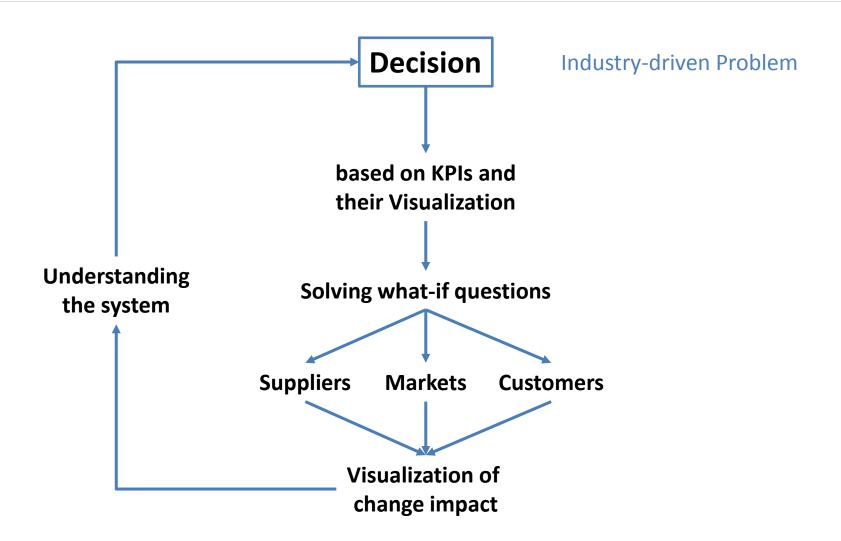


A concept for the visual and interactive impact analysis and simulation of data changes to enterprise metrics

Final Presentation


- Room Rate of Trinidad Tapia
- Room Rate of Rosalia Daugherty
- Room Rate of Hunter Mcconnell
- Room Rate of Dominic Bradshaw
 - Room Rate of Aiden Barber
 - Room Rate of Clinton Peters
 - Room Rate of Maricruz Lopez
 - Room Rate of Avako Ware
 - Room Rate of William King
- Room Rate of Matthew Macdonald
- Room Rate of Marguerite Mcguire
 - Room Rate of Nelson Foster .
 - Room Rate of Nicholas Lynn
- Room Rate of Marguerite Quinn
 - Room Rate of Dian Snyder
 - Room Rate of Audrey Bishop
 - Room Rate of Sebastian Reed
 - Room Rate of Edmund Wu
 - Room Rate of Benjamin Olson
- Room Rate of Edmund Macdonald
 - Room Rate of Lucy Hinton
 - Room Rate of Olivia Church
 - Room Rate of Taylor Juarez

 - Room Rate of Dian Conway
- Room Rate of Timmy Stevenson ...
- Room Rate of Maricruz Marks

Index

- Motivation
- Research Questions
- Literature Review
- Market Overview
- Solution Approach
- Architecture
- Demo
- Byproducts
- Outlook
- References

Motivation

Research Questions

- 1) What is an appropriate concept to visualize the impact of data changes to enterprise metrics?
 - → appropriate: theoretically profound, technically viable
- 2) How can interaction on this visualization help to improve the user's understanding of the calculation system?

Literature Review: KPI Visualization

- Common visualization technique:
 Dashboard [1]
 - Each KPI, one graphical component
 - Supportitive diagrams (charts, graphs, tables)
- Generic adequate visualization technique:
 2-dimensional graph-based layouts [2]
- Equations well represented by node+link graphs [3]

$$a = b + c$$
 $c = d + e$

Literature Review: Impact Visualization

- Impact of influencing factors on processes evaluated by Hao et al. [4]
 - → Hyperbolic graph layout
 - → Different colors and line weights show impact of each factor
- Display delta between an original value and a new value with size of node [3]
- Enable the user to interact with the model and compare scenarios [5]

Market Overview

Simulation tools

e.g. Simio, SimuLink/MathWorks, Simul8, OptQuest, OpenSim, OpenModelica

- → Targeted at engineers and scientists
- → Usability for user group,
 e.g. console view only, complex languages
- → Not suitable for the problem

Microsoft Excel

- → Insufficient visualization of impact
- → Understanding the system difficult if formulas are hidden

Powersim Studio 10

- → No comparison between original and deviated values
- → No support for "Virtual Data"

Solution Approach: Basics

(1)
$$d * \Delta + c = s$$
 with $\Delta = 0$ for $c \neq 0$

d: original value

Δ: simulated delta

c: value replacement / constant

s: simulated value

$$(2) D \cup V = S$$

D: original data

V: virtual data

S: simulated data


Solution Approach: Visualization

KPIs based on **Formula**

Visualization of Formula based on Spence [3]

Different weights and colors [4]

Interaction with scenario [5]

Modular Architecture

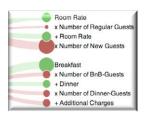
Demo

Renter - id: String - name: String - age: int - rent: float - utilities: float - extra: float

Research Questions Answered

- 1) What is an appropriate concept to visualize the impact of data changes to enterprise metrics?
 - → Visualization of KPIs with 2-dimensional graphs
 - → Visualization of data changes with size and color
- 2) How can interaction on this visualization help to improve the user's understanding of the calculation system?
 - → Compare scenarios
 - → See where impact originates

Byproducts


MxLDriver for Java

CRUD operations, authentication, meta information, static/dynamic graph generation

Documentation in Swagger [6]

Interactive and static documentation

Modelling Patterns

Aggregation, Condition, Implicit Join and more

Outlook

User Validation Needed (Industry Partner)

Usability Validation Needed (User Tests)

Data Source Integration (e.g. SAP HANA)

References

- [1] Kerzner, H. R. (2013): Project Management Metrics, KPIs, and Dashboards: A Guide to Measuring and Monitoring Project Performance: Wiley. Available online at http://books.google.de/books?id=BRNwAAAAQBAJ.
- [2] Nazemi, Kawa; Breyer, Matthias; Kuijper, Arjan (2011): User-Oriented Graph Visualization Taxonomy: A Data-Oriented Examination of Visual Features. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell et al. (Eds.): Human Centered Design. Berlin, Heidelberg: Springer Berlin Heidelberg (Lecture notes in computer science), pp. 576–585.
- [3] Spence, Robert (2007): Information visualization. Design for interaction. 2nd ed. Harlow, England, New York: Addison Wesley.
- [4] Hao, Ming C.; Keim, Daniel A.; Dayal, Umeshwar; Schneidewind, Jörn (2006): Business process impact visualization and anomaly detection. In Inf Vis 5 (1), pp. 15–27. DOI: 10.1057/palgrave.ivs.9500115.
- [5] Russell, Karl; Carter, Shan (2009): How the Giants of Finance Shrank, Then Grew, Under the Financial Crisis. Edited by The New York Times. Available online at http://www.nytimes.com/interactive/2009/09/12/business/financial-markets-graphic.html?_r=0, updated on 9/20/2009, checked on 5/13/2014.
- [6] wordnik (2014): Swagger RESTful API Documentation Specification. Reverb Technologies, Inc. Available online at https://github.com/wordnik/swagger-spec/blob/master/versions/1.2.md, updated on 6/6/2014, checked on 7/21/2014.

A concept for the visual and interactive impact analysis and simulation of data changes to enterprise metrics

by Matti Maier

- Room Rate of Trinidad Tapia
- Room Rate of Rosalia Daugherty
- Room Rate of Hunter Mcconnell
- Room Rate of Dominic Bradshaw
 - Room Rate of Aiden Barber
 - Room Rate of Clinton Peters
 - Room Rate of Maricruz Lopez
 - Room Rate of Ayako Ware
 - Room Rate of William King
- Room Rate of Matthew Macdonald
- Room Rate of Marguerite Mcguire
 - Room Rate of Nelson Foster
 - Room Rate of Nicholas Lynn
- Room Rate of Marguerite Quinn
 - Room Rate of Dian Snyder
 - Room Rate of Audrey Bishop
 - Room Rate of Sebastian Reed
 - Room Rate of Edmund Wu
 - Room Rate of Benjamin Olson
- Room Rate of Edmund Macdonald
 - Room Rate of Lucy Hinton
 - Room Rate of Olivia Church
 - Room Rate of Taylor Juarez
 - Room Rate of Dian Conway
- Room Rate of Timmy Stevenson
- Doom Date of Mariative Marks

Additional Information

BACKUP

Examples within this Thesis

1. Hotel Business

- On SQL Database and T39
- Generated Data
- Goal: Easy example for presentation

2. EAM

- On T39
- E.g. simulating the impact of additional applications in domains

Other areas of application include gross margin calculations, financial portfolio analysis, risk management evaluation and more.

Research Methodology

Design Science (Hevner et al. 2004)

- Design as an Artifact:
 - Models (e.g. architecture) and a prototype (application)
- Problem relevance:
 - Problem is to visualize impact of influencing factors --> solve with an application
- <u>Design evaluation</u>:
 - Descriptive Evaluation -> Scenario to demonstrate the utility
 - Testing -> Black- and Whitebox with Unit tests
 - Analytical -> fit of architecture into application landscape
 - -> SQL databases as common data stores, CSV for Excel as a common tool, etc.
- Research Contributions:
 - Visualization technique
 - Application design, e.g. data source interface
- Research Rigor:
 - Construction methods: patterns (e.g. composite, singleton, client/server)
 - Evaluation methods: (see above)
- Design as a Search Process:
 - evolution of the architecture --> refinement, extension
 - Different model storages to proof the portability and improve the interface design
- Communication of Research:
 - Presentations
 - Final paper
 - Swagger UI

Systematic Literature Review (Kitchenham/Charters 2007)

- Review Protocol
 - Questions
 - Resources
 - Search Terms
 - Selection Criteria

Challenges in Implementation

Connecting T39

Result: MxL Driver

Specialty: Data retrieval over MxL

Generating Queries

- Different operations
- Different data sets
- Recursive dependencies

Finding the right frameworks

- D3.js vs. Gephi vs. GraphStream vs. ...
- Tempo.js for JavaScript/JSON Templates
- Validation frameworks

Performance

Parallelization

Calculation is performed in parallel as much as possible

Code to Data

Computation is pushed to data as far as possible

Connection Pooling

JDBC Data Sources are connected using connection pools

Lightweight JSON REST Interfaces

- Reuse of JSON where possible
- Thus little conversion necessary

Security

Input Validation

- from User
- from external systems, e.g. T39
- Counter measure against XSS

Session Reinitialization

Prevent Session Fixation

Forced HTTPS Connections

Forward from HTTP to HTTPS connections

Custom Error Pages

No presence of version and server

Modelling Patterns

- Column Aggregation

 e.g. sum of a column in a table
- Calculating the Average
 i.e. sum / count
- Copying Node
 How to copy and reuse a node?
- Condition
 How to model conditions?
- Implicit Join
 How to implicitly join tables?

Migration on T39

Why was this application not migrated on T39?

- Industry-driven Topic
 - Various data sources, e.g. SAP HANA
- Integration of T39 earlier this year
 - Could have lead to a delay of the thesis
- Incompatible libraries in T39
 - e.g. D3.js requires other jQuery(s)
 - When DataWidgets are completed,
 then integration in DW Infrastructure