Application of a Domain-Specific Language
to Support the User-Oriented Definition of
Visualizations in the Context of
Collaborative Product Development

Thomas Reschenhofer — Ivan Monahov — Florian Matthes

Chair for Informatics 19 (sebis)

Technische Universitat Miinchen

Boltzmannstr. 3, 85748 Garching bei Miinchen, Germany
reschenh@in.tum.de

ivan.monahov@in.tum.de

matthes@in.tum.de

ABSTRACT: In the domain of Enterprise Architecture Management (EAM), multiple stakeholders
with different responsibilities and backgrounds have to collaborate to achieve different
predefined enterprise-related goals. To enable the definition of stakeholder-specific views onto
the overall Enterprise Architecture (EA), we developed and prototypically implemented a
domain-specific language (DSL) for defining model-based metrics and visualizations as
management decision support in a commercial EAM tool. Since the domain of Collaborative
Product Development (CPD) seemed to be similar to EAM with respect to the involvement of a
diversity of stakeholders and the need for collaboration, we applied our prototype in the CPD
domain by implementing an automated project status analysis and visualization called
SmartNet Navigator as part of the EU research project SmartNets. However, since we faced
several limitations and shortcomings (e.g., missing type checking and insufficient DSL syntax)
during the evaluation of our prototype in the field of EAM, we redesigned the DSL and improved
the prototype to solve the problems. This paper firstly provides an overview of the problems
and improvements of our solution. Afterwards we present the application of our improved
prototype in the domain of CPD by reimplementing the SmartNet Navigator and compare it to
its initial prototype. Finally, we discuss possible benefits by the application of the improved
DSL in the field of CPD and outline the need of further evaluation with experts from the
SmartNet project according to the design science research method.

KEY WORDS: Domain-Specific Language, Enterprise Architecture Management, Collaborative
Product Development, Metric, End-User Development

Enterprise Interoperability: I-ESA'14 Proceedings

2 Proceedings of SmartNets Workshop 2014

1. Introduction

To cope with the continuous evolution of an enterprise’s environment, it has to
align its IT perpetually to the ever-changing business requirements to ensure effective
and efficient IT support for the business. In this context, the Enterprise Architecture
(EA) is defined as “the fundamental and holistic organization of an enterprise
embodied in its components, relations and its environment” (ISO/IEC 42010:2007).
Hence, to facilitate this alignment, enterprise architects have to manage the flexibility,
efficiency and transparency of the EA. The corresponding management discipline is
named Enterprise Architecture Management (EAM) and includes the development,
implementation and control of the EA’s evolution, i.e.,, the evolution of its
components, attributes, and relations (Ahlemann et al. 2012).

However, due to the increasing complexity and the dynamics of today’s enterprise
architectures, qualitative models (e.g., visualizations) are not sufficient for efficient
decision support (Kaisler et al. 2005). Therefore, quantitative models (e.g., metrics
and performance indicators) are used to provide a meaningful and reliable assessment
of an EA. Furthermore, the increasing size and complexity of EAs also implies an
increasing need for adequate tool-support (Handler, Wilson 2012; Buckl et al. 2008),
which also includes support for quantitative models by the EAM tool. Moreover, to
cope with the need for a flexible EA model due to the changing environment and the
need for collaboration support due to a plethora of involved stakeholders (Lucke et al.
2010), the Wiki4EAM approach (Matthes, Neubert 2011) makes use of the model-
based and collaborative EAM tool Tricia. In order to enable the definition of metrics
and thus to equip this EAM tool with quantitative modelling capabilities, we
developed a domain-specific language (DSL) named model-based expression
language 1.0 (MxL 1.0) for the user-oriented definition of metrics at runtime and
integrated it in Tricia (Monahov et al. 2013).

I n 1" 1\ \%
Creation of ideas

Concept development

Prototyping

Sampling

Production and Marketing

Planning

Innovation culture

Framework def. (Concept)

Framework def. (Prototype)

Framework def. (Sample)

Innovation strategy and objectives

IPR protection planning

Project planning (Prototype)

Planning of sourcing

Planning of market introduction
and marketing

Identification of opportunities

Project planning (Concept)

Project planning for sample
development

Planning of production and life-
cycle handling

Execution

Idea generation

Concept elaboration

Prototype elaboration

Sourcing for sampling

Market introduction

Idea formulation

Functional description

Prototype test (u-test)

Process implementation

Continuous marketing

Tech. feasibility

Market study

Business plan

Marketing plan

Protection of IPR

Production of samples

Sample test (p-test)

Continuous production and life-
cycle handling

Control

Screening and first evaluation

Assessment of concept

Technical evaluation

Evaluation of test results

Evaluation of market response

Evaluation of IPR situation

Evaluation of studies

Recommendation of project

Financial assessment (Concept)

Market-oriented evaluation

Evaluation of process reliability

Financial success control

Launch prototyping

Financial assessment (Prototype)

Financial assessment (Sample)

Launch for sampling

Launch for production

Figure 1. A sketch of the SmartNet Navigator.

A DSL for Defining Visualizations in Collaborative Product Development 3

In addition to the DSL’s application in EAM we also applied MxL 1.0 in the
domain of Collaborative Product Development (CPD), since most of the general
conditions of EAM (e.g., involvement of a plethora of stakeholders and collaborative
tasks) also hold for CPD (Hauder et al. 2013). In this context, MxL 1.0 was employed
in the EU project SmartNets by implementing the so-called SmartNet Navigator — a
visualization of the aggregated status of a certain development project (Matheis 2013).
The SmartNet Navigator aggregates the status of individual tasks and meetings to the
status of corresponding activity types, development phases, and in the end to an
overall project status and visualizes it by a certain color-coding.

Figure 1 shows a sketch of the SmartNet Navigator for an exemplary project. The
Navigator’s columns represent development phases, the rows represent management
activity types, and the cells consist of multiple activity types, which in turn are related
to the project’s tasks and meetings. In the concrete example in Figure 1, the first
development phase of the project is finalized (green), the second phase is in progress
(orange), and the remaining phases are still open (grey).

< belongs to is assigned to > ispartof> |

2 Management Activity Type ‘

N . Development Phase ‘
< belongs to * s assigned to > is partof>1 ‘

Figure 2. The SmartNet Navigator’s underlying meta-model

We implemented the SmartNet Navigator in MxL 1.0 based on the meta-model
shown in Figure 2. Hence, users are able to adjust the SmartNet Navigator’s
implementation at runtime, which makes it possible for the users to respond
immediately to certain changes of the environment, e.g., a change of the rule for
aggregating the status of multiple tasks. Figure 3 shows an excerpt of the SmartNet
Navigator’s implementation.

However, the implementation of the SmartNet Navigator in MxL 1.0 suffers from
several drawbacks, which we describe in the next Section.

Custom MxL Function Development Phase::smartnetNavigatorHeaderCell
Parameters dp
Method Stub "<td class='".concat (this.smartnetStatusOfProcessPhase (dp)) .concat ("'>")

’s order as a roman number, followed by

.concat (this '].first () .roman()).concat ("
").concat (this["Name"].first())

.concat ("</td>")

Figure 3. An MxL 1.0 function (Monahov et al. 2013) for the generation of HTML
mark-up as part of the SmartNet Navigator’s implementation. This function generates
an HTML cell whose style is determined by the status of the corresponding process
phase. The content of the cell is defined as the number of the process phase (in roman
number format) followed by a line break and the name of the process phase.

4 Proceedings of SmartNets Workshop 2014

2. Redesign of MxL and reimplementation of the SmartNet Navigator

While we have done the implementation of the SmartNet Navigator with MxL 1.0
(Hauder et al. 2013), the evaluation of MxL 1.0 in the domain of EAM revealed some
weaknesses of the DSL and its implementation in Tricia. The most relevant to our
understanding are:

W1 One of the goals of MxL 1.0 was to keep it minimal regarding its
expressiveness and syntax. Consequently, we waived common language constructs
(e.g., infix-notation for algebraic operators) and implemented them by function calls.
However, this purely functional approach yields to incomprehensible expressions.

W2 Although the syntactic correctness of MxL 1.0 expressions (e.g., bracket
matching) is checked at compile-time, the validation of an MxL 1.0 expression’s static
semantics (Voelter et al. 2013) is not performed at compile-time, but at runtime.

W3 Due to the lack of validation of the static semantics of an MxL 1.0 expression,
these expressions are not analyzable at compile-time. Hence, the dependencies to
MxL functions, attributes, types, etc. are not automatically observable.

W4 Changes of the underlying meta-model (e.g., renaming of attributes) affect the
semantic consistency of all MxL 1.0 expressions referring to the changed elements.

Due to these shortcomings identified in the EAM domain, we redesigned the DSL
and developed an improved version called MxL 2.0 (Reschenhofer 2013). To assess
the added value of MxL 2.0 in the field of CPD, we reimplemented the SmartNet
Navigator with MxL 2.0 to compare it to the initial prototype. Figure 4 shows an
excerpt of the implementation of the SmartNet Navigator in MxL 2.0, while in the
next Section we outline the benefits of the new prototype of the SmartNet Navigator.

Custom MxL Function Development Phase::smartnetNavigatorHeaderCell

Parameters dp: Development Project

Return Type String

Method Stub ~ "<td class='" + smartnetStatus(dp) + "'>"

/* Display the ph
the phase’s na
+ Order.roman() + "
"

order as a roman number, followed by

+ Name

+ "</td>n

Incoming MxL References

Custom Functions

Development Project::smartnetNavigatorHeader

Outgoing MxL References

Custom Functions Property Definitions Types
Development Phase::smartnetStatus Development Phase::Order Development Phase
Number::roman Development Phase::Name

Figure 4. Reimplementation of the SmartNet Navigator in MxL 2.0 (compare to
Figure 3).

A DSL for Defining Visualizations in Collaborative Product Development 5

3. Improvements and evaluation of the reimplemented SmartNet Navigator

In this paper, we elucidate the improvements by comparing an excerpt of the
SmartNet Navigator’s initial prototype (c.f. Figure 3) with a corresponding excerpt of
the reimplemented prototype using MxL 2.0 (c.f. Figure 4). The main features of MxL
2.0 are an improved syntax as well as a type checker component as part of the MxL
compiler (Reschenhofer 2013), leading to the following improvements, whereas each
improvement Ix addresses the corresponding weakness Wx from Section 2:

11 In MxL 2.0, we introduced infix-operators (e.g., plus operator for the string
concatenation) as well as semantic enhancements (e.g., implicit this), so that the
implementation of the improved prototype is more readable.

12 The MxL 2.0 type checker validates the static semantics (\Voelter et al. 2013)
of MxL 2.0 expressions and therefore ensures semantic consistency at compile-time.
For example, based on the expression in Figure 4 this means that the type checker
ensures the existence of the attributes Order and Name. Moreover, the type checker
determines the return type of the expression (e.g., String)

I3 The type checker enables the analysis of expressions, which means the
observation of an MxL 2.0 expression’s dependencies to MxL functions, attributes,
types, etc. We use this expression analysis for generating and maintaining a
computation graph. The nodes of the computation graph are MxL 2.0 expressions as
well as objects these expressions refer to (e.g., attributes and types). Its edges
represent the dependencies between them. For example, Figure 4 shows the Incoming
MxL References (Expressions, which are referring to the current one) as well as the
Outgoing MxL References (Objects, the current expression refers to).

14 By using the computation graph, a tool implementing MxL 2.0 (e.g., Tricia) is
able to propagate changes to those expressions, which are depending on the changing
object. For example, if a user renames the attribute Name to Title, the reference in the
expression of Figure 4 will be updated accordingly and therefore keeps consistency
regarding its static semantics.

4. Summary and conclusion

Since MxL 2.0 leads to significant improvements in the domain of EAM, we
expect also benefits for the field of CPD, because most of the general conditions of
EAM also hold for the domain of CPD. In this paper, we outlined these possible
benefits by comparing the MxL 1.0 implementation of the SmartNet Navigator with
a corresponding MxL 2.0 implementation.

However, to support the claim of achieving significant improvements in CPD,
we still have to conduct further evaluation with experts of the field according to the
design science research method (Hevner et al. 2004) in our future research activities.

6 Proceedings of SmartNets Workshop 2014

5. References

Ahlemann, Frederik; Stettiner, Eric; Messerschmidt, Marcus; Legner, Christine
(2012): Strategic Enterprise Architecture Management: Springer-Verlag.

Buckl, Sabine; Ernst, Alexander M.; Lankes, Josef; Matthes, Florian (2008):
Enterprise Architecture Management Pattern Catalog (Version 1.0, February 2008).
Chair for Informatics 19 (sebis), Technische Universitdt Miinchen. Munich,
Germany. Available online at http://eampc-wiki.systemcartography.info/.

Handler, Robert A.; Wilson, Chris (2012): Magic Quadrant for Enterprise
Architecture Tools.

Hauder, Matheus; Roth, Sascha; Matthes, Florian; Lau, Armin; Matheis, Heiko
(2013): Supporting collaborative product development through automated
interpretation of artifacts. In 3rd International Symposium on Business Modeling
and Software Design.

Hevner, Alan R.; March, Salvatore T.; Park, Jinsoo; Ram, Sudha (2004): Design
science in information systems research. In MIS quarterly 28 (1), pp. 75-105.

ISO/IEC 42010:2007 Systems and software engineering - Recommended practice
for architectural description of software-intensive systems.

Kaisler, Stephen H.; Armour, Frank; Valivullah, Michael (2005): Enterprise
Architecting: Critical Problems. In Proceedings of the 38th Annual Hawaii
International Conference on System Sciences.

Lucke, C.; Krell, S.; Lechner, U. (2010): Critical Issues in Enterprise Architecting -
A Literature Review. In Proceedings of the Sixteenth Americas Conference on
Information Systems.

Matheis, Heiko (2013): SmartNet Navigator and application guidelines. In Sehenth
Framework Programme.

Matthes, Florian; Neubert, Christian (2011): Wiki4EAM - Using Hybrid Wikis for
Enterprise Architecture Management. In 7th International Symposium on Wikis and
Open Collaboration (WikiSym).

Monahov, lvan; Reschenhofer, Thomas; Matthes, Florian (2013): Design and
prototypical implementation of a language empowering business users to define Key
Performance Indicators for Enterprise Architecture Management. In Trends in
Enterprise Architecture Research Workshop.

Reschenhofer, Thomas (2013): Design and prototypical implementation of a model-
based structure for the definition and calculation of Enterprise Architecture Key
Performance Indicators. Master’s Thesis. Technische Universitdt Miinchen.

Voelter, Markus; Benz, Sebastian; Dietrich, Christian; Engelmann, Birgit; Helander,
Mats; Kats, Lennart C. L. et al. (2013): DSL Engineering-Designing, Implementing
and Using Domain-Specific Languages: dslbook. org.

