FAKULTAT FUR INFORMATIK
DER TECHNISCHEN UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Wirtschaftsinformatik

SPECIFYING AND CLASSIFYING GENERIC
ENTERPRISE MODEL REPOSITORY SERVICES

Florian Balke

FAKULTAT FUR INFORMATIK
DER TECHNISCHEN UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Wirtschaftsinformatik

SPECIFYING AND CLASSIFYING GENERIC
ENTERPRISE MODEL REPOSITORY SERVICES

SPEZIFIKATION UND KLASSIFIKATION
GENERISCHER DIENSTE EINES REPOSITORIES FUR
UNTERNEHMENSMODELLE

Author: Florian Balke
Supervisor: Prof. Dr. rer. nat. Florian Matthes
Advisor: Dipl.-Inf. Christian M. Schweda

Date of submission: 15.09.2010

I assure the single handed composition of this bachelor’s thesis only supported by

declared resources.

Miinchen, den 15. Oktober 2010

Florian Balke

Acknowledgments

Abstract

Enterprises increasingly resort to enterprise architecture (EA) management to cope with to-
day’s challenging environmental conditions. Thereby, EA management is gaining importance
as a central means of supporting enterprises both to adapt to changing market conditions
and to take new business opportunities enabled by innovative technologies. The benefit of
EA management is directly coupled with documenting and analyzing the EA, so as to be
able to provide a holistic view on the enterprise, describing the current state as well as future
states thereof. Hence, devising an information model to structure the information of such

descriptions constitutes one of the major tasks of EA management.

Although the plurality advocates the idea that EA information models are organization-
specific design artifacts (cf. [BMS10b]), it is to assumed that an underlying meta-model
exists, in which the different organization-specific information models are founded. There-
fore, this thesis sets the goal of eliciting requirements for EA information modeling, while
assessing whether state-of-the-art modeling concepts, such as those of the UML [OM10], are
sufficient to satisfy the requirements. Subsequently, a set of tools is evaluated against these
requirements to get a general idea of the capabilities of their generic repository services for

EA information models.

Zusammenfassung

Unternehmen greifen vermehrt auf das Management der Unternehmensarchitektur (UA)
zuriick, um mit den herausfordernden Umweltbedingungen fertig zu werden. Dabei gewinnt
das UA Management, als zentrales Mittel zur Unterstiitzung bei sowohl der Anpassung
an sich dndernde Marktbedingungen, als auch dem Ergreifen neuer Geschéftsgelegenheiten
durch innovative Technologien, zunehmend an Bedeutung. Der Nutzen des UA Manage-
ments ist direkt mit der Dokumentation und Analyse der UA verbunden, um in der Lage
zu sein eine ganzheitliche Sicht auf das Unternehmen bereitzustellen, welche den aktuellen,
sowie zukiinftige Zusténde davon beschreibt. Daher stellt die Gestaltung von Information-
smodellen zur Strukturierung dazu benétigter Informationen eine der Hauptaufgaben des
UA Managements dar.

Obwohl die Mehrheit die Meinung vertritt, dass UA Informationsmodelle organisationsspez-
ifische Design-Artefakte sind (cf. [BMS10b]), ist davon auszugehen, dass ein zugrundeliegen-
des Meta-Modell existiert, in dem die verschiedenen Informationsmodelle begriindet sind.
Deshalb, setzt sich diese Thesis zum Ziel, Anforderungen an die UA Informationsmodel-
lierung zu erheben und dariiber hinaus zu beurteilen, ob Modellierungskonzepte nach dem
Stand der Technik, wie die aus der UML [OM10], geniigen, um den Anforderungen gerecht
zu werden. Darauffolgend wird einen Reihe von Tools evaluiert, um einen Uberblick der

Fahigkeiten ihrer generischen Repository Dienste fiir Unternehmensmodelle zu erhalten.

Contents

List of Figures
List of Tables

1 Introduction
1.1 Motivation e
1.2 Structure of the thesis

2 Scientific foundations for EA information modeling
2.1 EAM Pattern Catalog
2.2 EA management layers and cross functions

2.3 Ontological foundations for structural conceptual models

3 Scenarios for EA information modeling
3.1 General architecture aspects
3.1.1 Hierarchy modeling
3.1.2 Temporal and variant modeling
3.1.3 Non-rigid typing and concept of identity
3.1.4 Multi-level modeling 0oL
3.2 Cross-cutting aspects Lo
321 Lifecycle
3.22 Projects
3.2.3 Standardization
324 Goals
3.2.5 Responsibilities Lo
3.3 Service aspects
3.3.1 Role-based access control
332 Queries
3.3.3 Information model changes

3.4 Summary ... oL L

4 Evaluation of repository services

4.1 Scenario simulation and evaluation criteria

VI

X

\&]

-~ o ot b

11
11
13
18
21
25
25
27
31
38
41
42
43
46
48
49

50

Contents

4.2 Repository services selection process 51
4.3 ADOxx of BOC Information Systems GmbH 52
4.3.1 ADOxx — Tool structure, 52
4.3.1.1 ADOxx — Tool components 52

4.3.1.2 ADOxx — General functionalities 55

4.3.2 ADOxx — Hierarchy modeling 58
4.3.3 ADOxx — Temporal and variant modeling 60
4.3.4 ADOxx — Non-rigid typing and principle of identity 64
4.3.5 ADOxx — Multi-level modeling 65
43.6 ADOxx - Lifecycle 66
437 ADOxx —Projects 68
4.3.8 ADOxx — Standardization 69
439 ADOxx—-Goals. 70
4.3.10 ADOxx — Role-based access control 71
4.3.11 ADOxx — Responsgibilities 72
4312 ADOxx —Queries 74
4.3.13 ADOxx — Information model changes 76
4.3.14 ADOxx — Summary of evaluation 7

4.4 Tricia of InfoAsset AG Lo 78
4.4.1 TTricia — Tool structure 78
4.4.1.1 Tricia — Data modeling framework 79

4.4.1.2 'Tricia — Information Modeling 81

4.4.2 'Tricia — Hierarchy modeling 83
4.4.3 Tricia — Temporal and variant modeling 84
444 'Tricia — Non-rigid typing and principle of identity 85
4.4.5 Tricia — Multi-level modeling 86
4.4.6 'Tricia — Life-cycle. oL 86
4.4.7 Tricia — Projects oo oL 87
4.4.8 TTricia — Standardization oL 88
449 Tricia—Goals 90
4.4.10 Tricia — Role-based access control 90
4.4.11 Tricia — Responsibilities 91
4.4.12 Tricia— Queries Lo 92
4.4.13 Tricia — Information model changes 93
4.4.14 Tricia — Summary of evaluation 94

4.5 Eclipse Modeling Framework of the Eclipse Foundation 95
4.5.1 EMF - Tool structure 96
4.5.1.1 EMF - Code Generation 97

VII

Contents

4512 EMF —FEcore 99

4.5.1.3 EMF - Validation framework 102

4.5.2 EMF - Hierarchy modeling 104

4.5.3 EMF - Temporal and variant modeling 106

4.5.4 EMF — Non-rigid typing and principle of identity 109

4.5.5 EMF — Multi-level modeling 110

456 EMF - Life-cycle 111

457 EMF —Projects. 113

4.5.8 EMF — Standardization 114

459 EMF -Goals 116

4.5.10 EMF - Role-based access control 117

4.5.11 EMF - Responsibilities 118

4512 EMF — Queries 119

4.5.13 EMF — Information model changes 120

4.5.14 EMF — Summary of evaluation 121

4.6 Evaluation - Conclusion 122

5 Conclusion and outlook 124
Bibliography 127

VIII

List of Acronyms

EA
EAM
EAMPC
IDE

IT

OCL
sebis
UML
XML

XML Schema

IX

List of Figures

2.1

2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18

3.19

3.20

3.21

3.22

UML class diagram describing the relationship between Concerns (cf.
[BuO8al)

Layers and cross-cutting aspects of an EA (cf. [selOa])

Typology of substantial universals, according to Guizzardi in [Gu05] 7
Object-oriented model of a hierarchy 11
Hierarchy extended by constraints 12
[-Pattern I-24 - ORGANIZATIONALUNIT-HOSTS-BUSINESSAPPLICATION 14
[-Pattern 1-24 extended by the temporal association pattern 15
Temporal association structure applied on I-Pattern 1-24 [selOb] . . . 15
Schematic illustration of bitemporal and variant modeling of the EA 16
Bitemporal modelingo oo 17
Bitemporal modeling by UML stereotype 17
Sortals and Mixins 20
Modeling building block LIFECYCLED applied on PROJECT 20
PROJECTMEMBERSHIP as a role of an employee 21
Type-object pattern (cf. [YJO2|) 22
[-Pattern I-26 of the EAM Pattern Catalog [selOb] 22
Multi-level modeling applied on business applications and their versions 23
Property pattern (cf. [YJO2]) L0 23
Type-Square pattern (cf. [YJO2|. 23
Mutli-level modeling applied on I-Pattern I-66 in [selOb] 24
Modeling building block LIFECYCLED applied on business application

(cf. [BMS10al)o 25

Modeling building block PROJECT-LIFECYCLE-AFFECTABLE applied
on a LIFECYCLED BUSINESSAPPLICATION 26
Exemplified impact analysis, connecting applications via project with
their introducing goals and demands and vice versa 27
Modeling building block PROJECT-INTRODUCES-CHANGES-RETIRES-

AFFECTABLE (cf. [BMS10a]), 28
Relator hierarchy EFFECT, INTRODUCTION, CHANCGE and RETIRE-
MENT (cf. [BMS10a]) o o 29

List of Figures

3.23
3.24
3.25

3.26

3.27
3.28

3.29

3.30

3.31
3.32
3.33
3.34

3.35
3.36
3.37
3.38
3.39
3.40
3.41

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

Temporal projecto
projectAffectable» and «lifecycled» applied to BUSINESSAPPLICATION
Modeling building block ORGANISTIONALUNIT-HOSTS-OPERATIONAL-
BUSINESSAPPLICATION . . .« o v vv e e e e e e e e e
[-Pattern I-67 (cf. [sel0b]) — ARCHITECTURAL SOLUTION CONFOR-

Building block STANDARD-STANDARDIZABLE
Modeling building block STANDARDIZABLE-NONSTANDARDIZED-STAN-
DARDIZED-STANDARD v i v it i it e
Modeling building block STANDARDIZABLE-NONSTANDARDIZED-STAN-
DARDIZED-STANDARD applied on I-Pattern I-67 [selOb]
Modeling building block BUSINESSAPPLICATION-USES-TECHNOLOGY
(cf. [selOal) o
Business application standardization extended by USES
Modeling building block GOAL-QUESTION-METRIC (cf. [BMS10a]) .
I-Pattern I-86 of the EAM Pattern Catalog [selOb]
Modeling building block GOAL-QUESTION-METRIC utilized to mea-
sure protection requirements oL
Modeling building block RESPONSIBILITIES
Modeling building block ACCESSIBILITY
Relator hierarchy of AccEss, READ and WRITE
Stereotype «accessible» applied to BUSINESSAPPLICATION
Modeling building block ACCESSIBILITY extended by responsibilities
Relator hierarchy AcCESS, READ, WRITE, and RESPONSIBILITY

Schematic illustration of validity for relationships

ADOzxz — Meta Model Management facility of the Product Workspace
ADOzz — Modeling Workspace
ADOzz — Notebook
ADOzz — Edit end point definition dialog of relation class ORDERING
ADOzxz — Notebook restrictions due to end point cardinalities
ADOzz — Cardinality check
ADQzz — RELATION _CARDINALITIES definition for ORDERING
ADOzz — Cardinality mismatch detected by the cardinality checker .
ADOzz — Hierarchy modeling Product Workspace
ADOQOzzx — Hierarchy modeling Modeling Workspace
ADOzz — Repository with time filter
ADOzz — Time filter relevant end point

XI

30

31

32
33

35

36

36

37

38
39

List of Figures

4.13

4.14

4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27

4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40

ADOzz — Introduction of ORGANIZATIONAL UNIT in the information
model
ADOxx — Modeling Workspace with time filter and instance of I-
Pattern I-24
ADOzz — Valid object model of June 2010
ADOzz — Valid object model of July 2010
ADQOzx — CHANGE HISTORY of anend point
ADOxx — Multiple abstraction-levels by model types
ADOxx — Business application life-cycle subtypes
ADOxx — Dialog of an end point for assigning target classes
ADOzz — User Catalog
ADOzz — Access rights editing dialog
ADOzx — Access right types for object models
ADOzz — Available kinds of queries
ADOzzx — Exemplary query in the analysis component
ADQOzz — Editing field of automatically genrated JavaScript code . .
Tricia — Architectural overview of a typical application in accordance
with [BMNIO] o o

79

Tricia — Meta-meta-model of the data modeling framework (cf. [BMN10]) 80

Tricta — UML-based editor
EMF — An ecore model and its sources (cf. [BuO9b])
EMF — EMF.Edit code generation
EMF — ECORrE components and their relationships (cf. [Ec10b]) . . .
EMF — Core model with constraints and invariants
EMF — BUSINESSPROCESS core model
EMF — BUSINESSPROCESS core model in tree view
EMF — Temporal association pattern applied in I-Pattern [-24
EMF — Variant modeling by multiple model instances
EMF — Life-cycle phasaes of a business application
EMF — Modeling building block PROJECTS-AFFECTS-AFFECTABLE .
EMF — Modeling building block Standard-Standardizable

XII

82

100

List of Tables

3.1 Scenarios for EA information modeling 10
4.1 ADOzz — Evaluation of hierarchy modeling 60
4.2 ADOzz — Evaluation of temporal and variant modeling 63
4.3 ADOzz — Evaluation of non-rigid typing and principle of identity . . 65
4.4 ADOzz — Evaluation of multi-level modeling 66
4.5 ADOzz — Evaluation of life-cycles 67
4.6 ADOzz — Evaluation of projects 69
4.7 ADOzz — Evaluation of standardization 70
4.8 ADOzz — Evaluation of goals 71
4.9 ADOzz — Evaluation of role-based access control 72
4.10 ADOzz — Evaluation of responsibilities 73
4.11 ADOzz — Evaluation of queries 76
4.12 ADOzz — Evaluation of information model changes 77
4.13 ADOzz — Summary of evaluation 77
4.14 Tricia — Evaluation of hierarchy modeling 83
4.15 Tricia — Evaluation of temporal and variant modeling 85
4.16 Tricia — Evaluation of non-rigid typing and principle of identity . . . 85
4.17 Tricia — Evaluation of multi-level modeling 86
4.18 Tricia — Evaluation of life-cycle 87
4.19 Tricia — Evaluation of projects 88
4.20 Tricia — Evaluation of standardization 89
4.21 Tricia — Evaluation of goals 90
4.22 Tricia — Evaluation of projects 91
4.23 Tricia — Evaluation of responsibilities. 92
4.24 Tricia — Evaluation of queries 93
4.25 Tricia — Evaluation of information model changes 94
4.26 Tricia — Summary of evaluation L0 94
4.27 EMF — Evaluation of hierarchy modeling 106
4.28 EMF — Evaluation of temporal and variant modeling 108
4.29 EMF — Evaluation of non-rigid typing and principle of identity . . . 110
4.30 EMF — Evaluation of non-rigid typing and principle of identity . . . 111

XIII

List of Tables

4.31
4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39

EMF — Evaluation of life-cycle 112
EMF — Evaluation of projects 114
EMF — Evaluation of standardization 115
EMF — Evaluation of goals 116
ADOzz — Evaluation of role-based access control 117
ADOzz — Evaluation of responsibilities 118
ADOzz — Evaluation of queries 120
ADQzz — Evaluation of information model changes 121
EMF — Summary of evaluation 122

XIV

1 Introduction

Today’s enterprises increasingly have to cope with challenging environmental condi-
tions. On the one hand the enterprises have to adapt to a changing market envi-
ronment, e.g. demand and buying behavior of customers or competition with other
companies. On the other hand technological innovations, enabling new business op-
portunities for strengthening competitiveness, have to be taken into account. All of
these factors inevitably call for an increased alignment of business and information
technology (IT). At this point the management of the enterprise architecture (EA)
comes into play, steadily gaining importance for companies (cf. [Bu0O8a, BMS10a,
BMS10b]).

In accordance with Matthes et al. in [Ma09], enterprise architecture management
(EAM) seeks to control and enhance the existing and planned IT support for an
organization, doing this in a continuous and iterative process. EAM addresses the
challenges of organizational change by providing a holistic view on the enterprise,
considering IT and business-related aspects as well as environmental factors. The
documentation of the EA plays a major role thereby, since the holistic description
of the management subject is a prerequisite to any management endeavor. In or-
der to build such a description, enterprises have to gather the needed information
and to devise an information model®, which defines and structures the necessary
information. Since companies normally differ in their organization, in their percep-
tion of what EAM is, and in the goals they are pursuing thereby, procedures for
gathering information as well as the underlying information models are regarded
as organization-specific artifacts that have to be designed to fit the corresponding

organizational environment.

The work presented in this thesis is based on the foundations of the EAM Pattern

Catalog? (cf. [se10b]), which serves as source of investigation and as means of valida-

'Information models may also be referred to as meta-models (cf. [Ai08]) or conceptual models (cf.
[Gu05]), but in order to avoid ambiguity and confusing, it is abstained from using other therms
than information model in the remainder of the thesis

2Therefore, this work is based on the research on System Cartography at the chair for Software
Engineering for Business Information Systems (sebis) of Prof. Dr. Florian Matthes at the
Technische Universitat Miinchen.

1 Introduction

tion of the findings. The motivation and goals of the thesis are described in Section

1.1 followed by an overview of its structure in Section 1.2.

1.1 Motivation

As alluded to above, EAM is a topic that increasingly attracts the attention of to-
day’s enterprises, since it tackles the important challenge of aligning IT and business.
Thereby, EAM is strongly connected to the documentation and analysis of the EA
(cf. [Ai08, BMS10b]), so as to be able to provide a holistic view on the enterprise, for
which reason the conceptualization of the enterprise makes up one of its major tasks.
Albeit information models being organization-specific, it is to assume that different
information models may be founded in a common meta-model or to put it into other
terms may be documented by the same modeling concepts. Staying with this idea,
requirements that have to be fulfilled by the modeling concepts provided for infor-
mation modeling have to be elaborated. Object-oriented languages, such as the most
notorious example, the UML [OM10], are used to provide different state-of-the-art
information models (cf. [GWS04, Gu05, Bu07, sel0b, BMS10a, BMS10b|). Due to
the almost arbitrary complexity of information models, it is furthermore to investi-
gate whether pure object-oriented approaches are appropriate or more sophisticated

concepts of conceptualization are needed.

Due to the presumably convergence of required EA information modeling concepts,
the thesis sets the goal of eliciting requirements for EA information modeling. The
subsequent goal is to evaluate a set of tools providing generic repository services for

enterprise models based on the beforehand elicited requirements.

1.2 Structure of the thesis

The conduction of the thesis started with a comprehensive analysis of the EAM
Pattern Catalog [selOb], related literature of EAM as well as literature concerned
with conceptual modeling based on well-founded ontologies. Theses scientific foun-
dations for EA information modeling and the applied modeling concepts are briefly

summarized in Chapter 2.

The elicitation of requirements for EA information modeling takes place in Chapter 3,
which resulted in a set of representative scenarios reflecting requirements for EA
information modeling rather single requirements. The scenarios are either directly
derived from the EAM Pattern Catalog [selOb] or stem from related literature and

1 Introduction

are as far as possible validated by experiences of the EAM Pattern Catalog [sel0b].
For each scenario, a set of questions is devised that summarizes the requirements

thereof and serves the purpose of a fingerpost for evaluating the scenario.

The scenarios elaborated in Chapter 3 compose the foundation for evaluating a set of
tools providing repository services in Chapter 4. Each tool is evaluated against each

scenario at the same criteria derived from the overall composition of the scenarios.

Subsequent to the evaluation of repository services, the findings of the thesis are crit-
ically reflected giving an outlook on research questions that have to be investigated

more in-depth or appeared due to findings of the thesis.

2 Scientific foundations for EA information

modeling

The EAM Pattern Catalog [selOb] serves as foundation for eliciting requirements for
EA information modeling. Besides this knowledge base, overall experiences of the
field of EAM in general and EAM information modeling in particular (cf. [Ma09])
exert influence on the conduction of this thesis. Furthermore, the perception of EA
information modeling is driven by the notion of an ontological well-founded concep-
tualization of information models (cf. [Gu05]), since such a notion is regarded closer
to the perception of a user without technical background, as presumably encountered
while establishing an organization-specific EAM function. The scientific foundations
resorted to over the thesis as well as global assumptions made therein are devised

throughout this section.

Irrespective of the steadily increasing importance of EAM, there is no definition of
EAM that achieved overall acceptance in research and practice. In the remainder
of this thesis, the definition devised by Matthes et al. in [Ma09] is resorted to as

follows:

Enterprise architecture management is a continuous and iterative process
controlling and improving the existing and planned IT support for an
organization. The process not only considers the information technology
(IT) of the enterprise, also business processes, business goals, strategies
etc. are considered in order to build a holistic and integrated view on the

enterprise.

Goal is a common vision regarding the status quo of business and IT as
well as of opportunities and problems arising from theses fields, used as

a bagis for a continually aligned steering of I'T and business.

Out of this definition, Matthes et al. emphasise in [Ma09] the major role of EAM
to plan and manage the evolution of the EA, targeting an enhanced alignment of
IT and business. Thereby, alignment of IT and business means to adjust the IT
support to the business strategy, but as well to incorporate emerging innovative 1T

for enabling new business strategies and goals.

2 Scientific foundations for EA information modeling

2.1 EAM Pattern Catalog

The EAM Pattern Catalog as presented among others in [Bu08a, Ma09, selOb] is
a collection of best practice EAM patterns, that can be utilized to introduce an
EAM function tailored to the organization-specific problems and context. The EAM
Pattern Catalog can be applied to a new EAM endeavor from scratch, as well as
the enhancement of an already existing EAM function. The EAM Pattern Cata-
log provides guidance for systematically establishing an organization-specific EAM
function and thus provides an holistic view on the enterprise. For that purpose, the
collection of proven best-practice patterns is subdivided into the three types method-
ology, viewpoint and information model patterns, which all may be adapted to the
organizational context and the specific problem. Figure 2.1 provides an overview of
the different EAM patterns and their relationships.

adressed by utilizes for ¢ ication visualizes information of

1.* 1.* 1 1x 1.* 1.*
Concern M-Pattern V-Pattern I-Pattern

uses results of is layer for uses concepts of

Figure 2.1: UML class diagram describing the relationship between Concerns (cf.
[Bu08al])

e (Concerns represent the pain points of a company, that have to be identified

before starting an EAM endeavor.

e Methodology Patterns (M-Pattern) are selected subject to the beforehand iden-
tified concerns, helping to construct the set of necessary tasks to address the

specific problems of a company.

e Viewpoint Patterns (V-Pattern) provide ways of visualizing information that

support the chosen tasks of the M-Patterns.

e Information model Patterns (I-Pattern) provide the information needed by vi-
sualizations of V-Patterns. For that, an I-Pattern contains an information

model fragment defining and structuring this information.

For the conduction of this thesis, particularly I-Patterns are put under investigation
in order to derive requirements for EA information modeling and to validate elicited

requirements by example.

2 Scientific foundations for EA information modeling

2.2 EA management layers and cross functions

In accordance to Matthes et al. in [Ma09], there is a basic structure behind an EA
information model giving an abstract overview of the general aspects that have to
be taken into account. Matthes et al. refine in [Ma09] these general aspects into
different architectural layers and cross functions capturing the elementary domains

of an EA information model, as shown in Figure 2.2.

Figure 2.2: Layers and cross-cutting aspects of an EA (cf. [sel0a|)

The architectural layers of Figure 2.2 mirror the composition of a company’s EA
from business and organization related aspects, comprising logical concept that are
independent of their technical realizaiton, over application and information related
aspect, that describe the realization of the business related concepts, to aspects di-
rectly concerned with the IT infrastructure. The architectural layers are respectively
extended by an abstraction layer, providing a customer-oriented perspective on the
corresponding architecture layer, that thus suppresses details of the actual realization
to focus on the provided functionality (cf. [sel0a]). Cross functions are introduced
to complement the layered structure with concepts, which do not exclusively belong
to any of the layers and so are not directly part of the static EA, but may exert

influence on any elements organized therein (cf. [Ma09]).

2 Scientific foundations for EA information modeling

2.3 Ontological foundations for structural conceptual

models

According to Guizzardi in [Gu07], the main success factor of using a modeling lan-
guage lies in its ability to provide a set of primitive types that can directly express
relevant domain concepts comprising what he calls a domain conceptualization. An
abstraction of a certain state of affairs in reality articulated by elements constituting
the domain conceptualization is in virtue of Guizzardi in [Gu07| a domain abstrac-
tion. Furthermore, he highlights the need of a language for representing domain
conceptualizations and domain abstractions in a concise, complete and unambiguous
way. Thereby, domain appropriateness is a measure of the truthfulness of a language
to a given domain in reality and the comprehensibility states the conceptual clarity
of the specifications produced in a language.

Universal

AN

|Substantia| Universall

{dsjoint}éf

SortalUniversal

MixinUniversal
{disjoint, complete}

{disjoint}

RigidSortal | |AntiRigidSortal| [Rigiamixin | [NonRigidMixin]
{disjoint, complete}
{disjoint, complete} {disjoint, complete}
AntiRigidMixin
[wind | [subkind | [Phase | | Role | [category | | RoleMixin | [mixin |

Figure 2.3: Typology of substantial universals, according to Guizzardi in [Gu05]

Guizzardi develops in [Gu05] a foundational ontology, named Unified Foundational
Ontology describing a typology of universals that he uses in turn for re-designing the
proportion of the UML [OM10] dealing with classifiers for the purpose of conceptual
modeling and ontological representation. In order to achieve a concise, clear and
unambiguous modeling throughout the scenarios in the succeeding sections, it is
resorted to this foundational ontology for conceptual modeling. In [Gu05], the author
introduces two ontological categories for substantial universals, namely sortal and

mizin universals, as illustrated in the typology of substantial universals in Figure

2 Scientific foundations for EA information modeling

2.3. Whereas a mixin universal only states whether a general term applies to a
particular, a sortal universal additionally supplies a principle of identity enabling
to decide upon the equality of two particulars. In terms of Guizzardi (cf. [GWS04,
Gu07]) universals and particulars are roughly the ontological counterpart to classifiers
and object instances in object-oriented modeling. He recommends a lightweight
stereotype approach using the extension mechanism of UML to specialize modeling

elements.

In line with Guizzardi in [GWS04, Gu07], sortal universals describe types that supply
a principle of identity, whereas mixin universals constitute dispersive types that cover
entities with different principles of identity. According to Guizzardi in [Gu05], there
has to be always exactly one ultimate sortal inherited by each sortal universal, that
supplies the principle of identity. Hence, if a sortal inherits from more than one other
sortal, there has to be an ultimate sortal, which all of these inherited sortals may be
traced back to. Slightly deviating from Guizzardi in [Gu05], rigid sortal universals
are subsequently not annotated by an UML stereotype (cf. [OM10]), since kinds and
subkinds may be compared to the native UML [OM10] concepts class and subclass.
Thus, a kind of compatibility to pure UML information models is achieved, since

kinds and subkinds are utilized, if not otherwise stated.

All types deviating from rigid sortal universals have to be annotated with a stereo-
type. Thereby, the utilization of stereotypes deviates again from Guizzardi’s propos-
als and so the stereotype «mixin» denotes categories instead of mizins in conformance
with Guizzardi’s notion, since mixins in Guizzardi’s notion are not utilized in the
following and mixin is regarded as the more appropriate name for the most common
mixin universal subtype. The further types of the typology of substantial universals
utilized throughout the thesis are introduced later on by example in an appropriate

context.

3 Scenarios for EA information modeling

The elicitation of requirements for EA information modeling primarily serves the
purpose of covering the modeling issues from the point of view of the enterprise
architect who takes the role of an information model designer or even the user. Hence,
technical requirements as derivable for each modeling issue are not the focal point
in the following, but come into play when evaluating by which technical concepts
the repository services realize the elicited modeling requirements. Connected thereto
is the request of reflecting the “true” ontological nature of the used types and their
relationships in order to ensure clarity of the information model. The introduced
concepts that are not provided by state-of-the-art object-oriented modeling languages
by default pursue the goal of creating a domain appropriate and comprehensible

information model.

In order to address the requirements, repository services are supposed to provide
facilities for creating, maintaining and refining the information model, as well as
for managing and storing corresponding information about the specific EA. Besides
creating, updating and deleting of specific information, the management thereof in-
cludes providing access to repository information by queries or similar functionalities,
as well. In doing so, the requirements elicited in the following have to be fulfilled by

the repository services.

Instead of single requirements, a set of scenarios is devised in order to reflect the
requirements for EA information modeling, that are based on current, related litera-
ture and particularly on the EAM Pattern Catalog (cf. [sel0b]). The patterns of the
EAM Pattern Catalog, constituting best-practices that have stood the test at various
practitioners, make up the basis for deriving relevant scenarios. The selection of the
analyzed patterns has taken place in an iterative investigation process, so as to incor-
porate all insights gained throughout the elicitation of requirements. Hence, on the
one hand scenarios are directly derived from the EAM Pattern Catalog and on the
other hand stem from further investigation in the field of EA information modeling,
backed and validated by examples of the EAM Pattern Catalog, as far as possible.
The devised scenarios are, where possible, complemented by illustrative information

models, reflecting a typical situation, in which the requirements of a scenario apply.

3 Scenarios for EA information modeling

Such typical situations are directly or indirectly derived from patterns of the EAM
Pattern Catalog, so resorting to a well-founded basis of experiences therefor. The in-
formation models are realized utilizing the UML? [OM10] extended by a lightweight

stereotype approach, as outlined in Section 2.3.

Scenario ‘ Relevant I-Patterns

General architecture aspects

Hierarchy modeling [-12, 1-18, 1-30, 1-84, 1-85

Temporal and variant modeling [-24, 1-32, I-33, 1-40, 1-44, I-93

Non-rigid typing and concept of identity [-26

Multi-level modeling I-26, I-66, 1-69

Cross-cutting aspects

Lifecycle I-26, I-44, 1-89

Project affects [-33, 1I-35, 1-36, 1-38, -39, 1-44, 1I-
57, 1-70, 1-89, 1-94

Standardization I-6, 1-23, 1-41, 1-67

Goals I-59, I-86, I-87

Responsibilities -

Service aspects

Role-based access control -

Queries -

Information model changes -

Table 3.1: Scenarios for EA information modeling

Throughout the requirements elicitation the scenarios in Table 3.1 were identified.
These scenarios are roughly subdivided into general architecture aspects, cross-cutting
aspects and service aspects. In doing so, general architecture aspects make up im-
portant aspects of EA information modeling that particularly highlight the demand
for further concepts than those of the UML [OM10]. Cross-cutting aspects deal
with specific issues that may influence other concepts on different layers of the EA
(cf. Section 2.2). Service aspects constitute functionalities that may be regarded

mandatory for repository tools.

The results of the analysis contribute to the Building Blocks for Enterprise Architec-

ture Management Solutions (BEAMS) as devised in [sel0Oa], since relevant aspects for

3The utilization of UML as meta-language does not mean that UML is the most appropriate one
for EA information modeling. Nevertheless, UML is commonly used and understood, as well as
a fairly convenient language for describing objects-oriented models of any kind (cf. [BMS10b]).

10

3 Scenarios for EA information modeling

the creation of re-usable information model building blocks (IBB) are investigated

and coherent building blocks are derived thereby.

3.1 General architecture aspects

Whether dealing with hierarchies, temporality or one of the other aspects within
this section, general architecture aspects are needed to achieve a concise and clear
description of the EA information model. These aspects address architecture con-
cepts needed on the one hand to realize the basics of the EA in different subject
areas, which would cause reinventing the wheel if not available. On the other hand,
they are requisite for appropriately realizing cross-cutting aspects in the succeeding
Section 3.2.

3.1.1 Hierarchy modeling

Hierarchical concepts are pervasive throughout organizational structures, e.g. struc-
tures of authority to decide, as well as the composition of business-relevant objects,
such as organizational units, business processes, component-based applications and
so forth. In the context of EA modeling, this means to deal with relationships of sub-
ordination and different kinds of part-whole relationships. Extending hierarchies to
a concept of organizing and structuring elements, further relationships depending on
the underlying structure, such as linear order consisting of predecessors and succes-
sors, come into play. Thereby, several challenges occur which are not covered by pure
UML [OM10] necessitating the utilization of further concepts, such as constraints in
the Object Constraint Language (OCL) [OMO6b].

super
0.1

sub | BusinessProcess | 0..1

* pre
0..1 | post

Figure 3.1: Object-oriented model of a hierarchy

11

3 Scenarios for EA information modeling

Figure 3.1 shows an excerpt of the I-Pattern I-12 of the EAM Pattern Catalog [se10b]
illustrating a typical hierarchical concept of a business process. This pure UML-based
model does not ensure the subordinating part-whole relationship and its transitive
closure to be acyclic. Furthermore, it is assumed that the ordering relationship
is not independent of the hierarchical structure, since a business process of a lower
hierarchy-level cannot be contained in the ordering of a higher hierarchy-level. Using
OCL [OMO06b] can solve abovementioned problems, but also impairs the readability

of the model, as shown in Figure 3.2.

{context BusinessProcess
inv: self pre=null or self super=self pre_super
inv: self post=null or self super=self_post_super}

{acyclic} :
|
super |
0.1 !
sub | BusinessProcess | 0..1
* pre
0..1 | post

Figure 3.2: Hierarchy extended by constraints

The part-whole, respectively the parent-child relationship is annotated with a con-
straint {acyclic} in Figure 3.2 in order to ensure that no business process can be
superordinate to its own superordinate business processes. This constraint can also
be expressed using the OCL [OMO06b], but would in this case require a very complex
recursively defined condition, unnecessarily distracting from the example. Under the
condition of an acyclic hierarchy, the second constraint, formulated in OCL, intro-
duces two invariants to check whether the predecessor or successor process is either

null or belongs to the same superordinate business process.

Albeit OCL [OMO06b| is expressive enough for the little example, Guizzardi devises
in |Gu06] a foundational ontology for conceptual modeling of part-whole relation-
ships. He does not directly address problems of hierarchy modeling, but ones closely

connected thereto. To support conceptual modelers, he defines a typology of four

12

3 Scenarios for EA information modeling

different sorts of part-whole relationships and investigates which combinations of
them are transitive. In contrast to specifying relationships by adding constraints in
the OCL [OMO06b|, Guizzardi proposes an ontologically founded theory of different
types of part-whole relationships considering inherent properties thereof, which can

directly be utilized for creating the information model.

Several aspects may be relevant for hierarchies that are summarized in the following

questions:

e How can (self-) relationships be annotated as being hierarchic, i.e. acyclic,

one-to-many?
e How can sub-elements of a hierarchy be ordered, i.e. in a linear order?

e Can the validity of other relationships for lower or higher hierarchy levels be
defined?

3.1.2 Temporal and variant modeling

Committed to the goal of documenting and analyzing both the currently implemented
and the target EA, as well as planned intermediate evolutions, temporal aspects in
the models are relevant. Staying with this idea, the evolution of the EA is supposed
to be managed by the EAM function. Furthermore it is necessary to plan several
states or variants for one point in future which may be decided upon later. That
allows to support the decision making process with appropriate models and to reflect
management decisions taken at an appropriate point in future, as well as a validation

whether the plans pursue the strategic goals of the enterprise.

Besides the perspective of prospective states, the traceability backwards using his-
toric data makes up another temporal aspect. This, for example, means that the
evolution of plans over the time is made transparent and that the decision making
may be reassessed by comparing documented alternatives and their rationales. This
goal can be achieved by additionally modeling the time when a plan or a decision

was made, respectively.

Conforming to Buckl et al. in [Bu09a| requirements for temporal modeling of the

EA and its evolution may be deduced:

e Facilitating of target landscape planning by intermediate landscape plans in

order to support the landscape evolution

e Traceability of management decisions by the documentation of historic data

and rationales

13

3 Scenarios for EA information modeling

e Support of different variants for a certain point in time

e Support of the life-cycle of architecture elements and their various relationships

depending on the life-cycle phase

Especially the last point is not only concerned with temporal and variant modeling,
but relates to additional modeling aspects, the non-rigidity of types and the life-cycle
modeling of architecture elements, that exert influence on several other concepts.
In line with Buckl et al. in [BMSI10a| life-cycle modeling may be alluded to as
cross-cutting aspect. These concepts are treated in a separate section due to their

importance along with the management of EAs.

In order to model different states of an architecture element, it becomes necessary
to model the period of time in which these states and versions are valid. To put
it into other terms, properties and associations are supposed to be tracked in how
they have changed or are expected to change by assigning a period of validity. For
exemplifying the problem we regard the I-Pattern 1-24 of the EAM Pattern Catalog
[se10b] as shown in Figure 3.3, illustrating which business applications are hosted by

which organizational unit.

BusinessApplication
name:String

OrganisationalUnit
name:String

4 hosts

Figure 3.3: I-Pattern 1-24 — ORGANIZATIONALUNIT-HOSTS-BUSINESSAPPLICATION

Analyzing the contained association for a certain point in time reveals that a specific
business application is hosted by exactly one organizational unit. But extending
the considered point in time to a period also affects the understanding of the hosts-
relationship, since over the time it may be possible that a specific business application
is hosted by different organizational units. In line with Carlson et al. in [CEF99], this
problem may be addressed by the temporal association pattern. Thereby, the HOSTS-
relationship is converted into the value class APPLICATIONHOST augmented with
two additional properties specifying the start- and end-time of validity, as depicted
in Figure 3.4. This additional class is necessary, since organizational units are not
only associated with a single business application and so a period of time stating
their validity may not consistently reflect the validity a specific HOSTS-relationship.
The problem of documenting passed through changes and envisioned ones, is solved
thereby, but for the cost of introducing additional classes, which leads to further

problems, such as lost clarity of the model. In particular, the restriction of the

14

3 Scenarios for EA information modeling

multiplicities that a business application is only hosted by one organizational unit
at the same time is instantly not ensured, necessitating the distinction between a
long-term, i.e. change-aware, observation and a single point in time. This restriction
may be ensured by adding a constraint, such as the one realized in the OCL [OMO6b]
in Figure 3.4.

@mixing
Temporal
validFrom:Date
validTo:Date
BusinessApplication hostsk ApplicationHost OrganisationalUnit
name:String] 1=] name:String

{inv:
forall t:Date:hosts->select(ojo.validFrom<==t&o.validTo==t).size()==1}

Figure 3.4: I-Pattern [-24 extended by the temporal association pattern

To address the loss of clarity throughout temporal modeling, Buckl et al. in [Bu09a]
recommend in line with Carlson et al. in [CEF99] the utilization of an UML stereo-
type (cf. [OM10]) «temporals for realizing the temporal property pattern that gener-
ally speaking expresses the same model as in Figure 3.4, even considering restrictions
of multiplicities. The stereotype adds a period of validity to the HOSTS-relationship
that has not to be explicitly stated by attributes and retains multiplicity dependent
restrictions without introducing additional classes or constraints to the information
model. The utilization of the stereotype combines the advantages of the original and
the extended information model fragment. Thus, the clarity of the original model
fragment is preserved and the expressiveness is extended by temporality, in doing
so the stereotype «temporals enables to model the true ontological nature of the

hosts-relationship.

OrganisationallUnit
name:String

BusinessApplication
name:String

4 hosts wtemporaly
* 1

Figure 3.5: Temporal association structure applied on I-Pattern I-24 [sel0b]

In Figure 3.5, the temporal association pattern stereotype structure is applied on
the I-Pattern 1-24 (cf. Figure 3.3) achieving the tracking of historic states and
prospective ones, but traceability of changes asking for bitemporality and rationales

is not ensured yet. Bitemporality calls for the capability of statements about states

15

3 Scenarios for EA information modeling

and prospective changes of the EA at a point of view in the past, e.g. the current
state is supposed to be compared to the assumptions on this present state of two
weeks ago and these of a month ago. Therefore, a second dimension of time has to
be considered, additionally modeling the time when certain plans were valid or have

changed, respectively.

The diagram in Figure 3.6 exemplifies the three dimensions to deal with for temporal,
bitemporal and variant modeling and thereby clears the distinctions between them.
Issues of temporal modeling, concerning changes of the EA over the time, are ascribed
to the x-axis of the diagram, realized in the examples by properties describing the
period of validity, namely VALIDFROM and VALIDTO. The y-axis makes up the
second dimension needed for extending to bitemporality, showing the time at which
the valid historic, current or planned EA is supposed to be regarded. This dimension
is realized by simply adding a property defining the point in time, at which the model
fragment was instantiated, in the succeeding model in Figure 3.7. Finally, the z-axis
of the diagram depicts the different variants that may exist at a certain point in

time, which is not addressed by the model fragments in Figure 3.7 and Figure 3.8

yet.
Variants — B B N
1
E Legend i
12.06.2010 12.07.2010 13.08.2010 . 1
Valid for |
e !
EEpaSt e I
2 2 2) 2)) D)
1
ey | |LeEEp | | [——— i
| | ====_ | current state
12.06.2010 ’—’—’—: p— : pr—— : E i
—— | s
S| e | | | | | = | planned state
===
- B - L - [—— :
2)]) D) '3) D b 2 b3) D)
12.05.2010)))
Eapg D ||| oy ||| Lo |

A,
Time of view

Figure 3.6: Schematic illustration of bitemporal and variant modeling of the EA

The model fragment in Figure 3.7 extends ORGANIZATIONALUNIT-HOSTS- BUSINESS-
APPLICATION to bitemporality. That is realized by refining the mixin TEMPORAL
to the mixin BITEMPORAL by adding an additional attribute defining the time of
instantiation. Thus, the second dimension of time is introduced to the model frag-
ment of Figure 3.4, but again with the important drawback of losing clarity due to

the complex model structure. Since the resulting structure can be regarded as a

16

3 Scenarios for EA information modeling

recurring model fragment again, realizing bitemporality independently of a specific
application, an adapted UML stereotype (cf. [OM10]|) «bitemporaly is proposed,
as shown in Figure 3.8. In order to complement the traceability by respective ratio-
nales, the mixin BITEMPORAL might be related to a type RATIONALE, documenting

such reasons.

amixing
Bitemparal
validFrom:Date
validTo:Date
timestamp:Date

7

ApplicationHost OrganisationalUnit
name:String

BusinessApplication
name:String

hostsk

{inv:
forall t1:Date:
forall tDate:

hosts->select(o|o.validFrom<=t&o.validTo>=t& o timestamp==t1&
select(p|p.validFrom==t&p.validTo>=t& p.timestamp==t1&
p.timestamp=>=o.timestamp).size()==0).size()==1}

Figure 3.7: Bitemporal modeling

Albeit bitemporal modeling enables the traceability of changes, the modeling of
different versions is not enabled yet, since irrespectively of the traceability there
cannot be multiple plans for a certain point in future. As projects are the major
means of EA evolution, the existence of distinct project portfolios for a certain point
in time may realize variant modeling, which is addressed by the cross-cutting aspect

project in Section 3.2.2.

BusinessApplication OrganisationalUnit

. < hosts wbitemporals -
name:String - 1 name:String

Figure 3.8: Bitemporal modeling by UML stereotype

Moreover, the life-cycle of a business application has to be taken into account, enforc-
ing the consideration of retired business applications. Currently, the retirement of a
business application cannot be expressed by the devised model without an object-
oriented workaround, e.g. a subtype of ORGANISATIONALUNIT used only to state
that a business application is not hosted. Alternatively, the multiplicity for orga-
nizational units might be softened for deriving the retirement by the non-existence

of a valid host-relationship after a certain point in time. Both mentioned ways are

17

3 Scenarios for EA information modeling

suboptimal solutions neglecting the true nature of the relationship or the participat-
ing types, causing further problems. Hence, the concise modeling of the true nature
of lifecycles considering changing relationships of a type is inevitable, as addressed
in-depth in Section 3.2.1.

Requirements of temporality in information modeling may be addressed by the fol-

lowing questions:

e How can modeling elements be defined as time-dependent, i.e. having a period

of validity, or as time-independent?

e What modeling elements can be defined as time-dependent, i.e. properties or

relationships?
¢ Which means of introducing bitemporality are provided?
e How can modeling elements be denoted as an intermediate or final state thereof?

e How can different variants of an element be specified?

3.1.3 Non-rigid typing and concept of identity

The EA is subject to a process of continuous change and enhancement (cf. [Bu07,
Ma09]). Broken down to single elements of an EA, this implies the change of re-
lationships between elements, of properties of elements or even the entire type of
architecture elements, in order to consistently model the change process. Thereby,
the distinction between ontological types supplying a principle of identity and not
is a prerequisite of coherently modeling non-rigid types, since a type change has not
to imply changing the identity of concerned elements. Non-rigid means that types
defined in the information model can be made changeable or at least extensible, that
is to say additionally to assign new properties and references to a type, even the

nature of an entity’s instance, embodying its type is supposed to be changeable.

Throughout the conceptual modeling of EAs, instances of different classifiers having
the same identity in an ontological sense may be dealt with. For instance, this
issue occurs while modeling the different steps that have to be passed through when
transforming a demand into a project proposal, in turn into an executable project
and finally in a completed project, retained for documentation purposes. During the
entire transition process the demand, the project proposal, the executable project and
the completed project can be traced back to an embracing project without changing
the identity. This may be proven by a simple example, in which an already finished

project is regarded. Whereas during the execution different stages are explicitly

18

3 Scenarios for EA information modeling

named and sometimes cannot directly be ascribed to its actual identity. Afterwards,
the effects of a project are ascribed to a project as a whole, irrespective of the specific
phase in which the effect has taken place and whether this phases contains the word
“project” in its name, exemplifying that the different phases bear the same principle

of identity.

Similar issues may be met with by employee management. Assuming that primarily
every member of a company is an employee, it is necessary to define more precisely
the actual position within the organization. For example, an employee can be a
member of a specific department, but also of one or more projects not linked to this
department. The same employee is concerned, whether the department member or
project member role is regarded, but in each role with specific relationships to other

business entities.

As outlined in Section 2.3, Guizzardi et al. devises in [GWS04] an ontologically well-
founded theory for conceptual modeling to address the abovementioned problems of
individuation and identity supply. Whereas mixin universals only state whether a
general term applies to a particular, sortal universals additionally supply a princi-
ple of identity enabling to decide upon the equality of two particulars. Figure 2.3
exemplifies the usage of ontological types supplying a principle of identity and not.
In contrast to the introduction in Section 3.9, sortal universals are annotated by
«sortaly throughout this section of non-rigid types for emphasizing the distinction

to other ontological types.

EMPLOYEE and BUSINESSAPPLICATION in Figure 3.9 are both sortal universals in-
heriting from the mixin universal ELEMENT. In an organizational context an em-
ployee and a business application have some common properties, i.e. a name, but
different principles of identity. Owing to this fact, ELEMENT cannot be the iden-
tity supplying classifier and thus, it describes a mixin universal subsuming common
properties. Moreover, EMPLOYEE is the ultimate sortal and thereby the only iden-
tity supplying sortal inherited by MaleEmployee and FemaleEmployee, otherwise

individuation might not be ascertained.

Continuing the aforementioned example of different stages a project passes through,
it may be assumed that demands are primarily realized by a textual description.
Subsequently, it might be required to add further or more structured information,
as well as to define relationships, such as assignments of responsible or involved
people during the further proceeding. Moreover, a demand may evolve to a concrete
project proposal, for which already documented information is not supposed to be

maintained a second time. After the project proposal is approved, the project is

19

3 Scenarios for EA information modeling

w€mixing
Element
wsortals wsortal»
Employee BusinessApplication
MaleEmployee FemaleEmployee

Figure 3.9: Sortals and Mixins

introduced and executed, until its completion. These explained stages of a project
might be regarded as its life-cycle, but at least as disjoint states that it consecutively

belongs to.

Guizzardi et al. addresses in [GWS04, Gu05] the problem by introducing a phased-
sortal that represents a non-rigid type describing a part of a partition of a sortal
in which all phased-sortals are mutually exclusive. In this sense, there cannot be a
phased-sortal without a supertyping sortal, which vice versa is subtyped into phased-
sortals constituting a complete, disjoint specialization set. The different non-rigid
subtypes are annotated with the stereotype «phase». Buckl et al. devise in [BMS10a]
the modeling building block Lifecycled resorting to the ontological type phased-
sortal, which is applied to the abovementioned example of the evolution of a project

in Figure 3.10.

«sortaly
Project
name:String
-{completeﬁiisjoint}
«phasex «phases «phases «phasexs
Demand ProjectProposal ExecutableProject CompletedProject

Figure 3.10: Modeling building block LIFECYCLED applied on PROJECT

Using phased-sortals does not allow to model roles, as described at the example of

employees, even since it is closely related to the modeling of phases. Roles also em-

20

3 Scenarios for EA information modeling

body a non-rigid type, but several roles can be hold simultaneously by an object.
Guizzardi et al. proposes in [GWS04, Gu05| another specialization of sortals, namely
roles denoted by the stereotype «role». Figure 3.11 extends the employee hierarchy
of Figure 3.9 by specializing EMPLOYEE to the role PROJECTMEMBER that relates
an EMPLOYEE to a commitment in a PROJECT as reflected in the relationship MEM-
BEROF. This is also an important distinction between phased-sortals and roles, since
a role reflects an external dependency that can be manifested by a relationship, such

as the membership in the example in Figure 3.11, but also by certain properties of a

type.

MaleEmployee

Employee
FemaleEmployee
«roles memberOfe «sortals
ProjectMember 0.* 1.* Project

Figure 3.11: PROJECTMEMBERSHIP as a role of an employee

The following questions subsume the requirements that have to be fulfilled for non-

rigid typing and the principle of identity:

e How can non-rigid types be specified?

Which non-rigid types can be specified?

How can the principle of identity be modeled?

How can be distinguished between types supplying a principle of identity or

not?

3.1.4 Multi-level modeling

EA information models are enterprise specific design artifacts (cf. [BMS10b]) and
describe the domain of the specific EA of an enterprise. According to Atkinson and
Kiihne in [AKO7], the inherent classification levels of a specific solution-independent
domain are often mismatched by the available levels of the used modeling mechanism,
since many of them are based on UML |OM10] that is rooted in a two level paradigm.
According to Atkinson and Kithne many approaches trying to address this level
mismatch are based on workarounds folding multiple domain classification levels

into one modeling layer, i.e. the item-description pattern (cf. [AKO07]) or also known

21

3 Scenarios for EA information modeling

as type-object pattern (cf. [YJO02]). An approach enabling the modeling in multiple

levels could avoid unnecessary complexity caused by such workarounds.

T Object
yBe isOfType eC

Figure 3.12: Type-object pattern (cf. [YJ02])

According to Yoder and Johnson in [YJ02|, object-oriented design normally uses a
separate class, in the meaning of the UML [OM10], for each type of object requiring
changes of the information model when introducing new types. Therefore, Yoder and
Johnson propose in [YJ02] not to model each type as class, rather by descriptions
that have to be interpreted at run-time. Staying with this idea, Yoder and Johnson
elaborate in [YJ02] the type-object pattern, in order to define subtypes of an entity

and corresponding objects at run-time, as depicted in Figure 3.12.

BusinessApplicationVersion

name:String
BusinessApplication startPlanned:Date
name:String versions® endPlanned:Date
id:String 1 ~ | startDevelopment:Date

endDevelopment:Date
startProduction:Date
endProduction:Date
startRetirement:Date
endRetirement:Date

type:BusinessApplicationType

Figure 3.13: I-Pattern [-26 of the EAM Pattern Catalog [sel0b]

In accordance with Yoder and Johnson in [YJ02|, subtypes are simple instances of
TYPE defining the description for specific entities. OBJECT in turn is instantiated
to the actual objects conforming to an instance of Type. Thereby the type-object
pattern folds two ontological levels into one modeling level. To retain the specificity
of the type-object pattern, but to avoid unnecessary complexity and to convey the
true ontological nature of types in the information model, a multi-level modeling

approach, as presented in the following may be utilized.

The modeling of versions as shown in [-Pattern I-26 in Figure 3.13 can be regarded
as an application of the type-object-pattern, exemplifying this level mismatch by
modeling the versions of a business application as associated type. Assuming that
a specific version of a business application is always meant when dealing with the

IT support for business functions or processes, respectively, in the EA, a version is

22

3 Scenarios for EA information modeling

BusinessApplication
name:String

types

Version:BusinessApplication
version:String

Figure 3.14: Multi-level modeling applied on business applications and their versions

Object Property

<= name:String
value:String

Figure 3.15: Property pattern (cf. [YJ02])

nothing else than an ontological instance of a business application and constitutes
a specific release thereof. In this sense, the element BUSINESSAPPLICATION resides
on an ontologically higher level than the elements that use the ontological instances
or versions thereof, respectively. Applying multi-level modeling on the I-Patterns
of the EAM Pattern Catalog [selOb] withdraws the need to deal with the type of
business applications and the type of their versions within a single ontological level,
which entails a reduction of complexity by a uniform use. Figure 3.14 resolves the

mentioned level-mismatch of I-Pattern I-26.

T Object
yBe isOfType =
1 *
Property Type isOfType Property
name:String 1 -
value:String

Figure 3.16: Type-Square pattern (cf. [YJ02]

23

3 Scenarios for EA information modeling

According to Yoder and Johnson in [YJ02|, the type-object pattern is often used in
combination with the property pattern, that is used to enable varying attributes for
instances of the same type, as illustrated in Figure 3.15. A combination of these
patterns constitutes the type-square pattern (cf. [YJ02|) for which the type-object
pattern is applied twice on ENTITY and PROPERTY of the property pattern, as shown
in Figure 3.16.

ArchitecturalBlueprint AbstractTechnolog
name:String " T 1 name:String
|
* 1 *
: AbstractUsage :
| name:String |
| |
: iy :
einstanceOf» |winstanceOf» «instanceOf» mela-types
“““““““ e
| | | types
| |
| Usage AbstractUsage| |
| |
| |
| |
| T |
ArchitecturalSolution:ArchitecturalBlueprint| | Technology:AbstractTechnology

Figure 3.17: Mutli-level modeling applied on I-Pattern I-66 in [selOb]

[-Pattern 1-66 in [sel0Ob] is a prominent example for the application of the type-
square pattern. The I-Pattern [-66 describes which abstract technologies are used
by an architectural blueprint, which is in turn specialized to architectural solutions
using concrete technologies. In accordance with the EAM Pattern Catalog [selOb],
an architectural blueprint stands for a software architecture, i.e. three-tier- or pipe-
and-filter-architecture, and an abstract technology is a class of technologies offering
similar, or even standardized functionalities, e.g. web server or database manage-
ment system (DBMS). Thereby, an architectural solution concretizes an architectural
blueprint by selecting concrete technologies for each abstract technology that has to
be specified and thus describes a basic architecture for a business application. In this
context, a concrete technology represents a technical constituent of a business ap-
plication or architectural solution, respectively, specifying abstract technologies, e.g.
“Oracle 9i” is a specification for “DBMS”. In an ontological sense, architectural solu-
tions and their associated technologies are instantiations of architectural blueprints

and their used abstract technologies, as depicted in Figure 3.17.

The following question has to be answered to analyze multi-level modeling capabili-

ties:

¢ How can multiple ontological levels of a domain be modeled?

24

3 Scenarios for EA information modeling

3.2 Cross-cutting aspects

In accordance with Buckl et al. in [BMS10a], cross-cutting aspects make up a couple
of concepts, which are not selectively assigned to a single aspect of EA management
(cf. Section 2.2), rather may influence various other concepts of EA information
modeling. Due to their influence throughout the EA, they are paid notable attention
to. In [BMS10a], Buckl et al. identify five cross-cutting aspects, namely projects,

life-cycle, standards and goals, as well as responsibilities.

3.2.1 Lifecycle

Life-cycles are already alluded to in Section 3.2.2 as a challenge of coherent model-
ing non-rigid types and the principle of identity, but the life-cycle also constitutes a
cross-cutting aspect of EA information modeling. Almost all architecture elements
may have a life-cycle that can reach from their introduction or development over an
operational period to their retirement. Illustrating that using a business application,
a business application may be in the life-cycle phases in planning, in development,
operational, and replaced, as described by the I-Pattern 1-26 of the EAM Pattern
Catalog [sel0b]. In each phase a particular business application may have distinct
relationships and qualities but is still the same business application. To address this
problem, the non-rigid type phased-sortal is resorted to (cf. Section 3.1.3) and the
modeling building block LIFECYCLED (cf. [BMS10a]) is applied to BUSINESSAPPLI-
CATION, as depicted in Figure 3.18.

BusinessApplication
name:String
{completeﬁiisjoint}
«phase» «phase»
BusinessApplicationinintroduction ReplacedBusinessApplication
«phase» «phase»
BusinessApplicationinDevelopement OperationalBusinessApplication

Figure 3.18: Modeling building block LIFECYCLED applied on business application
(cf. [BMS10a])

According to Buckl et al. in [BMS10a], each instance of a lifecycled type is sup-
posed to retain information of the time of transition between two phases. As well,

an ordering of the life-cycle phases or constraints, which defines possible transitions

25

3 Scenarios for EA information modeling

between life-cycle phases, is conceivable, but neglected in the aforementioned ex-
ample in Figure 3.18. The temporal information of transition may be added by
modeling the period of validity of a certain phase, but an ontologically meaning-
ful modeling of transition constraints is a more intricate task. As subsequently
elaborated in Section 3.2.2, projects are a central means of affecting architecture ele-
ments and therefore control the transition between two life-cycle phases. Therefore,
Buckl et al. decompose in [BMS10a, Bu09a] projects into tasks or work packages,
respectively, that transform architecture elements. Subsequently, Buckl et al. com-
pose in [BMS10a] the modeling building blocks PROJECT-AFFECTS-AFFECTABLE
(cf. Figure 3.21 in Section 3.2.2) and LIFECYCLED (cf. Figure 3.18) to the modeling
building block PROJECT-LIFECYCLE-AFFECTABLE. Figure 3.19 applies the model-
ing building block PROJECT-LIFECYCLE-AFFECTABLE on BUSINESSAPPLICATION

for exemplifying the usage.

BusinessApplication
name:String

{comp\ete.lrd\sjmnt}

«phase» «phase» «phasex» «phase»
BusinessApplicationinDevelopement BusinessApplicationinintroduction OperationalBusinessApplication ReplacedBusinessApplication

1 1 1 1 1 1 1 1

from to

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Approval ‘ Introduction ‘ Change ‘ ‘ Replacement

{complete,|disjoint}
v

‘ Project WorkPackage
M1 K

Figure 3.19: Modeling building block PROJECT-LIFECYCLE-AFFECTABLE applied
on a LIFECYCLED BUSINESSAPPLICATION

The transition between states of an EA element is conducted by different types
of work packages that make up a kind of reification of the AFFECTS-relationship
of the modeling building block PROJECT-AFFECTS-AFFECTABLE (cf. Figure 3.21).
The subtypes of work package are elaborated in conformance with the phases of a
business application. Thereby it is assumed, that a business application in “planning
phase” is transformed into the “in introduction phase” by an approval of the plans.
The transitions between the other phases can be regarded analogously, except for the
change of an operational business application, that is supposed to be an evolution
of the operational business application without replacing it, that otherwise might be
achieved by the combination of introduction and retirement. Thus, an ordering and

control of transitions between different states of EA elements is implicitly achieved.

26

3 Scenarios for EA information modeling

The addressed issues of this section can be evaluated by the following questions:

e How can the life-cycle of an element be defined?

How can the life-cycle stage of an element be changed?

Can the time of transition be documented?

Can the life-cycle phases be ordered or their transition restricted?

How are relationships and properties adapted to the life-cycle stage?

3.2.2 Projects

Projects are important for steering the evolution of the EA. Projects result from
received demands or pursued goals and hence, the execution of a project can always
be ascribed to a particular rationale in order to achieve a particular goal. Goals and
their achievement form another cross-cutting aspect, dealt with in one of the subse-
quent sections. The cross-cutting aspect project, as depicted in following, primarily
describes the effects on other architecture elements. Effects may be the introduc-
tion of new architectural elements, as well as changes and replacements thereof or
even the retirement of elements. In doing so, distinct project portfolios affecting
the EA, play the major role of defining different variants of the future EA. In this
context, projects enriched with temporal information are the means to achieve the

requirements of temporal and variant modeling of Section 3.1.2 that remained open

Strategy

Goal <> Demand

Project

yet.

Application

Figure 3.20: Exemplified impact analysis, connecting applications via project with
their introducing goals and demands and vice versa

27

3 Scenarios for EA information modeling

Considering the diverse effects caused by a multitude of demands or pursued goals,
it is obvious that taking dependencies among projects into account is not a negligi-
ble challenge. Projects pursuing similar goals and the temporal progression of the
projects have to be synchronized, as well as mutually exclusive projects have to be
avoided. In order to achieve this, projects have to be comparable in their effects,
pursued goals and their temporal dimension, irrespective of starting the comparison
at the affected elements or vice versa at the pursued goals. The project’s central role
for the EA evolution is illustrated in Figure 3.20, in which PROJECT is the connector
between GOAL and DEMAND, introducing an effect, and APPLICATION, as example

of an affected element.

The multitude of occurrences of the type PROJECT in the EAM Pattern Catalog
[sel0b| confirms the fact of being a cross-cutting aspect. PROJECT is contained in
several patterns affecting other architectural elements, such as business applications
(cf. I-Patterns I1-33, 1-35, 1-36, 1-39, 1-57, 1-89), technologies (cf. I-Pattern I-38)
or services (cf. I-Patterns 1-44, 1-70), thus validating the commonality of effecting

architectural elements.

Project wmixing
name:String RANANAN Ll " Affectable
Al}‘ introduces

0.1 *
changes
retiresk

0.1 *

Figure 3.21: Modeling building block PROJECT-INTRODUCES-CHANGES-RETIRES-
AFFECTABLE (cf. [BMS10al)

Buckl et al. propose in [BMS10a] to generalize the affected element types to the
mixin AFFECTABLE in order to address the specificity of projects, capable of af-
fecting a plurality of EA elements. Furthermore, Buckl et al. refine the modeling
building block PROJECT-AFFECTS-AFFECTABLE to express that actually specializa-
tions of AFFECTS, namely INTRODUCES, CHANGES, RETIRES, are utilized, having
different multiplicities, as well. In order to pay the deserved attention to this rela-
tionship Buckl et al. recommend resorting to the distinction of formal and material
relationships elaborated by Guizzardi in [Gu06]. According to Guizzardi in [Gu06],
formal relationships are directly hold between entities without any further interven-
ing particular and are reducible to intrinsic qualities of the entities. Comparison

relationships are a prominent example for formal relationships. In contrast, material

28

3 Scenarios for EA information modeling

relationships are induced by a mediating entity called relafor. Since almost all rela-
tionships dealt with throughout the scenarios are material ones, it is abstained from
annotating material relationships, rather only formal relationships are explicitly de-
noted. The affects-relationship and its specializations are all material relationships
and can be reified by their corresponding relator types. Buckl et al. propose in
[BMS10a] a relator hierarchy consisting of the superclass EFFECT and the three spe-
cializations INTRODUCTION, CHANGE and RETIREMENT. The mentioned extensions
are shown in Figure 3.21 and Figure 3.22.

arelators
Effect

{complete] disjoint}

arelators «relators arelators
Introduction Change Retirement

Figure 3.22: Relator hierarchy EFFECT, INTRODUCTION, CHANGE and RETIRE-
MENT (cf. [BMS10a])

The already repeatedly mentioned requirement of variant modeling constitutes a spe-
cific challenge in EA information modeling, since a plenty of aspects have to be taken
into account in order to achieve an ontologically coherent modeling thereof. This goal
can be achieved by composing the elicited aspects of bitemporal modeling, life-cycle
modeling and the transition among life-cycle phases, as well as projects as means of
EA evolution. The example ORGANIZATIONALUNIT-HOSTS-BUSINESSAPPLICATION
in Figure 3.3 is supposed to be complemented with aspects elaborated in the corre-

sponding sections.
The following requirements subsume the aspects that have to be fulfilled:
e Incorporation of the business application’s life-cycle (cf. Figure 3.18)

e Effects on business applications introduced by projects (cf. Figure 3.19 and
Figure 3.21)

e Introducing of temporality to projects
e Composition of the different aspects to achieve variant modeling

Initially, the temporal dimension of projects is introduced by simply adding a period

of validity stating the time a project is going to be conducted or has been conducted,

29

3 Scenarios for EA information modeling

respectively. Even bitemporal aspects would be possible but not mandatory to ad-
dress the subsequently handled variant modeling. Much more important therefore is
to determine project dependencies, particularly those among projects affecting the
same elements of the EA simultaneously, as if to deduce different variants of the EA.
Figure 3.23 shows the simple temporal extension of Project that is in turn conveyed
to the different phases of Project, as described in Figure 3.10.

€mixing
Temporal
validFrom:Date
validTo:Date

1

Project

name:String

Figure 3.23: Temporal project

To avoid overloading of the information model while resorting to the needed concepts,
a concise modeling is supposed to be enabled by introducing UML stereotypes (cf.
[OM10]). The stereotype «projectAffectables is introduced to emphasize in this
section that a type annotated thereby participates in an AFFECTS-relationship with
ProJECT. Additionally, the stereotype «lifecycled» expresses that a thus anno-
tated type is subtyped in different life-cycle phases that have to be further specified.
Figure 3.24 illustrates the application of these stereotypes, in doing so the life-cycle

phases in Figure 3.18 are assumed.

«projectAffectables
¢lifecycleds
BusinessApplication

name:String

Figure 3.24: project Affectable» and «lifecycled» applied to BUSINESSAPPLICATION

The extensions made in Figure 3.24 enable the modeling of different versions of a
business application depending on the affecting projects. The incorporation of a
business applications life-cycle influences the HOSTS-relationship in Figure 3.3, since
only a business application in an operational state can be hosted by an organizational

unit. Hence, not the supertype BUSINESSAPPLICATION participates in the HOSTS-

30

3 Scenarios for EA information modeling

relationship, rather the subtype OPERATIONALBUSINESSAPPLICATION, as depicted
in Figure 3.25. Thereby, the retirement of a business application no longer asks for
a workaround for the HOSTS-relationship, instead simply a phase transition of the

concerned business application provokes that the HOST-relationship ceases to exist.

«projectAffectables
«lifecycleds
BusinessApplication

name:String

<cphESEn
OperationalBusinessApplication

OrganisationalUnit
name:String

4 hosts «hitempaorals
* 1

Figure 3.25: Modeling building block ORGANISTIONALUNIT-HOSTS-OPERATIONAL-
BUSINESSAPPLICATION

Albeit variant modeling resorts to multiple other concepts for being adequately re-
alized, it is fairly simply achieved after having prepared the required concepts. By
annotating their utilization, a sufficient expressive and concise modeling of variants
is achieved. Thus, the clarity of the original model fragment of I-Pattern 1-24 is

preserved and the true ontological nature of the utilized types is pointed up.

Summarizing this section, the following questions are relevant, when dealing with

projects:
o How can elements be defined as "project-affected"?
e Which effects can be distinguished for the effect-relationship?
e How can the start and end time of the different project phases be defined?

e How does the existence of a period of validity affect the EA?

3.2.3 Standardization

Many companies have to cope with an EA that is the result of an unguided evo-
lution over a long period of time (cf. [Bu0O8a|). That might mean to deal with a
heterogeneous EA using a high number of different technologies constituting an EA
far away from being suited for the organization-specific context and problems. Con-
sequences might be high maintenance, license or operating costs, lower flexibility or

an inadequate business support.

31

3 Scenarios for EA information modeling

Standardization as cross-cutting aspect of EAM addresses these issues by document-
ing the existing standards and solutions, as well as the conformance of architecture
elements, such as business applications, while incorporating the underlying ratio-
nales of their existence. Thereby, the awareness of nonconformance is increased and
deviations from standards are supplied with descriptions whether they are necessary,
targeting on the consolidation of utilized technologies to get closer to an EA as well
adapted to the organization-specific needs as possible. An important case thereby
is the distinction between standard software and individual software. Whereas the
former has to be only adapted to the company’s specific needs, the latter is individu-
ally developed for the using company, including all side effects, such as maintenance
or further development, which is otherwise provided by the vendor of the standard
software. Thus, it has to be well evaluated, for which piece of software it is necessary
to be developed individually and which one can also be obtained from a software

vendor and subsequently configured for the company’s needs.

* 0.1
conformsTom realizedStandard

* *

BusinessApplication ArchitecturalSolution

name:String
type:BusinessApplicationType
/standardConform:Boolean
/exceptionAllowed:Boolean

name:String

4allowedFor allowedStandards

«Enumeration» «singletony
BusinessApplicationType NoArchitecturalSolution
STANDARD name:String = "non”
INDIVIDUAL

Figure 3.26: I-Pattern 1-67 (cf. [selOb]) — ARCHITECTURAL SOLUTION CONFOR-
MANCE

The EAM Pattern Catalog [selOb] provides several I-Patterns concerning the cross-
cutting aspect standardization. I-Pattern I-6 documents the conformance to archi-
tectural solutions by business applications. I-Pattern I-41 introduces a property to
each business application for the distinctions whether it is standard or individual
software. I-Pattern I-67 (cf. Figure 3.26) introduces two relationships between ar-
chitectural solution and business application, the one pointing on the architectural
solutions allowed for realizing the business application and the other stating the con-
formed architectural solution, which has to be contained in the set of allowed archi-
tectural solutions. For the case that no standard architectural solution is deliberately
used, ARCHITECTURALSOLUTION is subclassed to NONARCHITECTURALSOLUTION.
Furthermore two attributes are derived, namely STANDARDCONFORM and EXCEP-
TIONALLOWED. STANDARDCONFORM indicates whether the business application

32

3 Scenarios for EA information modeling

conforms to one of the documented architectural solutions and EXCEPTIONALLOWED

whether a conformance is mandatory.

For incorporating the true nature of standards, namely the capability of an element
to conform to a standard, Buckl et al. propose the mixin STANDARDIZABLE stating
this capability to conform to a standard. As well, STANDARD is realized by a mixin,
since the true nature of a standard is regarded as its quality to denote existing
architecture elements as a standard. Furthermore, this perception goes in line with
the notion of STANDARDIZABLE addressing the diversity of elements that are able to
conform to a standard. The building block STANDARD-STANDARDIZABLE depicted
in Figure 3.27 slightly deviates from the proposal of Buckl et al. in [BMS10a).

* 0.1

wmixins - wmixing
) conformsTom lizedStandard
Standardizable realizedstancar Standard

* *

/standardConform:Boolean
lexceptionAllowed:Boolean

dallowedFor allowedStandards

Figure 3.27: Building block STANDARD-STANDARDIZABLE

According to Buckl et al. in [BMS10a| both derived attributes of the mixin STAN-
DARDIZABLE can be regarded as a vehicle of backwards-compatibility, since building
blocks modeling the conformance by a simple binary property can be consistently
exchanged by the building block in Figure 3.27. Rather than simply introducing
the STANDARD-STANDARDIZABLE modeling building block into I-Pattern I-67, the
thought of achieving an ontologically coherent information model fragment was car-
ried through, causing several other enhancements in both the model fragment and
the modeling building block. Thus, the former workarounds as described in the fol-
lowing are resolved starting with those utilizable in general for standardization issues,
resulting in a more sophisticated version of the modeling building block STANDARD-
STANDARDIZABLE.

The specialization of an architectural solution in Figure 3.26 to a type only stating
deliberate non-conformance is understood as a general standardization aspect and
hence to incorporate in the modeling building block STANDARD-STANDARDIZABLE.
Owed to the fact of introducing technical issues into the information model, an
element similar to NOARCHITECTURALSOLUTION is omitted. Regarding the under-
lying notion, the artificial type NOARCHITECTURALSOLUTION serves the purpose
of specifying two different kinds of standardization, namely those deliberately non-
conforming and those supposed to conform. The latter type incorporates the case

of a lacking documentation for elements that are nevertheless supposed to conform

33

3 Scenarios for EA information modeling

to a standard. Hence, there are two states that an element, which is able to con-
form to a standard, may reside in, but between which it can arbitrarily swap in line
with the changing requirements of the EA, and is in both of the states perceived
as "standardizable". The two specializations of a "standardizable" do not directly
state whether such an element conforms to a standard. They only express, whether
an element is supposed to be conformant or not and the actual conformance has to

be derived from its relationships to other elements.

For realizing that, a dispersive type that is changeable at runtime or a non-rigid
mizin-type, respectively, is required. Thereby, the notion of a non-rigid mixin-type
deviates from Guizzardi’s in [Gu05|, since Guizzardi conceives a non-rigid mixin type
as a dispersive type utilized to subsume common properties of multiple non-rigid
sortal universals that change in line with the underlying sortal universal, but cannot
change independently thereof. A role-mixin, for example, has a non-rigid character,
since the role, by which it applies to a sortal universal, can be changed in accordance
with the specific context and therefore a role-change of a sortal universal also causes
a change of the assigned role-mixin. Thereby, it may happen that a change between
two roles take place, in which both concerned roles are subsumed by the same role-
mixin, so that both prior to and after the role-change the general term of the role-
mixin applies to the underlying sortal universal. However, a role-change without
changing the general term applying by the role-mixin has to be regarded accidental,
since this is not a requisite of a role-change, but actually for the mentioned non-rigid
mixin type required for standardization issues. For standardization issues, the claim
is to primarily express the capability of conforming to a standard, which in turn
reside in two specific states, namely to be assumed to conform to a standard and to
deliberately non-conform to a standard. Transferring this back to a role-mixin would
mean that a sortal universal has compulsorily assigned a specific role-mixin, which
in turn causes the acting in exactly one of a finite set of roles, between which the
underlying sortal universal can swap arbitrarily. Consequently, the role-mixin would
no longer be a non-rigid type, since it is rigidly assigned to the sortal universal,
only being represented by one of a finite set of specializations. Returning again to
standardization, exactly such a rigid general term is supposed to be assigned to a
sortal universal, that can non-rigidly be specialized to the actual representation of

its state.

34

3 Scenarios for EA information modeling

4 is a dispersive type, mandatorily subtyping a

In the following, a non-rigid mizin
mixin, in doing so a complete, disjoint generalization set has to be defined, in exactly
one of these specializations the corresponding mixin has to reside in. Hereby, the
meanwhile specialization of the mixin depends on the external context of the mixin.
Up to a certain point, non-rigid mixins can be regarded as that for a mixin, which
a role is for a sortal universal, since both depend on an external context and can
be changed arbitrarily, but in contrast, non-rigid mixins constitute a partition of
mutually exclusive types, of which exactly one has to be valid and a common general

term permanently has to apply to the underlying type.

dallowedFor

wmixins «mixing
. llowedStandard:
Standardizable SEGRESHSEaTes Standard
standardConform:Boolean
exceptionAllowed:Boolean «formaly 0.1
conformsTom realizedStandard
{cump\ete%\sminl}
«non-rigid mixiny «non-rigid mixins
NonStandardized Standardized
standardConform:Boolean = false fstandardConform:Boolean
exceptionAllowed:Boolean = true exceptionAllowed:Boolean = false
I
Rational
resultedFrom® Slonete
1 name:String
" | description:String

Figure 3.28: Modeling building block STANDARDIZABLE-NONSTANDARDIZED-
STANDARDIZED-STANDARD

Transferring this to the context of standardization, the already introduced mixin
STANDARDIZABLE is specialized into a complete, disjoint partition of non-rigid mixin-
types, subtyping the mixin STANDARDIZABLE. These non-rigid mixin-types are de-
noted by the stereotype «non-rigid mixiny, stating that the mixin STANDARDIZ-
ABLE has to be specialized by exactly one of its subtypes at any time and may swap
arbitrarily between them according to the evolving organization. Furthermore, the
CONFORMSTO-relationship is shifted to the non-rigid mixin STANDARDIZED, whereas
the non-rigid mixin NONSTANDARDIZED establishes a relationship to RATIONALE in
order to document the justification for deviations. For addressing the deficiency of
documentation, the attribute STANDARDCONFORM is derived, being directly interre-
lated to the coNFORMST O-relationship. For coherently documenting and planning
the situation of standardization of the EA, additional time attributes may be in-

troduced to define the validity of subtypes of STANDARDIZABLE, which is neglected

“The short description of non-rigid mixins does not live up a well-founded typology as the one of
Guizzardi in [Gu05], necessitating a more in-depth investigation to coherently specify the place
of non-rigid mixins within an entire typology of types. Nevertheless, a type that is not directly
covered by Guizzardi’s UFO is required, embodied by non-rigid mixins.

35

3 Scenarios for EA information modeling

for reasons of lucidity. The adapted modeling building block STANDARDIZABLE-
NONSTANDARDIZED-STANDARDIZED-STANDARD is depicted in Figure 3.28.

wstandardizable» * " «standard»
BusinessApplication “allowedFor allowedStandards ArchitecturalSolution
name:String name:String
* «formals 0.1
le conformsTok realizedStandard
IndividualBusinessApplication StandardBusinessApplication

Figure 3.29: Modeling building block STANDARDIZABLE-NONSTANDARDIZED-
STANDARDIZED-STANDARD applied on I-Pattern 1-67 [selOb]

Continuing the adaptations on example-specific aspects, leads to a more in-depth
investigation of BUSINESSAPPLICATION. The characterization of a business applica-
tion as standard or individual one in the I-Pattern 1-67 by an attribute is a possible
technical realization for simple one-level hierarchies, for which reason it is replaced by
two subtypes of BUSINESSAPPLICATION. For reasons of lucidity, the resulting inheri-
tance relationship between the mixin STANDARDIZABLE and BUSINESSAPPLICATION
of the I-Pattern I-67 is denoted with the stereotype «standardizablesy, as shown in
Figure 3.29. This stereotype equally expresses that BUSINESSAPPLICATION inher-
its the mixin STANDARDIZABLE and contributes to making the information model
more concise, since rather modeling a plenty of inheritance relationships, only the
stereotype «standardizables has to be assigned to appropriate types. Similarly,
the usage of the mixin STANDARD is facilitated by the stereotype «standards. All

enhancements are applied on I-Pattern I-67 in Figure 3.29.

BusinessApplication
name:String

Technology
name:String

usesk

Figure 3.30: Modeling building block BUSINESSAPPLICATION-USES-TECHNOLOGY
(cf. [sel0al)

Nevertheless, the original notion of STANDARD-STANDARDIZABLE, which is to denote
architecture elements which are prospectively able to conform to a standard is pre-
served, but refined into subtypes that the mixin STANDARDIZABLE resides in, reflect-
ing its true ontological nature. One aspect was silently introduced to the modeling
building block STANDARDIZABLE-NONSTANDARDIZED-STANDARDIZED-STANDARD
in Figure 3.28, needing a more detailed consideration, namely the annotation of the

CONFORMSTO-relationship by the stereotype «formaly. This stereotype resorts to

36

3 Scenarios for EA information modeling

Guizzardi’s distinction between formal and material relationships (cf. [Gu05, Gu06])
as described in Section 3.2.2. Staying with the example of a business application, on
the one hand the actual purpose of a business application is presumably not to con-
form to a standard, but to support a certain business function or process, for which
in turn a couple of technologies are required, which is shown in the modeling build-
ing block BUSINESSAPPLICATION-USES-TECHNOLOGY in Figure 3.30. On the other
hand a set of used technologies constitute an architectural solution as described in
[-Pattern I-23 in [sel0Ob] that may act as a standard for business applications. Thus,
the nature of a business application may be regarded as its usage of technologies
to fulfill its support purpose while conforming to a standard that encompasses the
"naturally" used technologies. Consequently, the CONFORMST O-relationship in the
example is implicitly derived from the uses-relationship in Figure 3.30, using the
architectural solution composed by these used technologies, validating the intrinsic
character of the CONFORMST O-relationship for business applications. The incorpo-
ration of TECHOLOGY and its corresponding relationships to the model fragment of
Figure 3.29 is depicted in Figure 3.31.

«standardizables * * «standard»
BusinessApplication <allowedFor allowedStandards ArchitecturalSolution
name:String . o name:String
feonformsTom realizedStandard
) useshk
g
Technol
usesh ?C notogy
name:String

Figure 3.31: Business application standardization extended by USES

Transferring the thoughts of the preceding paragraph to the general notion of stan-
dardization reveals that standardization of architecture elements depends on their
specific context, they belong to, e.g. their utilization or composition of other ele-
ments, which make up potential standards. In this sense, there is always an intrinsic
moment of elements that are able to conform to a standard, from which the confor-
mance to a standard can be derived, for which reason the CONFORMST O-relationship

generally makes up a formal relationship, as depicted in Figure 3.28.
Questions arising when setting up a standardization strategy and adjusting them:

e How can architectural solutions be defined as standard?

37

3 Scenarios for EA information modeling

e How can architecture elements be annotated of being able to conform to a
standard?

How can be distinguished between deliberately non-conforming and acciden-

tally non-conforming elements?

How can the rationales of non-conformance be established?

e How can a standard be changed that an element conforms to?

3.2.4 Goals

The alignment of the EAM activities to the organization’s strategies and goals makes
up another cross-cutting aspect. According to Matthes et al. in [Ma09], goals are the
finer grained, more detailed decompositions of strategies which are typically the only
discipline that is cultivated at enterprise level and thus exerts influence on almost
the entire EA. Goals entail demands and projects that in turn affect other elements
to achieve the underlying goals, as similarly illustrated above in Figure 3.20. For
supporting a consistent alignment of the EAM activities to the goals, a backwards
traceability starting at the level of affected elements via the affecting projects up to
the goals is necessary, too. This approach seems to be quite similar to the cross-
cutting aspect projects, but even though a GOAL-AFFECTS-AFFECTABLE building
block allows traversing the dependencies between goals and affected elements, ac-
cording to Buckl et al. in [BMS10a|, it would neglect another important aspect of
the nature of goals, namely the measuring of their achievement. Thus, Buckl et al.
in [BMS10a| propose an approach in line with the Goal-Question-Metric-approach of
Basili et al. in [BCR94].

Goal 4 operationalizes «mixing
name:String 1 1.7 Question
name:String
o _E_' nelanceOlE "E“_”S_La_”cfc_’fi _ meta-types
J | types
Instance:Goal 4 pperationalizes wmixing

AQuestionOfinstance:Question

metrict type
metric2:type

Figure 3.32: Modeling building block GOAL-QUESTION-METRIC (cf. [BMS10al)

Basili et al. in [BCR94] subdivide their approach of measuring the achievement of

goals into three levels. The goals whose fulfillment has to be measured, reside on

38

3 Scenarios for EA information modeling

the highest level. These goals are refined into several questions, which break down
the goals into their major components. Each question is in turn associated with a
set of metrics in order to achieve a quantitative measuring of goals. Buckl et al.
in [BMS10a] resort to the Goal-Question-Metric-approach by introducing a mixin
QUESTION aggregating metrics and indicators in order to operationalize goals. But
measuring the achievement of a goal is not enabled by simply assigning a mixin
QUESTION, since different metrics are needed for measuring a specific question of
a specific goal or instance of a goal, respectively. Hence, attributes appropriate
to concretize a specific question and to measure the achievement of the associated
goal have to be assigned to the question on the same ontological level, on which
the specific questions is located. Buckl et al. in [BMS10a| mention in this context
the “twofold nature” of goals and questions, leading to a multi-level ontological in-
stantiation approach as depicted by the building block GOAL-QUESTION-METRIC in
Figure 3.32.

As shown in Figure 3.32 and outlined in the preceding paragraph, the measurable
metrics are located at a lower ontological level as GOAL and QQUESTION. In turn,
instances of GOAL and QUESTION or specific goals and concrete questions, respec-
tively, reside on the same ontological level as elements reflecting non-cross-cutting
architecture elements that may incorporate concrete questions. In the following the
GOAL-QUESTION-METRIC building block is applied to the topic of protection re-
quirements introduced in I-Pattern 1-86 of the EAM Pattern Catalog [sel0b].

«Enumerations BusinessApplication
ProtectionRequirementCategory name=String
normal availability:ProtectionRequirementCategory
high confidentiality:ProtectionReguirementCategory
very high integrity:ProtectionRequirementCategory

Figure 3.33: I-Pattern I-86 of the EAM Pattern Catalog [sel0b]

According to the Bundesamt fiir Sicherheit in der Informationstechnik in [BuO8b],
information is highly valuable to companies and government offices, and needs to be
appropriately protected. There are a couple of reasons, why companies often spare
no effort to protect their information. Maybe the most obvious one is that compa-
nies strive to secure their sensitive and confidential data from competitors in order
to defend and strengthen their market position. Moreover and not less important is
to ensure the availability and integrity of information. These three major qualities
that have to be assured, namely confidentiality, integrity and availability, are also
described by the Bundesamt fiir Sicherheit in der Informationstechnik in [Bu08b].

39

3 Scenarios for EA information modeling

Additionally, the Bundesamt fiir Sicherheit in der Informationstechnik derives three
qualitative statements to categorize these protection requirements, since the quan-
tification is usually not accomplishable. In this vein, it proposes normal, high and
very high as requirement categories. Since the assessment of protection requirements
is a laborious process, a process model is elaborated in [Bu08b]. Subject to [BuO8b],
damage that could occur, if the three qualities are not completely assured, can be
subsumed in a couple of general damage scenarios. In order to select the appropriate

category for a protection requirement, these scenarios have to be evaluated.

The I-Pattern 1-86 of the EAM Pattern Catalog [selOb| (cf. Figure 3.33) deals with
protection requirements for business applications. For each of the qualities avail-
ability, integrity and confidentiality, a property, stating the according requirement
category, is added. The three types of requirement categories, proposed by the Bun-
desamt fiir Sicherheit in der Informationstechnik, are realized as an enumeration.
According to the Bundesamt fiir Sicherheit in der Informationstechnik in [Bu08b]
the three categories do not measure the qualities, rather state how crucial the im-

pact of any loss or damage due to insufficient fulfillment of one of the qualities is

estimated.
Goal 4 operationalizes «mixine
name:String 1 1.0 Question
name:String
A N LN R
_______ \@nstanceOh _ __________________[dnstanceGh .\ _____metatypes
! | | | types
Protection:Goal 4 operationalizes «mixiny i !
Availability.Question ! "EiﬂStBﬂCequ
downtimePerDaytime |
latency:time |
: cinstanceOf»
|
I

BusinessApplication
name:String

Confidentialty.Question <t
proportionEncrytedData: int

|

|

|

\

I

|

. |
4 operationalizes amixiny |
t

|

|

|

|

|

|

4 operationalizes «mixing
Integrity:Question <

lastintegrityCheck:Date

writeAccessesSincelastCheck:int

Figure 3.34: Modeling building block GOAL-QUESTION-METRIC utilized to measure
protection requirements

In terms of the Goal-Question-Metric-approach, the achievement of an appropriate
protection for information represents the goal. This goal is operationalized by the
three qualities leading to the corresponding questions: “What is the level of avail-
ability?”, “What is the level of confidentiality?” and “What is the level of integrity?”.

For measuring these questions, metrics are introduced to each question instance and

40

3 Scenarios for EA information modeling

may be derived to the level of a quality. Transferred to the modeling building block
GOAL-QUESTION-METRIC the meta-level types remain the same due to the multi-
level modeling approach and on type-level, on which also the other elements reflecting
non-cross-cutting aspects reside, the goal instance and the operationalizing questions
are introduced, as shown in Figure 3.34. The metrics for measuring the achievement
of the questions are realized by placeholders, at least conveying a realistic impression

of the applied building block, but have to be investigated for a real application.

When dealing with goals in EA information modeling, it is required to answer the

following questions:
e How can goals be assigned to architecture elements?

e How can the achievement of goals be measured

3.2.5 Responsibilities

Within an organizational structure different managerial authorities and authorities
to decide may exist. Connected to an authority to decide is to bear the consequences
resulting from the decisions made. To put it into other terms, the person who bears
the consequences or is responsible for a specific part of an organization, respectively,
may be regarded as directly authorized to decide for this specific part of the orga-
nization. Such parts of the organization may be diverse elements of the EA, e.g.
projects, single work packages of a project, business processes, business applications
and so forth. Generally speaking, people can roughly be subdivided into two groups
in the context of responsibilities, firstly those only executing tasks without any au-
thority to decide and secondly those responsible for a satisfactory execution of a task
or an adequate state of an architecture element. According to Krcmar in [Kr04], a
lack of respounsibilities in projects rises the time to respond to unexpected problems.
Hence, it is obvious to assign responsible people to manageable elements of the EA
to anticipate problems subject to power vacuum or simply to clear responsibilities.
Since responsibilities issues occur over all layers of the EA, they constitute another

cross-cutting aspect.

The modeling building block Responsibilities in Figure 3.35 addresses the mentioned
issues of responsibilities by introducing a role-mixin RESPONSIBLE and a mixin M AN-
AGEABLE. Thereby, the role-mixin RESPONSIBLE subsumes all roles bearing respon-
sibility for an architecture element, in this vein, pursuing a role-based approach. Fur-

thermore, the mixin MANAGEABLE constitutes a dispersive type denoting elements

41

3 Scenarios for EA information modeling

requiring to be managed by responsible people. The responsibility for a certain man-
ageable element is described by the RESPONSIBLEFOR-relationship between the two

introduced dispersive types.

wmixing 4 responsibleFor «roleMixin»
Manageable 1.* * Responsible

Figure 3.35: Modeling building block RESPONSIBILITIES

The modeling building block RESPONSIBILITIES only alludes to one general kind of
responsibilities, but several specializations are conceivable thereof, e.g. responsibil-
ities for the executing people related in however way to the manageable element or
for the compliance with the corporate governance of the manageable element. Albeit
this section does not handle issues of access control, it is obvious that the RESPON-
SIBLEFOR-relationship and the participating types are closely related thereto, since
a person in charge should possess full access rights, as well. The relation between re-
spomnsibilities and access rights is treated in-depth in the succeeding section depicting

distinctions and commonalities thereof.

Some questions have to be answered for evaluating the support of responsibilities as

cross-cutting aspect:
e How can people be declared as responsible for a part of the EA?

e Can architectural elements be defined as manageable or as requiring a person

in charge?

¢ Which kinds of responsibilities can be defined?

3.3 Service aspects

As mentioned at the beginning, besides the scenarios directly reflecting requirements
for EA information modeling or the underlying meta-model, respectively, there are
further aspects regarding service functionalities, required for a convenient EA infor-

mation modeling. These aspects are subsumed in the following scenarios.

42

3 Scenarios for EA information modeling

3.3.1 Role-based access control

Many people are concerned with managing an EA, having different interests therein,
needing different information and views on the EA. However, not all information in
the repository is supposed to be accessed by everyone, i.e. confidential information
is only supposed to be accessible by authorized personnel. Furthermore, it can be
distinguished between read and write access on information, depending on the specific
role of the user. Generally speaking, the access to each piece of information has to
be checked, necessitating the assignment of accessibility information to each element
of the EA. The mentioned restrictions and specificities in accessing information can
mostly be ascribed to the role in which a certain user acts, asking for role-based access
control (cf. [BMS10a]). Since issues of access control recur for elements on different
layers of the entire EA (cf. Section 2.2), role-based access control has a cross-cutting
nature. Despite having a cross-cutting nature, role-based access control is an aspects
that is important for repository services, but does not directly belong to the modeling
of the EA. It is a service aspect defining access rights for information of the repository,
e.g. coming into play when querying information. The property of an element being
accessible can be regarded as a dispersive quality thereof, assigned deliberately to
protect information by restricting roles, allowed to access or accidentally denoting

that no restrictions are defined but may be as far as needed.

4 accesses

wmixing T aroleMixins
) * accessor
Accessible A reads Accessor

* _ reader *
A writes

* writer *

Figure 3.36: Modeling building block ACCESSIBILITY

The modeling building block ACCESSIBILITY in Figure 3.36 addresses the just men-
tioned issues of role-based access control. Therefore, the mixin ACCESSIBLE is re-
lated to the role-mixin ACCESSOR via the ACCCESSES-relationship. The distinction
between read and write access is realized by specializing the ACCESSES-relationship
into the subtypes READS and in turn into the subtype WRITES, that constitute mate-
rial relationships (cf. [Gu06]) and may be reified by the relator hierarchy of ACCESS,
READ and WRITE, as shown in Figure 3.37. Thus, the modeling building block
ACCESSIBILITY enables a simple introduction of role-based access control into the
EA information model by using the already existing roles of people involved in EA

management.

43

3 Scenarios for EA information modeling

arelators
Access

1

arelators
Read

1

arelators
Write

Figure 3.37: Relator hierarchy of ACCESS, READ and WRITE

Although a broad field of different information needs and access rights is covered by a
role based access control, it might be necessary to grant access to a single person, not
acting in the required role. Assuming that each person itself constitutes a unique
role resolves the problem and actually addresses the nature of the problem, since
adding further types to a role-based access control model fragment do not increase its
clarity. Moreover, this approach may be refined to a finer grained distinction of access
rights by transforming attributes into value classes being able to inherit the mixin
AcCCESSIBLE. For retaining the lucidity of the model fragment, attributes deviating
from the access-rules on type-level and even type-level elements might be denoted
by a stereotype «accessibley, expressing that access rights are explicitly defined on
attribute-level. In Figure 3.38 this stereotype is applied to BUSINESSAPPLICATION
in order to protect the more confidential attribute LICENSECOSTS for unauthorized

access, as well as for a concise modeling on type-level.

waccessibles
BusinessApplication

name:String
licenseCostiint «accessibles

Figure 3.38: Stereotype «accessible» applied to BUSINESSAPPLICATION

As alluded to in the preceding Section 3.2.5, responsibilities are closely connected
to access control issues, predefining the access rights for roles in charge. In this
vein, responsibility can be regarded as a specialization of access, encompassing full
access rights, that is to say read and write access, as well as further organizational

commitments as described in the preceding section. Since access rights are qualities

44

3 Scenarios for EA information modeling

added to architecture elements and the different roles, they have to be added to
the involved types of responsibilites, as well, constituting a special case thereof in
the context of accessibility. For expressing the relation to access control, the mixins
MANAGEABLE and RESPONSIBLE correspondingly inherit the mixins ACCESSIBLE
and ACCESSOR, as well as the RESPONSIBLEF OR-relationship subtypes the WRITES-
relationship. Thereby, the relator hierarchy may be extended by RESPONSIBILITY,
as depicted in Figure 3.40. Figure 3.39 illustrates these connections between access
control and responsibility issues, in doing so the qualities of the modeling building
block ACCESSIBILITY are utilized by the modeling building block RESPONSIBIITIES.
But the specificities of responsibilities are crucial enough to retain the mixins MAN-
ACGEABLE and RESPONSIBLE, since they are reflecting a quality of elective elements
fitting in certain schemas of manageability asking for responsible people, whereas

access rights may be assumed to be pervasively required.

4 accesses

armixins T aroleMixins
) * accessor

Accessible 4 reads Accessor

* _ reader *

A writes

* writer *
«mixing < ibleF «roleMixins
Manageable = responsialerar Responsible

*

Figure 3.39: Modeling building block ACCESSIBILITY extended by responsibilities

arelators
Access

1

arelators
Read

1

arelators
Write

1

wrelators
Responsibility

Figure 3.40: Relator hierarchy ACCESS, READ, WRITE, and RESPONSIBILITY

45

3 Scenarios for EA information modeling

Subsuming issues of role-based access control, the following questions have to be

answered:

e How is the access to elements controlled?

Are there different levels for access control, e.g. type- and attribute-level?

e How can users be subsumed into groups with similar access rights?

How can elements be defined as accessible by a role?

Which types of access rights can be defined?

3.3.2 Queries

Defining an appropriate information model is a prerequisite to store specific data in
the repository. Subsequently, both the concrete instances and the information model
make up the information basis for the EAM function. All required information has to
be provided by the repository service to be processed and visualized in various views.
Queries on the repository are an important functionality for accessing the required
information. The needed information is normally not of a single type, rather has
to be accessed using complex connections between information of different types.
A prominent example for such a query is an impact analysis, as mentioned in the
preceding sections. Figure 3.20 exemplifies a conceivable impact analysis starting off
with strategies introducing goals, which provoke as well as demands the execution of
projects that in turn affect other business applications or the entire impact chain vice
versa. According to Kurpjuweit and Aier in [KA09], impact analyses on an ex ante
unknown EA are a particular challenge, since information models are organization-
specific and users want to perform individual inquiries on the structural relations
throughout the EA information model. Hence, the individual relations between the
analyzed types have to be determined while conducting an impact analysis, which

might be accomplished by traversing the information model along its relationships.

Kurpjuweit and Aier further emphasize in [KA09] the specific characteristic of self-
relationships, as used by hierarchies. Transitive queries are needed for querying such
self-relationships. Moreover, Kurpjuweit and Aier distinguish in [KA09] between
four types of validity for relationships introduced by elements on other hierarchy-
level as the currently regarded one. Starting off with a specific element, it has to be
distinguished whether the relationships of superordinate, subordinate, both of them
or none of them are valid for the specific element, as schematically illustrated in

Figure 3.41. In order to perform a sensible impact analysis, the distinctions between

46

3 Scenarios for EA information modeling

these semantics of hierarchic relationships have to be taken into account asking
further for determining the transitive closure of the field of interest. For addressing
the intricacy caused by hierarchic refinable structures, Kurpjuweit and Aier allude
to the necessity of hiding lower hierarchy-levels, which could even be accomplished

by adequate query functionalities.

Level 3 BusinessProcess3| €¢—» Element
<
S
f 3
Level 2 BusinessProcess2
w
?
4
Level 1 BusinessProcess1| €—» Element

Figure 3.41: Schematic illustration of validity for relationships

Independently of whatever complex queries may be, the query results are supposed to
be dependent on the specific access rights of the user issuing the query. In particular,
queries are only supposed to access elements and their properties that are accessible
by the user, resulting in a limited result set. This information can be provided by
a role-based access control approach as elaborated in the two preceding sections.
Furthermore, the integrity of information has to be guaranteed considering effects of
concurrent multi-user access or uncompleted write operations, as fulfilled by almost
any DBMS.

Many of the aforementioned concepts take temporal aspects, such as the temporal
validity of information, into account. Querying time-dependent information necessi-
tates specifying the period of validity for the data that is supposed to be inquired.
As well, it might be required to adjust the period of validity for an already executed
query in order to illustrate the changes of inquired information, e.g. the EA could

easily be made comparable without separately executing a couple of queries.

The mentioned issues of querying information can be assessed by the following ques-

tions:

e How can an impact analysis be performed on an ex ante unknown information

model?

e How can hierarchic structures and self-relationships be queried?

47

3 Scenarios for EA information modeling

e How can different types of relationships be considered?

e How can the granularity of information be controlled, i.e. can lower hierarchy-
levels be hidden?

e Are access rights taken into account while executing a query?
e How is the integrity of information ensured?
e How can temporal aspects be introduced into the query?

e Can the time-dependent validity of information be adjusted after conducting

the query (without need to conduct it again)?

3.3.3 Information model changes

According to Buckl et al. in [BMS10b, Bu08a, BMS10a, Ma09], no standard EA
information model so far exists, in spite of a plethora of research endeavors therefor,
for which reason it is regarded as an organization-specific design artifact, underlying
the dynamic of a changing environment. Hence, information models are supposed
to refine along with environmental changes to hold up an appropriate alignment of
business and IT support. Pursuing this native goal of EAM necessitates adapting
the information model in the repository. In this context adapt means that it is indis-
pensable to be able to change, delete or at least to hide predefined types, properties,
relationships and all other elements, as well as to introduce new of them. Along with
the definition of various information model elements, also their properties have to
be specified, e.g. whether features have a default value or have mandatorily to be

set.

As information model changes are assumed as indispensible, an appropriate mainte-
nance of data contained in the repository in the case of an information model change
is the directly following requirement. The maintenance of data is thereby achieved
by establishing a valid state of the repository or to force the enterprise architect or
other responsible people to produce a valid state, without any data loss. The estab-
lishment of a valid state might be automated by the repository service or partially
to entirely be based on manually defined workflows or procedures to achieve such a

state.

In order to evaluate functionalities addressing information model changes, the fol-

lowing questions have to be answered:

e Is it possible to introduce new classes/attributes/relationships to the informa-

tion model?

48

3 Scenarios for EA information modeling

e Can defined classes/attributes/relationships be adapted, hidden or deleted?

¢ Can properties or relationships be declared mandatory and can a default value

be specified?

e How does the tool react to changes of the information model, especially to
changes on classes/attributes/relationships for which data is contained in the

repository?

e Does the tool provide standard actions on the repository data in cage of infor-

mation model changes? Can these actions be defined manually?
e Does the service retain a valid state of the stored data?

e Do information model changes lead to data loss?

3.4 Summary

A comprehensive investigation of a wide range of requirements for EA information
modeling and the needed functionalities of a repository service therefor is conducted.
As conclusion of each scenario, a set of questions, subsuming the most important re-
quirements thereof, is devised. But there are also requirements applying to each of
the scenarios, irrespectively whether general architecture aspects, cross-cutting as-
pects or service aspects are concerned. Requirements embracing all of the scenarios
are introduced by overall prerequisites, made at the beginning of the chapter “Scenar-
ios for EA information modeling”, asking for a domain appropriate and comprehen-
sible information modeling. As devised throughout this chapter, these requirements
are concerned with the ontological correct information modeling, that reflects the
nature of modeled domain elements. The following questions roughly subsume the

most important aspect applying to every scenario:

e Do the provided functionalities make up workarounds twisting the available

concepts without taking the increasing complexity into consideration?

¢ Do the models reflect the ontological meaning of the used concepts, in particular

the special nature of cross-cutting aspects?

¢ Which perspective have to be taken for the EA information modeling, a domain

or a technology centered one?

49

4 Evaluation of repository services

The scenarios reflecting the requirements for the evaluation of repository services are
elaborated in the chapter Scenarios for FA information modeling. Thereby, a set of
questions for each scenario, as well as overall questions are derived from the detailed
descriptions and illustrations, the answering of which serves the purpose of determin-
ing the level of achievement of the scenarios. In this chapter selected repositories are
evaluated against these scenarios. Initially the procedure of simulating the scenarios
is described in detail, in order to ensure consistency of evaluation for all assessed
repository services. Subsequently, the repositories that are supposed to be evaluated
are selected due to a couple of reasons that are exposed thereby. Afterwards, the
selected repository services are consistently evaluated on basis of these prerequisites

and the devised scenarios of EA information modeling.

4.1 Scenario simulation and evaluation criteria

In order to achieve a consistent evaluation of the repository services, three general
criteria are distinguished during the assessment of the scenarios, namely the over-
all fulfillment of a scenario, the ontological correctness of the models and the tool

handling.

o Fulfillment of scenario: It is assessed to what extent the requirements, stated
in a scenario can be fulfilled by the repository. For this criterion mainly the
capabilities to structure the required information in the information model is

evaluated.

e Ontological correctness of models: This criterion evaluates how far the onto-

logical meaning is reflected by the produced information model.

e Tool handling: The effort of producing the deliverables is determined, taking
all pitfalls and shortcomings thereby into account. Particularly, an intuitive
handling is expected, asking for, among others, a graphical modeling environ-

ment.

20

4 Evaluation of repository services

The results of the evaluation are illustrated by Harvey Balls, which are supposed
to provide an overview to what extent a criterion is fulfilled and hence are more
appropriate than a fine grained metric scale, requiring quantitative calculations of
fulfillment. The fulfillment of each criterion reaches from an almost complete fulfill-
ment (@) via the partially fulfillment (®) to a complete lack of support (O). Thereby,
an almost complete fulfillment states that a criterion was satisfied to the requested
amount, the partially fulfillment expresses that a criterion is achievable to a certain
extent, but either incompletely or unsatisfactorily, and the lack of support means
that a criterion of a scenario was totally neglected by a tool or e.g. in case of tool
handling totally unintuitive. For each of these criteria, no comparison beyond this or-
dinal fulfillment scores is possible or wanted between the evaluated tools, e.g. which
best fulfilled a certain scenario cannot be deduced. For the case a criterion cannot
be evaluated for whatever reason, that is stated by n.a. meaning not avatlable, as
e.g. applied to the tool handling for scenarios overall rated as lack of support and

the ontological correctness of models for some of the service aspects.

4.2 Repository services selection process

The following tool evaluation does not serve the purpose of covering a representative
set, of all tools available on the market that provide generic repository services, rather
constitutes a preselection of a few tools stemming from the fields of meta-modeling,
EAM and knowledge management. Nevertheless, conducting the evaluation on the
selected tools provides a comprehensive overview of how to utilize the findings of
the preceding elicitation of requirements for EA information modeling and asks for
an application on a broader field of tools, providing repository services. The prese-
lection is based on experiences gathered in the Enterprise Architecture Management
Tool Survey 2008 (cf. [Ma09]), overall experiences of the research project System
Cartography and other research projects at the chair for Software Engineering for
Business Information Systems (cf. [selOc]) hold by Prof. Matthes at the Technische
Universitdt Miunchen. Finally, the open source web collaboration and knowledge
management software Tricia developed at the chair of Prof. Matthes, the meta-
modeling platform ADQOzz of the BOC Information Systems GmbH and the Eclipse
Modeling Framework (EMF) as a modeling framework and code generation facility

were chosen for the evaluation.

ol

4 Evaluation of repository services

4.3 ADOxx of BOC Information Systems GmbH

The evaluation of ADOxx took place in the course of a week-long training at BOC
Information Systems GmbH in Vienna from 14" June to 18" June 2010. The
daily training was subdivided into two parts, that were a guided introduction of the
functionalities in the morning, followed by an autonomous investigation thereof in
the afternoon, supported by experienced employees of BOC. For the training week a
copy of ADOzz of a new pre-final version offering the latest functionality extensions,
was provided for putting under investigation. Since the copy of ADOzx was only
allowed to be installed and used during the training week due to security reasons, the
following evaluation of ADOzz is based on the experiences made and the information

gathered during this week.

4.3.1 ADOxx — Tool structure

BOC provides the ADOzz platform as a meta-modeling based development and con-
figuration environment to create domain-specific modeling tools. Thereby, ADOzz
generally comprises three workspaces, the Product Workspace, the Administration
Workspace and the Modeling Workspace. Before starting the evaluation of the sce-
narios of Chapter 3, the most important tool components and general modeling

functionalities are briefly described in the following.

4.3.1.1 ADOxx — Tool components

The Product Workspace constitutes the Product Development Environment, in which
new modeling products can be created, predefined components can be configured and
new functionality can be defined by using the extension mechanism. In the Meta
Model Management facility of the Product Workspaces comprehensive modifications
of the information model can be conducted, new types and relationships among
them can be introduced, as shown in Figure 4.1. The information model is called
meta-model by BOC, but to avoid confusing in comparison with other chapters, the

naming information model is continued in the following.

The Meta Model Management facility of the Product Workspace is the primary
workspace for evaluating scenarios of general architecture aspects and cross-cutting
aspects, that is to say the aspects directly concerned with information modeling.
The workspace is divided in two major sections. The navigation bar on the left-hand

side comprises different tabs, of which the Library View hierarchically structures

92

4 Evaluation of repository services

classes and relationships in the corresponding model types and those in turn in
libraries, as visible in Figure 4.1. The area on the right-hand side, displays the
properties of the currently selected element of the navigation bar, as shown for the
class APPLICATION.

¥ Product Builder: Product Toolkit (Admin) - Application

Meta Model Edt Wiew Settings Window Help Training Yiews

3. Meta Model Management - 4 | [?E] LL_ij % ':I-) ; A =] ﬁ "
q Library View | Class Hi Lyailable Components @ Requirements Defini... lApplicmiun

CI;I:, = "z;"" The sttributes of the class "Application':

ICON_CLASS ICON_CLASS String (STR... | chrome:/fa

Mairtenance Costs (Percent) MAINTEMANCE_CO... Integer (INT... O

ADO - Training Metamodel 1.0 Attribute Name Language Independent | Attribute Type | Default Yalue Class &l B
=) Application Architecturs S : ENRROITS EC i . gz
== " i " | e = =
' Application =1 [F chapter "Change History" [2] 7 B
[Biock - Changs History INSTANCE_CHANG... AT INSTA... | .. gﬁ
(© Interface =1 [Chapter "Costs” 52 ol A C
MANAGED TASK Investment Costs A_IWESTMENT_C Integer (INT_. | 0 =
otz ’ Opersting Costs A_OPERATING_CO... Integer (IMT... O K
2 User [Chapter "Descrigtion” [Fa] 7al 7l =)
[+ [iz inside] g =) A_ID ADONIS St 3’(
> Hag Mote Description DESCRIPTION Lang String... P4
[#-= Provided Functions E =1 [chapter "Lifecycle® [F2) (=] [F= 5]
e Provided Kt artases 8 Start Time START_TIME Coordinate.. -21774526.. 3%
» TASK ASSIGNEDTO LSER End Time END_TIME Cootdinste... 43884416,
= Used Interfaces ASDAY RS SHOW_IZor ol (BOOL 1 2@’
& a Business Architecture X
Height HEIGHT Intsger (MT... 1100 b4

ADOx - Training Metamaodel 1.0.0.3 - Base Seript .. English - | | = Database: train ! Standard-Repaositary —

Figure 4.1: ADOzz — Meta Model Management facility of the Product Workspace

The Administration Workspace makes up the Configuration and Administration En-
vironment of ADOzz, providing amongst others functionalities to manage rights on
different parts of the platform, to import/export libraries, repositories, models and

so forth or to perform other configurations of the platform.

The third part of ADOzz, the Modeling Workspace, embodies the Modeling Environ-
ment, that is either available as rich client or web client. In the Modeling Workspace
the repository may be filled with instances of the before defined information model
elements. For that, a model corresponding to a model type of the information model
has to be created, in which instances of the defined classes and relationships can be
established, as illustrated in Figure 4.2. Graphical representations of a relationship
in an object model are only possible between objects residing in the same object
model, which encompasses in turn only instances belonging to the same model type.
Relationships between objects instantiating types of different model types can also
be created but only using the notebook of the concerned types, as far as configured

in the Product Workspace. These object models are easily created by using drag

23

4 Evaluation of repository services

and drop facilities on the before defined symbols to create new objects which are

automatically persisted in the repository.

ADOxx: Business Process Management Toolkit (Admin) - [AA1 (Application Architecture]] - Graphi... ‘;||E|E|

Mocel Edit Wiew Tools Settings Window Help Training Wiews

‘- Y Modeling - | [<3 T - || TimeFiter: | 16.08.2010 [+]| 7] Active | « (= i
Explorer - ~ B | & Modeling | [AA1 (Application Architecture... l 2
Modlels I Objects | N =)

= £ Models
[l am ; 2 a
-] B&d
'.g:,' Recycle Bin 1 .

H

-

- 3 -
=

> | J [

‘ Successfully saved. || English = ‘ | t_l D atabaze: train || |\ @& fo0% - [| & i =

Figure 4.2: ADOzz — Modeling Workspace

Attribute values can be edited using the so called notebook, which appears after
double-clicking on an architecture element, provided that the notebook is activated
therefor. This activation has to be done in the Product Workspace, in which the
notebook may also be modified. In doing so the information or visualized proper-
ties, respectively, may be structured by different chapters of the notebook, to which
the editing fields for attributes may be assigned. An exemplary notebook of an

application is shown in Figure 4.3.

A2 (Application, Repository Object)

I, F 5
1l i
IC:] S ———
| | Dezcrigtion
_.Functions |
Ce=cription: D / ﬂl:d;_faces |

A description for Application A2,

Change History |

| Lifecycle

| Close |

il 4 P| Help -

A

Figure 4.3: ADOzz — Notebook

o4

4 Evaluation of repository services

Product Workspace and Modeling Workspace are the major tool kits used to con-
duct the evaluation of the scenarios. Thereby, the Product Workspace plays the
major role in scenarios directly dealing with the information model. Subsequent to
creating the information model fragments, the Modeling Workspace is used to assess
the functionalities, whereat the notebook is required to edit the specific attribute
values. After having introduced some more overall aspects of information modeling
with ADOzz in the succeeding section, the scenarios are evaluated in the following

sections.

4.3.1.2 ADOxx — General functionalities

ADOzz provides some basic functionalities useful throughout the different scenarios,
such as UML-based [OM10] information model creation. An information model of
ADOQzz can freely be changed and extended, using the Meta Model Management
facility in the Product Workspace. Therein, an information model is created in
libraries and subdivided by model types that constitute a logical abstraction layer
subsuming classes and relation classes composing a certain part of the information

model, as shown in Figure 4.1.

[#] - Ordeting | | 5 o AL 5 S
= o] B UNEERR Edit End Point Definition Cardinalitites
[#]--» Provided F
e i Edlit Relation Gia
[~ Subording FRENAR Bt the end pairt definition cardinaities of the relation chass 'Ordering:
Create End Point |
Endl Point Defintion: Min kumkber: Max Mumber:
Create affribute | Pre (RC_CRDERING) |D | |1 | [] Ahitrary
Assignffttribute. N post (RC_ORDERING) [0 | |1 | [Arbitrary
Edit jifo Texts. .
| oK | | Cancel | | Help
Eyfpanc Al

Collapse Al

hark Al

Remave

Edit Motebook Definition...

Edit Encl Poirt Cardinalties ...

Copy the 1D irto the clipboard

Figure 4.4: ADOzz — Edit end point definition dialog of relation class ORDERING

For defining a relationships, two end points, namely a FROM- and a TO-end point,
have to be assigned to a relation class, defining the types which the relation class
is connected to. Relation classes are restricted to two end points but an end point
may define multiple types as target for the connected relation classes. For the end
points, cardinalities may be specified, defining the range of elements a relation class
is allowed to be connected to by a specific end point. An end point does not exclu-

sively belong to a certain relation class rather can be utilized by different relation

29

4 Evaluation of repository services

classes. Furthermore, cardinalities of the end points of a specific relation class can be
defined in another dialog of the relation class, as depicted in Figure 4.4. The former
variant of introducing cardinalities directly to end points does not make an impact
on object modeling except unpredictable behavior of the involved relationships, i.e.
relationships may be graphically modeled but actually do not exist in the repository
and disappear after restarting the Modeling Workspace. Looking up this problem in
the documentation of ADOzz, reveals that end point cardinality configurations are
presently not evaluated in the Modeling Workspace and the feature is not supposed
to be used, as emphasized in the end point customization dialog. Maybe, this lack
of support is owed to the fact that the evaluated version of ADOzz is a pre-final
one that is supposed to appear later on this year. In contrast, the latter variant
of introducing cardinalities by a dialog of the relation class actually takes an effect,
which is to change the attribute dialog in the notebook for the concerned relationship
end point, e.g. an end point restricted to at most one object results in a single row
for specifying connections, as shown for the linear order relationship of the I-Pattern
[-12 of the EAM Pattern Catalog [selOb] in Figure 4.5.

BP4 (Business Process, Repository Object)

T

5= Ordeting: + X B s

| e | Descript-ic-n
Subordination

=00 Incaming Relstion: Business Process — Ordering: J'f* §;§ ﬂ g_'b . Ordering

| = B2 -

Figure 4.5: ADOzz — Notebook restrictions due to end point cardinalities

If one of the just described ways of restricting cardinalities is used, the consistency of
cardinalities is not automatically ensured or checked in the Modeling Environment,
even though functionality for checking the consistency of cardinalities on demand
explicitly exists in the Modeling Workspace (cf. Figure 4.6). Hence, in the Model-
ing Workspace object models may be created and persisted, modeled relationships
between objects of which deviate from the declared cardinalities of the information

model.

Even though the definition of cardinalities for end points of a relation class seems
to be the intuitive way of specifying such constraints, ADOzz offers further ways to
specify cardinalities. So, the overall number of object instances of a class within an
instance of a model type can be restricted by assigning the attribute OBJECT CARDI-
NALITIES to a model type, offering an xml-based definition of object cardinalities.
Similarly, an attribute RELATION CARDINALITIES can be assigned to classes, en-

o6

4 Evaluation of repository services

F S @1

— o

Properties and Mame Default Values

- Default Yalues |
Language Independent Default Value: g]

Inta:

=7xml version="1 0" encoding="LCS2" 7= - | Assign |

=l-- Relation modelling cardinalties for class "Business Process" --= -
=acooe

=relstioncards ds=""= |

=hyrelationclass ds=""= |

|

|

=relclazscard de="" relclazsuname="RC_ORDERING"=
=defaut ds=""|

=incoming de="" min="0" ma:x="1"/=
=autgaing de="" min="0" max="1"/=
=ldlefault=
hodel Edit “iew | Tools | Seftings Windowe Help =lrelclasscard=

) ADOxx: Business Process Management Toolkit (Ad|

=hyrelationclass=
| =irelationcards=
- =faddoxxe

& Modelling - Check Cardinalty

f.t Translate »

L Madeliing

Model Inter-References » 428 character(s]

Figure 4.6: ADOzz — Cardinality Figure 4.7: ADOxz — RELATION CARDINALITIES
check definition for ORDERING

abling the confinement of incoming and outgoing relationships in general and for
specific relation classes. If the cardinalities of the ORDERING-relationship are speci-
fied using the attri RELATION CARDINALITIES that has to be assigned to the class
BusINESSPROCESS, even the cardinality checker of the Modeling Workspace can
be utilized. In Figure 4.8, a business process is connected to two succeeding busi-
ness processes, which is excluded by the definition of RELATION CARDINALITIES,
as shown in Figure 4.7. After executing the cardinality check, a notification box
appears displaying the reason of failure, as shown in Figure 4.8. Thus, the modeling
and checking of the ordering relationship is enabled by restricting instances to at

most one predecessor and successor using corresponding end point cardinalities.

The above presented functionalities and modeling concepts enable the modeling of
information models conforming to the general concepts of UML [OM10]. Gener-
ally, the information model is only visualized by tree or list views, distinguishing
between class and relationship visualizations by icons in front of their names. Fur-
thermore, there is only one kind of types, namely class, and relationships, namely
relation classes, respectively, that can be configured to a certain extend. A finer
grained definition of relationships is enabled by their end point definitions, since a
single target definitions is not restricted to the explicitly defined target type rather
also subtypes thereof are incorporate and furthermore multiple target definitions are
possible. Thus, a kind of structure of relationships is enabled. For relationships,
it is not directly derivable from the information model visualization which classes
are connected thereby, asking for analyzing several attribute dialogs to derive such
information. The deficiency of a model view of the information model is a drawback,

since the actual nature of a model fragment cannot be displayed. In combination

o7

4 Evaluation of repository services

|ADO3cx: Business Process Management Toolkit (Admin) - [BAZ (B

Model Edit Wiew Tools Settings Window Help Training

[% Modelling - | <“] I::) - Time Fitter: [] Active '

& Modelling a [B& (Business Architecture)] - Graphic... | a [BA2 (E

ks

a XD

[cardc-09]
Object "BPY" to class "Business Process"™ A maximum of 1 connectar of the type "Ordering” is allowed.

Do you want to continue checking the cardinalties?

Figure 4.8: ADQOzz — Cardinality mismatch detected by the cardinality checker

with the fact, that generally only one ontological type of universals and relationships
is available, the modeling of the true ontological nature of the scenarios may somehow

be restricted, but has to be specifically evaluated for each of the scenarios.

4.3.2 ADOxx — Hierarchy modeling

Since an information model of ADOzz can freely be changed and extended, the
information model fragment of Figure 3.1 can be created under consideration of the
cardinality specificities, as mentioned in Section 4.3.2. As depicted in Figure 4.9,
the class BUSINESSPROCESS and for the relationships of the model fragment the two
relation classes SUBORDINATION and ORDERING are introduced.

= g Business Architecture
w [Black
[:.::I Business Function
| 3 Buziness Process |
Matiz
+-- [iz inzide]
[#]--<» Has MNote
| [#]- - Orelering |
[#---= Provided Functions
| # - Subordination |

Figure 4.9: ADQOzz — Hierarchy modeling Product Workspace

28

4 Evaluation of repository services

An instance of the model fragment in Figure 4.9 is depicted in Figure 4.10, defining
a two-level hierarchy of four business processes. Three of them are supposed to make

up a linear order on the lower level, detailing the fourth business process.

5 modeling E| [BA (Business Architecture)] - Gra...
BF1

Figure 4.10: ADOzz — Hierarchy modeling Modeling Workspace

This standard UML-conform (cf.[OM10]) information model can be established in
ADOQzz, but the actual challenge is to introduce the extensions made in Figure 3.2.
ADOzz offers no possibility to introduce the demanded constraints via correspond-
ing ontological concepts, since concepts such as hierarchies or linear orders are not
regarded as first class concepts by ADOzz. As well, standard constraint for realizing
hierarchies or linear orders cannot directly be defined for the information model,
since no constraint language or similar functionalities are supported. Constraints on
information model-level, e.g. validating whether a self-relationship is acyclic, can
be realized by the scripting functionalities of ADOzz using the provided JavaScript
libraries. Every action that can be manually performed in the modeling workspace
can also be automatized by the scripting functionality, offering much more function-
alities beyond the standard actions. In this way, events provoked while creating an
object model can be triggered and further be validated whether the triggered event is
caused by an illegal modeling action, on which appropriate reactions can be initiated.
Thus as complex constraints as possible with a Turing complete language, such as
JavaScript, can be established, enabling the modeling of the hierarchy scenario. Us-
ing the scripting functionalities, even different kinds of part whole relationships can
be specified, checking over which other hierarchy levels a certain relationship is valid.
The scripting functionality offers extensive possibilities in controlling the object mod-
eling, but only for professional users, who know how to utilize the expressiveness of
Turing complete languages and accept the high effort needed for their definition.
Furthermore, software artifacts are produced with very restricted reusability and are

laboriously traceable for users not involved in their development.

4 Evaluation of repository services

Summarizing the evaluation of the hierarchy modeling scenario shows that the in-
formation modeling itself cannot fulfill the requirements in ADOzz. In combination
with the powerful scripting functionality of ADOuzz, all required information and the
constraints can be established. The ontological nature of types and relationships
cannot really be expressed in the information model, in particular not in case script-
ing is needed for realizing the scenarios, as required for hierarchy modeling. Due to

the mentioned facts the evaluation in Table 4.1 is derived.

Fulfillment of

scenario

Ontological

correctness of models

Tool handling

O

D

Table 4.1: ADOzzx — Evaluation of hierarchy modeling

4.3.3 ADOxx — Temporal and variant modeling

ADOzz has a powerful functionality for defining time-dependencies, which is called
time filter. Before being able to denote single types as time-dependent or in the
terminology of ADQOzz, as time filter relevant, the repository has to be defined being
with time filter, as illustrated in Figure 4.11. Subsequently, classes and relationship
end points can be declared time filter relevant; Figure 4.12 shows this for the end
point of the host-relationship of the I-Pattern I-24 of the EAM Pattern Catalog
[sel0b], positioned at the side of the business application, as depicted in Figure
3.3.

Edit the library ‘ADOxx - Training Metamodel 1.0.0.3 - Base Script Training’ g]
Edit end point definition 'to (RC_HOSTS)'

Properties and Hame | Manage Langusges | Edit Defautt Texts | Assign Attributes

Properties and Hame | Targets | Assign Aftributes
- Properties L 1 I

- Interface Texts

English: | ADGxx - Training Me
Unigue Mame
German: | ADOxx - Schulungsr ‘ E‘

[w]: Wisible End Point Definition

~ Properties - Interface Texts

English: | to (RC_HOSTS)|

German: | to (RC_HOSTS)

Unigue hame
| DX _TRANING_LIERARY] |

Cortext Definition:
\ [+

[] Library without Reposiary

["] Restrict Targets to Chiects
[w] Store newly created repository objects in user abject groups [] Restrict Targets to Madels

E Repositary with time fiter \:|

[w] Time fitter relevant

ok || cancel || el Ok

|| Cancel || Help

Figure 4.11: ADOzz — Repository with time Figure 4.12: ADOgzzx — Time filter rel-
filter evant end point

In the following, the example in Figure 3.3 is supposed to be realized in order to

assess the time filter functionality of ADOzz. For that, the class ORGANIZATIONAL

60

4 Evaluation of repository services

UNIT and the HOST-relationship are introduced in the model type APPLICATION
ARCHITECTURE, as shown in Figure 4.13. Furthermore, the TO-end point of the
HOsSTS-relationship is marked time-dependent, as already shown in Figure 4.12 and
therefore the required attributes for stating the start and end points of validity are
introduced, as depicted in Figure 4.13. Before the new assigned attributes make
an effect on the time filter functionality, the default values of the library attributes
LOADED REPOINST ATTRIBUTES and LOADED ENDPOINT ATTRIBUTES have to
be extended by the attributes used for defining the period of validity, provoking that
these attributes a permanently loaded in the Modeling Workspace. Moreover, the
notebook of the end point is extended by the new chapter Life-cycle including the

two new attributes.

Library View ClazsHi » ¢ Available Components ?. to (RC_HOSTS)
:g:, = .'é;;. The aftribute=s of the end point defintion 'to (RC_HOSTS):
e Qg' AD0scx - Training Metamode! 10, Aﬂiibtate Mame I._anguage Independent .fﬁ.ﬂribute Type
= Application Architecture = [Chapter "Description” 75 B
. Application Marme “N_AME fDONIS Sk
M Block =1 55 Chapter "Lifecycle" =5 =
'D Interface o Start Time START_TIME Coordinste...
MAMARED TASH Encl Titne: EMD_TIME Coardinste. ..
Notiz Graphical Representation GRAPHRER Lorg String...
Organizational Urit Motebook MO TERCOH Motebook (..
z Lser
[#-- [iz inside]
[#]---= Has Mote
=l---= Hosts

from (RZ_HOETE)
to (RC_HOSTE)
+1---= Provided Functions 1
[+]--<> Provided Interfaces
[TASK_ASSIGNEDTO _USER
[#-= Used Interfaces

Figure 4.13: ADOzz — Introduction of ORGANIZATIONAL UNIT in the information
model

After having conducted these steps, the Modeling Workspace is automatically ex-
tended with a new section in the menu bar for activating the time filter relevance
of the currently loaded object model, as depicted in Figure 4.14. In the same fig-
ure, an instance of the I-Patten 1-24 (cf. [selOb]) is displayed, showing a business
application that is hosted by two organizational units. This is possible and valid,
since the time filter is presently not activated, and so several hosts-relationships of
a single business application, valid for a different period of time as defined in figures
4.15 and 4.16, are displayed concurrently. This notion is not incorporated by the
cardinality check of ADQOzz, which detects a cardinality violation, when performed

using the example without activated time filter. Activating the time filter resolves

61

4 Evaluation of repository services

this problem, since obviously only displayed objects are taken into to account for

checking cardinalities.

: Window Help Training Viewws

B _)..TimeFilter: 18.05.2000 (v | Tmetve | | L 4] (= | B - I

| & Modeling | [[0U-hosts-BA (Application Archite... |

k
a
- Ut
.| &
BAI

Figure 4.14: ADOxx — Modeling Workspace with time filter and instance of I-Pattern

Window Help Tranng Views Wi Help Traning Views
Tena Fter: [16.06 2010 = [2]aete i = i Tine Fater: | 16.07.2010 [v [setve o =
£ Modeling [[0U-hosts-BA (Application Archite... (] &5 Mocleing | [[ou-nosts-BA (Application Aretite... (]
o

oLz

Hosts (OU1 -> BA1) Hosts (OU2 -> BA1)

. [F .
:_|5 Start Time: |_ lﬂ' _:j Start Time: H
L [or.0s2010 FHv] K Descrition | —lj [01.07.2010] E[v] 3¢ | pescriton

| _..-._'— = —eee ~

j: SIERTE %. :::i ?H’“&—___.___:_ Hilecyc

T X | omgisey | | | £ [orome FHV] X [cregerisey |

Figure 4.15: ADOzz — Valid object model Figure 4.16: ADOzz — Valid object model
of June 2010 of July 2010

In Figure 4.15 and Figure 4.16 the time filter is activated and hence only valid
objects are displayed for the configured time illustrating the HOST-relationship swaps
between June and July 2010 in accordance with the defined validity of the HOST-
relationship instances in the depicted example. Thus, temporality is introduced
for the HOSTS-relationship of I-Pattern [-24 using the time filter functionality of
ADOzz. Thereby, the activation of time-dependency by check box can be compared

62

4 Evaluation of repository services

to assigning the mixin TEMPORAL of the model fragment in Figure 4.17. Using the
time filter of ADOzz, temporality is meaningful introduced reflecting the ontological

nature of this aspect.

Hosts (OUZ -> BA1)

;
= 2
Change Histary: L=l c‘J:. |
A D__
Uzer Date Attribute Qled Walue Newy Walue | Language FEEIAIER
1 Admin 160620, | Start Time | 01.082010 | 01.07.2010 | English Lifecycle

Change History

Figure 4.17: ADOxz — CHANGE HISTORY of an end point

Temporality is fairly easy achieved by exploiting the time filter functionality of
ADOzz, but even functionalities for achieving bitemporality are provided by de-
fault. Therefore, the predefined record type CHANGE HISTORY can be assigned,
documenting at which point in time, by which user, from which old value to which
new value, and even in which language of the value, an attribute change has taken
place. Changes are not automatically documented after having assigned the record
type CHANGE HISTORY and has to be manually administered for each change in
the repository, by default. An automation of administering the CHANGE HISTORY
is achievable by utilizing the scripting functionality of ADOzz by triggering change

events and creating each time a corresponding change history entry.

Since variant modeling is closely connected to the scenario projects, variant model-
ing using projects is evaluated therein. Besides the realization by projects, ADOzz
provides a modeling type MODES that can be assigned to model types and for which
the utilizable types and relationships in the Modeling Workspace may be restricted.
These modes can be selected for each object model in the Modeling Workspace, en-
abling e.g. the modeling of object models in a DRAFT or PLANNED mode. Thus
several drafts or plans of an object model can be created and exist concurrently,
providing a possibility to model multiple variants for the same point in time, which

have to be decided upon later by changing the mode to e.g. CURRENT.

Fulfillment of Ontological
scenario correctness of models

Table 4.2: ADOzz — Evaluation of temporal and variant modeling

Tool handling

63

4 Evaluation of repository services

Temporal and variant modeling could be fairly comfortable realized, even addressing
their ontological nature. Only the necessity of having to use the scripting function-
ality of ADOzz and to register the attributes stating the start and end point of
validity may be regarded as shortcoming. In conclusion, most of the requirements of
the scenario temporal and variant modeling are satisfactorily fulfilled, as depicted in
Table 4.2.

4.3.4 ADOxx — Non-rigid typing and principle of identity

In accordance with the ADOgzz meta-meta-model, an information model primarily
consists of libraries, model types, classes, subtyped into modeling classes as well as
relation classes, end points and attributes. All instances thereof define and structure
the meta-model and are contained in the Global Container. In terms of information
modeling, libraries and model types serve as logical structure of types and relation-
ships. In doing so, libraries package model types as well as classes, and model types
in turn can structure classes. Attributes can be assigned to all of the named con-
cepts. Once defined elements can be reused in different contexts, since all element
definitions are contained in the Global Container, i.e. a class defined at first for a
specific model type, may be assigned to all libraries or model types of the reposi-
tory. ADOzz provides complex attribute types, the so called record attribute types
that structure information in a table-like form. These record attribute types can

be manually created, enabling the structuring of related information in an attribute

type.

ADOzz does not explicitly know something like the principle of identity, devised by
Guizzardi in [Gu05]. In ADOzz each element has an unique identifier that cannot
be shared between different elements or ontological types, particularly only one on-
tological type is distinguished, that is the class or rigid sortal universal, respectively.
Since classes generally make up the only available ontological type of substantial
sortals, non-rigid typing is not supported by ADOzz. As outlined in Section 4.3.6,
life-cycle as a specific case using non-rigid typing in an ontological correct model-
ing, is partially achieved utilizing the temporal modeling capabilities of ADOzz for
bypassing type-changes. For realizing a dispersive type that can apply to several
other concept, an abstract type encompassing all required properties might be uti-
lized. Though, ADOzz does not allow multiple inheritance, which is necessary in all
cases the abstract class is supposed to be applied to a type, already participating
in a type-hierarchy. Although multiple inheritance and a principle of identity are
not supported, record type attributes can be utilized to add structured information

to a type, which is comparable to some impacts coming along with a mixin-type.

64

4 Evaluation of repository services

The essential distinction is, that a record type attribute reduces a mixin from a
general term that applies to a particular implying some properties, to the originally
implied properties, while omitting the reason or general term, respectively, causing
this properties. Hence, record type attribute are a useful means to create reusable
structured information, but cannot be regarded as an alternative for a dispersive

type as assessed in this section.

Even though a few aspects of the requirements may be achievable, the two gen-
eral architecture concepts assessed by this scenario are regarded as not fulfilled,
since workarounds to partially achieve the requirements of a scenario are evaluated
throughout the concrete applications of general architecture concepts to scenarios of
cross-cutting aspects. In contrast to the concrete application, the use of this sec-
tion is in explicitly evaluating the nature of these two concepts, that are thus not

supported by ADQzz, resulting in the scores in Table 4.3.

Fulfillment of Ontological
scenario correctness of models

O QO n.a.

Table 4.3: ADOzz — Evaluation of non-rigid typing and principle of identity

Tool handling

4.3.5 ADOxx — Multi-level modeling

The meta-meta-model of ADOzz is not changeable, but can be extended by new
attribute types using the record type attribute facility, which is actually not regarded
as a meta-meta-model change. The modeling takes place on meta-level, where the
information model is defined in the Product Workspace and on object-level, where
the creation of object model and repository objects is performed in the Modeling
Workspace. Generally, ADQOzz provides these two modeling levels for modeling the
EA, but within the meta-level model types can be regarded as a means for creating
additional abstraction levels. Model types enable a logical structuring of elements
based on their ontological abstraction level or meta-level, respectively, as illustrated

for the ontological structure of I-Pattern [-26 in Figure 4.18.

Nevertheless, a true multi-level modeling cannot be achieved by model types, since
besides a kind of structuring in abstraction levels, typical concerns of multi-level
modeling are neglected. Model types do not natively provide functionalities to be

instantiated to types of other model types and hence do not supply properties to

65

4 Evaluation of repository services

o &= ADOwx - Multi-Level Meta-model
= Meta-Types
BusinessApplication

- fhg] Types

. BusineszsApplication'verzion

Figure 4.18: ADOxx — Multiple abstraction-levels by model types

lower ontological levels. This functionalities may be achieved using the scripting
functionality of ADOzz by developing routines that check the consistency between
different model types corresponding to their ontological nature and automatically
create instances or take over properties of higher ontological levels. In summary, the

partially achievements are shown in Table 4.4 are derived.

Fulfillment of Ontological
scenario correctness of models

D D D

Table 4.4: ADOzz — Evaluation of multi-level modeling

Tool handling

4.3.6 ADOxx — Life-cycle

As mentioned in Section 3.1.3, ADQOzz does not provide non-rigid types or a principle
of identity, for which reason it is not possible to realize the life-cycle of a business
application (cf. Section 3.19) using phased-sortals (cf. [Gu05]). Nevertheless, the
temporal modeling capabilities of ADOgzz can be used to model the life-cycle phases
of a business application by subtyping into temporal-dependent life-cycle phases
having a kind of expiration date, as shown in Figure 4.19. Thereby, the attributes
for the period of validity are inherited from the superclass BUSINESSAPPLICATION
and only the time filter relevance of the subtypes has to be activated manually. The
visibility of the superclass BUSINESSAPPLICATION may be deactivated to prevent
an instantiation in the Modeling Workspace. Furthermore, the business application,
which a specific partition of life-cycle phases belongs to, may be realized by either
an identifier stating the common hypothetical business application or an actually
associated instance of the superclass. The former version necessitates constraints
for guaranteeing consistency and the latter one produces an additional persisted
object that is why neither of these solutions is regarded completely appropriate.

The definition of subtypes composing the different life-cycle phases and a period

66

4 Evaluation of repository services

of validity themselves do not realize a consistent life-cycle modeling, since further
constraints are not accounted for yet. The scripting functionality of ADOzz enables
the definition of these further required constraints for ensuring that only one business
application subtype or life-cycle phase, respectively, is valid at a certain point in time,
only valid state transitions can be performed and further restrictions are complied
with.
= Application Architecture

. Businessapplication

u BuzineszApplicationinDevelopmernt

. Buzinessapplicationininttroduction

. BuzineszApplicationOperational
. BuzinessapplicationReplaced

Figure 4.19: ADOxx — Business application life-cycle subtypes

Using the time filter and the scripting functionalities of ADOzz the modeling building
block LIFECYCLED devised by Buckl et al. in [BMS10a| can be applied to elements
of the EA. The superordinate business application asks for an additional attribute
as identifier or an association to the superordinate business application, which can
ensure in combination with corresponding constraints the bearing of the same iden-
tity throughout a specific partition of life-cycle phases. In any case ADOzxz supplies
an additional unique identifier to each of the life-cycle type instances. Moreover, an
element can participate in different relationships and can possess different properties
dependent on the life-cycle subject to their realization by discrete types. Technically,
the requirements of life-cycle modeling can be fulfilled, but only aspects realized by
the time filter functionality reflect the ontological nature life-cycles. The constraints,
which have to be realized by the scripting functionality, partially require deep inter-
ferences in the tool functionalities in order to ensure the consistency of a life-cycle,
for which reason the effort of their realization result in an empty Harvey Ball for the

tool handling, as shown in Table 4.5.

Fulfillment of Ontological
scenario correctness of models

® D O

Table 4.5: ADOzz — Evaluation of life-cycles

Tool handling

67

4 Evaluation of repository services

4.3.7 ADOxx — Projects

Projects are the major means for changing the EA and its elements. To model these
concepts actually asks for a mixin AFFECTABLE that is supposed to be inherited by
all architecture elements that are potentially able to be affected by projects. ADOxx
does not directly support such a mixin type to identify architecture elements or a
similar corresponding dispersive type, but provides relation class end points that
can target multiple modeling classes, as depicted in Figure 4.20. Thus, an AFFECTS-
relationship can be defined relating projects to a range of other types and even
attributes can be assigned to an end point, that may bundle the properties, which
would otherwise reside in a mixin-type. This alternative is almost as expressive as
the mixin AFFECTABLE, since objects, the type definitions of which participate in
an AFFECTS-relationship, can thus be identified as affectable by projects, which is
closely related to the assignment of the mixin AFFECTABLE. The difference lies
in shifting properties from the modeling class to the relation class end point, for
which reason properties of the end points are as recently available for an object as
an instance of the relationship is assigned to a specific object. Due to this reason,
amongst others, a relation class end point on its own is not sufficient for substituting
a mixin in general, but can realize the specific case of the mixin AFFECTABLE,
which is primarily used for denoting the AFFECTS-relationship, as long as no further

properties are required.

Edit end point definition "TO (AFFECTS) 3

Properties and Mame Targets Assign Attributes

Available Targets: Allovweed Targets:

[is inside] [IS_INSIDE] | | _ Anwendungen__ [AMMENDU... | -
Block [BLOCK_BP] ————— | _GP-Konstrukt__ [GP_KONST...
BuszinessApplication [AMWENDUM... | | _ GP_Aggregstion__ [GP_AGG..
BusineszapplicationinDevelopment ... _ GP_Container__ [__GP_CONTAL..
Business&pplicationininttroduction .. _ |T-Element__ [__IT_ELEMENT__..
BusinessApplicationCperational [C... Application Architecture [MT_INFOL.
BusinessApplicationReplaced [C_... T Business &rchitecture [MT_BUSIM...
Lo hlota [0T WIATIT G0 Diunirnce Cuiccbine, 10 D ICILIEC T

Edit the cardinslties of the classes of the end point:
Eciit

| Ok || Cancel || Help |

Figure 4.20: ADOxx — Dialog of an end point for assigning target classes

ADOzz realizes relationships via relation classes and corresponding end points. How-
ever, relation class is a subtype of class and only the other subtype, namely modeling
class can establish inheritance hierarchies and therefore a reification of relationships
is supported, but no inheritance relationships thereunder. Hence, the relator hierar-

chy in Figure 3.22 has to be modeled using unrelated relation classes, the usage of

68

4 Evaluation of repository services

which has to be synchronized by constraints asking for the scripting functionality of
ADOzz.

The nature of projects, having different phases with a period of validity of each,
can be achieved similar to life-cycles, as described in Section 4.3.6. In combina-
tion with the findings of Section 4.3.3 the modeling of variants can be achieved
by a sufficiently expressive AFFECTS-relationship and temporal-dependent projects.
Thus, the modeling building block ORGANIZATIONALUNIT-HOSTS-OPERATIONAL-
BuSINESSAPPLICATION (cf. Figure 3.25) can be realized, but only using the afore-
mentioned workarounds for the depicted concepts, which only partially reflect the
ontological nature of the modeling building block, resulting in the scores in Table
4.6.

Fulfillment of Ontological
scenario correctness of models

o D D

Table 4.6: ADOzx — Evaluation of projects

Tool handling

4.3.8 ADOxx — Standardization

The capability of conforming to a standard or to compose a standard, cannot be
realized by a mixin or an abstract type, since mixins are not supported and for
using abstract types, multi-inheritance would be required in multiple cases, that is
not supported by ADOzz, too. Standards can be modeled as intermediate types
related to elements, capable to conform to a standard and elements appropriate to
compose a standard. Thereby, the flexibility of end points can be used to realize re-
lationships to several standardizable types or several elements defining standards, re-
spectively. Thus, the CONFORMST O-relationship and the ALLOWEDFOR-relationship
of the modeling building block STANDATD-STANDARDIZABLE can be introduced to
the information model, but the attributes contained by the mixin STANDARDIZABLE

have to be manually assigned to each participating type.

Even though the cONFORMST O-relationship can be established by an auxiliary class
STANDARD, its true nature of being derived of the actual context of the standard-
izable types cannot be realized, since only one type of relation classes is supported.

In terms of Guizzardi in [Gu05, Gu06] the provided relation classes can be regarded

69

4 Evaluation of repository services

as a material relationship and so formal relationships, such as the CONFORMSTO-
relationship are natively not supported by ADOzz. Derived attributes are also
not provided by default, but such a functionality may specifically be developed
for the STANDARDCONFORM attribute of the modeling building block STANDARD-
STANDARDIZABLE using the scripting functionality of ADOzz. So as to distinguish
between deliberately non-conforming types and a lack of documentation, a concept,
such as NOARCHITECTURALSOLUTION (cf. I-Pattern I-67 [sel0b]) or NOSTANDARD
can be utilized, as well as an appropriate extension of the derivation functionality for
the STANDARDCONFORM attribute may be developed, but the ontological property-
type change, according to the two states of a standardizable architecture element

cannot be achieved.

After having introduced a model fragment to document standardization into the
information model, the standard conformance can be documented and changed by
instantiating the corresponding relationships and types. An automatic adaption of
the conformed standard in accordance with the changing contexts of an architec-
ture element is not possible by default, since formal relationships are not a concept
of ADOzz, but could be acquired by scripting. The required functionalities are re-
garded partially fulfilled, since most of the required information can be structured in
the information model, but some of the required functionalities, such as for formal
relationships, may only by realized by deep interventions in the tool functionali-
ties. Furthermore, the ontological nature of standardization is not reflected in the

solutions for structuring the information, as summarized in Table 4.7.

Fulfillment of Ontological
scenario correctness of models

D O D

Table 4.7: ADOzz — Evaluation of standardization

Tool handling

4.3.9 ADOxx — Goals

If goals and the measurement of their achievement are supposed to be realized by the
Goal-Question-Metric-approach, a multi-level modeling approach and mixin types
will be required for an ontological correct modeling of the scenario, as outlined in
Section 3.2.4. A kind of multi-level structuring can be achieved by using the model
types of ADOzz, as described in Section 4.3.5. The mixin types have to be substituted

by either the corresponding attributes at the place of architecture elements, the goal

70

4 Evaluation of repository services

fulfillment of which is supposed to be measured or introducing discrete types for each

instance of QUESTION that are related to the corresponding architecture element

type.

Comparable to the succeeding section, the required information can be structured
in the information model, at least by utilizing the scripting functionalities, but the
ontological nature of the introduced types is only partially expressed by the utilized
functionalities and concepts. In summary the fulfillments of criteria in Table 4.8 are
deduced.

Fulfillment of Ontological
scenario correctness of models

D D D

Table 4.8: ADOzz — Evaluation of goals

Tool handling

4.3.10 ADOxx — Role-based access control

ADOzz provides the User Management component of the Product Workspace to
manage users, user groups and their access rights. Users and different user groups
can be created and edited in the User Catalog, as depicted in Figure 4.21. Access
rights can be defined for both user groups and users, which can both use inherited
access rights of user groups and overwrite the user group definitions with own ones. In
the context of role-based access control, user groups can be regarded as roles played
by users, granting special rights to them, since a user can participate in multiple

groups at the same time, as shown in Figure 4.21.

The User Management component offers various options for defining access rights
of users and user groups. Thereby, ADOzz primarily distinguishes between models
and objects in the Modeling Workspace, files, users and user groups, languages and
the different components of ADQOzzx, as depicted in Figure 4.22. Furthermore, the
different options can primarily be specified for read and write access, as well as
several finer grained subtypes thereof, as shown for object models of the Modeling
Workspace in Figure 4.23. As diverse the configuration options of access right are,
besides the components of ADOzz access rights can only be defined for instances of
the aforementioned elements, e.g. access to information of a particular type of the
information model cannot be restricted to a particular user. As well, access rights

to attributes can only be defined for the attributes of an object as a whole.

71

4 Evaluation of repository services

Available Components 2 User: TestUser
I.Is-f:r Cmﬂloﬂll'& Edit User (TestUser) hodels Ohjects Users Files Components Languages
=1 = Access Rights of Components
BE| b= = — User: TestUser
U=er Groups fUsers i)
Components Right=
gﬁ‘ Adlmin = ;' ADC Qﬂ Access (inhetited)
n | DEfEUHﬁ Qroup =l Administration Toolkit @ Mo Access (inherited)
; Uszer Management \:ﬂ Access (inherited)
= n RE—'StriCtEd.&.CCESSHightS = Library Managemert Qﬂ Access (inherited)
E = Library Management Mocule \;/ Access (inherited)
% Testllzer = Meta Model Management Maodule \ﬂ Access (inherited)
= n SpEDiE'ADCESSHing Import/Export \:ﬂAcceSS (inhetited)
Repositary Management Qﬂ Access (inherited)
% TEStLISE"r =] Business Process Management Toolkit @ Mo Access
Graphical Modelling Editor @ Mo Access (inherited)
Wl Tabalar Madallina Eltor il B mmane fimbavibad
Figure 4.21: ADOxzx — User
Catalog Figure 4.22: ADOzxz — Access rights editing dialog

In conclusion, ADQOzz provides an access control mechanism that is able to configure
access rights for the different functionalities of the tool, as well as for the repository
objects of the modeling concepts. It is not directly possible to restrict access to
a certain type of the information model, which however might be achieved up to a
certain point by restricting access to components concerned with modeling to prevent
instantiating a type and to all instances thereof. Although in combination with the
user groups a kind of role-based access control approach, as described in Section
3.3.1, is achievable, the requirements are only partially fulfilled due to the missing
support of access rights on attribute-level and for types as a whole. Nevertheless,
the provided functionality is intuitively realized, expressing the ontological nature of

the scenario. The concluded evaluation is illustrated in Table 4.9.

Fulfillment of Ontological
scenario correctness of models

D ® ®

Table 4.9: ADOzz — Evaluation of role-based access control

Tool handling

4.3.11 ADOxx — Responsibilities

In ADOzz relation classes can be specialized by the IS OWNERSHIP option, which
can be used by relation classes referencing shared users in the Modeling Workspace.
Objects or model types connected to a user using such a relation class automatically

get write access right to the connected element.

72

4 Evaluation of repository services

Edit Rights of Usergroup “RestrictedAccessRights™ for “Models™

Aaclding Madels

Ledding Subgroups

Femoving Models

Removing Subgroups

Renaming Groups

Addding Cortexts

Ldding Modelling Elements
Wodifying Attribute Values
Modifying Model Attribute Yalues
Remaving Modeling Elements

= Read Maodels with Translation Option

Ldding Cortexts
Wodifying Attribute Values
Modifying Model Attribute Yalues

Actions: =
Action Access |
Read alloweed (inherited) |
= Wiite alloweed (inherited)

allowwed (inherited)
allowwed (inherited)
alloweed (inherited)
alloweed (inherited)
allowwed (inherited)

allowed [only for inheritance)...
alloweed (only for inheritance)...
alloweed (only for inheritance)...
alloweed (only for inheritance...
allowwed (only far inheritance)...
allowed [only for inheritance)...
alloweed (only for inheritance)...
alloweed [only for inheritance)...
alloweed (only for inheritance...

|
|
|
Extencled

Close |

Help |

Figure 4.23: ADOxz — Access right types for object models

In order to introduce the RESPONSIBLEFOR-realtionship in the modeling building
block RESPONSIBILITIES (cf. Figure 3.35), a relation class with activated Is OwWN-
ERSHIP option can be utilized. Such a relation class automatically grants write access
rights to the connected user for the connected element, while stating the responsi-
bility of the user. The flexibility of end points to define multiple connectable types

enables a similar expressiveness as the mixin MANAGEABLE.

Relation classes with activated IS OWNERSHIP option enable an ontological meaning-
ful modeling of the responsibilities scenario and implicitly inherit the access control
functionalities, too. Hence, a complete fulfillment of the criteria is concluded in

Table 4.10.

Fulfillment of
scenario

Ontological
correctness of models

Table 4.10: ADOzz — Evaluation of responsibilities

Tool handling

73

4 Evaluation of repository services

4.3.12 ADOxx — Queries

ADOzz does not provide a declarative query language, but it provides powerful li-
braries in the scripting API that encompass such functionalities. Queries are accom-
plished by traversing object models along their relationships between the contained
objects. The analysis component of the Modeling Workspace offers a graphical edi-
tor for composing queries and provides a set of predefined query building blocks, as
shown in Figure 4.24. The different kinds of query building blocks can be combined
by different set operations, namely the intersection, the union and the difference of
two sets, as well as an operator traversing further relationships of the objects of a
result set.

Qe

| Al selected models |

Al zelected modelz

Al zelected models of type .

Al selected models with madel attribute .

Al zelected models of type .. with attribute .

Al modelz of type .. with number of rowes in table attribute .

Al modelz of type .. with table sttribute .. and with column .

All objects in the selected models

Al objects of class . inthe selected models

All objects of class ... with attribute ... inthe selected models

Al objects of class ... with number of rows in tahble sttribute . in the selected models

All objects of class ... with table attribute ... and with column .. in the selected models

Figure 4.24: ADOzz — Available kinds of queries

GLIErY:
| All zelected models

— Guery Definition

Get all mocels
| L | | | | Query Composition ~ | ‘
et all ohjects of class "Businessapplication” with attribute "Start Tim... x AND
Get all abjects of class "BusinessApplcation” with attribute "End Time"... x FOLLOWING
Followy incoming relations of type "Hosts" x
| Evaluate | | Save guery
Query result - Get all objects of class " il pplication™ with attribute "Start Time" less or equal "--.--.----"" AHD Get all object

Faund Okjects
o
ouz

Figure 4.25: ADOzz — Exemplary query in the analysis component

Figure 4.25 shows an exemplary query in the analysis component of the Modeling
Workspace. Firstly, a set intersection is applied on business applications having a

period of validity, starting before 16'" June 2010 and business applications having

74

4 Evaluation of repository services

a period of validity ending after 16" June 2010, resulting in the set of business
applications valid at 16" June 2010. Subsequently the incoming HOSTS-relationship
is followed to the hosting organizational units. The result set reflects the object model
in Figure 3.6, since for the HOSTS-relationship no temporal aspects are taken into
account, which is even not possible by the provided functionalities of the graphic
analysis component, but can be achieved by manually creating a query using the

scripting libraries.

The analysis component of ADOzzx conveys the impression of using a declarative
scripting language. In fact, the conduction of a query results in creating script code,
which is subsequently executed. When saving a composed query, the JavaScript
code can be edited to achieve queries that are natively not supported by the graphic
analysis component, shown in Figure 4.26.

e]

Gueries:
Hosting OUs Execute |

Own Queries - Edit JavaScript

JereaSoript:

var allueryAPI = adoguery.quervaAFI:

var aResultSetl = adoquery getStartSeti):

var aSetlnterface = new Components. Constructor("@®boc-eu.con-boc—
izsado.=zet:1". "IAdoSet"):

var ahndSet = null:

var aSet = new aSetlInterface():

var aSetEnunerator;

i) var aSet = new aSetlInterface():

var aSetEnunerator;

var aRepolgr = Components.classes["®boc—eu. com-boc—

‘ | ‘ Export... | | Cloze ‘ | Help

Figure 4.26: ADOzz — Editing field of automatically genrated JavaScript code

Besides the operator for following relationships of a result set, the analysis compo-
nent does not provide functionalities to traverse the relationships of the information
model, required to conduct analyses on an ex ante unknown information model.
The JavaScript libraries provide such functionalities for traversing relationships of
the information model enabling to determine the transitive closure that is regarded
indispensable for comprehensive and complex impact analyses. Besides manually
developing such functionalities, a product based on the ADOzz platform, namely
ADQOit NP, provides views which are able to gather information transitively, which
e.g. can inquire the dependencies between two arbitrary types, even via transitive
self-relationships. Again not a query language is utilized for the views rather corre-

sponding JavaScript code is produced.

ADOzxz provides powerful JavaScript libraries enabling to query repository informa-

tion, which can only partially accessed via the graphic analysis component. How-

75

4 Evaluation of repository services

ever, the functionalities assessed in the queries scenario are regarded only partially
fulfilled, even since methods to traverse models are not fully comparable to a query
language. Nevertheless, the provided graphic query functionality is fairly intuitive

utilized, concluding in the evaluation in Table 4.11.

Fulfillment of Ontological
scenario correctness of models

D n.a. ®

Table 4.11: ADOzz — Evaluation of queries

Tool handling

4.3.13 ADOxx — Information model changes

In ADOgzz the information model can freely be changed and extended as described
in the preceding sections. Thereby, already created types can be removed or only
hidden in the Modeling Workspace. Changes are also possible on parts of the infor-
mation model, for which objects are contained in the repository, but there are no
automatic actions to migrate these objects to the changed data schema correspond-
ing to the information model. There are natively no functionalities to manually
define such migration reaction to information model changes, except by the scripting
functionality. Hence, information model changes may lead to an inconsistent state of
the repository including unforeseen side effects of objects and relationships contained
in the repository that are no longer part of the information model or even data can
get lost due to the removal of types or relationships. In order to return to a consis-
tent state of the repository, the repository data can be exported before changing the
information model and re-imported after having completed the changes. Thereby, a
consistent state in accordance with the defined structure of the information model is
ensured and simple changes may be compensated, but a comprehensive migration to
the changed information model is not automatically performed, necessitating a man-
ually adaption thereto. A manual migration of the repository data can be achieved

by the scripting functionality.

ADOzz provides the possibility to define default values for each supported language,
as well as a language independent default value for attributes, whereas relationships
or their end points cannot have default values. Attributes cannot really be declared
mandatory, since their values can only be compulsorily set by default values. The
definition of an relationship instance can be enforced by specifying their multiplicities

greater than zero.

76

4 Evaluation of repository services

To sum up, the information model can freely be changed in any state of the repository,
except for elements presently accessed by other users. But a migration of repository
data due to a changed information model is natively not supported, neither auto-
matically nor by re-importing repository data, but may manually be achieved by

scripting an import algorithm. The evaluation is summarized in Table 4.12.

Fulfillment of Ontological
scenario correctness of models

D n.a. Q)

Table 4.12: ADQOzz — Evaluation of information model changes

Tool handling

4.3.14 ADOxx — Summary of evaluation

Ontological
. Fulfillment Tool
Scenario . correctness .
of scenario handling
of models
Hierarchy modeling] O d
Temporal and variant
. { [] [
modeling
Non-rigid typing and
oeE PRS2 o o n.a
principle of identity
Multi-level modeling a > d
Life-cycles [) o O
Projects] > O
Standardization o O D
Goals > o o
Responsibilities ® { (]
Role-based access
> [[
control
Queries o n.a)
Information model
) n.a D
changes

Table 4.13: ADOzz — Summary of evaluation

7

4 Evaluation of repository services

ADOzz fulfills most of the requirements and provides a fairly comfortable graphic
environment to realize the scenarios in most of the cases. In particular, the utilization
of the time filter or access control functionalities is regarded as a realization, reflecting
the true ontological nature thereof. In contrast, the need of the scripting functionality
resulted in impairing the evaluation of the ontological correctness of models and
tool handling, but is needed in most of the scenarios for a complete fulfillment.
The evaluation of the different scenarios is summarized in Table 4.13, providing an

overview of the general EA information modeling capabilities of ADOzz.

4.4 Tricia of InfoAsset AG

Tricia is an open source Java platform, continuously refined and extended at the
chair of Software Engineering for Business Information Systems at the Technische
Universitdt Miinchen. Tricia is used to implement enterprise web information sys-
tems and social software solutions (cf. [BMN10]) including integrated web collab-
oration services for members of an extended enterprise, such as wiki collaboration,
personal and team blogging, file and directory sharing, social networking, content
publishing and site navigation (cf. [Inl10]). Thereby, Tricia follows a data model
driven approach to system implementation, capturing substantial parts by domain-
specific models, namely data model, access control model, and interaction model (cf.
[BMN10]). This evaluation is primarily concerned with EA information modeling
for which reason the focal point lies on the data model and the corresponding data

modeling framework of Tricia.

4.4.1 Tricia — Tool structure

According to Biichner et al. in [BMN10], an application implemented on the Tricia
platform has a modular layout consisting of the core and one or more plugins. The
core defines abstractions required by virtually all applications built on Tricia, getting
extended by plugins, which in turn can depend on the core and each other, while

spanning a graph of dependencies, that has to be acyclic (cf. Figure 4.27).

Within the composition of core and plugins, each plugin defines a data model, an
access control model and an interaction model, in doing so each plugin defines a
fragment of the data structure and behavior of the entire application. The core is an
inherent part of the Tricia platform consisting of three layered Java frameworks, as
depicted in Figure 4.27. Biichner et al. describe in [BMN10] that each of these frame-

works provides abstractions and extension points, instantiation and customization

78

4 Evaluation of repository services

HTML REST Mode! Introspection
Ty N
Q Q O
I T

Core Plugin File Plugin Wik

Interaction \
Interaction

— Modeling
Framework

Interaction
Model /

Access
Contral)

Access
Control

Framework Madel Model
l e
Deia Data Ne

| —
3 Data

5 Modeiing Model | <] Model Model)

Framework q

Legend

- - [Framework
@ @ (& Declarative Model

Database Lucene [E] Hand-written customization

4 Depends on

Figure 4.27: Tricia — Architectural overview of a typical application in accordance
with [BMN10]

of which is used to build applications on Tricia. Thereby, declarative, model driven
customizations and manually specified customizations are distinguished. Biichner et
al. further emphasize in [BMN10| the central role of the data modeling framework

as foundation for model driven development.

4.4.1.1 Tricia — Data modeling framework

The data modeling framework provides the modeling concepts in form of Java classes,
that are instantiated and customized to structure the data models of the core and
the plugins. Since the data modeling framework of the Tricia platform constitutes a
introspective whitebox framework, the information model defined by its instantiation
can subsequently be extracted from the code. An overview of all concepts in an
UML-based diagram (cf. [OM10]) or the meta-model of the Tricia modeling frame-
work, respectively, is depicted in Figure 4.28. So as to convey an impression of the
information modeling capabilities of Tricia, the most important modeling concepts
are briefly touched on in accordance with Biichner et al. in [BMN10], for more details
also see [BMN10, In10].

Technically speaking, domain objects are represented by instances of the type EN-
TITY, that is subtyped by each type of the information model. An entity or a type
of the information model, respectively, makes up a rigid sortal universal in line with

Guizzardi in [Gu05|. Throughout the evaluation of Tricia a type of the information

79

4 Evaluation of repository services

extends

01 Feature = Validator
* >
name : String name : String
. Asset b & isPersistent : boolean errorMessage : 118nString [0.."]
- Qg label : 118nString
name : String 1 longHelp : 118nString >
%\ shoriHelp - 118nString " ChangeListener
‘ ‘ A name : String

* *

Entity

*

Role

label : 118nString]

=| isCascadeOnDelete - boolean

oppositeRole % %

Base property types
{e.g. IntProperty,
DateProperty)

requires

‘MandatoryMixin ‘ OptionalMixin StringProperty ‘ ..Property ‘
‘ OneRole ‘ ManyRole isindexed - boolean -
maxLength - int Built-in property
| types

Translation Directionality

adatatypes

M8nString language : String ‘ UrlNameProperty ‘ ‘ RichSlringProperty‘
name - String
[1
Mu‘li;;;?;ity Bidirectional Unidirectional
ONE, MANY oppositeMultiplicity - Multiplicity[1]
Figure 4.28: Tricia — Meta-meta-model of the data modeling framework

(cf. [BMN10])

model refers to an instance of the data modeling framework type ENTITY. Since
the data modeling framework is developed in Java, the same reuse mechanisms by
inheritance as provided by Java can be used, restricting the inheritance of each type
to a single other type and in Tricia the highest inheritance level always inherits the
type ENTITY. To address this problem and to enable finer grained reuse, Tricia
provides the concepts of MIXINS, that is comparable to mixin universals in terms of
Guizzardi in [Gu05]. Mixins constitute a dispersive type, that assigned to a type may
introducing additional properties and relationships thereto. In Tricia, two kinds of
mixins are distinguished, realized by the framework types MANDATORYMIXIN and
OPTIONALMIXIN. Mandatory mixing are comparable to rigid mixin universals or
categories in line with Guizzardi in [Gu05|, which are simply called mixins, as de-
scribed in Section 2.3. The latter kind, optional mixin, makes up a non-rigid mixin
universal, that can be assigned and removed at runtime. The capability of being
assigned and removed at runtime deviates from Guizzardi’s notion of a non-rigid
mixin universal in [Gu05], but fits fairly well to the non-rigid mixin type, elaborated
in Section 3.2.3. In contrast to Guizzardi in [Gu05|, mixins can only be assigned to
entities and are restricted to a single inheritance chain of mixins, but dependencies,
stating that the assignment of a specific mixin requires the assignment of one or

more further mixins, can be defined. In the following mandatory mixins are only

80

4 Evaluation of repository services

called mixins, since mandatory mixins are the more common mixin type, as outlined

in Section 2.3 ,and hence, it is explicitly stated when alluding to optional mixins.

Properties of modeling types are realized by the data modeling framework type
PROPERTY, for which several specializations are natively provided and each of which
can further be customized. Relationships among modeling types are realized by
modeling the end points thereof, in Tricia in Tricia. A relationship end point is
represented by the framework type ROLE, which can be assigned to the type ASSET,
the supertype of ENTITY and MIXIN, for which reasons both of types and mixins can
establish relationships. The data modeling framework of Tricia specializes a ROLE to
be either a one or a many end point, establishing a directed or undirected relationship,
for which an opposite end point has to be specified in the latter case. PROPERTY
and ROLE are subsumed by the supertype FEATURE, which defines some common
properties handed down to both of the specializations. Worth mentioning thereof is
the boolean property ISPERSISTENT, which specifies whether a feature is considered
while persisting the containing type in the repository. Thus, non-persistent features

can be utilized to construct derived relationships and properties.

Trica provides a functionality to check constraints and integrity of feature values,
which is based on the concept VALIDATOR. A validator is established by instantiating
the type VALIDATOR and providing the actual algorithm as hand-written customiza-
tion. Validators can be assigned to each feature, accordingly to each role and kind of
property. Besides manually creating validators, the core provides a set of predefined
validators for properties and roles, such as the NOTNULLONEVALIDATOR for roles.
A further concept applying to both kinds of features, is CHANGELISTENER. Change
listeners are supposed to propagate data model changes through the system, getting

notified when the observed feature is changed.

4.4.1.2 Tricia — Information Modeling

All modeling types, created during the information modeling, have to reside in a
plugin that is dependent on the Tricia core in order to resort to the therein defined
functionality, regardless of directly or indirectly. Therefore, it is assumed that mod-
els, described throughout the evaluation, are accordingly realized in such a plugin, for
which reason a repetitively stating in each scenario is abstained from. Modeling in
Tricia means to produce code, or in other terms to code the information model types,
their contained features and so forth, in a Java integrated development environment
(IDE). Since the Tricia core and the already existing plugins are implemented by
plugin-projects in the Eclipse IDE (cf. [Ecl0a]), Eclipse is the recommended IDE

81

4 Evaluation of repository services

for building applications based on the Tricia platform. Besides some Eclipse-plugins
facilitating the development using the Eclipse IDE, the Tricia platform itself only
provide limited support for information modeling. For improving the developer ex-
periences, Tricia provides several templates for boilerplate code using the Eclipse
built-in Code Templates mechanism. Thus, recurring code fragments, such as the
definitions for properties or roles, can easily be introduced by corresponding skele-
tons of the code templates, that subsequently has to be complemented by specific

code parts.

Nevertheless, Tricia provides no support for graphically modeling new types of an
information model. Graphic representations of the information model can only be
extracted as recently as the information model is created using Java code. Tricia
provides a plugin to analyze and visualize classes of the information model based on
code introspection. Thereby, tree-based or UML-based visualization can be gener-
ated, and the UML-based visualization, which is shown for the core class PERSON
in Figure 4.29, even provides functionalities to edit the visualized classes. Thus,
existing properties and roles can be edited or removed and new ones added, as well
as mixins can be added to and removed from a class, but all of these actions are
only possible for existing classes, for which reason this graphical modeling editor
cannot be used for introducing new types into the information model. Generally, the
editing of the classes takes place by automatically modifying or introducing code in

the corresponding Java class during the editing.

3 Comment... |G Person | @ Watch...

Properties

magic : String
login : String
publiclyvisible : Boolzan
creator 1 password : String watcher| 1

* comments
* watches

access : String

permCookie : String

lastLoginDate : Timestamp
Transient properties

passwordAgain : String

oldPassword : String

passwordForgotten : Boolean

Mixins

maodifier 1 submitter| 1

Linkahle
Searchable
ReadProtected

* hasModifisd

* drafts

Taggable
© Modifiable ... Restorable @ Draft..

Figure 4.29: Tricia — UML-based editor

The Tricia Eclipse-plugin used for introspecting implemented classes was extended
by the graphical UML-based modeling feature shortly before the submission date of
this thesis, for which reason a first version thereof was put under investigation. Since

in the used version an introduction of new types, that is to say the prerequisite for

82

4 Evaluation of repository services

modeling, is not yet supported, the feature does not enable graphical modeling and
so the criteria tool handling is regarded as unsatisfactory fulfilled, resulting in an
empty Harvey Ball in each evaluation thereof, if not otherwise stated in the concrete

evaluation.

4.4.2 Tricia — Hierarchy modeling

The model fragment of the I-Pattern I-12 of the EAM Pattern Catalog (cf. [sel0b])
depicted in Figure 3.1 can be modeled with the Tricia data modeling framework
by introducing the type BUSINESSPROCESS, as well as the subordinating and the
ordering relationship, as described in Section 4.4.1. The restrictions of multiplicities

can be realized by corresponding role validators.

The business process hierarchy model fragment extended by constraints for realiz-
ing an acyclic subordination, that is to say a hierarchy, as well as a linear order in
Figure 3.2 may be realized by creating two validators ensuring these issues. Thus, a
HIERARCHY VALIDATOR, representing a building block for hierarchies, may be cre-
ated, which can be reused for all self-relationships that are supposed to be hierarchic.
Similarly, a LINEARORDERVALIDATOR can be introduced to the information model
for creating a building block that ensures a linear ordering. Concepts for distin-
guishing between different types of part-whole relationships may be developed using
validators, too, either by aggregating a couple of simple validators or by creating an
ontological meaningful validator representing an entire ontological type of part-whole

relationships.

Assigning a validator that ensures a self-relationship to constitute a hierarchy, is
regarded as denoting a self-relationship as a hierarchic or acyclic one, respectively.
Since comprehensive ontological concepts can be realized by creating a corresponding
validator, the ontological correctness is satisfactory fulfilled. The evaluation results

are summarized in Table 4.14.

Fulfillment of Ontological
scenario correctness of models

® ® O

Table 4.14: Tricia — Evaluation of hierarchy modeling

Tool handling

83

4 Evaluation of repository services

4.4.3 Tricia — Temporal and variant modeling

In order to achieve temporal-dependencies of architecture elements, the mixin TEM-
PORAL can be introduced to one of the plugins or the core by subtyping MANDA-
TORYMIXIN. Since mixins can only be assigned to entities, relationships cannot
directly be denoted as time-dependent by default. Hence, the model fragment of
Figure 3.4 may be realized by introducing the auxiliary type APPLICATIONHOST to
the I-Pattern 1-24 of the EAM Pattern Catalog (cf. [sel0b]), assigning the aformen-
tioned mixin TEMPORAL thereto and adding a validator to the relationship role of
BUSINESSAPPLICATION, which ensures the uniqueness of the HOSTS-relationship at a
certain point in time. The mixin BITEMPORAL (cf. 3.7) may similarly be introduced

for realizing bitemporal modeling.

Since the utilization of an additional constraint in form of a validator and the auxil-
iary type APPLICAITONHOST impairs the clarity of the model fragment and veil the
ontological nature thereof, manually customizations of an extended mixin TEMPO-
RAL can be used to create a more concise solution of the temporal association pattern
(cf. [CEF99]). The customizations can be enforced by declaring an extension of the
mixin TEMPORAL, exemplary called TEMPORALROLE in the following, abstract, so
that each abstract method therein has to be manually complemented when assigning
the mixin TEMPORALROLE to a type. Thus, a validator may be assigned to the pe-
riod of validity of the mixin TEMPORALROLE using an abstract method therein, that
specifies the role of the type, the mixin is assigned to, for which a period of validity is
supposed to be specified. On basis of the specific role of the base type, the validator
of the period of validity can reject combinations of time periods and role instances,
if a role instance with the requested period of validity already exists. The abstract
method defining the time-dependent role has to be complemented, when the mixin
TEMPORALROLE is assigned to a type. Using this extended mixin for temporality,
even the intermediate type APPLICATIONHOST is no longer necessary, since the role
of the type ORGANIZATIONALUNIT may be directly employed by correspondingly

complementing the aforementioned abstract method.

The mixin TEMPORALROLE constitutes a modeling building block for introducing
temporal dependency to relationship end points, which can similarly be achieved for
bitemporality. Thus, the ontological nature of temporal aspects can be bundled in a
single mixin that has to be customized to its actual context of utilization. Despite
needing manual customizations, the ontological nature of temporality is partially

reflected by the presented solution on basis of mixins The deficiency of directly de-

84

4 Evaluation of repository services

noting relationships as time-dependent, resulted in an impairment of the ontological

clarity of the models. The evaluation is summarized in Table 4.15.

Fulfillment of

scenario

Ontological
correctness of models

Tool handling

O

Table 4.15: Tricia — Evaluation of temporal and variant modeling

4.4.4 Tricia — Non-rigid typing and principle of identity

The data modeling framework of Tricia distinguishes between entities and mixins,
whereas an instance of a mixin cannot exist on its own without an entity, being
assigned to. Similar to the notion of sortal universals and mixin universals (cf.
[Gu05]), mixins are dispersive types, which are able to apply to several particulars
or entities, respectively. In this vein, the data model framework type ENTITY defines
a principle of identity, inevitable being the ultimate sortal universal of each type in

the information model.

OPTIONALMIXIN is the only natively supported non-rigid type that can be assigned
to and removed from a type at runtime. Hence, there is no natively provided type
that can be compared to non-rigid sortal universals. As well, optional mixins do not
fit in Guizzardi’s typology of substantial universals due to their exceptional position
as described in Section 4.4.1. But exactly the capabilities due to this exceptional
position enable a way of realizating roles, life-cycle phases and changeable properties.
The role PROJECTMEMBER in the model fragment in Figure 3.5 may be realized
by creating an optional mixin PROJECTMEMBER. that establishes a relationship to
the type PROJECT and can be assigned to and removed from instances of the type
EMPLOYEE as needed at runtime. Similarly, life-cycles can be realized, which is
described in detail in Section 4.4.5.

Fulfillment of

scenario

Ontological
correctness of models

Tool handling

D

O

Table 4.16: Tricia — Evaluation of non-rigid typing and principle of identity

85

4 Evaluation of repository services

In conclusion, the requirements of this scenario can be fulfilled by the modeling
capabilities of Tricia, but the realization of roles and phases using optional mixins
only partially reflects their ontological nature. The evaluation is summarized in
Table 4.16.

4.4.5 Tricia — Multi-level modeling

In Tricta the information modeling is achieved by instantiating the concepts of the
data modeling framework, which is actually implemented by subtyping the frame-
work types. Hence, the instantiation of the data modeling framework even folds two
ontological levels into the one modeling level, as normally provided along with an in-
stantiation level by a typical object-oriented programming language, such as Java. A
further division into multiple instantiation levels is not achievable in an ontological
correct way. The required information may be structured by applying the type-
object pattern and related patterns, resulting in a further mismatch of ontological

and modeling levels, causing unnecessary complexity of the information model.

Even though the needed information can be structured using e.g. the type-object
pattern, the actual purpose of this scenario is to evaluate the capability of modeling in
multiple ontological abstraction levels, which is not supported by the Tricia platform,
resulting in the evaluation shown in Table 4.17. Due to the missing support of the

requirements reflected by this scenario, the tool handling criteria is omitted.

Fulfillment of Ontological
scenario correctness of models

O QO n.a.

Table 4.17: Tricia — Evaluation of multi-level modeling

Tool handling

4.4.6 Tricia — Life-cycle

As mentioned in Section 4.4.4, phased sortal universals may be realized using the
data modeling framework type OPTIONALMIXIN. For stating that a type has a life-
cycle assigned, a mixin LIFECYCLED may be utilized that introduces a dependency
to an abstract optional mixin, that in turn has to be specialized into a partition of
optional mixins composing the different life-cycle phases. By assigning the mixin
LirECYCLED, the belonging to a life-cycle phase becomes mandatory for the life-

cycled type, since concurrently an optional mixin of the life-cycle phases becomes

86

4 Evaluation of repository services

required. Using manual customizations the required abstract optional mixin, defin-
ing the partition of life-cycle phases, can be individually defined while assigning the
mixin LIFECYCLED to a type of the information model. Thus, an individual adaption
of the type’s life-cycle phases is enabled, while utilizing the same recurring modeling
building block.

Since the different life-cycle phases are represented by dispersive types that are able
to bear properties and establish relationships on its own, the changing nature of
the different life-cycle phases can be expressed thereby. The transition between
different life-cycle phases can be controlled by utilizing an approach that controls
life-cycle transitions by different kinds of work packages of projects, as depicted in
Figure 3.19. The different optional mixins, composing the life-cycle phases in the
exemplary outlined life-cycle realization above, may introduce the relationships to the

corresponding work packages in order to enable a controlled life-cycle transition.

The scenario can be fulfilled by a partition of dispersive types that may be exclusively
defined for a specific life-cycle application or reused for several types as far as possible
and the transition between phases of which may be controlled by different kinds of
work packages. Although a phased sortal universal is not supported on its own, the
outlined solution is regarded satisfactorily reflecting the ontological nature thereof.

Hence, the evaluation in Table 4.18 is concluded.

Fulfillment of Ontological
scenario correctness of models

® ® O

Table 4.18: Tricia — Evaluation of life-cycle

Tool handling

4.4.7 Tricia — Projects

The mixin AFFECTABLE can directly be introduced to the information model, es-
tablishing the AFFECTS-relationship between the type PROJECT and all types the
mixin AFFECTABLE is assigned to. In this way, the role of projects being the central
means of affecting the EA information model (cf. Figure 3.21) is realized, while re-
flecting its true ontological nature. Relationships are represented by their end points
at the participating elements in Tricia, for which reason a reification of the relator
hierarchy in Figure 3.22 is not supported by the Tricia data modeling framework.
The different kinds of the AFFECTS-relationship may be modeled by discrete roles

87

4 Evaluation of repository services

for each relator-type in the type PROJECT and the mixin AFFECTABLE, the coherent
utilization of which has to be ensured by validators, e.g. checking that only one of

these roles is used by a specific instance at the same time.

The time at which a project is executed can be introduced by assigning the mixin
TEMPORAL to the type PROJECT, which adds a period of validity thereto. Such
a temporal dependent project in combination with a life-cycled BUSINESSAPPLICA-
TION, as realized as described in Section 4.4.6, can be utilized to realize the modeling
building block ORGANIZATIONALUNIT-HOSTS-OPERATIONALBUSINESSAPPLICATION

in Figure 3.25.

Trcia enables the modeling of projects as means of affecting the EA and the mod-
eling of time-dependent project portfolios defining several variants of the future
EA. Only the relator hierarchy is not natively supported, but the distinctions of
effects can also be achieved by different kinds of project work packages, as describte
in Section 4.4.6. As the modeling bulding block ORGANIZATIONALUNIT-HOSTS-
OPERATIONALBUSINESSAPPLICATION realizes variant modeling in an ontological
meaningful way, also the implementation in Tricia satisfactorily fulfills the scenario,

leading to an almost complete fulfillment, as summarized in Table 4.19.

Fulfillment of Ontological
scenario correctness of models

® ® O

Table 4.19: Tricia — Evaluation of projects

Tool handling

4.4.8 Tricia — Standardization

The modeling building block STANDARD-STANDARDIZABLE depicted in Figure 3.27
can be established using the mixing STANDARDIZABLE and STANDARD, which in-
troduce the ALLOWEDFOR- and the CONFORMSTO-relationships among each other.
These concepts are natively supported by the concepts of the Tricia data modeling
framework. Thus, arbitrary architecture elements can be denoted as able to conform
to a standard and in turn elements that potentially can compose a standard can be

denoted, as well.

For documenting, whether a standardizable architecture element does not conform
to a standard deliberately or accidentally, the modeling building block STANDAR-
DIZABLE-NONSTANDARDIZED-STANDARDIZED-STANDARD introduces two non-rigid

88

4 Evaluation of repository services

mixins in order to address the true ontological nature of this issue. As outlined
in Section 4.4.1, optional mixins are comparable to non-rigid mixins in the notion
descibed in Section 3.2.3. Hence, a similar approach as utilized for life-cycle phases
can be applied on the complete, disjoint partition of non-rigid mixins specializing
the mixin STANDARDIZABLE in its two mutually exclusive states. In this vein, the
mixin STANDARDIZABLE specifies a dependency on an abstract optional mixin,
which is subtyped into the non-rigid mixins NONSTANDARDIZED and STANDARD-
1ZED. Furthermore, the CONFORMST O-relationship is shifted to the optional mixin
STANDARDIZED, whereas the optional mixin NONSTANDARDIZED introduces a rela-
tionship to the type RATIONALE in order to justify an exception.

As described in Section 3.2.3, the CONFORMSTO-relationship is a formal relation-
ship (cf. [Gu05]), which is derived from the actual context of the participating
standardizable architecture element. In the data modeling framework of Tricia, per-
sistent and non-persistent features are distinguished. Thereby, non-persistent roles
and properties can be utilized as roles and properties, which are derived from the
actual runtime values of other properties and relationships of the containing type.
Hence, the CONFORMST O-relationship can be realized by such a non-persistent role
deriving the conformed standard from the actual usage or composition of architec-
ture elements, i.e. a business application would derive its standard from the actual
utilization of technologies. Thereby, the derivation algorithm is defined using manual
customizations at the place of non-persistent role. Furthermore, change listener can

be assigned to the roles of CONFORMSTO for maintaining the derived relationship.

In conclusion, the utilization of the concepts provided by the data modeling frame-
work of Tricia as described enables a complete and ontologically correct model-
ing of the scenario. Moreover, the introduction of the different mixin-types cre-
ates the reusable modeling building block STANDARDIZABLE-NONSTANDARDIZED-
STANDARDIZED-STANDARD that only needs a few context-specific adaptions for its

assignment, resulting in the evaluation in Table 4.20.

Fulfillment of Ontological
scenario correctness of models

® ® O

Table 4.20: Tricia — Evaluation of standardization

Tool handling

89

4 Evaluation of repository services

4.4.9 Tricia — Goals

Assigning goals to architecture elements and measuring their achievement following
the Goal-Question-Metric-approach, means to deal with multi-level modeling and
mixin-types in order to achieve an ontological well-founded conceptualization (cf.
Section 3.2.4. Mixins are natively supported by Tricia, but multi-level modeling can
only be achieved by workarounds, such as the type-object pattern or the type-square
pattern (cf. [YJ02]), as outlined in Section 4.4.5.

The information structured by modeling building block GOALS-QUESTION-METRIC
can be modeled using amongst others the type-square pattern to enable a context-
specific assignment of appropriate metrics to the questions. The questions can be
realized by mixing, thus adding the contained metrics directly the the type, for
which the corresponing goal is supposed to be measured. Hence, ouly the mixins,
introduced for questions that operationalize goals, partially reflect the ontological
nature of measuring goals, resulting in a partially fulfilled ontological correctness, as
shown in Table 4.21.

Fulfillment of Ontological
scenario correctness of models

® D O

Table 4.21: Tricia — Evaluation of goals

Tool handling

4.4.10 Tricia — Role-based access control

According to Biichner et al. in [BMN10], the Tricia access control framework allows
to define access rights on type-level for specific types of the information model as
well as on instance- or object-level for concrete instances of the types. Thereby, read,
write and administration rights are distinguished that can be granted to user groups
or individual users. User groups can be compared to role-mixins in Section 3.3.1,
since each individual user can be a member of multiple user groups, that can be
joined due to the role taken by users in a certain context. The access rights granted
to the different roles or user groups, respectively, are automatically enforced by the
Tricia access control framework and thus Tricia natively realizes a kind of role-based

access control approach (cf. Section 3.3.1).

The access control functionality of Tricia, as already used by existing plugins, such as

the Wiki-plugin, is currently realized by adding a many-role for writes and readers,

90

4 Evaluation of repository services

respectively. Shifting these properties into a mixin ACCESSIBLE would emphasize the
nature of accessibility and foster the reuse of this feature. Currently, access control
policies are restricted on type- and object-level and cannot be defined for single
properties of a type. Even the shifting of the roles WRITERS and READERS, defining
the access right, into a mixin type does not enable access rights on property level,
since mixins can only be assigned to subtypes of ENTITY. The relator hierarchy in
Figure 3.37 is natively realized by the readers and writers roles, since readers are

regarded as additional users restricted to read access.

The access control functionality of Tricia using the mixin ACCESSIBLE reflects the
ontological nature of being accessible and also a structuring of users in groups is na-
tively supported, but access rights on attribute level cannot be specified, concluding

in the evaluation in Table 4.22.

Fulfillment of Ontological
scenario correctness of models

D o O

Table 4.22: Tricia — Evaluation of projects

Tool handling

4.4.11 Tricia — Responsibilities

For defining a responsibility structure a mixin MANAGEABLE can be introduced to
the information model, which establishes a relationship to users or user groups that
bear responsibilities for specific, manageable architecture elements, as described in

Section 3.2.5.

For extending the modeling building block RESPONSIBILITIES by access control func-
tionalities as depicted in Figure 3.39, the mixin MANAGEABLE may subtype the mixin
AcCcCESSIBLE and extends the properties of which by the role RESPONSIBLES. The
automatic inheritance of write access rights for responsible users may be achieved
by adding a CHANGELISTENER to the role RESPONSIBLES, that automatically adds
new responsible users or user groups to the list of writers. The definition of responsi-
bilities do not have to be restricted to a single type thereof, rather multiple roles can
be introduced, defining separate kinds of responsibilities or different constituents of

responsibility that have to be considered in conjunction.

The modeling building block RESPONSIBILITIES can be introduced to the information

model, while reflecting the ontological nature of the involved concepts and reusing the

91

4 Evaluation of repository services

existing access control functionality of Tricia (cf. Sections 3.2.5 and 3.3.1). Hence,

the evaluation of this scenario causes the results in Table 4.23.

Fulfillment of Ontological
scenario correctness of models

o ® O

Table 4.23: Tricia — Evaluation of responsibilities

Tool handling

4.4.12 Tricia — Queries

The Tricia platform provides set-oriented querying using a declarative query lan-
guage, as well as element-oriented querying via hyperlinks (cf. [BMN10]). The as-
sociations among instances of object models can be traversed by following the roles
of an object. The information model can also be extracted and inspected from the
code, since the Tricta data modeling framework is based on an introspective white-
box framework. Furthermore, full-text or structured queries for given or arbitrary

types can be performed on the repository.

Impact analyses on an ex ante unknown information model can be performed by
introspecting the information model and subsequently applying queries on the ex-
tracted meta-information. The declarative query language is realized by the type-
hierarchy QUERY, providing functionalities to perform queries ranging from a simple
inquiry on a single type up to complex joins® on multiple types. Thereby, transi-
tive queries on self-relationships are natively not supported and have to be manually
implemented by traversing the relationships of the object models. Moreover, infor-
mation that is possibly structured in a transitive self-relationship can be inquired by
the full-text search of Tricia, which inquires all objects containing the entered data

or text, irrespective of their information structure.

Temporal aspects, modeled by a mixin type, such as the mixin TEMPORAL, described
in Section 4.4.3, are accessible via the properties stating the period of validity, that
can be incorporated by a query, as well. While performing a query, the users issuing
the query can only access the objects that are accessible according to their access

right derived from user groups or individually defined.

The Tricia platform provides comprehensive query functionalities, in particular the

full-text query functionality provides powerful inquiries of information without hav-

S¢f. QueryDoc of the Tricia Javadoc

92

4 Evaluation of repository services

ing to know its internal structure. The deficiency of transitive queries by default,
that are regarded important for intricate impact analyses and thereto connected
determining of the transitive closure, concludes an only partially fulfillment of this

scenario, as depicted in Table 4.24.

Fulfillment of Ontological
scenario correctness of models

D n.a. O

Table 4.24: Tricia — Evaluation of queries

Tool handling

4.4.13 Tricia — Information model changes

The information model can be freely created in Tricia. Afterwards types, properties,
relationships and all of the other elements of the information model can be changed
or removed, even if repository data exists therefor. Necessary data migration in the
repository after having performed some information model changes, is automated by
the data modeling framework (cf. [BMN10]). The automated migration takes place
on application start, when Tricia compares the data model defined by the types of
the information model and the existing persistent data model in the database. If
differences between the new and old data model are detected, an SQL script will
be created for migrating the old data schema and the existing data to the now one.
This script has to be manually applied to the data base server. The data migration
establishes a consistent state of the repository and adapts its information structure
to the changed information model. Furthermore, there is the possibility to apply
migration handler on start of a Tricia application, which can apply more complex
migration routines that are covered no more by the automatic schema and data

migration.

Properties and roles can be declared mandatory by a validator that prevents a null
or an empty value for a feature. Furthermore, a default value can be provided by
assigning a change listener that automatically sets the default value at creation of a
feature. This default value can either be a static value or a compound on, assembled

further runtime information.

Thus, the EA information modeling can freely be performed and also changes therein

are almost automatically migrated to the repository by the Tricia data modeling

93

4 Evaluation of repository services

framework, resulting in a satisfactory fulfillment of this scenario, as shown in Table

4.25.

Fulfillment of

scenario

Ontological

correctness of models

Tool handling

Nn.a.

O

Table 4.25: Tricia — Evaluation of information model changes

4.4.14 Tricia — Summary of evaluation

The Tricta data modeling framework provides some powerful concepts. Mixins are
propably a kind of unique selling point, which enable an ontological correct modeling

of dispersive types and even a non-rigid version thereof is provided, that can be

assigned to and removed from information model types at runtime.

Ontological
. Fulfillment Tool
Scenario . correctness .
of scenario handling
of models
Hierarchy modeling J [O
Temporal and variant
. { [] O
modeling
Non-rigid typing and
e RS . > o
principle of identity
Multi-level modeling O O O
Life-cycles () { O
Projects] [O
Standardization ® { O
Goals L d O
Responsibilities () ® O
Role-based access
> [O
control
Queries o n.a O
Information model
) n.a O
changes

Table 4.26: Tricia — Summary of evaluation

94

4 Evaluation of repository services

Mixins in combination with validators, which may embody complex algorithms to
ensure ontological types of relationships, such as acyclic self-relationships, are primar-
ily responsible for realizing most of the scenarios in a way reflecting the ontological
nature thereof. Thereby, the required modeling building blocks can quite closely
be introduced into the information model. In contrast, scenarios asking for multi-
level modeling are only realized by workarounds twisting the required ontological
levels into the two level modeling paradigm provided by the object-oriented model-
ing languages Java. The deficiency of multiple modeling levels or even a possibility
to structure different abstraction levels, as well as a complete graphical editor are
shortcomings. The evaluations of the different scenarios are summarized in Table
1.26.

4.5 Eclipse Modeling Framework of the Eclipse

Foundation

The Eclipse Modeling Framework (EMF) Project belongs to the Eclipse Projects as
a subproject of the Eclipse Modeling Project. The Eclipse Projects endeavor of the
Eclipse Foundation focuses on building an open development platform comprised of
extensible frameworks (cf. [Ecl0al]). As part of this endeavor the Eclipse Foundation
defines the EMF project in [Ecl0a] as follows:

The EMF project is a modeling framework and code generation facility for
building tools and other applications based on a structured data model.
From a model specification described in XMI, EMF provides tools and
runtime support to produce a set of Java classes for the model, along
with a set of adapter classes that enable viewing and command-based

editing of the model, and a basic editor.

In EMF amodel can either be defined in Java, XML Schema |[Wo04] or UML [OM10],
from which the others and the corresponding implementation classes can be gener-
ated (cf. |Bu09b|). In this vein, EMF relates modeling concepts directly to their
implementations, thus unifying the three technologies Java, XML [Wo08] and UML
[OM10].

EMF only provides a simple tree-based editor for ECORE, the meta-model of EMF,
for which reason the graphical UML-based editor of the Fcore Tools is used for the
evaluation of EMF. The Ecore Tools constitute a component of the Eclipse Modeling
Framework Technology (EMFT) Project, which is similarly to EMF a subproject of

95

4 Evaluation of repository services

the Eclipse Modeling Project. EMFT is meant to be an incubator project for new
technologies that extend or complement EMF (cf. [Ecl0al).

4.5.1 EMF — Tool structure

The foundation for modeling with EMF' is ECORE its meta-model and therefore the
model of information models realized in EMF. Information models are called core
models in EMF. ECORE is a small and simplified subset of full UML [OM10], thus
making up an efficient Java implementation of a core subset of the Meta Object Fa-
cility (MOF) [OMO6a]. In accordance with Budinsky et al. in [Bu09b], the Essential
MOF (EMOF) constitutes a subset of the MOF model that is similar to ECORE.
There are small differences between ECORE and EMOF, mostly confined to the nam-
ing of concepts. According to Budinsky et al. in [Bu09b|, ECORE enables EMF to

transparently write and read serializations of EMOF.

As alluded to above, a core model can be created from Java interfaces by intro-
specting the annotated Java code, XML Schema [Wo04| model definitions or UML
[OM10] models. There are three possibilities to start with an UML model. Firstly,
the simple tree-based editor of EMF or another graphical editor, such as the one of
the Ecore Tools, can be used. Secondly, the EMF Model wizards provide an exten-
sible framework, into which model importers for different formats can be plugged,
which natively only supports model definitions created in Rational Rose. Finally,
serialized ECORE exports of an UML tool can be imported necessitating a corre-
sponding conversion support by the UML tool. If Java interfaces are used as source
of the core model, the interfaces as well as their contained references and attributes
or rather their corresponding get-methods have to be denoted by @model in the
Javadoc annotations to be identified as model classes. The @model annotation can
be complemented with further information, such as whether a reference is a contain-
ment reference or which type is contained in a list of references. Throughout the
evaluation, the graphical editor of the Ecore Tools as a part of the Eclipse Model-
ing Project are utilized for creating core models. This editor overall provides the
same configuration possibilities of the tree-based editor, except for i.e. some detailed
type-definitions of generic data-types, and hence supports all concepts of the ECORE,

required for the evaluation.

Java, UML or XML Schema serve as sources of a core model, but none of them
is the utilized form of persisting core models, since all of them carry additional
information beyond what is captured in a core model (cf. [Bu09b]). Hence, core
models are represented in the XML Metadata Interchange (XMI) format, which is

96

4 Evaluation of repository services

Java Code

Ecore Model <+“—>

RDB Schema

U/

Figure 4.30: EMF — An ecore model and its sources (cf. |Bu09b|)

the standard for serializing meta-data concisely using XML. According to Budinsky
et al. in [Bu09b]|, the core model is the center of the EMF world between a persistent
model form and the Java code. There are also other forms of persistent model
representations possible instead of an XML Schema, as depicted in the “big picture”
of EMF in Figure 4.30.

4.5.1.1 EMF - Code Generation

After having created a core model in whatever way, the core model is used to generate
model classes. Thereby, EMF generates a Java interface and an implementation class
for each core model type. This is a design choice of EMF that among others makes
up a pattern that is required to support multiple inheritance in Java, as it is in
EMF. Each generated interface extends directly or indirectly EOBJECT, the base
interface of EMF, which is the EMF equivalent to java.lang.0Object (cf. [Bu09b]).
Along with the extension of EOBJECT, methods for returning the ECLASS of an
object, the object’s containing object and resource are introduced as well as an API
for accessing an object reflectively is provided. These reflective API is required for
generically accessing objects, whereas containing objects and resources introduce two
integral parts of the persistent API of EMF.

Moreover, EOBJECT extends the interface NOTIFIER that introduces model change
notifications comparable to the Observer design pattern (cf. [Ga95]). Observers can
be assigned to the set-methods of an attribute and are notified when the attribute
value changes, e.g. EMF objects can be observed to update views, dependent objects
and so forth. Notification observers are called adapters in EMF, since they are often
additionally used to extend the behavior of the objects, they are attached to (cf.
[Bu09b]).

Besides the described interfaces and classes, there are some other important classes

that are generated for the model. On the one hand a factory, which is supposed to

97

4 Evaluation of repository services

be used for creating model objects, and a package, which provides access to all Fcore
meta-data for the model are generated. On the other hand an adapter factory is
produced to implement type-specific adapters, as well as a switch class that provides
a callback mechanism based on the object’s type. Adapters are used extensively in
EMF as observers and to extend behavior, thereby switch classes are resorted to in
their implementation. Adapters are the foundation for the Ul and command support
provided by the EMF.Edit framework.

EMF is targeted on combining generated and hand-written parts of code. For identi-
fying generated parts during a regeneration of code, EMF uses @generated markers
in the Javadoc, so i.e. any method without such an annotation will remain unaf-
fected during regeneration. A hand-written piece of code without an @generated

tag always takes precedence over an equivalent named generated one.

Most of the information needed by the EMF code generator is stored in the core
model, further information for generating code and consistently regenerating, e.g. for
distinguishing between hand-written and generated parts, are stored in the generator
model. The generator model provides access to all required information including the
corresponding core model, which is wrapped by the generator model. When the EMF
generator is used, actually the generator model is accessed instead of the core model,
which is in turn directly accessed by the generator model. Thus, the core model
remaing a concise and pure information model, as it is intended to. In order to
address synchronization issues among core model and generator model, elements of
the generator model are able to automatically reconcile themselves with changes to

their corresponding core model elements (cf. [Bu09b]).

EMF facilitates creating objects by automatically generated factories and a mech-
anism for persisting and referencing other persisted objects is provided, as well.
For that, a default XMI serealizer is included, able to persist objects generically
from any model, not just Ecore (cf. [Bu09b|). EMF supports persisting objects in
an XML instance document, provided that the information model is defined using
XML Schema. Furthermore, EMF allows to persist objects in an arbitrary form
using hand-written serialization code and nevertheless supports transparently refer-
encing among objects in different models or documents, irrespective of their form
of persistence. At this point the aforementioned methods for returning the object’s
containing object and resource come into play, since an object is persisted in an RE-
SOURCE and objects contained by another objects are automatically persisted in the
same resource. Resources in turn are contained in an RESOURCESET, which is also

used to create instances of RESOURCE. According to the defined form of persistence,

98

4 Evaluation of repository services

different types of resources may be contained in a resource set, that manages the

cross-document or cross-resource referencing, respectively.

Besides generating the core model and the corresponding implementation from a se-
rialized source, EMF provides the creation of a dynamic core model at runtime using
the reflective API (cf. [Bu09b|). Thus, a core model can be created without gener-
ating any Java classes, using the reflective methods for creating objects, attributes

or references as well as manipulating their properties.

gl library.genmodel i3
= Bl Library

=1 i
3 & Generate Model Code

=] Generate Edit Code
= Generate Editor Code b
h

~ Grnerate Teat Code

Figure 4.31: EMF — EMF .Edit code generation

The EMF .Edit framework is able to generate functional viewers and editors for edit-
ing instances of a core model. Therefore, the EMF.Edit framework includes generic
reusable classes for building editors for core models, providing different item provider,
such as content and laber provider, as well as classes to display models using standard
desktop viewers, e.g. jFace, and property sheets. Furthermore, EMF.Edit provides
a command framework including several generic command implementation classes.
All required item providers and other classes, needed for building a complete editor
plugin, can be generated by the EMF.Edit code generation support. After having
generated the model code, a fully functional editor can be generated by conduct-
ing the Generate Edit Code and Generate Editor Code mechanisms of the generator
model (cf. Figure 4.31), showing that the EMF.Edit code generator is simply another
part of the generator model. The EMF.Edit code generation produces a simple tree
view based editor to create model instances, that serves as starting point for devel-
oping more sophisticated editor, adapted to the specific concerns. The same actions
that are provided by the editor can also be performed using the reflective API, even

for dynamic core models that do not stem from a generation.

4.5.1.2 EMF - Ecore

As already mentioned, ECORE constitutes the meta-model of EMF' that defines the
structure of core models or information models, respectively. ECORE provides some
concepts that are not directly included in Java, such as containment and bidirectional

relationships or multi-inheritance, but nonetheless, EMF claims to generate correct

99

4 Evaluation of repository services

and efficient Java code for those concepts (cf. [Bu09b]). ECORE is defined as a core
model, the self-defining nature of which enables a treatment much like any other
core model. A comprehensive overview of ECORE is depicted in Figure 4.32, the
most important aspects of which are described in the following. One important
ECORE component is omitted in Figure 4.32, that is EOBJECT, the supertype of
EMODELELEMENT and for this reason supertype of all depicted types.

ElodelElerment

+eModelElerment

®getEAnnotation(source © String) © EAnnotation

0.7 | +efnnotations A
I | | +eFactorylnstance

i 1
Eannotation ElNamedElement EFactory
@source © String

details | EStringToStringhapEntry N . Siig

%creale(eClass | EClass) : EObject
Z} %crealeFromString(eDataType : EDataType, literalvalue : String) : EJavaObject

®convertToString(eDataType : EDataType, instancealue | ElavaObject) | String

| +ePackage

1
ETpedElement EClassifier EPackage

ordered : boolean = true instanceClassName : String ensURI : String
unique : boolean = true +eType | @¢instanceClass : ElavaClass ¢nsPrafix ; String
@lowerBound : int edefaultvalue | EJavaObject
@upperBound : int =1 0.1)) . SyetEClassifier(name : String) : EClassifier
@many : boolean ¥isInstance(object : ElavaOhject) : boolean L
required © boolean ®getClassifierD{ : int , +eSubpackages | U

* i +e2Package +eSuperPack
ZIX +eExceptions | 0.7 % 0. \% 4 eSuperPackage
‘ ‘
E— —

I EClass

t +e0peration K EDataType
0 o= @abstract : boolean gserializable : boolean = true
. +eParameters ginterface . boolean
+e0perations +eContainingClass $isSuperTypeOfisomeClass : EClass) : boolean
S tE StructuralF eature(featurelD © int) : EStructuralF eature 0= 1
+eAll0perations ®yetE StructuralF eature(featureName © String) : EStructuralF eature EEnumLiteral
0= gwalue - int
- ginstance : EEnumeratar
- +eReferenceType -
+edllStructuralF eatures | 0. o +eCantainingClass ! e +eSuperTypes
EStructurslFeature +eliterals | 0.7
+eStructuralFeatures +eAllContainments +eAllZuperTypes
@changeable : boolean = true 0
@volatile : boolean ERfeference +eAttributeType
gtransient © boolean ¢containment : boolean o
edefaultvalueliteral © String @oontainer : hoolean ZilReh +eEnum
defaultvalue : EdavaObject grasolveProxies : boolean = tryg | FeAlIRElRrEnces =
gunsettable : boolean 0.
(R . (I GER +e0pposite 0.1 +eReferences FyetEEnumLiteraliname : String) : EEnumLitaral
SyetFeaturelDy ; int 0. TedllAttributes ®getEEnumLiteral(value : int) : EEnurnLiteral
®gatContainerClass() : ElavaClass EAttribute 0. +eAttributes
¢iD: boolean 0.1 +elDAttribute

Figure 4.32: EMF — ECORE components and their relationships (cf. [Ecl10b])

In accordance with Budinsky et al. in [Bu09b], the types ECLASS, EATTRIBUTE,
EREFERENCE and EDATATYPE compose the kernel of ECORE. This model fragment
encompasses the most common types that can be found in an information model and
is the basis for understanding the self-defining nature of ECORE, since i.e. modeled
attributes and references of ECLASS correspond to instances of EATTRIBUTE and
EREFERENCE.

ECLASS is used to represent modeled classes and interfaces, which can contain mul-

tiple attributes and references. The ESUPERTYPES reference shows that a class can

100

4 Evaluation of repository services

inherit multiple supertypes. However, this capability conflicts with the generation
of Java code, because Java only supports inheriting of a single supertype, except
for interfaces. According to Budinsky et al. in [Bu09b], this condlict is addressed
by using the first class in the list of ESUPERTYPES as implementation base class
of the generated code, while the others are treated as mizin interfaces, the features
of which are re-implemented in the derived implementation class. In doing so, gen-
erating code from interfaces composing a multiple inheritance creates an interface
of the implementation base class that extends all of the specified suptertypes and
an implementation class thereof, which only extends the defined first supertype and
correspondingly implements the remainder of the interfaces. To ensure, that a spe-
cific class is the first supertype in the list of sypertypes, the reference thereto can be
annotated by i.e. the stereotype «extends in UML models. The attributes inherited
from the different supertypes are not allowed to have equivalent names, which causes

a generation failure.

An ECLASS inherits all structural and behavioral features of its supertypes and
all of the transitively connected supertypes. The direct supertypes are refered to
by the reference ESUPERTYPES, whereas the derived reference EALLSUPERTYPES
provides the complete set of transitive connected supertypes. Analogously, the ref-
erences EREFERENCES and EATTRIBUTES define the directly contained attributes
and references, that are extended by all inherited attributes and references in EAL-
LATTRIBUTES and EALLREFERECES, respectively. The same logic can be transfered
to ESTRUCTURALFEATURES and EALLSTRUCTURALFEATURES, as well as EOPER-
ATIONS and EALLOPERATIONS.

EATTRIBUTE and EREFERENCE, which represent modeled attributes and references,
are both subtypes of ESTRUCTURALFEATURE, that in turn is a subtype of ETYPED-
ELEMENT, referring to an ECLASSIFIER as its ETYPE. An ECLASSIFIER is either
an ECLASS or an EDATATYPE, for which reason both attributes and references are
theoretically able to refer to classes and data types. Therefore, EATTRIBUTE defines
the derived reference EATTRIBUTETYPE that casts objects delivered by the reference
ETYPE to an EDATATYPE. The derived reference EREFERENCETYPE of EREFER-
ENCE is analogous to EATTRIBUTETYPE and casts ECLASSIFIER to ECLASS. Gen-
erally, an EREFERENCE is used to represent an end of an association between two
classes, that can optionally be declared bidirectional by defining an opposite EREF-
ERENCE or as containing, which defines the containing object for objects of the
referenced type. EDATATYPE is used for representing primitive types or Java object

types, such as java.lang.Date.

101

4 Evaluation of repository services

ESTRUCTURALFEATURE, the supertype of EREFERENCE and EATTRIBUTE sub-
sumes several commonalities of all features. Among other things, ESTRUCTURAL-
FEATURE defines the boolean properties CHANGAEBLE, TRANSIENT, UNIQUE, UN-
SETTABLE and VOLATILE. CHANGEABLE defines whether a feature can externally
be set. TRANSIENT defines whether a feature is considered for serialization of the
containing object. UNIQUE declares whether a single value is allowed to occur more
than once in a feature, which is only reasonable for multiplicity-many features. Ac-
cording to UNSETTABLE, it is determined whether the feature has a value assigned
different from any other valid values and null stating that a feature is not set.
Finally, vOLATILE defines whether there is any storage directly associated with a
feature. According to Budinsky et al. in [Bu09b], some of these properties are only
reasonable in combination, e.g. it seems not to be reasonable to define a feature
volatile but non-transient. Budingky et al. recommend to define derived features as
being volatile, transient and non-changeable. This definition also exerts influence on
the code generation, resulting in the omitting of set-methods for derived attributes
and an annotation reminding that the implementation has to be complemented in
the get-method.

4.5.1.3 EMF - Validation framework

EMF natively provides the validation framework, which addresses issues of checking
the validity of an object’s state modeled in EMF. The validation framework enables
to define constraints and invariants to be verified directly in the model. According
to Budinsky et al. in [Bu09b|, a constraint constitutes a statement that has to be
valid at a certain point in time, whereas an invariant is a much stronger assertion
that is supposed to be valid all the time. Consequently, these two kinds of conditions
are realized in different ways, since an invariant is supposed to be always evaluable
asking for an easy accessible evaluation statement for any code that manipulates the
object. Hence, an invariant results in an additional method in the concerned class
that has to conform to a specific method signature, consisting of two parameters, of
types EDIAGNOSTICCHAIN and EMAP, as well as a return value of type EBOOLEAN,
which states the validation of the invariant. In contrast, a constraint is defined as
EANNOTAION of a class, the source of which has to be set to the schema for ECORE,
and for which a map entry has to be defined, setting its key to constraints and
the value to the corresponding names of the constraints to be validated. Figure 4.33

exemplifies the annotation with constraints and a methods for invariants.

As mentioned, invariants lead to an additional method implemented in the con-

cerned class rather constraint implementations directly reside in a validator class of

102

4 Evaluation of repository services

4 B purchaseorder
E PurchaseOrder
4 [kem
4 flm Ecore
5 censtraints -»> MonMegativeQuantity ValidShipDate|
= productMame: EString
= quantity : Elnt
> = shipDate: EDate
o [USAddress
I @ haslS5tate(EDiagnosticChain, EMap) : EBoolean
= name: EString
» o state: EString
o

country : EString

Figure 4.33: EMF — Core model with constraints and invariants

the util-subpackage of the generated code. Actually, only methods of this class are
taken into account for validation using the validation function of the generated editor,
for which reason methods for validating invariants additionally exist in the valida-
tor class, referencing the actual implementation in the host class. Generally, these
generated methods require a manual intervention for specifying the conditions in
Java code, because ECORE provides no way to represent them in the model. Besides
the generation of modeled invariants and constraints, the code generation facility
automatically adds basic constraints, such as for multiplicities, restrictions of the
defined data type, the containment of all cross-referenced objects and so forth. The
automatic introduction of such basic constraints is even performed for properties,
which do not have manually defined constraints or invariants, but overall a preced-
ing manual definition of a constraint or invariant in the core model is a prerequisite
to activate their generation. EMF’s validation framework includes a helper class
called DIAGNOSTICIAN that is the recommended entry point for validation accordint
to Budinsky et al. in [Bu09b]. DIAGNOSTICIAN provides methods to verify whether
a given value violates any constraint defined for a type, e.g. the DIAGNOSTICIAN

class can be used to verify a value before actually modifying an attribute of a class.

In addition to the described kind of baich wvalidators, that are used for static vali-
dation of a selection of elements, usually in response to a user action, such as the
manually invocation of the validation functionality in the model instance editor, the
EMF validation framework also provides live validators. The validation of object
models is generally performed by invocation of the validation service, that provides
the two kinds of validators. A live validator obtains a collection of notifications
representing discrete changes to model elements as input, that come from notifiers
observed in the model. Along with the notification, needed information, such as the
modified structural feature, the old value and the new value, becomes available to

the constraint implementation.

103

4 Evaluation of repository services

For defining which constraints apply to which objects, EMF is able to describe a set
of objects as a client context, which can be bound to constraints that are supposed
to be enforced on these objects. Constraints can be bundled in categories and so
the binding of constraints can take place by category, individually or in a mixture
thereof. Furhtermore, validation listeners can be defined for the validation service of
the EMF validation framework. Validation listeners are able to be associated with
multiple client contexts and are notified by the validation service whenever validation

in the associated contexts occurs.

The EMF validation framework provides support for parsing the content of constraint
elements defined in specific languages. The validation framework provides support
for two languages: Java and OCL. The framework provides an implementation of
an XML constraint parser API that supports definition of OCL constraints in XML
form. The only supported constraints for modeling with EMF are the aforemen-
tioned annotations for constraints and methods for invariants. Though, the actual
conditions thereof cannot be specified by modeling. Even though the EMF valida-
tion framework has much more functionality beyond that, the evaluation of EMF is
primarily confined to the constraint functionality that is provided for modeling, at

most referring to further solutions.

4.5.2 EMF — Hierarchy modeling

The information model fragment composing a hierarchy of business process in Fig-
ure 3.1 can be modeled using the graphical modeling editor of the Ecore Tools as
shown in Figure 4.34 or using the tree-based standard editor as shown in Figure 4.35.
Thereby, the tree-based editor provides a bit more detailed configuration possibli-
ties, e.g. the type-definition for map entries cannot be modified in the Ecore Tools

editor.

The relationship of subordination is modeled by a bidirectional containment relation-
ship, that has the intrinsic nature of creating an acyclic relationship, when establish-
ing a self-relationship. That is owed to the fact that EMF interprets containment
relationships as nested objects, in doing so the nested object can be compared to
a kind of physical part of the containing object, that is thus only possible by one
containing object, that in turn cannot be part of its constituents. Hence, the acyclic
or hierarchic relationship is realized by the intrinsic nature of containment relation-
ships in EMF. Based on this hierarchy, the ordering relationship is annotated by the
constraint LINEARORDER. (cf. Figure 4.35), the resulting method in the generated

Java code of which has to be complemented by the corresponding conditions.

104

4 Evaluation of repository services

h Businesshrchitecture | BusinessArchitecture.ecore &3

H BusinessArchitecture
= Name : EString

a platform:/resource/test/model/Businesshrchitecture.ecore

4 B businessarchitecture
0 4 [BusinessProcess
4 = Ecore

&4 constraints -» LinearOrder

0.1 0. * businessProcesses = MName: EString
H BusinessProcess
0.* 0.1

post . = pre: BusinessProcess

super

. 5 sub: BusinessProcess

sub

. = super: BusinessProcess

0.1 . =+ post: BusinessProcess
pre 4 [BusinessArchitecture
» = businessProcesses : BusinessProcess

. = Name: EString

Figure 4.34: EMF — BUSINESSPROCESS Figure 4.35: EMF — BUSINESSPROCESS
core model core model in tree view

The need of introducing the additional class BUSINESSARCHITECTURE becomes ob-
vious, when launching the generated editor for instantiating the core model. The
serialization of each instance of the model has to be well formed, that is to say a
root element for all created objects is required. This root element is an object of
BUSINESSARCHITECURE, because otherwise an object of BUSINESSPROCESS would
have to compose the root object, which would prevent the modeling of more than
one business process at the highest hierarchy level. Moreover, the automatically
generated editor seems not to be able to handle containment self-relationships over
multiple hierarchy levels, but actually this editor is only meant to be an initial point
for refinement. Whether the lack of support of displaying transitively associated
objects might be subject to the utilized query functionality of EMF is evaluated
in Section 4.5.12. Thus, a business architecture makes up the container for a core
model instance, which alternatively might also be accomplished by an ultimate busi-

ness process, introduced as hierarchy root node.

EMF natively provides one kind of part-whole relationships by the containment ref-
erence, which can be both directional and bidirectional and introduces a kind of
part-whole relationships reflecting a nature, which is expected for material composi-
tions. Other directional or bidirectional relationships can be modified by annotating
constraints, that can be complemented using the Turing complete programming lan-
guage Java. Delving deeper into the EMF validation framework offers much more
possibilities to introduce constraints and to listen on their validation results, but

only for professional users of EMF.

In conclusion, EMF natively provides a kind of relationship for modeling hierarchies,
which also reflect the ontological nature thereof. Furthermore, constraints can di-

rectly be annotated in the information model, the conditions of which have to be

105

4 Evaluation of repository services

complemented by Java code. The specified multiplicities are directly taken into ac-
count by the generated editor, resulting in a restricted possibility of defining related
objects, e.g. the ordering relationship only allows to select a single object for pre-
ceding and succeeding business processes and the corresponding counterpart of the
relationship end is automatically set or exchanged according to an object selection.
In combination with a convenient graphical modeling editor, the need of comple-
menting prepared Java code is not regarded as an impairment of the tool handling

and so the evaluation of Table 4.27 is inferred from.

Fulfillment of Ontological
scenario correctness of models

Table 4.27: EMF — Evaluation of hierarchy modeling

Tool handling

4.5.3 EMF — Temporal and variant modeling

Temporal dependency of objects is supposed to by introduced by a despersive type
TEMPORAL, which introduces a period of validity to types intended therefor. Sim-
ilarly, a temporal dependency for relationships is required in order to achieve the
tracking of changes thereof. Since relationships are realized by the corresponding end
points in EMF and therefore do not make up a first-level concept, a relationship as
a whole cannot have any properties or information assigned to. Hence, for evaluating
the modeling building block ORGANIZATIONALUNIT-HOSTS-BUSINESSAPPLICATION,
the information model fragment in Figure 3.4 is introduced to EMF, that constitutes
a time-dependent relationship between business applications and organizational units
using a mediating type to reify the relationship. Figure 4.36 shows the model frag-

ment realized in the Ecore Tools editor.

EMF supports multiple-inheritance and is able to assign attributes to interfaces,
which is also implemented by the generated Java code, despite of deviating from
standard Java implementations, as described in Section 4.5.1.2. In this vein, a kind
of mixins can be realized by EMF using interfaces. Hence, the mixin TEMPORAL
of the model fragment in Figure 3.4 is modeled by an interface, which introduces a
period of validity to each inheriting type, as e.g. illustrated for APPLICATIONHOST in
Figure 4.36. As alluded to above in Section 4.5.1.2, this approach is applicable even
to types that are already in an inheritance-relationship, since EMF re-implements the

properties of the mixin interfaces during the code generation directly inside the base

106

4 Evaluation of repository services

implemetation class. Consequently, the interface TEMPORAL constitutes a reusable
modeling building block that can be assigned to all types or instances of ECLASS in
the information model, respectively, and may easily be extended to the bitemporal
version thereof. The necessary constraint, which ensures the hosting by exactly one
organizational unit at each point in time, is annotated to BUSINESSAPPLICATION
and complemented with appropriate conditions in the corresponding validator class

after having generated the implementation code.

Figure 4.36: EMF — Temporal association pattern applied in I-Pattern 1-24

Besides the already introduced kinds of models used by EMF, namely ECORE, core
model and generator model, another model type is provided, the change model. The
change model serves the purpose of representing changes or deltas to an objects
instance of the core model and can be used to apply predefined changes or to record
change as they are made. The record functionality of the change model may be
regarded as a kind of change history, that additionally provides roll-back functionality
to previous states. In this vein, the change model makes up an alternative for

modeling a second temporal dimension besides a period of validity.

Even though the model fragment of Figure 4.36 structures the required information
for temporal modeling and ensures necessary constraints in an partially reusable
form, a denotation of relationships similar to the stereotype «temporals is not
achieved yet and cannot be achieved by modeling either. Professional user might
define a client context for the concerned references and assign these to the corre-
sponding constraints or categories of constraints. The listening to validation events

might be used to ensure the constraints directly in the modeling editor.

The modeling of different variants of the EA or in the outlined example of the building
block ORGANIZATIONALUNIT-HOSTS-BUSINESSAPPLICAITON is another important
aspects, that is primarily served in Section 4.5.7, but also multiple instances of the
core model can be created to model variants of the EA that may be structured by

different folders in the file system, as depicted in Figure 4.37. Nevertheless, this kind

107

4 Evaluation of repository services

of variant modeling can only act as a makeshift during the introduction of an actual
variant modeling, since there are no connections between the object models and also
naming problems may occur for instances residing in the same resource, which would

notably impairs the usability.

a == EA information model
4 [—= current
&l current.temporal
4 [= planned
L2 variantl.temporal
il variant2.ternporal

Figure 4.37: EMF — Variant modeling by multiple model instances

The EMFT project includes a further component, namely the Temporality feature,
that provides an automatic versioning of model instances (cf. [Ecl0a]). Since the
temporality component is yet in its incubation phase and no downloadable version
is already available, only a short summary of available information to complement
this scenario by potential capabilities of temporality is given, but without taking
any effect on the evaluation. The temporality feature consists of an core model
containing a class TEMPORAL that has to be inherited by each type that temporality
is supposed to be introduced to. Thereby, two time dimensions are introduced to
the inheriting type, that is the actual time and the record time. Transferred to
the aforementioned context, the actual time constitutes the start of the period of
validity, whereas the its end has to be derived from the start time of other objects in
the instance model. The record time is directly comparable to the second dimension
introduced by bitemporality. Which attributes and references are supposed to be
kept a history of, can be specified by adding an annotation thereto. In this way, it
is kept track of the different values of attributes or the different objects a reference
points to over time. The assignment of TEMPORALITY causes that the “current
date” of a view in the editor becomes configurable, subject to which currently valid
instances are displayed. Thus, the temporality feature of the EMFT project will

enable a fairly comfortable definition of temporality for attributes and references of

a type.

Fulfillment of Ontological
scenario correctness of models

o D D

Table 4.28: EMF — Evaluation of temporal and variant modeling

Tool handling

108

4 Evaluation of repository services

Finally, the information needed to be structured in this scenario can be modeled by
EMF, but only partially reflecting the ontological nature of temporal modeling, such
as for temporal relationships. Table 4.28 summarizes the evaluation of temporal and

variant modeling.

4.5.4 EMF — Non-rigid typing and principle of identity

EMF provides two specialization options for ECLASS indicated by the boolean prop-
erties ABSTRACT and INTERFACE. An abstract class represents an ECLASS, from
which other classes can inherit features, but which cannot itself be instantiated. If
interface is additionally true, the ECLASS represents an interface, that declares its
properties, operations and relationships but cannot provide an implementation for
them. Since an interface has always to be abstract, it cannot be instantiated and
serves the purpose of supplying features and relationships to the inheriting classes.
The implementation of an interface is modeled by an inheritance relationship to a
non-interface ECLAss. (cf. [Bu09b|)

In this vein, interfaces can be used to realize a dispersive type in EMF, since their
implementation assigns an additional type to the implementing class, which also
inherits all features of the interface. Furthermore, an interface does not supply a
principle of identity, because interfaces cannot directly be instantiated and the in-
direct instances by implementation depend on the implementing type. Thus, the
implementation of an interface to a non-interface class in EMF is regarded equiva-
lent to the assignment of mixin to a type, as described in Section 3.1.3. Abstract
classes can additionally provide implementations for features and cannot be instanti-
ated similar to interfaces. Theoretically, a semantically richer version of mixins could
be established thereby, but during the code generation only a single inherited ab-
stract class can be considered as an extended class and the others are automatically

converted into mixin interfaces (cf. Section 4.5.1.2).

However, EMF supports the distinction whether a types supplies a principle of iden-
tity, thus enabling the distinct modeling of rigid sortal universals and rigid mixin
universals in line with Guizzardi in [Gu05]. Even though such a principle of identity
is supported there are no type changes or type extensions possible for instance ob-
jects, as required e.g. for changing the presently valid life-cycle phase or to assign a
role that is taken due to the changed context of an object. In this vein, EMF does
not support non-rigid typing at all, asking for alternatives to structure the required

information.

109

4 Evaluation of repository services

How to realize a workaround for life-cycles and different life-cycle phases is described
in Section 4.5.6, dealing in-depth with this topic. Roles of a specific object can only
be derived of the actual relationships thereof, e.g. a employee can be perceived as a
project member once a membership is established for this employee, provided that
this relationship has previously been modeled in the information model. Summariz-
ing, EMF provides sufficient support for the distinction of identity supplying types
and others, but lacks in non-rigid types. The evaluation of non-rigid typing and

principle of identity are merged in Table 4.29.

Fulfillment of Ontological
scenario correctness of models

D D D

Table 4.29: EMF — Evaluation of non-rigid typing and principle of identity

Tool handling

4.5.5 EMF — Multi-level modeling

Core models or information models are modeled by instantiating the concepts pro-
vided by ECORE. Subsequently, models of concrete objects instantiate the informa-
tion model types. Thus, EMF provides the typical two modeling levels of object-
oriented modeling approachs. Since ECORE is a self-defining meta-model, it composes
its own meta-model, meta-meta-model and so on, but these modeling levels are pre-
defined and unchangeable, for which reason only the two levels of the object-oriented

programming paradigm remain for modeling.

As described in Section 3.1.4, the ontologically correct realization of model fragments
resorting to design patterns, such as the type-item pattern or the type-square pattern
(cf. [YJO02]), asks for modeling in more than the typical two modeling levels in order
to prevent a mismatch between ontological levels and modeling levels. Such issues
cannot be addressed with the natively provided functionalities of EMF, because only
the two “classic” object-oriented modeling levels are provided and ECORE, EMF’s

meta-model cannot be modified, as well.

Although a structuring of the required information can be achieved by workarounds
using patterns that twist multiple ontological levels into a single modeling layer,
the fulfillment of this scenario is regarded as lacking in support. That is reasoned
in the claim of evaluating multi-level modeling and not whether or not well known

workarounds can be achieved, as done in scenarios evaluating concrete applications

110

4 Evaluation of repository services

thereof. Hence, the evaluation results in an overall lack of support of the require-
ments, as depicted in Table 4.30, which is also the reason the tool handling is not

evaluated.

Fulfillment of Ontological
scenario correctness of models

O O n.a.

Table 4.30: EMF — Evaluation of non-rigid typing and principle of identity

Tool handling

4.5.6 EMF — Life-cycle

As mentioned in Section 3.1.3 EMF does not support non-rigid types, for which rea-
son an alternative modeling of phased sortals is required. An interface LIFECYCLED
could be used for assigning the general term of being life-cycled to modeling types
and could enforce the implementation of general behavior in the inheriting type, such
as methods for life-cycle phase transitions. The different life-cycle phases could be
introduced by modeling each phase by a discrete subtype of a common, abstract,
life-cycled supertype, as depicted at the the example of BUSINESSAPPLICATION in
Figure 4.38.

O Lifecycled O Temporal

H BusinessApplication
D> L <

ot

El BusinessApplicationInDevelopement |E BusinessApplicationInintroduction |E OperationalBusinessApplication| |E ReplacedBusinessApplication

Figure 4.38: EMF — Life-cycle phasaes of a business application

For determining at which time a life-cycle phase is valid for a specific business ap-
plication, the interface TEMPORAL is assigned to the type BUSINESSAPPLICATION
that in turn supplies the properties, stating the period of validity, to its subtypes.
Thus, the validity of a life-cycle phase can be determined, but a relation to a com-
mon identity is yet needed to identify several instances of BUSINESSAPPLICATION
subtypes as partition of life-cycle phases belonging to a specific business application.
There is a variety of possible solutions therefor, such as a simple attribute stating
the common identity or in case of a non-abstract supertype BUSINESSAPPLICATION,

a relationship to one common instance thereof. However the relation to a common

111

4 Evaluation of repository services

identity is modeled, on basis of the subtypes of BUSINESSAPPLICATION and the
common identity, constraints can ensure that a business application always resides
in exactly one life-cycle phase and that the life-cycle is permanently documented

asking further for a controlled transition between life-cycle phases.

A controlled life-cycle phase transition can be achieved by resorting to projects and
their work packages, the different types of which account for the transition between
two life-cycle phases, as depicted in Figure 3.19. These extensions can be directly
introduced to the information model fragment in Figure 4.38, since only supported
modeling concepts are required therefor. In this way, a permanent documentation
of the life-cycle and a controlled transition between the different phases thereof is
established.

As outlined, the life-cycle modeling of a business application can be realized by the
provided modeling concepts of FMF. The different life-cycle phases are modeled by
discrete types that enable the modeling of various properties and relationships of
a business application depending on the actual life-cycle phase. Besides the advan-
tages coming along with life-cycle phases modeled in separate types, a type transition
forces to migrate required information from the object representing the ending life-
cycle phase to the object representing the beginning life-cycle phase at each life-cycle
phase transition. If the common identity is modeled by an object, shared information
may be contained by this common object, but the thought of transforming informa-
tion along with the life-cycle phase without redundantly storing, cannot be carried

through.

Nevertheless, the information of the scenario can be modeled by some workarounds,
but the nature of switching between life-cycle phases without changing the identity,
is not satisfactorily reflected from an ontological point of view. Complex constraints
have to be manually developed to be able to assess the validity of object models
asking for deep interference in the generated code, the effort of which results in an
empty Harvey Ball for tool handling. The concluded evaluation findings are shown
in Table 4.31.

Fulfillment of Ontological
scenario correctness of models

® D O

Table 4.31: EMF — Evaluation of life-cycle

Tool handling

112

4 Evaluation of repository services

4.5.7 EMF — Projects

In EMF elements can be denoted as “project-affectable” or in other terms as po-
tentially able to be affected by a project using the interface AFFECTABLE, which
establishes a relationship between the type PROJECT and all inheriting subtypes
of AFFECTABLE, as depicted in Figure 4.39. Due to the specific interpretation of
interfaces by FMF during the code generation, interfaces can be used for realiz-
ing the modeling building PROJECTS-AFFECTS-AFFECTABLE (cf. Figure 3.21) in a
reusable way and can thus denote each type in the EA information model as “project-
affectable”.

0.* 0.*
project architecture element

H Project €9 Affectable

Figure 4.39: EMF — Modeling building block PROJECTS-AFFECTS- AFFECTABLE

In EMF’s understanding, a relationships is composed by either a single reference
that points to another type of the information model or by two references corre-
spondingly pointing to the type of the opponent reference. Thus, directional and
bidirectional relationships are realized in EMF by modeling their end points. In
line with this understanding, relationships as a whole do not make up a fist level
modeling concept in EMF rather are derived from refernces of information model
types. Consequentially, a reification of different types of the AFFECTS-relationship
as well as associated relator hierarchies (cf. Figure 3.22) cannot natively be realized
in EMF and have to be modeled as discrete references without inheriting common

properties of a super-relator.

Projects as major means for affecting the EA ask for a time period at which projects
are executed and valid, respectively. For that, the interface TEMPORAL can be
assigned to the type PROJECT that introduces a period of validity. This extension of
PROJECT enables to determine when an effect takes place and to model competing
project plans affecting the same architecture elements at the same time in future,

that have to be decided upon at an appropriate point in time.

Transferring this to the example of the modeling building block ORGANIZATIONALUNIT-
HOSTSBUSINESSAPPLICATION and its refinements elaborated over several scenarios
of Chapter 3, the combination of time-dependent projects, life-cycled business ap-

plications (cf. Section 4.5.6) as well as a time-dependent hosts-relationship (cf. Sec-

113

4 Evaluation of repository services

tion 4.5.3) enable variant modeling of this modeling building block in a way compa-

rable to the possible solution in Figure 3.25.

In conclusion, the information modeling of this scenario is sufficiently achieved by
resorting to solutions already devised in the preceding sections of EMF’s evaluation.
The primary qualities of projects, such as affecting other elements, scheduled by the
time-dependency of projects, are reflected by the modeling solutions in an ontological
correct way. Therefore, the ontological character of projects is regarded satisfactorily
fulfilled, even though some of the used solutions of other scenarios do not similarly
well reflect ontological qualities. Since potentially shortcomings are already evalu-

ated, they are not incorporated a second time, as depicted in Table 4.32.

Fulfillment of Ontological
scenario correctness of models

® ® D

Table 4.32: EMF — Evaluation of projects

Tool handling

4.5.8 EMF — Standardization

Modeling of standardization demands the denotation of both architecture elements
that are able to conform to a standard and elements that are able to constitute a stan-
dard, as illustrated by the modeling building block STANDARD-STANDATDIZABLE in
Figure 3.27. In EMF, the mixins STANDARD and STANDARDIZABLE can be realized
by the corresponding interfaces that introduce the CONFORMSTO- and the ALLOWED-
For-relationship among each other, as depicted in Figure 4.40. These interfaces can
arbitrarily be assigned to every information model type as far as required for docu-

menting and planning the situation of the EA’s standardization.

& Standardizable 0.7 - - 0-1 & Standard
conformingElements realizedStandard
= standardConform : EBoolean .
= exceptionAllowed : EBoolean 0. 0.
allowedFor allowedStandards

Figure 4.40: EMF — Modeling building block Standard-Standardizable

The derived attributes of the modeling building block STANDARD-STANDARDIZABLE
can directly be realized by declaring these properties volatile, transient and non-

changeable, as described in Section 4.5.1.2. Thus, the simple modeling building

114

4 Evaluation of repository services

block enables the definition of standards and standardizable elements, as well as the
relationships among them. As described in Section 3.2.3, standardization has to
consider aspects, such as the distinction between deliberately and accidentally non-
conformance to a standard by architecture element that are able to conform to a
standard. For the ontologically correct distinction of the two states outcoming from
this considerations, a non-rigid mixin type specializing the mixin STANDARDIZABLE
is necessary, as devised in Section 3.2.3. Since non-rigid types are not supported by
EMF, this proposed solution cannot be modeled, but alternatively aspects of unset
values that are comparable to this issue and natively supported by EMF can be

utilized here, as describe later in this section.

The formal relationship (cf. [Gu05]) CONFORMSTO can be realized similar to the
derived attributes, by declaring the references thereof volatile, transient and non-
changeable. Thus, the get-methods of the corresponding references has to be com-
plemented in the implementation of types inheriting the interfaces STANDARD or
STANDARDIZABLE. This context specific implementation of the derived relationship
CONFORMSTO makes it possible to calculate their references in dependence of the
actual composition or other context-specific relationships of the containing type. In
this vein, EMF supports a kind of formal relationships that are grounded in the
intringic qualities or in other terms the already defined attributes and references of

their establishing types.

One of the different specializations of features can also be used for determining
whether or not there is deliberately no conforming standard, since features can
additionally be defined unsettable. Setting this property for the CONFORMSTO-
relationship, enables the definition of a state different to null that is conceived as
unset, in this way introducing a standard value for unset references. Thus, a lack
of documentation can be determined by means natively provides by EMF, but the

state-change of the assigned general term to be standardizable is only partially.

Fulfillment of Ontological
scenario correctness of models

® D ®

Table 4.33: EMF — Evaluation of standardization

Tool handling

Altogether, the non-rigid character of the qulatity of being standardizable as ex-
pressed by the two non-rigid subtypes of the mixin STANDARDIZABLE cannot satis-

factorily be modeled in EMF. But besides this missing modeling concept, the scenario

115

4 Evaluation of repository services

is completely fulfilled by interfaces and the different kinds of feature provided by EMF
that appropriately reflect the ontological nature of these constituents of standard-
ization. Furthermore, the modeling of the provided concepts is fairly conveniently

achieved, resulting in the evaluation in Table 4.33.

4.5.9 EMF — Goals

The Goal-Question-Metric-approach proposes to operationalize goals by a set of ques-
tions, which are assigned to architecture elements in order to attach the correspond-
ing goal thereto and to measure its achievement by calculating the metrics of each
question (cf. Section 3.2.4). An exemplary modeling solution of this approach is
realized by introducing an additional ontological level for meta-types, because an
operationalization of goals asks for metrics that have to be adjusted to the specific
context a question is supposed to be measured. Hence, the actual assigned ques-
tion on type-level is an instance of a question on meta-type-level complemented with
appropriate metrics. Furthermore, questions are modeled by mixins, which add the
required metrics directly to the types, the fulfillment of goals of which is supposed

to be measured.

As alluded to in Section 4.5.5, EMF does not support multi-level modeling, for
which reason the two-level nature of the information modeling building block GOAL-
QUESTION-METRIC has to be modeled by design patterns, such as the type-item
pattern or the type-square pattern, folding multiple ontological levels into a single
modeling level. The modeling of the mixin for questions can be realized by discrete

interfaces for each required question by EMF.

The required metrics as well as the corresponding questions and goals can be modeled
by EMF, but the actual character of questions, to be complemented with context-
specific metrics by instantiation cannot sufficiently expressed by the modeling con-
cepts provided by EMF. Furthermore, the need of introducing complex model struc-
tures complicates the realization of the scenario, which is reflected in an impaired

tools handling. Table 4.34 summarizes the evaluation of goal modeling.

Fulfillment of Ontological
scenario correctness of models

® D D

Table 4.34: EMF — Evaluation of goals

Tool handling

116

4 Evaluation of repository services

4.5.10 EMF — Role-based access control

EMF natively provides no functionality to control the access to any data of the in-
formation model or persisted instances thereof and so there are natively no types to
document access rights for different users of the application contained in the informa-
tion model. Access right information can be structured by introducing an interface
ACCESSIBLE that establishes different relationships between instances of the inher-
iting types and users that are allowed to access these objects, while distinguishing
read and write access, as depicted in Figure 3.36. A subsumption of users by roles
using role-mixins cannot be modeled in FMF, since no modeling concepts similar to
the non-rigid types role-mixin and role are provided. The required information can
be modeled by introducing types for users and user-groups, that are related to the
interface ACCESSIBLE for defining their access rights that can be realized either by
directly relating the two types or indirectly via a common supertype. In whichever
way the relationship between the interface ACCESSIBLE and the types USER or USER-
GROUP is established, user-groups bundle a set of access right definitions that are
supplied to members of a group, which aggregate the access rights supplied by dif-
ferent user-group memberships. The aggregation of access right definitions supplied

by user-groups to their members realizes a kind of role-based access right policy.

The mentioned distinction between read and write access in the preceding paragraph
serves the purpose of exemplifying a possible modeling solution, but certainly these
access rights can be structured in more detail as needed for a specific application.
Even an extension to access right definitions on attribute level is conceivable by
manually extending the get-methods and set-methods along with finer grained access

right definitions, which enable such detailed distinctions.

Fulfillment of Ontological
scenario correctness of models

® D O

Table 4.35: ADOzz — Evaluation of role-based access control

Tool handling

In this vein, a role-based access right policy can be modeled in EMF reflecting the
quality of being accessible and controlling this accessibility by defining success rights.
The aggregation of success rights as needed for a role-based access right policy can
only cannot be derived of the users’ roles, taken due to their external dependencies
to other elements and therefore requires an additional type for structuring such

information. Thus, the required information is structured, but the actual control of

117

4 Evaluation of repository services

access is not yet achieved and has to be manually developed based on the outlined
access right information modeling building block, for which reason the tool handling

evaluation states a lack of support, as shown in Table 4.35.

4.5.11 EMF — Responsibilities

Responsibilities relate manageable architecture elements to the persons that bear re-
sponsibilities therefor. In Section 3.2.5 the modeling of this information is proposed
by a mixin MANAGEABLE and a role-mixin RESPONSIBLE, as depicted by the model-
ing building block RESPONSIBILITIES in Figure 3.35. In FMF this modeling building
block can be realized by an interface MANAGEABLE that establishes a relationship to
the user-groups of responsible people or people, which are solely responsible, respec-
tively. User-groups resort to those ones described in the preceding Section 4.5.10.
Depending on the concrete definition of responsibilities, different kinds thereof can
be distinguished, e.g. multiple relationships between the interface ACCESSIBLE and
responsible people or the membership of specific user-groups might be utilized for

determining the specific responsibilities of people.

People are supposed to have complete access rights to the architecture elements, they
are responsible for. After having introduced a role-based access control approach as
outlined in Section 4.5.10, the modeling building block ACCESSABILITY (cf. 3.36)
can be extended by the modeling building block RESPONSIBILITIES as illustrated in
Figure 3.39. Thus, the aspects of responsibility are complemented with aspect of

access control for ensuring complete access right for responsible people.

Fulfillment of Ontological
scenario correctness of models

o D D

Table 4.36: ADOzz — Evaluation of responsibilities

Tool handling

The scenario is realized by modeling the reference of a responsible person by a direct
reference or a membership of a user-group, since a role (cf. [Gu05]) cannot be utilized
in EMF for their derivation. Provided that a role-based access control as described
in Section 4.5.10 exists, the interface MANAGEABLE can resort to this functionality
by subtyping the interface ACCESSIBLE. Summing up, the required information can

sufficiently be structured in EMF, but a derivation of responsibilities of existing roles

118

4 Evaluation of repository services

cannot be achieved, for which reason the ontological nature of responsibilities is only

partially reflected, as shown in Table 4.36.

4.5.12 EMF — Queries

For specifying and executing queries against a set of information model elements
and their contents, EMF provides the subproject model query framework that en-
compasses the main classes used when formulating and executing query statements.
In accordance with [Ecl0c|, the EMF query framework provides two different classes
of query statements, namely SELECT and UPDATE, while the UPDATE class
extends the SELECT class. The SELECT class is used for querying without modi-
fying data, whereas the UPDATE class serves for modifying the query result. Both
of the statement classes return the query result based on an instance of the FROM
class, representing the elements to search, and an instance of the WHEREFE class,
which applies search conditions to the elements specified by the FROM object. The
search scope of elements to be used in a query is defined by the interface IEOBJECT-
SOURCE.

For specifying conditions applied by the instances of the WHERE class, the EMF
model query framework provides a variety of conditions that implement predicates
on primitive data types, as well as a condition API intended specifically for working
with model elements, that is EOBJECTS in EMF resources. EOBIECTCONDITION
is the root of the condition hierarchy for EOBJECTS. EOBJECTCONDITION can
be subclassed for defining customized predicates using regular Java code, but the
framework also provides a wide range of condition classes covering the majority of
EMF’s reflective API (cf. [Ecl0c]).

According to [Ecl0c|, all objects contained in the collection specified by a FROM
object are traversed recursively by the corresponding SELECT object until the
leaves of their containment subtrees are reached to find the matching objects. Fur-
thermore, customized predicates defined in subclasses of EOBJECTCONDITION can
introduce conditions, which assess transitive references to objects in the search scope
of elements by traversing their relationships, since Java as a Turing complete pro-
gramming language is used therefor. Since the information model structure can be
retrieved using the EPACKAGE class, the information thereof can be utilized for the
construction of conditions. At least by using manually developed subtypes of EOB-
JECTCONDITION transitive queries or the determination of the transitive closure may
be achieved in EMF, whereby complex impact analyses on the repository data can

be conducted.

119

4 Evaluation of repository services

The model query framework of EMF provides comprehensive possibilities to use the
predefined functionalities or to introduce new or extended versions thereof. The
short summery in this section only partially touches on the entire functionality, but
conveys an impression thereof. Technically, the scenario is thus sufficiently fulfilled,
however the whole definition of queries takes place by coding, impairing the tool

handling evaluation to an empty Harvey Ball, as depicted in Table 4.37.

Fulfillment of Ontological
scenario correctness of models

® n.a. O

Table 4.37: ADOzz — Evaluation of queries

Tool handling

4.5.13 EMF — Information model changes

The information model can freely be modeled using the modeling concepts provided
by ECORE. Hence, there are no restriction for introducing, changing or removing
of types, properties, relationships and so forth in the information model. The in-
formation model is not dependent on existing instantiation data thereof rather the
instances resort to the information model data, for which reason all described model-
ing actions can be performed irrespectively of the existence of any object model data.
Using the modeling editor of the Ecore Tools, changes on the information model are
fairly comfortable performed, e.g. attributes and methods can be shifted between

different type by drag and drop.

On the one hand the ability to change the information model independent from the
object models enables the evolution of the information model at any point in time,
but on the other hand demands migration of existing data to the information model
changes. Such a migration functionality is not provided by EMF, resulting in cor-
rupted object data after having performed changes on the corresponding information
model types. The migration of existing data is indeed not accomplished, but as well
no object data gets lost by changing the information model, since the object mod-
els are serialized in XML Schema [Wo04], which only no longer fits to the changed
information model. Such serializations are the starting-point for a manually data
migration. However, the XML Schema serializations might be adapted by hand or
by scripts adapting the performed changes of the information model, in order to

achieve a serialization that suits to the changed information model. Irrespective of

120

4 Evaluation of repository services

which way of migration is chosen, there seems to be no way preventing a manually

inference in the migration process.

In EMF, for each ESTRUCTURALFEATURE a default value as well as an upper or
lower bound can be defined. The minimum number and maximum number of of
allowed values are specified by the attributes LOWERBOUND and UPPERBOUND,
respectively, thus enabling the definition of mandatory properties and references by
setting LOWERBOUND greater than zero. The attribute DEFAULTVALUELITERAL
can be used for defining a default value, which is always a Sting value, irrespective
of the definded data type. Default values can only be defined for EATTRIBUTES and
so default value for ESTRUCTURALFEATURES is always null.

In conclusion, EMF provides fairly flexible and convenient functionalities to create
and change information models, but aspects of data migration are almost completely
omitted. Although the Ecore Tools encompass a quite comfortable graphical editor,
the tool handling cannot be evaluated as satisfactorily fulfilled due to the efforts
required for migrating object data to a changed information model. Table 4.38

summarizes the evaluation of information model changes by EMF.

Fulfillment of Ontological
scenario correctness of models

D n.a. D

Table 4.38: ADOzz — Evaluation of information model changes

Tool handling

4.5.14 EMF — Summary of evaluation

EMF is an open source framework that is permanently refined, extended and en-
hanced by its community. EMF encompasses multiple subprojects and components
that provides extensive functionalities in the fields of information modeling, code
generation and related fields. Throughout the evaluation of EMF, primarily the
most relevant parts of EMF are put under investigation for evaluating EMF against
the scenarios devised in Chapter 3. Nevertheless, the evaluation meets its claim of
providing a comprehensive impression of the EA information modeling capabilities of
EMF, but as well, asks for the application in a “real-world” scenario at a practitioner

to assess whether or not EMF lives up to its potentially promises.

EMF supports multiple inheritance by its meta-model ECORE and even provides

a working implementation thereof based on its powerful code generation facility.

121

4 Evaluation of repository services

EMF enables to generally put the focal point on the information modeling, since
a corresponding implementation as well as a simple editor for objects is generated
at push of a button. Nevertheless, the evaluation was intended to evaluate the EA
information modeling capabilities of EMF, and so additionally functionalities, such
as the graphical editor or the code generation facility are primarily considered by the
tool handling evaluation. The results of the different scenarios are summarized in

Table 4.39 conveying an overview of EMF’s EA information modeling capabilities.

Ontological
X Fulfillment Tool
Scenario . correctness .
of scenario handling
of models
Hierarchy modeling J [[]
Temporal and variant
. J » >
modeling
Non-rigid typing and
el RIS > > >
principle of identity
Multi-level modeling O O n.a
Life-cycles () o O
Projects [(] O
Standardization] > [
Goals [d d
Responsibilities ® d D
Role-based access
] » O
control
Queries) n.a. O
Information model
) n.a. D
changes

Table 4.39: EMF — Summary of evaluation

4.6 Evaluation - Conclusion

The evaluated tools have overall proven to be able to structure the required infor-
mation of the different scenarios. Though, multi-level modeling, as well as non-rigid
typing and the principle of identity seem to be a specific hurdle under the require-
ments of the scenarios and so at least one of the tools revealed a lack of support for

these scenarios. This deficiency of support is then directly reflected in the ontolog-

122

4 Evaluation of repository services

ical grade of scenarios resorting to the concepts of these scenarios, as just general
architecture aspects call for additional concepts than those of the UML [OM10] to

achieve their ontological correct modeling.

Generally speaking, the tools did not convey the impression of explicitly providing
concepts to model in way reflecting the ontological nature thereof, for which reason
the partial or almost complete fulfillments of the ontological correctness is regarded
as an accidental bonus, coming along with the modeling concepts that are established
for making the “technical” structuring of information as convenient as possible. This
perception might be interpreted as another evidence for the importance of ontolog-
ical correct modeling, since even providing concepts for a convenient information
modeling, without being aware of ontological issues, obviously results in concepts

reflecting their ontological nature to a certain extent.

Albeit the tools are comprehensively evaluated against the devised scenarios of Chap-
ter 3, it is further to validate whether or not the evaluated expectations can be lived
up in a “real” application at an enterprise. Furthermore, the results cannot be rep-
resentative for all tools available on the market, asking for applying the gathered
experiences of this evaluation on an extended set of tool, providing generic reposi-

tory services for EA information model.

123

5 Conclusion and outlook

The goal of the thesis was to elicit requirements for EA information modeling and
subsequently, to evaluate a set of tools providing generic enterprise model repository
services on basis of these requirements. For eliciting requirements the focus was
put on the EAM Pattern Catalog as strong knowledge base of EAM. Furthermore,
it was to investigate, whether or not pure object-oriented modeling concepts, as
provided by the UML [OM10], are sufficient for modeling the EA in a way reflecting
the ontological nature of its constituents. After having introduced the lightweight
stereotype approach of Guizzardi in [Gu05] that extends the UML by an typology
of sortal universals or types, respectively, it became obvious, that at least such an

approach is necessary to achieve an ontologically correct information modeling of the
EA.

During the conduction of the thesis a set of scenarios has been devised that reflects
a wide range of requirements for EA information modeling. However, the elaborated
scenarios could be subsumed into three different kinds of scenarios, namely general
architecture aspects, cross-cutting aspects and service aspects. Among these aspects
the general architecture aspects turned out to the most fundamental one, exerting
influence on the evaluation of most scenarios of other aspects. Thereby, the scenarios
subsumed by general architecture aspects reflect a variety of important basics for
EA information modeling, such as the structuring of the EA using different kinds
of relationships and comprehensive constraint building blocks or the incorporation
of temporal dependency in multiple dimensions. Furthermore, the need of multiple
modeling levels is pointed out, in order to prevent unnecessary complexity caused
by a mismatch of ontological levels and modeling levels. As well, the principle of
identity and non-rigidity, subject to Guizzardi in [Gu05], are elucidated, resulting in
the general distinction between types supplying a principle of identity, referred to as
sortal universals, and dispersive types, which are conceived as a general term that can
apply to multiple particulars, referred to as mixin universals. Non-rigidity introduces
an animate character, since it demands the changeability of types along with the
evolution of the EA. All of these concepts on their own approve the need of certain

modeling concepts beyond pure UML, but as a whole, the need of a well-founded

124

5 Conclusion and outlook

meta-language based on an appropriate ontology, incorporating specific issues of EA

information modeling becomes apparent.

Mostly, the evaluation of general architecture aspects anticipated an essential propor-
tion of the evaluation of cross-cutting aspects, since the ontological correct modeling
of cross-cutting aspects is fairly dependent thereon. Scenarios of cross-cutting aspects
encompass some of the most important management subjects, such as the evolution
of the EA, the management of standardization, traceability of management decisions,
measuring the achievement of goals, and so forth, thus validating the importance of
the general management aspects, that provide the foundation for their modeling. In
this vein, the need of a well-founded meta-language is not only reasoned in modeling

aspects, but can directly be derived from the management subject.

Scenarios belonging to service aspects complement the evaluation by assessing func-
tionalities of the tools that are not concerned with information modeling capabilities,
but the procedure of modeling and changing information as well as the management
of the access thereto. Moreover, these concepts assess whether the provided services
of the tool are overall integrated, e.g. whether responsibilities can be combined with
the access control functionality or whether a defined validity can even be taken into

account, when performing a query.

Modeling the ontological nature of scenarios was turned notably attention to over the
conduction of this thesis, having caused, among others, a discrete evaluation criterion
for the ontological correctness of models. But particularly the integration of an onto-
logical foundation in EA information modeling can be regarded in its infancy, since
primarily academia is concerned therewith and the tool evaluation conveyed a sim-
ilar impression. Nevertheless, the necessity of such an integration is emphasized by
almost every devised scenario. A sound basis to start the endeavor of an ontological
well-founded EA information modeling can be found in the UFO elaborated by Guiz-
zardi in [Gu05]. To start the endeavor is supposed to indicate that even Guizzardi’s
well-founded typology of universals seems to get exhausted in certain modeling sit-
uations of EA information modeling, as discovered in Section 3.2.3. In this section,
the need of an additional non-rigid dispersive type, called non-rigid mixin, appears,
which seemingly is not covered by Guizzardi’s UFO. The need of a non-rigid mixin
type was discovered and for the moment assumed as available in the suitable form,
but a well-founded specification of this potentially new or extended dispersive type,

has not taken place yet, asking for an in-depth investigation thereof.

As a matter of course, there may be aspects that are not yet covered by the scenarios,

but the set of scenarios devised throughout the conduction of this thesis has never

125

5 Conclusion and outlook

claimed to be exhaustive. Notwithstanding, the scenarios as a whole are regarded
as a sound basis for further investigations in the field of EA information model-
ing. The evaluation has demonstrated that aspects of ontologically correct modeling
the EA seem not to rank among the highest prioritized issues of the tool vendors
and accordingly, assessing the requirements has revealed shortcomings of the tools
in supporting such aspects. The fact that for each of the tools one of the general
architecture aspects had to be evaluated as an overall lack of support backs this per-
ception. Consequently, the reasonability question of an even more comprehensive and
intricate set of requirements inevitably arise, as long as the herein devised require-
ments are not yet completely fulfilled by the tools. In this vein, the applied intricacy
of scenarios is regarded on the one hand as appropriate to reflect the most important
requirements of EA information modeling, and on the other hand as appropriate to

be evaluable by tools providing generic repository services.

Owed to the possible extent of a bachelor’s thesis, only a small set of tools was eval-
uated, that cannot be representative for all tools providing generic enterprise model
repository services available on the market. Nonetheless, the conducted evaluation
gives a comprehensive example of how to apply the scenarios on both tools intended
for creating an EAM function or comparable applications and tools primarily consti-
tuting a meta-modeling environment and are not directly intended for a usage in an
EAM context. Even though most of the scenarios are at least proved by experiences
of the EAM Pattern Catalog [sel0b], the extensions made in this thesis have to be
validated in concrete, real situations in enterprises. Thereby, the gathered experi-
ences of actually applying the devised building blocks of the scenarios in practice
may help to extend the knowledge base of the just evolving successor approach of
the EAM Pattern Catalog, that is BEAMS [sel0a).

126

Bibliography

[Ai08] Aier, S.; Kurpjuweit, S.; Riege, C.; Saat, J.: Stakeholderorientierte Doku-
mentation und Analyse der Unternehmensarchitektur. In (Hegering, H. G.;
Lehmann, A.; Ohlbach, H. J.; Scheideler, C., Ed.): 38" GI Jahrestagung -
Informatik 2008. pages 559-565. Munich. 2008.

[AKO7| Atkinson, C.; Kiithne, T.: Reducing accidental complezity in domain models.
In Journal Software and Systems Modeling (SoSyM). Volume 7, Number 3.
pages 345-359. Springer. Berlin / Heidelberg. 2007.

[BCR94| Basili, V.; Caldiera, G.; Rombach, H.: Goal Question Metric Approach. In
Encyclopedia of Software Engineering. pages 528-532. John Wiley & Sons,
Inc. New York. 1994.

[BMN10| Biichner, T.; Matthes, F.; Neubert, C.: Data Model Driven Implementation
of Web Cooperation Systems with Tricia. In 3™ International Conference
on Objects and Databases (ICOODB). Frankfurt am Main. 2010.

[BMS10a] Buckl, S.; Matthes, F.; Schweda, C. M.: Conceputal Models for Cross-
cutting Aspects in Enterprise Architecture Modeling. In Joint 5" Interna-

tional Workshop on Vocabularies, Ontologies, and Rules for the Enterprise

(VORTE 2010). Vittoria, Brazil. 2010.

[BMS10b] Buckl, S.; Matthes, F.; Schweda, C. M.: A Meta-Language for EA Infor-
mation Modeling - State-of-the-art and Requirements Elicitation. In 15"
International Conference on Fxploring Modelling Methods in Systems Anal-
ysis and Design (EMMSAD 2010). Hammamet. 2010.

[BuO7] Buckl, S.; Ernst, A.; Lankes, J.; Schneider, K.; Schweda, C. M.: A Pat-
tern based Approach for constructing Enterprise Architecture Management
Information Models. In 8. Internationale Tagung Wirtschaftsinformatik.
Karlsruhe. 2007.

[Bu08a] Buckl, S.; Ernst, A.; Lankes, J.; Matthes, F.; Schweda, C. M.: Enterprise
Architecture Management Patterns — Exemplifying the Approach. In The

127

Bibliography

19" IEEE International EDOC Conference (EDOC 2008). Hammamet.
2008.

|[Bu08b| Bundesamt fiir Sicherheit in der Informationstechnik: BSI Standard 100-2
IT-Grundschutz Methodology. https://www.bsi.bund.de/cae/serviet/
contentblob/471430/publicationFile/27994/standard_100-2_e_pdf.
pdf (cited 2010-06-05). 2008.

[Bu09a] Buckl, S.; Ernst, A.; Matthes, F.; Schweda, C. M.: An Information Model
for Managed Application Landscape FEvolution. In Journal of Enterprise
Architecture (JEA). 2009.

[Bu09b] Budinsky, F.; Steinberg, D.; Paternostro, M.; Merks, E.. EMF - Eclipse
Modeling Framework. Addison-Wesley. Boston, MA. 2" edition. 2009.

[CEF99| Carlson, A.; Estepp, S.; Fowler, M.: Temporal Patterns. In (Harrison, N.;
Foote, B.; Rohnert, H., Ed.): Pattern Languages of Program Design 4. pages
241-261. Addison-Wesley. Boston, MA. 1999.

[Ecl0a] Eclipse Foundation: Eclipse.org. http://www.eclipse.org (cited 2010-08-
26). 2010.

[Ec10b] Eclipse Foundation: EMF API Javadoc. http://download.eclipse.org/
modeling/emf/emf/javadoc/2.6.0/index.html?overview- summary.
html (cited 2010-08-28). 2010.

[Ecl0c| Eclipse Foundation: EMF Model Query Developer Guide. http://help.
eclipse.org/helios/index.jsp?nav=/19 (cited 2010-09-03). 2010.

[Ga95] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Patterns - El-
ements of Reusable Object-Oriented Software. Addison-Wesley. Reading,
MA. 1995.

[Gu05] Guizzardi, G.: Ontological foundations for structural conceptual models.
PhD thesis. University of Twente. The Netherlands. 2005.

[Gu06] Guizzardi, G.: The Role of Foundational Ontology for Conceptual Modeling
and Domain Ontology Representation. In Companion Paper for the Invited
Keynote Speech, ™ International Baltic Conference on Databases and In-

formation Systems. Vilnius, Lithuania. 2006.

[Gu07] Guizzardi, G.: On Ontology, ontologies, Conceptualizations, Modeling Lan-
guages and (Meta)Models. In Frontiers in Artificial Intelligence and Ap-

plications, Databases and Information Systems IV, Olegas Vasilecas, Johan

128

https://www.bsi.bund.de/cae/servlet/contentblob/471430/publicationFile/27994/standard_100-2_e_pdf.pdf
https://www.bsi.bund.de/cae/servlet/contentblob/471430/publicationFile/27994/standard_100-2_e_pdf.pdf
https://www.bsi.bund.de/cae/servlet/contentblob/471430/publicationFile/27994/standard_100-2_e_pdf.pdf
http://www.eclipse.org
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/index.html?overview-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/index.html?overview-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.6.0/index.html?overview-summary.html
http://help.eclipse.org/helios/index.jsp?nav=/19
http://help.eclipse.org/helios/index.jsp?nav=/19

Bibliography

Edler, Albertas Caplinskas (Editors), ISBN 978-1-58603-640-8, IOS Press.
Amsterdam. 2007.

[GWS04] Guizzardi, G.; Wagner, G.; van Sinderen, M.: A Formal Theory of Con-

[In10]

[KA09)

[Kr04]

[Ma09]

ceptual Modeling Universals. In Deutsches Forchungszentrum fur Kunstliche
Intelligenz Report (ISSN 0946-008X), Proceedings of the First International
Workshop on Philosophy and Informatics (WSPI). Cologne, Germany. 2004.

InfoAsset AG: InfoAsset Tricia - Open Source Web Collaboration and
Knowledge Management Software. http://www.infoasset.de/, (cited
2010-08-19). 2010.

Kurpjuweit, S.; Aier, S.: Fin allgemeiner Ansatz zur Ableitung von Ab-
hingigkeitsanalysen auf Unternehmensarchitekturmodellen. In 9. Interna-

tionale Tagung Wirtschaftsinformatik. Vienna. 2009.
Kremar, H.: Informationsmanagement. Springer. Berlin. 4™ edition. 2004.

Matthes, F.; Buckl, S.; Leitel, J.; Schweda, C. M.: Enterprise Architec-
ture Management Tool Survey 2008. In ISIS Business Integration Special,

Nomina Informations- und Marketing Services. Munich. 2009.

[OM06a] OMG: Meta Object Facility (MOF) Core Specification. version 2.0

(formal /2006-01-01). 2006.

[OMO6b] OMG: Object constraint language (ocl) available specification. version 2.0

[OM10]

[sel0al

[sel0b]

[sel0c]

(formal /2006-05-01). 2006.

OMG: OMG Unified Modeling LanguageTM (OMG UML), Infrastructure.
(formal /2010-05-03). 2010.

sebis, Chair for Informatics 19, Technische Universitdt Miinchen: Build-
ing Blocks for Enterprise Architecture Management Solutions. http://
wiwwmatthes.in.tum.de/wikis/beams/home, (cited 2010-08-11). 2010.

sebis, Chair for Informatics 19, Technische Universitit Miinchen: EAM pat-
tern catalog wiki. http://eampc-wiki.systemcartography.info, (cited
2010-08-11). 2010.

sebis, Chair for Informatics 19, Technische Universitiat Miinchen: Research
Projects. http://wwwmatthes.in.tum.de/wikis/sebis/projects, (cited
2010-08-11). 2010.

129

http://www.infoasset.de/
http://wwwmatthes.in.tum.de/wikis/beams/home
http://wwwmatthes.in.tum.de/wikis/beams/home
http://eampc-wiki.systemcartography.info
http://wwwmatthes.in.tum.de/wikis/sebis/projects

Bibliography

[Wo04] World Wide Web Consortium (W3C): XML Schema Part 0: Primer Sec-
ond Edition. http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
(cited 2010-08-26). 2004.

[Wo08] World Wide Web Consortium (W3C): Eztensible Markup Language (XML)
1.0 (Fifth Edition). http://www.w3.org/TR/2008/REC-xml-20081126/
(cited 2010-08-26). 2008.

[YJO2] Yoder, J. W.; Johnson, R.: The Adaptive Object Model Architectural Style.
In Proceeding of The Working IEEE/IFIP Conference on Software Archi-
tecture 2002 (WICSA3 ’02). Montreal. 2002.

130

http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2008/REC-xml-20081126/

	Abstract
	Contents
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Structure of the thesis

	2 Scientific foundations for EA information modeling
	2.1 EAM Pattern Catalog
	2.2 EA management layers and cross functions
	2.3 Ontological foundations for structural conceptual models

	3 Scenarios for EA information modeling
	3.1 General architecture aspects
	3.1.1 Hierarchy modeling
	3.1.2 Temporal and variant modeling
	3.1.3 Non-rigid typing and concept of identity
	3.1.4 Multi-level modeling

	3.2 Cross-cutting aspects
	3.2.1 Lifecycle
	3.2.2 Projects
	3.2.3 Standardization
	3.2.4 Goals
	3.2.5 Responsibilities

	3.3 Service aspects
	3.3.1 Role-based access control
	3.3.2 Queries
	3.3.3 Information model changes

	3.4 Summary

	4 Evaluation of repository services
	4.1 Scenario simulation and evaluation criteria
	4.2 Repository services selection process
	4.3 ADOxx of BOC Information Systems GmbH
	4.3.1 ADOxx – Tool structure
	4.3.1.1 ADOxx – Tool components
	4.3.1.2 ADOxx – General functionalities

	4.3.2 ADOxx – Hierarchy modeling
	4.3.3 ADOxx – Temporal and variant modeling
	4.3.4 ADOxx – Non-rigid typing and principle of identity
	4.3.5 ADOxx – Multi-level modeling
	4.3.6 ADOxx – Life-cycle
	4.3.7 ADOxx – Projects
	4.3.8 ADOxx – Standardization
	4.3.9 ADOxx – Goals
	4.3.10 ADOxx – Role-based access control
	4.3.11 ADOxx – Responsibilities
	4.3.12 ADOxx – Queries
	4.3.13 ADOxx – Information model changes
	4.3.14 ADOxx – Summary of evaluation

	4.4 Tricia of InfoAsset AG
	4.4.1 Tricia – Tool structure
	4.4.1.1 Tricia – Data modeling framework
	4.4.1.2 Tricia – Information Modeling

	4.4.2 Tricia – Hierarchy modeling
	4.4.3 Tricia – Temporal and variant modeling
	4.4.4 Tricia – Non-rigid typing and principle of identity
	4.4.5 Tricia – Multi-level modeling
	4.4.6 Tricia – Life-cycle
	4.4.7 Tricia – Projects
	4.4.8 Tricia – Standardization
	4.4.9 Tricia – Goals
	4.4.10 Tricia – Role-based access control
	4.4.11 Tricia – Responsibilities
	4.4.12 Tricia – Queries
	4.4.13 Tricia – Information model changes
	4.4.14 Tricia – Summary of evaluation

	4.5 Eclipse Modeling Framework of the Eclipse Foundation
	4.5.1 EMF – Tool structure
	4.5.1.1 EMF – Code Generation
	4.5.1.2 EMF – Ecore
	4.5.1.3 EMF – Validation framework

	4.5.2 EMF – Hierarchy modeling
	4.5.3 EMF – Temporal and variant modeling
	4.5.4 EMF – Non-rigid typing and principle of identity
	4.5.5 EMF – Multi-level modeling
	4.5.6 EMF – Life-cycle
	4.5.7 EMF – Projects
	4.5.8 EMF – Standardization
	4.5.9 EMF – Goals
	4.5.10 EMF – Role-based access control
	4.5.11 EMF – Responsibilities
	4.5.12 EMF – Queries
	4.5.13 EMF – Information model changes
	4.5.14 EMF – Summary of evaluation

	4.6 Evaluation - Conclusion

	5 Conclusion and outlook
	Bibliography

