
Fakultät für Informatik

Der Technischen Universität München

Bachelor's Thesis in Wirtschaftsinformatik

Specifying and classifying generic

enterprise model repository services

Florian Balke

Fakultät für Informatik

Der Technischen Universität München

Bachelor's Thesis in Wirtschaftsinformatik

Specifying and classifying generic

enterprise model repository services

Spezifikation und Klassifikation

generischer Dienste eines Repositories für

Unternehmensmodelle

Author: Florian Balke

Supervisor: Prof. Dr. rer. nat. Florian Matthes

Advisor: Dipl.-Inf. Christian M. Schweda

Date of submission: 15.09.2010

I assure the single handed composition of this bachelor's thesis only supported by

declared resources.

München, den 15. Oktober 2010

Florian Balke

Acknowledgments

Abstract

Enterprises increasingly resort to enterprise architecture (EA) management to cope with to-

day's challenging environmental conditions. Thereby, EA management is gaining importance

as a central means of supporting enterprises both to adapt to changing market conditions

and to take new business opportunities enabled by innovative technologies. The bene�t of

EA management is directly coupled with documenting and analyzing the EA, so as to be

able to provide a holistic view on the enterprise, describing the current state as well as future

states thereof. Hence, devising an information model to structure the information of such

descriptions constitutes one of the major tasks of EA management.

Although the plurality advocates the idea that EA information models are organization-

speci�c design artifacts (cf. [BMS10b]), it is to assumed that an underlying meta-model

exists, in which the di�erent organization-speci�c information models are founded. There-

fore, this thesis sets the goal of eliciting requirements for EA information modeling, while

assessing whether state-of-the-art modeling concepts, such as those of the UML [OM10], are

su�cient to satisfy the requirements. Subsequently, a set of tools is evaluated against these

requirements to get a general idea of the capabilities of their generic repository services for

EA information models.

Zusammenfassung

Unternehmen greifen vermehrt auf das Management der Unternehmensarchitektur (UA)

zurück, um mit den herausfordernden Umweltbedingungen fertig zu werden. Dabei gewinnt

das UA Management, als zentrales Mittel zur Unterstützung bei sowohl der Anpassung

an sich ändernde Marktbedingungen, als auch dem Ergreifen neuer Geschäftsgelegenheiten

durch innovative Technologien, zunehmend an Bedeutung. Der Nutzen des UA Manage-

ments ist direkt mit der Dokumentation und Analyse der UA verbunden, um in der Lage

zu sein eine ganzheitliche Sicht auf das Unternehmen bereitzustellen, welche den aktuellen,

sowie zukünftige Zustände davon beschreibt. Daher stellt die Gestaltung von Information-

smodellen zur Strukturierung dazu benötigter Informationen eine der Hauptaufgaben des

UA Managements dar.

Obwohl die Mehrheit die Meinung vertritt, dass UA Informationsmodelle organisationsspez-

i�sche Design-Artefakte sind (cf. [BMS10b]), ist davon auszugehen, dass ein zugrundeliegen-

des Meta-Modell existiert, in dem die verschiedenen Informationsmodelle begründet sind.

Deshalb, setzt sich diese Thesis zum Ziel, Anforderungen an die UA Informationsmodel-

lierung zu erheben und darüber hinaus zu beurteilen, ob Modellierungskonzepte nach dem

Stand der Technik, wie die aus der UML [OM10], genügen, um den Anforderungen gerecht

zu werden. Darau�olgend wird einen Reihe von Tools evaluiert, um einen Überblick der

Fähigkeiten ihrer generischen Repository Dienste für Unternehmensmodelle zu erhalten.

Contents

List of Figures X

List of Tables XIII

1 Introduction 1

1.1 Motivation . 2

1.2 Structure of the thesis . 2

2 Scienti�c foundations for EA information modeling 4

2.1 EAM Pattern Catalog . 5

2.2 EA management layers and cross functions 6

2.3 Ontological foundations for structural conceptual models 7

3 Scenarios for EA information modeling 9

3.1 General architecture aspects . 11

3.1.1 Hierarchy modeling . 11

3.1.2 Temporal and variant modeling 13

3.1.3 Non-rigid typing and concept of identity 18

3.1.4 Multi-level modeling . 21

3.2 Cross-cutting aspects . 25

3.2.1 Lifecycle . 25

3.2.2 Projects . 27

3.2.3 Standardization . 31

3.2.4 Goals . 38

3.2.5 Responsibilities . 41

3.3 Service aspects . 42

3.3.1 Role-based access control . 43

3.3.2 Queries . 46

3.3.3 Information model changes 48

3.4 Summary . 49

4 Evaluation of repository services 50

4.1 Scenario simulation and evaluation criteria 50

VI

Contents

4.2 Repository services selection process 51

4.3 ADOxx of BOC Information Systems GmbH 52

4.3.1 ADOxx � Tool structure . 52

4.3.1.1 ADOxx � Tool components 52

4.3.1.2 ADOxx � General functionalities 55

4.3.2 ADOxx � Hierarchy modeling 58

4.3.3 ADOxx � Temporal and variant modeling 60

4.3.4 ADOxx � Non-rigid typing and principle of identity 64

4.3.5 ADOxx � Multi-level modeling 65

4.3.6 ADOxx � Life-cycle . 66

4.3.7 ADOxx � Projects . 68

4.3.8 ADOxx � Standardization . 69

4.3.9 ADOxx � Goals . 70

4.3.10 ADOxx � Role-based access control 71

4.3.11 ADOxx � Responsibilities . 72

4.3.12 ADOxx � Queries . 74

4.3.13 ADOxx � Information model changes 76

4.3.14 ADOxx � Summary of evaluation 77

4.4 Tricia of InfoAsset AG . 78

4.4.1 Tricia � Tool structure . 78

4.4.1.1 Tricia � Data modeling framework 79

4.4.1.2 Tricia � Information Modeling 81

4.4.2 Tricia � Hierarchy modeling 83

4.4.3 Tricia � Temporal and variant modeling 84

4.4.4 Tricia � Non-rigid typing and principle of identity 85

4.4.5 Tricia � Multi-level modeling 86

4.4.6 Tricia � Life-cycle . 86

4.4.7 Tricia � Projects . 87

4.4.8 Tricia � Standardization . 88

4.4.9 Tricia � Goals . 90

4.4.10 Tricia � Role-based access control 90

4.4.11 Tricia � Responsibilities . 91

4.4.12 Tricia � Queries . 92

4.4.13 Tricia � Information model changes 93

4.4.14 Tricia � Summary of evaluation 94

4.5 Eclipse Modeling Framework of the Eclipse Foundation 95

4.5.1 EMF � Tool structure . 96

4.5.1.1 EMF � Code Generation 97

VII

Contents

4.5.1.2 EMF � Ecore . 99

4.5.1.3 EMF � Validation framework 102

4.5.2 EMF � Hierarchy modeling 104

4.5.3 EMF � Temporal and variant modeling 106

4.5.4 EMF � Non-rigid typing and principle of identity 109

4.5.5 EMF � Multi-level modeling 110

4.5.6 EMF � Life-cycle . 111

4.5.7 EMF � Projects . 113

4.5.8 EMF � Standardization . 114

4.5.9 EMF � Goals . 116

4.5.10 EMF � Role-based access control 117

4.5.11 EMF � Responsibilities . 118

4.5.12 EMF � Queries . 119

4.5.13 EMF � Information model changes 120

4.5.14 EMF � Summary of evaluation 121

4.6 Evaluation - Conclusion . 122

5 Conclusion and outlook 124

Bibliography 127

VIII

List of Acronyms

EA

EAM

EAMPC

IDE

IT

OCL

sebis

UML

XML

XML Schema

IX

List of Figures

2.1 UML class diagram describing the relationship between Concerns (cf.

[Bu08a]) . 5

2.2 Layers and cross-cutting aspects of an EA (cf. [se10a]) 6

2.3 Typology of substantial universals, according to Guizzardi in [Gu05] 7

3.1 Object-oriented model of a hierarchy 11

3.2 Hierarchy extended by constraints 12

3.3 I-Pattern I-24 � OrganizationalUnit-hosts-BusinessApplication 14

3.4 I-Pattern I-24 extended by the temporal association pattern 15

3.5 Temporal association structure applied on I-Pattern I-24 [se10b] . . . 15

3.6 Schematic illustration of bitemporal and variant modeling of the EA 16

3.7 Bitemporal modeling . 17

3.8 Bitemporal modeling by UML stereotype 17

3.9 Sortals and Mixins . 20

3.10 Modeling building block Lifecycled applied on Project 20

3.11 ProjectMembership as a role of an employee 21

3.12 Type-object pattern (cf. [YJ02]) . 22

3.13 I-Pattern I-26 of the EAM Pattern Catalog [se10b] 22

3.14 Multi-level modeling applied on business applications and their versions 23

3.15 Property pattern (cf. [YJ02]) . 23

3.16 Type-Square pattern (cf. [YJ02] . 23

3.17 Mutli-level modeling applied on I-Pattern I-66 in [se10b] 24

3.18 Modeling building block Lifecycled applied on business application

(cf. [BMS10a]) . 25

3.19 Modeling building block Project-Lifecycle-Affectable applied

on a Lifecycled BusinessApplication 26

3.20 Exempli�ed impact analysis, connecting applications via project with

their introducing goals and demands and vice versa 27

3.21 Modeling building block Project-introduces-changes-retires-

Affectable (cf. [BMS10a]) . 28

3.22 Relator hierarchy Effect, Introduction, Change and Retire-

ment (cf. [BMS10a]) . 29

X

List of Figures

3.23 Temporal project . 30

3.24 projectA�ectable� and �lifecycled� applied to BusinessApplication 30

3.25 Modeling building blockOrganistionalUnit-hosts-Operational-

BusinessApplication . 31

3.26 I-Pattern I-67 (cf. [se10b]) � Architectural Solution Confor-

mance . 32

3.27 Building block Standard-Standardizable 33

3.28 Modeling building block Standardizable-NonStandardized-Stan-

dardized-Standard . 35

3.29 Modeling building block Standardizable-NonStandardized-Stan-

dardized-Standard applied on I-Pattern I-67 [se10b] 36

3.30 Modeling building block BusinessApplication-uses-Technology

(cf. [se10a]) . 36

3.31 Business application standardization extended by uses 37

3.32 Modeling building block Goal-Question-Metric (cf. [BMS10a]) . 38

3.33 I-Pattern I-86 of the EAM Pattern Catalog [se10b] 39

3.34 Modeling building block Goal-Question-Metric utilized to mea-

sure protection requirements . 40

3.35 Modeling building block Responsibilities 42

3.36 Modeling building block Accessibility 43

3.37 Relator hierarchy of Access, Read and Write 44

3.38 Stereotype �accessible� applied to BusinessApplication 44

3.39 Modeling building block Accessibility extended by responsibilities 45

3.40 Relator hierarchy Access, Read, Write, and Responsibility . . 45

3.41 Schematic illustration of validity for relationships 47

4.1 ADOxx � Meta Model Management facility of the Product Workspace 53

4.2 ADOxx � Modeling Workspace . 54

4.3 ADOxx � Notebook . 54

4.4 ADOxx � Edit end point de�nition dialog of relation class Ordering 55

4.5 ADOxx � Notebook restrictions due to end point cardinalities 56

4.6 ADOxx � Cardinality check . 57

4.7 ADOxx � relation_cardinalities de�nition for Ordering . . . 57

4.8 ADOxx � Cardinality mismatch detected by the cardinality checker . 58

4.9 ADOxx � Hierarchy modeling Product Workspace 58

4.10 ADOxx � Hierarchy modeling Modeling Workspace 59

4.11 ADOxx � Repository with time �lter 60

4.12 ADOxx � Time �lter relevant end point 60

XI

List of Figures

4.13 ADOxx � Introduction of Organizational Unit in the information

model . 61

4.14 ADOxx � Modeling Workspace with time �lter and instance of I-

Pattern I-24 . 62

4.15 ADOxx � Valid object model of June 2010 62

4.16 ADOxx � Valid object model of July 2010 62

4.17 ADOxx � Change history of an end point 63

4.18 ADOxx � Multiple abstraction-levels by model types 66

4.19 ADOxx � Business application life-cycle subtypes 67

4.20 ADOxx � Dialog of an end point for assigning target classes 68

4.21 ADOxx � User Catalog . 72

4.22 ADOxx � Access rights editing dialog 72

4.23 ADOxx � Access right types for object models 73

4.24 ADOxx � Available kinds of queries 74

4.25 ADOxx � Exemplary query in the analysis component 74

4.26 ADOxx � Editing �eld of automatically genrated JavaScript code . . 75

4.27 Tricia � Architectural overview of a typical application in accordance

with [BMN10] . 79

4.28 Tricia � Meta-meta-model of the data modeling framework (cf. [BMN10]) 80

4.29 Tricia � UML-based editor . 82

4.30 EMF � An ecore model and its sources (cf. [Bu09b]) 97

4.31 EMF � EMF.Edit code generation . 99

4.32 EMF � Ecore components and their relationships (cf. [Ec10b]) . . . 100

4.33 EMF � Core model with constraints and invariants 103

4.34 EMF � BusinessProcess core model 105

4.35 EMF � BusinessProcess core model in tree view 105

4.36 EMF � Temporal association pattern applied in I-Pattern I-24 107

4.37 EMF � Variant modeling by multiple model instances 108

4.38 EMF � Life-cycle phasaes of a business application 111

4.39 EMF � Modeling building block Projects-affects-Affectable . 113

4.40 EMF � Modeling building block Standard-Standardizable 114

XII

List of Tables

3.1 Scenarios for EA information modeling 10

4.1 ADOxx � Evaluation of hierarchy modeling 60

4.2 ADOxx � Evaluation of temporal and variant modeling 63

4.3 ADOxx � Evaluation of non-rigid typing and principle of identity . . 65

4.4 ADOxx � Evaluation of multi-level modeling 66

4.5 ADOxx � Evaluation of life-cycles . 67

4.6 ADOxx � Evaluation of projects . 69

4.7 ADOxx � Evaluation of standardization 70

4.8 ADOxx � Evaluation of goals . 71

4.9 ADOxx � Evaluation of role-based access control 72

4.10 ADOxx � Evaluation of responsibilities 73

4.11 ADOxx � Evaluation of queries . 76

4.12 ADOxx � Evaluation of information model changes 77

4.13 ADOxx � Summary of evaluation . 77

4.14 Tricia � Evaluation of hierarchy modeling 83

4.15 Tricia � Evaluation of temporal and variant modeling 85

4.16 Tricia � Evaluation of non-rigid typing and principle of identity . . . 85

4.17 Tricia � Evaluation of multi-level modeling 86

4.18 Tricia � Evaluation of life-cycle . 87

4.19 Tricia � Evaluation of projects . 88

4.20 Tricia � Evaluation of standardization 89

4.21 Tricia � Evaluation of goals . 90

4.22 Tricia � Evaluation of projects . 91

4.23 Tricia � Evaluation of responsibilities 92

4.24 Tricia � Evaluation of queries . 93

4.25 Tricia � Evaluation of information model changes 94

4.26 Tricia � Summary of evaluation . 94

4.27 EMF � Evaluation of hierarchy modeling 106

4.28 EMF � Evaluation of temporal and variant modeling 108

4.29 EMF � Evaluation of non-rigid typing and principle of identity . . . 110

4.30 EMF � Evaluation of non-rigid typing and principle of identity . . . 111

XIII

List of Tables

4.31 EMF � Evaluation of life-cycle . 112

4.32 EMF � Evaluation of projects . 114

4.33 EMF � Evaluation of standardization 115

4.34 EMF � Evaluation of goals . 116

4.35 ADOxx � Evaluation of role-based access control 117

4.36 ADOxx � Evaluation of responsibilities 118

4.37 ADOxx � Evaluation of queries . 120

4.38 ADOxx � Evaluation of information model changes 121

4.39 EMF � Summary of evaluation . 122

XIV

1 Introduction

Today's enterprises increasingly have to cope with challenging environmental condi-

tions. On the one hand the enterprises have to adapt to a changing market envi-

ronment, e.g. demand and buying behavior of customers or competition with other

companies. On the other hand technological innovations, enabling new business op-

portunities for strengthening competitiveness, have to be taken into account. All of

these factors inevitably call for an increased alignment of business and information

technology (IT). At this point the management of the enterprise architecture (EA)

comes into play, steadily gaining importance for companies (cf. [Bu08a, BMS10a,

BMS10b]).

In accordance with Matthes et al. in [Ma09], enterprise architecture management

(EAM) seeks to control and enhance the existing and planned IT support for an

organization, doing this in a continuous and iterative process. EAM addresses the

challenges of organizational change by providing a holistic view on the enterprise,

considering IT and business-related aspects as well as environmental factors. The

documentation of the EA plays a major role thereby, since the holistic description

of the management subject is a prerequisite to any management endeavor. In or-

der to build such a description, enterprises have to gather the needed information

and to devise an information model1, which de�nes and structures the necessary

information. Since companies normally di�er in their organization, in their percep-

tion of what EAM is, and in the goals they are pursuing thereby, procedures for

gathering information as well as the underlying information models are regarded

as organization-speci�c artifacts that have to be designed to �t the corresponding

organizational environment.

The work presented in this thesis is based on the foundations of the EAM Pattern

Catalog2 (cf. [se10b]), which serves as source of investigation and as means of valida-

1Information models may also be referred to as meta-models (cf. [Ai08]) or conceptual models (cf.
[Gu05]), but in order to avoid ambiguity and confusing, it is abstained from using other therms
than information model in the remainder of the thesis

2Therefore, this work is based on the research on System Cartography at the chair for Software
Engineering for Business Information Systems (sebis) of Prof. Dr. Florian Matthes at the
Technische Universität München.

1

1 Introduction

tion of the �ndings. The motivation and goals of the thesis are described in Section

1.1 followed by an overview of its structure in Section 1.2.

1.1 Motivation

As alluded to above, EAM is a topic that increasingly attracts the attention of to-

day's enterprises, since it tackles the important challenge of aligning IT and business.

Thereby, EAM is strongly connected to the documentation and analysis of the EA

(cf. [Ai08, BMS10b]), so as to be able to provide a holistic view on the enterprise, for

which reason the conceptualization of the enterprise makes up one of its major tasks.

Albeit information models being organization-speci�c, it is to assume that di�erent

information models may be founded in a common meta-model or to put it into other

terms may be documented by the same modeling concepts. Staying with this idea,

requirements that have to be ful�lled by the modeling concepts provided for infor-

mation modeling have to be elaborated. Object-oriented languages, such as the most

notorious example, the UML [OM10], are used to provide di�erent state-of-the-art

information models (cf. [GWS04, Gu05, Bu07, se10b, BMS10a, BMS10b]). Due to

the almost arbitrary complexity of information models, it is furthermore to investi-

gate whether pure object-oriented approaches are appropriate or more sophisticated

concepts of conceptualization are needed.

Due to the presumably convergence of required EA information modeling concepts,

the thesis sets the goal of eliciting requirements for EA information modeling. The

subsequent goal is to evaluate a set of tools providing generic repository services for

enterprise models based on the beforehand elicited requirements.

1.2 Structure of the thesis

The conduction of the thesis started with a comprehensive analysis of the EAM

Pattern Catalog [se10b], related literature of EAM as well as literature concerned

with conceptual modeling based on well-founded ontologies. Theses scienti�c foun-

dations for EA information modeling and the applied modeling concepts are brie�y

summarized in Chapter 2.

The elicitation of requirements for EA information modeling takes place in Chapter 3,

which resulted in a set of representative scenarios re�ecting requirements for EA

information modeling rather single requirements. The scenarios are either directly

derived from the EAM Pattern Catalog [se10b] or stem from related literature and

2

1 Introduction

are as far as possible validated by experiences of the EAM Pattern Catalog [se10b].

For each scenario, a set of questions is devised that summarizes the requirements

thereof and serves the purpose of a �ngerpost for evaluating the scenario.

The scenarios elaborated in Chapter 3 compose the foundation for evaluating a set of

tools providing repository services in Chapter 4. Each tool is evaluated against each

scenario at the same criteria derived from the overall composition of the scenarios.

Subsequent to the evaluation of repository services, the �ndings of the thesis are crit-

ically re�ected giving an outlook on research questions that have to be investigated

more in-depth or appeared due to �ndings of the thesis.

3

2 Scienti�c foundations for EA information

modeling

The EAM Pattern Catalog [se10b] serves as foundation for eliciting requirements for

EA information modeling. Besides this knowledge base, overall experiences of the

�eld of EAM in general and EAM information modeling in particular (cf. [Ma09])

exert in�uence on the conduction of this thesis. Furthermore, the perception of EA

information modeling is driven by the notion of an ontological well-founded concep-

tualization of information models (cf. [Gu05]), since such a notion is regarded closer

to the perception of a user without technical background, as presumably encountered

while establishing an organization-speci�c EAM function. The scienti�c foundations

resorted to over the thesis as well as global assumptions made therein are devised

throughout this section.

Irrespective of the steadily increasing importance of EAM, there is no de�nition of

EAM that achieved overall acceptance in research and practice. In the remainder

of this thesis, the de�nition devised by Matthes et al. in [Ma09] is resorted to as

follows:

Enterprise architecture management is a continuous and iterative process

controlling and improving the existing and planned IT support for an

organization. The process not only considers the information technology

(IT) of the enterprise, also business processes, business goals, strategies

etc. are considered in order to build a holistic and integrated view on the

enterprise.

Goal is a common vision regarding the status quo of business and IT as

well as of opportunities and problems arising from theses �elds, used as

a basis for a continually aligned steering of IT and business.

Out of this de�nition, Matthes et al. emphasise in [Ma09] the major role of EAM

to plan and manage the evolution of the EA, targeting an enhanced alignment of

IT and business. Thereby, alignment of IT and business means to adjust the IT

support to the business strategy, but as well to incorporate emerging innovative IT

for enabling new business strategies and goals.

4

2 Scienti�c foundations for EA information modeling

2.1 EAM Pattern Catalog

The EAM Pattern Catalog as presented among others in [Bu08a, Ma09, se10b] is

a collection of best practice EAM patterns, that can be utilized to introduce an

EAM function tailored to the organization-speci�c problems and context. The EAM

Pattern Catalog can be applied to a new EAM endeavor from scratch, as well as

the enhancement of an already existing EAM function. The EAM Pattern Cata-

log provides guidance for systematically establishing an organization-speci�c EAM

function and thus provides an holistic view on the enterprise. For that purpose, the

collection of proven best-practice patterns is subdivided into the three types method-

ology, viewpoint and information model patterns, which all may be adapted to the

organizational context and the speci�c problem. Figure 2.1 provides an overview of

the di�erent EAM patterns and their relationships.

Figure 2.1: UML class diagram describing the relationship between Concerns (cf.
[Bu08a])

� Concerns represent the pain points of a company, that have to be identi�ed

before starting an EAM endeavor.

� Methodology Patterns (M-Pattern) are selected subject to the beforehand iden-

ti�ed concerns, helping to construct the set of necessary tasks to address the

speci�c problems of a company.

� Viewpoint Patterns (V-Pattern) provide ways of visualizing information that

support the chosen tasks of the M-Patterns.

� Information model Patterns (I-Pattern) provide the information needed by vi-

sualizations of V-Patterns. For that, an I-Pattern contains an information

model fragment de�ning and structuring this information.

For the conduction of this thesis, particularly I-Patterns are put under investigation

in order to derive requirements for EA information modeling and to validate elicited

requirements by example.

5

2 Scienti�c foundations for EA information modeling

2.2 EA management layers and cross functions

In accordance to Matthes et al. in [Ma09], there is a basic structure behind an EA

information model giving an abstract overview of the general aspects that have to

be taken into account. Matthes et al. re�ne in [Ma09] these general aspects into

di�erent architectural layers and cross functions capturing the elementary domains

of an EA information model, as shown in Figure 2.2.

Figure 2.2: Layers and cross-cutting aspects of an EA (cf. [se10a])

The architectural layers of Figure 2.2 mirror the composition of a company's EA

from business and organization related aspects, comprising logical concept that are

independent of their technical realizaiton, over application and information related

aspect, that describe the realization of the business related concepts, to aspects di-

rectly concerned with the IT infrastructure. The architectural layers are respectively

extended by an abstraction layer, providing a customer-oriented perspective on the

corresponding architecture layer, that thus suppresses details of the actual realization

to focus on the provided functionality (cf. [se10a]). Cross functions are introduced

to complement the layered structure with concepts, which do not exclusively belong

to any of the layers and so are not directly part of the static EA, but may exert

in�uence on any elements organized therein (cf. [Ma09]).

6

2 Scienti�c foundations for EA information modeling

2.3 Ontological foundations for structural conceptual

models

According to Guizzardi in [Gu07], the main success factor of using a modeling lan-

guage lies in its ability to provide a set of primitive types that can directly express

relevant domain concepts comprising what he calls a domain conceptualization. An

abstraction of a certain state of a�airs in reality articulated by elements constituting

the domain conceptualization is in virtue of Guizzardi in [Gu07] a domain abstrac-

tion. Furthermore, he highlights the need of a language for representing domain

conceptualizations and domain abstractions in a concise, complete and unambiguous

way. Thereby, domain appropriateness is a measure of the truthfulness of a language

to a given domain in reality and the comprehensibility states the conceptual clarity

of the speci�cations produced in a language.

Figure 2.3: Typology of substantial universals, according to Guizzardi in [Gu05]

Guizzardi develops in [Gu05] a foundational ontology, named Uni�ed Foundational

Ontology describing a typology of universals that he uses in turn for re-designing the

proportion of the UML [OM10] dealing with classi�ers for the purpose of conceptual

modeling and ontological representation. In order to achieve a concise, clear and

unambiguous modeling throughout the scenarios in the succeeding sections, it is

resorted to this foundational ontology for conceptual modeling. In [Gu05], the author

introduces two ontological categories for substantial universals, namely sortal and

mixin universals, as illustrated in the typology of substantial universals in Figure

7

2 Scienti�c foundations for EA information modeling

2.3. Whereas a mixin universal only states whether a general term applies to a

particular, a sortal universal additionally supplies a principle of identity enabling

to decide upon the equality of two particulars. In terms of Guizzardi (cf. [GWS04,

Gu07]) universals and particulars are roughly the ontological counterpart to classi�ers

and object instances in object-oriented modeling. He recommends a lightweight

stereotype approach using the extension mechanism of UML to specialize modeling

elements.

In line with Guizzardi in [GWS04, Gu07], sortal universals describe types that supply

a principle of identity, whereas mixin universals constitute dispersive types that cover

entities with di�erent principles of identity. According to Guizzardi in [Gu05], there

has to be always exactly one ultimate sortal inherited by each sortal universal, that

supplies the principle of identity. Hence, if a sortal inherits from more than one other

sortal, there has to be an ultimate sortal, which all of these inherited sortals may be

traced back to. Slightly deviating from Guizzardi in [Gu05], rigid sortal universals

are subsequently not annotated by an UML stereotype (cf. [OM10]), since kinds and

subkinds may be compared to the native UML [OM10] concepts class and subclass.

Thus, a kind of compatibility to pure UML information models is achieved, since

kinds and subkinds are utilized, if not otherwise stated.

All types deviating from rigid sortal universals have to be annotated with a stereo-

type. Thereby, the utilization of stereotypes deviates again from Guizzardi's propos-

als and so the stereotype �mixin� denotes categories instead ofmixins in conformance

with Guizzardi's notion, since mixins in Guizzardi's notion are not utilized in the

following and mixin is regarded as the more appropriate name for the most common

mixin universal subtype. The further types of the typology of substantial universals

utilized throughout the thesis are introduced later on by example in an appropriate

context.

8

3 Scenarios for EA information modeling

The elicitation of requirements for EA information modeling primarily serves the

purpose of covering the modeling issues from the point of view of the enterprise

architect who takes the role of an information model designer or even the user. Hence,

technical requirements as derivable for each modeling issue are not the focal point

in the following, but come into play when evaluating by which technical concepts

the repository services realize the elicited modeling requirements. Connected thereto

is the request of re�ecting the �true� ontological nature of the used types and their

relationships in order to ensure clarity of the information model. The introduced

concepts that are not provided by state-of-the-art object-oriented modeling languages

by default pursue the goal of creating a domain appropriate and comprehensible

information model.

In order to address the requirements, repository services are supposed to provide

facilities for creating, maintaining and re�ning the information model, as well as

for managing and storing corresponding information about the speci�c EA. Besides

creating, updating and deleting of speci�c information, the management thereof in-

cludes providing access to repository information by queries or similar functionalities,

as well. In doing so, the requirements elicited in the following have to be ful�lled by

the repository services.

Instead of single requirements, a set of scenarios is devised in order to re�ect the

requirements for EA information modeling, that are based on current, related litera-

ture and particularly on the EAM Pattern Catalog (cf. [se10b]). The patterns of the

EAM Pattern Catalog, constituting best-practices that have stood the test at various

practitioners, make up the basis for deriving relevant scenarios. The selection of the

analyzed patterns has taken place in an iterative investigation process, so as to incor-

porate all insights gained throughout the elicitation of requirements. Hence, on the

one hand scenarios are directly derived from the EAM Pattern Catalog and on the

other hand stem from further investigation in the �eld of EA information modeling,

backed and validated by examples of the EAM Pattern Catalog, as far as possible.

The devised scenarios are, where possible, complemented by illustrative information

models, re�ecting a typical situation, in which the requirements of a scenario apply.

9

3 Scenarios for EA information modeling

Such typical situations are directly or indirectly derived from patterns of the EAM

Pattern Catalog, so resorting to a well-founded basis of experiences therefor. The in-

formation models are realized utilizing the UML3 [OM10] extended by a lightweight

stereotype approach, as outlined in Section 2.3.

Scenario Relevant I-Patterns

General architecture aspects

Hierarchy modeling I-12, I-18, I-30, I-84, I-85

Temporal and variant modeling I-24, I-32, I-33, I-40, I-44, I-93

Non-rigid typing and concept of identity I-26

Multi-level modeling I-26, I-66, I-69

Cross-cutting aspects

Lifecycle I-26, I-44, I-89

Project a�ects I-33, I-35, I-36, I-38, I-39, I-44, I-

57, I-70, I-89, I-94

Standardization I-6, I-23, I-41, I-67

Goals I-59, I-86, I-87

Responsibilities -

Service aspects

Role-based access control -

Queries -

Information model changes -

Table 3.1: Scenarios for EA information modeling

Throughout the requirements elicitation the scenarios in Table 3.1 were identi�ed.

These scenarios are roughly subdivided into general architecture aspects, cross-cutting

aspects and service aspects. In doing so, general architecture aspects make up im-

portant aspects of EA information modeling that particularly highlight the demand

for further concepts than those of the UML [OM10]. Cross-cutting aspects deal

with speci�c issues that may in�uence other concepts on di�erent layers of the EA

(cf. Section 2.2). Service aspects constitute functionalities that may be regarded

mandatory for repository tools.

The results of the analysis contribute to the Building Blocks for Enterprise Architec-

ture Management Solutions (BEAMS) as devised in [se10a], since relevant aspects for

3The utilization of UML as meta-language does not mean that UML is the most appropriate one
for EA information modeling. Nevertheless, UML is commonly used and understood, as well as
a fairly convenient language for describing objects-oriented models of any kind (cf. [BMS10b]).

10

3 Scenarios for EA information modeling

the creation of re-usable information model building blocks (IBB) are investigated

and coherent building blocks are derived thereby.

3.1 General architecture aspects

Whether dealing with hierarchies, temporality or one of the other aspects within

this section, general architecture aspects are needed to achieve a concise and clear

description of the EA information model. These aspects address architecture con-

cepts needed on the one hand to realize the basics of the EA in di�erent subject

areas, which would cause reinventing the wheel if not available. On the other hand,

they are requisite for appropriately realizing cross-cutting aspects in the succeeding

Section 3.2.

3.1.1 Hierarchy modeling

Hierarchical concepts are pervasive throughout organizational structures, e.g. struc-

tures of authority to decide, as well as the composition of business-relevant objects,

such as organizational units, business processes, component-based applications and

so forth. In the context of EA modeling, this means to deal with relationships of sub-

ordination and di�erent kinds of part-whole relationships. Extending hierarchies to

a concept of organizing and structuring elements, further relationships depending on

the underlying structure, such as linear order consisting of predecessors and succes-

sors, come into play. Thereby, several challenges occur which are not covered by pure

UML [OM10] necessitating the utilization of further concepts, such as constraints in

the Object Constraint Language (OCL) [OM06b].

Figure 3.1: Object-oriented model of a hierarchy

11

3 Scenarios for EA information modeling

Figure 3.1 shows an excerpt of the I-Pattern I-12 of the EAM Pattern Catalog [se10b]

illustrating a typical hierarchical concept of a business process. This pure UML-based

model does not ensure the subordinating part-whole relationship and its transitive

closure to be acyclic. Furthermore, it is assumed that the ordering relationship

is not independent of the hierarchical structure, since a business process of a lower

hierarchy-level cannot be contained in the ordering of a higher hierarchy-level. Using

OCL [OM06b] can solve abovementioned problems, but also impairs the readability

of the model, as shown in Figure 3.2.

Figure 3.2: Hierarchy extended by constraints

The part-whole, respectively the parent-child relationship is annotated with a con-

straint {acyclic} in Figure 3.2 in order to ensure that no business process can be

superordinate to its own superordinate business processes. This constraint can also

be expressed using the OCL [OM06b], but would in this case require a very complex

recursively de�ned condition, unnecessarily distracting from the example. Under the

condition of an acyclic hierarchy, the second constraint, formulated in OCL, intro-

duces two invariants to check whether the predecessor or successor process is either

null or belongs to the same superordinate business process.

Albeit OCL [OM06b] is expressive enough for the little example, Guizzardi devises

in [Gu06] a foundational ontology for conceptual modeling of part-whole relation-

ships. He does not directly address problems of hierarchy modeling, but ones closely

connected thereto. To support conceptual modelers, he de�nes a typology of four

12

3 Scenarios for EA information modeling

di�erent sorts of part-whole relationships and investigates which combinations of

them are transitive. In contrast to specifying relationships by adding constraints in

the OCL [OM06b], Guizzardi proposes an ontologically founded theory of di�erent

types of part-whole relationships considering inherent properties thereof, which can

directly be utilized for creating the information model.

Several aspects may be relevant for hierarchies that are summarized in the following

questions:

� How can (self-) relationships be annotated as being hierarchic, i.e. acyclic,

one-to-many?

� How can sub-elements of a hierarchy be ordered, i.e. in a linear order?

� Can the validity of other relationships for lower or higher hierarchy levels be

de�ned?

3.1.2 Temporal and variant modeling

Committed to the goal of documenting and analyzing both the currently implemented

and the target EA, as well as planned intermediate evolutions, temporal aspects in

the models are relevant. Staying with this idea, the evolution of the EA is supposed

to be managed by the EAM function. Furthermore it is necessary to plan several

states or variants for one point in future which may be decided upon later. That

allows to support the decision making process with appropriate models and to re�ect

management decisions taken at an appropriate point in future, as well as a validation

whether the plans pursue the strategic goals of the enterprise.

Besides the perspective of prospective states, the traceability backwards using his-

toric data makes up another temporal aspect. This, for example, means that the

evolution of plans over the time is made transparent and that the decision making

may be reassessed by comparing documented alternatives and their rationales. This

goal can be achieved by additionally modeling the time when a plan or a decision

was made, respectively.

Conforming to Buckl et al. in [Bu09a] requirements for temporal modeling of the

EA and its evolution may be deduced:

� Facilitating of target landscape planning by intermediate landscape plans in

order to support the landscape evolution

� Traceability of management decisions by the documentation of historic data

and rationales

13

3 Scenarios for EA information modeling

� Support of di�erent variants for a certain point in time

� Support of the life-cycle of architecture elements and their various relationships

depending on the life-cycle phase

Especially the last point is not only concerned with temporal and variant modeling,

but relates to additional modeling aspects, the non-rigidity of types and the life-cycle

modeling of architecture elements, that exert in�uence on several other concepts.

In line with Buckl et al. in [BMS10a] life-cycle modeling may be alluded to as

cross-cutting aspect. These concepts are treated in a separate section due to their

importance along with the management of EAs.

In order to model di�erent states of an architecture element, it becomes necessary

to model the period of time in which these states and versions are valid. To put

it into other terms, properties and associations are supposed to be tracked in how

they have changed or are expected to change by assigning a period of validity. For

exemplifying the problem we regard the I-Pattern I-24 of the EAM Pattern Catalog

[se10b] as shown in Figure 3.3, illustrating which business applications are hosted by

which organizational unit.

Figure 3.3: I-Pattern I-24 � OrganizationalUnit-hosts-BusinessApplication

Analyzing the contained association for a certain point in time reveals that a speci�c

business application is hosted by exactly one organizational unit. But extending

the considered point in time to a period also a�ects the understanding of the hosts-

relationship, since over the time it may be possible that a speci�c business application

is hosted by di�erent organizational units. In line with Carlson et al. in [CEF99], this

problem may be addressed by the temporal association pattern. Thereby, the hosts-

relationship is converted into the value class ApplicationHost augmented with

two additional properties specifying the start- and end-time of validity, as depicted

in Figure 3.4. This additional class is necessary, since organizational units are not

only associated with a single business application and so a period of time stating

their validity may not consistently re�ect the validity a speci�c hosts-relationship.

The problem of documenting passed through changes and envisioned ones, is solved

thereby, but for the cost of introducing additional classes, which leads to further

problems, such as lost clarity of the model. In particular, the restriction of the

14

3 Scenarios for EA information modeling

multiplicities that a business application is only hosted by one organizational unit

at the same time is instantly not ensured, necessitating the distinction between a

long-term, i.e. change-aware, observation and a single point in time. This restriction

may be ensured by adding a constraint, such as the one realized in the OCL [OM06b]

in Figure 3.4.

Figure 3.4: I-Pattern I-24 extended by the temporal association pattern

To address the loss of clarity throughout temporal modeling, Buckl et al. in [Bu09a]

recommend in line with Carlson et al. in [CEF99] the utilization of an UML stereo-

type (cf. [OM10]) �temporal� for realizing the temporal property pattern that gener-

ally speaking expresses the same model as in Figure 3.4, even considering restrictions

of multiplicities. The stereotype adds a period of validity to the hosts-relationship

that has not to be explicitly stated by attributes and retains multiplicity dependent

restrictions without introducing additional classes or constraints to the information

model. The utilization of the stereotype combines the advantages of the original and

the extended information model fragment. Thus, the clarity of the original model

fragment is preserved and the expressiveness is extended by temporality, in doing

so the stereotype �temporal� enables to model the true ontological nature of the

hosts-relationship.

Figure 3.5: Temporal association structure applied on I-Pattern I-24 [se10b]

In Figure 3.5, the temporal association pattern stereotype structure is applied on

the I-Pattern I-24 (cf. Figure 3.3) achieving the tracking of historic states and

prospective ones, but traceability of changes asking for bitemporality and rationales

is not ensured yet. Bitemporality calls for the capability of statements about states

15

3 Scenarios for EA information modeling

and prospective changes of the EA at a point of view in the past, e.g. the current

state is supposed to be compared to the assumptions on this present state of two

weeks ago and these of a month ago. Therefore, a second dimension of time has to

be considered, additionally modeling the time when certain plans were valid or have

changed, respectively.

The diagram in Figure 3.6 exempli�es the three dimensions to deal with for temporal,

bitemporal and variant modeling and thereby clears the distinctions between them.

Issues of temporal modeling, concerning changes of the EA over the time, are ascribed

to the x-axis of the diagram, realized in the examples by properties describing the

period of validity, namely validFrom and validTo. The y-axis makes up the

second dimension needed for extending to bitemporality, showing the time at which

the valid historic, current or planned EA is supposed to be regarded. This dimension

is realized by simply adding a property de�ning the point in time, at which the model

fragment was instantiated, in the succeeding model in Figure 3.7. Finally, the z-axis

of the diagram depicts the di�erent variants that may exist at a certain point in

time, which is not addressed by the model fragments in Figure 3.7 and Figure 3.8

yet.

Figure 3.6: Schematic illustration of bitemporal and variant modeling of the EA

The model fragment in Figure 3.7 extendsOrganizationalUnit-hosts-Business-

Application to bitemporality. That is realized by re�ning the mixin Temporal

to the mixin Bitemporal by adding an additional attribute de�ning the time of

instantiation. Thus, the second dimension of time is introduced to the model frag-

ment of Figure 3.4, but again with the important drawback of losing clarity due to

the complex model structure. Since the resulting structure can be regarded as a

16

3 Scenarios for EA information modeling

recurring model fragment again, realizing bitemporality independently of a speci�c

application, an adapted UML stereotype (cf. [OM10]) �bitemporal� is proposed,

as shown in Figure 3.8. In order to complement the traceability by respective ratio-

nales, the mixin Bitemporal might be related to a type Rationale, documenting

such reasons.

Figure 3.7: Bitemporal modeling

Albeit bitemporal modeling enables the traceability of changes, the modeling of

di�erent versions is not enabled yet, since irrespectively of the traceability there

cannot be multiple plans for a certain point in future. As projects are the major

means of EA evolution, the existence of distinct project portfolios for a certain point

in time may realize variant modeling, which is addressed by the cross-cutting aspect

project in Section 3.2.2.

Figure 3.8: Bitemporal modeling by UML stereotype

Moreover, the life-cycle of a business application has to be taken into account, enforc-

ing the consideration of retired business applications. Currently, the retirement of a

business application cannot be expressed by the devised model without an object-

oriented workaround, e.g. a subtype of OrganisationalUnit used only to state

that a business application is not hosted. Alternatively, the multiplicity for orga-

nizational units might be softened for deriving the retirement by the non-existence

of a valid host-relationship after a certain point in time. Both mentioned ways are

17

3 Scenarios for EA information modeling

suboptimal solutions neglecting the true nature of the relationship or the participat-

ing types, causing further problems. Hence, the concise modeling of the true nature

of lifecycles considering changing relationships of a type is inevitable, as addressed

in-depth in Section 3.2.1.

Requirements of temporality in information modeling may be addressed by the fol-

lowing questions:

� How can modeling elements be de�ned as time-dependent, i.e. having a period

of validity, or as time-independent?

� What modeling elements can be de�ned as time-dependent, i.e. properties or

relationships?

� Which means of introducing bitemporality are provided?

� How can modeling elements be denoted as an intermediate or �nal state thereof?

� How can di�erent variants of an element be speci�ed?

3.1.3 Non-rigid typing and concept of identity

The EA is subject to a process of continuous change and enhancement (cf. [Bu07,

Ma09]). Broken down to single elements of an EA, this implies the change of re-

lationships between elements, of properties of elements or even the entire type of

architecture elements, in order to consistently model the change process. Thereby,

the distinction between ontological types supplying a principle of identity and not

is a prerequisite of coherently modeling non-rigid types, since a type change has not

to imply changing the identity of concerned elements. Non-rigid means that types

de�ned in the information model can be made changeable or at least extensible, that

is to say additionally to assign new properties and references to a type, even the

nature of an entity's instance, embodying its type is supposed to be changeable.

Throughout the conceptual modeling of EAs, instances of di�erent classi�ers having

the same identity in an ontological sense may be dealt with. For instance, this

issue occurs while modeling the di�erent steps that have to be passed through when

transforming a demand into a project proposal, in turn into an executable project

and �nally in a completed project, retained for documentation purposes. During the

entire transition process the demand, the project proposal, the executable project and

the completed project can be traced back to an embracing project without changing

the identity. This may be proven by a simple example, in which an already �nished

project is regarded. Whereas during the execution di�erent stages are explicitly

18

3 Scenarios for EA information modeling

named and sometimes cannot directly be ascribed to its actual identity. Afterwards,

the e�ects of a project are ascribed to a project as a whole, irrespective of the speci�c

phase in which the e�ect has taken place and whether this phases contains the word

�project� in its name, exemplifying that the di�erent phases bear the same principle

of identity.

Similar issues may be met with by employee management. Assuming that primarily

every member of a company is an employee, it is necessary to de�ne more precisely

the actual position within the organization. For example, an employee can be a

member of a speci�c department, but also of one or more projects not linked to this

department. The same employee is concerned, whether the department member or

project member role is regarded, but in each role with speci�c relationships to other

business entities.

As outlined in Section 2.3, Guizzardi et al. devises in [GWS04] an ontologically well-

founded theory for conceptual modeling to address the abovementioned problems of

individuation and identity supply. Whereas mixin universals only state whether a

general term applies to a particular, sortal universals additionally supply a princi-

ple of identity enabling to decide upon the equality of two particulars. Figure 2.3

exempli�es the usage of ontological types supplying a principle of identity and not.

In contrast to the introduction in Section 3.9, sortal universals are annotated by

�sortal� throughout this section of non-rigid types for emphasizing the distinction

to other ontological types.

Employee and BusinessApplication in Figure 3.9 are both sortal universals in-

heriting from the mixin universal Element. In an organizational context an em-

ployee and a business application have some common properties, i.e. a name, but

di�erent principles of identity. Owing to this fact, Element cannot be the iden-

tity supplying classi�er and thus, it describes a mixin universal subsuming common

properties. Moreover, Employee is the ultimate sortal and thereby the only iden-

tity supplying sortal inherited by MaleEmployee and FemaleEmployee, otherwise

individuation might not be ascertained.

Continuing the aforementioned example of di�erent stages a project passes through,

it may be assumed that demands are primarily realized by a textual description.

Subsequently, it might be required to add further or more structured information,

as well as to de�ne relationships, such as assignments of responsible or involved

people during the further proceeding. Moreover, a demand may evolve to a concrete

project proposal, for which already documented information is not supposed to be

maintained a second time. After the project proposal is approved, the project is

19

3 Scenarios for EA information modeling

Figure 3.9: Sortals and Mixins

introduced and executed, until its completion. These explained stages of a project

might be regarded as its life-cycle, but at least as disjoint states that it consecutively

belongs to.

Guizzardi et al. addresses in [GWS04, Gu05] the problem by introducing a phased-

sortal that represents a non-rigid type describing a part of a partition of a sortal

in which all phased-sortals are mutually exclusive. In this sense, there cannot be a

phased-sortal without a supertyping sortal, which vice versa is subtyped into phased-

sortals constituting a complete, disjoint specialization set. The di�erent non-rigid

subtypes are annotated with the stereotype �phase�. Buckl et al. devise in [BMS10a]

the modeling building block Lifecycled resorting to the ontological type phased-

sortal, which is applied to the abovementioned example of the evolution of a project

in Figure 3.10.

Figure 3.10: Modeling building block Lifecycled applied on Project

Using phased-sortals does not allow to model roles, as described at the example of

employees, even since it is closely related to the modeling of phases. Roles also em-

20

3 Scenarios for EA information modeling

body a non-rigid type, but several roles can be hold simultaneously by an object.

Guizzardi et al. proposes in [GWS04, Gu05] another specialization of sortals, namely

roles denoted by the stereotype �role�. Figure 3.11 extends the employee hierarchy

of Figure 3.9 by specializing Employee to the role ProjectMember that relates

an Employee to a commitment in a Project as re�ected in the relationship mem-

berOf. This is also an important distinction between phased-sortals and roles, since

a role re�ects an external dependency that can be manifested by a relationship, such

as the membership in the example in Figure 3.11, but also by certain properties of a

type.

Figure 3.11: ProjectMembership as a role of an employee

The following questions subsume the requirements that have to be ful�lled for non-

rigid typing and the principle of identity:

� How can non-rigid types be speci�ed?

� Which non-rigid types can be speci�ed?

� How can the principle of identity be modeled?

� How can be distinguished between types supplying a principle of identity or

not?

3.1.4 Multi-level modeling

EA information models are enterprise speci�c design artifacts (cf. [BMS10b]) and

describe the domain of the speci�c EA of an enterprise. According to Atkinson and

Kühne in [AK07], the inherent classi�cation levels of a speci�c solution-independent

domain are often mismatched by the available levels of the used modeling mechanism,

since many of them are based on UML [OM10] that is rooted in a two level paradigm.

According to Atkinson and Kühne many approaches trying to address this level

mismatch are based on workarounds folding multiple domain classi�cation levels

into one modeling layer, i.e. the item-description pattern (cf. [AK07]) or also known

21

3 Scenarios for EA information modeling

as type-object pattern (cf. [YJ02]). An approach enabling the modeling in multiple

levels could avoid unnecessary complexity caused by such workarounds.

Figure 3.12: Type-object pattern (cf. [YJ02])

According to Yoder and Johnson in [YJ02], object-oriented design normally uses a

separate class, in the meaning of the UML [OM10], for each type of object requiring

changes of the information model when introducing new types. Therefore, Yoder and

Johnson propose in [YJ02] not to model each type as class, rather by descriptions

that have to be interpreted at run-time. Staying with this idea, Yoder and Johnson

elaborate in [YJ02] the type-object pattern, in order to de�ne subtypes of an entity

and corresponding objects at run-time, as depicted in Figure 3.12.

Figure 3.13: I-Pattern I-26 of the EAM Pattern Catalog [se10b]

In accordance with Yoder and Johnson in [YJ02], subtypes are simple instances of

Type de�ning the description for speci�c entities. Object in turn is instantiated

to the actual objects conforming to an instance of Type. Thereby the type-object

pattern folds two ontological levels into one modeling level. To retain the speci�city

of the type-object pattern, but to avoid unnecessary complexity and to convey the

true ontological nature of types in the information model, a multi-level modeling

approach, as presented in the following may be utilized.

The modeling of versions as shown in I-Pattern I-26 in Figure 3.13 can be regarded

as an application of the type-object-pattern, exemplifying this level mismatch by

modeling the versions of a business application as associated type. Assuming that

a speci�c version of a business application is always meant when dealing with the

IT support for business functions or processes, respectively, in the EA, a version is

22

3 Scenarios for EA information modeling

Figure 3.14: Multi-level modeling applied on business applications and their versions

Figure 3.15: Property pattern (cf. [YJ02])

nothing else than an ontological instance of a business application and constitutes

a speci�c release thereof. In this sense, the element BusinessApplication resides

on an ontologically higher level than the elements that use the ontological instances

or versions thereof, respectively. Applying multi-level modeling on the I-Patterns

of the EAM Pattern Catalog [se10b] withdraws the need to deal with the type of

business applications and the type of their versions within a single ontological level,

which entails a reduction of complexity by a uniform use. Figure 3.14 resolves the

mentioned level-mismatch of I-Pattern I-26.

Figure 3.16: Type-Square pattern (cf. [YJ02]

23

3 Scenarios for EA information modeling

According to Yoder and Johnson in [YJ02], the type-object pattern is often used in

combination with the property pattern, that is used to enable varying attributes for

instances of the same type, as illustrated in Figure 3.15. A combination of these

patterns constitutes the type-square pattern (cf. [YJ02]) for which the type-object

pattern is applied twice on Entity and Property of the property pattern, as shown

in Figure 3.16.

Figure 3.17: Mutli-level modeling applied on I-Pattern I-66 in [se10b]

I-Pattern I-66 in [se10b] is a prominent example for the application of the type-

square pattern. The I-Pattern I-66 describes which abstract technologies are used

by an architectural blueprint, which is in turn specialized to architectural solutions

using concrete technologies. In accordance with the EAM Pattern Catalog [se10b],

an architectural blueprint stands for a software architecture, i.e. three-tier- or pipe-

and-�lter-architecture, and an abstract technology is a class of technologies o�ering

similar, or even standardized functionalities, e.g. web server or database manage-

ment system (DBMS). Thereby, an architectural solution concretizes an architectural

blueprint by selecting concrete technologies for each abstract technology that has to

be speci�ed and thus describes a basic architecture for a business application. In this

context, a concrete technology represents a technical constituent of a business ap-

plication or architectural solution, respectively, specifying abstract technologies, e.g.

�Oracle 9i� is a speci�cation for �DBMS�. In an ontological sense, architectural solu-

tions and their associated technologies are instantiations of architectural blueprints

and their used abstract technologies, as depicted in Figure 3.17.

The following question has to be answered to analyze multi-level modeling capabili-

ties:

� How can multiple ontological levels of a domain be modeled?

24

3 Scenarios for EA information modeling

3.2 Cross-cutting aspects

In accordance with Buckl et al. in [BMS10a], cross-cutting aspects make up a couple

of concepts, which are not selectively assigned to a single aspect of EA management

(cf. Section 2.2), rather may in�uence various other concepts of EA information

modeling. Due to their in�uence throughout the EA, they are paid notable attention

to. In [BMS10a], Buckl et al. identify �ve cross-cutting aspects, namely projects,

life-cycle, standards and goals, as well as responsibilities.

3.2.1 Lifecycle

Life-cycles are already alluded to in Section 3.2.2 as a challenge of coherent model-

ing non-rigid types and the principle of identity, but the life-cycle also constitutes a

cross-cutting aspect of EA information modeling. Almost all architecture elements

may have a life-cycle that can reach from their introduction or development over an

operational period to their retirement. Illustrating that using a business application,

a business application may be in the life-cycle phases in planning, in development,

operational, and replaced, as described by the I-Pattern I-26 of the EAM Pattern

Catalog [se10b]. In each phase a particular business application may have distinct

relationships and qualities but is still the same business application. To address this

problem, the non-rigid type phased-sortal is resorted to (cf. Section 3.1.3) and the

modeling building block Lifecycled (cf. [BMS10a]) is applied to BusinessAppli-

cation, as depicted in Figure 3.18.

Figure 3.18: Modeling building block Lifecycled applied on business application
(cf. [BMS10a])

According to Buckl et al. in [BMS10a], each instance of a lifecycled type is sup-

posed to retain information of the time of transition between two phases. As well,

an ordering of the life-cycle phases or constraints, which de�nes possible transitions

25

3 Scenarios for EA information modeling

between life-cycle phases, is conceivable, but neglected in the aforementioned ex-

ample in Figure 3.18. The temporal information of transition may be added by

modeling the period of validity of a certain phase, but an ontologically meaning-

ful modeling of transition constraints is a more intricate task. As subsequently

elaborated in Section 3.2.2, projects are a central means of a�ecting architecture ele-

ments and therefore control the transition between two life-cycle phases. Therefore,

Buckl et al. decompose in [BMS10a, Bu09a] projects into tasks or work packages,

respectively, that transform architecture elements. Subsequently, Buckl et al. com-

pose in [BMS10a] the modeling building blocks Project-affects-Affectable

(cf. Figure 3.21 in Section 3.2.2) and Lifecycled (cf. Figure 3.18) to the modeling

building block Project-Lifecycle-Affectable. Figure 3.19 applies the model-

ing building block Project-Lifecycle-Affectable on BusinessApplication

for exemplifying the usage.

Figure 3.19: Modeling building block Project-Lifecycle-Affectable applied
on a Lifecycled BusinessApplication

The transition between states of an EA element is conducted by di�erent types

of work packages that make up a kind of rei�cation of the affects-relationship

of the modeling building block Project-affects-Affectable (cf. Figure 3.21).

The subtypes of work package are elaborated in conformance with the phases of a

business application. Thereby it is assumed, that a business application in �planning

phase� is transformed into the �in introduction phase� by an approval of the plans.

The transitions between the other phases can be regarded analogously, except for the

change of an operational business application, that is supposed to be an evolution

of the operational business application without replacing it, that otherwise might be

achieved by the combination of introduction and retirement. Thus, an ordering and

control of transitions between di�erent states of EA elements is implicitly achieved.

26

3 Scenarios for EA information modeling

The addressed issues of this section can be evaluated by the following questions:

� How can the life-cycle of an element be de�ned?

� How can the life-cycle stage of an element be changed?

� Can the time of transition be documented?

� Can the life-cycle phases be ordered or their transition restricted?

� How are relationships and properties adapted to the life-cycle stage?

3.2.2 Projects

Projects are important for steering the evolution of the EA. Projects result from

received demands or pursued goals and hence, the execution of a project can always

be ascribed to a particular rationale in order to achieve a particular goal. Goals and

their achievement form another cross-cutting aspect, dealt with in one of the subse-

quent sections. The cross-cutting aspect project, as depicted in following, primarily

describes the e�ects on other architecture elements. E�ects may be the introduc-

tion of new architectural elements, as well as changes and replacements thereof or

even the retirement of elements. In doing so, distinct project portfolios a�ecting

the EA, play the major role of de�ning di�erent variants of the future EA. In this

context, projects enriched with temporal information are the means to achieve the

requirements of temporal and variant modeling of Section 3.1.2 that remained open

yet.

Figure 3.20: Exempli�ed impact analysis, connecting applications via project with
their introducing goals and demands and vice versa

27

3 Scenarios for EA information modeling

Considering the diverse e�ects caused by a multitude of demands or pursued goals,

it is obvious that taking dependencies among projects into account is not a negligi-

ble challenge. Projects pursuing similar goals and the temporal progression of the

projects have to be synchronized, as well as mutually exclusive projects have to be

avoided. In order to achieve this, projects have to be comparable in their e�ects,

pursued goals and their temporal dimension, irrespective of starting the comparison

at the a�ected elements or vice versa at the pursued goals. The project's central role

for the EA evolution is illustrated in Figure 3.20, in which Project is the connector

between Goal and Demand, introducing an e�ect, and Application, as example

of an a�ected element.

The multitude of occurrences of the type Project in the EAM Pattern Catalog

[se10b] con�rms the fact of being a cross-cutting aspect. Project is contained in

several patterns a�ecting other architectural elements, such as business applications

(cf. I-Patterns I-33, I-35, I-36, I-39, I-57, I-89), technologies (cf. I-Pattern I-38)

or services (cf. I-Patterns I-44, I-70), thus validating the commonality of e�ecting

architectural elements.

Figure 3.21: Modeling building block Project-introduces-changes-retires-

Affectable (cf. [BMS10a])

Buckl et al. propose in [BMS10a] to generalize the a�ected element types to the

mixin Affectable in order to address the speci�city of projects, capable of af-

fecting a plurality of EA elements. Furthermore, Buckl et al. re�ne the modeling

building block Project-affects-Affectable to express that actually specializa-

tions of affects, namely introduces, changes, retires, are utilized, having

di�erent multiplicities, as well. In order to pay the deserved attention to this rela-

tionship Buckl et al. recommend resorting to the distinction of formal and material

relationships elaborated by Guizzardi in [Gu06]. According to Guizzardi in [Gu06],

formal relationships are directly hold between entities without any further interven-

ing particular and are reducible to intrinsic qualities of the entities. Comparison

relationships are a prominent example for formal relationships. In contrast, material

28

3 Scenarios for EA information modeling

relationships are induced by a mediating entity called relator. Since almost all rela-

tionships dealt with throughout the scenarios are material ones, it is abstained from

annotating material relationships, rather only formal relationships are explicitly de-

noted. The a�ects-relationship and its specializations are all material relationships

and can be rei�ed by their corresponding relator types. Buckl et al. propose in

[BMS10a] a relator hierarchy consisting of the superclass Effect and the three spe-

cializations Introduction, Change and Retirement. The mentioned extensions

are shown in Figure 3.21 and Figure 3.22.

Figure 3.22: Relator hierarchy Effect, Introduction, Change and Retire-

ment (cf. [BMS10a])

The already repeatedly mentioned requirement of variant modeling constitutes a spe-

ci�c challenge in EA information modeling, since a plenty of aspects have to be taken

into account in order to achieve an ontologically coherent modeling thereof. This goal

can be achieved by composing the elicited aspects of bitemporal modeling, life-cycle

modeling and the transition among life-cycle phases, as well as projects as means of

EA evolution. The example OrganizationalUnit-hosts-BusinessApplication

in Figure 3.3 is supposed to be complemented with aspects elaborated in the corre-

sponding sections.

The following requirements subsume the aspects that have to be ful�lled:

� Incorporation of the business application's life-cycle (cf. Figure 3.18)

� E�ects on business applications introduced by projects (cf. Figure 3.19 and

Figure 3.21)

� Introducing of temporality to projects

� Composition of the di�erent aspects to achieve variant modeling

Initially, the temporal dimension of projects is introduced by simply adding a period

of validity stating the time a project is going to be conducted or has been conducted,

29

3 Scenarios for EA information modeling

respectively. Even bitemporal aspects would be possible but not mandatory to ad-

dress the subsequently handled variant modeling. Much more important therefore is

to determine project dependencies, particularly those among projects a�ecting the

same elements of the EA simultaneously, as if to deduce di�erent variants of the EA.

Figure 3.23 shows the simple temporal extension of Project that is in turn conveyed

to the di�erent phases of Project, as described in Figure 3.10.

Figure 3.23: Temporal project

To avoid overloading of the information model while resorting to the needed concepts,

a concise modeling is supposed to be enabled by introducing UML stereotypes (cf.

[OM10]). The stereotype �projectAffectable� is introduced to emphasize in this

section that a type annotated thereby participates in an affects-relationship with

Project. Additionally, the stereotype �lifecycled� expresses that a thus anno-

tated type is subtyped in di�erent life-cycle phases that have to be further speci�ed.

Figure 3.24 illustrates the application of these stereotypes, in doing so the life-cycle

phases in Figure 3.18 are assumed.

Figure 3.24: projectA�ectable� and �lifecycled� applied to BusinessApplication

The extensions made in Figure 3.24 enable the modeling of di�erent versions of a

business application depending on the a�ecting projects. The incorporation of a

business applications life-cycle in�uences the hosts-relationship in Figure 3.3, since

only a business application in an operational state can be hosted by an organizational

unit. Hence, not the supertype BusinessApplication participates in the hosts-

30

3 Scenarios for EA information modeling

relationship, rather the subtype OperationalBusinessApplication, as depicted

in Figure 3.25. Thereby, the retirement of a business application no longer asks for

a workaround for the hosts-relationship, instead simply a phase transition of the

concerned business application provokes that the host-relationship ceases to exist.

Figure 3.25: Modeling building block OrganistionalUnit-hosts-Operational-
BusinessApplication

Albeit variant modeling resorts to multiple other concepts for being adequately re-

alized, it is fairly simply achieved after having prepared the required concepts. By

annotating their utilization, a su�cient expressive and concise modeling of variants

is achieved. Thus, the clarity of the original model fragment of I-Pattern I-24 is

preserved and the true ontological nature of the utilized types is pointed up.

Summarizing this section, the following questions are relevant, when dealing with

projects:

� How can elements be de�ned as "project-a�ected"?

� Which e�ects can be distinguished for the e�ect-relationship?

� How can the start and end time of the di�erent project phases be de�ned?

� How does the existence of a period of validity a�ect the EA?

3.2.3 Standardization

Many companies have to cope with an EA that is the result of an unguided evo-

lution over a long period of time (cf. [Bu08a]). That might mean to deal with a

heterogeneous EA using a high number of di�erent technologies constituting an EA

far away from being suited for the organization-speci�c context and problems. Con-

sequences might be high maintenance, license or operating costs, lower �exibility or

an inadequate business support.

31

3 Scenarios for EA information modeling

Standardization as cross-cutting aspect of EAM addresses these issues by document-

ing the existing standards and solutions, as well as the conformance of architecture

elements, such as business applications, while incorporating the underlying ratio-

nales of their existence. Thereby, the awareness of nonconformance is increased and

deviations from standards are supplied with descriptions whether they are necessary,

targeting on the consolidation of utilized technologies to get closer to an EA as well

adapted to the organization-speci�c needs as possible. An important case thereby

is the distinction between standard software and individual software. Whereas the

former has to be only adapted to the company's speci�c needs, the latter is individu-

ally developed for the using company, including all side e�ects, such as maintenance

or further development, which is otherwise provided by the vendor of the standard

software. Thus, it has to be well evaluated, for which piece of software it is necessary

to be developed individually and which one can also be obtained from a software

vendor and subsequently con�gured for the company's needs.

Figure 3.26: I-Pattern I-67 (cf. [se10b]) � Architectural Solution Confor-

mance

The EAM Pattern Catalog [se10b] provides several I-Patterns concerning the cross-

cutting aspect standardization. I-Pattern I-6 documents the conformance to archi-

tectural solutions by business applications. I-Pattern I-41 introduces a property to

each business application for the distinctions whether it is standard or individual

software. I-Pattern I-67 (cf. Figure 3.26) introduces two relationships between ar-

chitectural solution and business application, the one pointing on the architectural

solutions allowed for realizing the business application and the other stating the con-

formed architectural solution, which has to be contained in the set of allowed archi-

tectural solutions. For the case that no standard architectural solution is deliberately

used, ArchitecturalSolution is subclassed to NonArchitecturalSolution.

Furthermore two attributes are derived, namely standardConform and excep-

tionAllowed. StandardConform indicates whether the business application

32

3 Scenarios for EA information modeling

conforms to one of the documented architectural solutions and exceptionAllowed

whether a conformance is mandatory.

For incorporating the true nature of standards, namely the capability of an element

to conform to a standard, Buckl et al. propose the mixin Standardizable stating

this capability to conform to a standard. As well, Standard is realized by a mixin,

since the true nature of a standard is regarded as its quality to denote existing

architecture elements as a standard. Furthermore, this perception goes in line with

the notion of Standardizable addressing the diversity of elements that are able to

conform to a standard. The building block Standard-Standardizable depicted

in Figure 3.27 slightly deviates from the proposal of Buckl et al. in [BMS10a].

Figure 3.27: Building block Standard-Standardizable

According to Buckl et al. in [BMS10a] both derived attributes of the mixin Stan-

dardizable can be regarded as a vehicle of backwards-compatibility, since building

blocks modeling the conformance by a simple binary property can be consistently

exchanged by the building block in Figure 3.27. Rather than simply introducing

the Standard-Standardizable modeling building block into I-Pattern I-67, the

thought of achieving an ontologically coherent information model fragment was car-

ried through, causing several other enhancements in both the model fragment and

the modeling building block. Thus, the former workarounds as described in the fol-

lowing are resolved starting with those utilizable in general for standardization issues,

resulting in a more sophisticated version of the modeling building block Standard-

Standardizable.

The specialization of an architectural solution in Figure 3.26 to a type only stating

deliberate non-conformance is understood as a general standardization aspect and

hence to incorporate in the modeling building block Standard-Standardizable.

Owed to the fact of introducing technical issues into the information model, an

element similar to NoArchitecturalSolution is omitted. Regarding the under-

lying notion, the arti�cial type NoArchitecturalSolution serves the purpose

of specifying two di�erent kinds of standardization, namely those deliberately non-

conforming and those supposed to conform. The latter type incorporates the case

of a lacking documentation for elements that are nevertheless supposed to conform

33

3 Scenarios for EA information modeling

to a standard. Hence, there are two states that an element, which is able to con-

form to a standard, may reside in, but between which it can arbitrarily swap in line

with the changing requirements of the EA, and is in both of the states perceived

as "standardizable". The two specializations of a "standardizable" do not directly

state whether such an element conforms to a standard. They only express, whether

an element is supposed to be conformant or not and the actual conformance has to

be derived from its relationships to other elements.

For realizing that, a dispersive type that is changeable at runtime or a non-rigid

mixin-type, respectively, is required. Thereby, the notion of a non-rigid mixin-type

deviates from Guizzardi's in [Gu05], since Guizzardi conceives a non-rigid mixin type

as a dispersive type utilized to subsume common properties of multiple non-rigid

sortal universals that change in line with the underlying sortal universal, but cannot

change independently thereof. A role-mixin, for example, has a non-rigid character,

since the role, by which it applies to a sortal universal, can be changed in accordance

with the speci�c context and therefore a role-change of a sortal universal also causes

a change of the assigned role-mixin. Thereby, it may happen that a change between

two roles take place, in which both concerned roles are subsumed by the same role-

mixin, so that both prior to and after the role-change the general term of the role-

mixin applies to the underlying sortal universal. However, a role-change without

changing the general term applying by the role-mixin has to be regarded accidental,

since this is not a requisite of a role-change, but actually for the mentioned non-rigid

mixin type required for standardization issues. For standardization issues, the claim

is to primarily express the capability of conforming to a standard, which in turn

reside in two speci�c states, namely to be assumed to conform to a standard and to

deliberately non-conform to a standard. Transferring this back to a role-mixin would

mean that a sortal universal has compulsorily assigned a speci�c role-mixin, which

in turn causes the acting in exactly one of a �nite set of roles, between which the

underlying sortal universal can swap arbitrarily. Consequently, the role-mixin would

no longer be a non-rigid type, since it is rigidly assigned to the sortal universal,

only being represented by one of a �nite set of specializations. Returning again to

standardization, exactly such a rigid general term is supposed to be assigned to a

sortal universal, that can non-rigidly be specialized to the actual representation of

its state.

34

3 Scenarios for EA information modeling

In the following, a non-rigid mixin4 is a dispersive type, mandatorily subtyping a

mixin, in doing so a complete, disjoint generalization set has to be de�ned, in exactly

one of these specializations the corresponding mixin has to reside in. Hereby, the

meanwhile specialization of the mixin depends on the external context of the mixin.

Up to a certain point, non-rigid mixins can be regarded as that for a mixin, which

a role is for a sortal universal, since both depend on an external context and can

be changed arbitrarily, but in contrast, non-rigid mixins constitute a partition of

mutually exclusive types, of which exactly one has to be valid and a common general

term permanently has to apply to the underlying type.

Figure 3.28: Modeling building block Standardizable-NonStandardized-

Standardized-Standard

Transferring this to the context of standardization, the already introduced mixin

Standardizable is specialized into a complete, disjoint partition of non-rigid mixin-

types, subtyping the mixin Standardizable. These non-rigid mixin-types are de-

noted by the stereotype �non-rigid mixin�, stating that the mixin Standardiz-

able has to be specialized by exactly one of its subtypes at any time and may swap

arbitrarily between them according to the evolving organization. Furthermore, the

conformsTo-relationship is shifted to the non-rigid mixin Standardized, whereas

the non-rigid mixin NonStandardized establishes a relationship to Rationale in

order to document the justi�cation for deviations. For addressing the de�ciency of

documentation, the attribute standardConform is derived, being directly interre-

lated to the conformsTo-relationship. For coherently documenting and planning

the situation of standardization of the EA, additional time attributes may be in-

troduced to de�ne the validity of subtypes of Standardizable, which is neglected

4The short description of non-rigid mixins does not live up a well-founded typology as the one of
Guizzardi in [Gu05], necessitating a more in-depth investigation to coherently specify the place
of non-rigid mixins within an entire typology of types. Nevertheless, a type that is not directly
covered by Guizzardi's UFO is required, embodied by non-rigid mixins.

35

3 Scenarios for EA information modeling

for reasons of lucidity. The adapted modeling building block Standardizable-

NonStandardized-Standardized-Standard is depicted in Figure 3.28.

Figure 3.29: Modeling building block Standardizable-NonStandardized-

Standardized-Standard applied on I-Pattern I-67 [se10b]

Continuing the adaptations on example-speci�c aspects, leads to a more in-depth

investigation of BusinessApplication. The characterization of a business applica-

tion as standard or individual one in the I-Pattern I-67 by an attribute is a possible

technical realization for simple one-level hierarchies, for which reason it is replaced by

two subtypes of BusinessApplication. For reasons of lucidity, the resulting inheri-

tance relationship between the mixin Standardizable and BusinessApplication

of the I-Pattern I-67 is denoted with the stereotype �standardizable�, as shown in

Figure 3.29. This stereotype equally expresses that BusinessApplication inher-

its the mixin Standardizable and contributes to making the information model

more concise, since rather modeling a plenty of inheritance relationships, only the

stereotype �standardizable� has to be assigned to appropriate types. Similarly,

the usage of the mixin Standard is facilitated by the stereotype �standard�. All

enhancements are applied on I-Pattern I-67 in Figure 3.29.

Figure 3.30: Modeling building block BusinessApplication-uses-Technology

(cf. [se10a])

Nevertheless, the original notion of Standard-Standardizable, which is to denote

architecture elements which are prospectively able to conform to a standard is pre-

served, but re�ned into subtypes that the mixin Standardizable resides in, re�ect-

ing its true ontological nature. One aspect was silently introduced to the modeling

building block Standardizable-NonStandardized-Standardized-Standard

in Figure 3.28, needing a more detailed consideration, namely the annotation of the

conformsTo-relationship by the stereotype �formal�. This stereotype resorts to

36

3 Scenarios for EA information modeling

Guizzardi's distinction between formal and material relationships (cf. [Gu05, Gu06])

as described in Section 3.2.2. Staying with the example of a business application, on

the one hand the actual purpose of a business application is presumably not to con-

form to a standard, but to support a certain business function or process, for which

in turn a couple of technologies are required, which is shown in the modeling build-

ing block BusinessApplication-uses-Technology in Figure 3.30. On the other

hand a set of used technologies constitute an architectural solution as described in

I-Pattern I-23 in [se10b] that may act as a standard for business applications. Thus,

the nature of a business application may be regarded as its usage of technologies

to ful�ll its support purpose while conforming to a standard that encompasses the

"naturally" used technologies. Consequently, the conformsTo-relationship in the

example is implicitly derived from the uses-relationship in Figure 3.30, using the

architectural solution composed by these used technologies, validating the intrinsic

character of the conformsTo-relationship for business applications. The incorpo-

ration of Techology and its corresponding relationships to the model fragment of

Figure 3.29 is depicted in Figure 3.31.

Figure 3.31: Business application standardization extended by uses

Transferring the thoughts of the preceding paragraph to the general notion of stan-

dardization reveals that standardization of architecture elements depends on their

speci�c context, they belong to, e.g. their utilization or composition of other ele-

ments, which make up potential standards. In this sense, there is always an intrinsic

moment of elements that are able to conform to a standard, from which the confor-

mance to a standard can be derived, for which reason the conformsTo-relationship

generally makes up a formal relationship, as depicted in Figure 3.28.

Questions arising when setting up a standardization strategy and adjusting them:

� How can architectural solutions be de�ned as standard?

37

3 Scenarios for EA information modeling

� How can architecture elements be annotated of being able to conform to a

standard?

� How can be distinguished between deliberately non-conforming and acciden-

tally non-conforming elements?

� How can the rationales of non-conformance be established?

� How can a standard be changed that an element conforms to?

3.2.4 Goals

The alignment of the EAM activities to the organization's strategies and goals makes

up another cross-cutting aspect. According to Matthes et al. in [Ma09], goals are the

�ner grained, more detailed decompositions of strategies which are typically the only

discipline that is cultivated at enterprise level and thus exerts in�uence on almost

the entire EA. Goals entail demands and projects that in turn a�ect other elements

to achieve the underlying goals, as similarly illustrated above in Figure 3.20. For

supporting a consistent alignment of the EAM activities to the goals, a backwards

traceability starting at the level of a�ected elements via the a�ecting projects up to

the goals is necessary, too. This approach seems to be quite similar to the cross-

cutting aspect projects, but even though a Goal-affects-Affectable building

block allows traversing the dependencies between goals and a�ected elements, ac-

cording to Buckl et al. in [BMS10a], it would neglect another important aspect of

the nature of goals, namely the measuring of their achievement. Thus, Buckl et al.

in [BMS10a] propose an approach in line with the Goal-Question-Metric-approach of

Basili et al. in [BCR94].

Figure 3.32: Modeling building block Goal-Question-Metric (cf. [BMS10a])

Basili et al. in [BCR94] subdivide their approach of measuring the achievement of

goals into three levels. The goals whose ful�llment has to be measured, reside on

38

3 Scenarios for EA information modeling

the highest level. These goals are re�ned into several questions, which break down

the goals into their major components. Each question is in turn associated with a

set of metrics in order to achieve a quantitative measuring of goals. Buckl et al.

in [BMS10a] resort to the Goal-Question-Metric-approach by introducing a mixin

Question aggregating metrics and indicators in order to operationalize goals. But

measuring the achievement of a goal is not enabled by simply assigning a mixin

Question, since di�erent metrics are needed for measuring a speci�c question of

a speci�c goal or instance of a goal, respectively. Hence, attributes appropriate

to concretize a speci�c question and to measure the achievement of the associated

goal have to be assigned to the question on the same ontological level, on which

the speci�c questions is located. Buckl et al. in [BMS10a] mention in this context

the �twofold nature� of goals and questions, leading to a multi-level ontological in-

stantiation approach as depicted by the building block Goal-Question-Metric in

Figure 3.32.

As shown in Figure 3.32 and outlined in the preceding paragraph, the measurable

metrics are located at a lower ontological level as Goal and Question. In turn,

instances of Goal and Question or speci�c goals and concrete questions, respec-

tively, reside on the same ontological level as elements re�ecting non-cross-cutting

architecture elements that may incorporate concrete questions. In the following the

Goal-Question-Metric building block is applied to the topic of protection re-

quirements introduced in I-Pattern I-86 of the EAM Pattern Catalog [se10b].

Figure 3.33: I-Pattern I-86 of the EAM Pattern Catalog [se10b]

According to the Bundesamt für Sicherheit in der Informationstechnik in [Bu08b],

information is highly valuable to companies and government o�ces, and needs to be

appropriately protected. There are a couple of reasons, why companies often spare

no e�ort to protect their information. Maybe the most obvious one is that compa-

nies strive to secure their sensitive and con�dential data from competitors in order

to defend and strengthen their market position. Moreover and not less important is

to ensure the availability and integrity of information. These three major qualities

that have to be assured, namely con�dentiality, integrity and availability, are also

described by the Bundesamt für Sicherheit in der Informationstechnik in [Bu08b].

39

3 Scenarios for EA information modeling

Additionally, the Bundesamt für Sicherheit in der Informationstechnik derives three

qualitative statements to categorize these protection requirements, since the quan-

ti�cation is usually not accomplishable. In this vein, it proposes normal, high and

very high as requirement categories. Since the assessment of protection requirements

is a laborious process, a process model is elaborated in [Bu08b]. Subject to [Bu08b],

damage that could occur, if the three qualities are not completely assured, can be

subsumed in a couple of general damage scenarios. In order to select the appropriate

category for a protection requirement, these scenarios have to be evaluated.

The I-Pattern I-86 of the EAM Pattern Catalog [se10b] (cf. Figure 3.33) deals with

protection requirements for business applications. For each of the qualities avail-

ability, integrity and con�dentiality, a property, stating the according requirement

category, is added. The three types of requirement categories, proposed by the Bun-

desamt für Sicherheit in der Informationstechnik, are realized as an enumeration.

According to the Bundesamt für Sicherheit in der Informationstechnik in [Bu08b]

the three categories do not measure the qualities, rather state how crucial the im-

pact of any loss or damage due to insu�cient ful�llment of one of the qualities is

estimated.

Figure 3.34: Modeling building block Goal-Question-Metric utilized to measure
protection requirements

In terms of the Goal-Question-Metric-approach, the achievement of an appropriate

protection for information represents the goal. This goal is operationalized by the

three qualities leading to the corresponding questions: �What is the level of avail-

ability?�, �What is the level of con�dentiality?� and �What is the level of integrity?�.

For measuring these questions, metrics are introduced to each question instance and

40

3 Scenarios for EA information modeling

may be derived to the level of a quality. Transferred to the modeling building block

Goal-Question-Metric the meta-level types remain the same due to the multi-

level modeling approach and on type-level, on which also the other elements re�ecting

non-cross-cutting aspects reside, the goal instance and the operationalizing questions

are introduced, as shown in Figure 3.34. The metrics for measuring the achievement

of the questions are realized by placeholders, at least conveying a realistic impression

of the applied building block, but have to be investigated for a real application.

When dealing with goals in EA information modeling, it is required to answer the

following questions:

� How can goals be assigned to architecture elements?

� How can the achievement of goals be measured

3.2.5 Responsibilities

Within an organizational structure di�erent managerial authorities and authorities

to decide may exist. Connected to an authority to decide is to bear the consequences

resulting from the decisions made. To put it into other terms, the person who bears

the consequences or is responsible for a speci�c part of an organization, respectively,

may be regarded as directly authorized to decide for this speci�c part of the orga-

nization. Such parts of the organization may be diverse elements of the EA, e.g.

projects, single work packages of a project, business processes, business applications

and so forth. Generally speaking, people can roughly be subdivided into two groups

in the context of responsibilities, �rstly those only executing tasks without any au-

thority to decide and secondly those responsible for a satisfactory execution of a task

or an adequate state of an architecture element. According to Krcmar in [Kr04], a

lack of responsibilities in projects rises the time to respond to unexpected problems.

Hence, it is obvious to assign responsible people to manageable elements of the EA

to anticipate problems subject to power vacuum or simply to clear responsibilities.

Since responsibilities issues occur over all layers of the EA, they constitute another

cross-cutting aspect.

The modeling building block Responsibilities in Figure 3.35 addresses the mentioned

issues of responsibilities by introducing a role-mixinResponsible and a mixinMan-

ageable. Thereby, the role-mixin Responsible subsumes all roles bearing respon-

sibility for an architecture element, in this vein, pursuing a role-based approach. Fur-

thermore, the mixin Manageable constitutes a dispersive type denoting elements

41

3 Scenarios for EA information modeling

requiring to be managed by responsible people. The responsibility for a certain man-

ageable element is described by the responsibleFor-relationship between the two

introduced dispersive types.

Figure 3.35: Modeling building block Responsibilities

The modeling building block Responsibilities only alludes to one general kind of

responsibilities, but several specializations are conceivable thereof, e.g. responsibil-

ities for the executing people related in however way to the manageable element or

for the compliance with the corporate governance of the manageable element. Albeit

this section does not handle issues of access control, it is obvious that the respon-

sibleFor-relationship and the participating types are closely related thereto, since

a person in charge should possess full access rights, as well. The relation between re-

sponsibilities and access rights is treated in-depth in the succeeding section depicting

distinctions and commonalities thereof.

Some questions have to be answered for evaluating the support of responsibilities as

cross-cutting aspect:

� How can people be declared as responsible for a part of the EA?

� Can architectural elements be de�ned as manageable or as requiring a person

in charge?

� Which kinds of responsibilities can be de�ned?

3.3 Service aspects

As mentioned at the beginning, besides the scenarios directly re�ecting requirements

for EA information modeling or the underlying meta-model, respectively, there are

further aspects regarding service functionalities, required for a convenient EA infor-

mation modeling. These aspects are subsumed in the following scenarios.

42

3 Scenarios for EA information modeling

3.3.1 Role-based access control

Many people are concerned with managing an EA, having di�erent interests therein,

needing di�erent information and views on the EA. However, not all information in

the repository is supposed to be accessed by everyone, i.e. con�dential information

is only supposed to be accessible by authorized personnel. Furthermore, it can be

distinguished between read and write access on information, depending on the speci�c

role of the user. Generally speaking, the access to each piece of information has to

be checked, necessitating the assignment of accessibility information to each element

of the EA. The mentioned restrictions and speci�cities in accessing information can

mostly be ascribed to the role in which a certain user acts, asking for role-based access

control (cf. [BMS10a]). Since issues of access control recur for elements on di�erent

layers of the entire EA (cf. Section 2.2), role-based access control has a cross-cutting

nature. Despite having a cross-cutting nature, role-based access control is an aspects

that is important for repository services, but does not directly belong to the modeling

of the EA. It is a service aspect de�ning access rights for information of the repository,

e.g. coming into play when querying information. The property of an element being

accessible can be regarded as a dispersive quality thereof, assigned deliberately to

protect information by restricting roles, allowed to access or accidentally denoting

that no restrictions are de�ned but may be as far as needed.

Figure 3.36: Modeling building block Accessibility

The modeling building block Accessibility in Figure 3.36 addresses the just men-

tioned issues of role-based access control. Therefore, the mixin Accessible is re-

lated to the role-mixin Accessor via the acccesses-relationship. The distinction

between read and write access is realized by specializing the accesses-relationship

into the subtypes reads and in turn into the subtype writes, that constitute mate-

rial relationships (cf. [Gu06]) and may be rei�ed by the relator hierarchy of Access,

Read and Write, as shown in Figure 3.37. Thus, the modeling building block

Accessibility enables a simple introduction of role-based access control into the

EA information model by using the already existing roles of people involved in EA

management.

43

3 Scenarios for EA information modeling

Figure 3.37: Relator hierarchy of Access, Read and Write

Although a broad �eld of di�erent information needs and access rights is covered by a

role based access control, it might be necessary to grant access to a single person, not

acting in the required role. Assuming that each person itself constitutes a unique

role resolves the problem and actually addresses the nature of the problem, since

adding further types to a role-based access control model fragment do not increase its

clarity. Moreover, this approach may be re�ned to a �ner grained distinction of access

rights by transforming attributes into value classes being able to inherit the mixin

Accessible. For retaining the lucidity of the model fragment, attributes deviating

from the access-rules on type-level and even type-level elements might be denoted

by a stereotype �accessible�, expressing that access rights are explicitly de�ned on

attribute-level. In Figure 3.38 this stereotype is applied to BusinessApplication

in order to protect the more con�dential attribute licenseCosts for unauthorized

access, as well as for a concise modeling on type-level.

Figure 3.38: Stereotype �accessible� applied to BusinessApplication

As alluded to in the preceding Section 3.2.5, responsibilities are closely connected

to access control issues, prede�ning the access rights for roles in charge. In this

vein, responsibility can be regarded as a specialization of access, encompassing full

access rights, that is to say read and write access, as well as further organizational

commitments as described in the preceding section. Since access rights are qualities

44

3 Scenarios for EA information modeling

added to architecture elements and the di�erent roles, they have to be added to

the involved types of responsibilites, as well, constituting a special case thereof in

the context of accessibility. For expressing the relation to access control, the mixins

Manageable and Responsible correspondingly inherit the mixins Accessible

and Accessor, as well as the responsibleFor-relationship subtypes the writes-

relationship. Thereby, the relator hierarchy may be extended by Responsibility,

as depicted in Figure 3.40. Figure 3.39 illustrates these connections between access

control and responsibility issues, in doing so the qualities of the modeling building

block Accessibility are utilized by the modeling building block Responsibiities.

But the speci�cities of responsibilities are crucial enough to retain the mixins Man-

ageable and Responsible, since they are re�ecting a quality of elective elements

�tting in certain schemas of manageability asking for responsible people, whereas

access rights may be assumed to be pervasively required.

Figure 3.39: Modeling building block Accessibility extended by responsibilities

Figure 3.40: Relator hierarchy Access, Read, Write, and Responsibility

45

3 Scenarios for EA information modeling

Subsuming issues of role-based access control, the following questions have to be

answered:

� How is the access to elements controlled?

� Are there di�erent levels for access control, e.g. type- and attribute-level?

� How can users be subsumed into groups with similar access rights?

� How can elements be de�ned as accessible by a role?

� Which types of access rights can be de�ned?

3.3.2 Queries

De�ning an appropriate information model is a prerequisite to store speci�c data in

the repository. Subsequently, both the concrete instances and the information model

make up the information basis for the EAM function. All required information has to

be provided by the repository service to be processed and visualized in various views.

Queries on the repository are an important functionality for accessing the required

information. The needed information is normally not of a single type, rather has

to be accessed using complex connections between information of di�erent types.

A prominent example for such a query is an impact analysis, as mentioned in the

preceding sections. Figure 3.20 exempli�es a conceivable impact analysis starting o�

with strategies introducing goals, which provoke as well as demands the execution of

projects that in turn a�ect other business applications or the entire impact chain vice

versa. According to Kurpjuweit and Aier in [KA09], impact analyses on an ex ante

unknown EA are a particular challenge, since information models are organization-

speci�c and users want to perform individual inquiries on the structural relations

throughout the EA information model. Hence, the individual relations between the

analyzed types have to be determined while conducting an impact analysis, which

might be accomplished by traversing the information model along its relationships.

Kurpjuweit and Aier further emphasize in [KA09] the speci�c characteristic of self-

relationships, as used by hierarchies. Transitive queries are needed for querying such

self-relationships. Moreover, Kurpjuweit and Aier distinguish in [KA09] between

four types of validity for relationships introduced by elements on other hierarchy-

level as the currently regarded one. Starting o� with a speci�c element, it has to be

distinguished whether the relationships of superordinate, subordinate, both of them

or none of them are valid for the speci�c element, as schematically illustrated in

Figure 3.41. In order to perform a sensible impact analysis, the distinctions between

46

3 Scenarios for EA information modeling

these semantics of hierarchic relationships have to be taken into account asking

further for determining the transitive closure of the �eld of interest. For addressing

the intricacy caused by hierarchic re�nable structures, Kurpjuweit and Aier allude

to the necessity of hiding lower hierarchy-levels, which could even be accomplished

by adequate query functionalities.

Figure 3.41: Schematic illustration of validity for relationships

Independently of whatever complex queries may be, the query results are supposed to

be dependent on the speci�c access rights of the user issuing the query. In particular,

queries are only supposed to access elements and their properties that are accessible

by the user, resulting in a limited result set. This information can be provided by

a role-based access control approach as elaborated in the two preceding sections.

Furthermore, the integrity of information has to be guaranteed considering e�ects of

concurrent multi-user access or uncompleted write operations, as ful�lled by almost

any DBMS.

Many of the aforementioned concepts take temporal aspects, such as the temporal

validity of information, into account. Querying time-dependent information necessi-

tates specifying the period of validity for the data that is supposed to be inquired.

As well, it might be required to adjust the period of validity for an already executed

query in order to illustrate the changes of inquired information, e.g. the EA could

easily be made comparable without separately executing a couple of queries.

The mentioned issues of querying information can be assessed by the following ques-

tions:

� How can an impact analysis be performed on an ex ante unknown information

model?

� How can hierarchic structures and self-relationships be queried?

47

3 Scenarios for EA information modeling

� How can di�erent types of relationships be considered?

� How can the granularity of information be controlled, i.e. can lower hierarchy-

levels be hidden?

� Are access rights taken into account while executing a query?

� How is the integrity of information ensured?

� How can temporal aspects be introduced into the query?

� Can the time-dependent validity of information be adjusted after conducting

the query (without need to conduct it again)?

3.3.3 Information model changes

According to Buckl et al. in [BMS10b, Bu08a, BMS10a, Ma09], no standard EA

information model so far exists, in spite of a plethora of research endeavors therefor,

for which reason it is regarded as an organization-speci�c design artifact, underlying

the dynamic of a changing environment. Hence, information models are supposed

to re�ne along with environmental changes to hold up an appropriate alignment of

business and IT support. Pursuing this native goal of EAM necessitates adapting

the information model in the repository. In this context adapt means that it is indis-

pensable to be able to change, delete or at least to hide prede�ned types, properties,

relationships and all other elements, as well as to introduce new of them. Along with

the de�nition of various information model elements, also their properties have to

be speci�ed, e.g. whether features have a default value or have mandatorily to be

set.

As information model changes are assumed as indispensible, an appropriate mainte-

nance of data contained in the repository in the case of an information model change

is the directly following requirement. The maintenance of data is thereby achieved

by establishing a valid state of the repository or to force the enterprise architect or

other responsible people to produce a valid state, without any data loss. The estab-

lishment of a valid state might be automated by the repository service or partially

to entirely be based on manually de�ned work�ows or procedures to achieve such a

state.

In order to evaluate functionalities addressing information model changes, the fol-

lowing questions have to be answered:

� Is it possible to introduce new classes/attributes/relationships to the informa-

tion model?

48

3 Scenarios for EA information modeling

� Can de�ned classes/attributes/relationships be adapted, hidden or deleted?

� Can properties or relationships be declared mandatory and can a default value

be speci�ed?

� How does the tool react to changes of the information model, especially to

changes on classes/attributes/relationships for which data is contained in the

repository?

� Does the tool provide standard actions on the repository data in case of infor-

mation model changes? Can these actions be de�ned manually?

� Does the service retain a valid state of the stored data?

� Do information model changes lead to data loss?

3.4 Summary

A comprehensive investigation of a wide range of requirements for EA information

modeling and the needed functionalities of a repository service therefor is conducted.

As conclusion of each scenario, a set of questions, subsuming the most important re-

quirements thereof, is devised. But there are also requirements applying to each of

the scenarios, irrespectively whether general architecture aspects, cross-cutting as-

pects or service aspects are concerned. Requirements embracing all of the scenarios

are introduced by overall prerequisites, made at the beginning of the chapter �Scenar-

ios for EA information modeling�, asking for a domain appropriate and comprehen-

sible information modeling. As devised throughout this chapter, these requirements

are concerned with the ontological correct information modeling, that re�ects the

nature of modeled domain elements. The following questions roughly subsume the

most important aspect applying to every scenario:

� Do the provided functionalities make up workarounds twisting the available

concepts without taking the increasing complexity into consideration?

� Do the models re�ect the ontological meaning of the used concepts, in particular

the special nature of cross-cutting aspects?

� Which perspective have to be taken for the EA information modeling, a domain

or a technology centered one?

49

4 Evaluation of repository services

The scenarios re�ecting the requirements for the evaluation of repository services are

elaborated in the chapter Scenarios for EA information modeling. Thereby, a set of

questions for each scenario, as well as overall questions are derived from the detailed

descriptions and illustrations, the answering of which serves the purpose of determin-

ing the level of achievement of the scenarios. In this chapter selected repositories are

evaluated against these scenarios. Initially the procedure of simulating the scenarios

is described in detail, in order to ensure consistency of evaluation for all assessed

repository services. Subsequently, the repositories that are supposed to be evaluated

are selected due to a couple of reasons that are exposed thereby. Afterwards, the

selected repository services are consistently evaluated on basis of these prerequisites

and the devised scenarios of EA information modeling.

4.1 Scenario simulation and evaluation criteria

In order to achieve a consistent evaluation of the repository services, three general

criteria are distinguished during the assessment of the scenarios, namely the over-

all ful�llment of a scenario, the ontological correctness of the models and the tool

handling.

� Ful�llment of scenario: It is assessed to what extent the requirements, stated

in a scenario can be ful�lled by the repository. For this criterion mainly the

capabilities to structure the required information in the information model is

evaluated.

� Ontological correctness of models: This criterion evaluates how far the onto-

logical meaning is re�ected by the produced information model.

� Tool handling : The e�ort of producing the deliverables is determined, taking

all pitfalls and shortcomings thereby into account. Particularly, an intuitive

handling is expected, asking for, among others, a graphical modeling environ-

ment.

50

4 Evaluation of repository services

The results of the evaluation are illustrated by Harvey Balls, which are supposed

to provide an overview to what extent a criterion is ful�lled and hence are more

appropriate than a �ne grained metric scale, requiring quantitative calculations of

ful�llment. The ful�llment of each criterion reaches from an almost complete ful�ll-

ment () via the partially ful�llment (H#) to a complete lack of support (#). Thereby,

an almost complete ful�llment states that a criterion was satis�ed to the requested

amount, the partially ful�llment expresses that a criterion is achievable to a certain

extent, but either incompletely or unsatisfactorily, and the lack of support means

that a criterion of a scenario was totally neglected by a tool or e.g. in case of tool

handling totally unintuitive. For each of these criteria, no comparison beyond this or-

dinal ful�llment scores is possible or wanted between the evaluated tools, e.g. which

best ful�lled a certain scenario cannot be deduced. For the case a criterion cannot

be evaluated for whatever reason, that is stated by n.a. meaning not available, as

e.g. applied to the tool handling for scenarios overall rated as lack of support and

the ontological correctness of models for some of the service aspects.

4.2 Repository services selection process

The following tool evaluation does not serve the purpose of covering a representative

set of all tools available on the market that provide generic repository services, rather

constitutes a preselection of a few tools stemming from the �elds of meta-modeling,

EAM and knowledge management. Nevertheless, conducting the evaluation on the

selected tools provides a comprehensive overview of how to utilize the �ndings of

the preceding elicitation of requirements for EA information modeling and asks for

an application on a broader �eld of tools, providing repository services. The prese-

lection is based on experiences gathered in the Enterprise Architecture Management

Tool Survey 2008 (cf. [Ma09]), overall experiences of the research project System

Cartography and other research projects at the chair for Software Engineering for

Business Information Systems (cf. [se10c]) hold by Prof. Matthes at the Technische

Universität München. Finally, the open source web collaboration and knowledge

management software Tricia developed at the chair of Prof. Matthes, the meta-

modeling platform ADOxx of the BOC Information Systems GmbH and the Eclipse

Modeling Framework (EMF) as a modeling framework and code generation facility

were chosen for the evaluation.

51

4 Evaluation of repository services

4.3 ADOxx of BOC Information Systems GmbH

The evaluation of ADOxx took place in the course of a week-long training at BOC

Information Systems GmbH in Vienna from 14th June to 18th June 2010. The

daily training was subdivided into two parts, that were a guided introduction of the

functionalities in the morning, followed by an autonomous investigation thereof in

the afternoon, supported by experienced employees of BOC. For the training week a

copy of ADOxx of a new pre-�nal version o�ering the latest functionality extensions,

was provided for putting under investigation. Since the copy of ADOxx was only

allowed to be installed and used during the training week due to security reasons, the

following evaluation of ADOxx is based on the experiences made and the information

gathered during this week.

4.3.1 ADOxx � Tool structure

BOC provides the ADOxx platform as a meta-modeling based development and con-

�guration environment to create domain-speci�c modeling tools. Thereby, ADOxx

generally comprises three workspaces, the Product Workspace, the Administration

Workspace and the Modeling Workspace. Before starting the evaluation of the sce-

narios of Chapter 3, the most important tool components and general modeling

functionalities are brie�y described in the following.

4.3.1.1 ADOxx � Tool components

The Product Workspace constitutes the Product Development Environment, in which

new modeling products can be created, prede�ned components can be con�gured and

new functionality can be de�ned by using the extension mechanism. In the Meta

Model Management facility of the Product Workspaces comprehensive modi�cations

of the information model can be conducted, new types and relationships among

them can be introduced, as shown in Figure 4.1. The information model is called

meta-model by BOC, but to avoid confusing in comparison with other chapters, the

naming information model is continued in the following.

The Meta Model Management facility of the Product Workspace is the primary

workspace for evaluating scenarios of general architecture aspects and cross-cutting

aspects, that is to say the aspects directly concerned with information modeling.

The workspace is divided in two major sections. The navigation bar on the left-hand

side comprises di�erent tabs, of which the Library View hierarchically structures

52

4 Evaluation of repository services

classes and relationships in the corresponding model types and those in turn in

libraries, as visible in Figure 4.1. The area on the right-hand side, displays the

properties of the currently selected element of the navigation bar, as shown for the

class Application.

Figure 4.1: ADOxx � Meta Model Management facility of the Product Workspace

The Administration Workspace makes up the Con�guration and Administration En-

vironment of ADOxx, providing amongst others functionalities to manage rights on

di�erent parts of the platform, to import/export libraries, repositories, models and

so forth or to perform other con�gurations of the platform.

The third part of ADOxx, the Modeling Workspace, embodies the Modeling Environ-

ment, that is either available as rich client or web client. In the Modeling Workspace

the repository may be �lled with instances of the before de�ned information model

elements. For that, a model corresponding to a model type of the information model

has to be created, in which instances of the de�ned classes and relationships can be

established, as illustrated in Figure 4.2. Graphical representations of a relationship

in an object model are only possible between objects residing in the same object

model, which encompasses in turn only instances belonging to the same model type.

Relationships between objects instantiating types of di�erent model types can also

be created but only using the notebook of the concerned types, as far as con�gured

in the Product Workspace. These object models are easily created by using drag

53

4 Evaluation of repository services

and drop facilities on the before de�ned symbols to create new objects which are

automatically persisted in the repository.

Figure 4.2: ADOxx � Modeling Workspace

Attribute values can be edited using the so called notebook, which appears after

double-clicking on an architecture element, provided that the notebook is activated

therefor. This activation has to be done in the Product Workspace, in which the

notebook may also be modi�ed. In doing so the information or visualized proper-

ties, respectively, may be structured by di�erent chapters of the notebook, to which

the editing �elds for attributes may be assigned. An exemplary notebook of an

application is shown in Figure 4.3.

Figure 4.3: ADOxx � Notebook

54

4 Evaluation of repository services

Product Workspace and Modeling Workspace are the major tool kits used to con-

duct the evaluation of the scenarios. Thereby, the Product Workspace plays the

major role in scenarios directly dealing with the information model. Subsequent to

creating the information model fragments, the Modeling Workspace is used to assess

the functionalities, whereat the notebook is required to edit the speci�c attribute

values. After having introduced some more overall aspects of information modeling

with ADOxx in the succeeding section, the scenarios are evaluated in the following

sections.

4.3.1.2 ADOxx � General functionalities

ADOxx provides some basic functionalities useful throughout the di�erent scenarios,

such as UML-based [OM10] information model creation. An information model of

ADOxx can freely be changed and extended, using the Meta Model Management

facility in the Product Workspace. Therein, an information model is created in

libraries and subdivided by model types that constitute a logical abstraction layer

subsuming classes and relation classes composing a certain part of the information

model, as shown in Figure 4.1.

Figure 4.4: ADOxx � Edit end point de�nition dialog of relation class Ordering

For de�ning a relationships, two end points, namely a FROM- and a TO-end point,

have to be assigned to a relation class, de�ning the types which the relation class

is connected to. Relation classes are restricted to two end points but an end point

may de�ne multiple types as target for the connected relation classes. For the end

points, cardinalities may be speci�ed, de�ning the range of elements a relation class

is allowed to be connected to by a speci�c end point. An end point does not exclu-

sively belong to a certain relation class rather can be utilized by di�erent relation

55

4 Evaluation of repository services

classes. Furthermore, cardinalities of the end points of a speci�c relation class can be

de�ned in another dialog of the relation class, as depicted in Figure 4.4. The former

variant of introducing cardinalities directly to end points does not make an impact

on object modeling except unpredictable behavior of the involved relationships, i.e.

relationships may be graphically modeled but actually do not exist in the repository

and disappear after restarting the Modeling Workspace. Looking up this problem in

the documentation of ADOxx, reveals that end point cardinality con�gurations are

presently not evaluated in the Modeling Workspace and the feature is not supposed

to be used, as emphasized in the end point customization dialog. Maybe, this lack

of support is owed to the fact that the evaluated version of ADOxx is a pre-�nal

one that is supposed to appear later on this year. In contrast, the latter variant

of introducing cardinalities by a dialog of the relation class actually takes an e�ect,

which is to change the attribute dialog in the notebook for the concerned relationship

end point, e.g. an end point restricted to at most one object results in a single row

for specifying connections, as shown for the linear order relationship of the I-Pattern

I-12 of the EAM Pattern Catalog [se10b] in Figure 4.5.

Figure 4.5: ADOxx � Notebook restrictions due to end point cardinalities

If one of the just described ways of restricting cardinalities is used, the consistency of

cardinalities is not automatically ensured or checked in the Modeling Environment,

even though functionality for checking the consistency of cardinalities on demand

explicitly exists in the Modeling Workspace (cf. Figure 4.6). Hence, in the Model-

ing Workspace object models may be created and persisted, modeled relationships

between objects of which deviate from the declared cardinalities of the information

model.

Even though the de�nition of cardinalities for end points of a relation class seems

to be the intuitive way of specifying such constraints, ADOxx o�ers further ways to

specify cardinalities. So, the overall number of object instances of a class within an

instance of a model type can be restricted by assigning the attribute object_cardi-

nalities to a model type, o�ering an xml-based de�nition of object cardinalities.

Similarly, an attribute relation_cardinalities can be assigned to classes, en-

56

4 Evaluation of repository services

Figure 4.6: ADOxx � Cardinality
check

Figure 4.7: ADOxx � relation_cardinalities

de�nition for Ordering

abling the con�nement of incoming and outgoing relationships in general and for

speci�c relation classes. If the cardinalities of the Ordering-relationship are speci-

�ed using the attri relation_cardinalities that has to be assigned to the class

BusinessProcess, even the cardinality checker of the Modeling Workspace can

be utilized. In Figure 4.8, a business process is connected to two succeeding busi-

ness processes, which is excluded by the de�nition of relation_cardinalities,

as shown in Figure 4.7. After executing the cardinality check, a noti�cation box

appears displaying the reason of failure, as shown in Figure 4.8. Thus, the modeling

and checking of the ordering relationship is enabled by restricting instances to at

most one predecessor and successor using corresponding end point cardinalities.

The above presented functionalities and modeling concepts enable the modeling of

information models conforming to the general concepts of UML [OM10]. Gener-

ally, the information model is only visualized by tree or list views, distinguishing

between class and relationship visualizations by icons in front of their names. Fur-

thermore, there is only one kind of types, namely class, and relationships, namely

relation classes, respectively, that can be con�gured to a certain extend. A �ner

grained de�nition of relationships is enabled by their end point de�nitions, since a

single target de�nitions is not restricted to the explicitly de�ned target type rather

also subtypes thereof are incorporate and furthermore multiple target de�nitions are

possible. Thus, a kind of structure of relationships is enabled. For relationships,

it is not directly derivable from the information model visualization which classes

are connected thereby, asking for analyzing several attribute dialogs to derive such

information. The de�ciency of a model view of the information model is a drawback,

since the actual nature of a model fragment cannot be displayed. In combination

57

4 Evaluation of repository services

Figure 4.8: ADOxx � Cardinality mismatch detected by the cardinality checker

with the fact, that generally only one ontological type of universals and relationships

is available, the modeling of the true ontological nature of the scenarios may somehow

be restricted, but has to be speci�cally evaluated for each of the scenarios.

4.3.2 ADOxx � Hierarchy modeling

Since an information model of ADOxx can freely be changed and extended, the

information model fragment of Figure 3.1 can be created under consideration of the

cardinality speci�cities, as mentioned in Section 4.3.2. As depicted in Figure 4.9,

the class BusinessProcess and for the relationships of the model fragment the two

relation classes Subordination and Ordering are introduced.

Figure 4.9: ADOxx � Hierarchy modeling Product Workspace

58

4 Evaluation of repository services

An instance of the model fragment in Figure 4.9 is depicted in Figure 4.10, de�ning

a two-level hierarchy of four business processes. Three of them are supposed to make

up a linear order on the lower level, detailing the fourth business process.

Figure 4.10: ADOxx � Hierarchy modeling Modeling Workspace

This standard UML-conform (cf.[OM10]) information model can be established in

ADOxx, but the actual challenge is to introduce the extensions made in Figure 3.2.

ADOxx o�ers no possibility to introduce the demanded constraints via correspond-

ing ontological concepts, since concepts such as hierarchies or linear orders are not

regarded as �rst class concepts by ADOxx. As well, standard constraint for realizing

hierarchies or linear orders cannot directly be de�ned for the information model,

since no constraint language or similar functionalities are supported. Constraints on

information model-level, e.g. validating whether a self-relationship is acyclic, can

be realized by the scripting functionalities of ADOxx using the provided JavaScript

libraries. Every action that can be manually performed in the modeling workspace

can also be automatized by the scripting functionality, o�ering much more function-

alities beyond the standard actions. In this way, events provoked while creating an

object model can be triggered and further be validated whether the triggered event is

caused by an illegal modeling action, on which appropriate reactions can be initiated.

Thus as complex constraints as possible with a Turing complete language, such as

JavaScript, can be established, enabling the modeling of the hierarchy scenario. Us-

ing the scripting functionalities, even di�erent kinds of part whole relationships can

be speci�ed, checking over which other hierarchy levels a certain relationship is valid.

The scripting functionality o�ers extensive possibilities in controlling the object mod-

eling, but only for professional users, who know how to utilize the expressiveness of

Turing complete languages and accept the high e�ort needed for their de�nition.

Furthermore, software artifacts are produced with very restricted reusability and are

laboriously traceable for users not involved in their development.

59

4 Evaluation of repository services

Summarizing the evaluation of the hierarchy modeling scenario shows that the in-

formation modeling itself cannot ful�ll the requirements in ADOxx. In combination

with the powerful scripting functionality of ADOxx, all required information and the

constraints can be established. The ontological nature of types and relationships

cannot really be expressed in the information model, in particular not in case script-

ing is needed for realizing the scenarios, as required for hierarchy modeling. Due to

the mentioned facts the evaluation in Table 4.1 is derived.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 # H#
Table 4.1: ADOxx � Evaluation of hierarchy modeling

4.3.3 ADOxx � Temporal and variant modeling

ADOxx has a powerful functionality for de�ning time-dependencies, which is called

time �lter. Before being able to denote single types as time-dependent or in the

terminology of ADOxx, as time �lter relevant, the repository has to be de�ned being

with time �lter, as illustrated in Figure 4.11. Subsequently, classes and relationship

end points can be declared time �lter relevant; Figure 4.12 shows this for the end

point of the host-relationship of the I-Pattern I-24 of the EAM Pattern Catalog

[se10b], positioned at the side of the business application, as depicted in Figure

3.3.

Figure 4.11: ADOxx � Repository with time
�lter

Figure 4.12: ADOxx � Time �lter rel-
evant end point

In the following, the example in Figure 3.3 is supposed to be realized in order to

assess the time �lter functionality of ADOxx. For that, the class Organizational

60

4 Evaluation of repository services

Unit and the host-relationship are introduced in the model type Application

Architecture, as shown in Figure 4.13. Furthermore, the to-end point of the

hosts-relationship is marked time-dependent, as already shown in Figure 4.12 and

therefore the required attributes for stating the start and end points of validity are

introduced, as depicted in Figure 4.13. Before the new assigned attributes make

an e�ect on the time �lter functionality, the default values of the library attributes

loaded_repoinst_attributes and loaded_endpoint_attributes have to

be extended by the attributes used for de�ning the period of validity, provoking that

these attributes a permanently loaded in the Modeling Workspace. Moreover, the

notebook of the end point is extended by the new chapter Life-cycle including the

two new attributes.

Figure 4.13: ADOxx � Introduction of Organizational Unit in the information
model

After having conducted these steps, the Modeling Workspace is automatically ex-

tended with a new section in the menu bar for activating the time �lter relevance

of the currently loaded object model, as depicted in Figure 4.14. In the same �g-

ure, an instance of the I-Patten I-24 (cf. [se10b]) is displayed, showing a business

application that is hosted by two organizational units. This is possible and valid,

since the time �lter is presently not activated, and so several hosts-relationships of

a single business application, valid for a di�erent period of time as de�ned in �gures

4.15 and 4.16, are displayed concurrently. This notion is not incorporated by the

cardinality check of ADOxx, which detects a cardinality violation, when performed

using the example without activated time �lter. Activating the time �lter resolves

61

4 Evaluation of repository services

this problem, since obviously only displayed objects are taken into to account for

checking cardinalities.

Figure 4.14: ADOxx � Modeling Workspace with time �lter and instance of I-Pattern
I-24

Figure 4.15: ADOxx � Valid object model
of June 2010

Figure 4.16: ADOxx � Valid object model
of July 2010

In Figure 4.15 and Figure 4.16 the time �lter is activated and hence only valid

objects are displayed for the con�gured time illustrating the host-relationship swaps

between June and July 2010 in accordance with the de�ned validity of the host-

relationship instances in the depicted example. Thus, temporality is introduced

for the hosts-relationship of I-Pattern I-24 using the time �lter functionality of

ADOxx. Thereby, the activation of time-dependency by check box can be compared

62

4 Evaluation of repository services

to assigning the mixin Temporal of the model fragment in Figure 4.17. Using the

time �lter of ADOxx, temporality is meaningful introduced re�ecting the ontological

nature of this aspect.

Figure 4.17: ADOxx � Change history of an end point

Temporality is fairly easy achieved by exploiting the time �lter functionality of

ADOxx, but even functionalities for achieving bitemporality are provided by de-

fault. Therefore, the prede�ned record type Change History can be assigned,

documenting at which point in time, by which user, from which old value to which

new value, and even in which language of the value, an attribute change has taken

place. Changes are not automatically documented after having assigned the record

type Change History and has to be manually administered for each change in

the repository, by default. An automation of administering the Change History

is achievable by utilizing the scripting functionality of ADOxx by triggering change

events and creating each time a corresponding change history entry.

Since variant modeling is closely connected to the scenario projects, variant model-

ing using projects is evaluated therein. Besides the realization by projects, ADOxx

provides a modeling type modes that can be assigned to model types and for which

the utilizable types and relationships in the Modeling Workspace may be restricted.

These modes can be selected for each object model in the Modeling Workspace, en-

abling e.g. the modeling of object models in a draft or planned mode. Thus

several drafts or plans of an object model can be created and exist concurrently,

providing a possibility to model multiple variants for the same point in time, which

have to be decided upon later by changing the mode to e.g. current.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

Table 4.2: ADOxx � Evaluation of temporal and variant modeling

63

4 Evaluation of repository services

Temporal and variant modeling could be fairly comfortable realized, even addressing

their ontological nature. Only the necessity of having to use the scripting function-

ality of ADOxx and to register the attributes stating the start and end point of

validity may be regarded as shortcoming. In conclusion, most of the requirements of

the scenario temporal and variant modeling are satisfactorily ful�lled, as depicted in

Table 4.2.

4.3.4 ADOxx � Non-rigid typing and principle of identity

In accordance with the ADOxx meta-meta-model, an information model primarily

consists of libraries, model types, classes, subtyped into modeling classes as well as

relation classes, end points and attributes. All instances thereof de�ne and structure

the meta-model and are contained in the Global Container. In terms of information

modeling, libraries and model types serve as logical structure of types and relation-

ships. In doing so, libraries package model types as well as classes, and model types

in turn can structure classes. Attributes can be assigned to all of the named con-

cepts. Once de�ned elements can be reused in di�erent contexts, since all element

de�nitions are contained in the Global Container, i.e. a class de�ned at �rst for a

speci�c model type, may be assigned to all libraries or model types of the reposi-

tory. ADOxx provides complex attribute types, the so called record attribute types

that structure information in a table-like form. These record attribute types can

be manually created, enabling the structuring of related information in an attribute

type.

ADOxx does not explicitly know something like the principle of identity, devised by

Guizzardi in [Gu05]. In ADOxx each element has an unique identi�er that cannot

be shared between di�erent elements or ontological types, particularly only one on-

tological type is distinguished, that is the class or rigid sortal universal, respectively.

Since classes generally make up the only available ontological type of substantial

sortals, non-rigid typing is not supported by ADOxx. As outlined in Section 4.3.6,

life-cycle as a speci�c case using non-rigid typing in an ontological correct model-

ing, is partially achieved utilizing the temporal modeling capabilities of ADOxx for

bypassing type-changes. For realizing a dispersive type that can apply to several

other concept, an abstract type encompassing all required properties might be uti-

lized. Though, ADOxx does not allow multiple inheritance, which is necessary in all

cases the abstract class is supposed to be applied to a type, already participating

in a type-hierarchy. Although multiple inheritance and a principle of identity are

not supported, record type attributes can be utilized to add structured information

to a type, which is comparable to some impacts coming along with a mixin-type.

64

4 Evaluation of repository services

The essential distinction is, that a record type attribute reduces a mixin from a

general term that applies to a particular implying some properties, to the originally

implied properties, while omitting the reason or general term, respectively, causing

this properties. Hence, record type attribute are a useful means to create reusable

structured information, but cannot be regarded as an alternative for a dispersive

type as assessed in this section.

Even though a few aspects of the requirements may be achievable, the two gen-

eral architecture concepts assessed by this scenario are regarded as not ful�lled,

since workarounds to partially achieve the requirements of a scenario are evaluated

throughout the concrete applications of general architecture concepts to scenarios of

cross-cutting aspects. In contrast to the concrete application, the use of this sec-

tion is in explicitly evaluating the nature of these two concepts, that are thus not

supported by ADOxx, resulting in the scores in Table 4.3.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

n.a.

Table 4.3: ADOxx � Evaluation of non-rigid typing and principle of identity

4.3.5 ADOxx � Multi-level modeling

The meta-meta-model of ADOxx is not changeable, but can be extended by new

attribute types using the record type attribute facility, which is actually not regarded

as a meta-meta-model change. The modeling takes place on meta-level, where the

information model is de�ned in the Product Workspace and on object-level, where

the creation of object model and repository objects is performed in the Modeling

Workspace. Generally, ADOxx provides these two modeling levels for modeling the

EA, but within the meta-level model types can be regarded as a means for creating

additional abstraction levels. Model types enable a logical structuring of elements

based on their ontological abstraction level or meta-level, respectively, as illustrated

for the ontological structure of I-Pattern I-26 in Figure 4.18.

Nevertheless, a true multi-level modeling cannot be achieved by model types, since

besides a kind of structuring in abstraction levels, typical concerns of multi-level

modeling are neglected. Model types do not natively provide functionalities to be

instantiated to types of other model types and hence do not supply properties to

65

4 Evaluation of repository services

Figure 4.18: ADOxx � Multiple abstraction-levels by model types

lower ontological levels. This functionalities may be achieved using the scripting

functionality of ADOxx by developing routines that check the consistency between

di�erent model types corresponding to their ontological nature and automatically

create instances or take over properties of higher ontological levels. In summary, the

partially achievements are shown in Table 4.4 are derived.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

H# H# H#
Table 4.4: ADOxx � Evaluation of multi-level modeling

4.3.6 ADOxx � Life-cycle

As mentioned in Section 3.1.3, ADOxx does not provide non-rigid types or a principle

of identity, for which reason it is not possible to realize the life-cycle of a business

application (cf. Section 3.19) using phased-sortals (cf. [Gu05]). Nevertheless, the

temporal modeling capabilities of ADOxx can be used to model the life-cycle phases

of a business application by subtyping into temporal-dependent life-cycle phases

having a kind of expiration date, as shown in Figure 4.19. Thereby, the attributes

for the period of validity are inherited from the superclass BusinessApplication

and only the time �lter relevance of the subtypes has to be activated manually. The

visibility of the superclass BusinessApplication may be deactivated to prevent

an instantiation in the Modeling Workspace. Furthermore, the business application,

which a speci�c partition of life-cycle phases belongs to, may be realized by either

an identi�er stating the common hypothetical business application or an actually

associated instance of the superclass. The former version necessitates constraints

for guaranteeing consistency and the latter one produces an additional persisted

object that is why neither of these solutions is regarded completely appropriate.

The de�nition of subtypes composing the di�erent life-cycle phases and a period

66

4 Evaluation of repository services

of validity themselves do not realize a consistent life-cycle modeling, since further

constraints are not accounted for yet. The scripting functionality of ADOxx enables

the de�nition of these further required constraints for ensuring that only one business

application subtype or life-cycle phase, respectively, is valid at a certain point in time,

only valid state transitions can be performed and further restrictions are complied

with.

Figure 4.19: ADOxx � Business application life-cycle subtypes

Using the time �lter and the scripting functionalities of ADOxx the modeling building

block Lifecycled devised by Buckl et al. in [BMS10a] can be applied to elements

of the EA. The superordinate business application asks for an additional attribute

as identi�er or an association to the superordinate business application, which can

ensure in combination with corresponding constraints the bearing of the same iden-

tity throughout a speci�c partition of life-cycle phases. In any case ADOxx supplies

an additional unique identi�er to each of the life-cycle type instances. Moreover, an

element can participate in di�erent relationships and can possess di�erent properties

dependent on the life-cycle subject to their realization by discrete types. Technically,

the requirements of life-cycle modeling can be ful�lled, but only aspects realized by

the time �lter functionality re�ect the ontological nature life-cycles. The constraints,

which have to be realized by the scripting functionality, partially require deep inter-

ferences in the tool functionalities in order to ensure the consistency of a life-cycle,

for which reason the e�ort of their realization result in an empty Harvey Ball for the

tool handling, as shown in Table 4.5.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 H# #
Table 4.5: ADOxx � Evaluation of life-cycles

67

4 Evaluation of repository services

4.3.7 ADOxx � Projects

Projects are the major means for changing the EA and its elements. To model these

concepts actually asks for a mixin Affectable that is supposed to be inherited by

all architecture elements that are potentially able to be a�ected by projects. ADOxx

does not directly support such a mixin type to identify architecture elements or a

similar corresponding dispersive type, but provides relation class end points that

can target multiple modeling classes, as depicted in Figure 4.20. Thus, an affects-

relationship can be de�ned relating projects to a range of other types and even

attributes can be assigned to an end point, that may bundle the properties, which

would otherwise reside in a mixin-type. This alternative is almost as expressive as

the mixin Affectable, since objects, the type de�nitions of which participate in

an affects-relationship, can thus be identi�ed as a�ectable by projects, which is

closely related to the assignment of the mixin Affectable. The di�erence lies

in shifting properties from the modeling class to the relation class end point, for

which reason properties of the end points are as recently available for an object as

an instance of the relationship is assigned to a speci�c object. Due to this reason,

amongst others, a relation class end point on its own is not su�cient for substituting

a mixin in general, but can realize the speci�c case of the mixin Affectable,

which is primarily used for denoting the affects-relationship, as long as no further

properties are required.

Figure 4.20: ADOxx � Dialog of an end point for assigning target classes

ADOxx realizes relationships via relation classes and corresponding end points. How-

ever, relation class is a subtype of class and only the other subtype, namely modeling

class can establish inheritance hierarchies and therefore a rei�cation of relationships

is supported, but no inheritance relationships thereunder. Hence, the relator hierar-

chy in Figure 3.22 has to be modeled using unrelated relation classes, the usage of

68

4 Evaluation of repository services

which has to be synchronized by constraints asking for the scripting functionality of

ADOxx.

The nature of projects, having di�erent phases with a period of validity of each,

can be achieved similar to life-cycles, as described in Section 4.3.6. In combina-

tion with the �ndings of Section 4.3.3 the modeling of variants can be achieved

by a su�ciently expressive affects-relationship and temporal-dependent projects.

Thus, the modeling building block OrganizationalUnit-hosts-Operational-

BusinessApplication (cf. Figure 3.25) can be realized, but only using the afore-

mentioned workarounds for the depicted concepts, which only partially re�ect the

ontological nature of the modeling building block, resulting in the scores in Table

4.6.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 H# H#
Table 4.6: ADOxx � Evaluation of projects

4.3.8 ADOxx � Standardization

The capability of conforming to a standard or to compose a standard, cannot be

realized by a mixin or an abstract type, since mixins are not supported and for

using abstract types, multi-inheritance would be required in multiple cases, that is

not supported by ADOxx, too. Standards can be modeled as intermediate types

related to elements, capable to conform to a standard and elements appropriate to

compose a standard. Thereby, the �exibility of end points can be used to realize re-

lationships to several standardizable types or several elements de�ning standards, re-

spectively. Thus, the conformsTo-relationship and the allowedFor-relationship

of the modeling building block Standatd-Standardizable can be introduced to

the information model, but the attributes contained by the mixin Standardizable

have to be manually assigned to each participating type.

Even though the conformsTo-relationship can be established by an auxiliary class

Standard, its true nature of being derived of the actual context of the standard-

izable types cannot be realized, since only one type of relation classes is supported.

In terms of Guizzardi in [Gu05, Gu06] the provided relation classes can be regarded

69

4 Evaluation of repository services

as a material relationship and so formal relationships, such as the conformsTo-

relationship are natively not supported by ADOxx. Derived attributes are also

not provided by default, but such a functionality may speci�cally be developed

for the standardConform attribute of the modeling building block Standard-

Standardizable using the scripting functionality of ADOxx. So as to distinguish

between deliberately non-conforming types and a lack of documentation, a concept,

such as NoArchitecturalSolution (cf. I-Pattern I-67 [se10b]) or NoStandard

can be utilized, as well as an appropriate extension of the derivation functionality for

the standardConform attribute may be developed, but the ontological property-

type change, according to the two states of a standardizable architecture element

cannot be achieved.

After having introduced a model fragment to document standardization into the

information model, the standard conformance can be documented and changed by

instantiating the corresponding relationships and types. An automatic adaption of

the conformed standard in accordance with the changing contexts of an architec-

ture element is not possible by default, since formal relationships are not a concept

of ADOxx, but could be acquired by scripting. The required functionalities are re-

garded partially ful�lled, since most of the required information can be structured in

the information model, but some of the required functionalities, such as for formal

relationships, may only by realized by deep interventions in the tool functionali-

ties. Furthermore, the ontological nature of standardization is not re�ected in the

solutions for structuring the information, as summarized in Table 4.7.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

H# # H#
Table 4.7: ADOxx � Evaluation of standardization

4.3.9 ADOxx � Goals

If goals and the measurement of their achievement are supposed to be realized by the

Goal-Question-Metric-approach, a multi-level modeling approach and mixin types

will be required for an ontological correct modeling of the scenario, as outlined in

Section 3.2.4. A kind of multi-level structuring can be achieved by using the model

types of ADOxx, as described in Section 4.3.5. The mixin types have to be substituted

by either the corresponding attributes at the place of architecture elements, the goal

70

4 Evaluation of repository services

ful�llment of which is supposed to be measured or introducing discrete types for each

instance of Question that are related to the corresponding architecture element

type.

Comparable to the succeeding section, the required information can be structured

in the information model, at least by utilizing the scripting functionalities, but the

ontological nature of the introduced types is only partially expressed by the utilized

functionalities and concepts. In summary the ful�llments of criteria in Table 4.8 are

deduced.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

H# H# H#
Table 4.8: ADOxx � Evaluation of goals

4.3.10 ADOxx � Role-based access control

ADOxx provides the User Management component of the Product Workspace to

manage users, user groups and their access rights. Users and di�erent user groups

can be created and edited in the User Catalog, as depicted in Figure 4.21. Access

rights can be de�ned for both user groups and users, which can both use inherited

access rights of user groups and overwrite the user group de�nitions with own ones. In

the context of role-based access control, user groups can be regarded as roles played

by users, granting special rights to them, since a user can participate in multiple

groups at the same time, as shown in Figure 4.21.

The User Management component o�ers various options for de�ning access rights

of users and user groups. Thereby, ADOxx primarily distinguishes between models

and objects in the Modeling Workspace, �les, users and user groups, languages and

the di�erent components of ADOxx, as depicted in Figure 4.22. Furthermore, the

di�erent options can primarily be speci�ed for read and write access, as well as

several �ner grained subtypes thereof, as shown for object models of the Modeling

Workspace in Figure 4.23. As diverse the con�guration options of access right are,

besides the components of ADOxx access rights can only be de�ned for instances of

the aforementioned elements, e.g. access to information of a particular type of the

information model cannot be restricted to a particular user. As well, access rights

to attributes can only be de�ned for the attributes of an object as a whole.

71

4 Evaluation of repository services

Figure 4.21: ADOxx � User
Catalog Figure 4.22: ADOxx � Access rights editing dialog

In conclusion, ADOxx provides an access control mechanism that is able to con�gure

access rights for the di�erent functionalities of the tool, as well as for the repository

objects of the modeling concepts. It is not directly possible to restrict access to

a certain type of the information model, which however might be achieved up to a

certain point by restricting access to components concerned with modeling to prevent

instantiating a type and to all instances thereof. Although in combination with the

user groups a kind of role-based access control approach, as described in Section

3.3.1, is achievable, the requirements are only partially ful�lled due to the missing

support of access rights on attribute-level and for types as a whole. Nevertheless,

the provided functionality is intuitively realized, expressing the ontological nature of

the scenario. The concluded evaluation is illustrated in Table 4.9.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

H#
Table 4.9: ADOxx � Evaluation of role-based access control

4.3.11 ADOxx � Responsibilities

In ADOxx relation classes can be specialized by the Is Ownership option, which

can be used by relation classes referencing shared users in the Modeling Workspace.

Objects or model types connected to a user using such a relation class automatically

get write access right to the connected element.

72

4 Evaluation of repository services

Figure 4.23: ADOxx � Access right types for object models

In order to introduce the responsibleFor-realtionship in the modeling building

block Responsibilities (cf. Figure 3.35), a relation class with activated Is Own-

ership option can be utilized. Such a relation class automatically grants write access

rights to the connected user for the connected element, while stating the responsi-

bility of the user. The �exibility of end points to de�ne multiple connectable types

enables a similar expressiveness as the mixin Manageable.

Relation classes with activated Is Ownership option enable an ontological meaning-

ful modeling of the responsibilities scenario and implicitly inherit the access control

functionalities, too. Hence, a complete ful�llment of the criteria is concluded in

Table 4.10.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

Table 4.10: ADOxx � Evaluation of responsibilities

73

4 Evaluation of repository services

4.3.12 ADOxx � Queries

ADOxx does not provide a declarative query language, but it provides powerful li-

braries in the scripting API that encompass such functionalities. Queries are accom-

plished by traversing object models along their relationships between the contained

objects. The analysis component of the Modeling Workspace o�ers a graphical edi-

tor for composing queries and provides a set of prede�ned query building blocks, as

shown in Figure 4.24. The di�erent kinds of query building blocks can be combined

by di�erent set operations, namely the intersection, the union and the di�erence of

two sets, as well as an operator traversing further relationships of the objects of a

result set.

Figure 4.24: ADOxx � Available kinds of queries

Figure 4.25: ADOxx � Exemplary query in the analysis component

Figure 4.25 shows an exemplary query in the analysis component of the Modeling

Workspace. Firstly, a set intersection is applied on business applications having a

period of validity, starting before 16th June 2010 and business applications having

74

4 Evaluation of repository services

a period of validity ending after 16th June 2010, resulting in the set of business

applications valid at 16th June 2010. Subsequently the incoming hosts-relationship

is followed to the hosting organizational units. The result set re�ects the object model

in Figure 3.6, since for the hosts-relationship no temporal aspects are taken into

account, which is even not possible by the provided functionalities of the graphic

analysis component, but can be achieved by manually creating a query using the

scripting libraries.

The analysis component of ADOxx conveys the impression of using a declarative

scripting language. In fact, the conduction of a query results in creating script code,

which is subsequently executed. When saving a composed query, the JavaScript

code can be edited to achieve queries that are natively not supported by the graphic

analysis component, shown in Figure 4.26.

Figure 4.26: ADOxx � Editing �eld of automatically genrated JavaScript code

Besides the operator for following relationships of a result set, the analysis compo-

nent does not provide functionalities to traverse the relationships of the information

model, required to conduct analyses on an ex ante unknown information model.

The JavaScript libraries provide such functionalities for traversing relationships of

the information model enabling to determine the transitive closure that is regarded

indispensable for comprehensive and complex impact analyses. Besides manually

developing such functionalities, a product based on the ADOxx platform, namely

ADOit NP, provides views which are able to gather information transitively, which

e.g. can inquire the dependencies between two arbitrary types, even via transitive

self-relationships. Again not a query language is utilized for the views rather corre-

sponding JavaScript code is produced.

ADOxx provides powerful JavaScript libraries enabling to query repository informa-

tion, which can only partially accessed via the graphic analysis component. How-

75

4 Evaluation of repository services

ever, the functionalities assessed in the queries scenario are regarded only partially

ful�lled, even since methods to traverse models are not fully comparable to a query

language. Nevertheless, the provided graphic query functionality is fairly intuitive

utilized, concluding in the evaluation in Table 4.11.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

H# n.a.
Table 4.11: ADOxx � Evaluation of queries

4.3.13 ADOxx � Information model changes

In ADOxx the information model can freely be changed and extended as described

in the preceding sections. Thereby, already created types can be removed or only

hidden in the Modeling Workspace. Changes are also possible on parts of the infor-

mation model, for which objects are contained in the repository, but there are no

automatic actions to migrate these objects to the changed data schema correspond-

ing to the information model. There are natively no functionalities to manually

de�ne such migration reaction to information model changes, except by the scripting

functionality. Hence, information model changes may lead to an inconsistent state of

the repository including unforeseen side e�ects of objects and relationships contained

in the repository that are no longer part of the information model or even data can

get lost due to the removal of types or relationships. In order to return to a consis-

tent state of the repository, the repository data can be exported before changing the

information model and re-imported after having completed the changes. Thereby, a

consistent state in accordance with the de�ned structure of the information model is

ensured and simple changes may be compensated, but a comprehensive migration to

the changed information model is not automatically performed, necessitating a man-

ually adaption thereto. A manual migration of the repository data can be achieved

by the scripting functionality.

ADOxx provides the possibility to de�ne default values for each supported language,

as well as a language independent default value for attributes, whereas relationships

or their end points cannot have default values. Attributes cannot really be declared

mandatory, since their values can only be compulsorily set by default values. The

de�nition of an relationship instance can be enforced by specifying their multiplicities

greater than zero.

76

4 Evaluation of repository services

To sum up, the information model can freely be changed in any state of the repository,

except for elements presently accessed by other users. But a migration of repository

data due to a changed information model is natively not supported, neither auto-

matically nor by re-importing repository data, but may manually be achieved by

scripting an import algorithm. The evaluation is summarized in Table 4.12.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

H# n.a. H#
Table 4.12: ADOxx � Evaluation of information model changes

4.3.14 ADOxx � Summary of evaluation

Scenario
Ful�llment

of scenario

Ontological

correctness

of models

Tool

handling

Hierarchy modeling # H#

Temporal and variant

modeling

Non-rigid typing and

principle of identity
n.a.

Multi-level modeling H# H# H#

Life-cycles H# #

Projects H# H#

Standardization H# # H#

Goals H# H# H#

Responsibilities

Role-based access

control
H#

Queries H# n.a.

Information model

changes
H# n.a. H#

Table 4.13: ADOxx � Summary of evaluation

77

4 Evaluation of repository services

ADOxx ful�lls most of the requirements and provides a fairly comfortable graphic

environment to realize the scenarios in most of the cases. In particular, the utilization

of the time �lter or access control functionalities is regarded as a realization, re�ecting

the true ontological nature thereof. In contrast, the need of the scripting functionality

resulted in impairing the evaluation of the ontological correctness of models and

tool handling, but is needed in most of the scenarios for a complete ful�llment.

The evaluation of the di�erent scenarios is summarized in Table 4.13, providing an

overview of the general EA information modeling capabilities of ADOxx.

4.4 Tricia of InfoAsset AG

Tricia is an open source Java platform, continuously re�ned and extended at the

chair of Software Engineering for Business Information Systems at the Technische

Universität München. Tricia is used to implement enterprise web information sys-

tems and social software solutions (cf. [BMN10]) including integrated web collab-

oration services for members of an extended enterprise, such as wiki collaboration,

personal and team blogging, �le and directory sharing, social networking, content

publishing and site navigation (cf. [In10]). Thereby, Tricia follows a data model

driven approach to system implementation, capturing substantial parts by domain-

speci�c models, namely data model, access control model, and interaction model (cf.

[BMN10]). This evaluation is primarily concerned with EA information modeling

for which reason the focal point lies on the data model and the corresponding data

modeling framework of Tricia.

4.4.1 Tricia � Tool structure

According to Büchner et al. in [BMN10], an application implemented on the Tricia

platform has a modular layout consisting of the core and one or more plugins. The

core de�nes abstractions required by virtually all applications built on Tricia, getting

extended by plugins, which in turn can depend on the core and each other, while

spanning a graph of dependencies, that has to be acyclic (cf. Figure 4.27).

Within the composition of core and plugins, each plugin de�nes a data model, an

access control model and an interaction model, in doing so each plugin de�nes a

fragment of the data structure and behavior of the entire application. The core is an

inherent part of the Tricia platform consisting of three layered Java frameworks, as

depicted in Figure 4.27. Büchner et al. describe in [BMN10] that each of these frame-

works provides abstractions and extension points, instantiation and customization

78

4 Evaluation of repository services

Figure 4.27: Tricia � Architectural overview of a typical application in accordance
with [BMN10]

of which is used to build applications on Tricia. Thereby, declarative, model driven

customizations and manually speci�ed customizations are distinguished. Büchner et

al. further emphasize in [BMN10] the central role of the data modeling framework

as foundation for model driven development.

4.4.1.1 Tricia � Data modeling framework

The data modeling framework provides the modeling concepts in form of Java classes,

that are instantiated and customized to structure the data models of the core and

the plugins. Since the data modeling framework of the Tricia platform constitutes a

introspective whitebox framework, the information model de�ned by its instantiation

can subsequently be extracted from the code. An overview of all concepts in an

UML-based diagram (cf. [OM10]) or the meta-model of the Tricia modeling frame-

work, respectively, is depicted in Figure 4.28. So as to convey an impression of the

information modeling capabilities of Tricia, the most important modeling concepts

are brie�y touched on in accordance with Büchner et al. in [BMN10], for more details

also see [BMN10, In10].

Technically speaking, domain objects are represented by instances of the type En-

tity, that is subtyped by each type of the information model. An entity or a type

of the information model, respectively, makes up a rigid sortal universal in line with

Guizzardi in [Gu05]. Throughout the evaluation of Tricia a type of the information

79

4 Evaluation of repository services

Figure 4.28: Tricia � Meta-meta-model of the data modeling framework
(cf. [BMN10])

model refers to an instance of the data modeling framework type Entity. Since

the data modeling framework is developed in Java, the same reuse mechanisms by

inheritance as provided by Java can be used, restricting the inheritance of each type

to a single other type and in Tricia the highest inheritance level always inherits the

type Entity. To address this problem and to enable �ner grained reuse, Tricia

provides the concepts of mixins, that is comparable to mixin universals in terms of

Guizzardi in [Gu05]. Mixins constitute a dispersive type, that assigned to a type may

introducing additional properties and relationships thereto. In Tricia, two kinds of

mixins are distinguished, realized by the framework types MandatoryMixin and

OptionalMixin. Mandatory mixins are comparable to rigid mixin universals or

categories in line with Guizzardi in [Gu05], which are simply called mixins, as de-

scribed in Section 2.3. The latter kind, optional mixin, makes up a non-rigid mixin

universal, that can be assigned and removed at runtime. The capability of being

assigned and removed at runtime deviates from Guizzardi's notion of a non-rigid

mixin universal in [Gu05], but �ts fairly well to the non-rigid mixin type, elaborated

in Section 3.2.3. In contrast to Guizzardi in [Gu05], mixins can only be assigned to

entities and are restricted to a single inheritance chain of mixins, but dependencies,

stating that the assignment of a speci�c mixin requires the assignment of one or

more further mixins, can be de�ned. In the following mandatory mixins are only

80

4 Evaluation of repository services

called mixins, since mandatory mixins are the more common mixin type, as outlined

in Section 2.3 ,and hence, it is explicitly stated when alluding to optional mixins.

Properties of modeling types are realized by the data modeling framework type

Property, for which several specializations are natively provided and each of which

can further be customized. Relationships among modeling types are realized by

modeling the end points thereof, in Tricia in Tricia. A relationship end point is

represented by the framework type Role, which can be assigned to the type Asset,

the supertype of Entity andMixin, for which reasons both of types and mixins can

establish relationships. The data modeling framework of Tricia specializes a Role to

be either a one or a many end point, establishing a directed or undirected relationship,

for which an opposite end point has to be speci�ed in the latter case. Property

and Role are subsumed by the supertype Feature, which de�nes some common

properties handed down to both of the specializations. Worth mentioning thereof is

the boolean property isPersistent, which speci�es whether a feature is considered

while persisting the containing type in the repository. Thus, non-persistent features

can be utilized to construct derived relationships and properties.

Trica provides a functionality to check constraints and integrity of feature values,

which is based on the conceptValidator. A validator is established by instantiating

the type Validator and providing the actual algorithm as hand-written customiza-

tion. Validators can be assigned to each feature, accordingly to each role and kind of

property. Besides manually creating validators, the core provides a set of prede�ned

validators for properties and roles, such as the NotNullOneValidator for roles.

A further concept applying to both kinds of features, is ChangeListener. Change

listeners are supposed to propagate data model changes through the system, getting

noti�ed when the observed feature is changed.

4.4.1.2 Tricia � Information Modeling

All modeling types, created during the information modeling, have to reside in a

plugin that is dependent on the Tricia core in order to resort to the therein de�ned

functionality, regardless of directly or indirectly. Therefore, it is assumed that mod-

els, described throughout the evaluation, are accordingly realized in such a plugin, for

which reason a repetitively stating in each scenario is abstained from. Modeling in

Tricia means to produce code, or in other terms to code the information model types,

their contained features and so forth, in a Java integrated development environment

(IDE). Since the Tricia core and the already existing plugins are implemented by

plugin-projects in the Eclipse IDE (cf. [Ec10a]), Eclipse is the recommended IDE

81

4 Evaluation of repository services

for building applications based on the Tricia platform. Besides some Eclipse-plugins

facilitating the development using the Eclipse IDE, the Tricia platform itself only

provide limited support for information modeling. For improving the developer ex-

periences, Tricia provides several templates for boilerplate code using the Eclipse

built-in Code Templates mechanism. Thus, recurring code fragments, such as the

de�nitions for properties or roles, can easily be introduced by corresponding skele-

tons of the code templates, that subsequently has to be complemented by speci�c

code parts.

Nevertheless, Tricia provides no support for graphically modeling new types of an

information model. Graphic representations of the information model can only be

extracted as recently as the information model is created using Java code. Tricia

provides a plugin to analyze and visualize classes of the information model based on

code introspection. Thereby, tree-based or UML-based visualization can be gener-

ated, and the UML-based visualization, which is shown for the core class Person

in Figure 4.29, even provides functionalities to edit the visualized classes. Thus,

existing properties and roles can be edited or removed and new ones added, as well

as mixins can be added to and removed from a class, but all of these actions are

only possible for existing classes, for which reason this graphical modeling editor

cannot be used for introducing new types into the information model. Generally, the

editing of the classes takes place by automatically modifying or introducing code in

the corresponding Java class during the editing.

Figure 4.29: Tricia � UML-based editor

The Tricia Eclipse-plugin used for introspecting implemented classes was extended

by the graphical UML-based modeling feature shortly before the submission date of

this thesis, for which reason a �rst version thereof was put under investigation. Since

in the used version an introduction of new types, that is to say the prerequisite for

82

4 Evaluation of repository services

modeling, is not yet supported, the feature does not enable graphical modeling and

so the criteria tool handling is regarded as unsatisfactory ful�lled, resulting in an

empty Harvey Ball in each evaluation thereof, if not otherwise stated in the concrete

evaluation.

4.4.2 Tricia � Hierarchy modeling

The model fragment of the I-Pattern I-12 of the EAM Pattern Catalog (cf. [se10b])

depicted in Figure 3.1 can be modeled with the Tricia data modeling framework

by introducing the type BusinessProcess, as well as the subordinating and the

ordering relationship, as described in Section 4.4.1. The restrictions of multiplicities

can be realized by corresponding role validators.

The business process hierarchy model fragment extended by constraints for realiz-

ing an acyclic subordination, that is to say a hierarchy, as well as a linear order in

Figure 3.2 may be realized by creating two validators ensuring these issues. Thus, a

HierarchyValidator, representing a building block for hierarchies, may be cre-

ated, which can be reused for all self-relationships that are supposed to be hierarchic.

Similarly, a LinearOrderValidator can be introduced to the information model

for creating a building block that ensures a linear ordering. Concepts for distin-

guishing between di�erent types of part-whole relationships may be developed using

validators, too, either by aggregating a couple of simple validators or by creating an

ontological meaningful validator representing an entire ontological type of part-whole

relationships.

Assigning a validator that ensures a self-relationship to constitute a hierarchy, is

regarded as denoting a self-relationship as a hierarchic or acyclic one, respectively.

Since comprehensive ontological concepts can be realized by creating a corresponding

validator, the ontological correctness is satisfactory ful�lled. The evaluation results

are summarized in Table 4.14.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 #
Table 4.14: Tricia � Evaluation of hierarchy modeling

83

4 Evaluation of repository services

4.4.3 Tricia � Temporal and variant modeling

In order to achieve temporal-dependencies of architecture elements, the mixin Tem-

poral can be introduced to one of the plugins or the core by subtyping Manda-

toryMixin. Since mixins can only be assigned to entities, relationships cannot

directly be denoted as time-dependent by default. Hence, the model fragment of

Figure 3.4 may be realized by introducing the auxiliary type ApplicationHost to

the I-Pattern I-24 of the EAM Pattern Catalog (cf. [se10b]), assigning the aformen-

tioned mixin Temporal thereto and adding a validator to the relationship role of

BusinessApplication, which ensures the uniqueness of the hosts-relationship at a

certain point in time. The mixin Bitemporal (cf. 3.7) may similarly be introduced

for realizing bitemporal modeling.

Since the utilization of an additional constraint in form of a validator and the auxil-

iary type ApplicaitonHost impairs the clarity of the model fragment and veil the

ontological nature thereof, manually customizations of an extended mixin Tempo-

ral can be used to create a more concise solution of the temporal association pattern

(cf. [CEF99]). The customizations can be enforced by declaring an extension of the

mixin Temporal, exemplary called TemporalRole in the following, abstract, so

that each abstract method therein has to be manually complemented when assigning

the mixin TemporalRole to a type. Thus, a validator may be assigned to the pe-

riod of validity of the mixin TemporalRole using an abstract method therein, that

speci�es the role of the type, the mixin is assigned to, for which a period of validity is

supposed to be speci�ed. On basis of the speci�c role of the base type, the validator

of the period of validity can reject combinations of time periods and role instances,

if a role instance with the requested period of validity already exists. The abstract

method de�ning the time-dependent role has to be complemented, when the mixin

TemporalRole is assigned to a type. Using this extended mixin for temporality,

even the intermediate type ApplicationHost is no longer necessary, since the role

of the type OrganizationalUnit may be directly employed by correspondingly

complementing the aforementioned abstract method.

The mixin TemporalRole constitutes a modeling building block for introducing

temporal dependency to relationship end points, which can similarly be achieved for

bitemporality. Thus, the ontological nature of temporal aspects can be bundled in a

single mixin that has to be customized to its actual context of utilization. Despite

needing manual customizations, the ontological nature of temporality is partially

re�ected by the presented solution on basis of mixins The de�ciency of directly de-

84

4 Evaluation of repository services

noting relationships as time-dependent, resulted in an impairment of the ontological

clarity of the models. The evaluation is summarized in Table 4.15.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 #
Table 4.15: Tricia � Evaluation of temporal and variant modeling

4.4.4 Tricia � Non-rigid typing and principle of identity

The data modeling framework of Tricia distinguishes between entities and mixins,

whereas an instance of a mixin cannot exist on its own without an entity, being

assigned to. Similar to the notion of sortal universals and mixin universals (cf.

[Gu05]), mixins are dispersive types, which are able to apply to several particulars

or entities, respectively. In this vein, the data model framework type Entity de�nes

a principle of identity, inevitable being the ultimate sortal universal of each type in

the information model.

OptionalMixin is the only natively supported non-rigid type that can be assigned

to and removed from a type at runtime. Hence, there is no natively provided type

that can be compared to non-rigid sortal universals. As well, optional mixins do not

�t in Guizzardi's typology of substantial universals due to their exceptional position

as described in Section 4.4.1. But exactly the capabilities due to this exceptional

position enable a way of realizating roles, life-cycle phases and changeable properties.

The role ProjectMember in the model fragment in Figure 3.5 may be realized

by creating an optional mixin ProjectMember that establishes a relationship to

the type Project and can be assigned to and removed from instances of the type

Employee as needed at runtime. Similarly, life-cycles can be realized, which is

described in detail in Section 4.4.5.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 H# #
Table 4.16: Tricia � Evaluation of non-rigid typing and principle of identity

85

4 Evaluation of repository services

In conclusion, the requirements of this scenario can be ful�lled by the modeling

capabilities of Tricia, but the realization of roles and phases using optional mixins

only partially re�ects their ontological nature. The evaluation is summarized in

Table 4.16.

4.4.5 Tricia � Multi-level modeling

In Tricia the information modeling is achieved by instantiating the concepts of the

data modeling framework, which is actually implemented by subtyping the frame-

work types. Hence, the instantiation of the data modeling framework even folds two

ontological levels into the one modeling level, as normally provided along with an in-

stantiation level by a typical object-oriented programming language, such as Java. A

further division into multiple instantiation levels is not achievable in an ontological

correct way. The required information may be structured by applying the type-

object pattern and related patterns, resulting in a further mismatch of ontological

and modeling levels, causing unnecessary complexity of the information model.

Even though the needed information can be structured using e.g. the type-object

pattern, the actual purpose of this scenario is to evaluate the capability of modeling in

multiple ontological abstraction levels, which is not supported by the Tricia platform,

resulting in the evaluation shown in Table 4.17. Due to the missing support of the

requirements re�ected by this scenario, the tool handling criteria is omitted.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

n.a.

Table 4.17: Tricia � Evaluation of multi-level modeling

4.4.6 Tricia � Life-cycle

As mentioned in Section 4.4.4, phased sortal universals may be realized using the

data modeling framework type OptionalMixin. For stating that a type has a life-

cycle assigned, a mixin Lifecycled may be utilized that introduces a dependency

to an abstract optional mixin, that in turn has to be specialized into a partition of

optional mixins composing the di�erent life-cycle phases. By assigning the mixin

Lifecycled, the belonging to a life-cycle phase becomes mandatory for the life-

cycled type, since concurrently an optional mixin of the life-cycle phases becomes

86

4 Evaluation of repository services

required. Using manual customizations the required abstract optional mixin, de�n-

ing the partition of life-cycle phases, can be individually de�ned while assigning the

mixin Lifecycled to a type of the information model. Thus, an individual adaption

of the type's life-cycle phases is enabled, while utilizing the same recurring modeling

building block.

Since the di�erent life-cycle phases are represented by dispersive types that are able

to bear properties and establish relationships on its own, the changing nature of

the di�erent life-cycle phases can be expressed thereby. The transition between

di�erent life-cycle phases can be controlled by utilizing an approach that controls

life-cycle transitions by di�erent kinds of work packages of projects, as depicted in

Figure 3.19. The di�erent optional mixins, composing the life-cycle phases in the

exemplary outlined life-cycle realization above, may introduce the relationships to the

corresponding work packages in order to enable a controlled life-cycle transition.

The scenario can be ful�lled by a partition of dispersive types that may be exclusively

de�ned for a speci�c life-cycle application or reused for several types as far as possible

and the transition between phases of which may be controlled by di�erent kinds of

work packages. Although a phased sortal universal is not supported on its own, the

outlined solution is regarded satisfactorily re�ecting the ontological nature thereof.

Hence, the evaluation in Table 4.18 is concluded.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 #
Table 4.18: Tricia � Evaluation of life-cycle

4.4.7 Tricia � Projects

The mixin Affectable can directly be introduced to the information model, es-

tablishing the affects-relationship between the type Project and all types the

mixin Affectable is assigned to. In this way, the role of projects being the central

means of a�ecting the EA information model (cf. Figure 3.21) is realized, while re-

�ecting its true ontological nature. Relationships are represented by their end points

at the participating elements in Tricia, for which reason a rei�cation of the relator

hierarchy in Figure 3.22 is not supported by the Tricia data modeling framework.

The di�erent kinds of the affects-relationship may be modeled by discrete roles

87

4 Evaluation of repository services

for each relator-type in the type Project and the mixin Affectable, the coherent

utilization of which has to be ensured by validators, e.g. checking that only one of

these roles is used by a speci�c instance at the same time.

The time at which a project is executed can be introduced by assigning the mixin

Temporal to the type Project, which adds a period of validity thereto. Such

a temporal dependent project in combination with a life-cycled BusinessApplica-

tion, as realized as described in Section 4.4.6, can be utilized to realize the modeling

building blockOrganizationalUnit-hosts-OperationalBusinessApplication

in Figure 3.25.

Trcia enables the modeling of projects as means of a�ecting the EA and the mod-

eling of time-dependent project portfolios de�ning several variants of the future

EA. Only the relator hierarchy is not natively supported, but the distinctions of

e�ects can also be achieved by di�erent kinds of project work packages, as describte

in Section 4.4.6. As the modeling bulding block OrganizationalUnit-hosts-

OperationalBusinessApplication realizes variant modeling in an ontological

meaningful way, also the implementation in Tricia satisfactorily ful�lls the scenario,

leading to an almost complete ful�llment, as summarized in Table 4.19.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 #
Table 4.19: Tricia � Evaluation of projects

4.4.8 Tricia � Standardization

The modeling building block Standard-Standardizable depicted in Figure 3.27

can be established using the mixins Standardizable and Standard, which in-

troduce the allowedFor- and the conformsTo-relationships among each other.

These concepts are natively supported by the concepts of the Tricia data modeling

framework. Thus, arbitrary architecture elements can be denoted as able to conform

to a standard and in turn elements that potentially can compose a standard can be

denoted, as well.

For documenting, whether a standardizable architecture element does not conform

to a standard deliberately or accidentally, the modeling building block Standar-

dizable-NonStandardized-Standardized-Standard introduces two non-rigid

88

4 Evaluation of repository services

mixins in order to address the true ontological nature of this issue. As outlined

in Section 4.4.1, optional mixins are comparable to non-rigid mixins in the notion

descibed in Section 3.2.3. Hence, a similar approach as utilized for life-cycle phases

can be applied on the complete, disjoint partition of non-rigid mixins specializing

the mixin Standardizable in its two mutually exclusive states. In this vein, the

mixin Standardizable speci�es a dependency on an abstract optional mixin,

which is subtyped into the non-rigid mixins NonStandardized and Standard-

ized. Furthermore, the conformsTo-relationship is shifted to the optional mixin

Standardized, whereas the optional mixin NonStandardized introduces a rela-

tionship to the type Rationale in order to justify an exception.

As described in Section 3.2.3, the conformsTo-relationship is a formal relation-

ship (cf. [Gu05]), which is derived from the actual context of the participating

standardizable architecture element. In the data modeling framework of Tricia, per-

sistent and non-persistent features are distinguished. Thereby, non-persistent roles

and properties can be utilized as roles and properties, which are derived from the

actual runtime values of other properties and relationships of the containing type.

Hence, the conformsTo-relationship can be realized by such a non-persistent role

deriving the conformed standard from the actual usage or composition of architec-

ture elements, i.e. a business application would derive its standard from the actual

utilization of technologies. Thereby, the derivation algorithm is de�ned using manual

customizations at the place of non-persistent role. Furthermore, change listener can

be assigned to the roles of conformsTo for maintaining the derived relationship.

In conclusion, the utilization of the concepts provided by the data modeling frame-

work of Tricia as described enables a complete and ontologically correct model-

ing of the scenario. Moreover, the introduction of the di�erent mixin-types cre-

ates the reusable modeling building block Standardizable-NonStandardized-

Standardized-Standard that only needs a few context-speci�c adaptions for its

assignment, resulting in the evaluation in Table 4.20.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 #
Table 4.20: Tricia � Evaluation of standardization

89

4 Evaluation of repository services

4.4.9 Tricia � Goals

Assigning goals to architecture elements and measuring their achievement following

the Goal-Question-Metric-approach, means to deal with multi-level modeling and

mixin-types in order to achieve an ontological well-founded conceptualization (cf.

Section 3.2.4. Mixins are natively supported by Tricia, but multi-level modeling can

only be achieved by workarounds, such as the type-object pattern or the type-square

pattern (cf. [YJ02]), as outlined in Section 4.4.5.

The information structured by modeling building block Goals-Question-Metric

can be modeled using amongst others the type-square pattern to enable a context-

speci�c assignment of appropriate metrics to the questions. The questions can be

realized by mixins, thus adding the contained metrics directly the the type, for

which the corresponing goal is supposed to be measured. Hence, only the mixins,

introduced for questions that operationalize goals, partially re�ect the ontological

nature of measuring goals, resulting in a partially ful�lled ontological correctness, as

shown in Table 4.21.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 H# #
Table 4.21: Tricia � Evaluation of goals

4.4.10 Tricia � Role-based access control

According to Büchner et al. in [BMN10], the Tricia access control framework allows

to de�ne access rights on type-level for speci�c types of the information model as

well as on instance- or object-level for concrete instances of the types. Thereby, read,

write and administration rights are distinguished that can be granted to user groups

or individual users. User groups can be compared to role-mixins in Section 3.3.1,

since each individual user can be a member of multiple user groups, that can be

joined due to the role taken by users in a certain context. The access rights granted

to the di�erent roles or user groups, respectively, are automatically enforced by the

Tricia access control framework and thus Tricia natively realizes a kind of role-based

access control approach (cf. Section 3.3.1).

The access control functionality of Tricia, as already used by existing plugins, such as

the Wiki -plugin, is currently realized by adding a many-role for writes and readers,

90

4 Evaluation of repository services

respectively. Shifting these properties into a mixin Accessible would emphasize the

nature of accessibility and foster the reuse of this feature. Currently, access control

policies are restricted on type- and object-level and cannot be de�ned for single

properties of a type. Even the shifting of the roles writers and readers, de�ning

the access right, into a mixin type does not enable access rights on property level,

since mixins can only be assigned to subtypes of Entity. The relator hierarchy in

Figure 3.37 is natively realized by the readers and writers roles, since readers are

regarded as additional users restricted to read access.

The access control functionality of Tricia using the mixin Accessible re�ects the

ontological nature of being accessible and also a structuring of users in groups is na-

tively supported, but access rights on attribute level cannot be speci�ed, concluding

in the evaluation in Table 4.22.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

H# #
Table 4.22: Tricia � Evaluation of projects

4.4.11 Tricia � Responsibilities

For de�ning a responsibility structure a mixin Manageable can be introduced to

the information model, which establishes a relationship to users or user groups that

bear responsibilities for speci�c, manageable architecture elements, as described in

Section 3.2.5.

For extending the modeling building block Responsibilities by access control func-

tionalities as depicted in Figure 3.39, the mixinManageablemay subtype the mixin

Accessible and extends the properties of which by the role responsibles. The

automatic inheritance of write access rights for responsible users may be achieved

by adding a ChangeListener to the role responsibles, that automatically adds

new responsible users or user groups to the list of writers. The de�nition of responsi-

bilities do not have to be restricted to a single type thereof, rather multiple roles can

be introduced, de�ning separate kinds of responsibilities or di�erent constituents of

responsibility that have to be considered in conjunction.

The modeling building blockResponsibilities can be introduced to the information

model, while re�ecting the ontological nature of the involved concepts and reusing the

91

4 Evaluation of repository services

existing access control functionality of Tricia (cf. Sections 3.2.5 and 3.3.1). Hence,

the evaluation of this scenario causes the results in Table 4.23.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 #
Table 4.23: Tricia � Evaluation of responsibilities

4.4.12 Tricia � Queries

The Tricia platform provides set-oriented querying using a declarative query lan-

guage, as well as element-oriented querying via hyperlinks (cf. [BMN10]). The as-

sociations among instances of object models can be traversed by following the roles

of an object. The information model can also be extracted and inspected from the

code, since the Tricia data modeling framework is based on an introspective white-

box framework. Furthermore, full-text or structured queries for given or arbitrary

types can be performed on the repository.

Impact analyses on an ex ante unknown information model can be performed by

introspecting the information model and subsequently applying queries on the ex-

tracted meta-information. The declarative query language is realized by the type-

hierarchy Query, providing functionalities to perform queries ranging from a simple

inquiry on a single type up to complex joins5 on multiple types. Thereby, transi-

tive queries on self-relationships are natively not supported and have to be manually

implemented by traversing the relationships of the object models. Moreover, infor-

mation that is possibly structured in a transitive self-relationship can be inquired by

the full-text search of Tricia, which inquires all objects containing the entered data

or text, irrespective of their information structure.

Temporal aspects, modeled by a mixin type, such as the mixin Temporal, described

in Section 4.4.3, are accessible via the properties stating the period of validity, that

can be incorporated by a query, as well. While performing a query, the users issuing

the query can only access the objects that are accessible according to their access

right derived from user groups or individually de�ned.

The Tricia platform provides comprehensive query functionalities, in particular the

full-text query functionality provides powerful inquiries of information without hav-

5cf. QueryDoc of the Tricia Javadoc

92

4 Evaluation of repository services

ing to know its internal structure. The de�ciency of transitive queries by default,

that are regarded important for intricate impact analyses and thereto connected

determining of the transitive closure, concludes an only partially ful�llment of this

scenario, as depicted in Table 4.24.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

H# n.a. #
Table 4.24: Tricia � Evaluation of queries

4.4.13 Tricia � Information model changes

The information model can be freely created in Tricia. Afterwards types, properties,

relationships and all of the other elements of the information model can be changed

or removed, even if repository data exists therefor. Necessary data migration in the

repository after having performed some information model changes, is automated by

the data modeling framework (cf. [BMN10]). The automated migration takes place

on application start, when Tricia compares the data model de�ned by the types of

the information model and the existing persistent data model in the database. If

di�erences between the new and old data model are detected, an SQL script will

be created for migrating the old data schema and the existing data to the now one.

This script has to be manually applied to the data base server. The data migration

establishes a consistent state of the repository and adapts its information structure

to the changed information model. Furthermore, there is the possibility to apply

migration handler on start of a Tricia application, which can apply more complex

migration routines that are covered no more by the automatic schema and data

migration.

Properties and roles can be declared mandatory by a validator that prevents a null

or an empty value for a feature. Furthermore, a default value can be provided by

assigning a change listener that automatically sets the default value at creation of a

feature. This default value can either be a static value or a compound on, assembled

further runtime information.

Thus, the EA information modeling can freely be performed and also changes therein

are almost automatically migrated to the repository by the Tricia data modeling

93

4 Evaluation of repository services

framework, resulting in a satisfactory ful�llment of this scenario, as shown in Table

4.25.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 n.a. #
Table 4.25: Tricia � Evaluation of information model changes

4.4.14 Tricia � Summary of evaluation

The Tricia data modeling framework provides some powerful concepts. Mixins are

propably a kind of unique selling point, which enable an ontological correct modeling

of dispersive types and even a non-rigid version thereof is provided, that can be

assigned to and removed from information model types at runtime.

Scenario
Ful�llment

of scenario

Ontological

correctness

of models

Tool

handling

Hierarchy modeling #

Temporal and variant

modeling
 #

Non-rigid typing and

principle of identity
 H# #

Multi-level modeling # # #

Life-cycles #

Projects #

Standardization #

Goals H# #

Responsibilities #

Role-based access

control
H# #

Queries H# n.a. #

Information model

changes
 n.a. #

Table 4.26: Tricia � Summary of evaluation

94

4 Evaluation of repository services

Mixins in combination with validators, which may embody complex algorithms to

ensure ontological types of relationships, such as acyclic self-relationships, are primar-

ily responsible for realizing most of the scenarios in a way re�ecting the ontological

nature thereof. Thereby, the required modeling building blocks can quite closely

be introduced into the information model. In contrast, scenarios asking for multi-

level modeling are only realized by workarounds twisting the required ontological

levels into the two level modeling paradigm provided by the object-oriented model-

ing languages Java. The de�ciency of multiple modeling levels or even a possibility

to structure di�erent abstraction levels, as well as a complete graphical editor are

shortcomings. The evaluations of the di�erent scenarios are summarized in Table

4.26.

4.5 Eclipse Modeling Framework of the Eclipse

Foundation

The Eclipse Modeling Framework (EMF) Project belongs to the Eclipse Projects as

a subproject of the Eclipse Modeling Project. The Eclipse Projects endeavor of the

Eclipse Foundation focuses on building an open development platform comprised of

extensible frameworks (cf. [Ec10a]). As part of this endeavor the Eclipse Foundation

de�nes the EMF project in [Ec10a] as follows:

The EMF project is a modeling framework and code generation facility for

building tools and other applications based on a structured data model.

From a model speci�cation described in XMI, EMF provides tools and

runtime support to produce a set of Java classes for the model, along

with a set of adapter classes that enable viewing and command-based

editing of the model, and a basic editor.

In EMF a model can either be de�ned in Java, XML Schema [Wo04] or UML [OM10],

from which the others and the corresponding implementation classes can be gener-

ated (cf. [Bu09b]). In this vein, EMF relates modeling concepts directly to their

implementations, thus unifying the three technologies Java, XML [Wo08] and UML

[OM10].

EMF only provides a simple tree-based editor for Ecore, the meta-model of EMF,

for which reason the graphical UML-based editor of the Ecore Tools is used for the

evaluation of EMF. The Ecore Tools constitute a component of the Eclipse Modeling

Framework Technology (EMFT) Project, which is similarly to EMF a subproject of

95

4 Evaluation of repository services

the Eclipse Modeling Project. EMFT is meant to be an incubator project for new

technologies that extend or complement EMF (cf. [Ec10a]).

4.5.1 EMF � Tool structure

The foundation for modeling with EMF is Ecore its meta-model and therefore the

model of information models realized in EMF. Information models are called core

models in EMF. Ecore is a small and simpli�ed subset of full UML [OM10], thus

making up an e�cient Java implementation of a core subset of the Meta Object Fa-

cility (MOF) [OM06a]. In accordance with Budinsky et al. in [Bu09b], the Essential

MOF (EMOF) constitutes a subset of the MOF model that is similar to Ecore.

There are small di�erences between Ecore and EMOF, mostly con�ned to the nam-

ing of concepts. According to Budinsky et al. in [Bu09b], Ecore enables EMF to

transparently write and read serializations of EMOF.

As alluded to above, a core model can be created from Java interfaces by intro-

specting the annotated Java code, XML Schema [Wo04] model de�nitions or UML

[OM10] models. There are three possibilities to start with an UML model. Firstly,

the simple tree-based editor of EMF or another graphical editor, such as the one of

the Ecore Tools, can be used. Secondly, the EMF Model wizards provide an exten-

sible framework, into which model importers for di�erent formats can be plugged,

which natively only supports model de�nitions created in Rational Rose. Finally,

serialized Ecore exports of an UML tool can be imported necessitating a corre-

sponding conversion support by the UML tool. If Java interfaces are used as source

of the core model, the interfaces as well as their contained references and attributes

or rather their corresponding get-methods have to be denoted by @model in the

Javadoc annotations to be identi�ed as model classes. The @model annotation can

be complemented with further information, such as whether a reference is a contain-

ment reference or which type is contained in a list of references. Throughout the

evaluation, the graphical editor of the Ecore Tools as a part of the Eclipse Model-

ing Project are utilized for creating core models. This editor overall provides the

same con�guration possibilities of the tree-based editor, except for i.e. some detailed

type-de�nitions of generic data-types, and hence supports all concepts of the Ecore,

required for the evaluation.

Java, UML or XML Schema serve as sources of a core model, but none of them

is the utilized form of persisting core models, since all of them carry additional

information beyond what is captured in a core model (cf. [Bu09b]). Hence, core

models are represented in the XML Metadata Interchange (XMI) format, which is

96

4 Evaluation of repository services

Figure 4.30: EMF � An ecore model and its sources (cf. [Bu09b])

the standard for serializing meta-data concisely using XML. According to Budinsky

et al. in [Bu09b], the core model is the center of the EMF world between a persistent

model form and the Java code. There are also other forms of persistent model

representations possible instead of an XML Schema, as depicted in the �big picture�

of EMF in Figure 4.30.

4.5.1.1 EMF � Code Generation

After having created a core model in whatever way, the core model is used to generate

model classes. Thereby, EMF generates a Java interface and an implementation class

for each core model type. This is a design choice of EMF that among others makes

up a pattern that is required to support multiple inheritance in Java, as it is in

EMF. Each generated interface extends directly or indirectly EObject, the base

interface of EMF, which is the EMF equivalent to java.lang.Object (cf. [Bu09b]).

Along with the extension of EObject, methods for returning the EClass of an

object, the object's containing object and resource are introduced as well as an API

for accessing an object re�ectively is provided. These re�ective API is required for

generically accessing objects, whereas containing objects and resources introduce two

integral parts of the persistent API of EMF.

Moreover, EObject extends the interface Notifier that introduces model change

noti�cations comparable to the Observer design pattern (cf. [Ga95]). Observers can

be assigned to the set-methods of an attribute and are noti�ed when the attribute

value changes, e.g. EMF objects can be observed to update views, dependent objects

and so forth. Noti�cation observers are called adapters in EMF, since they are often

additionally used to extend the behavior of the objects, they are attached to (cf.

[Bu09b]).

Besides the described interfaces and classes, there are some other important classes

that are generated for the model. On the one hand a factory, which is supposed to

97

4 Evaluation of repository services

be used for creating model objects, and a package, which provides access to all Ecore

meta-data for the model are generated. On the other hand an adapter factory is

produced to implement type-speci�c adapters, as well as a switch class that provides

a callback mechanism based on the object's type. Adapters are used extensively in

EMF as observers and to extend behavior, thereby switch classes are resorted to in

their implementation. Adapters are the foundation for the UI and command support

provided by the EMF.Edit framework.

EMF is targeted on combining generated and hand-written parts of code. For identi-

fying generated parts during a regeneration of code, EMF uses @generated markers

in the Javadoc, so i.e. any method without such an annotation will remain unaf-

fected during regeneration. A hand-written piece of code without an @generated

tag always takes precedence over an equivalent named generated one.

Most of the information needed by the EMF code generator is stored in the core

model, further information for generating code and consistently regenerating, e.g. for

distinguishing between hand-written and generated parts, are stored in the generator

model. The generator model provides access to all required information including the

corresponding core model, which is wrapped by the generator model. When the EMF

generator is used, actually the generator model is accessed instead of the core model,

which is in turn directly accessed by the generator model. Thus, the core model

remains a concise and pure information model, as it is intended to. In order to

address synchronization issues among core model and generator model, elements of

the generator model are able to automatically reconcile themselves with changes to

their corresponding core model elements (cf. [Bu09b]).

EMF facilitates creating objects by automatically generated factories and a mech-

anism for persisting and referencing other persisted objects is provided, as well.

For that, a default XMI serealizer is included, able to persist objects generically

from any model, not just Ecore (cf. [Bu09b]). EMF supports persisting objects in

an XML instance document, provided that the information model is de�ned using

XML Schema. Furthermore, EMF allows to persist objects in an arbitrary form

using hand-written serialization code and nevertheless supports transparently refer-

encing among objects in di�erent models or documents, irrespective of their form

of persistence. At this point the aforementioned methods for returning the object's

containing object and resource come into play, since an object is persisted in an Re-

source and objects contained by another objects are automatically persisted in the

same resource. Resources in turn are contained in an ResourceSet, which is also

used to create instances of Resource. According to the de�ned form of persistence,

98

4 Evaluation of repository services

di�erent types of resources may be contained in a resource set, that manages the

cross-document or cross-resource referencing, respectively.

Besides generating the core model and the corresponding implementation from a se-

rialized source, EMF provides the creation of a dynamic core model at runtime using

the re�ective API (cf. [Bu09b]). Thus, a core model can be created without gener-

ating any Java classes, using the re�ective methods for creating objects, attributes

or references as well as manipulating their properties.

Figure 4.31: EMF � EMF.Edit code generation

The EMF.Edit framework is able to generate functional viewers and editors for edit-

ing instances of a core model. Therefore, the EMF.Edit framework includes generic

reusable classes for building editors for core models, providing di�erent item provider,

such as content and laber provider, as well as classes to display models using standard

desktop viewers, e.g. jFace, and property sheets. Furthermore, EMF.Edit provides

a command framework including several generic command implementation classes.

All required item providers and other classes, needed for building a complete editor

plugin, can be generated by the EMF.Edit code generation support. After having

generated the model code, a fully functional editor can be generated by conduct-

ing the Generate Edit Code and Generate Editor Code mechanisms of the generator

model (cf. Figure 4.31), showing that the EMF.Edit code generator is simply another

part of the generator model. The EMF.Edit code generation produces a simple tree

view based editor to create model instances, that serves as starting point for devel-

oping more sophisticated editor, adapted to the speci�c concerns. The same actions

that are provided by the editor can also be performed using the re�ective API, even

for dynamic core models that do not stem from a generation.

4.5.1.2 EMF � Ecore

As already mentioned, Ecore constitutes the meta-model of EMF that de�nes the

structure of core models or information models, respectively. Ecore provides some

concepts that are not directly included in Java, such as containment and bidirectional

relationships or multi-inheritance, but nonetheless, EMF claims to generate correct

99

4 Evaluation of repository services

and e�cient Java code for those concepts (cf. [Bu09b]). Ecore is de�ned as a core

model, the self-de�ning nature of which enables a treatment much like any other

core model. A comprehensive overview of Ecore is depicted in Figure 4.32, the

most important aspects of which are described in the following. One important

Ecore component is omitted in Figure 4.32, that is EObject, the supertype of

EModelElement and for this reason supertype of all depicted types.

Figure 4.32: EMF � Ecore components and their relationships (cf. [Ec10b])

In accordance with Budinsky et al. in [Bu09b], the types EClass, EAttribute,

EReference and EDataType compose the kernel of Ecore. This model fragment

encompasses the most common types that can be found in an information model and

is the basis for understanding the self-de�ning nature of Ecore, since i.e. modeled

attributes and references of EClass correspond to instances of EAttribute and

EReference.

EClass is used to represent modeled classes and interfaces, which can contain mul-

tiple attributes and references. The eSuperTypes reference shows that a class can

100

4 Evaluation of repository services

inherit multiple supertypes. However, this capability con�icts with the generation

of Java code, because Java only supports inheriting of a single supertype, except

for interfaces. According to Budinsky et al. in [Bu09b], this condlict is addressed

by using the �rst class in the list of eSuperTypes as implementation base class

of the generated code, while the others are treated as mixin interfaces, the features

of which are re-implemented in the derived implementation class. In doing so, gen-

erating code from interfaces composing a multiple inheritance creates an interface

of the implementation base class that extends all of the speci�ed suptertypes and

an implementation class thereof, which only extends the de�ned �rst supertype and

correspondingly implements the remainder of the interfaces. To ensure, that a spe-

ci�c class is the �rst supertype in the list of sypertypes, the reference thereto can be

annotated by i.e. the stereotype �extend� in UML models. The attributes inherited

from the di�erent supertypes are not allowed to have equivalent names, which causes

a generation failure.

An EClass inherits all structural and behavioral features of its supertypes and

all of the transitively connected supertypes. The direct supertypes are refered to

by the reference eSuperTypes, whereas the derived reference eAllSuperTypes

provides the complete set of transitive connected supertypes. Analogously, the ref-

erences eReferences and eAttributes de�ne the directly contained attributes

and references, that are extended by all inherited attributes and references in eAl-

lAttributes and eAllRefereces, respectively. The same logic can be transfered

to eStructuralFeatures and eAllStructuralFeatures, as well as eOper-

ations and eAllOperations.

EAttribute and EReference, which represent modeled attributes and references,

are both subtypes of EStructuralFeature, that in turn is a subtype of ETyped-

Element, referring to an EClassifier as its eType. An EClassifier is either

an EClass or an EDataType, for which reason both attributes and references are

theoretically able to refer to classes and data types. Therefore, EAttribute de�nes

the derived reference eAttributeType that casts objects delivered by the reference

eType to an EDataType. The derived reference eReferenceType of ERefer-

ence is analogous to eAttributeType and casts EClassifier to EClass. Gen-

erally, an EReference is used to represent an end of an association between two

classes, that can optionally be declared bidirectional by de�ning an opposite ERef-

erence or as containing, which de�nes the containing object for objects of the

referenced type. EDataType is used for representing primitive types or Java object

types, such as java.lang.Date.

101

4 Evaluation of repository services

EStructuralFeature, the supertype of EReference and EAttribute sub-

sumes several commonalities of all features. Among other things, EStructural-

Feature de�nes the boolean properties changaeble, transient, unique, un-

settable and volatile. Changeable de�nes whether a feature can externally

be set. Transient de�nes whether a feature is considered for serialization of the

containing object. Unique declares whether a single value is allowed to occur more

than once in a feature, which is only reasonable for multiplicity-many features. Ac-

cording to unsettable, it is determined whether the feature has a value assigned

di�erent from any other valid values and null stating that a feature is not set.

Finally, volatile de�nes whether there is any storage directly associated with a

feature. According to Budinsky et al. in [Bu09b], some of these properties are only

reasonable in combination, e.g. it seems not to be reasonable to de�ne a feature

volatile but non-transient. Budinsky et al. recommend to de�ne derived features as

being volatile, transient and non-changeable. This de�nition also exerts in�uence on

the code generation, resulting in the omitting of set-methods for derived attributes

and an annotation reminding that the implementation has to be complemented in

the get-method.

4.5.1.3 EMF � Validation framework

EMF natively provides the validation framework, which addresses issues of checking

the validity of an object's state modeled in EMF. The validation framework enables

to de�ne constraints and invariants to be veri�ed directly in the model. According

to Budinsky et al. in [Bu09b], a constraint constitutes a statement that has to be

valid at a certain point in time, whereas an invariant is a much stronger assertion

that is supposed to be valid all the time. Consequently, these two kinds of conditions

are realized in di�erent ways, since an invariant is supposed to be always evaluable

asking for an easy accessible evaluation statement for any code that manipulates the

object. Hence, an invariant results in an additional method in the concerned class

that has to conform to a speci�c method signature, consisting of two parameters, of

types EDiagnosticChain and EMap, as well as a return value of type EBoolean,

which states the validation of the invariant. In contrast, a constraint is de�ned as

EAnnotaion of a class, the source of which has to be set to the schema for Ecore,

and for which a map entry has to be de�ned, setting its key to constraints and

the value to the corresponding names of the constraints to be validated. Figure 4.33

exempli�es the annotation with constraints and a methods for invariants.

As mentioned, invariants lead to an additional method implemented in the con-

cerned class rather constraint implementations directly reside in a validator class of

102

4 Evaluation of repository services

Figure 4.33: EMF � Core model with constraints and invariants

the util-subpackage of the generated code. Actually, only methods of this class are

taken into account for validation using the validation function of the generated editor,

for which reason methods for validating invariants additionally exist in the valida-

tor class, referencing the actual implementation in the host class. Generally, these

generated methods require a manual intervention for specifying the conditions in

Java code, because Ecore provides no way to represent them in the model. Besides

the generation of modeled invariants and constraints, the code generation facility

automatically adds basic constraints, such as for multiplicities, restrictions of the

de�ned data type, the containment of all cross-referenced objects and so forth. The

automatic introduction of such basic constraints is even performed for properties,

which do not have manually de�ned constraints or invariants, but overall a preced-

ing manual de�nition of a constraint or invariant in the core model is a prerequisite

to activate their generation. EMF's validation framework includes a helper class

called Diagnostician that is the recommended entry point for validation accordint

to Budinsky et al. in [Bu09b]. Diagnostician provides methods to verify whether

a given value violates any constraint de�ned for a type, e.g. the Diagnostician

class can be used to verify a value before actually modifying an attribute of a class.

In addition to the described kind of batch validators, that are used for static vali-

dation of a selection of elements, usually in response to a user action, such as the

manually invocation of the validation functionality in the model instance editor, the

EMF validation framework also provides live validators. The validation of object

models is generally performed by invocation of the validation service, that provides

the two kinds of validators. A live validator obtains a collection of noti�cations

representing discrete changes to model elements as input, that come from noti�ers

observed in the model. Along with the noti�cation, needed information, such as the

modi�ed structural feature, the old value and the new value, becomes available to

the constraint implementation.

103

4 Evaluation of repository services

For de�ning which constraints apply to which objects, EMF is able to describe a set

of objects as a client context, which can be bound to constraints that are supposed

to be enforced on these objects. Constraints can be bundled in categories and so

the binding of constraints can take place by category, individually or in a mixture

thereof. Furhtermore, validation listeners can be de�ned for the validation service of

the EMF validation framework. Validation listeners are able to be associated with

multiple client contexts and are noti�ed by the validation service whenever validation

in the associated contexts occurs.

The EMF validation framework provides support for parsing the content of constraint

elements de�ned in speci�c languages. The validation framework provides support

for two languages: Java and OCL. The framework provides an implementation of

an XML constraint parser API that supports de�nition of OCL constraints in XML

form. The only supported constraints for modeling with EMF are the aforemen-

tioned annotations for constraints and methods for invariants. Though, the actual

conditions thereof cannot be speci�ed by modeling. Even though the EMF valida-

tion framework has much more functionality beyond that, the evaluation of EMF is

primarily con�ned to the constraint functionality that is provided for modeling, at

most referring to further solutions.

4.5.2 EMF � Hierarchy modeling

The information model fragment composing a hierarchy of business process in Fig-

ure 3.1 can be modeled using the graphical modeling editor of the Ecore Tools as

shown in Figure 4.34 or using the tree-based standard editor as shown in Figure 4.35.

Thereby, the tree-based editor provides a bit more detailed con�guration possibli-

ties, e.g. the type-de�nition for map entries cannot be modi�ed in the Ecore Tools

editor.

The relationship of subordination is modeled by a bidirectional containment relation-

ship, that has the intrinsic nature of creating an acyclic relationship, when establish-

ing a self-relationship. That is owed to the fact that EMF interprets containment

relationships as nested objects, in doing so the nested object can be compared to

a kind of physical part of the containing object, that is thus only possible by one

containing object, that in turn cannot be part of its constituents. Hence, the acyclic

or hierarchic relationship is realized by the intrinsic nature of containment relation-

ships in EMF. Based on this hierarchy, the ordering relationship is annotated by the

constraint LinearOrder (cf. Figure 4.35), the resulting method in the generated

Java code of which has to be complemented by the corresponding conditions.

104

4 Evaluation of repository services

BusinessProcess

BusinessArchitecture
Name : EString

sub
0..*

super
0..1

pre
0..1

post
0..1

businessProcesses
0..*

Figure 4.34: EMF � BusinessProcess
core model

Figure 4.35: EMF � BusinessProcess
core model in tree view

The need of introducing the additional class BusinessArchitecture becomes ob-

vious, when launching the generated editor for instantiating the core model. The

serialization of each instance of the model has to be well formed, that is to say a

root element for all created objects is required. This root element is an object of

BusinessArchitecure, because otherwise an object of BusinessProcess would

have to compose the root object, which would prevent the modeling of more than

one business process at the highest hierarchy level. Moreover, the automatically

generated editor seems not to be able to handle containment self-relationships over

multiple hierarchy levels, but actually this editor is only meant to be an initial point

for re�nement. Whether the lack of support of displaying transitively associated

objects might be subject to the utilized query functionality of EMF is evaluated

in Section 4.5.12. Thus, a business architecture makes up the container for a core

model instance, which alternatively might also be accomplished by an ultimate busi-

ness process, introduced as hierarchy root node.

EMF natively provides one kind of part-whole relationships by the containment ref-

erence, which can be both directional and bidirectional and introduces a kind of

part-whole relationships re�ecting a nature, which is expected for material composi-

tions. Other directional or bidirectional relationships can be modi�ed by annotating

constraints, that can be complemented using the Turing complete programming lan-

guage Java. Delving deeper into the EMF validation framework o�ers much more

possibilities to introduce constraints and to listen on their validation results, but

only for professional users of EMF.

In conclusion, EMF natively provides a kind of relationship for modeling hierarchies,

which also re�ect the ontological nature thereof. Furthermore, constraints can di-

rectly be annotated in the information model, the conditions of which have to be

105

4 Evaluation of repository services

complemented by Java code. The speci�ed multiplicities are directly taken into ac-

count by the generated editor, resulting in a restricted possibility of de�ning related

objects, e.g. the ordering relationship only allows to select a single object for pre-

ceding and succeeding business processes and the corresponding counterpart of the

relationship end is automatically set or exchanged according to an object selection.

In combination with a convenient graphical modeling editor, the need of comple-

menting prepared Java code is not regarded as an impairment of the tool handling

and so the evaluation of Table 4.27 is inferred from.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

Table 4.27: EMF � Evaluation of hierarchy modeling

4.5.3 EMF � Temporal and variant modeling

Temporal dependency of objects is supposed to by introduced by a despersive type

Temporal, which introduces a period of validity to types intended therefor. Sim-

ilarly, a temporal dependency for relationships is required in order to achieve the

tracking of changes thereof. Since relationships are realized by the corresponding end

points in EMF and therefore do not make up a �rst-level concept, a relationship as

a whole cannot have any properties or information assigned to. Hence, for evaluating

the modeling building blockOrganizationalUnit-hosts-BusinessApplication,

the information model fragment in Figure 3.4 is introduced to EMF, that constitutes

a time-dependent relationship between business applications and organizational units

using a mediating type to reify the relationship. Figure 4.36 shows the model frag-

ment realized in the Ecore Tools editor.

EMF supports multiple-inheritance and is able to assign attributes to interfaces,

which is also implemented by the generated Java code, despite of deviating from

standard Java implementations, as described in Section 4.5.1.2. In this vein, a kind

of mixins can be realized by EMF using interfaces. Hence, the mixin Temporal

of the model fragment in Figure 3.4 is modeled by an interface, which introduces a

period of validity to each inheriting type, as e.g. illustrated forApplicationHost in

Figure 4.36. As alluded to above in Section 4.5.1.2, this approach is applicable even

to types that are already in an inheritance-relationship, since EMF re-implements the

properties of the mixin interfaces during the code generation directly inside the base

106

4 Evaluation of repository services

implemetation class. Consequently, the interface Temporal constitutes a reusable

modeling building block that can be assigned to all types or instances of EClass in

the information model, respectively, and may easily be extended to the bitemporal

version thereof. The necessary constraint, which ensures the hosting by exactly one

organizational unit at each point in time, is annotated to BusinessApplication

and complemented with appropriate conditions in the corresponding validator class

after having generated the implementation code.

BusinessApplication
name : EString

ApplicationHost
name : EString

Temporal
validFrom : EDate
validTo : EDate

OrganizationalUnit
name : EString

BusinessArchitecture

host
1..*

hosted
1

BusinessApplictaions
0..*

realHost
1

auxHost
1

ApplicationHosts

0..*
OrganizationalUnits

0..*

Figure 4.36: EMF � Temporal association pattern applied in I-Pattern I-24

Besides the already introduced kinds of models used by EMF, namely Ecore, core

model and generator model, another model type is provided, the change model. The

change model serves the purpose of representing changes or deltas to an objects

instance of the core model and can be used to apply prede�ned changes or to record

change as they are made. The record functionality of the change model may be

regarded as a kind of change history, that additionally provides roll-back functionality

to previous states. In this vein, the change model makes up an alternative for

modeling a second temporal dimension besides a period of validity.

Even though the model fragment of Figure 4.36 structures the required information

for temporal modeling and ensures necessary constraints in an partially reusable

form, a denotation of relationships similar to the stereotype �temporal� is not

achieved yet and cannot be achieved by modeling either. Professional user might

de�ne a client context for the concerned references and assign these to the corre-

sponding constraints or categories of constraints. The listening to validation events

might be used to ensure the constraints directly in the modeling editor.

The modeling of di�erent variants of the EA or in the outlined example of the building

block OrganizationalUnit-hosts-BusinessApplicaiton is another important

aspects, that is primarily served in Section 4.5.7, but also multiple instances of the

core model can be created to model variants of the EA that may be structured by

di�erent folders in the �le system, as depicted in Figure 4.37. Nevertheless, this kind

107

4 Evaluation of repository services

of variant modeling can only act as a makeshift during the introduction of an actual

variant modeling, since there are no connections between the object models and also

naming problems may occur for instances residing in the same resource, which would

notably impairs the usability.

Figure 4.37: EMF � Variant modeling by multiple model instances

The EMFT project includes a further component, namely the Temporality feature,

that provides an automatic versioning of model instances (cf. [Ec10a]). Since the

temporality component is yet in its incubation phase and no downloadable version

is already available, only a short summary of available information to complement

this scenario by potential capabilities of temporality is given, but without taking

any e�ect on the evaluation. The temporality feature consists of an core model

containing a class Temporal that has to be inherited by each type that temporality

is supposed to be introduced to. Thereby, two time dimensions are introduced to

the inheriting type, that is the actual time and the record time. Transferred to

the aforementioned context, the actual time constitutes the start of the period of

validity, whereas the its end has to be derived from the start time of other objects in

the instance model. The record time is directly comparable to the second dimension

introduced by bitemporality. Which attributes and references are supposed to be

kept a history of, can be speci�ed by adding an annotation thereto. In this way, it

is kept track of the di�erent values of attributes or the di�erent objects a reference

points to over time. The assignment of Temporality causes that the �current

date� of a view in the editor becomes con�gurable, subject to which currently valid

instances are displayed. Thus, the temporality feature of the EMFT project will

enable a fairly comfortable de�nition of temporality for attributes and references of

a type.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 H# H#
Table 4.28: EMF � Evaluation of temporal and variant modeling

108

4 Evaluation of repository services

Finally, the information needed to be structured in this scenario can be modeled by

EMF, but only partially re�ecting the ontological nature of temporal modeling, such

as for temporal relationships. Table 4.28 summarizes the evaluation of temporal and

variant modeling.

4.5.4 EMF � Non-rigid typing and principle of identity

EMF provides two specialization options for EClass indicated by the boolean prop-

erties abstract and interface. An abstract class represents an EClass, from

which other classes can inherit features, but which cannot itself be instantiated. If

interface is additionally true, the EClass represents an interface, that declares its

properties, operations and relationships but cannot provide an implementation for

them. Since an interface has always to be abstract, it cannot be instantiated and

serves the purpose of supplying features and relationships to the inheriting classes.

The implementation of an interface is modeled by an inheritance relationship to a

non-interface EClass. (cf. [Bu09b])

In this vein, interfaces can be used to realize a dispersive type in EMF, since their

implementation assigns an additional type to the implementing class, which also

inherits all features of the interface. Furthermore, an interface does not supply a

principle of identity, because interfaces cannot directly be instantiated and the in-

direct instances by implementation depend on the implementing type. Thus, the

implementation of an interface to a non-interface class in EMF is regarded equiva-

lent to the assignment of mixin to a type, as described in Section 3.1.3. Abstract

classes can additionally provide implementations for features and cannot be instanti-

ated similar to interfaces. Theoretically, a semantically richer version of mixins could

be established thereby, but during the code generation only a single inherited ab-

stract class can be considered as an extended class and the others are automatically

converted into mixin interfaces (cf. Section 4.5.1.2).

However, EMF supports the distinction whether a types supplies a principle of iden-

tity, thus enabling the distinct modeling of rigid sortal universals and rigid mixin

universals in line with Guizzardi in [Gu05]. Even though such a principle of identity

is supported there are no type changes or type extensions possible for instance ob-

jects, as required e.g. for changing the presently valid life-cycle phase or to assign a

role that is taken due to the changed context of an object. In this vein, EMF does

not support non-rigid typing at all, asking for alternatives to structure the required

information.

109

4 Evaluation of repository services

How to realize a workaround for life-cycles and di�erent life-cycle phases is described

in Section 4.5.6, dealing in-depth with this topic. Roles of a speci�c object can only

be derived of the actual relationships thereof, e.g. a employee can be perceived as a

project member once a membership is established for this employee, provided that

this relationship has previously been modeled in the information model. Summariz-

ing, EMF provides su�cient support for the distinction of identity supplying types

and others, but lacks in non-rigid types. The evaluation of non-rigid typing and

principle of identity are merged in Table 4.29.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

H# H# H#
Table 4.29: EMF � Evaluation of non-rigid typing and principle of identity

4.5.5 EMF � Multi-level modeling

Core models or information models are modeled by instantiating the concepts pro-

vided by Ecore. Subsequently, models of concrete objects instantiate the informa-

tion model types. Thus, EMF provides the typical two modeling levels of object-

oriented modeling approachs. Since Ecore is a self-de�ning meta-model, it composes

its own meta-model, meta-meta-model and so on, but these modeling levels are pre-

de�ned and unchangeable, for which reason only the two levels of the object-oriented

programming paradigm remain for modeling.

As described in Section 3.1.4, the ontologically correct realization of model fragments

resorting to design patterns, such as the type-item pattern or the type-square pattern

(cf. [YJ02]), asks for modeling in more than the typical two modeling levels in order

to prevent a mismatch between ontological levels and modeling levels. Such issues

cannot be addressed with the natively provided functionalities of EMF, because only

the two �classic� object-oriented modeling levels are provided and Ecore, EMF 's

meta-model cannot be modi�ed, as well.

Although a structuring of the required information can be achieved by workarounds

using patterns that twist multiple ontological levels into a single modeling layer,

the ful�llment of this scenario is regarded as lacking in support. That is reasoned

in the claim of evaluating multi-level modeling and not whether or not well known

workarounds can be achieved, as done in scenarios evaluating concrete applications

110

4 Evaluation of repository services

thereof. Hence, the evaluation results in an overall lack of support of the require-

ments, as depicted in Table 4.30, which is also the reason the tool handling is not

evaluated.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

n.a.

Table 4.30: EMF � Evaluation of non-rigid typing and principle of identity

4.5.6 EMF � Life-cycle

As mentioned in Section 3.1.3 EMF does not support non-rigid types, for which rea-

son an alternative modeling of phased sortals is required. An interface Lifecycled

could be used for assigning the general term of being life-cycled to modeling types

and could enforce the implementation of general behavior in the inheriting type, such

as methods for life-cycle phase transitions. The di�erent life-cycle phases could be

introduced by modeling each phase by a discrete subtype of a common, abstract,

life-cycled supertype, as depicted at the the example of BusinessApplication in

Figure 4.38.

Lifecycled

BusinessApplication

BusinessApplicationInDevelopement BusinessApplicationInIntroduction OperationalBusinessApplication ReplacedBusinessApplication

Temporal

Figure 4.38: EMF � Life-cycle phasaes of a business application

For determining at which time a life-cycle phase is valid for a speci�c business ap-

plication, the interface Temporal is assigned to the type BusinessApplication

that in turn supplies the properties, stating the period of validity, to its subtypes.

Thus, the validity of a life-cycle phase can be determined, but a relation to a com-

mon identity is yet needed to identify several instances of BusinessApplication

subtypes as partition of life-cycle phases belonging to a speci�c business application.

There is a variety of possible solutions therefor, such as a simple attribute stating

the common identity or in case of a non-abstract supertype BusinessApplication,

a relationship to one common instance thereof. However the relation to a common

111

4 Evaluation of repository services

identity is modeled, on basis of the subtypes of BusinessApplication and the

common identity, constraints can ensure that a business application always resides

in exactly one life-cycle phase and that the life-cycle is permanently documented

asking further for a controlled transition between life-cycle phases.

A controlled life-cycle phase transition can be achieved by resorting to projects and

their work packages, the di�erent types of which account for the transition between

two life-cycle phases, as depicted in Figure 3.19. These extensions can be directly

introduced to the information model fragment in Figure 4.38, since only supported

modeling concepts are required therefor. In this way, a permanent documentation

of the life-cycle and a controlled transition between the di�erent phases thereof is

established.

As outlined, the life-cycle modeling of a business application can be realized by the

provided modeling concepts of EMF. The di�erent life-cycle phases are modeled by

discrete types that enable the modeling of various properties and relationships of

a business application depending on the actual life-cycle phase. Besides the advan-

tages coming along with life-cycle phases modeled in separate types, a type transition

forces to migrate required information from the object representing the ending life-

cycle phase to the object representing the beginning life-cycle phase at each life-cycle

phase transition. If the common identity is modeled by an object, shared information

may be contained by this common object, but the thought of transforming informa-

tion along with the life-cycle phase without redundantly storing, cannot be carried

through.

Nevertheless, the information of the scenario can be modeled by some workarounds,

but the nature of switching between life-cycle phases without changing the identity,

is not satisfactorily re�ected from an ontological point of view. Complex constraints

have to be manually developed to be able to assess the validity of object models

asking for deep interference in the generated code, the e�ort of which results in an

empty Harvey Ball for tool handling. The concluded evaluation �ndings are shown

in Table 4.31.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 H# #
Table 4.31: EMF � Evaluation of life-cycle

112

4 Evaluation of repository services

4.5.7 EMF � Projects

In EMF elements can be denoted as �project-a�ectable� or in other terms as po-

tentially able to be a�ected by a project using the interface Affectable, which

establishes a relationship between the type Project and all inheriting subtypes

of Affectable, as depicted in Figure 4.39. Due to the speci�c interpretation of

interfaces by EMF during the code generation, interfaces can be used for realiz-

ing the modeling building Projects-affects-Affectable (cf. Figure 3.21) in a

reusable way and can thus denote each type in the EA information model as �project-

a�ectable�.

Project Affectable
architecture element

0..*
project
0..*

Figure 4.39: EMF � Modeling building block Projects-affects-Affectable

In EMF's understanding, a relationships is composed by either a single reference

that points to another type of the information model or by two references corre-

spondingly pointing to the type of the opponent reference. Thus, directional and

bidirectional relationships are realized in EMF by modeling their end points. In

line with this understanding, relationships as a whole do not make up a �st level

modeling concept in EMF rather are derived from refernces of information model

types. Consequentially, a rei�cation of di�erent types of the affects-relationship

as well as associated relator hierarchies (cf. Figure 3.22) cannot natively be realized

in EMF and have to be modeled as discrete references without inheriting common

properties of a super-relator.

Projects as major means for a�ecting the EA ask for a time period at which projects

are executed and valid, respectively. For that, the interface Temporal can be

assigned to the type Project that introduces a period of validity. This extension of

Project enables to determine when an e�ect takes place and to model competing

project plans a�ecting the same architecture elements at the same time in future,

that have to be decided upon at an appropriate point in time.

Transferring this to the example of the modeling building blockOrganizationalUnit-

hostsBusinessApplication and its re�nements elaborated over several scenarios

of Chapter 3, the combination of time-dependent projects, life-cycled business ap-

plications (cf. Section 4.5.6) as well as a time-dependent hosts-relationship (cf. Sec-

113

4 Evaluation of repository services

tion 4.5.3) enable variant modeling of this modeling building block in a way compa-

rable to the possible solution in Figure 3.25.

In conclusion, the information modeling of this scenario is su�ciently achieved by

resorting to solutions already devised in the preceding sections of EMF 's evaluation.

The primary qualities of projects, such as a�ecting other elements, scheduled by the

time-dependency of projects, are re�ected by the modeling solutions in an ontological

correct way. Therefore, the ontological character of projects is regarded satisfactorily

ful�lled, even though some of the used solutions of other scenarios do not similarly

well re�ect ontological qualities. Since potentially shortcomings are already evalu-

ated, they are not incorporated a second time, as depicted in Table 4.32.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 H#
Table 4.32: EMF � Evaluation of projects

4.5.8 EMF � Standardization

Modeling of standardization demands the denotation of both architecture elements

that are able to conform to a standard and elements that are able to constitute a stan-

dard, as illustrated by the modeling building block Standard-Standatdizable in

Figure 3.27. In EMF, the mixins Standard and Standardizable can be realized

by the corresponding interfaces that introduce the conformsTo- and the allowed-

For-relationship among each other, as depicted in Figure 4.40. These interfaces can

arbitrarily be assigned to every information model type as far as required for docu-

menting and planning the situation of the EA's standardization.

Standardizable
standardConform : EBoolean
exceptionAllowed : EBoolean

Standard
realizedStandard

0..1

allowedStandards
0..*

conformingElements
0..*

allowedFor
0..*

Figure 4.40: EMF � Modeling building block Standard-Standardizable

The derived attributes of the modeling building block Standard-Standardizable

can directly be realized by declaring these properties volatile, transient and non-

changeable, as described in Section 4.5.1.2. Thus, the simple modeling building

114

4 Evaluation of repository services

block enables the de�nition of standards and standardizable elements, as well as the

relationships among them. As described in Section 3.2.3, standardization has to

consider aspects, such as the distinction between deliberately and accidentally non-

conformance to a standard by architecture element that are able to conform to a

standard. For the ontologically correct distinction of the two states outcoming from

this considerations, a non-rigid mixin type specializing the mixin Standardizable

is necessary, as devised in Section 3.2.3. Since non-rigid types are not supported by

EMF, this proposed solution cannot be modeled, but alternatively aspects of unset

values that are comparable to this issue and natively supported by EMF can be

utilized here, as describe later in this section.

The formal relationship (cf. [Gu05]) conformsTo can be realized similar to the

derived attributes, by declaring the references thereof volatile, transient and non-

changeable. Thus, the get-methods of the corresponding references has to be com-

plemented in the implementation of types inheriting the interfaces Standard or

Standardizable. This context speci�c implementation of the derived relationship

conformsTo makes it possible to calculate their references in dependence of the

actual composition or other context-speci�c relationships of the containing type. In

this vein, EMF supports a kind of formal relationships that are grounded in the

intrinsic qualities or in other terms the already de�ned attributes and references of

their establishing types.

One of the di�erent specializations of features can also be used for determining

whether or not there is deliberately no conforming standard, since features can

additionally be de�ned unsettable. Setting this property for the conformsTo-

relationship, enables the de�nition of a state di�erent to null that is conceived as

unset, in this way introducing a standard value for unset references. Thus, a lack

of documentation can be determined by means natively provides by EMF, but the

state-change of the assigned general term to be standardizable is only partially.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 H#
Table 4.33: EMF � Evaluation of standardization

Altogether, the non-rigid character of the qulatity of being standardizable as ex-

pressed by the two non-rigid subtypes of the mixin Standardizable cannot satis-

factorily be modeled in EMF. But besides this missing modeling concept, the scenario

115

4 Evaluation of repository services

is completely ful�lled by interfaces and the di�erent kinds of feature provided by EMF

that appropriately re�ect the ontological nature of these constituents of standard-

ization. Furthermore, the modeling of the provided concepts is fairly conveniently

achieved, resulting in the evaluation in Table 4.33.

4.5.9 EMF � Goals

TheGoal-Question-Metric-approach proposes to operationalize goals by a set of ques-

tions, which are assigned to architecture elements in order to attach the correspond-

ing goal thereto and to measure its achievement by calculating the metrics of each

question (cf. Section 3.2.4). An exemplary modeling solution of this approach is

realized by introducing an additional ontological level for meta-types, because an

operationalization of goals asks for metrics that have to be adjusted to the speci�c

context a question is supposed to be measured. Hence, the actual assigned ques-

tion on type-level is an instance of a question on meta-type-level complemented with

appropriate metrics. Furthermore, questions are modeled by mixins, which add the

required metrics directly to the types, the ful�llment of goals of which is supposed

to be measured.

As alluded to in Section 4.5.5, EMF does not support multi-level modeling, for

which reason the two-level nature of the information modeling building block Goal-

Question-Metric has to be modeled by design patterns, such as the type-item

pattern or the type-square pattern, folding multiple ontological levels into a single

modeling level. The modeling of the mixin for questions can be realized by discrete

interfaces for each required question by EMF.

The required metrics as well as the corresponding questions and goals can be modeled

by EMF, but the actual character of questions, to be complemented with context-

speci�c metrics by instantiation cannot su�ciently expressed by the modeling con-

cepts provided by EMF. Furthermore, the need of introducing complex model struc-

tures complicates the realization of the scenario, which is re�ected in an impaired

tools handling. Table 4.34 summarizes the evaluation of goal modeling.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 H# H#
Table 4.34: EMF � Evaluation of goals

116

4 Evaluation of repository services

4.5.10 EMF � Role-based access control

EMF natively provides no functionality to control the access to any data of the in-

formation model or persisted instances thereof and so there are natively no types to

document access rights for di�erent users of the application contained in the informa-

tion model. Access right information can be structured by introducing an interface

Accessible that establishes di�erent relationships between instances of the inher-

iting types and users that are allowed to access these objects, while distinguishing

read and write access, as depicted in Figure 3.36. A subsumption of users by roles

using role-mixins cannot be modeled in EMF, since no modeling concepts similar to

the non-rigid types role-mixin and role are provided. The required information can

be modeled by introducing types for users and user-groups, that are related to the

interface Accessible for de�ning their access rights that can be realized either by

directly relating the two types or indirectly via a common supertype. In whichever

way the relationship between the interfaceAccessible and the typesUser orUser-

Group is established, user-groups bundle a set of access right de�nitions that are

supplied to members of a group, which aggregate the access rights supplied by dif-

ferent user-group memberships. The aggregation of access right de�nitions supplied

by user-groups to their members realizes a kind of role-based access right policy.

The mentioned distinction between read and write access in the preceding paragraph

serves the purpose of exemplifying a possible modeling solution, but certainly these

access rights can be structured in more detail as needed for a speci�c application.

Even an extension to access right de�nitions on attribute level is conceivable by

manually extending the get-methods and set-methods along with �ner grained access

right de�nitions, which enable such detailed distinctions.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 H# #
Table 4.35: ADOxx � Evaluation of role-based access control

In this vein, a role-based access right policy can be modeled in EMF re�ecting the

quality of being accessible and controlling this accessibility by de�ning success rights.

The aggregation of success rights as needed for a role-based access right policy can

only cannot be derived of the users' roles, taken due to their external dependencies

to other elements and therefore requires an additional type for structuring such

information. Thus, the required information is structured, but the actual control of

117

4 Evaluation of repository services

access is not yet achieved and has to be manually developed based on the outlined

access right information modeling building block, for which reason the tool handling

evaluation states a lack of support, as shown in Table 4.35.

4.5.11 EMF � Responsibilities

Responsibilities relate manageable architecture elements to the persons that bear re-

sponsibilities therefor. In Section 3.2.5 the modeling of this information is proposed

by a mixinManageable and a role-mixin Responsible, as depicted by the model-

ing building block Responsibilities in Figure 3.35. In EMF this modeling building

block can be realized by an interfaceManageable that establishes a relationship to

the user-groups of responsible people or people, which are solely responsible, respec-

tively. User-groups resort to those ones described in the preceding Section 4.5.10.

Depending on the concrete de�nition of responsibilities, di�erent kinds thereof can

be distinguished, e.g. multiple relationships between the interface Accessible and

responsible people or the membership of speci�c user-groups might be utilized for

determining the speci�c responsibilities of people.

People are supposed to have complete access rights to the architecture elements, they

are responsible for. After having introduced a role-based access control approach as

outlined in Section 4.5.10, the modeling building block Accessability (cf. 3.36)

can be extended by the modeling building block Responsibilities as illustrated in

Figure 3.39. Thus, the aspects of responsibility are complemented with aspect of

access control for ensuring complete access right for responsible people.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 H# H#
Table 4.36: ADOxx � Evaluation of responsibilities

The scenario is realized by modeling the reference of a responsible person by a direct

reference or a membership of a user-group, since a role (cf. [Gu05]) cannot be utilized

in EMF for their derivation. Provided that a role-based access control as described

in Section 4.5.10 exists, the interface Manageable can resort to this functionality

by subtyping the interface Accessible. Summing up, the required information can

su�ciently be structured in EMF, but a derivation of responsibilities of existing roles

118

4 Evaluation of repository services

cannot be achieved, for which reason the ontological nature of responsibilities is only

partially re�ected, as shown in Table 4.36.

4.5.12 EMF � Queries

For specifying and executing queries against a set of information model elements

and their contents, EMF provides the subproject model query framework that en-

compasses the main classes used when formulating and executing query statements.

In accordance with [Ec10c], the EMF query framework provides two di�erent classes

of query statements, namely SELECT and UPDATE, while the UPDATE class

extends the SELECT class. The SELECT class is used for querying without modi-

fying data, whereas the UPDATE class serves for modifying the query result. Both

of the statement classes return the query result based on an instance of the FROM

class, representing the elements to search, and an instance of the WHERE class,

which applies search conditions to the elements speci�ed by the FROM object. The

search scope of elements to be used in a query is de�ned by the interface IEObject-

Source.

For specifying conditions applied by the instances of the WHERE class, the EMF

model query framework provides a variety of conditions that implement predicates

on primitive data types, as well as a condition API intended speci�cally for working

with model elements, that is EObjects in EMF resources. EObjectCondition

is the root of the condition hierarchy for EObjects. EObjectCondition can

be subclassed for de�ning customized predicates using regular Java code, but the

framework also provides a wide range of condition classes covering the majority of

EMF 's re�ective API (cf. [Ec10c]).

According to [Ec10c], all objects contained in the collection speci�ed by a FROM

object are traversed recursively by the corresponding SELECT object until the

leaves of their containment subtrees are reached to �nd the matching objects. Fur-

thermore, customized predicates de�ned in subclasses of EObjectCondition can

introduce conditions, which assess transitive references to objects in the search scope

of elements by traversing their relationships, since Java as a Turing complete pro-

gramming language is used therefor. Since the information model structure can be

retrieved using the EPackage class, the information thereof can be utilized for the

construction of conditions. At least by using manually developed subtypes of EOb-

jectCondition transitive queries or the determination of the transitive closure may

be achieved in EMF, whereby complex impact analyses on the repository data can

be conducted.

119

4 Evaluation of repository services

The model query framework of EMF provides comprehensive possibilities to use the

prede�ned functionalities or to introduce new or extended versions thereof. The

short summery in this section only partially touches on the entire functionality, but

conveys an impression thereof. Technically, the scenario is thus su�ciently ful�lled,

however the whole de�nition of queries takes place by coding, impairing the tool

handling evaluation to an empty Harvey Ball, as depicted in Table 4.37.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

 n.a. #
Table 4.37: ADOxx � Evaluation of queries

4.5.13 EMF � Information model changes

The information model can freely be modeled using the modeling concepts provided

by Ecore. Hence, there are no restriction for introducing, changing or removing

of types, properties, relationships and so forth in the information model. The in-

formation model is not dependent on existing instantiation data thereof rather the

instances resort to the information model data, for which reason all described model-

ing actions can be performed irrespectively of the existence of any object model data.

Using the modeling editor of the Ecore Tools, changes on the information model are

fairly comfortable performed, e.g. attributes and methods can be shifted between

di�erent type by drag and drop.

On the one hand the ability to change the information model independent from the

object models enables the evolution of the information model at any point in time,

but on the other hand demands migration of existing data to the information model

changes. Such a migration functionality is not provided by EMF, resulting in cor-

rupted object data after having performed changes on the corresponding information

model types. The migration of existing data is indeed not accomplished, but as well

no object data gets lost by changing the information model, since the object mod-

els are serialized in XML Schema [Wo04], which only no longer �ts to the changed

information model. Such serializations are the starting-point for a manually data

migration. However, the XML Schema serializations might be adapted by hand or

by scripts adapting the performed changes of the information model, in order to

achieve a serialization that suits to the changed information model. Irrespective of

120

4 Evaluation of repository services

which way of migration is chosen, there seems to be no way preventing a manually

inference in the migration process.

In EMF, for each EStructuralFeature a default value as well as an upper or

lower bound can be de�ned. The minimum number and maximum number of of

allowed values are speci�ed by the attributes lowerBound and upperBound,

respectively, thus enabling the de�nition of mandatory properties and references by

setting lowerBound greater than zero. The attribute defaultValueLiteral

can be used for de�ning a default value, which is always a Sting value, irrespective

of the de�nded data type. Default values can only be de�ned for EAttributes and

so default value for EStructuralFeatures is always null.

In conclusion, EMF provides fairly �exible and convenient functionalities to create

and change information models, but aspects of data migration are almost completely

omitted. Although the Ecore Tools encompass a quite comfortable graphical editor,

the tool handling cannot be evaluated as satisfactorily ful�lled due to the e�orts

required for migrating object data to a changed information model. Table 4.38

summarizes the evaluation of information model changes by EMF.

Ful�llment of

scenario

Ontological

correctness of models
Tool handling

H# n.a. H#
Table 4.38: ADOxx � Evaluation of information model changes

4.5.14 EMF � Summary of evaluation

EMF is an open source framework that is permanently re�ned, extended and en-

hanced by its community. EMF encompasses multiple subprojects and components

that provides extensive functionalities in the �elds of information modeling, code

generation and related �elds. Throughout the evaluation of EMF, primarily the

most relevant parts of EMF are put under investigation for evaluating EMF against

the scenarios devised in Chapter 3. Nevertheless, the evaluation meets its claim of

providing a comprehensive impression of the EA information modeling capabilities of

EMF, but as well, asks for the application in a �real-world� scenario at a practitioner

to assess whether or not EMF lives up to its potentially promises.

EMF supports multiple inheritance by its meta-model Ecore and even provides

a working implementation thereof based on its powerful code generation facility.

121

4 Evaluation of repository services

EMF enables to generally put the focal point on the information modeling, since

a corresponding implementation as well as a simple editor for objects is generated

at push of a button. Nevertheless, the evaluation was intended to evaluate the EA

information modeling capabilities of EMF, and so additionally functionalities, such

as the graphical editor or the code generation facility are primarily considered by the

tool handling evaluation. The results of the di�erent scenarios are summarized in

Table 4.39 conveying an overview of EMF 's EA information modeling capabilities.

Scenario
Ful�llment

of scenario

Ontological

correctness

of models

Tool

handling

Hierarchy modeling

Temporal and variant

modeling
 H# H#

Non-rigid typing and

principle of identity
H# H# H#

Multi-level modeling # # n.a.

Life-cycles H# #

Projects H#

Standardization H#

Goals H# H#

Responsibilities H# H#

Role-based access

control
 H# #

Queries n.a. #

Information model

changes
H# n.a. H#

Table 4.39: EMF � Summary of evaluation

4.6 Evaluation - Conclusion

The evaluated tools have overall proven to be able to structure the required infor-

mation of the di�erent scenarios. Though, multi-level modeling, as well as non-rigid

typing and the principle of identity seem to be a speci�c hurdle under the require-

ments of the scenarios and so at least one of the tools revealed a lack of support for

these scenarios. This de�ciency of support is then directly re�ected in the ontolog-

122

4 Evaluation of repository services

ical grade of scenarios resorting to the concepts of these scenarios, as just general

architecture aspects call for additional concepts than those of the UML [OM10] to

achieve their ontological correct modeling.

Generally speaking, the tools did not convey the impression of explicitly providing

concepts to model in way re�ecting the ontological nature thereof, for which reason

the partial or almost complete ful�llments of the ontological correctness is regarded

as an accidental bonus, coming along with the modeling concepts that are established

for making the �technical� structuring of information as convenient as possible. This

perception might be interpreted as another evidence for the importance of ontolog-

ical correct modeling, since even providing concepts for a convenient information

modeling, without being aware of ontological issues, obviously results in concepts

re�ecting their ontological nature to a certain extent.

Albeit the tools are comprehensively evaluated against the devised scenarios of Chap-

ter 3, it is further to validate whether or not the evaluated expectations can be lived

up in a �real� application at an enterprise. Furthermore, the results cannot be rep-

resentative for all tools available on the market, asking for applying the gathered

experiences of this evaluation on an extended set of tool, providing generic reposi-

tory services for EA information model.

123

5 Conclusion and outlook

The goal of the thesis was to elicit requirements for EA information modeling and

subsequently, to evaluate a set of tools providing generic enterprise model repository

services on basis of these requirements. For eliciting requirements the focus was

put on the EAM Pattern Catalog as strong knowledge base of EAM. Furthermore,

it was to investigate, whether or not pure object-oriented modeling concepts, as

provided by the UML [OM10], are su�cient for modeling the EA in a way re�ecting

the ontological nature of its constituents. After having introduced the lightweight

stereotype approach of Guizzardi in [Gu05] that extends the UML by an typology

of sortal universals or types, respectively, it became obvious, that at least such an

approach is necessary to achieve an ontologically correct information modeling of the

EA.

During the conduction of the thesis a set of scenarios has been devised that re�ects

a wide range of requirements for EA information modeling. However, the elaborated

scenarios could be subsumed into three di�erent kinds of scenarios, namely general

architecture aspects, cross-cutting aspects and service aspects. Among these aspects

the general architecture aspects turned out to the most fundamental one, exerting

in�uence on the evaluation of most scenarios of other aspects. Thereby, the scenarios

subsumed by general architecture aspects re�ect a variety of important basics for

EA information modeling, such as the structuring of the EA using di�erent kinds

of relationships and comprehensive constraint building blocks or the incorporation

of temporal dependency in multiple dimensions. Furthermore, the need of multiple

modeling levels is pointed out, in order to prevent unnecessary complexity caused

by a mismatch of ontological levels and modeling levels. As well, the principle of

identity and non-rigidity, subject to Guizzardi in [Gu05], are elucidated, resulting in

the general distinction between types supplying a principle of identity, referred to as

sortal universals, and dispersive types, which are conceived as a general term that can

apply to multiple particulars, referred to as mixin universals. Non-rigidity introduces

an animate character, since it demands the changeability of types along with the

evolution of the EA. All of these concepts on their own approve the need of certain

modeling concepts beyond pure UML, but as a whole, the need of a well-founded

124

5 Conclusion and outlook

meta-language based on an appropriate ontology, incorporating speci�c issues of EA

information modeling becomes apparent.

Mostly, the evaluation of general architecture aspects anticipated an essential propor-

tion of the evaluation of cross-cutting aspects, since the ontological correct modeling

of cross-cutting aspects is fairly dependent thereon. Scenarios of cross-cutting aspects

encompass some of the most important management subjects, such as the evolution

of the EA, the management of standardization, traceability of management decisions,

measuring the achievement of goals, and so forth, thus validating the importance of

the general management aspects, that provide the foundation for their modeling. In

this vein, the need of a well-founded meta-language is not only reasoned in modeling

aspects, but can directly be derived from the management subject.

Scenarios belonging to service aspects complement the evaluation by assessing func-

tionalities of the tools that are not concerned with information modeling capabilities,

but the procedure of modeling and changing information as well as the management

of the access thereto. Moreover, these concepts assess whether the provided services

of the tool are overall integrated, e.g. whether responsibilities can be combined with

the access control functionality or whether a de�ned validity can even be taken into

account, when performing a query.

Modeling the ontological nature of scenarios was turned notably attention to over the

conduction of this thesis, having caused, among others, a discrete evaluation criterion

for the ontological correctness of models. But particularly the integration of an onto-

logical foundation in EA information modeling can be regarded in its infancy, since

primarily academia is concerned therewith and the tool evaluation conveyed a sim-

ilar impression. Nevertheless, the necessity of such an integration is emphasized by

almost every devised scenario. A sound basis to start the endeavor of an ontological

well-founded EA information modeling can be found in the UFO elaborated by Guiz-

zardi in [Gu05]. To start the endeavor is supposed to indicate that even Guizzardi's

well-founded typology of universals seems to get exhausted in certain modeling sit-

uations of EA information modeling, as discovered in Section 3.2.3. In this section,

the need of an additional non-rigid dispersive type, called non-rigid mixin, appears,

which seemingly is not covered by Guizzardi's UFO. The need of a non-rigid mixin

type was discovered and for the moment assumed as available in the suitable form,

but a well-founded speci�cation of this potentially new or extended dispersive type,

has not taken place yet, asking for an in-depth investigation thereof.

As a matter of course, there may be aspects that are not yet covered by the scenarios,

but the set of scenarios devised throughout the conduction of this thesis has never

125

5 Conclusion and outlook

claimed to be exhaustive. Notwithstanding, the scenarios as a whole are regarded

as a sound basis for further investigations in the �eld of EA information model-

ing. The evaluation has demonstrated that aspects of ontologically correct modeling

the EA seem not to rank among the highest prioritized issues of the tool vendors

and accordingly, assessing the requirements has revealed shortcomings of the tools

in supporting such aspects. The fact that for each of the tools one of the general

architecture aspects had to be evaluated as an overall lack of support backs this per-

ception. Consequently, the reasonability question of an even more comprehensive and

intricate set of requirements inevitably arise, as long as the herein devised require-

ments are not yet completely ful�lled by the tools. In this vein, the applied intricacy

of scenarios is regarded on the one hand as appropriate to re�ect the most important

requirements of EA information modeling, and on the other hand as appropriate to

be evaluable by tools providing generic repository services.

Owed to the possible extent of a bachelor's thesis, only a small set of tools was eval-

uated, that cannot be representative for all tools providing generic enterprise model

repository services available on the market. Nonetheless, the conducted evaluation

gives a comprehensive example of how to apply the scenarios on both tools intended

for creating an EAM function or comparable applications and tools primarily consti-

tuting a meta-modeling environment and are not directly intended for a usage in an

EAM context. Even though most of the scenarios are at least proved by experiences

of the EAM Pattern Catalog [se10b], the extensions made in this thesis have to be

validated in concrete, real situations in enterprises. Thereby, the gathered experi-

ences of actually applying the devised building blocks of the scenarios in practice

may help to extend the knowledge base of the just evolving successor approach of

the EAM Pattern Catalog, that is BEAMS [se10a].

126

Bibliography

[Ai08] Aier, S.; Kurpjuweit, S.; Riege, C.; Saat, J.: Stakeholderorientierte Doku-

mentation und Analyse der Unternehmensarchitektur. In (Hegering, H. G.;

Lehmann, A.; Ohlbach, H. J.; Scheideler, C., Ed.): 38th GI Jahrestagung -

Informatik 2008. pages 559�565. Munich. 2008.

[AK07] Atkinson, C.; Kühne, T.: Reducing accidental complexity in domain models.

In Journal Software and Systems Modeling (SoSyM). Volume 7, Number 3.

pages 345�359. Springer. Berlin / Heidelberg. 2007.

[BCR94] Basili, V.; Caldiera, G.; Rombach, H.: Goal Question Metric Approach. In

Encyclopedia of Software Engineering. pages 528�532. John Wiley & Sons,

Inc. New York. 1994.

[BMN10] Büchner, T.; Matthes, F.; Neubert, C.: Data Model Driven Implementation

of Web Cooperation Systems with Tricia. In 3rd International Conference

on Objects and Databases (ICOODB). Frankfurt am Main. 2010.

[BMS10a] Buckl, S.; Matthes, F.; Schweda, C. M.: Conceputal Models for Cross-

cutting Aspects in Enterprise Architecture Modeling. In Joint 5th Interna-

tional Workshop on Vocabularies, Ontologies, and Rules for the Enterprise

(VORTE 2010). Vittoria, Brazil. 2010.

[BMS10b] Buckl, S.; Matthes, F.; Schweda, C. M.: A Meta-Language for EA Infor-

mation Modeling - State-of-the-art and Requirements Elicitation. In 15th

International Conference on Exploring Modelling Methods in Systems Anal-

ysis and Design (EMMSAD 2010). Hammamet. 2010.

[Bu07] Buckl, S.; Ernst, A.; Lankes, J.; Schneider, K.; Schweda, C. M.: A Pat-

tern based Approach for constructing Enterprise Architecture Management

Information Models. In 8. Internationale Tagung Wirtschaftsinformatik.

Karlsruhe. 2007.

[Bu08a] Buckl, S.; Ernst, A.; Lankes, J.; Matthes, F.; Schweda, C. M.: Enterprise

Architecture Management Patterns � Exemplifying the Approach. In The

127

Bibliography

12th IEEE International EDOC Conference (EDOC 2008). Hammamet.

2008.

[Bu08b] Bundesamt für Sicherheit in der Informationstechnik: BSI Standard 100-2

IT-Grundschutz Methodology. https://www.bsi.bund.de/cae/servlet/

contentblob/471430/publicationFile/27994/standard_100-2_e_pdf.

pdf (cited 2010-06-05). 2008.

[Bu09a] Buckl, S.; Ernst, A.; Matthes, F.; Schweda, C. M.: An Information Model

for Managed Application Landscape Evolution. In Journal of Enterprise

Architecture (JEA). 2009.

[Bu09b] Budinsky, F.; Steinberg, D.; Paternostro, M.; Merks, E.: EMF - Eclipse

Modeling Framework. Addison-Wesley. Boston, MA. 2nd edition. 2009.

[CEF99] Carlson, A.; Estepp, S.; Fowler, M.: Temporal Patterns. In (Harrison, N.;

Foote, B.; Rohnert, H., Ed.): Pattern Languages of Program Design 4. pages

241�261. Addison-Wesley. Boston, MA. 1999.

[Ec10a] Eclipse Foundation: Eclipse.org. http://www.eclipse.org (cited 2010-08-

26). 2010.

[Ec10b] Eclipse Foundation: EMF API Javadoc. http://download.eclipse.org/

modeling/emf/emf/javadoc/2.6.0/index.html?overview-summary.

html (cited 2010-08-28). 2010.

[Ec10c] Eclipse Foundation: EMF Model Query Developer Guide. http://help.

eclipse.org/helios/index.jsp?nav=/19 (cited 2010-09-03). 2010.

[Ga95] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns - El-

ements of Reusable Object-Oriented Software. Addison-Wesley. Reading,

MA. 1995.

[Gu05] Guizzardi, G.: Ontological foundations for structural conceptual models.

PhD thesis. University of Twente. The Netherlands. 2005.

[Gu06] Guizzardi, G.: The Role of Foundational Ontology for Conceptual Modeling

and Domain Ontology Representation. In Companion Paper for the Invited

Keynote Speech, 7th International Baltic Conference on Databases and In-

formation Systems. Vilnius, Lithuania. 2006.

[Gu07] Guizzardi, G.: On Ontology, ontologies, Conceptualizations, Modeling Lan-

guages and (Meta)Models. In Frontiers in Arti�cial Intelligence and Ap-

plications, Databases and Information Systems IV, Olegas Vasilecas, Johan

128

https://www.bsi.bund.de/cae/servlet/contentblob/471430/publicationFile/27994/standard_100-2_e_pdf.pdf
https://www.bsi.bund.de/cae/servlet/contentblob/471430/publicationFile/27994/standard_100-2_e_pdf.pdf
https://www.bsi.bund.de/cae/servlet/contentblob/471430/publicationFile/27994/standard_100-2_e_pdf.pdf
http://www.eclipse.org
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/index.html?overview-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/index.html?overview-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/index.html?overview-summary.html
http://help.eclipse.org/helios/index.jsp?nav=/19
http://help.eclipse.org/helios/index.jsp?nav=/19

Bibliography

Edler, Albertas Caplinskas (Editors), ISBN 978-1-58603-640-8, IOS Press.

Amsterdam. 2007.

[GWS04] Guizzardi, G.; Wagner, G.; van Sinderen, M.: A Formal Theory of Con-

ceptual Modeling Universals. In Deutsches Forchungszentrum fur Kunstliche

Intelligenz Report (ISSN 0946-008X), Proceedings of the First International

Workshop on Philosophy and Informatics (WSPI). Cologne, Germany. 2004.

[In10] InfoAsset AG: InfoAsset Tricia - Open Source Web Collaboration and

Knowledge Management Software. http://www.infoasset.de/, (cited

2010-08-19). 2010.

[KA09] Kurpjuweit, S.; Aier, S.: Ein allgemeiner Ansatz zur Ableitung von Ab-

hängigkeitsanalysen auf Unternehmensarchitekturmodellen. In 9. Interna-

tionale Tagung Wirtschaftsinformatik. Vienna. 2009.

[Kr04] Krcmar, H.: Informationsmanagement. Springer. Berlin. 4th edition. 2004.

[Ma09] Matthes, F.; Buckl, S.; Leitel, J.; Schweda, C. M.: Enterprise Architec-

ture Management Tool Survey 2008. In ISIS Business Integration Special,

Nomina Informations- und Marketing Services. Munich. 2009.

[OM06a] OMG: Meta Object Facility (MOF) Core Speci�cation. version 2.0

(formal/2006-01-01). 2006.

[OM06b] OMG: Object constraint language (ocl) available speci�cation. version 2.0

(formal/2006-05-01). 2006.

[OM10] OMG: OMG Uni�ed Modeling LanguageTM (OMG UML), Infrastructure.

(formal/2010-05-03). 2010.

[se10a] sebis, Chair for Informatics 19, Technische Universität München: Build-

ing Blocks for Enterprise Architecture Management Solutions. http://

wwwmatthes.in.tum.de/wikis/beams/home, (cited 2010-08-11). 2010.

[se10b] sebis, Chair for Informatics 19, Technische Universität München: EAM pat-

tern catalog wiki. http://eampc-wiki.systemcartography.info, (cited

2010-08-11). 2010.

[se10c] sebis, Chair for Informatics 19, Technische Universität München: Research

Projects. http://wwwmatthes.in.tum.de/wikis/sebis/projects, (cited

2010-08-11). 2010.

129

http://www.infoasset.de/
http://wwwmatthes.in.tum.de/wikis/beams/home
http://wwwmatthes.in.tum.de/wikis/beams/home
http://eampc-wiki.systemcartography.info
http://wwwmatthes.in.tum.de/wikis/sebis/projects

Bibliography

[Wo04] World Wide Web Consortium (W3C): XML Schema Part 0: Primer Sec-

ond Edition. http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/

(cited 2010-08-26). 2004.

[Wo08] World Wide Web Consortium (W3C): Extensible Markup Language (XML)

1.0 (Fifth Edition). http://www.w3.org/TR/2008/REC-xml-20081126/

(cited 2010-08-26). 2008.

[YJ02] Yoder, J. W.; Johnson, R.: The Adaptive Object Model Architectural Style.

In Proceeding of The Working IEEE/IFIP Conference on Software Archi-

tecture 2002 (WICSA3 '02). Montreal. 2002.

130

http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2008/REC-xml-20081126/

	Abstract
	Contents
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Structure of the thesis

	2 Scientific foundations for EA information modeling
	2.1 EAM Pattern Catalog
	2.2 EA management layers and cross functions
	2.3 Ontological foundations for structural conceptual models

	3 Scenarios for EA information modeling
	3.1 General architecture aspects
	3.1.1 Hierarchy modeling
	3.1.2 Temporal and variant modeling
	3.1.3 Non-rigid typing and concept of identity
	3.1.4 Multi-level modeling

	3.2 Cross-cutting aspects
	3.2.1 Lifecycle
	3.2.2 Projects
	3.2.3 Standardization
	3.2.4 Goals
	3.2.5 Responsibilities

	3.3 Service aspects
	3.3.1 Role-based access control
	3.3.2 Queries
	3.3.3 Information model changes

	3.4 Summary

	4 Evaluation of repository services
	4.1 Scenario simulation and evaluation criteria
	4.2 Repository services selection process
	4.3 ADOxx of BOC Information Systems GmbH
	4.3.1 ADOxx – Tool structure
	4.3.1.1 ADOxx – Tool components
	4.3.1.2 ADOxx – General functionalities

	4.3.2 ADOxx – Hierarchy modeling
	4.3.3 ADOxx – Temporal and variant modeling
	4.3.4 ADOxx – Non-rigid typing and principle of identity
	4.3.5 ADOxx – Multi-level modeling
	4.3.6 ADOxx – Life-cycle
	4.3.7 ADOxx – Projects
	4.3.8 ADOxx – Standardization
	4.3.9 ADOxx – Goals
	4.3.10 ADOxx – Role-based access control
	4.3.11 ADOxx – Responsibilities
	4.3.12 ADOxx – Queries
	4.3.13 ADOxx – Information model changes
	4.3.14 ADOxx – Summary of evaluation

	4.4 Tricia of InfoAsset AG
	4.4.1 Tricia – Tool structure
	4.4.1.1 Tricia – Data modeling framework
	4.4.1.2 Tricia – Information Modeling

	4.4.2 Tricia – Hierarchy modeling
	4.4.3 Tricia – Temporal and variant modeling
	4.4.4 Tricia – Non-rigid typing and principle of identity
	4.4.5 Tricia – Multi-level modeling
	4.4.6 Tricia – Life-cycle
	4.4.7 Tricia – Projects
	4.4.8 Tricia – Standardization
	4.4.9 Tricia – Goals
	4.4.10 Tricia – Role-based access control
	4.4.11 Tricia – Responsibilities
	4.4.12 Tricia – Queries
	4.4.13 Tricia – Information model changes
	4.4.14 Tricia – Summary of evaluation

	4.5 Eclipse Modeling Framework of the Eclipse Foundation
	4.5.1 EMF – Tool structure
	4.5.1.1 EMF – Code Generation
	4.5.1.2 EMF – Ecore
	4.5.1.3 EMF – Validation framework

	4.5.2 EMF – Hierarchy modeling
	4.5.3 EMF – Temporal and variant modeling
	4.5.4 EMF – Non-rigid typing and principle of identity
	4.5.5 EMF – Multi-level modeling
	4.5.6 EMF – Life-cycle
	4.5.7 EMF – Projects
	4.5.8 EMF – Standardization
	4.5.9 EMF – Goals
	4.5.10 EMF – Role-based access control
	4.5.11 EMF – Responsibilities
	4.5.12 EMF – Queries
	4.5.13 EMF – Information model changes
	4.5.14 EMF – Summary of evaluation

	4.6 Evaluation - Conclusion

	5 Conclusion and outlook
	Bibliography

