[

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Bachelorarbeit in Informatik

Application Performance Monitoring of a
scalable distributed Java web-application in a
cloud infrastructure

Michael Rose

D

I

FAKULTAT FUR INFORMATIK

DER TECHNISCHEN UNIVERSITAT MUNCHEN

Bachelorarbeit in Informatik

Application Performance Monitoring of a scalable
distributed Java web-application in a cloud
infrastructure

Application Performance Monitoring einer skalierbaren
verteilten Java Web-Anwendung in einer
Cloud-Infrastruktur

Author: Michael Rose
Supervisor: Prof. Dr. Florian Matthes

Advisor: Alexander Schneider, Dr. Thomas Biichner
Date: August 15, 2013

I assure the single handed composition of this bachelor’s thesis only supported by declared
resources.

Miinchen, den Michael Rose

Abstract

Application Performance Monitoring (APM) is an essential aspect of software engineering
and development. Inevitable for finding performance bottlenecks in an application or
monitoring its current state while it is running in production, performance monitoring is
often underestimated. However, monitoring CPU and memory consumption, file system
and network traffic is not always sufficient. Application-level data is needed to be able to
detect problems and solve them fast.

In this thesis we investigate how APM can be used for and integrated in an existing
Java web-application, namely Tricia by infoAsset. The main focus hereby lies on covering
the specific requirements posed by the application being scalable and deployed in a cloud
infrastructure. We derive a variety of different but essential metrics for Tricia which can
mostly be transferred to general Java web-applications. Furthermore, the required means
of evaluating the gathered information are proposed as well as how they can be applied.
We then take a look at already existing solutions for employing APM, including the
examination of existing standards. Before advancing to the practical part, we conduct an
interview with an employee of a large company who is experienced in APM. Afterwards,
a complete APM solution is developed for Tricia. Key design and architectural decisions
are presented in addition to important implementation details. Furthermore, we evaluate
the solution in cooperation with infoAsset in the context of a real problem.

vii

Contents

[Abstract vii
[Outline of the Thesis| xiii
[I. Background and Analysis| 1
(L._Introduction| 3
LI, Monitoring|. L 3
[I1. TypesofMonitoring] 3

1.1.2. Application Performance Monitoring| 4

[[.1.3. Distinction from Profiling] 4
/02 v 7 7 5
(L.2.1. OverviewofTricial 5

[L.2.2. Modes of Deployment| 5

[1.3." Scalability and Distributed Software| 7
2. Problem Statement 9
2.1. Motivation| 9
2.2. Problem Overviewl| 9
2.3. Problem Contextl o e, 10
2.4. Involved Stakeholders| 11

[3. Analyzing the Problem| 13
B.1. KeyMetrics| 13
B.L1. Requests 13

B.12. Database Operations] 14

[3.1.3. Elasticsearch Operations|. 15

B.1.4. System Metrics| oo 15

B15_ CollectioninCodel 15

[3.1.6. Summary| 16

3.2. Means of Evaluationl0 L. 16
[3.2.1. Performance Snapshots|, 16

3.2.2. TimeSeries! e 17

3.2.3. PerformanceTraces|. 19

3.24. Proposed Usage|l. 19
Intermediate Results| o oo 20

ix

Contents

4.2.1. Java Management Extensions| L.

4.2.2. Nagios®|

4.2.3. collectd, Cacti,and thelike|

5._Interview]

II. Employing APM in Tricia

|6._Design Decisions

[p.1. Application Performance Monitoring in Tricia]

6.2. Solution to be Developed]

6.2.1. Separate Monitoring Tool]

6.2.2. Providing Data| .

6.4. Employed Standard)|. . .

[7._Arxchitecturel

[7.1. Monitoring Tool Architecture|,

[Z1.1. Data Collection] .

7.1 Data Evalutati

[7.1.4. Combining Results|

[7.2. Tricia Adaptation Architecture]

[721. StickingtoJavaSimon| L

[72.2. Monitor Handling]
[7.2.3. JMX Interface] . .

|8. Implementatiogl
B.l. Monitoring Tool Details|

|8.1.1. Configuratiog|. .

8.1.3. Webserver Technology|

|8.1.4. Analzzeg
B.15. Summary|

|§.2. AdaEting Tricia|
|8.2.1. Monitor Hand |in§|

23
23
23
25
28
30
32
32
36
39

41

43

45
45
46
46
46
47
47
48
48

51
51
51
52
52
53
53
53
53
55

Contents

[8.2.2. Performance Snapshots| 68
[B2.3. Performance Traces|. o v i i i e 68
8.2.4. JMXInterface| e 69
[8.2.5. CodeExamples| 71
8.3. Implementation Summary| 72

I p
(Il Evaluation and Final Results| 73
9. Practical Evaluation| 75
0.1, EvaluationContextl 75
0.2. Identification and Verificationl 75
9.3. Tracking Down| 0. 77
9.4. Outcomel e 79
(10. Conclusion| 81
MOLRESULS . .« o o v o o e e e e 81
[10.2. Points of Improvement| oo oo Lo 82
Bibliography; 83

xi

Contents

Outline of the Thesis

Part I: Background and Analysis

CHAPTER[I} INTRODUCTION

This chapter is an overview of the theoretical background. It defines the term monitoring in
general and contains a description of Tricia which is used in the practical part of this thesis.
Additionally, scalability and distributed software are explained.

CHAPTER[2 PROBLEM STATEMENT

We take a look at the given problem statement to see what we are trying to solve. An
overview of the questions posed by the topic of this thesis is presented. Afterwards, the
context in which the problem will be solved is outlined. Finally, the involved stakeholders
are stated in combination with their respective motivation.

CHAPTER[3l ANALYZING THE PROBLEM

First, the key metrics to be observed by Application Performance Monitoring are presented in
this chapter. Second, we describe the means of evaluation used to help draw conclusions
from the gathered data. The end of this chapter sums up the results and contains a pro-
posal on how the discovered means can be used together.

CHAPTER[4: RELEVANT TOOLS AND STANDARDS

Before advancing to the practical part of this thesis it is necessary to examine existing solu-
tions. The key question to be answered is what advantages and drawbacks they have. This
is required to later decide which of them can be reused when integrating APM in Tricia.
The same procedure is performed for standards.

CHAPTER[BE INTERVIEW

The last chapter in the theoretical part is an interview conducted with an employee of a
large company. He is experienced in APM with deployed applications. From his experi-
ence we derive some important aspects used in the practical part.

Part II: Employing APM in Tricia

CHAPTER[6 DESIGN DECISIONS

The first part of this chapter consolidates the current situation in Tricia. Based on this and
the prior analysis, the key design decisions are made. This also includes selecting the
frameworks and standard to use.

CHAPTER[Zt ARCHITECTURE

After all the decisions are made we construct the overall architecture of the solution to be
developed. This includes a separate monitoring tool as well as the adaptation of Tricia.

xiii

Contents

CHAPTER[8} IMPLEMENTATION

This chapter contains a detailed look at selected parts of the implementation. Key compo-
nents and corresponding are presented in-depth by providing and analyzing their code.
We also include some snippets showing how monitors can be integrated in Tricia.

Part III: Evaluation and Final Results

CHAPTER Ot PRACTICAL EVALUATION

One important aspect is the practical evaluation of the developed solution. A real problem
is discovered and analyzed in cooperation with infoAsset by using the solution created in
this thesis. We describe the process and findings thereof in this chapter.

CHAPTER[IQF CONCLUSION

The last chapter of this thesis sums up the results. We look back on the approach taken as
well as identify remaining points of improvement. These can serve as a basis for further
research.

xiv

Part 1.

Background and Analysis

1. Introduction

At the beginning of the thesis, important terms concerning the domain of Application
Performance Monitoring are explained to provide the reader with information needed to
fully understand the remaining parts. At first, the area of software monitoring is presented
in general, before examining to the concrete meaning of Application Performance Monitoring.
Afterwards, the context of the thesis as stated in the title — a scalable Java web-application
in a cloud infrastructure — is dissected and detailed.

1.1. Monitoring

At first it is necessary to explain what monitoring means. One possible definition for
monitoring is as follows:

“Monitoring is the process of maintaining surveillance over the existence and magni-
tude of state change and data flow in a system.” [3]

It is therefore a continuous task of checking specific properties of a system. Another
important aspect is that monitoring is done in multiple ways [17]. It is always used in a
non-intrusive manner, i.e. without affecting the monitored system. Monitoring is usually
employed proactively — before any problems are reported. On the other hand there is the
reactive situation — if a customer reports a problem and only subsequently monitoring is
started. Furthermore, monitoring is primarily employed in production environments [17].

1.1.1. Types of Monitoring

Concerning software and the machines running it, monitoring can be done at a variety of
levels. These levels are covered by distinct types of monitoring: [32]

¢ Availability Monitoring

System Monitoring

Performance Monitoring

Server Monitoring

Application / Transaction Monitoring

End-User Monitoring

1. Introduction

Performing Availability Monitoring means to ensure that systems, components, or single
applications are running at all. It is the most basic form of monitoring and primarily used
to ensure a working infrastructure. An example would be to check regularly if a server
on the network can be reached. System monitoring refers to the lowest level dealing with
hardware. Here, the availability of components and system resources is overseen and
the amount of resources used is measured as well. The goal is to get an insight in the
current state and behavior of the underlying machine. Some relevant metrics concerning
system monitoring are CPU load, network bandwidth or memory consumption. Performance
Monitoring is employed to observe the performance of a system. The relevant information
in this case is how long specific tasks in the software take to be completed. The gathered
measurements are often compared to predefined limits which have to be reached in order
to fulfill certain requirements. An example of this might be the response time of a web-
application, which the customer requires to be below 500ms. Server Monitoring in turn
handles the surveillance of an application server like Tomcat. These usually provide
internal metrics themselves via JMX for example. The information collected in this case
is relevant to the operator of the application server. Application or Transaction monitoring is
done for one specific application. It is used to track a single request (transaction) while it
is being processed. This way, very application-dependent metrics are gathered to identify
problems in the software. The last one is End-User monitoring. Its purpose is to assure that
all functionality is available to the user appropriately. In most cases this is handled by
pre-recorded scripts simulating user interaction. One example for that type of monitoring
is also tracking the overall page load time over the internet.

1.1.2. Application Performance Monitoring

Knowing what monitoring in general means, we now have to explain the essence of Appli-
cation Performance Monitoring (APM). As its name implies it is a combination of performance
and application monitoring. The purpose of APM is to monitor an application’s perfor-
mance employing application specific metrics [40]. This means that the application itself
is adjusted to provide values suitable for expressing its state. Leveraging these values, it
is then possible to see how an application performs or detect problems. If problems are
discovered, APM then helps to identify them and finally solve the issues.

1.1.3. Distinction from Profiling

Monitoring has to be differentiated from profiling [40,[17]. Profiling describes the same pro-
cess as monitoring, i.e. observing a system’s state and data flow, but done in an intrusive
way [17]. Therefore, the responsiveness of an application might decline or response times
can increase drastically. Another difference is the environment profiling is used in. Typi-
cally, profiling is not employed in a production but a development environment [40, 17].
It is an action taken in order to check and optimize an application’s behavior. Very often it
is the next step after monitoring has revealed a problem [17]. The purpose of profiling in
that situation is to find the root cause of the problem.

1.2. Tricia

1.2. Tricia

The practical work of this thesis — employing Application Performance Monitoring in an
existing Java web-application — will be done with Tricia, developed by infoAsset AG. We
therefore give a description of what it is used for and then present an overview of how
it can be deployed in different environments in combination with relevant architectural
aspects. These are especially important for determining the scope of the solution to be
developed in this paper as well as are reasons for oncoming decisions.

1.2.1. Overview of Tricia

Tricia is a web-based solution for collaborative project and information management as
well as team work, suitable for companies from small to large sizes. It serves as a single
point for storing various kinds of data, e.g. text content, contacts or even files, and gives
the using team the opportunity to easily structure the information. Tricia also offers a
powerful search to find what is needed fast and without much effort. This way the team’s
overall knowledge is made available to single members quickly in order to benefit from
each others experience.

Furthermore, Tricia is adaptable to different scenarios like Customer Relationship Manage-
ment (CRM) or Enterprise Architecture Management (EAM) [33]]. It is, however, not limited to
those concrete use cases. Due to its underlying hybrid wiki structure, customers can mod-
ify the information model and behavior to be compatible with their own information and
organization structure or processes.

While it is developed by infoAsset AG since 2008, Tricia’s core functionality is based
on a lot of research and evaluation in cooperation with TU Miinchen. Additionally, the
experience gained from former customer projects with Tricia’s predecessor infoAsset Broker
was an important groundwork to elaborate on.

1.2.2. Modes of Deployment

To suit the customer’s needs, Tricia’s current architecture allows it to be deployed in
different environments. One scenario is the deployment on a single server. This situation
is represented in Figure

For information storage, Tricia relies on a database server which is running on the
same or potentially another machine. Apart from the relational database containing every
information entered, there is an Elasticsearch search engine running. Elasticsearch is a very
flexible open source search and analytics engine also used to provide the powerful search
capabilities of Tricia. The key feature of this engine is its scalability — it can be configured
to run in a cluster, i.e. the search index can be distributed across different machines. In the
standalone scenario on a single server, however, Tricia does not use this setup but starts up
its own internal Elasticsearch node without cluster configuration. Users can then use their
browsers to connect directly to a running Tricia.

The other main type of deployment is inside a cloud environment. One practical ex-
ample is the Business Marketplace of Deutsche Telekom AG (DTAGB Figure shows how
such a setup typically looks like. The main aspect is that there is not only one but many

'http:/ /businessmarketplace.de

1. Introduction

Elastic

Search Tricia

Database
Figure 1.1.: Tricia Single Server Setup
=l o)) _
! ! i ! i ! I |
| Elastic | ' Elastic | ' Elastic | A
> I Search | | Search | | Search | I
i ! i ! i ' i :
— . — - — - — - — — . — . — - — — — -—-—-—-—-—1-1
Tricia Tricia Tricia
Database

Figure 1.2.: Tricia Cloud Environment Setup

servers running, each with its own Tricia instance. As in the single server setup, a database
for information storage is required. In this situation, there is a common one shared by all

1.3. Scalability and Distributed Software

Tricia instances. This way, every running Tricia can process any incoming request because
the data is located at one point. Furthermore, Elasticsearch is also involved but now in
its cluster configuration. To reduce the amount of servers needed, everyone of them runs
both a Tricia and an Elasticsearch node. As mentioned before, the cluster itself takes care
of distributing the search index among all nodes. Usually users do not connect to a single
Tricia instance in a cloud environment directly but over a proxy (not shown in Figure .
That is the same way DTAG also implemented it for their marketplace — users connect to
a load proxy which tries to distribute all requests evenly among the different nodes in order
to keep the average load as low as possible. When the proxy determined the right node,
the Tricia instance running on the elected server gets the request.

1.3. Scalability and Distributed Software

This behavior leads to two important and required factors: scalability and distributed soft-
ware. Scalability is a crucial aspect of handling an ever increasing demand for resources
[35]]. Basically, there are two different ways of scaling — horizontally (scale up) or vertically
(scale out). Scaling up means to make a system increasingly powerful. An example would
be that a server has 4GB of RAM and a dual-core processor. In order to scale vertically,
one replaces the server’s hardware with, say, 16GB of RAM and a quad-core CPU. You
therefore add more and more resources to a single node. On the contrary, scaling out re-
quires to add more nodes, i.e. more servers. Instead of having one single server handle all
the requests, one or two are added to the environment to take part of the load. Following
the path of horizontal scaling ultimately leads you to the creation of a supercomputer-like
setup.

In the context of Tricia and its deployment in the Business Marketplace, horizontal scaling
is applied. Using this method also poses a very important requirement: every node has
to be able to handle any request. As presented in Section this is reflected in two key
architectural aspects. First, there is one database shared by all nodes. Therefore the same
information is available to every instance. Second, we have seen that search capabilities
are provided by Elasticsearch. This framework was especially chosen for its cluster setup
and thus its ability to scale. As most database systems are per se designed to be scalable,
Tricia is consequently scalable as a whole system, too.

We are talking about three main parts, together forming the system Tricia — the database
server, an Elasticsearch cluster and Tricia as application. We have also seen that these parts
can all run on different machines at the same time. This exactly resembles the second factor
mentioned at the beginning of this section: distributed software [8]. Distributed software
describes that a software system is composed of components which can be located on
different machines across a network. The components then interact with each other to
altogether provide the system’s abilities. Three key aspects of a distributed system can be
stated as follows [8§].

* Concurrency of components — When one component is busy doing a specific task, it
does not automatically block others. Two different components can be active at the
same time processing independent requests.

* No global clock — There is no explicit synchronization required for all components to

1. Introduction

be working together.

* Independent failure — This should be a design goal when creating distributed software.
The failure of one component of the system may not lead to the failure of other
components. Practically, this is hardly feasible, especially in the context of a web-
application with a database as information storage.

2. Problem Statement

This chapter presents the problem which is examined in the thesis. First, the motivation
for doing APM is given. Following up, we describe the problem and put it in the context
of Tricia. Afterwards, the involved stakeholders including their corresponding motivation
are outlined.

2.1. Motivation

First, we want to give a short motivation why APM is necessary to do at all. Tricia is de-
veloped by infoAsset, where the following situation occurred. At that time, no monitoring
was employed in Tricia in any way.

One day an employee of infoAsset discovered that two installations for customers were
reacting very slowly. Consequently, the administrator of the instances” hoster was asked
for help. Unfortunately, he could not identify any problems. The load of all involved sys-
tems seemed normal and their infrastructure did not show any issues. His only suggestion
was to restart both instances.

The development team was left no other option than to do exactly that. They had no
data on Tricia’s behavior concerning these two installations. Fortunately, the problems
were solved by a restart this time. However, it is unknown if a profound error in the
application was the cause for the experienced slowdowns.

This is exactly the case where APM is needed. Without detailed information on the
application’s state and behavior at the time a problem occurs, it is almost impossible
to find out the underlying cause. In order to be able to handle such issues, APM is an
indispensable measure.

2.2. Problem Overview

The key question is how performance problems in an application can be solved by the
help of Application Performance Monitoring. The origin and motivation is always the same:
suddenly a problem arises without any reason. It is now vital to find the cause of the issue
and solve it with a minimum amount of effort. The whole problem leads to four basic
questions:

* Are there any performance problems?
* Was it just a singular event?
® When do the problems occur?

* What is the cause of the issue?

2. Problem Statement

The first step is always to know if there are any problems at all. Before investing
resources in polishing an applications performance, it is necessary to determine the need
for such action. A very important aspect when talking about optimizing performance
is when to do it. Donald Knuth once said: “premature optimization is the root of all evil”
[3]. Premature optimization means to invest a lot of time to make code highly performant
without knowing if this is required. Therefore, APM has the goal to give hints of when
taking optimization action is really needed, i.e. when profound problems occur.

Secondly, as soon as a problem occurs, it has to be investigated if it was just a singular
event. In case of the issue happening only once in a million executions, there is very little
chance a profound problem in the application exists. However, even these events must
be tracked. On the other hand, if an issue keeps arising every second time for example, a
deeper investigation is definitely required.

When a problem has then been detected and verified to be pressing, the next step is to
find out when it comes into play. Sometimes issues are related to a certain time of the day or
specific to a single operation. Since this is one important indicator to restrict the problem’s
cause, APM should provide corresponding information, too.

The last question is of course the one asking the root cause. The cause has to be found
out in order to properly solve the issue. Without knowing what was responsible for
the problem, a developer cannot reliably find a solution. To help in resolving problems,
appropriate forms of data and evaluation methods have to be determined.

These four questions are thoroughly analyzed. For every single one of them correspond-
ing means of analysis are developed. They help answering those questions. Furthermore,
it is required to analyze, how Application Performance Monitoring can then be successfully
integrated in an already existing application.

Keeping in mind all requirements derived from the analysis of the above questions, an
adequate solution has to be developed. There are already existing ones on the market but
it is left to determine what can be reused. The main aspect is whether it is as easy as taking
an off-the-shelf product or if a custom implementation is necessary.

2.3. Problem Context

The whole problem is tackled in the context of Tricia. Tricia and its basic architecture were
already presented in Section[I.2} It is important to remember this context during the thesis.
At all times, we refer back to aspects characteristic to Tricia when required.

As Tricia is a web-application, there is one key performance indicator: response time. This
essentially defines the application’s usability. The frustration of the user when working
with the application can be related to the performance as outlined in [36]. This is depicted
in Figure

The vertical dashed line specifies the normal response time, i.e. what a user has to expect.
In general this should not frustrate the user in any way at all. The first horizontal red line
(1) is the inefficiency axes. When response time exceeds this threshold, the user is less able
to focus on his work. Line 2 is deemed the furstration line. As soon as this limit is reached,
a user actively realizes that response is slow. Forcing him to wait probably makes him
think about other things, potentially even using a competitor. The last one (3) is the final
line of failure. Response times greater than this either lead to a direct error in the browser

10

2.4. Involved Stakeholders

Frustration
N

Response Time

Figure 2.1.: Response time and user frustration (after [36])

because the request took to long, or the user himself refreshes the page. In the worst case
a customer closes the browser window and is tired of waiting any more.

Knowledge of this behavior is therefore vital for Tricia. Tricia is designed and supposed
to help customers get their work done faster. If the application itself prevents this by
having slow performance, customers will be driven away. Ensuring high performance is
thus also represents business value.

2.4. Involved Stakeholders

Before being able to properly analyze the given problem, we also have to identify the
involved stakeholders. The analysis as well as the development of an adequate solution
always needs to consider their interests. Two of them are identified quickly: the customer
and the application’s developer.

The customer has no interest in APM as of a data-centric viewpoint. He does not want
to get any data of the application, e.g. response times or the number of requests. Talking
about performance, he is just interested in having a fast and usable application. This also
includes high availability, i.e. the application should be up and running at any time.

Furthermore, the developer is naturally interested in APM. His concerns are first to
detect if there are any problems, and if so, he wants to be able to solve them. The developer
therefore requires as much data as he can get to help him with analyzing issues. He is also
responsible for ensuring the uptime and usability the customer demands. If problems
occur it is the developers task to correct them as fast as possible. That is why the analysis
and the developed solution are focused on the developer as a stakeholder of APM.

Since Tricia is deployed in cloud infrastructures, too, there is another stakeholder in-
volved. A cloud infrastructure is hardly maintained by the developing company of an
application but by a dedicated cloud provider. The provider gives a company access to
all required resources and ensures appropriate maintenance and management of the in-
frastructure. Especially to determine the right amount of resources an application needs

11

2. Problem Statement

and provide support for their customers, the cloud operators require information on the
application’s performance. The performance data serves as an indicator for them whether
further actions need to be taken.

In the context of cloud environments, an immediate requirement is revealed. In all but
every case a provider already has a monitoring system in place. This is used to ensure the
availability of the infrastructure, i.e. that servers are running or the network is reachable.
It is therefore important that the solution to be developed for Tricia can be plugged in into
this system to provide the required data. Thus, a common standard has to be employed
when implementing APM later on.

12

3. Analyzing the Problem

After the problem statement has been introduced, it is time to analyze it. First, we examine
what metrics have to be collected in order to be able to extract valuable information.
Afterwards, the four questions formulated in Section are examined. For every one of
them it is determined how APM can be used to answer them. We also work out the means
of evaluation required to extract the necessary information from gathered performance
data.

3.1. Key Metrics

As stated in Section monitoring means to continuously observe a system. Since not
everything can be observed as a complete thing, distinct metrics have to be determined.
We therefore want to compile a set of key metrics best suitable for representing an applica-
tion’s current performance. Because this process cannot be generalized totally, we restrict
ourselves to the context of Tricia. The findings presented in this chapter were backed by an
operator of the DTAG cloud environment as well as Richard Weinberger, administrator of
Tricia hosting at SigmaStar.

3.1.1. Requests

First of all, there are three different metrics directly related to the processing of requests:
response time, handler duration, and the requests rate. Each of them is explained below and it
is made clear why they are identified as key metrics.

In Section 2.3| we already elaborated on the importance of the response time of a web-
application. It is the key metric to determine its performance perceived by the user. Of
course, when measured with the users browser, side effects are also involved. These
include the available network bandwidth and latency, for example. However, most of the
side effects are beyond the developer’s sphere of influence. Improving the application’s
performance would not help a user with a 56k modem too much.

Therefore the response time measured here is from the entry of a request in the appli-
cation until the the response has been returned by the server. The response time includes
the three steps parsing, processing and the generation of output. This is illustrated in Fig-
ure The included steps have a gray background. Only processes which are directly
affected by the application are measured.

In order to be able to differentiate better, one more metric is the handler duration. It is
ancillary to the response time. In essence it is equal to the response time minus the two
steps parsing and output generation as shown in Figure With its help the execution
time of the core business logic is tracked. It is necessary to employ two metrics in this case.
If only the response time were measured, one could not detect if a problem occurred in the

13

3. Analyzing the Problem

User opens URL
in browser

Browser displays

Handler Duration full page

SN

Request arrives at Parsing of | Processing of .| Generation of .| Server sends
server | request ’ request output i response

Response Time

Figure 3.1.: Steps included in response time

business logic or the surrounding work. Having two metrics, one for the inner processing
and one for the complete tasks, all steps can be assessed appropriately.

Moreover, the request rate must be measured. It is the rate of incoming requests, i.e.
requests arriving at the application. This value is of special importance in the context of a
cloud environment. Users do not directly access one of the cloud’s servers. Their requests
are sent to a load proxy responsible for delegating them in such a manner that all servers
have the same load (see Section[1.2.2). As the result of a configuration problem, no requests
might be delivered to the application itself, for example. This is then expressed in a request
rate equal to 0. Consequently, continuously observing the request rate is highly important.

3.1.2. Database Operations

Just as a lot of web-applications make use of a database, Tricia also employs one for data
storage. In cloud environments, one single database is shared across all instances. Since
the majority of the data is located there, the database’s availability is vital. Therefore, its
performance has to be monitored closely. This is done by using two different metrics, one
for the execution time and an additional rate.

The execution time includes all steps from creating a connection, if necessary, until the
result is returned. Since the overall time to complete a database operation should be as low
as possible, there is no use of tracking only the execution of a single command. Especially
creating a connection can be a very time consuming operation. Also taking into account
a possibly high network latency to the database server, it becomes clear that the overall
execution time has to be measured. In Tricia, a lot of database operations may be triggered
for a single request where even small delays sum up to a noticeable slowdown.

Furthermore, the rate of database requests has to be tracked. This is easily explained
by the following example. Assume one database operation is executed every hour taking
1ms. Obviously, the average execution time is then equal to 1ms — absolutely no indicator
of a problem. However, Tricia has a variety of jobs running in the background at fixed
intervals. These usually execute a significant amount of database operations. That is why
monitoring the execution time is not sufficient — a rate of 1 request/hour is definitely an
alarming signal in the context of Tricia. It may indicate a severe problem concerning its

14

3.1. Key Metrics

background jobs, for example.

3.1.3. Elasticsearch Operations

Apart from the database, Elasticsearch is another indispensable component. As stated in
Section it is used to provide the powerful search capabilities of Tricia. Even more
so, a lot of functionality not related to a user searching for specific things is provided by
Elasticsearch. As a result, the failure of Elasticsearch would imply the failure of Tricia. It is
thus essential to monitor its availability, too.

In the same manner as with the database metrics, Elasticsearch should also be monitored
by two distinct ones. The first one is to track the execution time of operations. Secondly,
the rate of processed Elasticsearch requests is to be monitored. The reasoning is exactly the
same as with the database operations in Section[3.1.2]

3.1.4. System Metrics

In addition to the application-related metrics mentioned above, system-related metrics
also have to be observed. This is due to the fact that not all experienced performance
problems are related to the application itself but are caused by resource shortages. Two
main aspects have to be considered: CPU and memory.

The CPU is responsible for processing the tasks in the application. However, the appli-
cation is in all but every case the only thing running on the machine. This is especially
relevant in hosting environments where the application can be deployed alongside others.
At some times, very computation demanding operations are executed outside the devel-
oper’s influence. An example might be the generation of a server backup. This requires a
lot of CPU time consequently lacking the application. As a result, requests may not be pro-
cessed as fast as before and response time increases. What then shows as a performance
problem to the end-user is not caused by a problem in the application itself. Therefore
two CPU relevant metrics have to be observed: system load and process load. The former
describes the overall load of the machine, i.e. how much work the CPU has to handle
considering all running processes. The latter is restricted to the application’s process, i.e.
how much of the CPU time the application itself demands. The situation with creation of
a backup would most likely result in a high system but steady process load.

A next very critical resource is memory. Almost always applications are hosted in virtual
servers with a limited amount of memory. As soon as the memory is full, data will be
swapped, i.e. stored on the hard drive. In the DTAG cloud for example, swap is disabled.
Therefore when the memory is full and an application tries to allocate more, it will fail.
That is why maintaining surveillance over the amount of RAM is required. Even in cases
where swapping is enabled, the application experiences a drastic slowdown since hard
drive reads/writers are extremely more time consuming than a corresponding memory
operation.

3.1.5. Collection in Code

The collection in code is done by using monitors, as we call them. A monitor is used to
measure a metric inside the application. To measure execution times for example, it is

15

3. Analyzing the Problem

wrapped around the monitored code. This can either be done manually by starting and
stopping the measurement process or automatically. Some frameworks provide the ability
to use Java annotations for tracking execution times [40]. There are also solutions which
observe every method call themselves [27]. In essence, when speaking of a monitor, we
refer to the measurement of a metric in code.

3.1.6. Summary

In this section various key metrics were identified. It was emphasized why each of
them is required in order to draw conclusions on the application’s state and performance.
Nevertheless, the application itself has to contain more metrics. The developer is in need
of very detailed performance data as formulated in Section [2.4] Therefore, every operation
in code which may cause a problem has to be monitored for performance. As this is very
application specific data, we do not give those metrics directly but every developer must
determine them himself. These are often very low-level metrics embedded deep in the
software. This section only identified key metrics which can also be transferred to other
web-applications which refer to a higher level.

3.2. Means of Evaluation

Solely gathering data is not enough, it has to be used and evaluated. Therefore, the
different means employed in order to benefit from the collected information must be
worked out. The ultimate goal is to answer the four questions posed in Section [2.2| and
repeated below:

e Are there any performance problems?
* Was it just a singular event?

* When do the problems occur?

o What is the cause of the issue?

During our research, three distinct means were derived: performance snapshots, time series,
and performance traces. These are now explained in detail in the rest of this section.

3.2.1. Performance Snapshots

The first one we call performance snapshots. A snapshot is created periodically at a fixed
interval like a couple of hours. It includes all monitors in the system in combination with
detailed information on every one of them.

Among the detailed information required is the total execution time. This value is the
sum of the duration of every single pass through the monitor. It serves as an indicator of
where the application spends most of its time. Leveraging this information, optimization
efforts can be focused on important areas. Tuning the performance of rarely used code
parts which do not contribute to the overall response time in a high amount is just a waste
of resources. This is easily explained with the following example [36]. Assume that 4

16

3.2. Means of Evaluation

tasks contribute to an operation and their overall processing time is divided as shown in

Table

‘ Task 1 ‘ Task 2 ‘ Task 3 ‘ Task 4
21% 13% 6%

Amount of processing time ‘ 60%

Table 3.1.: Task contribution to operation

Increasing the performance of task 4 by 50% would only result in a benefit of 3% less
execution time. On the other hand, reducing the processing time of task 1 by just 10%
causes an increase in performance of 6%, so twice the one as compared to task 4. That is
why important parts should be optimized first.

Furthermore, the average execution time must be included for every monitor. It is calcu-
lated as the total execution time divided by the number of hits the monitor had, i.e. how
often it was triggered. The total alone has no direct implication on whether the application
was slow or fast. A hundred executions of 10ms each lead to the same total of 1000ms as
two executions with 500ms. Only by using the average value, one can draw conclusions
concerning the performance. However, this requires a developer’s knowledge. Someone
who is not aware of the application’s internals is not able to correctly judge the average
execution time.

The last value a snapshot has to include for every monitor is the maximum execution time.
The maximum, in contrast to the others, is able to capture singular events. If an operation
is executed a lot of times but in only one case a special condition is fulfilled causing the
task to take very long, the average and total value may seem normal. In that case the event
is visible in a peek of the maximum. Of course, a high maximum does not always need to
indicate a profound performance problem in the application. Nevertheless, especially this
value can be used to quickly check for possible issues. If all maximums are very close or
ideally equal to the average and the average is low, too, a problem is less likely. Instead
of the average value it would be of advantage to use the some kind of mean value like an
weighted arithmetic mean. Thus, single outliers would not have a potentially high effect
as compared to the average value.

Performance snapshots are used to answer the first of the four questions: Are there any
performance problems? With their help it is possible to get an overview of the application’s
performance over the last period of time very fast. Especially by looking at the maximum
execution time of every monitor, problem indicators are found quickly. The monitor itself
additionally serves as a first hint to where the problem may be located.

3.2.2. Time Series

Another mean is used to visualize the gathered data — time series. Using time series,
a metric is plotted over a certain period of time. This allows the quick detection of
developments or even relations to other data points.

Let us take a look at the example shown in Figure Here, the process load is
graphed over a time span of 1.5 days. It immediately meets the eye that the load increased
drastically from a starting 10% to almost 50%. Since this is such a significant change, it

17

3. Analyzing the Problem

60% T

40% T

Process Load
20% f

0% : . . : : : . :
0:00 6:00 12:00 18:00 0:00 6:00

Time

Figure 3.2.: Exemplary process load time series

requires attention and the cause has to be identified. Especially when a development takes
place over a long time, single values in numerical form do not make it obvious. On the
other hand, a graph can be scaled and the hidden process becomes visible soon.

80% 800

/AN [—~_ [

Memory Used 40% - 400 Response Time
20% - 200
0% - | | | | | | | | | Ll
0:00 6:00 12:00 18:00 0:00 6:00
Time

Figure 3.3.: Exemplary memory and response time relation

Figure [3.3|illustrates another aspect which is greatly simplified by time series. It shows
two metrics, the amount of memory used (blue line) and the response time (green line).
There is also a red line at the 50% mark of used memory. Obviously, as soon as the amount
of memory used (blue) exceeds 50% (red), the response time (green) increases drastically.
If the memory increases but stays below the threshold, though, there is almost no change
to the response time (between 12:00 and 18:00). Once again it would be a very tedious task
to detect the relationship between those two metrics when analyzing only the numerical
values. Time series enormously facilitate this process.

Concerning the four key questions, time series primarily help in answering the first three
of them. First, it is possible to check if there are any problems at all. To do this, the gathered
data is plotted over a wider range. If spikes occur in a graph then these are indicators for

18

3.2. Means of Evaluation

a problem. Also, the second question if a problem was not just a singular event can be
answered. Once a problem indicator has been discovered e.g. by a high maximum value in
a snapshot, the metrics are plotted over the corresponding time interval. It is then possible
to see if the issue persisted for a longer period. The last one, answering when a problem
occurs, is also supported by time series. Due to their nature, especially relations to a certain
time of day are detectable. This may be caused by a scheduled backup operation executed
every day at 5:00 AM, for example. On the other hand, as stated above, time series are
great to show connections in-between distinct metrics which is another important aspect
concerning the question when an issue occurs.

3.2.3. Performance Traces

The last important question to answer is: What is the cause of the issue? In order to answer
it, we introduce performance traces. A stack trace is well known among programmers — it
is usually created in case of an exception. A stack trace contains the stack frames active
before the error occurred, i.e. what method caused it and which other methods were called
beforehand. A performance trace is quite similar. As soon as a performance problem is
detected, e.g. by a defined threshold in the application, a trace is created. It contains all
monitors which were triggered during the operation. For every monitor it also includes
detailed information.

1| === long taking request: 5200 ms for /action/execute ——————

2 | webServer.request : Hits: 1, Total: 5200.4, Avg: 5200.4
3 | handler : Hits: 1, Total: 5000.0, Avg: 5000.0
4 | es : Hits: 10, Total: 350.7, Avg: 35.1
5 | db : Hits: 22, Total: 26.2, Avg: 1.2
6 |utilities.parseUrl : Hits: 5, Total: 4505.0, Avg: 901.0
5

Listing 3.1: Examplary performance trace

How such a trace could look like is presented in Listing In the first line, a description
of the detected performance problem is given. In this example it is a request which was
executed in a total of 5200ms for the URL /action/execute. The following lines then contain
the triggered monitors and for each their hit count as well as total and average execution
times. Here, line [f]is of interest. The parseUr1 task took a total of 4.5 seconds and 0.9
seconds on average. This is the absolute majority of processing time need for this request.
It is now up to the developer to determine if that is causing the problem. Without having
knowledge on the application’s implementation it again cannot be judged appropriately.

Having a detailed log of the different tasks that took place during a slow operation is
the key to finding the cause of the problem. A developer is able to close in on the issue
and to possibly identify the one monitor tracking the problem. The next step is then to
investigate log files and code to finally solve the problem.

3.2.4. Proposed Usage

Apart from identifying the three different means of evaluation — performance snapshots,
time series, and performance traces — we also derived a proposal on how they can be

19

3. Analyzing the Problem

combined. This should serve as a guide for anyone interested in the process of finding and
analyzing a performance problem.

First, it has to be determined whether a problem exists. One possibility is that someone
using the application actively reports it. In any case, the applications performance should
be checked on regularly. Two of the discovered means were deemed suitable for this task:
performance snapshots and time series. Every now and then one of them should be used
to see if there are any indicators for issues.

Once an indicator has been identified, it is necessary to validate it, i.e. to check if it was
notjust an exceptional event. If it cannot be verified, one has to keep an eye on the problem,
of course. Immediate action is not needed, however, especially when the problem is not
reproducible. Verification is done best by cross-checking. In case of the time series being
used to find indicators, the snapshots should be checked for validation and vice versa.

Consequently, when an issue was identified and verified, its cause must be found. This
is done best by the help of a performance trace. The trace contains the highest amount of
information of all and serves best to narrow down where the problem originated.

3.3. Intermediate Results

In this chapter we were able to identify the key metrics that should be monitored. The
following list sums up all the metrics proposed in Section 3.1}

* Response time
e Handler duration

* Requests rate

¢ Database operation execution time

¢ Database operations rate

e Elasticsearch operation execution time

* Elasticsearch operations rate

¢ System load
® Process load
¢ Memory consumption

Furthermore, Section [3.2] presented the appropriate means of evaluating the collected
data. Three distinct ones were identified: performance snapshots, time series, and performance
traces. Additionally, a proposal on how to combine them was made in Section This
can be aggregated into a three-step process. The corresponding means used in each step
are given in parentheses:

20

3.3. Intermediate Results

1. Checking for indicators (performance snapshots, time series)
2. Verification (time series, performance snapshots)

3. Tracking down (performance trace)

The basic groundwork has therefore been done and we advance to consolidating aspects
relevant to how APM can be employed in an existing application.

21

4. Relevant Tools and Standards

Having done a thorough analysis of the problem statement itself, we derived some im-
portant requirements and aspects concerning Application Performance Monitoring. The next
step is to examine already existing solutions and tools out there as well as dig into rele-
vant standards. The latter are especially relevant in the context of a cloud infrastructure,
as stated in Section

4.1. Relevant Tools

The set of relevant tools ranges from complete end-to-end solutions to small libraries
utilized for data collection and aggregation. For each tool, its main purpose and typical
usage is presented, as well as advantages and important drawbacks.

4.1.1. New Relic

Starting off with New Relic [27], we take a look at a complete end-to-end solution which is
not just a “tool”. New Relic offers application monitoring as so-called SaaS — Software as a
Service.

Software as a Service describes a model where software including all necessary infrastruc-
ture is provided by the vendor [35]. Billing is either based on recurring subscriptions or on
usage and customers can access the software globally, in most cases just using a browser
or thin-clients. The greatest advantage is that all maintenance as well as monitoring and
updates is done by the vendor itself. This means that the customer has almost no over-
head when using some kind of SaaS. Widely known examples of Saa$S software are Google
Gmiail [15] or Office 365 [23].

Overview

The main goal of New Relic is to provide easy-to-use application monitoring for a variety
of platforms. On the one hand, they offer monitoring for web-applications based on
e.g. Ruby, Java or Node.js for example, on the other hand they also provide solutions
for monitoring mobile applications. Concerning web-applications, every typical layer is
included, ranging from the database layer where single SQL statements are tracked to the
end users usability when browser load times are measured.

The information is presented to the user via different and customizable dashboards —
an example is shown in Figure Most of the information is presented in graphs, where
the time range can be configured to take a look at past behavior. However, the available
time range to go back in the past depends on the data retention included in the subscribed
plan. Metrics can be combined for display as preferred by the user resulting in a high

23

4. Relevant Tools and Standards

degree of flexibility. A custom overview of the monitored application’s most important
performance indicators is created with ease.

O New Relic. Wb Volums || Mobls Enterprisa My preferences
= Applications l RPM UI =l Monitorng [IEvous B Riprnis B Satfeirs e T o
@ Transactions Overview Map Webtransactions Database External services Backgroundtasks Geography ~ Browsers
O Mobile new . =
Browser page load time {sec) @ @ Browser 192sec Apdex score @ 089([24] 0.6 [04]
B Servers 3 50x 2 D serv
*€& Dashboards
3 Tods —— .
o App server
Page rendering DOM processing [l Network [l Web spplication Browser throughput Feedback 1,540 ppm
B Foues: quasing :
App server response time (ms) 199 ms
= _ _
e = '— — — App server throughput 20,100 rpm
Il weoExterna [l Memcache Datadase Ruby Request Quouing
& Web transactions — Browser response time EfTOr rate — 0.0829 Worldwide Apdex —
Infrastructure::HestsController#index 2.1s f
Browsor vaces: 403 423 45 e w ~

& Enduser. 1:8 5 1.22K = Appserver 207 ¢

Figure 4.1.: New Relic dashboard

Apart from a very sophisticated presentation of the collected data, New Relic offers
numerous other features. One is the triggering of alerts: a customer can create rules
for specific metrics where the violation of such a rule results in the creation of an alert,
which is then sent to the customer via email or push notification to his mobile phone.
An example is that the monitored applications administrator wants to be notified as soon
as the average applications response time exceeds 500ms. Furthermore, transactions in
web-applications can be traced even across different layers and nodes. This means that
a request is dissected in a trace of function calls to show where highest amount of time
was spent during the processing of the request. Such an analysis of a trace is one of the
essential tools for Application Performance Monitoring as derived in Chapter [3|

Typical Usage

New Relic is employed in a wide range of applications. Since they offer free lite accounts
with a very limited but sometimes sufficient set of features, small developers without fund-
ing make use of it. Apart from that, a lot of major companies like Nike and Groupon use
New Relic as their tool for web-application monitoring or for mobile application monitor-
ing, e.g. Nascar and RunKeeper.

Starting from late June, 2013, New Relic has also included an open platform. Customers
and technology vendors can now create their own plugins to deliver data to the New Relic
web-service. The custom data is then also accessible via all the offered features, resulting
in the opportunity to be provided with everything — even highly application specific data
— in one place.

24

4.1. Relevant Tools

Advantages and Drawbacks

The advantages are quite obvious — New Relic offers a huge set of very customizable fea-
tures, what makes the most relevant information instantly visible to the customer. Taking
into account the change towards an open platform, with the development of custom plu-
gins to provide even more specific application data, it could evolve to the one single place
to have all relevant performance data.

One of the most outstanding features and an incredible advantage however, is the ease
of deploying and including the required libraries to get monitoring running. Concerning
a standalone Java web-application, it is as easy as downloading a JAR-file and running the
application with using the New Relic JAR as a Java agent. To get data collection running,
no further configuration is required, resulting in an installation and therefore deployment
time of just a few minutes.

Nevertheless, there exists one major drawback due to New Relic being a SaaS. There must
be a constant internet connection available for the data to be transmitted to the servers.
As this is not a problem in the majority of use cases, it is the crucial point to search for
another solution when regarding highly secure cloud environments. Despite transmission
being optionally encrypted using SSL, restrictions may prevent any outgoing traffic except
regular HTTP traffic at all. In such rare cases, New Relic cannot be employed to do
application monitoring. In addition to that, according to their terms and conditions, the
collected data may be shared with third parties in a not completely obfuscated way. One
scenario they explicitly name is providing an application’s performance data to its hoster
for him to be able to improve his service. Moreover, a free account is hardly sufficient,
and pricing starts at $24 per server for a standard account if pre-paid annually or $49 on a
monthly basis. Major features like transaction and SQL query analysis are only included
in the pro edition, which in turn starts at $149. When the monitored application is running
on multiple servers, e.g. because clients want their own installation, this soon becomes an
important drawback.

Summary

All in all, New Relic provides a highly usable and valuable service, which is ideal to get
an overview of all the data an application provides. Its ease of installation and almost
no need for configuration enable customers to monitor their software in no time. On the
other hand, the drawbacks mentioned before in some cases prevent the usage of New Relic.
When the application is hosted only on a few servers or in a single, permissive cloud
environment, New Relic is definitely a service worth paying attention to.

4.1.2. Kieker

The next existing tool we want to take a deeper look at is Kieker [40]. Kieker is a Java frame-
work developed at the Christian-Albrechts-University Kiel, mainly by André van Hoorn, Jan
Waller and Wilhelm Hasselbring.

25

4. Relevant Tools and Standards

Overview

Kieker’s purpose is to provide an extensible system for monitoring and analyzing concur-
rent or distributed systems. The core framework offers initial features and components
for instrumentation, logging and analysis / visualization. In this case, the term logging
refers to writing the gathered data to some kind of storage or output. Due to its extensible
nature, users of Kieker can extend the functionality according to their specific needs.

In Kieker, the collection of single metrics is done via so-called monitoring probes. They
are used in code to do the measurement itself and to pre-process the data if necessary.
An interesting piece of code which is to be monitored, has to be wrapped by a probe
either manually or by the use of annotations also included in the framework. After a
measurement has taken place, a probe typically creates a monitoring record. All records
have a common superclass but the creation of custom subclasses is open to the user
and encouraged. The records are then handed over to a monitoring log writer which is
responsible for — as its name implies — writing or serializing a given record to the
monitoring log.

On the analysis side of the framework, there are so-called monitoring log readers to read
an existing monitoring log. A reader is used to extract single records out of the log and
to create corresponding records again. These records in turn are fed to a monitoring record
consumer, which can selectively discard unwanted records, e.g. depending on their type.
The consumer is also responsible for evaluating the records and producing any type of
visualizations.

The fact that Kieker is developed and maintained at a university is also reflected in the
framework itself, since it has a lot of scientific-based features which exceed the sole pur-
pose of performance monitoring. The visualization capabilities already included contain
for example UML sequence diagrams, dependency graphs, and Markov chains. The anal-
ysis required to create such models is based on traces produced by the monitored appli-
cation. These traces can also originate from distributed systems, i.e. systems running on
different machines, whereas joining back all the different ones to a single trace is handled
by Kieker.

Typical usage

Kieker has two main areas of application. The first one is typical Application Performance
Monitoring, for which the base framework already includes the aforementioned probes to
collect response times, sessions and traces, amongst others, but also system-level metrics
like CPU load and memory usage. During the development, the team behind Kieker also
focused on keeping the overhead introduced by employing the probes in code as low as
possible. To prove their low footprint, the framework was used in several benchmarks as
well as evaluated in several industry scenarios.

Another aspect is Architecture Discovery, i.e. the extraction of architectural information
from data gathered by employing monitoring in an existing software system. The goal
is to create a structural and behavioral model of the application and therefore identifying
components, classes, etc. and interactions. As already mentioned, UML diagrams and
dependency graphs fall into this domain of application and provide useful means of
visualizing the results of the discovery process.

26

4.1. Relevant Tools

Moreover, one area of application the creators use Kieker for is Application Performance
Management (see Chapter [I). In their special case, they want to automate the process of
reacting to the current state of the software system, which in turn is detected by application
monitoring. An example might be the following situation. An application fetches a lot
of data from the database, due to a high amount of requests, however, all connections
are handed out and new requests have to wait before being processed. The employed
monitoring system detects the increasing execution time and automatically configures the
connection pool to provide more connections. After the number of requests has dropped
again, the connection pool’s configuration is reverted to its original state. This runtime
adaptation respectively re-configuration is a major point of focus of Kieker’s underlying
research.

Advantages and Drawbacks

The low overhead and its very extensible structure are definitely one of Kieker’s main ad-
vantages. Since there is hardly any impact on the application’s performance, monitoring
probes can be put anywhere in the code, even in large numbers. This allows the collec-
tion of massive and widespread data to serve as a basis for an extensive analysis. Cus-
tomization of both — collection and analysis — is further encouraged and supported by
the extensible nature. Whatever metrics need to be observed and stored, by the creation of
custom monitoring records there are no limitations of what can be monitored. Furthermore,
users are able to implement their own record writers and readers, resulting in a free choice
of data format and storage destination concerning the monitoring log.

The very advanced feature set — e.g. distributed traces, architecture discovery —
provide powerful means of analyzing the monitored application, too. Especially when
introduced afterwards in an already existing software system, these tools can offer a new
insight in its runtime behavior and structure. When talking about a large system which
evolved over a long period of time in particular, the discovery of its structure may reveal
hidden dependencies introduced by adding components and expansion which the creators
are not even aware of. Nevertheless, not everyone is in need of such advanced features but
wants to stick to simple monitoring of an application.

As of the current standing in mid 2013 however, Kieker comes only with a limited set
of record writers and readers. Those are one for the file system, relational databases and
the JMS (Java Messaging Service). As a consequence, data storage has to be handled by
the user himself. Enough disk or database space has to be provided and data has to be
cleaned up manually, of course. Therefore, there is a certain overhead one must take into
account when thinking about employing Kieker for monitoring. In addition, to use the
framework in an existing application means a lot of effort since the monitoring probes
have to be put into the code manually opposed to the automatic injection New Relic uses.
The creation of time series, for example, is also not included in the framework itself. A
user has to implement a custom record consumer to extract the necessary data out of the
gathered records and then feed it into an appropriate tool for creating any graphs.

27

4. Relevant Tools and Standards

Summary

To come to a conclusion, Kieker offers a scientific based Java monitoring framework in
a fairly early stage of development. It has some very advanced features in discovering
the possible hidden behavior and structure of an application and is very extensible. The
framework is also actively improved and new versions are released regularly. Despite its
advantages, the high amount of introducing Kieker in an existing application and handling
storage by oneself definitely represent drawbacks. Taking into account that the advanced
features are not required by everyone, other solutions are worth a look when Application
Performance Monitoring is to be employed in an application.

4.1.3. Java Simon

Another library suitable for the collection of data in a Java application is Java Simon [19]. It
provides developers with utilities to easily place monitors in their code. The emphasis of
the API is put on enabling APM.

Overview

First of all, Java Simon calls monitors Simons. Therefore, when we reference a Simon we
mean essentially the same definition as given in Section In Java Simon, all monitors
implement the same interface Simon. Furthermore, every Simon is identified by a unique
name. A manager can be queried for them by their respective name. Furthermore, Simons
are organized hierarchically in a tree according to their names. An example is shown in

Figure

Simon

com.bar

Simon Simon
com.foo.op1 com.foo.op2

Figure 4.2.: Java Simon Simon hierarchy

Only the white Simons were created in code, the gray ones were created automatically.
Thus, the Simon named com can be asked for its children which would yield all other four:
com.foo, com.foo.op1, com.foo.op2, and com.bar.

This especially comes into play concerning the two different types of monitors Java
Simon includes: Stopwatches and Counters. The former is used to measure time spans in

28

4.1. Relevant Tools

code. A Stopwatch internally also calculates a variety of other values. These include the
average execution time, hit count, or maximum execution time since its last reset. The
values are also influenced by the imposed hierarchy. Let us take a look at the example
from Figure The total execution times are given in bold text. The common ancestor of
com.foo.op1 and com.foo.op2 is com.foo. Java Simon then automatically sums up the execution
times of the children, resulting in a value of 450ms for com.foo. The same process is then
applied to the parent com and its two children, com.foo and com.bar. The result thereby
is 600ms. This way it is very easy to track the execution times of single operations but
automatically be provided with aggregated measurements.

com. foo
450ms
com. foo.opl
250ms

Figure 4.3.: Java Simon Stopwatch hierarchy

com.bar
150ms

com. foo.op2
200ms

On the other hand, Counters are used to measure the occurrence of events. They basically
contain a number which can be increased or decreased. As with Stopwatches, Java Simon
provides additional metrics like the maximum or minimum value the Counter has reached
since the last reset.

Typical Usage

Apart from manually placing the monitors in code, the API offers the ability to automat-
ically track some operations. One example is a database connection usually created with
JDBC (Java Database Connectivity). Java Simon enables the developer to wrap such a connec-
tion resulting in the measuring of executed operations.

In essence, the purpose of the API is to be used for gathering massive data in code
while keeping the introduced overhead at a minimum. The application itself is then free
to process the collected information in any way. It can query the Simon Manager for all
known Simons and process the information further, for example. One possibility would
be to create regular performance snapshots as proposed in Section 3.2}

Advantages and Drawbacks

The first advantage to name is that the Java Simon is especially designed to have a very
low performance overhead. Simons can be added anywhere in code without having

29

4. Relevant Tools and Standards

to fear a performance impact on the application. Thus, Java Simon is very suitable for
gathering countless metrics. Moreover, it is very easy to use. The API is well designed,
the name identification of a single Simon frees the developer from tracking instances.
Another advantage is the hierarchy derived from the names. As a result, aggregated
values are available without further configuration. Nevertheless, this does not cause any
performance problems.

Apart from that, one important drawback exists. Java Simon includes only two different
types of monitors: Stopwatches and Counters. Though these are sufficient for a lot of cases,
Counters in particular have a disadvantage. Java Simon is not able to convert them in a rate,
as for example, how much the counter is increased or used per second. This would be very
useful considering the tracking of incoming requests in a web-application.

Summary

Coming to a conclusion, Java Simon is a very helpful and simple API for gathering basic
performance data in an application. It provides a fast and efficient way to monitor espe-
cially the execution times of operations in the software. If the two types, Stopwatches and
Counters, are sufficient for the majority of the tasks, Java Simon is the way to go.

4.1.4. RRDtool

Since the collected data has to be stored somewhere, we want to examine the RRDTool
library [28]. RRDTool is an open source project providing the ability to store data with high
performance.

Overview

RRDTool uses so-called round robin databases. This means that data is saved only for a
fixed period of time in a fixed-size storage. Once the storage is full, the oldest entries are
automatically overridden. Before being able to use RRDTool, an rrd file, i.e. a round robin
database, must be created. This requires a complicated configuration. Since we leverage
RRDTool later, the model behind an rrd file is explained.

First of all, single data values are named Primary Data Points (PDP) in the context of
RRDTool. RRDTool must first be configured at which interval PDPs are collected. This
is called the stepSize and is given in seconds. Therefore, the minimum time difference
between two PDPs is 1 second. Moreover, hese data points are not stored directly. Storage
is handled by so-called archives. An archive has four distinct options which must be
configured: Consolidation Function, Steps, Rows, and XFF.

An archive always combines one or more PDPs into a Consolidated Data Point (CDP).
How this aggregation works is defined by the consolidation function. It is the mathematical
function executed on the PDPs which are to be combined. One possible consolidation
function is the maximum function MAX. The aggregation is also influenced by the next
parameter, steps. Steps defines how many PDPs are used to calculate one CDP. If steps is
equal to 5 and the consolidation function used is MAX for example, the the archive will
wait until it has 5 PDPs and then store the maximum value of them. The ratio between
stored data and collected data is thus equal to 1/steps. The next parameter is rows. It just

30

4.1. Relevant Tools

states how many CDPs are stored in the archive. This essentially determines the covered
time range data is available in. The total time span T contained in an archive can be
calculated as follows:

Ts = (stepSize - steps) - rows

As an example, assume a stepSize of 5 seconds. The archive is configured with steps equal
to 12, i.e. 12 PDPs are used to calculate 1 CDP. Furthermore, rows is set to 1440. Therefore
the time span T is calculated as:

Ts = (stepSize - steps) - rows = (s - 12) - 1440 = 60s - 1440 = 86400s = 24h

Furthermore, the different data values themselves have to be specified. This is done
by datasources. A datasource has a name, type, and type specific arguments. The name is
the unique identifier of the source in the rrd file. Values can only be appended to an rrd
file by specifying the corresponding datasource name. A datasource also has a type. This
defines the source’s data format. Two examples are GAUGE or COUNTER. A GAUGE is
an arbitrary numerical value like the CPU load or free memory in bytes. On the other
hand a COUNTER is assumed to never decrease. However, it can be increased by any
value. RRDTool automatically handles an overflow.

Typical Usage

The author of RRDTool calls it “an industry standard” [28]. It is very commonly used and can
be integrated into shell scripts or python, even Java libraries exist, to name a few. For the
latter, there is the rrd4j API [4]. RRDTool is also used in various other monitoring solutions
like collectd [12]] or Cacti [37].

The core functionality of RRDTool is overall focused on an efficient and fast way to store
data. Apart from that, some graphing capabilities are included. However, these are only
accessible via command line, at least in the original RRDTool distribution. Most of the
tools leveraging RRDTool internally access its command line interface in order to provide
visualizations.

Advantages and Drawbacks

The key advantage is the rrd file’s fixed size. As everything has to be configured before
the database can be used, the file will always require a constant amount of disk space.
Therefore, no special precautions need to be taken to provide enough storage during
operation. Furthermore, the integrated consolidation functions specified for each archive
are very helpful. An example is to specify two distinct archives, one with a a relatively
high step value and the other with a small step. Also, both are assigned the average
consolidation function. As a result, the former archive with high step value can be used
to quickly examine a certain time period. If uncommon behavior is detected, the other
archive with small step parameter provides the ability to zoom in on the time range the
problem occurred in.

RRDTool’s requirement of being configured beforehand is also one of its major draw-
backs. It is a error-prone task to modify the archives or datasources after the rrd file has
been created. This should be avoided as much as possible. Thus, dynamically adding new

31

4. Relevant Tools and Standards

sources is cumbersome. Additionally, all types of datasources in essence are stored as nu-
merical values. No fully customized data can be stored. This is in contrast to the abilities
of Kieker presented in Section [4.1.2]

Summary

All in all, RRDTool provides a highly attractive way of storing collected data. Even more
so if the monitoring data is composed only of numerical values. It also gained a lot of
popularity and attracted a high amount of attention due to its high performance and round
robin fashion. This is also due to the fact of RRDTool’s long existence. Version 1.0.0 was
already published in 1999. Over the years it turned into a very stable and reliable tool. On
the other hand, in environments where datasources are added and removed dynamically,
a careful decision has to be made whether one can take the risk of data corruption. The
limited set of datasource types represents an additional aspect to consider.

4.2. Standards

Besides existing tools which can be used for Application Performance Monitoring, we also
need to investigate what standards do exist in this area. It will soon be obvious that there
are two major ones to be regarded and a lot of small protocols — not officially defined
standards — which are employed frequently.

4.2.1. Java Management Extensions

The Java Management Extensions (JMX) [30, [11] standard was developed with three main
questions in mind concerning the management of an application:

¢ Which solution is the best one?
e What standards should be followed?
¢ What is the amount of work required to make components manageable?

The outcome allows developers to make their system manageable with a low amount of
effort but also provides very powerful ways of remotely interacting with the application.
In the following, we shortly describe the architecture of JMX, as well as how it can be
employed in an already existing Java application.

JMX Architecture

The architecture of JMX is divided into three different layers, each of them responsible for
one of the following tasks:

* Making resources manageable
* Publishing managed resources

¢ Interacting with managed resources

32

4.2. Standards

The tasks can be mapped to their corresponding layers in the given order: Instrumentation
Level, Agent Level, and Distributed Services Level. These are also illustrated among further
details in Figure We will now take a look one after another and explain its use.

Distributed Protocol
Services Adapter

Level i /
\

|
Agent MBean server 4—»' Agent :
|

Connector

Level | Services

AR

Instrumentation
Level

Resource Resource

Figure 4.4.: JMX architecture overview (after [30])

The Instrumentation Level is the lowest of all. Here, so-called MBeans, short for managed
beans, are created. They serve as the most basic entity in the JMX world and provide state
information or operations which are to be published. In general, MBeans typically wrap up
information of various application resources and export operations to be able to interact
with those resources, e.g. to reconfigure them. There are different types of MBeans, rang-
ing from standard ones defined via Java interfaces over dynamic beans, which can provide
different attributes or operations at runtime to even open beans. Open MBeans serve the
purpose of publishing very complex information by using custom defined types. Further-
more, JMX is able to handle Notifications. These are created on the Instrumentation Level
and are then handed over to the Agent Level, namely the MBean server for broadcasting.

Once beans are created, they have to be published. This is the task of the core of JMX
— the MBean server, located on the Agent Level. In order to later publish a bean, it has
to be registered with an Object Name. This is an identifier unique to one specific MBean
and is used to gain access to its information and operations by remote applications. The
server contains an internal registry, in which a mapping of names to references of beans
is stored. If someone wants to access an MBean, he has to query the server providing the

33

4. Relevant Tools and Standards

beans Object Name. In turn, the caller receives not the bean directly, but an object containing
detailed information on the provided attributes and operations. This can then be used to
retrieve values or execute the exposed functions. On the same level are also the so-called
Agent Services. They are used by the MBean server and conversely registered as MBeans
themselves so that they can be managed, too.

One example of such a service is the Monitoring Service. It provides monitors which can
be configured to observe the attribute values of a specific MBean — the observed object.
Values are collected at fixed intervals (granularity period) and based on them a derived gauge
is calculated. The JMX specification defines three different types of monitors — counters,
gauges, and string monitors. While the first one is self explanatory, gauges are used to surveil
arbitrary numerical values. String monitors in turn constantly compare an attribute of type
String with a given value. All of them can be configured to post the already mentioned
Notifications if certain conditions are met, e.g. a counter reaches a threshold.

Finally, in order to make an MBean server accessible by remote applications, it has to be
configured with Connector or Protocol Adapter. Though they are responsible for managing
all access to the underlying server, their mode of operation is very different. A connector
has two essential parts, a client proxy and a server stub. Their goal is to provide a common
interface abstracting away from a concrete MBean server implementation as well as hiding
details of where resources are located in a network, all in all ensuring the same access
methods for local and remote beans. On the other hand, a protocol adapter is run on the same
machine as the MBean server and exposes the servers functionality via another protocol —
hence its name. An example for an adapter is the Htm1AdaptorServer which makes the
whole MBean server available via HTTP.

Employing JMX

As we just presented a rough overview of the architecture of JMX, let us take a look at how
it can be employed in a Java application. We start at the lowest level, the Instrumentation
Level. The first task for a developer in order to use JMX is to create the specific MBeans
which will be published. There are different ways to do this, as mentioned above, and
we present an example with a standard bean here. For a standard MBean there must be an
interface definition containing getters for attributes and / or additional operations. See
Listing for an example of such a Java interface offering two attributes, Count (line
and Rate (line[5), as well as an operation reset (line[7). One important aspect is the
ending of the interface name which must be equal to MBean.

public interface CounterMBean ({
int getCount () ;
double getRate();

void reset();

© ® 9 T W N e

Listing 4.1: Standard MBean interface example

34

4.2. Standards

A class implementing the interface from Listing [4.1| can then be registered to an MBean
server. The necessary steps are outlined in Listing First, we retrieve a reference to the
specific MBean (line[I). Next, a corresponding Object Name is constructed, which has to be
unique in the server’s registry (2). Now everything is set up and we obtain a reference to
the platforms MBean server in line[to then register the bean with its name (line[5). Though
the creation of an Object Name and the registration itself can throw exceptions, these are
omitted here for clarity.

CounterMBean counterBean = ...;
ObjectName name = new ObjectName ("com.foo.bar:type=Counter");

MBeanServer server = ManagementFactory.getPlatformMBeanServer () ;
server.registerMBean (counterBean, name);

[N T N

Listing 4.2: Registering an MBean example

With only these few steps, it is possible to expose information and operations of an
application via the use of JMX. Without further configuration, the bean server is accessible
locally using tools like jconsole or jvisualvm which are bundled out of the box with a JDK
installation.

If the bean server should be accessible from a remote location, too, it is necessary to start
the application with additional JVM arguments. Extensive documentation exists on the
various configuration options, especially on how to secure the access to the server, but a
simple and sufficient example is given in Listing The given arguments tell the [VM
to start the MBean server on port 9999 and also disable any access checking. As a result,
anyone knowing the address of the underlying machine can connect to the server and
execute operations or gather information.

-Dcom. sun.management . jmxremote

-Dcom. sun.management . jmxremote.port=9999

-Dcom. sun.management . jmxremote.authenticate=false
-Dcom. sun.management . jmxremote.ssl=false

N

Listing 4.3: JVM arguments for JMX (insecure)

Summary

Having introduced the key aspects of the JMX standard, let us sum up the results. JMX
provides a very powerful but easy-to-use way to make applications manageable — locally
as well as remotely. It comes with an extensive feature set and hardly limits a developer to
publish any kind of custom information. Besides that, it also serves as a mean to execute
functions inside the application without knowing anything about the underlying code
base or mode of operation. Therefore, when thinking about exposing data or methods
in a Java application, JMX is definitely a very promising way of doing so.

35

4. Relevant Tools and Standards

4.2.2. Nagios®

The next one to examine is Nagios® [25]. It is a complete monitoring solution but has
turned into an industry standard over the years. The main purpose of Nagios® is to provide
infrastructure monitoring. This corresponds to the availability monitoring type presented in
Section[L.1} The essential requirement is to determine whether systems, single components
or applications are available.

Functionality

We first want to describe some of the core functionality of Nagios®. The core of Nagios®
does not provide any means of collecting data or performing checks at all [26]. These tasks
are delegated to plugins. Plugins are programs — compiled executables or scripts — that
are run by the Nagios® core. They can operate in any way they want, only the returned
values are then evaluated by the core. Therefore, the plugins serve as an abstraction layer
away from the details of the monitored entity (Figure[4.5).

Nagios Core

Monitoring Logic
Check Logic

i

v

Abstraction Layer Plugins

X
v

Monitored Entities Hosts and Services

Figure 4.5.: Nagios® plugins abstraction (after [26])

The core only contains the check logic, i.e. the code needed to run the plugins and
evaluate their results. The plugins in turn know exactly the monitored entity they are
responsible for. They are designed to gather the values for one specific type of host or
service. Thus the abstraction is created since Nagios® has no notion of what systems are
monitored. These can range from the temperature of a fish tank to the speed of a CPU fan.

Concerning the monitored entities, Nugios® differentiates in hosts and services as shown
in Figure A host refers to a part of the infrastructure required to make a service
available [1], i.e. hardware. Examples are a computer or a network switch. On the

36

4.2. Standards

other hand, services are most often applications which run on the infrastructure [1]. This
could be an Apache webserver or a DNS server. In general, services depend on the
underlying hardware in order to function properly. Nagios® offers the ability to model
these dependencies in its configuration by assigning parents to entities [1].

To determine the state of an entity, so-called checks are performed. These are also
separated into host checks and service checks. The state is then calculated out of the results
of every plugin executed for the entity [26]. Four different results are possible: OK (0),
WARNING (1), CRITICAL (2),and UNKNOWN (3). The UNKNOWN result is used to signal
a problem during the execution of the plugin, e.g. due to wrong parameters. These return
values are then mapped to a state. For host checks, three different states are available: UP,
DOWN, and UNREACHABLE. The first one is used to express that the host is available.
A host is UNREACHABLE if all of his parents are DOWN. If at least one parent is UP, the
host is deemed DOWN. For service checks, the return value is directly used as state of the
service.

Example

To better explain how everything works together, we look at the following example adapted
from [1]. An overview of the monitored infrastructure is given in Figure The Nagios®
system is running on the computer labeled Nagios. Furthermore, there is a server with
an Apache service running on it. The Apache service depends on data stored on the Files
server. Consequently, Apache also depends on switch_1 to be able to connect to Files.
Therefore, switch_1 is a parent of both, server as well as Files. Last, there is a router con-
nected with the server.

Nagios

Apache

o

router server switch_1 Files

Figure 4.6.: Nagios® example infrastructure

We now describe how Nagios performs a service check on Apache. In our example,
switch_1 is currently not working.

37

4. Relevant Tools and Standards

1. The plugin to check Apache is executed. The return value CRITICAL, i.e. the service
is not available. However, the reason why the service is not available is so far
unknown.

2. Nagios® then tries to check if there is a hardware problem. Therefore, it checks the
service’s host, in our example server. Since switch_1 is not up — what Nagios® does
not know yet — the check will fail.

3. As the next step, the parent of server is checked: switch_1. Of course, the check fails.
Due to the fact that switch_1 has no more parent, its state is set to DOWN.

4. Now, the dependency structure is evaluated again. Knowing that server depends
on switch_1, the state of server is set to UNREACHABLE. Even more so, router and
Files also are set to UNREACHABLE, since they transitively depend on switch_1.

The end result of the process is illustrated in Figure The numbers correspond to

the order in which the steps were executed. Furthermore, for every entity its final state is
given.

Nagios

CRITICAL

Apache

router server o switch_1 Files
UNREACHABLE UNREACHABLE UNREACHABLE

Figure 4.7.: Nagios® example result

Summary

During the examination of Nagios®, it becomes quite clear that the sole focus lies on
monitoring if the infrastructure is available. Though Nagios® provides plugins with the
ability to return additional performance data, this is not processed in any way by the core
directly [26]. For further processing, various plugins have been developed requiring a
specific format of the performance data output. One of them is PerfParse [6]. In the context
of Java, two ways are possible to integrate an application in a monitoring system. The first

38

4.2. Standards

is to use one of the plugins for the JMX standard like check_jmx [24]. The second option
would be to implement a custom plugin which then handles the checking of the target
application. Overall, Nagios® is of limited use for employing thorough APM.

4.2.3. collectd, Cacti, and the like

Apart from the two major standards to consider there are countless solutions out there.
Though most of them are tools, they all have different protocols and concepts concerning
the collection of data from applications. That is why we decided to include them in this
section. Two of them are collectd [12] and Cacti [37] which have already been mentioned in
Section another one is Munin [38]. We do not want to describe any of them in more
detail here but focus on their common aspects.

A lot of them use a round robin fashioned way to store the collected data in the back-
ground and offer similar capabilities regarding the evaluation of information. All of the
ones we looked at offered a plugin architecture making them extensible. Moreover, with
respect to Java applications and thus the context of this thesis, all of them included plugins
for JMX. These were either directly integrated in the solution or created by the community.
Just as with Nagios®, a custom plugin could also be created.

All in all, some of those solutions are suitable to do APM. However, creating a custom
plugin for one of them or, in the worst case, all of them is generally not an option. This
would yield a very high development and maintenance effort to be required. But, as
mentioned, all of them include the capability to monitor J]MX-enabled applications. This
is a substantial argument towards the decision on the used standard.

39

5. Interview

Before finally advancing to the practical part of this thesis, we wanted to gain an insight
how others use APM for real applications. Therefore, we conducted an interview with
Axel Wienberg of CoreMedia [7].

Axel Wienberg is Product Owner Core / Search at CoreMedia. He elaborated the area of
monitoring for their product CoreMedia 7 (CM?7). The product is a very flexible Web Content
Management System (WCM). The main goal of CM?7 is to enable companies to deliver rich
customer experiences by leveraging the creativity of online marketing teams. CoreMedia
has a variety of very large and well-known customers from different industries. These
include television companies like ARD and ZDF as well as telecommunication companies,
e.g. GMX or O2.

The first question was whether CM7 includes monitoring for important metrics. The
answer was they employ monitoring at a lot of places but they do not store any types
of monitoring data at all. The aggregation of data is not one of their key competencies.
Nevertheless, they provide interfaces in their applications so others are able to acquire the
collected information. Furthermore, CoreMedia tries to stick to architectural standards in
order to facilitate the collection of data for other tools as far as possible.

We then wanted to know how the monitoring data is gathered in the application and
afterwards exposed. According to Mr. Wienberg, a lot of metrics are gathered using the
Metrics framework [16]. To then expose them for collection, primarily two different ways
are used. One is the already introduced JMX standard, which is employed for the majority
of metrics. Apart from that, a significant amount is written to log files in various data
formats. A very important statement for us was that they plan to streamline their interface
towards JMX.

In response to the question, how hosters or customers have access to the monitoring
data, the core answer was: he must be flexible. This is due to the fact that the data is
available over numerous different channels, e.g. but not only JMX, log files. However, that
is not a problem. To get detailed information on hard drives, CPU, or Apache webserver
data, the hoster/customer has to consolidate different sources of informationen anyway.
Concerning JMX, a lot of monitoring tools they had contact with already include plugins
for collecting data via JMX. A wide range of existing Java software like the application
server Tomcat uses JMX to expose information. Among the monitoring tools CoreMedia has
experience with were Nagios®, Munin, and Cacti.

The last aspect was how CoreMedia detects performance problems and how they react on
problems reported by customers. CoreMedia uses a lot of profiling during the development
process. The purpose of profiling has already been explained in Section Especially
during load testing they monitor the application extensively and collect data themselves.
The data is then evaluated using tools like Zabbix or Logstash. If a customer reports issues,
they ask him for the corresponding log files and request thread dumps. After that these
are analyzed to find the cause of the problems.

41

5. Interview

Finally, Axel Wienberg had some recommendations for us. First, we should try to focus
on a preventive solution instead of doing post mortem analysis. This means to detect
problems before they lead to a failure of the application. Furthermore, he strictly advises
to separate the analysis and collection of monitoring data from the monitored application.
Otherwise the performance of the application can be influenced negatively or analysis
might be impossible if the application fails.

By conducting the interview we received very viable input. Especially the aspects
concerning JMX and the separation are considered in the development of APM in Tricia.

42

Part II.

Employing APM in Tricia

43

6. Design Decisions

We have now laid out the groundwork to proceed to employing Application Performance
Monitoring in Tricia, an existing Java application. Now we take a look at the current state
of performance monitoring in Tricia. Afterwards, it is necessary to identify what can be
applied in our context before we present the main aspects of the planned monitoring
solution as well as justify our decisions.

6.1. Application Performance Monitoring in Tricia

Currently, Tricia already includes some very basic performance monitoring utilities. The
already presented framework Java Simon (see Section is used to track the execution
times of numerous tasks. Examples of places where monitoring takes place are the overall
response time the system takes from receiving an incoming request to delivering the
output as well as monitoring the time it takes to run a database statement. Due to its very
small footprint, these Simon monitors are all over the application’s code and are added by
developers frequently.

Concretely, there are three different means of monitoring available in Tricia: performance
snapshots, a performance log, and a performance trace. Snapshots are created regularly at an
interval of two hours. They contain a list of all of the application’s Simon monitors with
their corresponding total, average, minimum and maximum execution time as well as
their hit count, i.e. how often they were used. For every snapshots an Excel worksheet
is created in a specific file. Using this solution, it is possible to roughly track where the
application spent most of its time over the monitored range. Furthermore, the performance
log contains the response time for every single request Tricia received in combination with
the associated URL. At present, this file is evaluated by parsing it with Excel and serves as
an indicator of how fast the application is reacting. It also provides a fast way of giving
a customer feedback if he reports that Tricia is running slowly. The last one, performance
traces are exactly the same as the ones presented in Chapter 3| If the execution of a request
in Tricia takes longer as a predefined, static threshold, a trace is written to the main log file.
It contains all Simon monitors which were triggered during the processing of the request
together with their respective total time. Thus, a developer can find out the main reason for
the experienced slowdown, i.e. the specific monitor whose wrapped task was responsible
for the problem.

Despite the fact that there is a lot of information theoretically available, its evaluation
proves very difficult. Tricia provides no easy way of accessing the data — apart from the
performance snapshots which can be visually interpreted by leveraging Excel, a developer
has to dig into log files to find the provided information. This makes it very difficult to get
an overview of the system’s state quickly. As a result, the gathered data is hardly used to
solve problems or serve as a basis for analysis.

45

6. Design Decisions

It would of course be best to continue using the already provided data and monitoring
facilities as much as possible, adapting and extending them only where needed. Never-
theless, we take a look at the other solutions available.

6.2. Solution to be Developed

The first decision to make is whether to create a custom monitoring tool or to use an al-
ready existing solution. As presented in Chapter [4 the only end-to-end solution suitable
for this task is New Relic. We already know one of its major drawbacks — it requires a con-
stant connection to the New Relic servers where the gathered data is transferred to. How-
ever, this is a requirement which cannot be fulfilled in every cloud environment or com-
pany intranet. As an example, Tricia is deployed in the Business Marketplace of Deutsche
Telekom AG, where applications are hosted in the cloud for customers to be available as
SaaS. In this environment there are very strict security restrictions for the hosted appli-
cations especially concerning data security, and the transfer of lots of data would not be
permitted. On the other hand, a Tricia license can be acquired by customers for local de-
ployment on their infrastructure. In such a case it may be possible that the deployment
target is inside a company intranet without further internet access. Nevertheless, it must
be feasible to monitor the application — which could not be done using New Relic. This
leads to the final conclusion that New Relic is not sufficient to do Application Performance
Monitoring in combination with Tricia. As all other existing libraries and frameworks are
no end-to-end solution, the development of a custom monitoring solution is required. This
gives rise to more questions we need to consider.

6.2.1. Separate Monitoring Tool

Another question is the separation of a monitoring tool and the application itself; more
precisely: should there be a monitoring tool outside of Tricia itself or should monitoring
be integrated in Tricia completely? During the interview we conducted, it has already
been strictly recommended to separate the monitoring from the monitored application (see
Chapter[5). This becomes clear when considering the drawbacks a fully integrated solution
has. Let us assume, monitoring is wholly done inside Tricia. If Tricia now fails completely
and the server cannot deliver any further requests, it is impossible for support to connect to
it, too. Therefore, no examination of the problem using the employed monitoring would be
possible. Furthermore, the analysis of gathered data requires system resources. Doing the
analysis on a live system could for that reason lead to even more performance problems,
since resources are not available for other tasks. Clearly, the analysis of any information is
to be done outside of the application.

6.2.2. Providing Data

Since collection is done outside of the application, Tricia has to either provide all perfor-
mance data to the separate monitoring tool or Tricia only exposes single metrics and stor-
age is handled by the tool itself. Once again, we want to bear in mind that the monitoring
solution should be separated from the monitored application. This principle demands to

46

6.3. Inconvenient Frameworks

provide only single data points and let the monitoring tool do the collection as well as
retention. There are also other advantages using this solution. One of the requirements is
the integration into an existing monitoring solution of a cloud provider. We already came
to the conclusion that this demands the implementation of standards. However, such a
solution does data collection by itself, requiring applications to only expose single values,
too. Therefore, if data storage was implemented inside Tricia, it would nevertheless be
necessary to have an interface for that task.

That is why we decided to make Tricia provide discrete data points which are to be
collected and stored outside of it. Furthermore, this interface is implemented using a
specific standard we will determine later on. This way, the possibility to integrate the
custom solution in an existing environment is ensured.

6.2.3. Data Evaluation

Apart form collection and storage it is of course necessary to be able to evaluate the
monitoring data. Once again, the defined separation of Tricia and the tool demands the
analysis part to be included in the latter. Furthermore, this setup is a big advantage.
If Tricia and the analysis are independent, it can be done on totally different machines.
As a consequence, a developer could initiate the collection of monitoring data in the
target environment, then transfer the collected information to his own machine and start a
thorough analysis without affecting the monitored system in any way.

6.3. Inconvenient Frameworks

Apart from New Relic, there are already some frameworks available which have the goal
to aid in the employment of Application Performance Monitoring. Given the above results
of the first design decisions, not all of them can be used in the context of Tricia. It would
be very inconvenient to employ Kieker in our situation, which will be explained in this
section.

Kieker is the flexible and extensible framework developed at the Christian-Albrechts-
University Kiel (see Section . To use it in Tricia, the collection of performance data
would have to be re-written from the ground up. Currently, Java Simon is already used in
Tricia to do basic performance monitoring (see Section [6.1). As Kieker has its own custom
data type for storing monitoring information, namely Monitoring Records, the existing
Simon monitors must either be wrapped into these or completely replaced. These changes
are not only very time consuming but also represent a high risk concerning the stability of
the software. The code of Tricia has to be modified at a lot of different places yielding the
possibility of creating new bugs and requiring a severe amount of additional testing and
verification.

Moreover, we already explained that Tricia has to provide a public interface which
conforms to a certain standard. At the moment, there is no standard dealing with custom
Monitoring Records as required to use Kieker. Thus, all records have to be converted back to
another format at the interface and the conversion must be implemented in Tricia, too. The
data collection will also be done outside of Tricia leading to another drawback. To further
use Kieker for the evaluation of the collected information, it must be stored as the already

47

6. Design Decisions

mentioned records. This requires another conversion — Tricia’s interface exposes a simple
data format as defined by a standard and now, to store everything, once again Monitoring
Records need to be created. All in all, this would mean a total of at least two conversion
steps resulting in a tedious and error-prone process.

In addition to this, many of Kieker’s advanced analysis features like the generation of
UML sequence diagrams or dependency graphs is not primarily required by the Tricia de-
velopers. Their main goal is to be able to analyze a performance problem in the application
and solve it.

Summing up the results, the introduction of Kieker inside Tricia would require a high
amount of work and present a profound change with the likeliness of new bugs. Even
more so, there need to be at least two different conversion steps between the measuring
itself and the final storage of the collected data. Consequently, Kieker was deemed incon-
venient in our context and is not part of the solution.

6.4. Employed Standard

We already postulated the need of an interface in Tricia to expose the gathered monitoring
data so that it can be collected by the monitoring tool as well as already existing monitoring
solutions, e.g. in a cloud environment. Especially the latter situation requires the usage of
a common standard in order to Tricia’s information being accessible.

In Section we presented some different but well-established standards which are
heavily used. Apart from JMX (see Section [£.2.1), all of them are tools which have a
specific protocol. One way to feed those tools with data from Tricia is to create an interface
specifically using one of these protocols. Since the implementation of more than one
interface would extend beyond the scope of this thesis, the separate monitoring tool
consequently also has to use this. A major but easily recognizable drawback using this
approach is that for every monitoring solution a custom interface must be provided.
However, there is an alternative — the use of JMX. All considered solutions — Nagios®,
collectd, etc. — are able to collect data exposed by JMX either directly or via some plugin.
Therefore, Tricia only needs one interface for integration in various monitoring solutions to
be possible at the same time. Another advantage of using JMX is the effect on the planned
monitoring tool. As a result, it is able to not only collect data from Tricia, but — depending
on its implementation — to collect information from any kind of application exposing its
state via JMX.

Clearly, there are a lot of benefits if JMX is employed. In addition, its ease of integration
in an existing application facilitates a corresponding implementation. As for this thesis we
therefore decided to go with JMX as the interface standard.

6.5. Intermediate Results

Before advancing to developing the architecture, we want to consolidate the outcomes of
the evaluation process so far. The key points can be listed as follows with their respective
justification given above in this chapter:

48

6.5. Intermediate Results

¢ Development of a new, custom monitoring solution — no existing end-to-end solu-
tion is suitable in our context.

¢ Creation of a separate monitoring tool outside of Tricia responsible for three tasks:
data collection, retention, and analysis.

¢ Implementation of an interface in Tricia to expose the gathered monitoring data via
JMX.

The items are also illustrated in Figure Based on this list of fundamental decisions,
we now start to create the solutions architecture in the next chapter.

External

Tricia Monitoring Tool

Collection of
Monitoring Data
Elicitation of JMX & « @@ Analysis of
Monitoring Data Interface N Monitoring Data

Retention of
Monitoring Data

T
|
|
|
|

\\\\\\\\\K\ |
|
|
|
|
|

Figure 6.1.: Graphical Overview of Intermediate Results

49

7. Architecture

The key aspects of the monitoring solution’s design have been worked out and it is now
time to create its architecture. All main decisions were summed up in Section and
Figure |6.1| illustrated them graphically. In this section we first focus on developing the
complete architecture for the monitoring tool and afterwards specify the elicitation process
of monitoring data inside Tricia.

7.1. Monitoring Tool Architecture

In order to completely specify the separate monitoring tool’s architecture, all three parts
— collection, retention, and analysis — must be further dissected and defined. This is done
in this section as well as the creation of the final architecture.

7.1.1. Data Collection

The first part to tackle is the collection of monitoring data using the JMX interface provided
by Tricia. Since Tricia exposes only single values which will be updated on a to be defined
basis, it is necessary to regularly collect and store them. This is also the same way the DK
included tools for managing applications via JMX work, namely jconsole and jvisualvm (see
Section [4.2.1). Especially jvisualvm offers the capability to visualise numerical values in a
small graph as shown in Figure To create such a graph, the process polls new values
every 5 seconds.

Attributes | Operations | Notifications | Metadata

Attribute values

Name Value
Max 31.0

Mean

0,6
0,5
0,4
0,3
0,2 40,1993
0,1

Mean

17:25

Discard chart

Figure 7.1.: Graphical presentation of values in jvisualvm
This is a reasonable interval to use since it is not too long to be useless for an analysis

of a certain point in time, as 1 hour would be. Additionally, it is not too short to produce
a significant overhead and affect the system’s performance. Keeping a low performance

51

7. Architecture

overhead is one of the key requirements for the planned solution since APM is done in a
non-intrusive manner (see Section [I.1)).

The overall process of collecting monitoring information can thus be outlined as follows:
Upon startup, the monitoring tool connects via JMX to Tricia. Then, a task is scheduled to
regularly collect the exposed values every 5 seconds.

7.1.2. Data Retention

When talking about the collection of information, we also have to decide on an appropriate
retention strategy, i.e. how to handle the storage of the gathered data. This is also a
very crucial point since monitoring an application can produce a very large amount of
information over time.

One way would be to store everything incrementally in a database or file, for example.
Thus, new values always lead to the creation of a new database entry or are appended
at the end of the designated output file. Using such a mechanism, it is possible to make
a very large time range available for analysis. However, this potentially requires a lot
of storage space since more and more values have to be kept. In this case it would be
necessary to manually implement some kind of clean-up task, which deletes old and no
longer required entries. In such a scenario the database could be provided as a local file by
SQLite for example, i.e. no MySQL or other server has to be available.

On the other hand, there are libraries to retain numerical data in a round-robin fashion
like RRDTool (see Section [4.1.4). This means that one defines a fixed time range for which
the information should be kept. The library then creates a database file with a fixed size
and starts filling it with values. Once all free slots have been filled, the oldest entries are
automatically overridden to ensure keeping the database’s size fixed. One drawback is
that the number of different metrics for which data points are collected has to be defined
before creating the initial database. More details on this are described in Section

Analysis and data storage should be handled outside of Tricia and therefore no direct
access to its database is possible. Furthermore, it is hardly possible to provide access to
a database server for use by an additional monitoring tool in every deployment scenario.
Creating an additional database just to be able to store monitoring information represents
a high amount of work and requires additional information. That is why only a file-based
solution is qualified to be used for the planned tool. In the context of Tricia, only numerical
values are to be collected, and as the amount of used memory should be as low as possible,
using a round-robin approach with RRDTool is the most practical way. As a result, the
process of cleaning up old data is handled by the respective library, too.

7.1.3. Data Evalutation

The last part to be defined is the evaluation of gathered data. This should be possible
without the need of collecting information at the same time, i.e. in the ideal case all
data to be analyzed is put at a specific place and then the evaluation process is triggered.
Furthermore, this has to be very user friendly to facilitate the developer’s task of finding
problems and results.

Creating a Java application for visualizing the information is quite a tedious problem
whereas the creation of a web-based solution using technologies like HTML, JavaScript

52

7.2. Tricia Adaptation Architecture

and CSS and a server to provide the required data is more feasible and more adaptive.
There are especially very feature-rich JavaScript libraries available to help in visualizing
data. Therefore, in favor of having a solution relying on very common technology as well
as being very adaptive, the user interface will be web-based in combination with a web
server to provide the needed information.

7.1.4. Combining Results

Combining all decisions and detailed considerations above, we are now able to create the
monitoring tool’s architecture. The result is shown in Figure The resemblance to the
outlined structure of the basic architecture as presented in Figure is clearly visible.
The two parts of data collection and data retention were composed in a single Collector
component. This component is responsible for connecting to a JMX-enabled application
and query the required data. The gathered information is then stored, which is presented
in Figure[7.2]as a data bundle.

The second main component, the analyzer, is located in the tool’s web server part. It
is accessible via a browser over the server and operates on a just mentioned data bundle.
The analyzer can extract the collected information from a bundle, pre-process it and then
create corresponding visualizations for evaluation. Furthermore, a live view component is
included — also accessible via a browser — to observe the current values delivered to the
collector by the monitored application. The live view is also the only component in the web
server part to be connected to the collector. Keeping a very loose coupling between those
two parts enables the analyzer to be independent from any internal collection process.

7.2. Tricia Adaptation Architecture

Apart from designing the separate monitoring tool, adaptations have to be made for Tricia
to fully gather the wanted monitoring data and expose it via JMX. We first discuss how
the collection of data inside Tricia is handled and afterwards explain the use of J]MX to
finally create a standardized interface. An overview of the components in Tricia is given
by Figure The components are further explained in this section.

7.2.1. Sticking to Java Simon

In Section |6.1| the current state of APM in Tricia was presented including the use of Java
Simon. As this framework provides us with the two required measuring tools, stopwatches
and counters, but also creates a hierarchical structure automatically aggregating values (see
4.1.3), we continue to use it for gathering metrics in Tricia. This is shown in Figure [7.3]by
the gray Java Simon component.

7.2.2. Monitor Handling

One requirement we already identified was the ability to create a performance trace (see
B.2), i.e. it should be possible to see for one request how long certain tasks took to complete.
Thus, some kind of inventory is needed, where the execution time of all Simon monitors is
registered and tracked for one single request (see Monitor Inventory in Figure[7.3).

53

7. Architecture

Monitoring Tool
Collector Web Server
i
1
] ! 0
Data Bundle i Data Bundle
1
R E R
1 H 1
1 I |
i
Collector ®); Live View ; Analyzer
i
i
JMX ? O o}
Browser Browser
JMX-enabled
Application
Figure 7.2.: Monitoring Tool Architecture
|
jm————————— > Java Simon |(€------------ s
| b | |
1]
1]
I I
1 1
Monitoring o l__ JMX
Utilities Interface
T
R > Monitor
Inventory

Figure 7.3.: Monitoring in Tricia

Since all triggered monitors are registered at this place, it serves the purpose of handling
another feature: the detection of long running tasks. The goal is to capture single tasks
whose execution times were over a predefined threshold. If a long running task occurs,
a trace should be printed so that the source of the problem can be identified, e.g. which
subtask was responsible for it. As all monitors are to be registered with the inventory, this
is also the place where it is tracked whether one of them exceeded their threshold. When a
request is then completed afterwards, the inventory stores the information of an exceeded
threshold and Tricia can print out an appropriate trace.

To facilitate the handling of Simon monitors in Tricia there is a utility class for starting

54

7.2. Tricia Adaptation Architecture

and stopping stopwatches or triggering counters. This abstraction is needed in order to
completely wrap the interaction with the inventory and make the use of stopwatches and
counters as easy as possible. The utilities are represented in Figure by Monitoring
Utilities.

7.2.3. JMX Interface

The main aspect to keep in mind when designing the JMX interface (JMX Interface in
Figure is that Tricia exposes only single data values and does not store any history
internally at all (see[6.5). Furthermore, as JMX never allows direct access to the underlying
MBeans (#.2.7)), it is necessary to refresh the MBean values at an regular interval. This is
to be the same as the collection interval of the monitoring tool which we have already
identified to be equal to 5 seconds. For gathering all available monitors in Tricia, the JMX
interface takes advantage of the Simon hierarchy, i.e. the Java Simon framework keeps track
of all used monitors and can be queried for them.

Another aspect to be considered is the life-cycle of Simon monitors. They are only created
and registered upon their first use. Consequently, it is not possible to create MBeans to
expose via JMX for all monitors in the system upon start-up. As they can be triggered
more or less randomly, the exposed MBeans must be updated at a regular interval, too.
However, the refresh interval can be longer than the interval to update single values, since
after a few requests almost every monitor in Tricia has been used.

55

8. Implementation

The architecture has been constructed and it is now possible to implement both the moni-
toring tool as well as the required components inside Tricia. In this chapter we present key
parts of the implementation, starting off with details on the monitoring tool. Afterwards
some in-depth details on Tricia’s adaptation are given.

8.1. Monitoring Tool Details

Figure [7.2|in Section contains the monitoring tool’s overall architecture. At first, we
talk about some configuration possibilities before advancing to the internal structure of the
collector. The last part of this section then describes the webserver component of the tool.

8.1.1. Configuration

The collector has three purposes: collection, storage and analysis of data. These functions
can be configured extensively. It is especially possible to disable not needed functionality.
It is for example not required and not always possible to start a collection of information
when one only wants to evaluate already gathered data. An overview of the configuration
structure is given in Figure|8.1|(getters are omitted for clarity).

OverallConfig

- isDebug : boolean
- commandsPath : String
- snapshotPath : String

0..1 0.1
ServerConfig CollectorConfig
- isDebug : boolean 1 | - outputPath : String
- host : String - serviceUrl : String
- port : int - samplelnterval : int
- enableLiveView : boolean - inventoryRefreshinterval : int

- enableAnalyzer : boolean

1

1.*

PatternConfig 1.*
- name : ObjectName ArchiveConfig
- includes : Set<String> — -
- excludes : Set<String> - consolidationFunction : ConsolFun
- groupedPoints : int
+ shouldCollect (String attribute) : boolean - storedPoints : int

Figure 8.1.: Monitoring Tool Configuration

57

8. Implementation

The main configuration object is represented by the OverallConfig. An aspect worth
paying attention to is the multiplicity between the OverallConfig and the Server
Config, respectively CollectorConfig. Both of them are 0. .1, meaning that they
are not required. This serves the purpose of enabling only parts of the functionality. To
support this, the ServerConfig additionally includes two options to enable the live view
and analyzer separately, too (enableLiveView and enableAnalyzer). As their name
implies, the webserver part is configured by the corresponding ServerConfig whereas
collector configuration is handled by a CollectorConfig. Both PatternConfig and
ArchiveConfig are explained in more detail below.

As the tool has to be as user friendly as possible, configuration must be too. Therefore,
no complicated XML was chosen for its presentation but we decided to use YAML [10].
Using YAML, one can easily create advanced configurations including features like lists
and mappings. A very minimal configuration for starting the monitoring tool is given for
illustration purposes in Listing

collector :
service : ’service:jmx:rmi:///jndi/rmi://localhost:9999/jmxrmi’

archives :
- function : MAX
grouped : 1
stored : 120

® 9 o g W N e

©

patterns :
- ’de.infoassetx:x’

o e
NP o

server # Minimal configuration to start the server

Listing 8.1: Minimal Example Configuration

The first part of the configuration in lines enables the collector. The service
option specifies the [MX Service URI of the application to be monitored. In this example,
the JMX server of the application runs on localhost and port 9999. Furthermore, at
least one archive for RRDTool has to be specified. Here, an archive storing 120 single data
points is created (for in-depth explanation see Section below). Finally, a pattern is
specified in line[10} This causes the collector to gather all beans whose Object Name matches
de.infoassetx: . In the last line of the configuration, only they key server is given
without further options. The tool will therefore start its internal webserver on 1ocalhost
and port 9000 with all features enabled.

8.1.2. Collector

The collector is used to retrieve data from a [MX-enabled application. The collected infor-
mation is then stored as a data bundle. The use of a specific framework for handling storage
requires a particular way of handling the JMX information which is explained right now.
When not stated otherwise, all the work is done by the corresponding class Collector.

Data Storage

For data storage, a round-robin fashioned database is used, namely the framework rrd4j,
which was already presented in Section Thereby, a data set is identified by its name,

58

8.1. Monitoring Tool Details

the datasource. It would be ideal if the datasource was equal to a value derived from the
corresponding MBean and attribute. Every MBean has an Object Name (see Section[#.2.1) in-
cluding a qualified domain, e.g. the containing package name. Assuming a situation as in
Figure naming the datasource de . infoasset .monitoring.SampleMBean.count
would be sufficient.

de.infoasset.monitoring)

SampleMBean

+ count

Figure 8.2.: Sample MBean in Package

However, this is not possible due to a limitation of rrd4j. Datasources can be no longer
than 20 characters, whereas in our example we already have a total of 41. Because of
that the datasources are generated with a prefix and an incremental number. Since the
association to the fully qualified name is important and may not be lost, a mapping
between datasource and full name is also stored. As final output, a so called data bundle
is created. It consists of an rrd file containing the data values as well as a text file with the

mapping (see Figure [8.3).

O ds-1: de.infoasset.Db
Mapping [---1{ds-2: de.infoasset.Request
0
Data Bundle
k| ds-1: 1.0, 2.0,
RRDFile [---{ds-2: 7.5, 6.1

Figure 8.3.: Data Bundle

During operation, it is not recommended to just copy the currently used rrd and map-
ping file since they are actively modified. Copying them may result in data corruption.
Therefore, in order to create a bundle representing the current state, the collection process
has to be stopped first and restarted afterwards. This is the task of the SnapshotCreator
class. It is responsible for coordinating and handling the following steps:

1. Stop the running collector.
2. Create a bundle consisting of r7d and mapping file by copying them.

3. Restart the collector.

59

8. Implementation

The most integral part of the configuration in relation to data storage is represented by
ArchiveConfig in Figure At least one archive has to be present for the collector to
work. As mentioned in Section on RRDTool, there are a few options required for it
to work. These are all contained in the collector’s configuration and an ArchiveConfig
maps to an rrd archive. Since this is a very complicated issue, we explain it again now
using the monitoring tool’s terms.

RRDTool requires first of all a step size, i.e. the smallest difference in seconds between
two sequential updates. In our context this maps to the collector’s sampleInterval.
Additionally, RRDTool does not store every single data point right away but needs at least
one round robin archive. We already know the four required configuration options for an
archive: consolidation function, XFF, steps, and rows (see Section #.1.4). As these names
are not very expressive, some were renamed in ArchiveConfig to better resemble their
meaning. Steps is equal to groupedPoints and rows is matched by storedPoints.
consolidationFunction stayed the same and XFF was omitted and is set in code to a
value of 0.5, i.e. more than half of the grouped points must be valid.

JMX Handling

Apart from data storage, the handling of the JMX connection is another one of the collec-
tor’s tasks. On start-up, the collector automatically tries to establish a connection to the
target application or fails and stops. Only once it has been started successfully, it will not
abort operation during a disconnect but try to reconnect as soon as possible. This is to
ensure a proper configuration concerning the JMX setup. Once running, there are two dif-
ferent tasks scheduled at regular intervals (sampleInterval and inventoryRefresh
Interval in Figure .

One is to keep track of the different MBeans and attributes exposed by the monitored
application. As we have seen in Section not all beans are available in Tricia im-
mediately. Furthermore, the collector must be configured with patterns of Object Names
to be collected as represented by at least one PatternConfig in Figure A pattern
consists of an Object Name name and either a set with attributes to include or exclude
(includes / excludes). An example for a name value would be its string presenta-
tion de.infoasset .« :* which would match all beans having a domain prefixed with
“de.infoasset.” like de.infoasset.monitoring.counter. Furthermore, not all
attributes of a bean are of interest. Therefore, it is possible to explicitly define what at-
tributes should be collected using a set of includes, or on the opposite, what attributes
not to collect using excludes.

The goal is to have a map with unique Object Names as keys and attribute names as
values. Once this map is established, the collection task can then only iterate over this
map to know what values to get. Thus, there is no need to increase the load by querying
the monitored application every time. We call this map the collector’s JMX inventory. The
process of refreshing the inventory is executed as follows:

1. For each Object Name pattern in the configuration:

a) Get all unique Object Names matching the pattern — a unique Object Name
corresponds to exactly one MBean.

b) For each unique Object Name:

60

8.1. Monitoring Tool Details

i. Get detailed information on the bean from the monitored application using
JMX.

ii. For each of the bean’s attributes:

A. Check if the attribute name is allowed according to configuration and if
it is of a compatible type.

B. If the check is successful, add the attribute to the mapping.

2. Calculate the difference to the old inventory, i.e. find out which beans or attributes
were added.

3. Apply the difference to the rrd file, i.e. add new datasources to it.

The only critical aspect of this process is applying the difference to the rrd file. To do this,
the collector has to be stopped first. Then all manipulations are executed and afterwards
collection can be restarted again. During the manipulation it may occur that the rrd file
is corrupted. In order to prevent a total data loss a backup is created before any edits are
made to the data file.

The other Java task is the collection of the data values. The corresponding time interval
should be equal to the one used in Tricia to refresh the exposed beans. Therefore, no data
values are regularly omitted or collected twice. Using the JMX inventory, the collection
task contains only the following steps:

1. Create an empty rrd4j Sample to later update the rrd file.

2. For each unique Object Name in the inventory:
a) For each attribute of this bean:
i. Retrieve its value via JMX.
ii. Convert the value to a double required by the Sample.
iii. Get the datasource name corresponding to this bean and attribute.
iv. Put the value as update for the datasource in the Sample.

3. If configured, collect the default system properties using the same procedure as for
beans in the inventory.

4. Write the Sample to the rrd file.

To schedule both tasks, the Java ScheduledExecutorService is used [29]. It has one
major peculiarity to be considered, however. If at any time a task does throw an exception
which is not caught, the task will not be executed again in the future. Therefore it is
extremely important to catch all exceptions in both, collection and inventory refreshing.
This is done by using a t ry—catch clause surrounding all other code for those tasks.

8.1.3. Webserver Technology

Let us now take a deeper look at the webserver component of the monitoring tool. We first
describe very briefly what server framework is used and then advance to explaining the
user interface technology. At last the functionality of the analyzer is detailed.

61

8. Implementation

Grizzly

The core webserver is provided by the Project Grizzly framework [31]. It is an easy-to-use
library offering a rich set of features. In Grizzly, requests are mapped to so-called resources
which are annotated Java classes. By using the provided annotations, a mapping of URLs
to specific methods for handling them can be created without great effort. Take Listing|[8.2]
as an example containing the OverviewResource.

@QPath ("/overview")
public class OverviewResource {

@GET
@Produces (MediaType .APPLICATION_JSON)
public Scope getOverview() {

© 9 o s W N e

}

-
o ©

@Path ("/menu")

@GET

@Produces (MediaType .APPLICATION_JSON)
public Scope getMenu () {

e e e
[S T

}

=
- o
-

Listing 8.2: Grizzly Resource Example

By using the @Path annotation in line [I} the OverviewResource is mapped to the
absolute path /overview. An incoming GET request is then handled by the method get
overview (line [f). Additionally, the @Provides annotation added in line [f] specifies
that the returned Java POJO is to be converted into a [SON representation. Moreover, the
resource defines an additional route. As the method getMenu (line is itself mapped
to the path /menu in line Grizzly creates the overall route /Joverview/menu. This is
one example of the powerful annotations used with this framework to create a request
mapping in very short time.

Two options taken from the ServerConfig in Figure[8.T|are important to Grizzly: host
and port. They specify the address the webserver binds to, i.e. the base URL where all
resources can be reached. Take localhost and 9999 as examples for those two options, then
the base URL would be equal to http://localhost:9999.

User Interface Frameworks

To deliver a rich user interface, two major libraries for web front-end development are
used: Twitter Bootstrap [39] and Angular]S [14]. Bootstrap includes a CSS framework used
for layout and styling, as well as JavaScript components to implement advanced dynamic
behavior. Angular]S is a complete JavaScript framework providing a Model-View-Controller
like programming model for developing dynamic applications running in the browser.
The key feature of Angular|S is its so-called data binding. By using specific structures in
HTML code, these can be bound to JavaScript expressions. Thus, if a variable is changed
in code, for example, the updated value is automatically detected and propagated to the
view so the user can see the new state. Since more details are out of scope for this thesis,
interested readers are recommended to read the documentation on [13].

62

8.1. Monitoring Tool Details

8.1.4. Analyzer

Apart from collection, the monitoring tools other key component is the analyzer. It pro-
vides a visual presentation of the gathered performance data. In this section we explain
how it is implemented and what features are provided to the user.

Providing Data

The first step to be completed before anything can be analyzed is to provide the corre-
sponding data. The analyzer operates on a data bundle which has already been explained
in detail in Section In order to let the user select a specific bundle to analyze, the
analyzer inspects the directory given by snapshotPath of an OverallConfig (see Fig-
ure[8.T). All subdirectories which contain a mapping and an rrd file are considered a valid
bundle. The user is then represented a list where he can select one to evaluate as shown in
Figure If the collector is enabled and running, the user is offered the ability to create
a bundle from the current data, too. It is then automatically placed in the right directory
and shows up as an option in the list of bundles.

Analyze bundle

Existing bundles

The following bundles are available for analysis:

(=) snapshot-130724145158

Figure 8.4.: Bundle Selection for Analysis

Creating Graphs

RRDTool and rrd4j use so-called archives to store their information as explained in Sec-
tion and Section Before any graphs are created, one single archive has to be
selected. This situation is shown in Figure

For every archive found in the rd file, its consolidation function (1), the interval between
two values (2), and the archive’s time range (3) are displayed. As soon as an archive has
been selected, the user can further restrict the time range which should be visualized by
modifying the slider (4). This is especially useful to reduce the analyzed data volume and
increase performance when one has already identified a certain period wherein interesting
events occurred.

The next step is to select the different datasources (Figure [8.6). Once again the rrd file
is evaluated and with the help of the mapping file the stored sources are represented in a
list (1). There is also the possibility to search for specific sources using the filter input (2).

63

8. Implementation

Archive

The fo.1uing 2 iives are available: 3

® MAX, every 5s - 2013-07-22 10:18:35 - 2013-07-24 10:18:30

AVERAGE, every 60s - 20713-07-22 10:18:00 - 2013-07-24 10:18:00

Selected time range: 2013-07-22 10:18:35 - 2013-07-24 10:18:30 4

Figure 8.5.: Archive Selection

Datasources
The following datasources are available:

2 Select all Show only selected

c.j.b.B.TotalCreatedConnections
c.j.b.BoneCP-db-connection.TotalFree
c.j.b.BoneCP-db-connection.TotalLeased
d.i.m.Monitoring Service.BeanCount 1
d.i.m.monitors.SigarData.ProcessLoad
d.L.m.monitors.SigarData.SystemLoad
java.lang.Memory.HeapMemoryUsage.max

java.lang.Memory.HeapMemoryUsage.used

Figure 8.6.: Datasource Selection

When at least one is selected, the user can click a button to start the generation of a graph
for each of them.

An AJAX request is sent to the server to retrieve the data to be visualized according to
the user’s selections. As soon as the results are returned, the values are fed into a Rickshaw
graph [34]. Rickshaw is a JavaScript framework based on D3 [5], another library for creating
visualizations in the browser. Figure 8.7|shows an example with graphs for two different
sources:

® de.infoasset.monitoring.monitors.db.Mean —The average execution time
of a database operation in Tricia.

® de.infoasset.monitoring.monitors.es.Mean—Theaverage execution time
of an Elasticsearch operation in Tricia.

Since the collector and rrd4j have no notion of any units used for the metrics, this is
knowledge only a developer has. In our example, both metrics are in milliseconds —
therefore it can be seen that the Elasticsearch graph has its maximum well above 4 seconds.

64

8.1. Monitoring Tool Details

Graphs

Selected time range: 2013-07-22 10:18:00 - 2013-07-24 10:18:00

Graph de.infoasset.monitoring.monitors.db.Mean

2:00 6:00 00:00 06:00 12:00 800

10:19:00

Graph de.infoasset.monitoring.monitors.es.Mean

2:00 6:00 00:00 06:00 2:00 8:00

10:19:00

Figure 8.7.: Time Series Visualization

B
L 4

00:00 06:00

10:18:00

B
L 4

00:00 06:00

The user is also provided with additional actions. Located above all graphs is another
slider which can be used to restrict the time range visible in the graphs. Therefore the
user can zoom in on a period of time quickly. Additionally, he can rearrange the order
of the graphs as well as delete them if not needed. Upon the deletion of a graph, the

corresponding metric is also deselected in the list from Figure

8.1.5. Summary

This section gave an overview of integral parts of the monitoring tool’s implementation.
The tool’s main tasks are collection, storage, and evaluation. Evaluation is hereby done
by creating graphical visualizations: time series. This fulfills the requirement posed in
Section [3.2.4]as it provides an easy way to see if a certain problem occurred over time.

65

8. Implementation

8.2. Adapting Tricia

Besides the development of a separate monitoring tool, there is also the need to adapt
Tricia itself. Tricia has to expose certain metrics via JMX. Moreover, the generation of
performance snapshots as well as traces — both were introduced in Section [3.2] — are also
tasks Tricia is responsible for. In this section we now take a look at the implementation
required to provides this functionality.

8.2.1. Monitor Handling

In Section 7.2l we proposed the creation of three different components: Monitoring Utilities,
Monitor Inventory, and JMX Interface. In the following section, the first two are described
in detail. Furthermore, we give examples on introducing a new monitor in Tricia.

To begin with, the Monitor Inventory is implemented in Tricia by an identically named
class, MonitorInventory. Its class diagram is shown in Figure The purpose of
this class is to collect all monitors which were triggered during the processing of a re-
quest and their corresponding execution times. Since in Tricia a request is always han-
dled by one thread, the MonitorInventory is designed to be a singleton for each one.
This is ensured by the static get () method and an internal ThreadLocal [29] vari-
able, inventoryLocal (see Figure [8.8). Monitors can be added by using the method
addMonitor (...) and are subsequently stored in the monitorMap. It is possible to
get all currently stored monitors by calling getMonitors (). The inventory also provides
another method, reset (), which is used to clear the internal map and prepare it for the
next request.

Monitorinventory

- inventorylLocal : ThreadLocal<Monitorlnventory>
- monitorMap : Multimap<String, Long>
- didExceedThreshold : boolean

+ get() : Monitorinventory

+ addMonitor (TriciaSplit m) : void

+ addMonitor (String name, Long nanos) : void
+ getMonitors() : Multimap<String, Long>

+ didExceedThreshold() : boolean

+ markThresholdExceeded() : void

+ resef() : void

Figure 8.8.: Monitor Inventory

A developer only calls didExceedThresholdand reset onthe MonitorInventory.
Adding monitors and handling the threshold is all managed by the Monitoring Utilities.
These are implemented in Tricia by the class MonitoringUtilities. The respective
class diagram is presented in Figure Mostly, only the first block of operations is used,
i.e. the start (...), stop(...), and tickCounter methods. The start operations
start a new Simon Stopwatch used for measuring execution time. It is identified — as all

66

8.2. Adapting Tricia

Simons — by its unique name given as parameter. The overloaded variants provide the
developer with additional options: threshold and an expose flag.

MonitoringUtilities

- exposedMonitors : Set<String>
- exposedCounters : Set<String>

+ start (String name) : TriciaSplit

+ start (String name, double threshold) : TriciaSplit

+ start (String name, boolean expose) : TriciaSplit

+ start (String name, boolean expose, double threshold) : TriciaSplit
+ stop (TriciaSplit m) : void

+ tickCounter (String name) : void

+ getExposedMonitors() : Set<String>
+ getExposedCounters() : Set<String>

+ getAllLongTermStopwatches() : List<Stopwatch>
+ resetlongTermMonitors() : void

+ getShortTermStopwatch() : Stopwatch
+ getLongTermStopwatch() : Stopwatch
+ getCounter (String name) : String

+ stripPrefix (String name) : String

Figure 8.9.: Monitoring Utilities

The threshold defines an upper limit for the total execution timer of the monitor. It
works in combination with the MonitorInventory. When a TriciaSplit is stopped by
calling the utilities stop method, the elapsed time is compared with the threshold. If
the threshold is exceeded, MonitorInventory.markThresholdExceeded () is called.
This is used inside Tricia to detect operations which took longer than normal. Additionally,
the expose flag defines whether a Stopwatch should be accessible via JMX. More details
on how the creation of corresponding beans is handled are given below. If left out in the
method calls, the thresholdis set to 0, i.e. it is not used , and expose is false.

Furthermore, MonitoringUtilities provide easy access to counters. Counters are
also offered by the Simon framework and identified by their name. In Tricia, Counters are
automatically set to be exposed by JMX. The corresponding method t ickCounter (name)
increments the Counter identified by the parameter name.

One important aspect is not directly visible but shows due to the existence of two helper
methods, getShortTermStopwatch and getLongTermStopwatch. In Section [7.2.3|
the conclusion was made that all JMX values must be refreshed at a regular interval.
On the other hand, a performance snapshot is a required mean of detecting problems. A
snapshot, however, has to gather values over a longer period of time than the J]MX refresh
interval. Therefore, when a monitor is started by calling the start method, two different
Stopwatches are started. One is used to capture the data for exposure over JMX and
the other is used in the generation of snapshots. This is necessary since the different
Stopwatches have to be reset after the values are read from them for their purpose.

67

8. Implementation

8.2.2. Performance Snapshots

Introduced in Section performance snapshots are an important mean to detect problems
in an application. In the context of Tricia, such snapshots are created at an interval of 2
hours. A snapshot contains data for all monitors which were used during this period of
time. For every monitor, the following values are written to an output file:

e Name — Monitor name.

e Hit count — How often the monitor was used.

Avg — Average execution time.

Total — The summed up total time of all executions.

Min — Minimum execution time.

e Muax — Maximum execution time.

For every snapshot, a worksheet inside an Excel file is created. This enables developers
to quickly check the data, e.g. by sorting or highlighting rows according to rules. In total,
24 worksheets are kept in the file resulting in a coverage of 2 days. As mentioned in the
last paragraph of Section to create snapshots the long term stopwatches are used.
After a snapshot has been created, these are reset, i.e. all values are set to 0 again.

8.2.3. Performance Traces

The next important mean provided by Tricia are traces (see Section [3.2). A trace contains
the execution time of all monitors which were triggered during a specific operation. Their
goal is to enable the developer to identify slow tasks in the program. In Tricia, traces are
generated with the help of two already mentioned features: threshold and the exceeded flag.

The threshold is passed as an argument to the st art method of MonitoringUtilities
(see Figure[8.9). This class also handles checking the limit when the corresponding mon-
itor is stopped as described previously. After a request has been processed, Tricia cur-
rently checks if any monitor has exceeded its threshold by calling MonitorInventory.
didExceedThreshold () (see Figure [8.8). If this is the case, a performance trace as
shown in Listing [8.3|is logged. The trace contains first the request URL and the total exe-
cution time (line . In this example, the URL was /requestLoginWithOpenId and its
execution time 1257 ms. Afterwards, the monitors are listed with their names in combi-
nation with hit count, total execution time, and average execution time (line — line . The
monitors are additionally ordered according to their total execution time. The list of trig-
gered monitors is retrieved from the MonitorInventory by calling its getMonitors ()
method.

2013-06-24 09:26:15,088 [http-connection-67] T: -
—————— long taking request: 1257 ms for /requestLoginWithOpenId-—----

1
2

3 |webServer.dispatchHandler : Hits: 1, Total: 1257.5, Avg: 1257.5
4 | webServer.sessionHandler : Hits: 1, Total: 1228.8, Avg: 1228.8
5 | generic.request : Hits: 1, Total: 1228.6, Avg: 1228.6
6 | handler : Hits: 1, Total: 1200.1, Avg: 1200.1

68

8.2. Adapting Tricia

7 |handler.platform.handler.RequestLoginWithOpe...: Hits: 1, Total: 1199.8, Avg: 1199.8
8 | response.platform.handler.RequestLoginWithOp...: Hits: 1, Total: 6.1, Avg: 6.1
9 | response : Hits: 1, Total: 6.1, Avg: 6.1
10 | db : Hits: 1, Total: 1.9, Avg: 1.9
11 | db.getConnectionFromPool : Hits: 1, Total: 1.9, Avg: 1.9

Listing 8.3: Tricia Performance Trace

8.2.4. JMX Interface

At last we describe the JMX interface exposed by Tricia. It provides performance metrics
for collection by external tools, e.g. the one also developed in this thesis. The first
aspect is how Tricia knows what metrics to expose. This information is offered by the
MonitoringUtilities class (see Figure [8.9). For that purpose it has two methods:
getExposedMonitors () and getExposedCounters ().

Per default, a monitor in Tricia is not set to be exposed. As a consequence, it is not
contained in the set returned by getExposedMonitors (). Only when a developer
explicitly uses one of start’s overloaded variants and sets the exposed parameter to
true (see Figure , Tricia will include it in the JMX interface. On the other hand, all
counters used in Tricia are exposed per default. The set of counters can then be retrieved
by calling MonitoringUtilities.getExposedCounters ().

<<interface>>
JmxMonitoringServiceMBean

- <<interface>>
+ getBeanCount() : int JmxMonitoringBean
+ refreshBeanInventory() : void
+ refreshBeanValues() : void + refresh() : void
A . \
beaninventory fixedBeans

JmxMonitoringService

- _instance : JmxMonitoringService 1
- beanServer : MBeanServer

- scheduledExecutor : ScheduledExecutorService
- started : boolean

+ INSTANCE() : JmxMonitoringService 1
+ start() : void

- handleBeanWithName (JmxMonitoringBean bean, String name) : void
- getObjectName (String beanName) : ObjectName

Figure 8.10.: JMX Interface Structure

In Figure the basic structure of the JMX interface’s implementation is shown. The
core functionality is provided by JmxMonitoringService which will register itself as
an MBean. To be available as bean, there needs to be an interface ending with MBean,

69

8. Implementation

therefore the class implements JmxMonitoringServiceMBean. As a result, the inter-
face’s operations are available via JMX. The monitoring service itself offers the current
bean count (getBeanCount () as well as two operations: refreshBeanInventory ()
and refreshBeanValues (). The former is used to force a reload of the exposed beans
and the latter to refresh all beans’ values. The service is implemented as a singleton, hence
the private static _instance variable and the public static method INSTANCE () to re-
trieve it.

Furthermore, the monitoring service has two different sets of JmxMonitoringBeans.
A JmxMonitoringBean is the parent interface for all beans to be exposed and offers a
method refresh to trigger the reload of the single bean’s values. The two sets refer to
the different types of beans included in the JMX interface. First, there are beans which
are exposed at all times. These are contained in the fixedBeans role. Once example for
a fixed bean is the one providing CPU and memory data, explained in more detail later.
Second, beans appear over time and are not available permanently. Those are added to
the beanInventory role. As stated in Section [7.2.3] Tricia monitors and counters are not
available from the start on but only when they have been used at least once. Therefore,
they are part of the beanInventory.

<<interface>>
JmxMonitoringBean

+ refresh() : void

AN
<<interface>> <<interface>> <<interface>>
StopwatchBeanMBean CounterBeanMBean SigarBeanMBean
+ getMean() : double + getRate() : double + getSystemLoad() : double
+ getMax() : double A + getProcessLoad() : double
A T + getFreeMemory() : long
i i JaN
1 1 1
1 1 1
]] 1
1 1 1
StopwatchBean CounterBean SigarBean
- mean : double - rate : double - systemlLoad : double
- max : double - processLoad : double
p 1 - freeMemory : long
1
1 1 1
Stopwatch Counter SigarProxy

Figure 8.11.: JMX Bean Structure

For every exposed metric inside Tricia — monitors and counters — there is one bean.
This structure is presented in the class diagram in Figure A Stopwatch, Counter, and
SigarProxy have corresponding classes and interfaces necessary for JMX. Each stopwatch

70

8.2. Adapting Tricia

is wrapped by a StopwatchBean implementing the respective StopwatchBeanMBean
interface. This contains two different fields: mean and max. Those refer to the average and
maximum execution times. In the same way counters are exposed by the CounterBean.
The respective CounterBeanMBean interface defines one value, the rate. In Tricia, coun-
ters are automatically converted into a rate, i.e. how often they were used per second over
the last sample period. The last bean is the SigarBean with its SigarBeanMBean in-
terface. This fixed bean is used to provide external tools with system level information,
namely system load, process load, and free memory. These metrics cannot be collected by JMX
on all platforms reliably, therefore the SIGAR library [18] is used inside Tricia.

In similar fashion as the collector of the monitoring tool, the JmxMonitoringService
also has two tasks scheduled at regular intervals. One is to refresh the beanInventory
(see Figure 8.9). At an configurable interval — per default 5 minutes — the Monitoring
Utilities classis queried for exposed monitors and counters. If new ones are detected,
a matching bean is created and registered with Tricia’s MBeanServer. As a result, the bean
is instantly visible over [MX. In the case of missing Simons, i.e. a monitor or counter
disappeared, the corresponding MBean is unregistered from the JMX server. The second
task is responsible for updating the beans’ values. Every 5 seconds the monitoring service
iterates over both sets, fixedBeans and beanInventory in Figure For every
instance it calls the refresh () method defined in JmxMonitoringBean. Thus, the
provided values are updated and now visible on JMX. On every refresh, the bean’s monitor
or counter is reset. Concerning a monitor, the short term stopwatches are used here.

8.2.5. Code Examples

To round up the section about adapting Tricia, we present some code examples on how
to employ a new monitor or counter. The easiest thing to use is a counter. Only one line
of code is required as shown in Listing This call automatically leads to the counter’s
exposure and its rate will be available via JMX. The generated Object Name will be equal to
the prefix de.infoasset .monitoring. appended with the name given as parameter:
de.infoasset .monitoring.db.operations.

MonitoringUtilities.tickCounter ("db.operations");

Listing 8.4: Using a counter in Tricia

Next up are monitors to measure the execution time of code blocks. The pattern should
always be the one visible in Listing First, there is the method call to start the monitor.
The code to be measured is surrounded by a try-finally block. The finally block
then contains the call to stop the monitor again. Therefore, it is ensured that the monitor
is stopped in any case, even if an unhandled exception occurs.

TriciaSplit m = MonitoringUtilities.start(...);
try {

/ Code to be measured
} finally {
MonitoringUtilities.stop (m);

}

Listing 8.5: Pattern for using a monitor

71

8. Implementation

The start call needs at least one parameter, the monitor’s name. The name is used by
the Simon library to provide another feature: nested monitors. Thus, the execution time of
a child monitor is automatically added to its parent monitor. For example, one monitor has
the name db and the other db.commit. As soon as the db.commit monitor is stopped,
its execution time is also added to the db one. Listing 8.6|illustrates this behavior, see the
comments for explanation.

\ssume both monitors have never been used before
otal execution time of d 0
otal execution time of

db.commit: O
TriciaSplit dbCommit = MonitoringUtilities.start ("db.commit");
try {

Operation taking 200ms

} finally {
// No stop has occurred so far, still both are 0

MonitoringUtilities.stop (m);

db.commit is now: 200ms

db is now: 200ms

Listing 8.6: Illustrating Nested Monitors

8.3. Implementation Summary

In this chapter, implementation details of both the monitoring tool as well as the adapta-
tion of Tricia itself were shown. The monitoring tool is completely independent from Tricia
and only requires a Java application using the JMX standard. Along with its powerful con-
tiguration options, the tool can therefore be used in a very general scenario. On the other
hand, employing monitors and counters in Tricia to do performance measurements was
kept as easy as possible. Additionally, given the class structure presented in Section it
is very simple to add new beans to be exposed via JMX. Finally, all the required means of
detecting and tracing performance problems which were proposed in[3.2lwere successfully
implemented.

72

Part I11.

Evaluation and Final Results

73

9. Practical Evaluation

As soon as the monitoring tool was developed and the adaptation of Tricia was completed,
the solution was deployed by infoAsset . It did not take long for a performance problem
to show up. infoAsset then used the new application performance monitoring to identify
the problem. In this chapter the whole process starting from identifying the problem until
finding its root cause is described. All steps are illustrated with the appropriate real data.

9.1. Evaluation Context

First of all, it is necessary to describe the relevant context. The problem occurred in the
Business Marketplace by DTAG, one of the cloud environments (see Section [1.2.2). Let us
briefly summarize the important facts concerning a cloud environment (see Figure [1.2| for
a graphical representation):

* Multiple servers working together.
* One database shared by all Tricia instances.
* One Tricia as well as one Elasticsearch process per server.

e Elasticsearch running in a cluster configuration.

The problem itself can be described as follows: Various users of Tricia experienced
extremely slow performance when creating a new workspace. It took several seconds
until the request was completed. There was no initial clue of what was responsible for the
problem.

9.2. Identification and Verification

The first step for the developers then was to look at the performance snapshots created by
Tricia. Since the problem was reproducible and the times when the users tried to execute
the operation were known, the corresponding snapshots were identified quickly. Table[9.]]
shows the most important monitors along with their hit count, average, total, and maximum
execution time. The execution times are given in milliseconds, decimal places are omitted.

The first entry, handler, represents the execution time of a Tricia Handler which is respon-
sible for processing requests. Though the average value is acceptably low with 292ms, the
maximum at roughly 86 seconds is a hint at a possible problem. Next is the entity.persist
which measures how long it takes to write an entity to the back-end storage. This includes
saving it in the database as well as updating the Elasticsearch search index. An average
of 1.66s is already noticeably high but the maximum at staggering 154 seconds, so almost

75

9. Practical Evaluation

Name Hits | Average Total | Maximum
handler 608 292 177,920 85,877
entity.persist 1,541 1,660 | 2,559,488 154,076
es 1,886 580 | 1,094,083 85,545
es.searchables_ 196 1,161 227,713 84,974
production_multitenancy.commit

db 221,487 1 317,457 60,022

Table 9.1.: Excerpt of a Performance Snapshot

2.5 minutes, clearly indicates a problem. As in a persist and therefore the creation of a
workspace both Elasticsearch and the database are involved, it is worth taking a look at
them, too. Elasticsearch operations are measured by the es monitor. Its average at 580ms
seems OK but once again, almost 86 seconds maximum are alarming. The same holds true
for the next one, es.searchables_production_multitenancy.commit, tracking how long a com-
mit operation for the index searchables_production_multitenancy takes. A commit operation
should usually be very fast, since only a new document is added to the search index.
Everything else, distributing it across the cluster and cleaning up scattered data, is done
asynchronously. Therefore even the average with more than 1 second is too high — not
to mention the maximum at almost 85 seconds. The last involved monitor is wrapped
around the execution of database operations, db. The average value of 1ms and a total of
only 5 times the maximum show that there is not a real problem. Of all roughly 220.000 db
hits, at most 5 have been slow, that is 2.2 - 1073%. Nevertheless this was noted by infoAsset
for further investigation.

Therefore, we now have the suspicion that Elasticsearch is the root of the problem due
to its slow commit operations. The next step is to verify that the maximum execution
times are not singular events but occur over a longer period of time. To do this, the data
collected by the monitoring tool is downloaded from the webserver and analyzed locally.
The resulting graph is shown in Figure The mean value of the es monitor is plotted
here.

Graph de.infoasset.monitoring.monitors.es.Mean

Bh
*

1 2

1700 16:00

Figure 9.1.: Graph of Elasticsearch execution time

76

9.3. Tracking Down

The y-axis on the left edge starts at 0 at the bottom whereas the top edge is at 6000ms or
6 seconds. The two vertical lines delimit the timestamps, starting at 17:00 (1) and ending
at 18:00 (2). It is clearly visible that over the period of 1 hour, the average execution time
of Elasticsearch operations increased drastically.

infoAsset then advanced to trying to reproduce the problem. Fortunately, the problem
occurred every time a new workspace was created. Therefore, a request was triggered
and as expected, it took such an amount of time long that Tricia logged a performance
trace for it. The beginning of the trace is given in Listing The values are all given in
milliseconds.

1]2013-07-26 08:44:29,062 [http-connection-11966] T: -

2| e long taking request: 9607 ms for /space/submit------—

3 | webServer.handlerRequests : Hits: 1, Total: 9607.4, Avg: 9607.4
4 | webServer.allRequests : Hits: 1, Total 9606.7, Avg: 9606.7
5 | generic.request : Hits: 1, Total 9606.7, Avg: 9606.7
6 | handler.platform.handler.space.SubmitHandler : Hits: 1, Total 9605.9, Avg: 9605.9
7 | handler : Hits: 1, Total 9605.9, Avg: 9605.9
8 | es : Hits: 10, Total 8788.7, Avg: 878.9
9 | es.searchables_production_multitenancy : Hits: 1, Total: 8686.3, Avg: 8686.3
10 | es.searchables_production_multitenancy.commit : Hits: 1, Total: 8686.3, Avg: 8686.3
11 |entity.persist : Hits: 10, Total 2090.4, Avg: 209.0
12 | entity.persist.pageSpace : Hits: 2, Total: 1144.9, Avg: 572.5
13 | db : Hits: 967, Total: 707.3, Avg: 0.7

Listing 9.1: Performance Trace for Workspace Creation

The request took 9.6 seconds total (line). The monitors are sorted by their total
execution time. In line 10| there is the commit operation. With almost 8.7 seconds it took
too long by far. As a result, the request was processed so slowly and the total values of the
other monitors are affected.

The problem is therefore identified as being the commit operation executed on the
Elasticsearch cluster. It was also verified that it is not a singular event but occurs frequently
and has enormous impact.

9.3. Tracking Down

The next step is to see if a bad implementation in Tricia is responsible for the excess commit
operation. The EsClient class in Tricia is used as abstraction to handle all Elasticsearch
library calls. The method triggering the above identified commit is shown in Listing[9.2]

public static void commitIndex (final String indexName) {
EsMonitor.monitor (new Fun() {
@Override

public void fun() {
INSTANCE () .getClient () .admin ()
.indices ()
.refresh (Requests.refreshRequest (indexName))
.actionGet () ;

W L d A W N P

-
o

}

=
[

indexName, "commit");
4 4 4

-
w

Listing 9.2: Code of commit Operation

77

9. Practical Evaluation

The single parameter for this method is the name of the index to be committed. In our
case the index is equal to searchables_productionmultitenancy. The real method
body is wrapped inside a call to EsMonitor.monitor (...) (line[2-line[I2). This is
just a helper function for starting a corresponding monitor — here: es.searchables_
productionmultitenancy.commit. The interesting piece of code are lines In
essence, the Elasticsearch library is called and a refresh is triggered on the given i ndexName.
A refresh causes all pending changes to be made available to the whole cluster [9]. The
Elasticsearch AP is written asynchronously. Since Tricia expects all results to be available
after a commit, actionGet () is called in line[9} This forces the execution to wait until the
refresh operation has completed.

However, even if the refresh is executed synchronously, it must not take as long as
experienced. Consequently, the problem does not occur due to the implementation in
Tricia. We then decided to investigate further on a very low level. The servers in the cloud
environment were running Ubuntu Linux, thus we used the command line tool strace [2].
This tool tracks for example the system calls created by a process in combination with their
arguments and respective return values. We used it to surveill the Elasticsearch process. To
get reliable results, all other nodes were shut down so that only one single server was
active. Once again, a request was triggered and strace captured the system calls. The
output generated by strace contains a lot of information. Since we knew the exact time the
request was started, we were able to identify roughly the start and end of the execution in
the output. After some investigation, a pattern met the eye. The relevant parts from the
strace data are shown in Listing

I

2121169 08:44:20.436215 unlink ("xxx/indices/searchables_production_multitenancy/0/index/
_Im.tvx" <unfinished ...>

3] ...

4121169 08:44:21.390968 <... unlink resumed>) = 0

5121169 08:44:21.391134 unlink ("xxx/indices/searchables_production_multitenancy/0/index/
_Im.fnm") = 0

6121169 08:44:21.393180 unlink ("xxx/indices/searchables_production_multitenancy/0/index/
_Im.tvf" <unfinished ...>

7 ...

8 | 21169 08:44:22.347567 <... unlink resumed>) = 0

9121169 08:44:22.347654 unlink ("xxx/indices/searchables_production_multitenancy/0/index/
_Im.tvd" <unfinished ...>

0 | ...

11 {21169 08:44:23.303854 <... unlink resumed>) = 0

12

Listing 9.3: Excerpt of strace output

Though Listing shows only 4 unlink operations, there is a total of 11 unlinks
executed during the commit. An unlink system call in Linux is used to delete a file
or symlink [20]. The files referenced in the executions from Listing are very small.
Nevertheless, the unlink call sometimes takes up to 1 second, on average around 600
miliseconds. On other systems where the same setup is used, we were able to extract the
trace presented in Listing[9.4}

On the system used for comparion — remember: same technology as environment, same
Tricia setup — the unlink operations took at most a few milliseconds. This is a drastic
difference and causes the experienced problem.

78

9.4. Outcome

o v W

10

11
12
13

4516
4516
4516
4516
4516

4516

09:06:02.430428 unlink ("xxx/indices/searchables_production_multitenancy/0/index/
_uf.tis" <unfinished ...>

09:06:02.431652 <... unlink resumed>) = 0

09:06:02.432375 unlink ("xxx/indices/searchables_production_multitenancy/0/index/
_uf.tvf" <unfinished ...>

09:06:02.433206 <... unlink resumed>) = 0

09:06:02.433280 unlink ("xxx/indices/searchables_production_multitenancy/0/index/
_uf.tvd" <unfinished ...>

09:06:02.434229 <... unlink resumed>) = 0

Listing 9.4: Comparison trace with same setup

9.4. Outcome

After all a bug in Tricia could be ruled out. A system configuration or basic I/O problem
is likely to be the reason for this issue. The cloud provider DTAG was notified of the prob-
lem. It turned out that a hard drive error in one of their systems was responsible. After
exchanging the respective component and an additional rebuild of the virtual machines
used in the cloud environment, the problem was solved. All in all, the developed moni-
toring solution turned out to be very useful. It provided essential data to track down the
issue.

79

10. Conclusion

Coming to a conclusion, let us take a step back and sum up the work covered in this thesis.
We also want to identify remaining points of improvement. These can then be used as a
basis for further research.

10.1. Results

In this thesis we took a thorough look at APM in general and how it can be applied
in the context of an existing application. The results were worked out with respect to
the requirements posed by the environment of a cloud infrastructure. Furthermore, the
characteristics of a scalable and distributed application as well as specialities of Tricia had
to be taken into account. The overall goal was on one hand to derive the essential aspects
on what is needed in order to properly employ APM. On the other hand, it was important
to describe a process of integrating APM in an already existing Java web-application.

Chapter [I| gave an overview of the theoretical background. It defined important terms
required to understand this thesis as well as gave an introduction to Tricia. Following that,
a short motivation was given before the problem itself was described in Chapter[2] We also
put it in the relevant context and named the involved stakeholders. Afterwards, Chapter
contained a profound analysis. Key metrics necessary to do APM were identified success-
fully. Furthermore, the required means to evaluate gathered data have been presented.
Section [3.3| sums up the findings of the analysis process. Before advancing to the prac-
tical part of this thesis, an examination of existing solutions and standards was done in
Chapter] The focus was put on the characteristic advantages and drawbacks of every
solution especially in the context of Tricia. Additionally, we conducted an interview with
an employee of a large company who already has experience in APM for applications. The
results thereof were given in Chapter [5|and proved to be very valuable.

The next part covered the practical work of employing APM in an existing application:
Tricia. The first step was to decide on key aspects of the planned solution. This process was
described in detail in Chapter [l One of the main results was to separate the monitored
application from the collection, retention, and analysis of monitoring data (Section[6.2.1).
Thereafter, in Chapter [/| the architecture of the two components of the new solution,
monitoring tool and Tricia’s adaptation, has been worked out. Chapter [§ contains key
implementation details of both parts of the solution. There, we also showed to employ
monitoring in Tricia itself. Fortunately, we had the chance to evaluate the solution in
cooperation with infoAsset. One problem was tackled by leveraging the developed APM
and the corresponding results were presented in Chapter [0} The solution turned out to be
very helpful and an application problem could finally be ruled out successfully.

It is also important to note that the created solution is fitted to be of special use for
the developers. The data gathered cannot be judged efficiently by someone who has no

81

10. Conclusion

profound understanding of the application’s internals. This is especially so concerning the
detailed information contained in snapshots and traces. Practically only a developer can
currently interpret the data included in them.

10.2. Points of Improvement

Though we worked very hard, the limited scope of this thesis did not allow for everything
to be done perfectly. Therefore, some points of improvements do exist. They may be used
in order to conduct further research.

First, it is possible to integrate an even higher degree of automation. Currently, apart
from exposing data via JMX, Tricia also writes extensive output to log files. These also
include the two means of evaluation: performance snapshots and performance traces.
Upon the detection of a problem, a developer must then dig into them and extract the
required information. This can sometimes be a tedious task. Therefore, one aspect is
to introduce automatic log file analysis. A variety of flexible and powerful tools exist
to do this job. For example Graylog2 [21] or Logstash [22], to name two. Additionally,
in case of performance problems, immediate alerts or notifications can be used to make
the developers aware of them fast. In this thesis, we left them out completely in order to
concentrate on creating a solid foundation. However, we see this as as an advanced feature
which can be integrated later on. We therefore want to remark that JMX already provides
some support for alerts and notifications.

The second big aspect is the amount of data exposed via JMX. As of the state of this
thesis, only a variety of key metrics are available. Especially the above mentioned perfor-
mance snapshots and performance traces are not included. Thus, one can investigate if
including this information in the JMX interface is useful. We have in mind that the traces
can be collected automatically, too. If a developer then evaluates the data by using the
monitoring tool, it could also be possible for him to easily check existing traces referring
to the discovered problem.

82

Bibliography
[1] W. BARTH, Nagios system and network monitoring, No Starch Press, San Francisco,

2008.

[2] S. BEST, Linux debugging and performance tuning : tips and techniques, Prentice Hall
Professional Technical Reference, Upper Saddle River, NJ, 2006.

[3] J. BLOCH, Effective Java (2nd Edition), Addison-Wesley, 2008.

[4] M. BOGAERT, F. BACHELLA, et al., rrd4j - a high performance data logging and graphing
system for time series data. http://code.google.com/p/rrd4j/. Accessed:
2013-07-30.

[5] M. BOSTOCK, D3.js - Data-Driven Documents. http://d3Jjs.org. Accessed:
2013-07-25.

[6] B. CLEWETT, F. GLEIXNER, et al., PerfParse Add On for Nagios.
http://perfparse.sourceforge.net. Accessed: 2013-08-02.

[7]1 COREMEDIA AG, CoreMedia. http://www.coremedia.de/. Accessed:
2013-07-15.

[8] G. COULOURIS, J. DOLLIMORE, T. KINDBERG, and G. BLAIR, Distributed Systems:
Concepts and Design (5th Edition), Addison-Wesley, 2011.

[9] ELASTICSEARCH, Elasticsearch - Open Source Distributed Real-Time Search & Analytics.
http://www.elasticsearch.org. Accessed: 2013-07-25.

[10] C. C. EVaNS, YAML Ainf Markup Language. http: //www.yaml.org. Accessed:
2013-07-23.

[11] M. FLEURY, J. LINDFORS, and T. J. GROUP, [MX: Managing J2EE with Java
Management Extensions (Java (Sams)), Sams, 2002.

[12] F. FORSTER et al., collectd - The system statistics collection daemon.
https://collectd.orqg/. Accessed: 2013-07-30.

[13] GOOGLE, Angular]S - Documentation. http://docs.angularjs.org. Accessed:
2013-07-25.

[14] GOOGLE, Angular]S - Superheroic JavaScript MVW Framework.
http://angularijs.org. Accessed: 2013-07-25.

[15] GOOGLE, Google Gmail. http://mail.google.com/. Accessed: 2013-07-07.

83

http://code.google.com/p/rrd4j/
http://d3js.org
http://perfparse.sourceforge.net
http://www.coremedia.de/
http://www.elasticsearch.org
http://www.yaml.org
https://collectd.org/
http://docs.angularjs.org
http://angularjs.org
http://mail.google.com/

Bibliography

[16] C. HALE, Metrics - Mind the Gap. http://metrics.codahale.com. Accessed:
2013-07-30.

[17] C. HUNT and B. JOHN, Java Performance, Addison-Wesley Professional, 2011.

[18] HYPERIC, SIGAR API - System Information Gatherer and Reporter.
http://www.hyperic.com/products/sigar. Accessed: 2013-07-26.

[19] JAVASIMON PROJECT, Java Simon - Simple Monitoring API.
https://code.google.com/p/javasimon/. Accessed: 2013-08-03.

[20] M. KERRISK, The Linux Programming Interface: A Linux and UNIX System Programming
Handbook, No Starch Press, 2010.

[21] L. KOOPMANN, Graylog2 - Free open source self-hosted log management and exception
tracking. http://graylog2.orqg. Accessed: 2013-07-31.

[22] LOGSTASH, logstash - open source log management. http://www.logstash.net!
Accessed: 2013-07-31.

[23] MICROSOFT, Office 365. http://office365.com. Accessed: 2013-07-07.

[24] NAGIOS ENTERPRISES, LLC, check_jmx Nagios plugin.
http://exchange.nagios.org/directory/Plugins/

Java—Applications—and-Servers/check_jmx/details. Accessed:
2013-08-02.

[25] NAGIOS ENTERPRISES, LLC, Nagios - The Industry Standard in IT Infrastructure
Monitoring. http://www.nagios.org. Accessed: 2013-08-02.

[26] NAGIOS ENTERPRISES, LLC, Nagios Core Documentation.
http://nagios.sourceforge.net/docs/nagioscore/3/en/. Accessed:
2013-08-02.

[27] NEW RELIC, INC., New Relic - Application Performance Management & Monitoring.
http://www.newrelic.com/. Accessed: 2013-07-31.

[28] T. OETIKER et al., RRDTool - logging & graphing.
http://oss.oetiker.ch/rrdtool/. Accessed: 2013-07-30.

[29] ORACLE, Java Platform Standard Edition 6 Documentation.
http://docs.oracle.com/javase/6/docs/api/index.html, 2011.
Accessed: 2013-04-15.

[30] J. S. PERRY, Java Management Extensions, O'Reilly Media, 2002.

[31] PROJECT GRIZZLY, Project Grizzly - NIO Event Development Simplified.
http://grizzly. java.net/. Accessed: 2013-07-25.

[32] A. REITBAUER and M. NOVAKOVIC, Effizientes Performancemanagement, Java
Magazin, 11, 2009.

84

http://metrics.codahale.com
http://www.hyperic.com/products/sigar
https://code.google.com/p/javasimon/
http://graylog2.org
http://www.logstash.net
http://office365.com
http://exchange.nagios.org/directory/Plugins/Java-Applications-and-Servers/check_jmx/details
http://exchange.nagios.org/directory/Plugins/Java-Applications-and-Servers/check_jmx/details
http://www.nagios.org
http://nagios.sourceforge.net/docs/nagioscore/3/en/
http://www.newrelic.com/
http://oss.oetiker.ch/rrdtool/
http://docs.oracle.com/javase/6/docs/api/index.html
http://grizzly.java.net/

Bibliography

[33] A.SCHNEIDER, C. NEUBERT, and F. MATTHES, Fostering Collaborative and Integrated
Enterprise Architecture Modeling, Journal of Enterprise Modelling and Information
Systems Architectures, 2013.

[34] SHUTTERSTOCK IMAGES, Rickshaw: A JavaScript toolkit for creating interactive
time-series graphs. http://code.shutterstock.com/rickshaw/. Accessed:
2013-07-25.

[35] B. SOSINSKY, Cloud Computing Bible, Wiley, 2011.
[36] S. SOUDERS, Even faster web sites, O'Reilly, Sebastopol, 2009.

[37] THE CACTI GROUP, INC., Cacti - the complete rrdtool-based graphing solution.
http://www.cacti.netl Accessed: 2013-07-30.

[38] THE MUNIN PROJECT et al., Munin. http://munin-monitoring.org. Accessed:
2013-08-03.

[39] TWITTER, Bootstrap - Sleek, Intuitive, and powerful front-end framework for faster and
easier web development. http://twitter.github.io/bootstrap/. Accessed:
2013-07-25.

[40] A. VAN HOORN, M. ROHR, W. HASSELBRING,]J. WALLER,]J. EHLERS, and S. FREY,
Continuous Monitoring of Software Services: Design and Application of the Kieker
Framework. http://eprints.uni-kiel.de/14459/,2009. Accessed:
2013-04-15.

85

http://code.shutterstock.com/rickshaw/
http://www.cacti.net
http://munin-monitoring.org
http://twitter.github.io/bootstrap/
http://eprints.uni-kiel.de/14459/

	Abstract
	Outline of the Thesis
	Background and Analysis
	Introduction
	Monitoring
	Types of Monitoring
	Application Performance Monitoring
	Distinction from Profiling

	Tricia
	Overview of Tricia
	Modes of Deployment

	Scalability and Distributed Software

	Problem Statement
	Motivation
	Problem Overview
	Problem Context
	Involved Stakeholders

	Analyzing the Problem
	Key Metrics
	Requests
	Database Operations
	Elasticsearch Operations
	System Metrics
	Collection in Code
	Summary

	Means of Evaluation
	Performance Snapshots
	Time Series
	Performance Traces
	Proposed Usage

	Intermediate Results

	Relevant Tools and Standards
	Relevant Tools
	New Relic
	Kieker
	Java Simon
	RRDtool

	Standards
	Java Management Extensions
	Nagios®
	collectd, Cacti, and the like

	Interview

	Employing APM in Tricia
	Design Decisions
	Application Performance Monitoring in Tricia
	Solution to be Developed
	Separate Monitoring Tool
	Providing Data
	Data Evaluation

	Inconvenient Frameworks
	Employed Standard
	Intermediate Results

	Architecture
	Monitoring Tool Architecture
	Data Collection
	Data Retention
	Data Evalutation
	Combining Results

	Tricia Adaptation Architecture
	Sticking to Java Simon
	Monitor Handling
	JMX Interface

	Implementation
	Monitoring Tool Details
	Configuration
	Collector
	Webserver Technology
	Analyzer
	Summary

	Adapting Tricia
	Monitor Handling
	Performance Snapshots
	Performance Traces
	JMX Interface
	Code Examples

	Implementation Summary

	Evaluation and Final Results
	Practical Evaluation
	Evaluation Context
	Identification and Verification
	Tracking Down
	Outcome

	Conclusion
	Results
	Points of Improvement

	Bibliography

