
Columbus: A Tool for Discovering User Interface Models in
Component-based Web Applications

Adrian Hernandez-Mendez, Andreas Tielitz and Forian Matthes
Software Engineering for Business Information Systems, Department of Informatics, Technische Universität München,

München, Germany
{adrian.hernandez, andreas.tielitz, matthes}@tum.de

Keywords: Component-based Web Applications, Model-based User Interfaces, UIML, Model Discovering.

Abstract: The processes of replacing, maintaining or adapting the existing User Interfaces in Component-based Web
Applications to new conditions requires a significative amount of efforts and resources for coordinating their
different stakeholders. Additionally, there are many design alternatives, which can vary according to the con-
text of use. Therefore, understanding the structure and composition of UIs and their contained elements can
provide valuable insights for future adaptations. In this paper, we present a tool for discovering UI models in
the source code of Component-based Web Applications, which could be used to support the reverse engineer-
ing process. Subsequently, we evaluated its capabilities of User Interface model extractions using open-source
project TodoMVC. The evaluation process shows the main limitations of the JavaScript frameworks for creat-
ing an abstract UI model (i.e. technology independent model) for Web Applications.

1 INTRODUCTION

Web Applications have become ubiquitous. They are
an essential element of any modern service, and ex-
amples are found in online shops or booking systems.
Therefore, different users and stakeholders demand
continuous improvements of them that can be adapted
to the natural changes in Web technologies. How-
ever, these demands put the developers to face diverse
challenges during the development and maintenance
of Web Applications.

One of the modern architectures used in the devel-
opment of Web Applications is the Single-Page Ap-
plications (SPA). This architecture divides Web Ap-
plications into two main components: User Interface
(UI) and Server component. The Server component
which remains constant across multiple environments
is most supported and understood due to the extensive
research in the field of service-oriented architecture.
However, there is no dominant technology for creat-
ing the UI component, contrariwise there are many al-
ternatives, which can vary according to the context of
use. Therefore, understanding the structure and com-
position of UIs and their contained elements can pro-
vide valuable insights for future adaptations.

In this paper, we propose a tool, called Columbus,
for discovering UI models in Component-based Web
Applications. The design and development of Colum-

bus is based on the first iteration of the Hevner’s three
cycle view of the design science research framework
(Hevner, 2007). The three cycles within this research
framework correspond to:

• Relevance cycle: We establish the need for an-
alyzing the most popular open-source JavaScript
Libraries in Github (e.g. AngularJS, PolymerJS,
and ReactJS).

• Design cycle: We present the platform and its ar-
chitecture design process as a research artifact.

• Rigor cycle: We evaluate the capabilities of the
existing UI modeling languages to describe Web
User Interfaces, and establish a small contribution
of our research findings to the model-based User
Interface knowledge base.

The remainder of this paper is organized as fol-
lows: In Section 2 we discuss the use of declara-
tive UI models and describe UI Modelling Language
(UIML). In Section 3, the model discovered process is
presented. The architecture of Columbus is discussed
in Section 4 and it is evaluated in Section 5. In Section
6, we present the related work and finally conclude
with Section 7.



2 USER INTERFACE MODELS

Declarative UI models were introduced to reduce rep-
etition in developing User Interfaces. By explicitly
defining the UI’s information in an abstract model,
concrete UI implementations can be generated. Over
the time, many different declarative UI modeling for-
malisms have emerged for various purposes. For
example, companies like Microsoft introduced the
language Extensible Application Markup Language
(XAML1) and Oracle the XML-based User Inter-
face markup language (FXML2). These languages
allow the developers to model the static parts (e.g.
structure) of the UI and complementing the devel-
opment of the dynamic components using C# and
Java, respectively. Additionally, in the academic
and standardization environment formalisms such the
User Interface Modelling Language (UIML)(OASIS,
2008), the User Interface eXtensible Markup Lan-
guage (UsiXML)(Limbourg et al., 2004) and the Web
Modelling Language (WebML) (Ceri et al., 2000).
Unlike the formalisms created at the industry context,
the formers allow modeling of UI independently from
any technology or platform. These models them-
selves rely on predefined sets of elements which can
be displayed, connected, and reused in whichever way
is necessary for the desired UI. Different groups of el-
ements can also be split up into distinctive sets with
similar functionalities or goals. We choose UIML as a
reference model for discovering the UI models in the
existing Component-based Web Applications.

2.1 UIML

The UIML describes any User Interface using a
canonical User Interface model (Abrams et al., 1999).
The composition of the User Interface is defined as a
collection of interface elements which can be used in-
dependently in different environments, including the
web technologies.

UIML establishes a clear separation of concerns in
the UI models, with four sections as shown in Figure
1.

The structure section specifies how the template
of the interface looks and which parts are visible at
a given moment. The child elements of a structure
are composed of parts which represent individual ele-
ments or can contain nested interfaces.

The content holds multiple versions of the dis-
played information in different languages. This sec-
tion is used for internationalization and separation of
language specific information.

1https://tinyurl.com/7wzsufu
2https://tinyurl.com/j4cnysx

Interface

Behaviour

Style

Content

Structure

Figure 1: Separation of concerns in UIML.

The style contains a list of all properties of the
interface. It holds information regarding the styling
of the template, the association of content elements to
their respective parts, or variables that are shared with
other interfaces.

The behavior describes the user interactions with
the particular interface. Interactions like button clicks
or form submits are declared here. Additionally, the
behavior also contains entries for internal method in-
vocations that occur in the User Interface.

2.2 Simplification of UIML

The focus of UIML lies on supporting and describ-
ing a wide variety of interfaces. Reused elements are
redefined – rather than referenced – for each occur-
rence. Due to those limitations, a more streamlined
and simplified adaptation of the standard was required
to properly express modern web-based User Inter-
faces. Support for representations of non-browser
based visualizations was omitted from the model.

Instead of referring to interfaces, the more fit-
ting term component was used instead, which is de-
scribed by a structure, behavior, content and style sec-
tion. The parts in the structure of UIML were supple-
mented with a Reference entity, which can point to
another component of the User Interface.

Properties are used to model the content in
the User Interface, as well as all attributes of the
JavaScript components. The content is ignored in this
case because the model discovery process cannot dis-
tinguish between different language sets.

The behavior remains unchanged and still con-
tains all user interactions. However, the life cycle
methods of a JavaScript components are part of the
model and they are described in the behavior.



3 MODEL DISCOVERY PROCESS

The proposed model discovery process in Columbus
converts the source code of a web application into a
corresponding view model. The process itself is di-
vided into three steps: Semantic analysis, informa-
tion extraction, and model generation. This division
is based on a fundamental architecture of reverse en-
gineering tools (Chikofsky and Cross, 1990). The in-
and outputs of each step are shown in Figure 2.

Extraction process

Semantic analyser

Information

extraction

Model generation

View model

Code

Information base

AST

Figure 2: Extraction process implemented in Columbus.

The application source code is automatically re-
trieved from a GitHub repository. The optional com-
mit hash and a regular expression can be supplied to
filter the retrieved source code.

3.1 Semantic Analyser

During the semantic analysis, a syntactical parser is
applied to the supplied source code and transforms
it into an abstract syntax tree. Relevant information
for the view model generation is encoded in the tree
nodes and can be accessed in a structured way.

In addition to the syntactical parser, pre- and post-
processing steps, as shown in Figure 3, allow alter-
ations to the in- and output.

As part of the pre-processing step, template ex-
pressions, like JSX, are translated into JavaScript
code before the syntactical analyzer processes the in-
put.

Differences in declarations of JavaScript source
code are unified by using a JavaScript compiler. Dif-

ferent syntax constructs with the same semantics are
enriched with additional information to align the pos-
sible input scope.

Pre-processing

Syntactical Parser

Post-processing

Unified Code

Complete AST

Figure 3: Workflow of the semantic analyser with in- and
outputs.

3.2 Information Extraction

The information extraction receives the abstract syn-
tax tree (AST) generated in the previous step as an
input. The step is designed as a rule-based system
as shown in Figure 4. Each rule is specialized in in-
dependently extracting a certain piece of information
from the AST and storing any retrieved information
under a unique identifier in the information base.

Dispatcher

Rule 1

...

Rule n

Information Base

Store

Figure 4: Rule-based system for information extraction.

A typical rule initially queries the abstract syntax
tree for a certain pattern. The pattern corresponds to a
certain structure in the tree, and the query returns the
parent nodes of the matches. The contained informa-
tion in the returned subtrees can be extracted either by
further elimination or flattening of the nodes and their
children.

3.3 Model Generation

The model generation operates on the aggregated set
of information in the information base. The view



model is constructed by selectively retrieving and pro-
cessing one or more sets of information and mapping
them to the entities in the model.

4 ARCHITECTURE

Columbus is an AngularJS web application which im-
plements the previously described extraction process.
The implementation of the process is shown in Figure
5. The content of the GitHub repository is retrieved,
and the first two steps of the extraction process are
performed on each file. During each iteration, addi-
tional information is added to the information base.
The model generation uses the aggregated informa-
tion to create the model.

Extraction Process
Repository content

<<structured>>

Loop

Next file

Semantic analyser

Information extraction

Information base

Model generation

Figure 5: Extraction process implemented in Columbus.

The architecture of Columbus is centred around
the main controller AppCtrl as shown in Figure 6. The
controller directs the program flow and is responsible
for displaying the output generated by each extraction
step in the user interface. Responsibilities are divided
up into the respective parts of the extraction process.

The semantic analyser classes translate the fetched
source code from GitHub into an abstract syntax
tree. Each subclass of Ast implements helper methods
to provide easier access to framework specific con-
structs. The library ESQuery is used to extract infor-
mation from the tree.

The information extraction is implemented as a
rule-based system with each rule extending the Ab-
stractExtractor. Every rule must be registered in the
SharedModelExtractor.

Model generation is implemented in the Abstract-
ModelGenerator, which stores information from the
information base in the corresponding Component-
Model.

The application uses the external libraries Es-
prima3 and Babel4 to transform and compile the
source code. The library ESQuery5 is used to query
the abstract syntax tree generated by Esprima.

5 EVALUATION

The TodoMVC project6 provides an example imple-
mentations for a simple ToDo manager. The project
contains a TodoMVC application, which is imple-
mented in multiple JavaScript frameworks and li-
braries. We evaluated Columbus by comparing the
model extraction process with available implemen-
tations of the TodoMVC for React, AngularJS, and
Polymer.

The TodoMVC is a Web Application which can
be used to manage tasks. The tasks are stored in a
remote database or the local storage of the browser.
The architecture of TodoMVC is composed of multi-
ple components. The components used to build the in-
terface differ between each implementation, but they
all share the design aspect of having two main com-
ponents: TodoApp and TodoItem, shown in Figure 7,
although their naming differs between implementa-
tions. However, the HTML structure is similar the
selected frameworks.

Initially, we analyzed each implementation and
refactored the existing code. The implementation for
React7 could be used without any alterations since
the source files contain pure JavaScript in conjunc-
tion with JSX template syntax. The Polymer8 and
AngularJS9 implementations had to be stripped of all
non-JavaScript content first. The AngularJS imple-
mentation was additionally refactored and migrated
to a component-based web application.

The evaluation of Columbus follows with the cre-
ation of two UI models. The first model was gener-
ated manually and the second, using the tool itself.

3http://esprima.org/
4https://babeljs.io/
5https://github.com/estools/esquery
6http://todomvc.com/
7https://git.io/vykNG
8https://git.io/vykNZ
9https://git.io/vykNc



Columbus

Semantic analyser
Information extraction

AppCtr l

AstParser

As tJsxParser

ReactAst

Model generation

SharedModelExtractorCha...

AbstractExtractor

AbstractModelGenerator

ComponentModelContainer

ComponentModel

GitHubEndpoint

PolymerAst

AngularAst

0..*

0..*

< < u s e > >
< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

< < u s e > >

Figure 6: Architecture of Columbus.

Figure 7: Component composition of TodoMVCs user in-
terface.

Both models were compared and their deviations re-
garding structure, style and behavior were analyzed in
each implementation. The results are summarized in
the Table 1 and described in details in the following
subsections.

Table 1: Evaluation of correctly extracted entities of the
TodoMVC application with Columbus.

React Polymer Angular
Structure 84% 0% 0%
Style 88% 55% 50%
Behaviour 100% 11% 0%
Life cycle 100% 100% 100%

5.1 AngularJS

Without the possibility to analyze the template, the
extraction process could not extract most of the prop-
erties and any behavioral rules. AngularJS relies
heavily on annotations on template tags to define
custom event listeners who cannot be processed by
Columbus.

5.1.1 Limitations Identified in the Structure
Element

Unable to Process the Template.
The proprietary template syntax of AngularJS is not



supported by Columbus, which means that all infor-
mation from the template was unavailable to the ex-
traction process.

5.1.2 Limitations Identified in the Style Element

Missing Properties.
Without the template, any property defined in the
DOM is inevitably lost to the view model generation.
This is critical to ordinary text fragments in HTML
elements since these are not defined anywhere inside
the component definition.

Property Usage without Declaration.
Columbus requires the component to list all prop-
erties in either the bindings section or as a variable
declaration in the constructor function. If properties
are used without declaration, Columbus attempts to
detect them by tracking this context in conjunction
with variable usage, but it cannot guarantee that all
variables are detected.

Function Properties.
Some of the properties are functions which are passed
down from parent components. Currently, the view
model does not differentiate between a property
which is an attribute or a function. It is necessary to
alter the model to correctly reflect the different prop-
erties.

5.1.3 Limitations Identified in the Behavior
Element

Rules from Missing Parts.
Without the template, any behavioral rules defined in
the DOM are inevitably lost.

5.2 ReactJS

The possibility to analyze the template in React re-
sulted in a high extraction rate of properties and be-
havioral rules. The missing and incorrect entries are
mostly due to the misinterpreted part constructs which
are not supported by Columbus.

5.2.1 Limitations Identified in the Structure
Element

Multiple Return Statements in Render Function.
Columbus uses static code analysis to extract in-
formation and is not capable of determining which
return statement should be evaluated. Due to this
limitation, the last return statement of the render
function is used per default. All template parts that
are not declared in the last return statement are not

part of the view model.

Building the DOM Piece by Piece with Variables.
If part of the DOM is built beforehand and printed out
as a variable in the final return statement, Columbus
cannot extract the information contained in the
variable. The complete DOM must be constructed
inside the last return statement of the render function.

Misinterpreted References / Missing Parts.
Columbus traverses through the template structure
and tries to identify the nodes visited. Depending
on the type of node, different subsequent actions are
taken, like differentiating between an HTML element
and a component or determining if the current node
contains any children. If the tool encounters an unex-
pected construct, like a variable output which contains
further template tags, the traversal can not determine
how to proceed. The fallback routine for these cases
replaces unknown constructs with an empty part en-
tity. No further traversal of children is possible for
these misinterpreted nodes.

5.2.2 Limitations Identified in the Style Element

Property Usage without Declaration.
Columbus requires the component to list all proper-
ties in the propTypes section. If a property is used
without a preceding declaration, Columbus attempts
to detect it by tracking this context in conjunction
with variable usage. Special objects like this.props
and this.state simplify the search process to some de-
gree. Variables that start with one of these constructs
can always be treated as component properties. The
properties detection is currently limited to the render
statement which means that some properties might
not be detected.

Properties from Missing Parts.
If a property was never used in the JavaScript part of
the component, the detection is limited to all parts
of the template detected during the corresponding
extraction process. If a part was not correctly pro-
cessed by the template extraction rule, any property
is inevitably lost, and therefore unavailable during
the view model generation.

Detecting Default Values.
Columbus can only detect simple default values as
long as they are declared in the propTypes and get-
DefaultProps section of the component. More sophis-
ticated values, like the output of a function or as-
signments of global variables, are not detected. In
these cases, the default value of the property remained
blank.



5.2.3 Limitations Identified in the Behavior
Element

Rules from Missing Parts.
Columbus is only capable of extracting behavior rules
which are either declared in the JavaScript configura-
tion or the template. The extraction of the behavior is
not limited to a specific return statement in the render
function, but instead, tries to capture all usages. If the
corresponding source part was not extracted due to
the limitations listed before, the source id of the be-
havior event does not point to a valid part of the view
model. Nonetheless, each rule contains a unique part
id which hints at an existing behavior.

5.3 PolymerJS

Without the possibility to analyze the template, the
extraction process could not extract most of the prop-
erties and behavioral rules. Only two of the behavior
rules were defined according to the conventions for
Polymer application required by Columbus.

5.3.1 Limitations Identified in the Structure
Element

Unable to Parse the Template.
The proprietary template syntax of Polymer is not
supported by Columbus, which means that all infor-
mation from the template was unavailable to the ex-
traction process.

5.3.2 Limitations Identified in the Style Element

Missing Properties.
Without the template, any property defined in the
DOM is inevitably lost to the view model generation.
This is critical to ordinary text fragments in HTML
elements since these are not defined anywhere inside
the component definition.

Property Usage without Declaration.
Columbus requires the component to list all properties
in the properties section. If properties are used with-
out declaration, Columbus attempts to detect them by
tracking this context in conjunction with a variable
usage, but it cannot guarantee that all variables are
detected.

5.3.3 Limitations Identified in the Behavior
Element

Rules from Missing Parts.
Without the template, any behavioral rules defined in
the DOM are inevitably lost. The requirements for

view model extraction of Polymer projects requires
the usage of the listener’s section to define event lis-
teners.

6 RELATED WORK

Considerable research has been conducted in the do-
main of reverse engineering of Web Applications.
However, the permanent changes in the technologies,
frameworks, tools and architectures in their domain
makes very challenging the comparison process of
Columbus with existing tools. However, we describe
selective relevant research in the domain which can be
either source of evaluation or inspiration for Colum-
bus.

Di Lucca et al. introduced their WARE tool
which allows users to visualize user interfaces in con-
junction with the frontend and backend architecture
(Di Lucca et al., 2002). However, the details of the
extraction process are not described deathly, yet they
state that the source code is transformed into an ab-
stract representation. Their tool is capable of extract-
ing the user interface of a web application and pro-
vide visualizations for structure and page flow. The
reverse engineering was focused on providing post-
development documentation in the form of UML dia-
grams. We encounter the main differences with our
approach in the UI model definition, which makes
challenging the incorporation of all functionality that
can be found in modern JavaScript frameworks.

Laurent Bouillon compares different reverse en-
gineering tools and also introduces approaches to re-
verse engineer HTML documents (Bouillon, 2006).
He proposes a translation of HTML elements into an
extensible user interface markup model to gather an
abstract representation of the user interface. The tools
listed in the dissertation use static reverse engineering
to translate HTML files into the defined markup lan-
guage. The process itself shares certain similarities,
like transforming the input into a more accessible data
structure, like a tree or in that case, as an XML doc-
ument. Rules are used to extract relevant information
from a knowledge base. The research itself is limited
to plain HTML documents, without any JavaScript in-
tegration. Columbus’ focus lies on reverse engineer-
ing JavaScript components, which most of the time
contain templates with HTML.

Morgado et al. elaborate on different reverse en-
gineering approaches to reduce the necessity of cre-
ating view models for testing purposes. They dis-
cuss rationales for static and dynamic reverse engi-
neering and introduce their tool called ReGUI (Mor-
gado et al., 2011). However, the approach using in



this paper differs in the targeted environment and the
used process of extracting information. ReGUI uses
dynamic reverse engineering with try-and-error inter-
actions to obtain a graph of the different windows of a
user interface. Columbus tries to create a view model
of JavaScript components and their templates through
static reverse engineering. This work is extended with
the use of Machine Learning tools in (Morgado et al.,
2012), which is a relevant aspect to consider in further
research on using Columbus.

An interesting framework is proposed by Carlos
Eduardo Silva in his Ph.D. thesis (e Marques da Silva,
2015), which is capable of analyzing existing Web
Applications and generate the structure and behavior
models from them. This approach differs from the
approach used in Columbus because the inspections
are realized on the running applications instead to the
source code of the application.

7 CONCLUSIONS

In this paper, we present a tool for discovering UI
models in the source code of Component-based Web
Applications, which could be used to support the re-
verse engineering process. Subsequently, we evalu-
ated its capabilities of User Interface model extrac-
tions using open-source project TodoMVC. The eval-
uation process shows the main limitations of the tools
for creating an abstract UI model from the modern
JavaScript frameworks (i.e. technology independent
model) in Web Applications.

We plan to extend in the Columbus tool: first,
adding new rules to support other web technologies
to evaluate the complexity of the integration of dif-
ferent presentation techniques. Additionally, we con-
tinue researching on the model-based UI formalisms
to facilitate the integration of the UI components and
evaluate the possible combinations of the current pro-
cess with Machine Learning techniques.

REFERENCES

Abrams, M., Phanouriou, C., Batongbacal, A. L., Williams,
S. M., and Shuster, J. E. (1999). Uiml: an appliance-
independent xml user interface language. Computer
Networks, 31(11):1695–1708.

Bouillon, L. (2006). Reverse Engineering of Declarative
User Interfaces. PhD thesis, Université de Valenci-
ennes et du Hainaut-Cambrésis.

Ceri, S., Fraternali, P., and Bongio, A. (2000). Web mod-
eling language (webml): a modeling language for de-
signing web sites. Computer Networks, 33(1):137–
157.

Chikofsky, E. J. and Cross, J. H. (1990). Reverse engineer-
ing and design recovery: a taxonomy. IEEE Software,
7(1):13–17.

Di Lucca, G. A., Fasolino, A. R., Pace, F., Tramontana, P.,
and De Carlini, U. (2002). Ware: a tool for the reverse
engineering of web applications. In Software Main-
tenance and Reengineering, 2002. Proceedings. Sixth
European Conference on, pages 241–250. IEEE.

e Marques da Silva, C. E. B. (2015). Reverse engineer-
ing of web applications. PhD thesis, Universidade do
Minho.

Hevner, A. R. (2007). A three cycle view of design sci-
ence research. Scandinavian journal of information
systems, 19(2):4.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon,
L., Florins, M., and Trevisan, D. (2004). Usixml:
A user interface description language for context-
sensitive user interfaces. In In Proceedings of the
ACM AVI’2004 Workshop ”Developing User Inter-
faces with XML: Advances on User Interface Descrip-
tion Languages”, pages 55–62. Press.

Morgado, I. C., Paiva, A., and Faria, J. P. (2011). Re-
verse engineering of graphical user interfaces. In The
Sixth International Conference on Software Engineer-
ing Advances, ICSEA, pages 293–298.

Morgado, I. C., Paiva, A. C. R., Faria, J. P., and Cama-
cho, R. (2012). GUI reverse engineering with machine
learning. In 2012 First International Workshop on Re-
alizing AI Synergies in Software Engineering (RAISE),
pages 27–31, Zurich, Switzerland. IEEE.

OASIS (2008). User Interface Markup Language (UIML)
Version 4.0. Committee draft.


