

Enterprise Interoperability: I-ESA'14 Proceedings

Application of a Domain-Specific Language
to Support the User-Oriented Definition of
Visualizations in the Context of
Collaborative Product Development

Thomas Reschenhofer — Ivan Monahov — Florian Matthes

Chair for Informatics 19 (sebis)

Technische Universität München

Boltzmannstr. 3, 85748 Garching bei München, Germany

reschenh@in.tum.de

ivan.monahov@in.tum.de

matthes@in.tum.de

ABSTRACT: In the domain of Enterprise Architecture Management (EAM), multiple stakeholders

with different responsibilities and backgrounds have to collaborate to achieve different

predefined enterprise-related goals. To enable the definition of stakeholder-specific views onto

the overall Enterprise Architecture (EA), we developed and prototypically implemented a

domain-specific language (DSL) for defining model-based metrics and visualizations as

management decision support in a commercial EAM tool. Since the domain of Collaborative

Product Development (CPD) seemed to be similar to EAM with respect to the involvement of a

diversity of stakeholders and the need for collaboration, we applied our prototype in the CPD

domain by implementing an automated project status analysis and visualization called

SmartNet Navigator as part of the EU research project SmartNets. However, since we faced

several limitations and shortcomings (e.g., missing type checking and insufficient DSL syntax)

during the evaluation of our prototype in the field of EAM, we redesigned the DSL and improved

the prototype to solve the problems. This paper firstly provides an overview of the problems

and improvements of our solution. Afterwards we present the application of our improved

prototype in the domain of CPD by reimplementing the SmartNet Navigator and compare it to

its initial prototype. Finally, we discuss possible benefits by the application of the improved

DSL in the field of CPD and outline the need of further evaluation with experts from the

SmartNet project according to the design science research method.

KEY WORDS: Domain-Specific Language, Enterprise Architecture Management, Collaborative

Product Development, Metric, End-User Development

2 Proceedings of SmartNets Workshop 2014

1. Introduction

To cope with the continuous evolution of an enterprise’s environment, it has to

align its IT perpetually to the ever-changing business requirements to ensure effective

and efficient IT support for the business. In this context, the Enterprise Architecture

(EA) is defined as “the fundamental and holistic organization of an enterprise

embodied in its components, relations and its environment” (ISO/IEC 42010:2007).

Hence, to facilitate this alignment, enterprise architects have to manage the flexibility,

efficiency and transparency of the EA. The corresponding management discipline is

named Enterprise Architecture Management (EAM) and includes the development,

implementation and control of the EA’s evolution, i.e., the evolution of its

components, attributes, and relations (Ahlemann et al. 2012).

However, due to the increasing complexity and the dynamics of today’s enterprise

architectures, qualitative models (e.g., visualizations) are not sufficient for efficient

decision support (Kaisler et al. 2005). Therefore, quantitative models (e.g., metrics

and performance indicators) are used to provide a meaningful and reliable assessment

of an EA. Furthermore, the increasing size and complexity of EAs also implies an

increasing need for adequate tool-support (Handler, Wilson 2012; Buckl et al. 2008),

which also includes support for quantitative models by the EAM tool. Moreover, to

cope with the need for a flexible EA model due to the changing environment and the

need for collaboration support due to a plethora of involved stakeholders (Lucke et al.

2010), the Wiki4EAM approach (Matthes, Neubert 2011) makes use of the model-

based and collaborative EAM tool Tricia. In order to enable the definition of metrics

and thus to equip this EAM tool with quantitative modelling capabilities, we

developed a domain-specific language (DSL) named model-based expression

language 1.0 (MxL 1.0) for the user-oriented definition of metrics at runtime and

integrated it in Tricia (Monahov et al. 2013).

Figure 1. A sketch of the SmartNet Navigator.

I

Creation of ideas

II

Concept development

III

Prototyping

IV

Sampling

V

Production and Marketing

Planning

Execution

Control

Innovation culture

Innovation strategy and objectives

Identification of opportunities

Framework def. (Concept)

IPR protection planning

Project planning (Concept)

Framework def. (Prototype)

Project planning (Prototype)

Framework def. (Sample)

Planning of sourcing

Project planning for sample

development

Planning of market introduction

and marketing

Planning of production and life-

cycle handling

Idea generation

Idea formulation

Concept elaboration

Functional description

Tech. feasibility

Market study

Business plan

Marketing plan

Protection of IPR

Prototype elaboration

Prototype test (α-test)

Sourcing for sampling

Process implementation

Production of samples

Sample test (β-test)

Market introduction

Continuous marketing

Continuous production and life-

cycle handling

Screening and first evaluation

Evaluation of IPR situation

Recommendation of project

Assessment of concept

Evaluation of studies

Financial assessment (Concept)

Launch prototyping

Technical evaluation

Market-oriented evaluation

Financial assessment (Prototype)

Launch for sampling

Evaluation of test results

Evaluation of process reliability

Financial assessment (Sample)

Launch for production

Evaluation of market response

Financial success control

A DSL for Defining Visualizations in Collaborative Product Development 3

In addition to the DSL’s application in EAM we also applied MxL 1.0 in the

domain of Collaborative Product Development (CPD), since most of the general

conditions of EAM (e.g., involvement of a plethora of stakeholders and collaborative

tasks) also hold for CPD (Hauder et al. 2013). In this context, MxL 1.0 was employed

in the EU project SmartNets by implementing the so-called SmartNet Navigator – a

visualization of the aggregated status of a certain development project (Matheis 2013).

The SmartNet Navigator aggregates the status of individual tasks and meetings to the

status of corresponding activity types, development phases, and in the end to an

overall project status and visualizes it by a certain color-coding.

Figure 1 shows a sketch of the SmartNet Navigator for an exemplary project. The

Navigator’s columns represent development phases, the rows represent management

activity types, and the cells consist of multiple activity types, which in turn are related

to the project’s tasks and meetings. In the concrete example in Figure 1, the first

development phase of the project is finalized (green), the second phase is in progress

(orange), and the remaining phases are still open (grey).

Figure 2. The SmartNet Navigator’s underlying meta-model

We implemented the SmartNet Navigator in MxL 1.0 based on the meta-model

shown in Figure 2. Hence, users are able to adjust the SmartNet Navigator’s

implementation at runtime, which makes it possible for the users to respond

immediately to certain changes of the environment, e.g., a change of the rule for

aggregating the status of multiple tasks. Figure 3 shows an excerpt of the SmartNet

Navigator’s implementation.

However, the implementation of the SmartNet Navigator in MxL 1.0 suffers from

several drawbacks, which we describe in the next Section.

Figure 3. An MxL 1.0 function (Monahov et al. 2013) for the generation of HTML

mark-up as part of the SmartNet Navigator’s implementation. This function generates

an HTML cell whose style is determined by the status of the corresponding process

phase. The content of the cell is defined as the number of the process phase (in roman

number format) followed by a line break and the name of the process phase.

Custom MxL Function Development Phase::smartnetNavigatorHeaderCell

Parameters dp

Method Stub "<td class='".concat(this.smartnetStatusOfProcessPhase(dp)).concat("'>")

/* Display the phase’s order as a roman number, followed by

the phase’s name */

.concat(this["Order"].first().roman()).concat("
").concat(this["Name"].first())

.concat("</td>")

Development Project

Management Activity Type

Development Phase

*

< belongs to

*

Activity Type

*

*

< belongs to

*

*

*

* is assigned to >

is assigned to > is part of >

is part of >

1

1

*

*

Meeting

Task

4 Proceedings of SmartNets Workshop 2014

2. Redesign of MxL and reimplementation of the SmartNet Navigator

While we have done the implementation of the SmartNet Navigator with MxL 1.0

(Hauder et al. 2013), the evaluation of MxL 1.0 in the domain of EAM revealed some

weaknesses of the DSL and its implementation in Tricia. The most relevant to our

understanding are:

W1 One of the goals of MxL 1.0 was to keep it minimal regarding its

expressiveness and syntax. Consequently, we waived common language constructs

(e.g., infix-notation for algebraic operators) and implemented them by function calls.

However, this purely functional approach yields to incomprehensible expressions.

W2 Although the syntactic correctness of MxL 1.0 expressions (e.g., bracket

matching) is checked at compile-time, the validation of an MxL 1.0 expression’s static

semantics (Voelter et al. 2013) is not performed at compile-time, but at runtime.

W3 Due to the lack of validation of the static semantics of an MxL 1.0 expression,

these expressions are not analyzable at compile-time. Hence, the dependencies to

MxL functions, attributes, types, etc. are not automatically observable.

W4 Changes of the underlying meta-model (e.g., renaming of attributes) affect the

semantic consistency of all MxL 1.0 expressions referring to the changed elements.

Due to these shortcomings identified in the EAM domain, we redesigned the DSL

and developed an improved version called MxL 2.0 (Reschenhofer 2013). To assess

the added value of MxL 2.0 in the field of CPD, we reimplemented the SmartNet

Navigator with MxL 2.0 to compare it to the initial prototype. Figure 4 shows an

excerpt of the implementation of the SmartNet Navigator in MxL 2.0, while in the

next Section we outline the benefits of the new prototype of the SmartNet Navigator.

Figure 4. Reimplementation of the SmartNet Navigator in MxL 2.0 (compare to

Figure 3).

TypesCustom Functions Property Definitions

Custom MxL Function Development Phase::smartnetNavigatorHeaderCell

Parameters dp: Development Project

Return Type String

Method Stub "<td class='" + smartnetStatus(dp) + "'>"

/* Display the phase’s order as a roman number, followed by

the phase’s name */

+ Order.roman() + "
" + Name

+ "</td>"

Outgoing MxL References

Development Phase::smartnetStatus Development Phase::Order Development Phase

Number::roman Development Phase::Name

Custom Functions

Incoming MxL References

Development Project::smartnetNavigatorHeader

A DSL for Defining Visualizations in Collaborative Product Development 5

3. Improvements and evaluation of the reimplemented SmartNet Navigator

In this paper, we elucidate the improvements by comparing an excerpt of the

SmartNet Navigator’s initial prototype (c.f. Figure 3) with a corresponding excerpt of

the reimplemented prototype using MxL 2.0 (c.f. Figure 4). The main features of MxL

2.0 are an improved syntax as well as a type checker component as part of the MxL

compiler (Reschenhofer 2013), leading to the following improvements, whereas each

improvement Ix addresses the corresponding weakness Wx from Section 2:

I1 In MxL 2.0, we introduced infix-operators (e.g., plus operator for the string

concatenation) as well as semantic enhancements (e.g., implicit this), so that the

implementation of the improved prototype is more readable.

I2 The MxL 2.0 type checker validates the static semantics (Voelter et al. 2013)

of MxL 2.0 expressions and therefore ensures semantic consistency at compile-time.

For example, based on the expression in Figure 4 this means that the type checker

ensures the existence of the attributes Order and Name. Moreover, the type checker

determines the return type of the expression (e.g., String)

I3 The type checker enables the analysis of expressions, which means the

observation of an MxL 2.0 expression’s dependencies to MxL functions, attributes,

types, etc. We use this expression analysis for generating and maintaining a

computation graph. The nodes of the computation graph are MxL 2.0 expressions as

well as objects these expressions refer to (e.g., attributes and types). Its edges

represent the dependencies between them. For example, Figure 4 shows the Incoming

MxL References (Expressions, which are referring to the current one) as well as the

Outgoing MxL References (Objects, the current expression refers to).

I4 By using the computation graph, a tool implementing MxL 2.0 (e.g., Tricia) is

able to propagate changes to those expressions, which are depending on the changing

object. For example, if a user renames the attribute Name to Title, the reference in the

expression of Figure 4 will be updated accordingly and therefore keeps consistency

regarding its static semantics.

4. Summary and conclusion

Since MxL 2.0 leads to significant improvements in the domain of EAM, we

expect also benefits for the field of CPD, because most of the general conditions of

EAM also hold for the domain of CPD. In this paper, we outlined these possible

benefits by comparing the MxL 1.0 implementation of the SmartNet Navigator with

a corresponding MxL 2.0 implementation.

However, to support the claim of achieving significant improvements in CPD,

we still have to conduct further evaluation with experts of the field according to the

design science research method (Hevner et al. 2004) in our future research activities.

6 Proceedings of SmartNets Workshop 2014

5. References

Ahlemann, Frederik; Stettiner, Eric; Messerschmidt, Marcus; Legner, Christine

(2012): Strategic Enterprise Architecture Management: Springer-Verlag.

Buckl, Sabine; Ernst, Alexander M.; Lankes, Josef; Matthes, Florian (2008):

Enterprise Architecture Management Pattern Catalog (Version 1.0, February 2008).

Chair for Informatics 19 (sebis), Technische Universität München. Munich,

Germany. Available online at http://eampc-wiki.systemcartography.info/.

Handler, Robert A.; Wilson, Chris (2012): Magic Quadrant for Enterprise

Architecture Tools.

Hauder, Matheus; Roth, Sascha; Matthes, Florian; Lau, Armin; Matheis, Heiko

(2013): Supporting collaborative product development through automated

interpretation of artifacts. In 3rd International Symposium on Business Modeling

and Software Design.

Hevner, Alan R.; March, Salvatore T.; Park, Jinsoo; Ram, Sudha (2004): Design

science in information systems research. In MIS quarterly 28 (1), pp. 75–105.

ISO/IEC 42010:2007 Systems and software engineering ‐ Recommended practice

for architectural description of software-intensive systems.

Kaisler, Stephen H.; Armour, Frank; Valivullah, Michael (2005): Enterprise

Architecting: Critical Problems. In Proceedings of the 38th Annual Hawaii

International Conference on System Sciences.

Lucke, C.; Krell, S.; Lechner, U. (2010): Critical Issues in Enterprise Architecting -

A Literature Review. In Proceedings of the Sixteenth Americas Conference on

Information Systems.

Matheis, Heiko (2013): SmartNet Navigator and application guidelines. In Sehenth

Framework Programme.

Matthes, Florian; Neubert, Christian (2011): Wiki4EAM - Using Hybrid Wikis for

Enterprise Architecture Management. In 7th International Symposium on Wikis and

Open Collaboration (WikiSym).

Monahov, Ivan; Reschenhofer, Thomas; Matthes, Florian (2013): Design and

prototypical implementation of a language empowering business users to define Key

Performance Indicators for Enterprise Architecture Management. In Trends in

Enterprise Architecture Research Workshop.

Reschenhofer, Thomas (2013): Design and prototypical implementation of a model-

based structure for the definition and calculation of Enterprise Architecture Key

Performance Indicators. Master’s Thesis. Technische Universität München.

Voelter, Markus; Benz, Sebastian; Dietrich, Christian; Engelmann, Birgit; Helander,

Mats; Kats, Lennart C. L. et al. (2013): DSL Engineering-Designing, Implementing

and Using Domain-Specific Languages: dslbook. org.

