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Abstract. The need to explicitly document design decisions has been
emphasized both in research and in industry. To address design concerns,
software architects and developers implicitly capture design decisions in
tools such as issue management systems. These design decisions are not
explicitly labeled and are not integrated with the architecture knowl-
edge management tools. Automatically extracting design decisions will
aid architectural knowledge management tools to learn from the past
decisions and to guide architects while making decisions in similar con-
text. In this paper, we propose a two-phase supervised machine learning
based approach to first, automatically detect design decisions from is-
sues and second, to automatically classify the identified design decisions
into different decision categories. We have manually analyzed and labeled
more than 1,500 issues from two large open source repositories and have
used this dataset for generating the machine learning models. We have
made the dataset publicly available that will serve as a starting point
for researchers to further reference and investigate the design decision
detection and classification problem. Our evaluation shows that by us-
ing linear support vector machines, we can detect design decisions with
91.29% accuracy and classify them with an accuracy of 82.79%. This
provides a quantitative basis for learning from past design decisions to
support stakeholders in making better and informed design decisions.
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1 Introduction

Over the last decade, there has been a paradigm shift in how we view soft-
ware architectures. Since the representation of Architectural Design Decisions
(ADDs) as first-class entities [5, 17, 32], software architecture is considered as
a set of architectural design and ADDs [15, 18]. The architectural knowledge
management (AKM) tools [3,4,21,23] support the documentation of ADDs and
its associated concepts including architectural concerns, alternative architectural
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solutions, and rationales for ADDs. Moreover, industry standard software archi-
tecture templates (for example, arch42!) provide placeholders to capture ADDs.
Documenting ADDs supports stakeholders to understand and reason about the
software architecture during both the development and maintenance phases [6].
However, the manual effort [8,19], time, and cost [31] involved in the documen-
tation process are a concern for practitioners and its immediate benefit is not
visible [20]. Hence, industry has often not recognized the value of ADDs, for
example, by taking benefit from reoccurring design concerns in similar context.

Furthermore, with the rapid adoption of agile methodologies for software
development, ADDs both in large open-source software (OSS) and in industrial
projects are scarcely documented [1]. However, stakeholders involved in projects,
that follow this agile movement, tend to use agile project management tools
such as issue trackers and version control systems [29, 30]. In such projects,
even though design decisions are not explicitly documented, they are implicitly
captured in different systems including project management, issue management,
source code version management, and meeting recording systems [25].

The use of issue management systems (for example, JIRA and GitHub issue
tracker) for managing issues is becoming popular both in industrial settings as
well as in OSS projects [2,12]. An issue is either a task, new feature, user story,
or bug. These systems provide a common interface for stakeholders to track,
communicate, and visualize the progress of tasks within a project. For instance,
a software architect can create a new task (which might implicitly represent
a design decision) such as “Remove dependency on Twitter4J repository?” and
assign it to a developer to complete the task. Furthermore, as a good practice, the
developer community maintains a link between the task in the issue management
system and the source code commits or pull-requests in version control systems
using the task identifier or vice versa. In sum, issue management systems are
an excellent source that implicitly captures decisions made by architects and
developers [25] and acts as a bridge between stakeholders’ requirements and the
source code of the corresponding software system. Furthermore, the attributes
such as reporter, assignee, and creation date of the issue are also maintained in
such systems and can be used to enrich the meta-information of design decisions
in AKM tools, for example, to refer to originators and experts.

In this paper, we address the extraction and classification of design decisions
that are not systematically documented in AKM tools but implicitly captured in
issue management systems. The contribution of this paper is twofold. First, we
propose a two-phase machine learning (ML) based approach (cf. Figure 1). In
the first phase, design decisions are automatically detected from issues that are
extracted from an issue management system. In the second phase, the identified
design decisions are further classified into different decision categories. Second,
we make the manually labeled dataset, which was created for training the ML
models publicly available?. Since, no such labeled dataset exists, this contribution

! nttp://arc42.org/
2 https://issues.apache.org/jira/browse/SPARK-710
3 https://server.sociocortex.com/typeDefinitions/1vk4hqzziw3jp/Task
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Fig. 1. A two-phase ML-based approach for decision detection and classification

will serve as a starting point and reference for researchers to apply and compare
supervised ML algorithms for extracting and classifying design decisions.

As discussed by Kazman et al. [16], architecture needs to be made explicit to
avoid knowledge vaporization and to favor the knowledge acquisition process for
newcomers and adopters of the project. The extraction of design decisions from
issues will support the process of capturing AK in the AKM tools, which will in
turn enable various use cases including reasoning, recommendations, traceability,
and report generation for stakeholders. In addition, automatically classifying the
extracted decisions into different categories such as Structural, Behavioral, and
Ban decisions (cf. Section 2) will label those decisions to aid the search and the
recommendation use cases. In particular, it will allow the creation of a knowledge
base that can be used, for instance, to learn from the decisions made in similar
past projects. Software architects will be able to rely on decisions made in the
past to address design concerns in their current projects. As van der Ven and
Bosch [34] put it, “Wouldn’t it be great if software architects could get access
to the decisions made by other architects, that would allow them to determine
what selections were made from a set of alternatives and with what frequency?”

This paper is organized as follows. Section 2 describes the related work.
In Section 2, we revisit the ADD categories proposed by Kruchten. Section 4
presents the dataset preparation process. Section 5 describes the setup of the
ML pipeline used for decision detection and classification. The results of applying
different multi-class classification algorithms are discussed in Section 6. Finally,
we conclude with a short summary and an outlook on the future research.

2 Related Work

The need to systematically capture design decisions to enable reasoning and
decision support in AKM tools has been extensively discussed in the past. For
instance, Babar and Gorton [3] propose an AKM tool named PAKME for man-
aging architectural knowledge and rationale. The repository within PAKME con-
sists of generic design options and architectural patterns that can be assessed
by architects before making architectural decisions. Similarly, tools such as De-
cision Architect [23] and ADVISE [21] allow architects to capture and analyze
architectural decisions. Capilla et al. [7] in their literature study analyze these
tools and their functionalities and indicate that there is a need for substantial
improvement in the ability to (semi-) automate use cases for AKM.
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The aforementioned tools follow a top-down approach to AKM, that is, they
require stakeholders to manually capture data in respective tools which then
enables traceability and reasoning based on their meta-models. However, archi-
tectural documentation is sparse and stakeholders tend to rather use agile tools
such as issue trackers, e-mail clients, PowerPoint, and meeting recording sys-
tems to capture their day-to-day decisions [25]. As compared to the top-down
approach, we envision a bottom-up approach that focuses on analyzing existing
data to automatically extract design decisions and structure them thereafter.

The research in the area of automatic design decision detection and classifi-
cation is still in its infancy. The approach taken by van der Ven and Bosch [34] is
closely related to our work. They propose an approach for analyzing design deci-
sions maintained in the source code commits of OSS repositories. In their work,
six subject matter experts manually analyzed 100 different commit messages and
indicated that 67% of those commit messages reflected design decisions. Simi-
larly, based on surveys, Dagenais and Robillard [10] identified decisions from
developer documentation. In our work, however, we study the issues maintained
in issue management systems and apply a ML-based approach to automatically
extract and classify design decisions.

Furthermore, in [11] and [13], authors have successfully applied speech analy-
sis techniques to automatically detect decision-related conversations. We believe
that such efforts to automatically detect and extract decisions from systems that
are extensively used by architects and developers will aid the adoption of AKM
tools to provide significant decision support. Hence, in this paper, we focus on ex-
tracting and classifying design decisions from one of the frequently used systems
in software development, that is, issue management systems.

3 ADD Categories

In his seminal work [17], Kruchten
introduced an ontology of ADDs in
software-intensive systems. He classi- . ..
fied ADDs into three main categories ‘ Design decision ‘
— existence decisions, property deci- I ZIF ]
sions, and executive decisions. Fig- ‘ Property H Existence H Executive ‘
ure 2 shows the taxonomy of the ADD
categories with the emphasis on exis-
tence decisions, which is the focus of
our proposed approach.

Existence decisions: Decisions Fig. 2. ADD categories (source: [17])
that reflect the existence of an artifact
in a system’s design or implementation. These decisions are further classified into
structural, behavioral, and ban or non-existence decisions. Those decisions
that indicate the creation or update of artifacts in a system are referred to as
structural decisions. Whereas, those decisions that capture, for instance how
components interact with each other or discuss the functionality of the system

1

‘ Structural H BeI;vioral H Ban ‘
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are referred to as behavioral decisions. For example, “Add jets3t dependency
to Spark Build*” corresponds to a structural decision and the task “Add job
cancellation to PySpark®” is a behavioral decision. Finally, those decisions that
result in the removal of an artifact or interaction between artifacts are referred
to as ban or non-existence decisions. For example, the task “remove numpy from
RDDSampler of PySpark®” is a ban decision. As discussed in [17,25], identifying
and then documenting ban decisions is important since these decisions are not
traceable to any existing system artifacts.

Property decisions influence the general quality of a system. Design rules,
guidelines, and design constraints are considered as property decisions.

Executive decisions are driven by the business environment, management
processes, and organizational structures.

Miesbauer and Weinreich [25] demonstrated in their expert survey that the
majority of design decisions are existence decisions. In total, they collected 120
examples of design decisions during the interviews. After mapping the examples
to the decision categories, they noted that 65% of decisions were existence de-
cisions, 27% were executive decisions (most of them technology decisions), and
the remaining 8% belonged to the property decision category. With this as a
basis, as well as due to the high manual effort involved in the labeling process
for generating the dataset, we start our analysis by considering existence de-
cisions along with its three sub-categories. However, by creating labeled data
for the remaining categories and then by training the supervised classifiers, the
proposed approach can be extended.

Apart from the aforementioned categories, it should also be noted that de-
sign decisions could also be classified according to different abstraction levels.
Jansen [14] proposes a funnel of decision-making model to classify decisions at
different abstraction levels such as software architecture, detailed design, and
implementation. Van der Ven and Bosch [34] relate to these abstraction levels as
high-level, medium-level, and realization-level decisions. The decisions at different
abstraction levels are related to each other and form a tree structure. Moreover,
the decisions at a higher level of abstraction constraint or influence the decisions
at lower levels. We observed during the manual analysis that the decisions ex-
tracted from issues belong to either medium-level or realization-level decisions.
Software architects and developers make these decisions during the implemen-
tation and maintenance phase of a project. Moreover, since these decisions are
the hardest to make [33,34], extracting and recommending them to software
architects will support the decision-making process in similar projects. In order
to achieve this, we first need to identify, extract, and classify design decisions
from the existing projects. Hence, we formulate the following two hypothesis:

1. Design decisions can be automatically identified and extracted from issues.
2. Design decisions can be automatically classified into ADD categories, namely
structural, behavioral, and ban decisions.

4 https://issues.apache.org/jira/browse/SPARK-898
® https://issues.apache.org/jira/browse/SPARK-986
S https://issues.apache.org/jira/browse/SPARK-4477
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To validate the aforementioned hypothesis, we used issues maintained in two
large OSS projects. We first extracted the issues from an issue management
system into an AKM tool. Then, we applied a ML-based approach to a) auto-
matically extract design decisions from the already extracted issues and b) au-
tomatically classify the extracted design decisions into three specific categories.
The dataset preparation process and the ML pipeline setup for generating the
ML models are elaborated in the subsequent sections.

4 Dataset

In this Section, we present the data extraction, curation, and manual labeling
processes for generating the dataset for decision detection and classification.

4.1 Data Extraction

We considered two large OSS projects, namely Apache Spark and Apache Hadoop
Common for this study. Apache Spark is a large-scale data processing engine.
Since early 2014, contributors of this project have captured more than 19,000
publicly accessible issues in JIRA from version 0.9.0 to 2.1.07. Apache Hadoop,
on the other hand, is a distributed computing software and the Hadoop Common
component is the core that provides utilities to the other Hadoop components
such as YARN and MapReduce. Hadoop Common maintains more than 10,000
issues from version 0.2.0 to 3.0.0-aphal, since early 2013%. Both these projects
are related to each other, as Apache Spark runs in Hadoop clusters. We selected
these two projects for the following reasons:

— Interest to analyze design decisions for building a data analytics platform

— Experts responsible for generating the training dataset for ML had used
either one of the systems and were involved in data analytics projects

— Both are long-running projects and have maintained more than 10,000 issues

— Both these projects are extensively used in data management solutions®

During the extraction process, we extracted the issues related to these two
projects from JIRA while filtering for the following relevant settings. The list of
prerequisites for issues to qualify for our study helped us to narrow down the
large number of issues to those issues that potentially reflect design decisions.
For instance, a critical task that has been resolved by implementation indicates
that there is a potential change in the detailed design of a software system.

Issue Type = Task, New Feature, Improvement, or Epic
— Priority = Blocker, Critical, or Major

Status = Resolved

— Resolution = Fixed, Implemented, Done, or Resolved

" https://issues.apache.org/jira/browse/SPARK — last accessed on 25.01.2017
® https://issues.apache.org/jira/browse/HADOOP — last accessed on 25.01.2017
 https://www.gartner.com/doc/3371732/critical-capabilities-data-warehouse-data
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To extract issues from JIRA, we used an OSS component within our AKM
tool [4] named SyncPipes!?. SyncPipes allows end users to map the properties of
the source system (JIRA) to the target system (AKM tool). Subsequently, based
on the properties mapping, a pipeline is established to enable data integration
and synchronization. In total, we extracted 2,259 issues from Apache Spark and
420 issues from Hadoop Common projects.

4.2 Data Curation

We consider the summary and description attributes of an issue since they
elaborately describe an issue’s purpose. It should be noted that comments within
issues could also be analyzed in this context. However, we restrict our data
analysis to the text captured in summary and description attributes and consider
the inclusion of comments as part of our future work.

As a first step, the summary and description of all the extracted issues were
cleaned by removing the following:

— Code snippets within the text, as well as code inside {{ }} and {code} blocks
— Comments inside {noformat} blocks
— URLSs inside the text

We introduced the above restriction so as to ensure that the intent of the issue
can be justified only on the basis of textual description without the need for
code snippets for explanation.

4.3 Manual Labeling

Two software architects with more than five years of experience individually
analyzed the extracted issues in two steps. In the first step, these architects
manually classified a set of issues into two classes, namely Design Decision and
Not A Design Decision. In the second step, the decisions identified in the first
phase were manually classified into three decision classes, namely Structural
decision, Behavioral decision, and Ban decision (cf. Section 2). These steps were
not necessarily carried out sequentially, but as per the convenience of the experts.

Before starting the labeling process, to ensure a common understanding be-
tween the two architects, we set up the rules presented in Table 1 for the manual
classification. The classification of design decisions is purely based on the def-
inition of decision categories as discussed in Section 2. To the best of authors’
knowledge, there does not exist any design decisions dataset that can be used for
reference. Hence, we put forth the rules shown in Table 1, for the two architects
to support the manual labeling process.

Based on the aforementioned rules, both the architects manually analyzed
the text in the summary and description attributes of all the extracted issues.
Those issues with a missing description and whose intent was not explanatory
using the textual description were marked as deleted. The issues that belonged

0 https://wuwmatthes.in.tum.de/pages/2ghOuddiafap/SyncPipes
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Table 1. Rules for manual classification

Structural decision:

+ Adding or updating plugins, libraries, or third-party systems

+ Adding or updating classes, modules, or files (a class, in this context, refers
to a Java class)

Changing access specifier of a class

Merging or splitting classes or modules

Moving parts of the code or the entire files from one location to another
(code refactoring to address maintainability issues)

+ Updating names of classes, methods, or modules

+ 4+

Behavioral decision:

+ Adding or updating functionality (methods/functions) and process flows
Providing configuration options for managing the behavior of the system
Adding or updating application programming interfaces (APIs)

Adding or updating dependencies between methods

Deprecating or disabling specific functionality

+ Changing the access specifiers of methods

+
Jr
+
—+

Ban decision:

+ Removing existing plugins, libraries, or third-party systems

+ Discarding classes, modules, code snippets, or files

+ Deleting methods, APIs, process flows, or dependencies between methods
+ Removing deprecated methods

Design decision:
4+ An issue that belongs to any one of the above categories
Not a design decision:

+ An issue that does not belong to any of the above categories

to a specific decision category were labeled respectively, as well as, marked as a
Design Decision. However, the issues that did not belong to any of the decision
categories were marked as Not A Design Decision. During this process, we ob-
served that some of the issues were abstract, in the sense that, they were broad
issues that could be classified into more than one category. For example, the
issue titled “Implement columnar in-memory representation'!” aims to improve
the memory efficiency of the system and represents a design decision. This issue
affects the behavior of the system by introducing a new functionality and affects
the structural aspects by introducing new Java classes for its implementation.
In this study, we do not apply multi-label classification and focus only on multi-

1 https://issues.apache.org/jira/browse/SPARK-12785
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class classification'? and hence, we restrict the labeling of issues to only one
label. Moreover, the majority of issues could be classified into one category since
issues are typically concise so that developers can easily understand and imple-
ment the tasks. To sum up, architects were requested to mark issues belonging
to more than one category as deleted since we argued that applying multi-class
classification for detection and classification of design decisions is sufficient to
validate the hypothesis set for this study.

Once the architects labeled all the issues individually, the training dataset
was consolidated with two focus points in a shared meeting.

— All those issues that were marked as deleted by both the architects were
removed from the knowledge base.

— All those issues that had inconsistent decision categories were also removed.
Since inconsistent dataset results in unreliable classification results, this step
ensured that the issues in the dataset were labeled correctly.

The labeling process resulted in a dataset with 2,139 issues with 781 issues
labeled as Design Decisions and 1,358 issues labeled as Not A Design Decision.
To avoid skewed results towards Not A Design Decision label (due to a higher
number of issues labeled as Not a Design Decision), we randomly selected 790
issues labeled as Not A Design Decision for generating the design decision de-
tection ML model. Furthermore, out of 781 design decisions, 226 were labeled as
Structural, 389 were labeled as Behavioral, and the remaining 166 as Ban design
decision. To ensure a balanced input for generating the ML model for design
decision classification, we randomly selected 160 issues from each category.

5 Machine Learning Pipeline

We used the pipeline shown in Figure 3 to generate the ML model for decision
detection and decision classification. The pipeline itself was divided into two
parts. In the first part — “process documents”, the labeled dataset was the input
and the pipeline generated the term frequency representation of issues. The out-
put of the first part was then consumed by the second part — “Generate model”
to produce the classification model and the result of applying the model on the
testing dataset. Each issue in the labeled dataset was first tokenized to retrieve
words. All the words were then transformed to lower cases. Stop words such
as articles, conjunctions, and prepositions were removed. The remaining words
were then stemmed to their root words using the Porter stemming algorithm [26].
Subsequently, a list of generated n-grams was appended to the word list. Gen-
erating n-grams helps to maintain the context of the usage of specific terms by
considering its surrounding terms. For the evaluation, we tried different values
of n (from 1 to 5) and documented the results as presented in the next section.

12 Given that there are multiple labels, in multi-class classification, a document can be
assigned to one and only one label. Whereas, in multi-label classification, a document
can be assigned to any number of labels.
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Fig. 3. The machine learning pipeline for design decision detection and classification;
Classifiers: SVM, Naive Bayes, Decision tree, Logistic regression, One-vs-rest; n-grams:
one to five; Split strategies: 90%, 80%, 70%, 60%, 50%;

Finally, the list of words was converted into a term frequency representation.
For decision detection with a labeled dataset of 1,571 issues (781 and 790 issues
labeled as design decision and not a design decision respectively), we used the
term frequency-inverse document frequency (tf-idf) for vector representation.
The tf-idf representation evaluates the number of times a word appears in an is-
sue but is offset by the frequency of the word in the corpus. However, for decision
classification, we only used term frequency since the dataset was comparatively
smaller with 480 design decisions (160 issues in each decision category).

The term frequency representation of issues is provided as input to the second
part of the pipeline for generating the classification model. We used different
shuffled split strategies (90%, 80%, 70%, 60%, and 50%) and observed the results.
That is, the documents were split into training dataset and testing dataset with
different split percentages during multiple runs. Furthermore, we used k-fold
cross-validation in the model generation process for estimating the accuracy. In
our test runs, we used 10-fold cross-validation (k=10) which is common in data
mining and machine-learning as it produces less biased accuracy estimations for
datasets with small sample sizes [27]. We used different multi-class classifiers on
the dataset with the parameters shown in Table 2. The classification model was
then applied on the testing dataset to generate the classification results.

We implemented the pipeline shown in Figure 3 using Spark’s scalable ma-
chine learning library (MLlib) [24]. The MLIib component provides interfaces to
create and execute the pipe and filter based pipelines. The pipeline with its con-
figurations and the generated model was eventually persisted as a Spark model
instance in the AKM tool for subsequent decision classification. That is, for au-

Table 2. Classifier parameters

Support vector machines — Kernel: linear; SVM type: C-SVC; Library: LibSVM [9]
Decision tree — Criterion: gain ratio; Depth: 20; Confidence: .25; Minimal gain: .1
Logistic regression — Kernel: dot; ElasticNet: .8; Regularization: .001; Iterations:10
One-vs-rest — Base classifier: Logistic regression

Naive Bayes — Additive smoothing: 1
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tomatic detection and classification of newly created issues, this Spark model
instance is executed and the classification label is persisted in the AKM tool.

The end-to-end workflow of the automatic design decision detection and clas-
sification is shown in Figure 1. Since the output of the first phase (decision de-
tection) is the input to the second phase (decision classification), high accuracy
of the results from the first phase is critical. The decision detection component
loads the issues, uses the ML model generated for decision detection, and classi-
fies each issue as either a decision or not a decision class. Next, the classification
component takes the identified design decisions and classifies them into different
categories using the decision classification ML model.

6 Evaluation

In this section, we present the results of applying different classifiers under differ-
ent configurations for both decision detection and classification using the labeled
dataset. In our scenario, the precision (fraction of automatically retrieved doc-
uments that are relevant) is as important as the recall (the fraction of relevant
documents that were successfully retrieved). For instance, in case of decision
detection, it is necessary that all issues that reflect design decisions are retrieved
(high recall) and those issues which are not design decisions should not be au-
tomatically labeled as design decisions (high precision). Hence, we measure the
accuracy as the F-score [28], which is the harmonic mean of precision and recall.
We evaluated multi-class classifiers namely SVM, Naive Bayes, Decision tree,
Logistic regression, and One-vs-rest. Since the logistic regression functionality
provided by the Spark APIs cannot handle polynomial labels, it was not used for
decision classification but only for decision detection (binary). Split strategies
from 90% to 50% and n-grams from one to five were analyzed. First, by varying
the n-grams from one to five, we expect that the accuracy will proportionally
increase. That is, the use of patterns of words, which preserves the context of
those words, should positively influence the accuracy of classification. Second, by
decreasing the split percentage from 90% to 50%, the accuracy should decrease
substantially since lesser number of documents would be used for training the
classifiers. In total, 25 individual runs (5 split strategies and 5 n-grams) were
executed for each classifier and the corresponding precision, recall, and F-score
were calculated. Finally, the average accuracy (average F-score) based on the
arithmetic mean of the 25 individual runs for each of the classifiers was analyzed.
Even though the variation of the configuration parameters, namely n-grams
and split strategy need not be considered for validating our hypothesis (cf. Sec-
tion 2), we believe that the impact of these parameters on the F-score is inter-
esting for researchers and will help practitioners to reproduce the results.

6.1 Results - Automatic Design Decision Detection

The SVM classifier (average accuracy: 91.29%) outperformed Logistic regres-
sion (83.43%), One-vs-rest (79.45%), Decision tree (79.18%), and Naive Bayes
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Table 3. Decision detection: the confusion matrix for SVM

True decision|True not a decision|Class precision
Decision 212 18 92.17%
Not a decision 22 219 90.87%
Class recall 90.60% 92.41%

(76.04%) classifiers. Since, the tf-idf representation of issues has a high dimen-
sional feature space, sparse vectors, and few irrelevant features due to the data
curation process, the SVM outperformed the rest of the classifiers. The maximum
accuracy of 94.91% for the SVM classifier was achieved for a larger training set
(90% split) with 3, 4, and 5 grams representation and the minimum accuracy of
87.4% with a smaller training set (50% split) and 1-gram settings. The confusion
matrix for one specific execution run with 70% split and 3-gram configuration
is shown in Table 3. This matrix depicts true and false positives as well as true
and false negatives. The true positives (correct classifications) are highlighted on
the diagonal of the confusion matrix. The precision for classifying an issue as a
design decision is 92.17% and the recall is 90.60%. In addition, the precision for
labeling an issue as Not A Design Decision is 90.87% and its recall is 92.41%.

Also, as shown in Figure 4 (a), by reducing the size of the training dataset
(from 90% to 50%) the F-score decreases as expected but does not diverge more
than 4% points from the average F-score of 91.29%. This indicates that the
labeled dataset with 1,571 issues is sufficiently large enough to achieve a consis-
tent F-score. Furthermore, it can be observed that the variation of n in n-gram
generation does not drastically affect the F-score. As expected, the F-score is
comparatively lower when we do not consider the combination of words (n=1)
but the F-score slightly improves in the case of 2-grams and 3-grams. However,
there does not seem to be any noticeable variations when n is greater than three.

To sum, by using the linear SVM classifier along with n-gram (n >= 2) rep-
resentation of words, we can automatically extract design decisions from issues
(cf. hypothesis 1 in Section 2). To the best of authors’ knowledge, since no sim-
ilar study exists with benchmarking results, we consider 91.29% accuracy for
automatic design decision detection to be encouraging.

95
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>
33333
monon N
LI NI

etk

leuth
8

50 55 60 65 70 75 80 50 55 60 655|'[ t7!: ] /Z)S 80
Split strategy (%) plit strategy

(@) (b)

8

Fig. 4. Influence of n-grams and split strategy on the F-score of SVM: (a) automatic
decision detection, (b) automatic decision classification
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Table 4. Decision classification: the confusion matrix for SVM

True ban|True structural|True behavioral|Class precision
Ban 45 3 0 93.75%
Structural 4 41 13 70.69%
Behavioral 0 6 39 86.67%
Class recall| 91.84% 2% 75%

6.2 Results - Automatic Design Decision Classification

Even for the automatic design decision classification, we observed that linear
SVM (average accuracy: 82.79%) performed better as compared to classifiers
including Naive Bayes (59.09%), Decision tree (60.33%), and One-vs-rest (30%)
classifiers. The confusion matrix for linear SVM with 70% training dataset and
30% testing dataset with trigrams is shown in Table 4.

Identifying ban decisions is critical, as they are typically not present in soft-
ware artifacts (cf. Section 2). As shown in Table 4, the precision (93.75%) and
recall (91.80%) for automatically classifying design decisions into ban decisions
category are above 90%. On the other hand, the precision for structural and
behavioral decisions are 70.69% and 86.67% and their recall values are 82% and
75% respectively. We believe that the lower precision and recall for structural
and behavioral decisions is due to the existence of similar features (due to the
classification rules presented in Table 1) in their corresponding training dataset.

As shown in Figure 4 (b), reducing the size of the training dataset (from 90%
to 50%) decreases the F-score as expected (from 89.9% to 76.2%). This variation
is justified since the labeled dataset for decision categories is significantly small
(160 design decisions in each category). On the contrary, the variation of n-
grams does not have any notable affect on the F-score. This indicates that the
individual words within issues (or bag of words in the textual representation of
issues) play a significant role in the classification as compared to the usage of
specific patterns of words and the context of the words.

To conclude, with the linear SVM classifier we can automatically classify
design decisions into structural, behavioral, and ban decision categories with
an accuracy of 82.79% (cf. hypothesis 2 in Section 2). However, we perceive
that since the dataset for classifying decisions is relatively small, increasing the
sample size will improve the generalization capabilities of the classifiers.

7 Threats to Validity

The results presented in the previous section are based on 1,571 labeled issues for
design decision detection and 480 labeled design decisions for classification. The
labeled dataset for classification is not as comprehensive as the dataset used for
decision detection. Even though, we speculate that the generalization capabilities
of design decision classification can be further improved by increasing the sample
size of the dataset, providing relevant quantitative evidence is beyond the scope
of this paper. However, it should be noted that typically in ML-based approaches
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for text classification, increasing the sample size of the dataset substantially
improves the classification performance [22].

The 1,571 labeled issues are extracted from two large OSS projects, wherein
contributors have systematically maintained issues for more than three years.
The hypothesis validated using the dataset might not be generalizable for projects
where issues are reported scarcely. Hence, understanding what characteristics of
the projects could influence the precision and recall of our approach are consid-
ered as part of our future work.

In the previous section, we have presented the results of automatic decision
detection and classification independently of each other. However, if we consider
the workflow described in Figure 1, the accuracy of the decision detection affects
the subsequent decision classification phase. In this work, we do not compute the
accuracy for the end-to-end workflow. We plan to perform this evaluation after
integrating of the workflow within our AKM tool as part of our future work.

Finally, as explained in the data curation process, analysts did not consider
issues that could belong to more than one ADD category. Considering such issues
would require further investigation into appropriate classification algorithms for
multi-label classification and the study of the corresponding results.

8 Conclusion

In this paper, we presented a two-phase ML-based approach to automatically
detect design decisions from issues and to subsequently classify them into three
ADD categories, namely Structural, Behavioral and Ban decisions. Furthermore,
we made the manually labeled dataset used for supervised learning publicly
available. This will act as a starting point for researchers to create their own ML
models and to compare the accuracy of the automatic design decision detection
and classification process. The results presented in Section 6 indicate that we can
automatically extract design decisions from issues with an accuracy of 91.29%
and classify the extracted decisions into three categories with an accuracy of
82.79% by using the linear SVM classifier. Even though the accuracy can be
further improved, we believe that the result is significant enough to demonstrate
the feasibility of our approach.

We are currently in the process of integrating our ML pipeline within our
AKM tool named AMELIE [4]. This integration will allow us to conduct an
extensive evaluation of the ML models in industrial settings. Furthermore, by
automatically extracting and structuring design decisions from past projects, we
aim to provide recommendations related to semantically similar design decisions
in greenfield projects. The process of automatically extracting and classifying
design decisions from issues is envisioned to be realized using the end-to-end
workflow presented in Figure 1.

To conclude, since design decisions are not explicitly documented but are
rather implicitly captured in systems such as issue management systems, auto-
matically detecting, extracting, and systematically structuring them in an AKM
tool will help software architects and developers to refer back to already made
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design decisions in large-scale software projects as well as in greenfield projects
with similar context. Furthermore, classifying them into categories such as Ban
decisions will allow stakeholders to reason about those artifacts which no longer
exist within the system. Finally, since issues capture both unstructured, as well
as structured information, analyzing them, will support the development of de-
cision support systems to address concerns such as “Who took the decision?”,
“When was the decision taken?”, and “Why was the decision made?”.
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