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Abstract—First-Come-First-Served (FCFS) transaction ordering
has been discussed as a fairness approach against harmful Maxi-
mal Extractable Value (MEV) strategies. However, such an order-
ing mechanism promotes latency optimizations, similar to High-
Frequency Trading in Traditional Finance. This paper examines
the dynamics of the MEV extraction game in an FCFS network,
specifically Algorand. We introduce an arbitrage opportunity detec-
tion algorithm tailored to Algorand’s time constraints and assess its
effectiveness. Our analysis reveals that while the states of exchange
pools are updated approximately only every six blocks, pursuing
MEYV at the block state level is not viable, as arbitrage opportunities
are typically closed within the block they appear. Additionally,
we experiment on a private Algorand network to uncover latency
optimization factors and show the importance of reducing latency
in connections with relays well-connected to high-staked proposers.

Index Terms—Dblockchain, first-come-first-served, maximal ex-
tractable value, decentralized finance

I. INTRODUCTION

The daily trading volume on Decentralized Exchanges (DEXs)
exceeds multi-billion USD [1]. Such amount of activity on
Decentralized Finance (DeFi) protocols has led to the emergence
of transaction manipulation strategies known as Maximal Ex-
tractable Value (MEV) [2]. While this term generally refers to
the value that can be captured by privileged entities like block
proposers, who can determine transaction inclusion, exclusion,
and ordering, value extraction is not limited to them, as MEV
activity dashboard libMEV [3] reflects a total of 64 million USD
made by profit-seeking entities operating on the mempool, known
as MEV searchers, since Ethereum’s merge in September 2022.

In blockchains where block proposers arrange transactions in a
block in the order received, thus First-Come-First-Served (FCFES),
the dynamics for MEV searching differ compared to a fee-based
blockchain like Ethereum [4]. While FCFS has been studied for
achieving order-fairness [5], [6], it is also discussed to be shifting
MEV extraction to a latency game [4], [7]. As the available
window for searching MEV gets constrained by the expected
arrival time of a competing transaction, MEV searchers have to
compete like High-Frequency Traders in Traditional Finance and
minimize latency with the source of the transaction, such as the
network node of a DEX, and the block proposers’ nodes.

In this paper, we demonstrate how the MEV game can be strate-
gically played on a Layer-1, FCFS network, Algorand, extending
the research by Oz et al. [4]. Unlike FCFS Layer-2 solutions such
as Arbitrum, Algorand has a public mempool where searchers
can monitor the pending transactions and a decentralized set of
block proposers, making it an interesting network to study. To
that extent, we first formally define a cyclic arbitrage opportunity
discovery algorithm tailored to Algorand’s network constraints.

Then, we evaluate its performance on historical blockchain data
we collect. Further, we present a private Algorand network setup
and run experiments on it to identify latency optimization factors.
Our research contributes to understanding the dynamics of MEV
extraction in FCFS networks, showcasing how algorithms can dis-
cover opportunities when constrained on runtime and highlighting
the critical network characteristics for prioritized execution.

II. RELATED WORK

The discourse on arbitrage opportunity discovery includes
studies mainly conducted on Ethereum. Zhou et al. [8] provide
a greedy cycle detection algorithm that achieves a sub-block
time runtime. However, their approach is not tailored to find
an optimal input and maximize profits as it uses a gradual-
increment method and operates on a limited asset set. Wang et
al. [9] focus on constant-product markets on UniswapV2 [10] and
show the consistent existence of larger than 1 ETH opportunities
across blocks. Following, McLaughlin et al. [11] conduct a larger
scale study on 5.5 million blocks and incorporate further market
invariants such as UniswapV3 [12]. They find approximately
4.5billion worth of opportunities with only 0.51 % of the ones
that yield over 1 ETH revenue being successfully executable.

Carillo and Hu [7] and Oz et al. [4] conduct the first studies of
MEYV on FCFS blockchains. The former work analyzes arbitrage
MEYV extraction on Terra Classic and identifies more than 188 000
arbitrages, highlighting the success of MEV searchers adopting
a spamming strategy. They also measure the latency on the net-
work by monitoring 400 000 transactions through their distributed
nodes to signify the importance of geographical positioning
for hearing about transactions first. Oz et al. investigate the
applicability of transaction ordering techniques observed in fee-
based blockchains to FCFS blockchains with a focus on Algorand.
They detect 1.1 million arbitrages across 16.5 million blocks and
show the prevalence of network state backruns among all detected
arbitrages. They also reveal that particular MEV searchers profit
from top-of-the-block positions, hinting at latency and transaction
timing optimizations. Their study presents network clogging as a
viable MEV strategy in FCFS networks due to its low cost and
finds arbitrage clogs executed on Algorand.

IITI. FINDING PROFITABLE OPPORTUNITIES

In this section, we present our algorithm for finding profitable
arbitrage MEV opportunities as they are shown to be frequently
executed by MEV searchers on Algorand [4]. We propose a real-
time algorithm tailored to network’s specific time constraints,
aiming to identify nearly all emerging arbitrage cycles and
incorporate an efficient input optimization technique. We evaluate
our algorithm’s performance on historical state data.



A. Cyclic Arbitrage Detection Algorithm

Our algorithm begins with a setup phase, where we translate
the space of assets A and pools P into a multigraph G = (V, E).
Here, V represents the set of vertices, each corresponding to an
asset a € A, and F is the set of edges, where each edge denotes
a pool p;; € P that enables the exchange between assets a; and
a; (we ignore the pools which offer more than two assets). Given
that G' is a multigraph, we define F;; C E as the set of pools
available for exchanging the two assets.

Assuming a subset PA C A as the profit assets of interest,
we employ a cycle detection algorithm on G to find the set
of cycles C' of length [ € L for each profit asset pa € PA,
denoted as C,,. Each trading cycle ¢l,, € C},, comprises | swaps
{s',...,s'} where the input of s' and the output of s’ is the
profit asset pa. Each swap s;; between assets a; and a; can be
implemented in |E;;| ways. Therefore, a cycle cfm can have Nc; .
different implementations, where N = Hi'=1 |E,i| and Lo,
represents the set of implementations, with [I | = N . The
aggregate set of implementations for cycles of length [ for a profit
asset pa, denoted as I},, is defined as I}, = Uer ect Lo,
The comprehensive implementation set for all assets in PA is
Tiotal = Upae PAlEL Illm. The setup stage outputs I, leading to
the arbitrage detection phase, which happens in real time after
every proposed block b. In this phase, we apply the detection
algorithm to a subset of cycle implementations I, C I
including our profit assets, targeting cycles with updated pool
reserves in block b. We ignore the cycles with only stale pools
as we have already evaluated them.

The algorithm is confined to operate within a predefined time
window 7, which, for FCFS networks, depends on the arrival time
of the first transaction, changing a relevant pool’s state. In such
networks, the desired position in a block can only be achieved
by correctly timing the transaction issuance and propagation to
the network. In fee-based blockchains such as Ethereum, min 7
is equal to block time (ignoring network propagation latency), as
the targeted position can be obtained by issuing a transaction with
sufficient fees at any time before the block is mined.

While 7 is not reached, for each cycle i € IP,, we check
if the product of involved pools’ exchange rates’ is greater than
one, indicating an arbitrage opportunity. If so, we search for the
profit-maximizing input for ¢ using SciPy’s minimize function
constrained by the involved pools’ swap invariant. This approach
maximizes our profitability objective function in a constraint-
free nonlinear optimization landscape, employing solvers adept
in numerical gradient approximation. In case the profit level of
the arbitrage is more significant than a lower limit, we append it
to the set of candidate arbitrages for block b, denoted as Ab

candidates *

Finally, we adopt one of two strategies for arbitrage selection: a
greedy strategy for maximizing profits and an FCFS strategy. The
former strategy initially iterates over every candidate arbitrage
in A% e @nd, after evaluating all, greedily selects and issues
the most profitable, non-overlapping set, which we denote with
Agreedy. On the other hand, the FCFS strategy does not wait
to check the profitability of every arbitrage in A% ... Tt
issues them as soon as their optimal input is discovered. While
this strategy ensures rapid execution, it trades off maximizing
profitability since early discovered arbitrages may invalidate to-

be-realized, more lucrative opportunities.

B. Empirical Evaluation Setup and Results

To test the performance of our algorithm, we constructed a his-
torical state data collection setup. Leveraging the API capabilities
of the Algorand node, we establish a process that continuously
listens to our node. Concurrently, we utilize SDK utilities of
various DEXs on the Algorand network to fetch reserve data of
pools following the CPMM price invariant. This data, essential
for arbitrage discovery, is stored for each round, maintaining a
continuous and comprehensive market overview. ALGO token
price data for revenue calculation is fetched from [13].

We have tracked 136 assets, exchanged in 255 pools, on three
different DEXs (TinymanV1, TinymanV2, Pact), starting from
block 32608011 (Thu, 05 Oct 2023 00:49:42 GMT) until block
33039007 (Sat, 21 Oct 2023 21:05:40 GMT). In these 16 days,
430996 blocks were built on the Algorand blockchain. In 30 828
(7.1%) of them, reserves of at least one pool we tracked got
updated, and we executed the arbitrage detection algorithm on it.

1) Unconstrained Arbitrage Discovery: Before analyzing the
time-constrained performance of our algorithm, we let it run
unconstrainedly to observe the maximum profitability of block
state arbitrages. To benchmark its performance, we also calculate
the executed arbitrage profits in the same block range, utilizing
the heuristics defined in [4].

In Figure 1, we display a time series of arbitrages discovered
through our algorithm, which we only ran on finalized block
states (blue) versus the arbitrages executed in reality (green).
The stark dominance of realized arbitrage revenues showcases
that MEV searchers on Algorand promptly exploit arbitrage
opportunities inside the block they emerge. Hence, in most cases,
price discrepancies do not carry over to the next block. While
the maximum realized revenue of an arbitrageur is 167.17 USD,
we find, at most, a 32.2 USD opportunity on the block state that
is fully closed in the subsequent six blocks. When we manually
checked the most profitable ten arbitrages for the window between
the position of the opportunity-creating transaction and their
respective backruns, we found that the first backrun was always
located at the immediate following position.

2) Time-Constrained Arbitrage Discovery: The success of an
arbitrage strategy depends on execution prior to an update in
the reserves of the arbitraged pools. We have introduced 7 to
denote the time window before such an update occurs as part
of a competing arbitrageur’s transaction or by an innocent user
trade. A competitive arbitrage discovery strategy needs to operate
under 7. Hence, in this section, we measure our algorithm’s
performance under a spectrum of 7 values. Our initial experiments
on 430996 Algorand blocks, in which only 7.1 % of them have
an updated pool we track, show that pools relevant for our
arbitrage detection algorithm are updated on median every six
blocks (25 %: 2.0, 75 %: 17.0); hence 7 is close to 19.8 s (block
time ~ 3.3s). Interestingly, the max state update delta reaches
294 blocks (~16 min), although our algorithm does not detect
any profitable block state arbitrage during this window.

The Value of Time: We measure the profitability of our
algorithm as a function of 7 to observe the impact of the available
runtime window on the discovered value. Although we have
detected a median state update delta of six blocks (7 = 19.8), due
to the competitive nature of intra-block opportunities (see Sec-
tion I1I-B1), we conduct experiments on a range of 7 € [0.2,19.8].
Additionally, we consider 7 = oo to encapsulate the maximum
profitability in that block.
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Fig. 1: Time series of arbitrage revenue discovered on the block
state by our algorithm (blue) versus the total realized revenue by
arbitrages executed in every block (green).

In Figure 2a, we plot the revenue difference percentage of 7
values to maximum discoverable revenue when 7 = oo, with the
mean difference (1) indicated in the legend. The results indicate
that the discovered arbitrage revenue only significantly degrades
when 7 is very low (at 0.2s, 84.39% less arbitrage revenue
is found). On the other hand, almost maximum profitability is
reached when 7 is close to block time (3.3 s). While the revenue
difference we observe depends on the infrastructure we execute
the algorithm to measure the runtimes and the size of the pool
set we consider, our analysis yields an intuition about the positive
influence of available runtime on the discovered value.

First-Come-First-Served: So far, we have adopted the profit-
maximizing, greedy arbitrage selection strategy. However, since
MEYV searchers on Algorand do not leave many opportunities for
arbitraging on the block state, we need to optimize the runtime
of our algorithm further to be competitive on the network-level
arbitrage. Thus, we adopt an FCFS strategy for arbitrage selection,
which does not wait to consider all arbitrages available and select
the most profitable ones but issues them as soon as their optimal
input is calculated. While this strategy can yield less optimal
revenue, it potentially saves valuable time.

We find that the disparity between greedy arbitrage selection
strategy and FCFS is only 5.36 % when the algorithms are run for
0.2 s (see Figure 2b). However, the difference becomes significant
with increasing 7 values as, with more time, the greedy strategy
discovers a broader set of opportunities and considers all of them
when choosing the most profitable ones to be issued. FCFS strat-
egy, on the other hand, always executes the first arbitrage it finds;
hence, with increased time, the probability of finding arbitrages
overlapping with the taken ones also increases. To minimize the
revenue difference between the two approaches, the FCFS strategy
requires applying a prioritization rule on the candidate arbitrage
cycles before processing them. In our experiments, we sorted
candidate cycles based on existing liquidity in involved pools,
although more sophisticated rules can be developed by modeling
the problem in a machine-learning domain.

IV. OPTIMIZING NETWORK LATENCY

In FCFS networks, MEV extraction depends on latency opti-
mization with the transaction source for observing an opportunity
before the others and with block proposers for getting executed
first. We conduct experiments on a privately deployed Algorand
network to show how transactions can be prioritized and discuss
the results in this section.
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Fig. 2: Time series of discovered revenue difference percentage
between the execution of our algorithm with 7 and 7 = oo

(2a) and between greedy arbitrage selection and FCFS strategies,
measured for varying 7 values (2b).

A. Network Experiments and Analysis

We first introduce the conducted network experiments, primar-
ily focusing on the Algorand transaction ordering mechanism
under simultaneous transaction attempts by competing entities.
The objectives of these network experiments are threefold:

Q1 How do latency and transaction fees affect transaction order-
ing when different parties compete for their prior execution?
How does the connectivity between relay and participation
nodes with various stakes affect the transaction ordering?

Is it feasible to prioritize a transaction if we have a view of

the network topology and if so, how can we achieve this?

Q2
Q3

As we require visibility and control over the distribution
of participation nodes and their stake, we set up Algorand as
a private network. This allows us to control the topology, in
which we can introduce latencies, scale transaction issuance to
emulate various network conditions and allocate required stakes
to participants. We use the METHODA framework [14] that
extends the EnGINE toolchain [15]. METHODA implements the
Algorand blockchain, automating the deployment process relevant
to our scenarios. It also supports scalable experiments with more
nodes and emulates delays using netem.

1) Experiment Design: We devise three scenarios, using dis-
tinct network topologies, as shown in Figure 3. Scenario I in
Figure 3a introduces a topology with two non-participating peers
and a single relay connected to a single participation node. We
note that npy has worse delay towards r; (1)), and we expect
transactions issued through np; to be prioritized even though
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Fig. 3: Network topology of three scenarios (3a, 3b, 3c) with a legend in 3a. Dashed blue arrows correspond to delay of 100 ms.

npo offers higher fees. Similarly, in Scenario II, we introduce
a delay (®) from np; towards r3 and between r5 and r3 (see
Figure 3b). However, since the participation node with a higher
stake (p1) is expected to propose blocks more often, np, should
be in a worse position regarding transaction prioritization. Lastly,
Scenario III assigns the same stake to every proposer while
placing a delay on the shortest path towards p; and py (®)
from npy (see Figure 3c). As all participation nodes have equal
stakes, they have the same probability of winning the proposer
selection round, with the only difference being the Verifiable
Random Function (VRF) value they generate. Thus, we expect
np1’s transactions to be prioritized significantly in half of the
experiments whenever p; or ps proposes a block.

To emulate two MEV searchers S7 and S5, simultaneously at-
tempting to exploit an opportunity, we deploy a simple smart con-
tract, which tracks the state of a global variable last_executed,
and the winner searcher is the one which modifies this variable’s
value the first. We assume that S; and S change the global state
by calling functions decrement and increment, respectively.

2) Experiment Analysis: To highlight the findings from the
three scenarios, we monitor how often the decrement method
is invoked on node np; by S;, while the increment method is
simultaneously invoked on node nps by Ss.

In Scenario I, we observe a consistent prioritization pattern
throughout all 500 blocks. The decrement function call directed
to node np; by S; always reaches p; first over the increment
call sent to node nps by S3. Notably, this occurs despite the
transaction to nps has a tenfold fee that of the transaction to np;.
This result confirms the ineffectiveness of fees within Algorand’s
FCFS network for transaction prioritization.

Scenario II shows that node p; is chosen as the proposer in
377 out of 500 (~ 75%) iterations, proportional to its stake
in the network (p; : 72%). We note that when p; proposed
blocks, the decrement function call is consistently prioritized.
On the other hand, when p2 is the proposer, the increment call
received prioritization, although not every time. Despite node
np; being connected with all relays, the selection of py as the
proposer enables searcher So, using node npo, to propagate their
transactions ahead of S;. This advantage for S5 is due to the
latency between np; and relay r3. Nonetheless, as S; prevails
in most cases, the findings signify the importance of a node’s
connectivity to a relay with higher-staked participants to achieve
a prior position in the block.

Scenario IIl also confirms that the proposers’ selection
frequency is proportional to its stake within the network. In
instances where p; and p, are chosen, there is a heavy bias
towards prioritizing the decrement call by S;. This validates our
previous findings, underscoring latency as a key factor influencing

Proposer Blocks Prioritized Method Frequency

Scenario 1 p1 500 Decrement 100%
. p1 377 Decrement 100%
Scenario 2 123 Increment 76.42%
D1 126 Decrement 96.03%

Scenario 3 P2 113 Decrement 97.01%
p3 134 Increment 51.97%

P4 127 Decrement 54.80%

TABLE I: Summary of observations for Scenarios 1, 2, and 3

transaction order. When ps and p, are selected as proposers,
the data show an almost equal likelihood of giving preference
to either searcher’s call.

B. Experiment Findings

The experimented scenarios contribute to verifying Algorand’s
behavior under various conditions and answer the outlined ques-
tions Q1-03. The key findings are as follows:

o The default node implementation does not incorporate fee levels
to prioritize transactions. Although the participation nodes can
alter their source code, they have no such incentive unless they
search MEV, as they do not keep the transaction fees.

« Network latency is critical in ordering transactions. For MEV
searchers, this underscores the importance of minimizing the
latency between their transaction and relay nodes.

o The proximity of a node to a high-staked proposer is signif-
icantly influential in transaction sequencing. MEV searchers
should aim to transmit their transactions to well-connected
relays with multiple high-staked nodes, as these nodes are
expected to propose blocks more frequently.

V. CONCLUSION

This paper examines the intricacies of MEV extraction on
FCFS networks with a study on Algorand. We propose an
algorithm for arbitrage opportunity discovery and evaluate its
performance on historical blockchain data. Our findings indicate
that although state updates between blocks are infrequent, ar-
bitrage opportunities are effectively closed in the block where
they appear. We also show the impact of available runtime and
arbitrage selection strategy on the discovered revenue. Subse-
quently, we perform experiments on a private Algorand network
and highlight the importance of minimizing latency in connections
to relays with well-connected links to multiple high-staked nodes.
In future work, we plan to refine our algorithm by considering
a broader set of pools and applying it directly at the network
level. Additionally, we aim to extend our network experiments to
the Algorand mainnet to explore latency relations between high-
staked block proposers and successful MEV searchers.
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