Press, 1995.

[26] OMG - Object Management Group. Case Management Model and Notation,
version 1.0 edition, May 2014. http://www.omg.org/spec/CMMN/1.0/.

[27] G. O'Regan. A Brief History of Computing. SpringerLink : Biicher. Springer,
2012.

[28] Martin Owen and Jog Raj. BPMN and business process management. Introduc-
tion to the New Business Process Modeling Standard, 2003.

[29] M. Pesic. Constraint-Based Workflow Management Systems: Shifting Control to
Users. PhD thesis, Eindhoven University of Technology, 2008.

[30] Maja Pesic. Constraint-based workflow management systems: shifting control
to users. 2008.

[31] Andy Petrella. Learning Play! framework 2. Packt Publishing, 2013.

115

http://www.omg.org/spec/CMMN/1.0/

Bibliography

[32] M. Pfiffner and P. Stadelmann. Wissen wirksam machen: Wie Kopfarbeiter produk-
tiv werden. EM - edition MALIK. Campus Verlag, 2012.

[33] M. Polanyi and A. Sen. The Tacit Dimension. University of Chicago Press, 2009.

[34] Jan C Recker, Michael zur Muehlen, Keng Siau, John Erickson, and Marta
Indulska. Measuring method complexity: UML versus BPMN. Association for
Information Systems, 2009.

[35] J. Rehduser and H. Krcmar. Wissensmanagement im Unternehmen. Arbeitspa-
piere. Lehrstuhl fiir Wirtschaftsinformatik, Univ. Hohenheim, 1996.

[36] Matti Rossi and Sjaak Brinkkemper. Complexity metrics for systems develop-
ment methods and techniques. Information Systems, 21(2):209-227, 1996.

[37] Nick Russell, Arthur H. M. Ter Hofstede, and Nataliya Mulyar. Workflow
control-flow patterns: A revised view. Technical report, 2006.

[38] Keng Siau and Matti Rossi. Evaluation of information modeling methods
- a review. In System Sciences, 1998., Proceedings of the Thirty-First Hawaii
International Conference on, volume 5, pages 314-322. IEEE, 1998.

[39] Keith D Swenson. Mastering the Unpredictable. Meghan-Kiffer Press, 2010.

[40] Thanh Thi Kim Tran, Max] Pucher, Jan Mendling, and Christoph Ruhsam.
Setup and Maintenance Factors of ACM Systems. In On the Move to Meaningful
Internet Systems: OTM 2013 Workshops, pages 172-177. Springer, 2013.

[41] U.S. Department of Defense. Enterprise Architecture based on Design Primitives
and Patterns Guidelines for the Design and Development of Event-Trace Descriptions
(DoDAF OV-6c) using BPMN, 2009.

[42] Roman Vaculin, Richard Hull, Terry Heath, Craig Cochran, Anil Nigam, and
Piyawadee Sukaviriya. Declarative business artifact centric modeling of de-
cision and knowledge intensive business processes. In Enterprise Distributed
Object Computing Conference (EDOC), 2011 15th IEEE International, pages 151—
160. IEEE, 2011.

[43] Wil MP van Der Aalst, Arthur HM Ter Hofstede, Bartek Kiepuszewski, and
Alistair P Barros. Workflow patterns. Distributed and parallel databases, 14(1):5—
51, 2003.

116

Bibliography

[44] Wil MP Van der Aalst, Mathias Weske, and Dolf Griinbauer. Case handling:
a new paradigm for business process support. Data & Knowledge Engineering,
53(2):129-162, 2005.

[45] WMP Van der Aalst, Moniek Stoffele, and JWF Wamelink. Case handling in
construction. Automation in Construction, 12(3):303-320, 2003.

[46] R Hevner von Alan, Salvatore T March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS quarterly, 28(1):75-105, 2004.

[47] Stephen A White. Process modeling notations and workflow patterns. Workflow
handbook, 2004:265-294, 2004.

[48] The Workflow Management Coalition. The Workflow Management Coalition
Terminology & Glossary, version 2.0 edition, 1999.

[49] Michael zur Muehlen and Danny T Ho. Service process innovation: a case
study of BPMN in practice. In Hawaii international conference on system sciences,
proceedings of the 41st annual, pages 372-372. IEEE, 2008.

[50] Michael zur Muehlen and Jan Recker. How much language is enough? theoret-
ical and practical use of the business process modeling notation. In Advanced
information systems engineering, pages 465—479. Springer, 2008.

[51] Michael zur Muehlen, Jan Recker, and Marta Indulska. Sometimes less is
more: are process modeling languages overly complex? In EDOC Conference
Workshop, 2007. EDOC’07. Eleventh International IEEE, pages 197-204. IEEE,
2007.

117

	Acknowledgements
	Abstract
	Zusammenfassung
	Outline of the Thesis
	Introduction and Theory
	Introduction
	Motivation
	Problem Description
	Research Scope
	Method and Outline
	Methodical Research Approach
	Research Objectives
	Structure of the Thesis

	Theoretical Background
	Knowledge Work
	Knowledge
	Knowledge Work Definition
	Knowledge Workers
	Knowledge-intensive Processes

	Declarative Processes
	Imperative Process Models
	Declarative Process Models

	CMMN
	Case Management
	Origin of the Specification
	Target Users
	Structure of the Notation
	Visual Elements of the Notation

	Related Work
	Process Models Supporting Knowledge Workers
	Imperative vs. Declarative Process Models
	Complexity Measurement of CMMN

	Supporting Knowledge-intensive Processes with CMMN
	Workflow Patterns
	Control-Flow Patterns
	Basic Control-Flow Patterns
	Advanced Control Flow Patterns
	Important Control Flow Patterns

	Unsupported Patterns

	Requirements for Knowledge-intensive Processes
	Analysis of Requirements
	Flexibility
	Data-centricity
	Goal Definition
	Reduction of Complexity
	Support of Constraints
	Roles

	Functional Requirements

	Extraction of a Suitable Subset
	Structuring Activities with Tasks and Stages
	Human Tasks
	Case Tasks

	Creating Relationships
	Adding Constraints

	Complexity Measurement
	Analyzing the Number of Objects
	Analyzing the Number of Properties
	Analyzing the Number of Relationships
	Calculating the Cumulative Complexity
	Results

	Implementation
	Research Prototype
	Technical Architecture
	System Design
	Single Page Application
	Interactive Frontend

	Implementation of Requirements
	Basic Functionality
	CMMN Functionality
	Creation of Stages and Tasks
	Creation of Dependencies
	Cycle Prevention
	Progress Propagation

	Evaluation
	The Innovation Management Process
	Modeling of the Process

	Conclusion and Outlook
	Conclusion
	Future Outlook
	Bibliography

