Application Performance Monitoring of a scalable Java web-application in a cloud infrastructure

Final Presentation

August 5, 2013

Student: Michael Rose

Supervisor: Prof. Dr. Florian Matthes

Advisor: Alexander Schneider

Dr. Thomas Büchner

Agenda

- Application Performance Monitoring
- APM for Tricia
- Evaluation
- Further Work
- Summary

Application Performance Monitoring (APM)

"Monitoring is the process of maintaining surveillance over the existence and magnitude of state change and data flow in a system." ¹

- How fast is my application?
- ... If the application is not fast ...

– When is it slow? everytime, on a certain time of the day, ...

What is slow? everything, a certain type of operation, a single

request, ...

Why is it slow?
bug in the application, insufficient resources, wrong

configuration ,...

→ Solve the problem

¹ L. Slawek, *Effective monitoring and alerting*

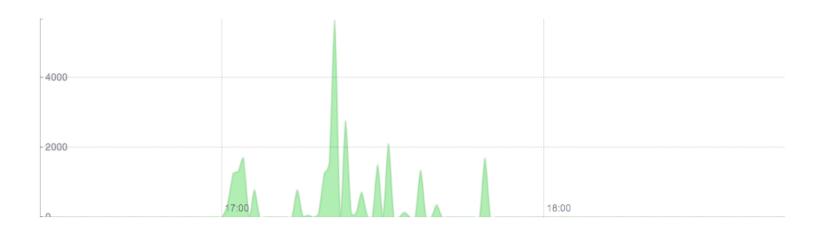
APM - Stakeholders

- Customers
 - improve their business
 - application must be available and usable
- Developers
 - Are there any Problems?
 - If so:
 - · What are they?
 - How can they be solved?
- Cloud Operations
 - Is there need for action? (more resources, more servers, ...)
 - require application-level information
 - standardized interface

APM – Key Metrics

- Overall response time
- Requests per Minute
- Database operation execution time / operations per Minute
- Elasticsearch operation execution time / operations per Minute
- System Load
- Process Load
- Memory Consumption

Checking for problems → **Performance Snapshot**


- created at a regular interval (e.g. 2 hours)
- detailed information for all monitors in the system
- use as indicators → maximum execution time

Name	Avg	Total	Max
Response Time	712.7 ms	177 920.4 ms	6 942.5 ms
Elasticsearch Op	230.0 ms	78 036.2 ms	5 391.2 ms
Database Op	0.9 ms	56 493.5 ms	1.2 ms

Verifying a Problem → Graphical Visualization

- create time series
- see if just a singular event
- detect dependencies

Tracking a Problem → Performance Trace

- created in case of a problem
- gather all monitors used in the executed operation
- print detailed information
- → Find the monitor responsible for the slowdown

Tracking a Problem → Performance Trace

5 200 ms for /action/execute

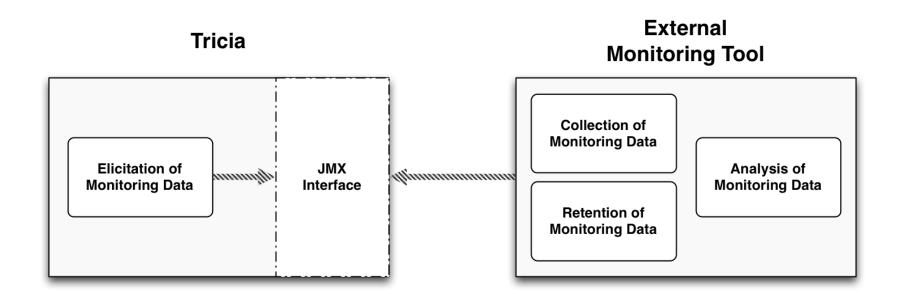
Name	Hits	Total	Avg	
responseTime	1	5 200.4 ms	5 200.4 ms	
handler	1	5 000.0 ms	5 000.0 ms	
utilities.parseUrl	5	4 505.0 ms	901.0 ms	
es	10	350.7 ms	35.1 ms	
db	22	26.2 ms	1.2 ms	

APM for Tricia

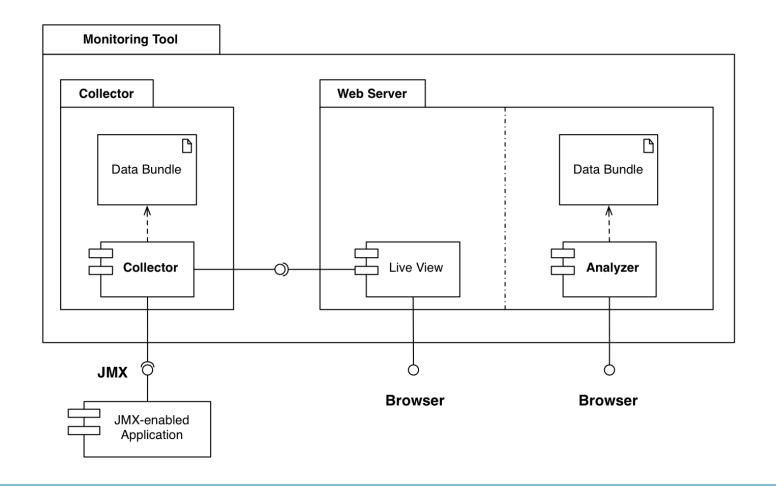
- Existing Solutions / Libraries
 - New Relic
 - Kieker
 - Java Simon
 - RRDTool
- Existing Standards
 - Java Management Extensions (JMX)
 - Nagios
 - collectd, ganglia, ...

Tricia

- - Graphical Visualization


Monitoring

Tool


- Performance Snapshots
- Performance Traces
- Detection
- Tracking

- Detection
- Verification

12:00

10:19:00

18:00

00:00

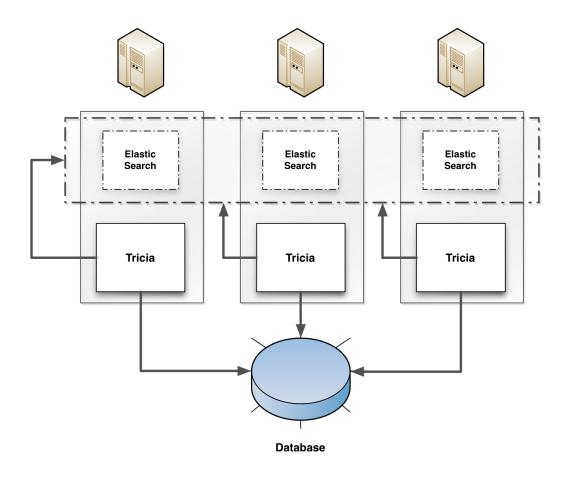
Graphs Selected time range: 2013-07-22 10:19:00 - 2013-07-24 10:18:00 Graph de.infoasset.monitoring.monitors.db.Mean -0.4 12:00 18:00 00:00 06:00 10:19:00 10:18:00 Graph de.infoasset.monitoring.monitors.es.Mean **m** • 4000 -2000

12:00

18:00

00:00

06:00

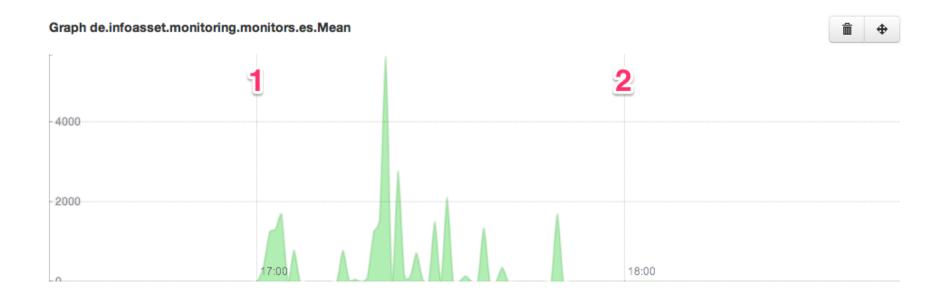

10:18:00

06:00

Evaluation – Context

- Done in cooperation with *infoAsset*
- Customers reported slow performance
- Specific tasks took around 10 seconds to complete
 - → Creation of a workpace
 - → No errors visible on UI
- Problem was reproducible
- Business Marketplace of DTAG
- Cloud Environment
 - Multiple servers working together
 - One shared database
 - One shared Elasticsearch cluster

Evaluation - Context


Evaluation – Checking for a problem

Look at Performance Snapshots

Name	Hits	Avg	Total	Max
handler	608	292	177 920	85 877
entity.persist	1 541	1 660	2 559 448	154 076
es	1 886	580	1 094 084	85 545
es.searchables_production_ multitenancy.commit	196	1 161	227 713	84 974
db	221 487	1	317 457	60 022

Evaluation – Verification

Graphical visualization

Evaluation – Tracking Down

- Perform slow request
- Analyze Performance Trace

9 607ms for /space/submit

Name	Hits	Total
webserver.handlerRequests	1	9 607
handler	1	9 605
es	10	8 788
es.searchables_production_multitenancy.commit	1	8 686

Evaluation – Tracking Down

- Commit operation performed by a single method
- Method is basic ES library call
- Implementation according to documentation
- Research on the internet produced no results
- Only environment with this problem

Evaluation – Results

- Low-level analysis revealed slow file deletion
- No bug in Tricia
- Issue caused by target infrastructure
- Provider was notified, hard drive problem solved

Further Work

- Higher degree of automatization
 - Extract data from log files
 - Alerts & Notifications
- Even more data via JMX
 - Performance Snapshots
 - Performance Trace

Summary

- Identification of key metrics
- Examination of existing solutions & standards
- Successfully employed APM in Tricia
- Evaluation of developed solution
- How-To for using the solution

Questions & Discussion

Thank you for your attention.

Michael Rose