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Abstract

The task of Differentially Private Text Rewriting is a class of text

privatization techniques in which (sensitive) input textual docu-

ments are rewritten under Differential Privacy (DP) guarantees. The

motivation behind such methods is to hide both explicit and im-

plicit identifiers that could be contained in text, while still retaining

the semantic meaning of the original text, thus preserving utility.

Recent years have seen an uptick in research output in this field,

offering a diverse array of word-, sentence-, and document-level DP

rewriting methods. Common to these methods is the selection of a

privacy budget (i.e., the 𝜀 parameter), which governs the degree to

which a text is privatized. One major limitation of previous works,

stemming directly from the unique structure of language itself, is

the lack of consideration of where the privacy budget should be allo-

cated, as not all aspects of language, and therefore text, are equally

sensitive or personal. In this work, we are the first to address this

shortcoming, asking the question of how a given privacy budget can

be intelligently and sensibly distributed amongst a target document.

We construct and evaluate a toolkit of linguistics- and NLP-based

methods used to allocate a privacy budget to constituent tokens in

a text document. In a series of privacy and utility experiments, we

empirically demonstrate that given the same privacy budget, intel-

ligent distribution leads to higher privacy levels and more positive

trade-offs than a naive distribution of 𝜀. Our work highlights the

intricacies of text privatization with DP, and furthermore, it calls

for further work on finding more efficient ways to maximize the

privatization benefits offered by DP in text rewriting.

CCS Concepts

• Security and privacy→ Data anonymization and sanitiza-

tion; • Computing methodologies→ Natural language pro-

cessing.
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1 Introduction

Efforts to address privacy preservation in Natural Language Pro-

cessing (NLP) have increased in recent years, notably in the light of

rapid advancements in highly advanced AI systems, primarily with

Large Language Models (LLMs) [38, 48]. Such systems have enabled

and fostered a nearly unfathomable array of applications for AI and

NLP, yet the success of such AI systems is largely contingent upon

the large-scale utilization of text data taken from amultitude of data

sources, especially the Internet [15]. As such, concerns of privacy

risks have continued to grow, only exacerbated by the seeming

correlation between data usage and model performance [3, 37].

As a response to privacy concerns and vulnerabilities in NLP

models, the field of privacy-preserving NLP (PPNLP) has steadily

grown in research attention, with methods looking to bolster pri-

vacy on the data-, model-, and system-level of NLP applications

[29, 41]. A popular choice among researchers in PPNLP is the frame-

work of Differential Privacy (DP), which although was not origi-

nally intended for the unstructured domain of text [26], has seen a

number of promising implementations in the literature [20].

Despite the promise, integrating DP into NLP techniques is not

simple, and recent literature has unveiled a number of challenges,

ranging from loss of semantics and grammatical correctness to

difficulties in evaluating privacy preservation in textual data or

language models [1, 26, 31]. Beyond this, other works have critiqued

themanner inwhich DPNLP is performed, most notably relaxations

in the notion of who is being protected, or what DP guarantee can

be provided [35, 43]. Looking specifically to the task of differentially

private text rewriting, in which input texts are rewritten with DP

guarantees, it becomes crucial to define on which (syntactic) level

a text is rewritten, and what the corresponding guarantee is [43].

Considering a text document as the target quantity to be rewrit-

ten, the literature is divided on how a private document can be

achieved with DP rewriting. Early techniques considered the word

to be the unit of privatization, and single-word perturbations could

be composed to achieve a document-level guarantee [4, 6, 10, 12, 33,

50]. Later works also looked at the sentence level [32], or more con-

veniently, rewriting an entire document with one DP mechanism
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Figure 1: An example of equal privacy budget distribution

vs. our proposed approach. Given that certain words may be

more sensitive or revealing than others, we propose a more

informed distribution (Distributed). This example showcases

actual output from our proposed toolkit, providing a more

sensible budget allocation than equal distribution.

run [22, 42]. While the benefits and limitations of these distinct

approaches can be discussed, one unifying limitation is the lack of

reasoning in how the DP privacy budget (governed by the privacy

parameter 𝜀) should be distributed to achieve a privatized document.

For example, given word-level DP and a fixed document budget,

the naive way may be to divide the overall budget evenly into each

word, but this is certainly not optimal (see Figure 1).

In this work, we propose a more sensible method for DP text

rewriting based on one simple thesis: Not all parts of a document

are equally private, and therefore, not all parts of a document should

be privatized equally. Resulting from this, we argue that a method

is needed to determine a more intelligent and informed distribution

of the privacy budget to a text to be rewritten. Using a toolkit of

various linguistics- and NLP-based techniques, we craft a method

to distribute a privacy budget sensibly for DP text rewriting, and

subsequently, we leverage compositionality to achieve a final pri-

vatized text which fits into the constraints of the budget. In doing

so, we answer the following research question in this work:

How can one intelligently “distribute” a given privacy budget

in differentially private text rewriting, and what is the resulting

effect on the utility and privacy of the privatized data?

To test the utility- and privacy-preservation of our method, we

compare the downstream task performance and resistance to ad-

versarial attacks of privatized data using our distribution method

to data which is naively privatized. We find that distributing the

privacy budget with our proposed toolkit generally increases the

privacy of DP rewritten text, while also leading to better trade-offs

in certain cases. On the other hand, privacy budget distribution

nearly always leads to lower utility and lower text coherence, lead-

ing us to critically analyze the merits and limitations of our toolkit.

As a result of our work and based on our empirical findings, we

make the following contributions to the DP NLP field:

(1) We are the first to consider the distribution of privacy budget

for DP text rewriting, and we propose a toolkit to determine

sensible budget allocations given an input text. The toolkit

is available at https://github.com/sjmeis/EpsilonDistributor.

(2) We evaluate our method in a series of privacy and utility

evaluations, showing the effectiveness of budget distribution

in privacy preservation.

(3) We critically analyze and discuss the implications of intel-

ligent budget distribution for DP text rewriting, proposing

ways forward to build upon our work.

2 Foundations

2.1 Differential Privacy

Formalized nearly two decades ago, Differential Privacy (DP) [9]

guarantees that any computation performed on a database, or a

more general collection of databases, is nearly the same regardless

of the inclusion or exclusion of a single data point. Formally, given

two databasesD andD′
differing in only one data point, any query

or computation run on D and D′
will yield similar results when

utilizing some DP mechanism M. Such databases that differ only

by a single element are called neighboring or adjacent databases.

Definition 2.1. (𝜀, 𝛿)-Differential Privacy. A mechanism M :

X𝑚 → O operating on any two adjacent databases D, D′ ∈ X𝑚

is (𝜀, 𝛿)-differentially private, iff ∀𝑂 ⊆ O, the following holds:

P[M(D) ∈ 𝑂] ≤ 𝑒𝜀 · P[M(D′) ∈ 𝑂] + 𝛿

where 𝜀 > 0 and 𝛿 ∈ [0, 1]

Intuitively, ensuring the above privacy guarantee grants plausi-

ble deniability to individuals participating in a database, such that

the result of some query cannot be attributed to this person’s par-

ticipation in a database. Instead, the DP mechanism M grants this

deniability, usually achieved by the injection of calibrated random

noise to queries or computations.

In our work, we utilize the DP-BART rewriting mechanism [22],

which guarantees (𝜀, 𝛿)-DP for any two documents.

2.2 Metric Differential Privacy

In some domains, such as that of natural language and textual data,

the original notion (𝜀, 𝛿)-DP may be too restrictive, or rather not

fitting to the reasoning of the “individual” in a dataset. As such, the

notion of Metric Differential Privacy (MDP) has emerged in recent

years to address the limitation [5]. It is most useful when dealing

in metric spaces, and it can be defined as follows.

Let X andZ be finite sets and let 𝑑 : X ×X → R+ be a distance

metric defined on the set X.

Definition 2.2. (𝑑X-privacy). Let 𝜀 > 0. A randomizedmechanism

M : X → Z satisfies 𝜀𝑑X-privacy iff ∀𝑥, 𝑥 ′ ∈ X and ∀𝑧 ∈ Z

P[M(𝑥) = 𝑧]
P[M(𝑥 ′) = 𝑧] ≤ 𝑒𝜀𝑑 (𝑥,𝑥

′ )
(1)

The above can clearly be seen as a relaxation of Definition 2.1,

as the privacy guarantee is now scaled according to the distance

between any two data points in a given space. Intuitively, when

an MDP mechanism is applied, queries on data points which are

close in space, as measured by the chosen metric, would yield more

“similar” output distributions as compared to points farther apart.

In this work, we utilize the 1-Diffractormechanism [33], which

leverages word-level MDP to provide guarantees for any two words.

2.3 Local DP and Text Rewriting

As opposed to the setup where data is first collected by some aggre-

gator before applying a chosen DP mechanism, known as Global

Differential Privacy, the concept of Local Differential Privacy (LDP)

becomes useful in cases where third party aggregators are not

trusted or where privatization must occur on the user side. In LDP,
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the notion of adjacent databases is shifted to the individual, and

it is defined over data points from a single individual. Thus, every

collected data point from a single individual is adjacent to every

other data point from another individual [24]. Note that LDP is also

defined for MDP, thus yielding MLDP [36].

In the case of DP text rewriting, the LDP setup is most sensible, so

that users can privatize their text(s) via rewriting before sharing it

with third parties. In this scenario, the user utilizes a DP mechanism

operating on a particular syntactic level, and they privatize their

textual data accordingly. For example, in a word-level scenario,

a user shares each obfuscated word, whereby documents can be

shared according to the composition theorem of DP (see next).

Similarly, if the users opts to use a document-level mechanism, the

output of each mechanism run is a privatized document with an

accompanying privacy guarantee. As noted by Vu et al. [43], the

distinction of granularity is particularly crucial in the case of text

privatization with DP, as it must be made transparent for which

syntactic unit a guarantee is being provided.

The limitation with the LDP setup, however, is that for the given

unit of protection (e.g., a word or document), any data point from

one user is adjacent to the entire space of data points. For example,

in the case of documents, any potential text document is adjacent to

any other document. This limitation is highlighted by Igamberdiev

and Habernal [22], which above all necessitates higher privacy

budgets for sensible privatization.

2.4 Composition in DP Text Rewriting

When reporting privacy guarantees in DP text rewriting scenarios,

it becomes very important to leverage the composition theorem of

DP, which is defined as follows:

Theorem 2.3. Composition in DP [9].

Let 𝑀1 be an 𝜀1-differentially private algorithm, and let 𝑀2 be an

𝜀2-differentially private algorithm. Then their combination, defined

to be𝑀1,2:𝑀1,2(x) = (𝑀1(x),𝑀2(x)), is (𝜀1 + 𝜀2)-differentially private.

The implications of the above theorem are quite useful in report-

ing aggregate privacy guarantees: if one runs a DP mechanism with

privacy budget 𝜀 for 𝑛 times, then the resulting guarantee is 𝑛 · 𝜀.
The intuition is also clear; privacy guarantees begin to degrade the

more times a mechanism is used on the same data.

In DP text rewriting, composition can be leveraged to utilize DP

mechanisms a number of times to achieve the desired syntactic unit

of privatization. For example, given a text of 10 words, a word-level

DP mechanism can be run on each of the 10 words with a budget

of 𝜀 per word for a total guarantee of 10𝜀. This can naturally be

extrapolated to sentences in a document, documents per user, and

beyond. For the purposes of this work, we treat the document as

the final unit of protection, although recent work has shown that

this assumption may not always be correct [43].

In this work, we place a particular focus on the question of com-

position in DP text rewriting, investigating whether this theorem

can be leveraged more wisely by considering the hierarchical na-

ture of textual data. Specifically, we consider the scenario where a

fixed privacy budget is allotted for each document to be privatized,

and we explore how this budget can be maximized to protect the

privacy concealed in natural language, while still maintaining the

utility of text datasets. We challenge the “naive” distribution of

privacy budgets, in which, for example, a document is privatized

singly without higher focus on more sensitive sentences, or sim-

ilarly where a document is privatized with equal emphasis on all

words rather than an intelligent distribution of stricter privatiza-

tion to more sensitive words. To address this, we now introduce

a toolkit of techniques that will allow for a more informed and

sensible privacy budget distribution in DP text rewriting.

3 A Budget Distribution Toolkit for DP Text

Rewriting

In this section, we introduce the underlying methodology behind

the distribution of a given privacy budget over a text document.

The goal of such a distribution is to allocate a privacy budget in-

telligently so as to account for a number of linguistic- and NLP-

informed factors which may make certain tokens in a document

more sensitive than others. We first outline the general framework

for budget distribution, and then we proceed to introduce the indi-

vidual components of our proposed toolkit.

3.1 Allocating 𝜀

We consider an arbitrary text document D to be privatized via DP

text rewriting. The document D consists of 𝑛 tokens, or words,

which are sequential in nature, i.e., 𝐷 = (𝑡𝑖 )1𝑛 , where 𝑡𝑖 denotes a
token in the 𝑖-th position in the document string.

We also define a general scoring function S(D, 𝜀), which takes

as input an arbitrary document D and a privacy budget 𝜀. The

output of S is a mapping S : 𝑡𝑖 → R+ = 𝑠𝑖 ,∀𝑖 ∈ {1..𝑛}. Thus, each
token in the document D is assigned a normalized sensitivity score

𝑠 , where a higher score denotes a greater “need” for privatization.

In the context of DP and the total privacy budget 𝜀, this translates to

the allocation of a smaller token budget. Formally, we are therefore

solving the linear equation 𝐴𝑥 = 𝑏, where

𝐴 =

[
1

𝑠1
1

𝑠2
... 1

𝑠𝑛−1
1

𝑠𝑛

]
, 𝑏 = 𝜀

Thus, the resulting solution for the equation x is a 1:1 mapping of

constituent tokens to per-token budget allocations:

x =
[
𝑥1 𝑥2 ... 𝑥𝑛−1 𝑥𝑛

]
=
[
𝜀1 𝜀2 ... 𝜀𝑛−1 𝜀𝑛

]
And finally, by leveraging compositionality, we can achieve a dis-

tribution that respects the original total privacy budget 𝜀:

𝑛∑︁
𝑖=1

𝜀𝑖 = 𝜀

Note that the case of per-token privacy budget allocations can

be generalized to the sentence level in document privatization by

simply summing scores of the constituent tokens of a sentence,

thus yielding a sentence-level privacy budget allocation.

3.2 Budget Allocation Methods

Our toolkit consists of five methods used to calculate per-token

budget allocations, which are introduced below, as well as the tech-

nique used to combine the component scores into a final allocation.

For full method details, we refer to reader to our code repository.
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3.2.1 Information Content ( IC). Information Content (IC), also

referred to as self-information or Shannon information, is a value

derived from measuring the probability of a particular event occur-

ring. In the context of linguistics, such a value can be assigned to

any given unit in language, most notably a word token.

In leveraging IC measures, we base the resulting scores on the

hypothesis that the greater the relative information given by a

particular word is, the greater the need for privacy. We utilize the

IC measures provided by the nltk packages, namely the semcor,

brown, bnc, shaks, and treebank corpora. We also use the English

WordNet, which contains synsets; these synsets, or word entries,

are required as the input format for retrieving the IC scores.

As the abovementioned corpora only assign IC scores to nouns

and verbs, we likewise only score nouns and verbs; these IC scores

are given on the positive integer range (e.g., IC(‘dog’) = 235). Non-

noun/verb tokens, as well as tokens not existing in the corpora, are

assigned a score of 1, or the lowest possible positive integer.

3.2.2 Part-of-Speech Informativeness (POS). Continuing with our

hypothesis that word informativeness can help to determine the

level of privacy needed, we also leverage Part-of-Speech (POS)

information to calculate informativeness scores. POS tags indicate

the grammatical function of a word (noun, verb, adjective, etc.)

in a text. Therefore, assigning different weights to different POS

tags can reflect their typical importance in conveying meaning.

For example, verbs often play a more central role in a sentence

compared to prepositions. This helps distinguish between function

words (like articles and prepositions) and content words (nouns,

verbs, adjectives) that contribute more to the core meaning [25].

To define a weighting scheme for different POS tags, we refer to

a previous study based on Twitter data [14], and use the aggregate

statistics to derive weights that denote the relative frequency of POS

tags. We focus on nouns (NN), pronouns (PR), verbs (VB), adjectives

(JJ), adverbs (RB), and numbers (CD), with the following weights:

{NN: 14, PR:7, VB:15, CD:2, JJ:5, RB:5}. All POS tags outside this

set are not considered sensitive, and they receive a weight of 0.1,

chosen to be distinct from the abovementioned values yet to assign

non-zero weights to avoid division errors.

3.2.3 Named Entity Recognition (NER). The task of Named Entity

Recognition (NER) aims to identify named entities in a given text,

such as names, locations, and organizations. These entities are typ-

ically very important to a particular sentence’s meaning; however,

they are generally quite identifying, such as with names.

We use the NER tool provided by the spaCy package
1
to identify

named entities in a given input document, and all tokens that belong

to a named entity are assigned a score of 1, otherwise a score of 0.

3.2.4 Word Importance (WI). This method compares the semantic

similarity between the entire text document and each individual

word. Words with a larger difference in similarity likely contribute

more to the overall meaning, as they introduce new semantic mean-

ing not already conveyed by the rest of the text.

To measure such importance of each word, we iteratively remove

each word token from a given text, and measure its similarity to

the remainder of the text. The lower the similarity between these

two entities, the greater the importance of the word.

1
https://spacy.io/

3.2.5 Sentence Difference (SD). In a similar way to the aboveWord

Importance scoring, we also measure the semantic difference be-

tween a given text and the same text without a single word. This,

similar to the above, provides a notion of a word’s importance se-

mantically. Words whose removal causes a more significant drop

in similarity are considered more important because their absence

significantly impacts the overall meaning. Thus, such words are

more identifiable in text and must be treated with higher privacy.

To measure Sentence Difference, we create 𝑛 versions of the orig-

inal sentence, each with one of 𝑡1 ...𝑡𝑛 removed. These versions are

then compared semantically to the original, unaltered sentence, and

the resulting scores are assigned to corresponding tokens.

For both the WI and SD methods, we utilize the thenlper/gte-

small embedding model
2
[28].

3.3 Calculating a Final Budget Distribution

Given the scores outputted by each of the five methods described

above, the final steps involve combining these scores for a final

privacy budget distribution for DP text rewriting.

First, all score sets, which map a score to each token in an input

document, are normalized between 0 and 1. This is particularly

necessary in the case of POS, where the weights assigned do not

fall in the range [0,1]. Then, the average score of each token amongst

the five scoring methods is taken to achieve an aggregate score for

each token. Note that we assume an equal weighting for each of

the methods, and we do not experiment with different weighted

averages. However, please refer to Section 4.4 and Table 4 for the

results of our ablation study for the described methods.

Given the aggregate scores for all word tokens in a document,

the linear equation as described in Section 3.1 is solved. This results

in an individual budget for each token, all of which add up to the

total allocated privacy budget 𝜀.

4 Experimental Setup and Results

Following the guidelines of Mattern et al. [31] of what comprises

an effective text privatization method, we evaluate the performance

of our proposed budget distribution method on two primary cate-

gories: privacy protection and utility preservation. These evalua-

tions will demonstrate to what degree our method improves upon

the empirical privacy protections afforded by DP text rewriting,

while simultaneously testing whether utility in downstream tasks

and text coherence can still be achieved. In the following, we out-

line the full methodological design of our experiments, as well as

provide the corresponding results.

4.1 DP Text Rewriting Methods

In the scope of this work, we choose two DP text rewriting methods

from the recent literature, which will serve as the testbed for our

proposed budget distribution toolkit.

1-Diffractor [33]. 1-Diffractor is a word-level MLDP text

obfuscation mechanism proposed byMeisenbacher et al. to improve

the efficiency of previous word-level mechanisms. In essence, the

mechanism perturbs words in a document by adding DP noise to

word embeddings in one-dimensionally sorted lists. In this work,

2
https://huggingface.co/thenlper/gte-small
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we use the geometric version of the 1-Diffractor mechanism, or

1 − 𝐷𝐺 . Following from the original work, we test the following

base, per-word 𝜀 values: 𝜀 ∈ {0.1, 0.5, 1.0}.

DP-BART [22]. DP-BART is a DP text rewriting mechanism pro-

posed by Igamberdiev and Habernal which achieves DP rewriting

at the document level by adding calibrated DP noise in the latent

space representation of the BART encoder-decoder model [27]. In

this work, we utilize the DP-BART-CLV version, which achieves DP

by clipping the latent space before adding noise. Following from the

original work, we choose the clipping range of [−0.1, 0.1], and we

test on the following document-level 𝜀 values: 𝜀 ∈ {500, 1000, 1500}.

4.1.1 Setting the total privacy budget. In the evaluation of both of

the abovementioned rewriting methods on our chosen datasets and

tasks (see next), we must first determine the total privacy budget (𝜀)

allocated to each text document to be privatized. This is especially

pertinent in the case of our chosen word-level mechanism, as we

aim to privatize documents at the document level.

Following the example set in previous work [34], we fix a dataset-

specific per-document privacy budget, which can be derived as the

chosen base 𝜀 value, scaled (multiplied) by the average number of

tokens in a document for a given dataset. Thus, for 1-Diffractor,

our chosen values of 𝜀 ∈ {0.1, 0.5, 1.0}will be scaled for each dataset
to achieve the total privacy budget available for each document.

The exact values used for these calculations and the per-document

budgets are made apparent in all tables presenting results.

Note that for DP-BART, the chosen 𝜀 values already represent

the per-document budgets, as this mechanism operates directly

on the document level. For both 1-Diffractor and DP-BART, we

test for both an equal distribution of the total privacy budget, i.e.,

𝜀/𝑛𝑢𝑚_𝑡𝑜𝑘𝑒𝑛𝑠 , as well as budget distribution with our proposed

toolkit.With DP-BART, the resulting per-word budgets are summed

to achieve sentence-level budgets. Thus, an input document is split

into its component sentences, and each sentence is privatized with

DP-BART according to the allocated budget. In all cases, stopwords

(common English words as determined by the nltk package) are

not considered in the budget distribution and are not privatized.

4.2 Privacy Experiments

We run experiments to evaluate the privacy-preserving capability

of our method relative to naive (equal) budget distribution. These

experiments take two forms: empirical privacy and membership

inference. We first introduce the datasets used for experimentation,

and then we proceed to describe in detail the evaluation procedures.

4.2.1 Datasets and Tasks. For the privacy experiments, we leverage

three existing public datasets.

Yelp Reviews. We utilize a dataset of reviews from the Yelp plat-

form, specifically the subset made available by Utpala et al. [42]
3
.

This subset contains 17,295 reviews from 10 distinct users on the

platform. Each review is denoted as a positive or negative review in

terms of sentiment. This dataset’s makeup allows for an adversarial

authorship identification task, in which an attacker’s goal is to guess

the identity of the text’s author given only the text.

3
The full dataset is available at https://huggingface.co/datasets/Yelp/yelp_review_full.

Trustpilot Reviews. Made available by Hovy et al. [18], the Trust-

pilot Reviews corpus is a collection of reviews in several languages

from the Trustpilot platform.We only use English-language reviews

from the en-US subset, and we take a 10% sample (29,490 reviews).

Each review is marked as positive or negative, as well as with the

gender (male/female) of the author, creating the opportunity for

evaluation on an adversarial gender identification task.

Blog Corpus. The final dataset we use for our privacy experi-

ments is a subset from the Blog Authorship Corpus [40], a large col-

lection of user-written blog posts on an internet forum. In particular,

we make use of the author10 split made available by Meisenbacher

and Matthes [35], which contains a total of 15,070 blog posts from

the top-10 contributing authors. Thus, we create another authorship

identification scenario for our empirical privacy experiments.

4.2.2 Empirical Privacy Evaluation. The first of two overarching

privacy evaluation tasks takes the form of empirical privacy eval-

uations. Here, we test the ability of DP text rewriting to reduce

the adversarial advantage (i.e., attribute inference performance) on

authorship or gender identification, measured empirically.

To test empirical privacy, we first privatize all of the above

datasets using our two chosen DP rewriting methods under the cho-

sen privacy budgets. This is done for both naive budget distribution

and distribution using our toolkit. Then, we train an adversarial

classification model to predict the protected attribute (author or

gender) given a text. For all experiments, a deberta-v3-base model

[17] is used, and datasets are split into a 90% train / 10% test set.

We perform the adversarial training in two settings, following

the recent literature [31, 35, 42]. In the first, called the static setting,

the adversarial classification model is trained on the non-privatized

train set, and the resulting model is evaluated on the privatized

test set for the static results. This models a less capable attacker

who does not have knowledge of the DP rewriting method. In the

more capable setting, called the adaptive attacker, the adversarial

model is trained on the privatized train set, and then evaluated on

the privatized test set, thus mimicking an adversary who is able to

train a better model given the ability to align the training dataset.

For all scenarios in these experiments and for the remainder of this

work, training is performed for one full epoch, with a batch size of

32, maximum input length of 512 tokens, learning rate of 1e-5, and

otherwise default HuggingFace Trainer parameters. All training

procedures are repeated three times on different random shuffles

of the train set, and the report scores represent the average score

with standard deviation. The hardware used is an RTX A6000 GPU.

For score reporting, we first measure the corresponding utility

of each privatized dataset, measured by the micro-F1 score on the

binary sentiment analysis task after one epoch of training. As the

datasets are imbalanced (many positive reviews), we also provide

PP+, or the percentage points achieved over majority-class guessing.

Next, we report the adversarial F1 score against the non-privatized

(plaintext) baseline, where a lower score denotes that the DP rewrit-

ing has better protected privacy. Finally, we report the Relative Gain

(𝛾) metric [31, 46], which aims to illustrate the balance between

(potential) utility lost and privacy gained. Let 𝑃𝑜 ,𝑈𝑜 represent the

baseline privacy and utility scores, respectively, and 𝑃𝑟 , 𝑈𝑟 be the

scores observed on the privatized datasets. Relative Gain is thus
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Table 1: Empirical Privacy Results. Adversarial scores are represented by micro-F1 scores, where (s) denotes the static attacker
and (a) denotes the adaptive attacker. 𝛾 refers to the Relative Gain for both the static and adaptive settings. For all 1-Diffractor

tasks, we report the per-word 𝜀, as well as the total allocated budget (indicated in parentheses), which is calculated by (per-word
𝜀)·(Avg. Tokens), or average number of tokens in a document per dataset. Baseline scores, i.e., adversarial performance on the

non-privatized data, are also provided. Where 𝛾 scores are reported, the bolded score represents the better pairwise score

between a “naive” distribution and our proposed method.

Yelp 1-Diffractor DP-BART

Avg. Tokens 181.06 181.06

𝜀 0.1 (18.11) 0.5 (90.53) 1 (181.06) 500 1000 1500

Distribution Method Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours

Utility (F1) ↑ 95.090.3 93.530.0 93.530.0 95.010.6 94.010.9 94.701.0 94.450.6 93.530.0 93.530.0 93.990.1 93.530.0 94.470.7 93.530.0
PP+ ↑ -156 -312 -312 -164 -264 -195 -220 -312 -312 -266 -312 -218 -312

Adv. F1 (s) ↓ 95.90 42.20 42.37 57.23 55.09 65.84 62.60 26.24 17.11 26.99 15.09 27.86 15.55

Adv. F1 (a) ↓ 95.90 80.923.0 82.350.9 92.160.1 88.441.4 92.720.5 92.870.7 38.821.0 32.870.4 61.210.6 37.300.8 67.631.2 38.710.6

𝛾 (s) ↑ - 1.81 1.81 0.64 1.31 0.19 0.91 2.06 2.19 1.75 2.22 1.43 2.22

𝛾 (a) ↑ - 1.23 1.21 0.11 0.81 0.30 0.46 1.86 1.95 1.23 1.89 0.83 1.87

(a) Yelp

Trustpilot 1-Diffractor DP-BART

Avg. Tokens 51.23 51.23

𝜀 0.1 (5.12) 0.5 (25.62) 1 (51.23) 500 1000 1500

Distribution Method Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours

Utility (F1) ↑ 99.490.1 94.871.3 93.622.3 98.150.2 97.930.3 98.890.1 98.640.6 92.590.4 92.090.1 98.030.1 92.160.2 98.510.1 93.360.1
PP+ ↑ 366 -96 -221 232 210 306 281 -324 -374 220 -367 268 -247

Adv. F1 (s) ↓ 72.16 59.61 59.51 64.12 63.45 67.28 66.40 60.71 58.94 59.85 59.34 60.16 59.34

Adv. F1 (a) ↓ 72.16 60.713.7 60.373.2 67.702.2 66.590.6 63.874.1 68.252.2 58.830.6 58.090.0 62.480.9 58.120.0 61.181.8 58.941.2

𝛾 (s) ↑ - 1.02 0.70 1.09 1.16 1.34 0.81 0.20 0.38 1.84 0.33 1.91 0.66

𝛾 (a) ↑ - 0.82 0.54 0.44 0.59 1.34 0.48 0.54 0.54 1.36 0.55 1.73 0.73

(b) Trustpilot

Blog 1-Diffractor DP-BART

Avg. Tokens 53.94 53.94

𝜀 0.1 (5.39) 0.5 (26.97) 1 (53.94) 500 1000 1500

Distribution Method Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours

Adv. F1 (s) ↓ 58.64 26.56 26.19 31.34 31.96 35.39 35.43 12.73 7.95 15.05 12.51 15.87 17.22

Adv. F1 (a) ↓ 58.64 40.050.8 38.551.0 44.891.7 44.490.8 43.969.6 46.891.5 13.610.5 8.950.8 21.770.9 13.581.9 23.771.0 16.603.5

(c) Blog

defined as 𝛾 = (𝑈𝑟 /𝑈𝑜 ) − (𝑃𝑟 /𝑃𝑜 ), with the higher the better. Differ-

ent to previous work, we calculate the change in F1 over random /

majority-class guessing on the validation set, denoted𝑀𝐺𝑢 (utility)

and𝑀𝐺𝑝 (privacy), as the Trustpilot and Yelp datasets are imbal-

anced; thus 𝑅𝐺 =
𝑈𝑟 −𝑀𝐺𝑢

𝑈𝑜−𝑀𝐺𝑢
− 𝑃𝑟 −𝑀𝐺𝑝

𝑃𝑜−𝑀𝐺𝑝
.

In the Yelp dataset, the 10% validation split contains 1618 positive

reviews and 112 negative reviews. Thus, 𝑀𝐺𝑢 = 96.65. The split

contains 304 reviews from the most frequent author, with the nine

other authors writing 1426 reviews. Thus,𝑀𝐺𝑝 = 29.89, showing

the majority-class guessing performance. In the Trustpilot dataset,

the 10% validation split contains 2713 positive reviews and 236

negative reviews. Thus, 𝑀𝐺𝑢 = 95.83. The split contains 1713

reviews from males and 1236 reviews from females. Thus𝑀𝐺𝑝 =

66.67. Note that we use random guessing performance due to the

relative balance between male and female authors.

The complete results of the empirical privacy experiments can

be found in Table 1, for both the static (s) and adaptive (a) settings.

Note that as the Blog dataset does not have an associated utility

task, we do not report utility or 𝛾 values.

4.2.3 Membership Inference Evaluation. In the context of privacy-

preserving Machine Learning,Membership Inference Attacks (MIAs)

attempt to infer whether a specific data record (e.g., individual) was

part of the data used to train a model [19]. With textual data, MIAs

take on a slightly different meaning, and essentially, the goal of the

attacker becomes to infer whether certain textual information was

present in the training data [38]. To evaluate the resilience of DP

text rewriting against MIAs, we run two types of experiments.

Masked Token Inference Attack (MTI). Following Chen et al. [7],

we run a masked token inference attack. We leverage the ability of

masked languagemodels (MLMs) to predict a masked (hidden) word

given the context surrounding the word. Thus, given a privatized

text, we test an MLM’s ability to predict tokens from the original

text when provided with the privatized context. To measure the

performance of this attack, we follow a procedure as such:

(1) For each privatized document, mask each token one by one.

In this work, we use bert-base-uncased [8].

(2) Capture the top predictions of the MLM (top-1 and top-3).
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Table 2: Membership Inference Evalaution. Bolded scores

represent the better score between “naive” and our proposed

distribution (shown only for 𝑀𝑇𝐼𝑏𝑜𝑤 and NN). For further

details on each metric, please refer to Section 4.2.3.

𝑀𝑇𝐼𝑠𝑒𝑞𝑇 1 ↓ 𝑀𝑇𝐼𝑠𝑒𝑞𝑇 3 ↓ 𝑀𝑇𝐼𝑏𝑜𝑤𝑇 1 ↓ 𝑀𝑇𝐼𝑏𝑜𝑤𝑇 3 ↓ NN↑
0.1 Naive 0.003 0.007 0.121 0.151 111

Ours 0.003 0.007 0.121 0.151 154

Yelp 0.5 Naive 0.003 0.006 0.122 0.153 9

Ours 0.003 0.006 0.120 0.153 17

1 Naive 0.003 0.006 0.124 0.155 2

Ours 0.003 0.006 0.123 0.154 4

0.1 Naive 0.002 0.004 0.055 0.074 308

Ours 0.002 0.004 0.055 0.075 383

Trustpilot 0.5 Naive 0.002 0.004 0.059 0.078 28

Ours 0.002 0.004 0.057 0.077 64

1 Naive 0.002 0.004 0.062 0.081 5

Ours 0.002 0.003 0.060 0.079 15

0.1 Naive 0.001 0.002 0.052 0.067 47

Ours 0.001 0.002 0.052 0.067 69

Blog 0.5 Naive 0.001 0.002 0.052 0.068 3

Ours 0.001 0.002 0.053 0.068 6

1 Naive 0.001 0.002 0.053 0.068 2

Ours 0.001 0.001 0.052 0.068 3

(a) 1-Diffractor

𝑀𝑇𝐼𝑠𝑒𝑞𝑇 1 ↓ 𝑀𝑇𝐼𝑠𝑒𝑞𝑇 3 ↓ 𝑀𝑇𝐼𝑏𝑜𝑤𝑇 1 ↓ 𝑀𝑇𝐼𝑏𝑜𝑤𝑇 1 ↓ NN↑
500 Naive 0.002 0.005 0.104 0.137 816

Ours 0.001 0.004 0.042 0.135 964

Yelp 1000 Naive 0.002 0.004 0.109 0.135 342

Ours 0.001 0.004 0.043 0.079 936

1500 Naive 0.002 0.005 0.112 0.139 203

Ours 0.001 0.003 0.051 0.087 879

500 Naive 0.002 0.004 0.052 0.068 780

Ours 0.001 0.005 0.019 0.035 956

Trustpilot 1000 Naive 0.001 0.003 0.058 0.074 257

Ours 0.002 0.004 0.025 0.041 787

1500 Naive 0.001 0.002 0.061 0.076 146

Ours 0.001 0.002 0.032 0.049 604

500 Naive 0.001 0.002 0.042 0.058 772

Ours 0.001 0.002 0.024 0.036 833

Blog 1000 Naive 0.001 0.001 0.044 0.056 520

Ours 0.001 0.001 0.026 0.041 559

1500 Naive 0.001 0.002 0.049 0.061 472

Ours 0.001 0.001 0.029 0.045 406

(b) DP-BART

(3) Check if the predictions match the exact original token in

sequence (𝑀𝑇𝐼𝑠𝑒𝑞 ), or if the predictions match any token in

the original text (𝑀𝑇𝐼𝑏𝑜𝑤 ), as in a bag-of-words.

Thus, for each dataset, we report four scores:𝑀𝑇𝐼𝑠𝑒𝑞𝑇 1,𝑀𝑇𝐼𝑠𝑒𝑞𝑇 3,

𝑀𝑇𝐼𝑏𝑜𝑤𝑇 1, and𝑀𝑇𝐼𝑏𝑜𝑤𝑇 3, where T1 and T3 represent considering

the top-1 and top-3 predictions, respectively. For all scores, a lower

score means higher privacy protection.

Nearest Neighbor Attack (NN). Wealso design a new attack, called

the nearest neighbor attack, which measures how close (semanti-

cally), on average, the privatized text is to the original text given

the entire privatized dataset. The procedure is as follows:

(1) For each document in the original dataset, select this docu-

ment as the query document.

(2) Note the index of the query’s private counterpart in the

privatized dataset, or the corpus.

(3) Using an embedding model and cosine similarity measures,

measure for which 𝑘 value the private document is the 𝑘-th

nearest neighbor to the query document.

With this, we measure the plausible deniability that is created, i.e.,

the “distance” from the original document to the private document.

We report the average 𝑘 over all documents in the private dataset. In

the context of MIA, a higher average 𝑘 would imply higher privacy.

The results of both the MTI and NN experiments on all three

privacy datasets can be found in Table 2.

4.3 Utility Experiments

In addition to measuring the privacy-preserving capabilities of the

DP rewriting methods both with and without budget distribution,

we also measure the utility preservation, namely the effect on down-

stream task utility between a naive and our proposed distribution.

4.3.1 Datasets and Tasks. We use six datasets for utility evaluation.

GLUE Datasets. The GLUE Benchmark [44] consists of nine

datasets focused on evaluating the general language understanding

capabilities of language models. We choose three datasets from each

of the three sub-tasks of the benchmark: SST-2 (sentiment analysis),

MRPC (sentence similarity), and MNLI (textual entailment). In the

case of the MNLI, we take a 10% subset for a total of 39,270 training

instances. Note that since these datasets are all a maximum of one

sentence, we only evaluate them with 1-Diffractor.

BBC News. The BBC News dataset
4
is a collection of 3147 news

articles from the BBC platform, where each news article belongs to

one of five popular news categories: business, entertainment, politics,

sports, or tech. This creates a five-class classification task.

DocNLI. The DocNLI dataset [49] introduces a document-level

entailment prediction task. The dataset consists of (premise, hy-

pothesis) pairs, each marked as entailment or not entailment. As

the original dataset is very large, we take a 1% random sample,

resulting in a 9136-row dataset with two classes.

IMDb Reviews. The IMDb Dataset [30] consists of 50k movie re-

views from the IMDb platform, each labeled as positive or negative.

4.3.2 Utility Evaluation. To evaluate utility, we follow a similar pro-

cedure to the model training described in Section 4.2.2. Firstly, each

dataset is privatized using our two chosen DP rewriting methods,

their respective three 𝜀 values, and the two distribution techniques.

The resulting datasets, including the original baseline datasets, are

used to train a deberta-v3-base classification model for one epoch.

For each training procedure, we report the F1 score achieved

by the trained model on the 10% held-out test set. These results

are found in Table 3. In addition, we report three other metrics to

capture the quality and coherence of the privatized text documents:

(1) Cosine Similarity (CS): we measure the average cosine simi-

larity of the embeddings of the original texts and their priva-

tized counterparts, using Sentence Transformers [39], specif-

ically with the all-MiniLM-L12-v2 embedding model.

(2) BLEU : the bilingual evaluation understudy (BLEU) score is

used to measure the quality of generated text (i.e., private

texts) as compared to a reference text (i.e., original texts).

We report the average BLEU score using the nltk package.

(3) Perplexity (PPL): perplexity can be used as a proxy to measure

the coherence and understandability of a text, as it measures

how “surprised” a language model is when seeing a given

4
http://mlg.ucd.ie/datasets/bbc.html
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Table 3: Utility Experiment Results. Utility scores are represented by F1 scores achieved on the corresponding tasks. For all

1-Diffractor tasks, we report the per-word 𝜀, as well as the total allocated budget (indicated in parentheses), which is calculated

by (per-word 𝜀)·(Avg. Tokens), or average number of tokens in a document per dataset. Baseline scores on the non-privatized

data are also provided. Note that for DP-BART and the IMDb dataset, we take a 20% random split due to the size of the dataset.

SST2 MRPC MNLI

Baseline 96.120.1 86.560.9 86.680.2

Avg. Tokens 8.31 18.29 19.54

𝜀 0.1 (0.83) 0.5 (4.16) 1.0 (8.31) 0.1 (1.83) 0.5 (9.15) 1.0 (18.29) 0.1 (1.95) 0.5 (9.77) 1.0 (19.54)

Distribution Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours

Utility (F1) ↑ 80.400.3 78.930.2 87.210.1 85.310.2 91.200.1 88.940.1 70.121.4 64.670.1 75.931.1 74.211.8 71.392.3 73.486.6 40.376.6 39.785.7 56.7412.8 55.304.5 67.770.9 67.262.0
CS ↑ 0.508 0.459 0.707 0.625 0.813 0.721 0.438 0.382 0.665 0.573 0.786 0.689 0.464 0.406 0.706 0.610 0.819 0.719

BLEU ↑ 0.163 0.155 0.240 0.203 0.341 0.267 0.126 0.118 0.205 0.174 0.314 0.243 0.164 0.157 0.261 0.220 0.372 0.297

PPL ↓ 9372 9849 6329 7266 5152 5813 1808 1912 991 1233 552 795 1892 2035 1361 1232 648 857

(a) 1-Diffractor (1/2)

BBC DocNLI IMDb

Baseline 98.730.3 87.820.4 95.840.2

Avg. Tokens 399.34 285.22 225.97

𝜀 0.1 (39.99) 0.5 (199.97) 1.0 (399.94) 0.1 (28.52) 0.5 (142.61) 1.0 (285.22) 0.1 (22.60) 0.5 (112.99) 1.0 (225.97)

Distribution Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours

Utility (F1) ↑ 92.170.6 75.8715.6 95.870.0 95.560.3 96.830.4 95.771.6 79.100.5 78.300.5 82.020.2 80.341.0 82.860.3 82.020.8 57.319.9 77.6414.8 92.730.2 92.770.1 94.460.0 93.940.1
CS ↑ 0.507 0.461 0.753 0.699 0.855 0.807 0.593 0.546 0.814 0.765 0.879 0.845 0.471 0.421 0.707 0.639 0.818 0.750

BLEU ↑ 0.132 0.127 0.222 0.196 0.330 0.279 0.112 0.107 0.190 0.167 0.248 0.218 0.167 0.162 0.263 0.234 0.370 0.317

PPL ↓ 692 725 324 397 173 236 716 795 311 376 212 257 621 655 309 371 186 240

(b) 1-Diffractor (2/2)

BBC DocNLI IMDb*

Baseline 98.730.3 87.820.4 95.130.2

Avg. Tokens 399.34 285.22 225.97

𝜀 500 1000 1500 500 1000 1500 500 1000 1500

Distribution Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours Naive Ours

Utility (F1) ↑ 40.531.8 32.171.2 90.480.4 33.861.3 92.590.1 32.590.8 66.962.3 75.890.8 75.710.9 74.362.1 75.460.9 76.290.8 70.231.3 49.231.0 87.770.6 50.201.9 89.070.3 53.372.4
CS ↑ 0.145 0.065 0.414 0.072 0.489 0.072 0.168 0.069 0.453 0.104 0.531 0.176 0.187 0.091 0.411 0.102 0.454 0.129

BLEU ↑ 0.017 0.000 0.051 0.000 0.065 0.000 0.012 0.000 0.038 0.001 0.047 0.004 0.028 0.000 0.075 0.002 0.090 0.006

PPL ↓ 23 34667 11 15207 11 5811 27 18314 12 8303 11 4936 19 25054 9 5351 9 1908

(c) DP-BART

text. We use a GPT-2 model to measure perplexity [35, 46].

For performance, we limit input texts to the first 256 tokens.

4.4 Ablation Study

The final component of our experiments involves an ablation study

with our privacy budget distribution toolkit, namely to measure the

individual effect of the five proposed scoring methods. Thus, we

are able to identify which of the methods leads to higher privacy

and utility preservation, and which may need future improvement.

4.4.1 Setup. For the ablation study, we focus on one mechanism

(1-Diffractor) and two datasets (SST2 and Yelp). For each dataset,

we privatize all documents under the same setup as in the previous

experiments, i.e., with the base epsilons of 𝜀 ∈ {0.1, 0.5, 1}, scaled to
the average number of tokens per document. However, as opposed

to before, we privatize each (dataset, 𝜀) pair five times, each time

with one method from our distribution toolkit disabled.

For the utility (SST2) and privacy (Yelp) ablation, we report the

change in score (Δ), or how the corresponding score was affected

by the disabling of the particular distribution scoring method. Thus,

a more negative change in a metric, e.g., loss in utility, would imply

that a given method is more effective when included than disabled.

The results of the ablation study are presented in Table 4.

5 Discussion

We critically reflect on the results presented in this work, as well as

discuss opportunities and recommendations based on our findings.

5.1 More Privacy, Same Budget

An analysis of the experimental results begins with the strengths

exhibited when performing DP text rewriting under our proposed

distribution scheme rather than an equal, “naive” distribution.

As showcased in Table 1, using our toolkit leads to stronger pro-

tection against adversaries in attribute inference attacks (gender or

authorship), in 15/18 static attacker scenarios and 13/18 adaptive

attacker scenarios. These results are echoed in the Membership

Inference evaluations, where our distribution outperforms naive

distribution in nearly all of the𝑀𝑇𝐼 results, as well as all but one

𝑁𝑁 score. These results support the hypothesis that a more in-

formed spending of the privacy budget in DP text rewriting can

afford higher privacy levels given the same overall budget.

The implications of these results are clear. The provision of a

certain privacy budget for a document leads to a particular privacy

guarantee on paper (i.e., a DP guarantee), yet the empirical effects

of such a guarantee can differ significantly depending on how the

budget is “spent”. These results show that in DP text rewriting,

simply choosing an 𝜀 budget is not enough – a careful consideration

of how this budget is allocated must also take place in order to

maximize privacy protections in practice.

5.2 The Privacy-Utility Trade-off in Action

Naturally, a discussion of the privacy protections that our distribu-

tion method bolsters must also be discussed in light of its effect on

the utility of the privatized data, or the privacy-utility trade-off.
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Table 4: Ablation Study Results. Baseline scores represent the results using all five distribution methods, while /X denotes

the usage of four methods without X. Non-baseline values indicate the relative change (Δ, in %) from the baseline. Note that

ablation results from the masked token inference (MTI) evaluation are not reported, due to non-significant changes. *𝑠𝑡𝑑 = 13.1

𝜖 0.1 0.5 1.0

Baseline /IC /POS /NER /WI /SD Baseline /IC /POS /NER /WI SD Baseline /IC /POS /NER /WI /SD

Utility (F1) ↑ (Δ) 93.530.0 +0.00 +0.00 +0.00 +0.00 +0.17 94.010.9 +0.21 -0.18 -0.48 -0.48 -0.48 94.450.6 -0.81 -0.92 -0.46 -0.92 -0.92

Adv. F1 (s) ↓ (Δ) 42.37 -1.56 -1.68 +0.34 -3.12 -3.55 55.09 -0.29 -0.52 +1.96 -0.99 -2.14 62.60 -0.87 +0.52 +1.56 -2.25 -2.08

Adv. F1 (a) ↓ (Δ) 82.350.9 +0.56 +1.73 +1.79 +3.97 +0.04 88.441.4 +1.68 +2.52 +3.41 -2.56 +0.42 92.870.7 -0.60 -0.94 -0.58 -1.16 -2.85

𝛾 (s) ↑ (Δ) 1.81 +0.02 +0.03 -0.00 +0.05 -1.02 1.31 -0.12 +0.12 -0.02 +0.32 +0.34 0.91 +0.53 +0.59 +0.28 +0.63 +0.63

𝛾 (a) ↑ (Δ) 1.21 -0.01 -0.03 -0.03 -0.06 -0.11 0.81 -0.17 +0.07 +0.04 +0.34 +0.30 0.46 +0.52 +0.60 +0.02 +0.60 +0.63

𝑁𝑁 ↑ (Δ) 154 +4 -3 -27 +29 +32 17 +0 -2 -6 +6 +6 4 +0 +0 -1 +1 +3

(a) Yelp

𝜖 0.1 0.5 1.0

Baseline /IC /POS /NER /WI /SD Baseline /IC /POS /NER /WI SD Baseline /IC /POS /NER /WI /SD

Utility (F1) ↑ (Δ) 78.930.2 +0.23 +0.79 +0.37 +0.40 -1.09 85.310.2 -9.31* -1.03 +0.96 +0.43 -1.54 88.940.1 +0.05 +0.67 +0.82 +0.48 -3.28

CS ↑ (Δ) 0.459 +0.001 +0.010 +0.011 +0.001 -0.028 0.625 -0.001 +0.017 +0.019 -0.002 +0.058 0.721 +0.001 +0.022 +0.022 -0.001 +0.074

BLEU ↑ (Δ) 0.155 +0.000 +0.001 +0.003 +0.000 -0.005 0.203 +0.000 +0.007 +0.010 -0.002 -0.019 0.267 +0.001 +0.015 +0.023 -0.004 -0.40

PPL ↓ (Δ) 9849 +417 +514 +658 -2 +330 7266 +251 -259 -194 +470 +621 5813 +214 -142 +189 +77 +943

(b) SST2

In Table 3, a clear decrease in utility can be observed in nearly

all cases of our versus naive distribution. On the surface, this utility

loss is to be expected: if our aim is to privatize texts more rigorously

by focusing on certain component tokens more than others, this

will inevitably lead to a weaker semantic signal from the data.

Interestingly, we observe that the effect on utility is different for

our two chosenmechanisms. In this case of a word-level mechanism

(1-Diffractor), the utility loss stays consistent and always entails

a rather small loss. In the case of DP-BART, the effect on utility is

clearly more severe, as demonstrated in the case of BBC and IMDb.

This significant loss in utility is not absolute, though, as can be

showcased in the DocNLI experiments, where our distribution with

DP-BART performs the same or better than a naive distribution.

These results highlight that budget distribution is not as clear-cut

with document-level DP mechanisms, where segmenting inputs

into sentences yields varying degrees of output quality.

In light of the infamous privacy-utility trade-off, we see that the

relative consistency of the distributed 1-Diffractor utility loss is

met with a generally lower capability to mitigate privacy risks. In

particular, the results in Tables 1 and 2 show that data rewrittenwith

1-Diffractor, whether distributed with our method or not, is not

as strong in protection against attribute or membership inference

attacks. On the other hand, while DP-BART, particularly when

distributed, can largely neutralize any privacy threat, the effect on

utility is so significant that the trade-offs may be more similar to

1-Diffractor than meets the eye.

The trade-offs are most clearly demonstrated in Table 1 with the

Relative Gain (𝛾 ) metric, which tells an interesting story. In defend-

ing against authorship attribution (Yelp), our distribution method

nearly always (11/12) leads to more favorable trade-offs, and regard-

less of distribution method, DP-BART yields significantly higher

relative gains. In contrast, the findings with gender identification

(Trustpilot) are more mixed, with no clear winner regarding mecha-

nism or distribution method. Beyond showing the complexity of the

privacy-utility trade-off, these findings imply that considerations

of budget distribution are also task-specific, and gains in terms of

the trade-off do not come uniformly across different tasks.

5.3 When Does Distribution Make Sense? A

Qualitative Analysis

Beyond the reported metrics in this work, one can look at side-by-

side examples of DP-rewritten texts for insights.

Looking at selected examples in Table 5, one can begin to ob-

serve the differences in rewritten texts between the two distribution

schemes. In the DP-BART example with 𝜀 = 1500, the naive distri-

bution method not only fails to hide the “8 year old” cue, but it also

magnifies this phrase in a later sentence. On the other hand, the

rewritten text with our method makes no mention of this phrase,

and in the case of 𝜀 = 1000, our rewritten text completely “masks”

out the original sentence, albeit with a non-coherent replacement.

Similarly, in the case of 1-Diffractor, we notice that more words

are perturbed (changed) in the distributed examples rather than

the naive. Moreover, certain writing cues, such as “We love it!”, are

never privatized in the naive distribution, but are finally considered

in our distribution scheme (at 𝜀 = 0.1).

While these insights are anecdotal evidence, we hold that such

differences are important in the consideration of text privatization.

The examples illustrate the fact that in any given text, not all compo-

nents of the greater whole are equally important, both semantically

and from a privacy point of view; therefore, privacy budget alloca-

tion should follow the same logic. At the same time, the examples

also demonstrate the pitfalls of a more informed distribution, such

as in the non-coherent outputs of DP-BART at lower budgets. In

addition, even with our proposed distribution, mechanisms such as

1-Diffractor struggle with truly obfuscating the original text, as

in any case, significant semantic cues still remain. The qualitative

analysis, therefore, teaches that while there is sense in distributing

the privacy budget intelligently, there is still much work to be done.

For more examples, we refer the reader to Table ??.

5.4 Investigating the Distribution Methods

Following our ablation study (Table 4), we critically reflect on the

merits and limitations of the individual distribution methods in our

toolkit, leading to ideas and suggestions for further improvement.
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Table 5: Selected Examples of Rewritten Texts from the Yelp Dataset, using the DP-BART Mechanism.

𝜖 Original: My 8 year old just LOVES it here - from musical instruments to jewelry to hand bags, everything is giftable and comes from a fair-trade

community. It’s great fun - but a bit pricey - and nothing here is a neccesity - but if you gotta buy gifts, at least here they are unique and helping

another community. We love it!

D
P
-
B
A
R
T

1000

Naive My 8 year old just loves it here - it’s a great place to shop for gifts and toys - and the kids love it here! - from the start of the year - we have a lot

of fun with it! - and it is a bit pricey - but if you gotta buy something here, it’s worth it.My 8 yr old just LOVES it here

Ours Just a small-b%%% -%% e-the-w%%-%% The e-all-s%% It’s also a great place to be if you want to be a part of the community - but it’s also very

difficult to be in the community.It’s a great complete

1500

Naive My 8 year old loves this store - it’s a gift shop that has everything you need for your kids. The kids are all over the place. The store is small - but

the kids love it.My 8 yr old just LOVES this store. It’s a great gift shop. The prices are great - but if you gotta buy a gift, this is a great

Ours This is the way we are going to go this year.We have a little bit of a way of doing this. The way we do it It’s a bit pricey - but if you can’t afford it,

it’s not a bad thing - and nothing here is cheap - but it’s a little bit of a wonders

Methods that impact utility. We observe that, with slight devia-

tions, all methods besides SD lead to an increase in utility when

removed from the evaluations, thus suggesting that the utilization

of these distribution methods leads to lower utility of the data. In

the interesting case of SD, disabling this method actually leads to

quite significant drops in performance (see the utility scores of SST2

in the Table 4), which can plausibly be attributed to this method

removing “outlier” tokens in the texts that may overtrain models to

particular tokens. The utility-boosting properties of this method are

also demonstrated in the other utility metrics, where, for example,

disabling SD leads to the largest decreases in CS and BLEU.

Methods that impact privacy. The privacy results of the ablation

study uncover an interesting dichotomy. In general, disabling any

method besides NER seems to improve (lower) privacy scores in

the static (s) attacker setting, whereas disabling NER always leads

to worse (higher) results. This suggests that focusing the privacy

budget on named entities is important in the static attacker setting.

In the adaptive attacker setting, other interesting findings arise.

At lower privacy budgets (i.e., 𝜀 = 0.1 and 𝜀 = 0.5), all methods

play an important role in reducing adversarial performance, except

for one case (WI at 𝜀 = 0.5). However, at the higher budget setting

(𝜀 = 1), removing any given method only serves to improve (lower)

the privacy results. This implies that budget distribution is most im-

portant in lower privacy budget regimes, where defending against

more capable adversaries necessitates careful allocation of 𝜀.

Similarly, the effect of certain methods is pronounced with lower

privacy budgets, as showcased by the NN ablation scores. Here,

we observe that WI and SD are influential against membership

inference, whereas others do not play as large of a role.

As a final note regarding the low versus high privacy budgets,

the relative gains (𝛾 ) of Table 4 illustrate that as the overall budget

increases, it may make less sense (from a trade-off perspective) to

distribute the budget with our method. This, however, would largely

depend on whether balancing the trade-off is more important, as

opposed to optimizing privacy (e.g., membership inference).

Main Takeaways. The results of the ablation study, in conjunc-

tionwith the other results we present, show promise in the optimiza-

tion of privacy budgets in DP text rewriting, while also highlighting

important considerations going forward.

Our experiments present a cursory overview of the potential

effectiveness of our proposed budget distribution methods, but the

results merit further investigations. Taking POS as an example,

we observe in Table 4 that this method generally contributes to

better privacy scores, as showcased by the loss of privacy when it

is disabled. However, this is met with increases in utility in some

settings, and decreases in others. In this particular example, we

cannot say with certainty whether the fixed weighting scheme of

POS is optimal, and furthermore, exactly which weights can be

adjusted. This discussion leads to the further consideration that

while it is plausible that certain parts of speech are more relevant

to privatization than others, we simply do not have the data to

produce a more intelligent weighting scheme. This observation

extends to our other proposed methods in the toolkit, where our

initial assumptions about what is important in text privatization

would be well-served to be backed by more informed data.

The various results presented in this work give credence to the

complexity of privacy in textual data, as the many dimensions we

present (i.e., the multiple angles of privacy and utility) make it

difficult to definitively judge effectiveness in privatization. While

this naturally calls for more work in privacy benchmarking and

privacy metrics, it also sheds light on the subjective and individual

nature of privacy in text. As an example, if privacy is strictly impor-

tant in a certain data sharing scenario and one wishes to protect

against strong adversaries, our budget distribution methods would

be a very sensible choice. On the other hand, if utility is crucial

while privacy is secondary, using a higher privacy budget without

distribution might be the wiser choice. Although a continuation

of this discussion is outside the scope of this work, the empirical

results shown here certainly beckon for further such conversations.

6 Related Work

The field of DP text rewriting can be traced back to earlier works

on authorship obfuscation using word-level Metric Differential

Privacy [10]. Other works focusing on DP in NLP sought to improve

word-level mechanisms, with later works tackling the challenges of

utility preservation or efficiency [4, 6, 33, 45, 47, 50]. Later works

transitioned to higher levels of syntactic hierarchy, such as with

sentences [32] or document-level latent representations of text

[2, 22, 23, 46]. DP text rewriting methods leveraging generative

language models [13, 31, 42] have also been proposed in the recent

literature as a way to produce more coherent privatized texts.

Researchers have also focused on identifying and addressing chal-

lenges in the field, especially at the core, where the integration of

DP into the NLP realm is not immediately straightforward [16, 26].

Beyond clear challenges in the generation of coherent and utility-

preserving privatized text [11, 31], questions of benchmarking and

reproducibility [21, 36] have also been raised as important paths for

future research. Finally, the meaning behind the guarantees that DP

rewriting provides has also been a point of investigation [35, 43].
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7 Conclusion

In this work, we investigate methods to improve the effectiveness

of DP text rewriting by focusing on a more informed distribution

of privacy budget amongst the tokens of a document. Given an

input document and a fixed 𝜀 budget, we propose five methods

and a scoring scheme to determine a sensible allocation of the

budget to each of the document’s components. In our conducted

privacy experiments, we learn that in many cases, our proposed

budget distribution leads to higher preserved privacy, against both

attribute and membership inference attacks. At the same time, we

observe that enhanced privacy does not come for free, as our budget

distribution largely leads to lower utility in the privatized data.

Our findings highlight the importance of a more intelligent con-

sideration of how a privacy budget is spent in DP text rewriting,

resting upon the hypothesis that not all aspects of a text are equally

as privacy-sensitive. We empirically demonstrate the privacy-utility

trade-off at work, as well as qualitatively analyze the effects of bud-

get distribution. Above all, our findings reveal that much work

remains towards designing an optimal budget allocation scheme,

and our proposed methods provide the groundwork for doing so.

As such, we propose that future work continues the discussion on

the merits and challenges of informed privacy budget distribution

in DP text rewriting. In particular, we hope that our proposed meth-

ods can be fine-tuned for better privacy protection, which would

ideally be supported by user studies and a greater understanding of

what it means to preserve privacy in textual data. Additionally, the

extension of our work, both in distribution methods and rigorous

testing on more DP mechanisms, would help to broaden the initial

findings we present in this work.
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