Data Model Driven Implementation of Web
Cooperation Systems with Tricia

Thomas Biichner, Florian Matthes, and Christian Neubert

Technische Universitdt Miinchen, Institute for Informatics,
Boltzmannstr. 3, 85748 Garching, Germany
{buechner,matthes,neubert }Qin.tum.de
http://wwumatthes.in.tum.de

Abstract. We present the data modeling concepts of Tricia, an open-
source Java platform used to implement enterprise web information sys-
tems as well as social software solutions including wikis, blogs, file shares
and social networks. Tricia follows a data model driven approach to sys-
tem implementation where substantial parts of the application seman-
tics are captured by domain-specific models (data model, access control
model and interaction model). In this paper we give an overview of the
Tricia architecture and development process and present the concepts of
its data model: plugins, entities, properties, roles, mixins, validators and
change listeners are motivated and described using UML class diagrams
and concrete examples from Tricia projects. We highlight the benefits of
this data modeling framework for application developers (expressiveness,
modularity, reuse, separation of concerns) and show its impact on user-
related services (content authoring, integrity checking, link management,
queries and search, access control, tagging, versioning, schema evolution
and multilingualism). This provides the basis for a comparison with other
model based approaches to web information systems.

Key words: data modeling, web framework, web application, software
engineering, software architecture, domain specific language

1 DMotivation and introduction

Developers of enterprise web information systems and social software solutions
are faced with a complex technology stack of programming languages (Java,
PHP, Python, ...), persistence managers (Hibernate, JPA, JCR, ...), autho-
rization and access control frameworks, template engines (Servlets, JSP, ...)
and web form validation solutions. In order to support access via web APIs from
third-party applications or stateful, rich, mobile clients (iPhone, Android, ...)
even more technologies have to be employed.

These software development approaches suffer from the fact that small chan-
ges in the customer requirements (e.g., adding an attribute to a persistent entity,
changing the cardinality of an association or changing the access policy for a
certain user group) lead to numerous changes in all the layers of the server and

2 Thomas Biichner, Florian Matthes, and Christian Neubert

even on the client (e.g., JavaScript code for AJAX validation). These changes are
very error-prone because of the mismatches between the type systems and data
models involved (object-oriented, relational, tree-based). Based on our industrial
experience of the last ten years implementing content management solutions,
knowledge management solutions and community platforms we have developed
during the last three years a data model driven approach which is supported by
Tricia, an open source Java platform [13, 3].

The core of Tricia is an innovative modeling language tailored specifically to
the needs of this problem domain. The main idea is to derive all necessary boiler-
plate implementation details from model-representations (data, access control,
interaction) available at runtime as Java classes and objects. The application
developer can thus focus on the pure application-specific business logic which is
implemented in Java with language (typing, binding, scoping) and IDE support
(auto-completion, refactoring, dependency checking, ...).

The purpose of this paper is to give an overview of the Tricia software ar-
chitecture and development process (Section 2) and to present and motivate the
concepts of its domain-specific data model (Section 4). In Section 3 we use the
running example of a small Wiki application that allows end users to create
wikis with wiki pages, comments, tags, etc. Throughout the text we highlight
the benefits of this particular data model for application developers and for end
users. This is the basis for a comparison with related work on model driven im-
plementation of web applications in Section 6. We present exemplary views on
the data model generated by model introspection (Section 5). The paper ends
with concluding remarks and points to subsequent publications which will de-
scribe Tricia’s access control model and interaction model that builds on the
data model described in this paper.

2 Overview of the Tricia software architecture and
development process

Figure 1 provides an architectural overview of a typical web application imple-
mented on the Tricia platform using a notation similar to an UML deployment
diagram. Such an application provides HTTP(S) access for its web clients (pos-
sibly including AJAX-style asynchronous interactions), a REST-ful web API to
allow third parties to query and update the content managed by the application
and a Model Introspection interface to allow third parties to discover and query
the data model, access control model and interaction model implemented by
the application. Our current implementation only supports a single server (up
to fifteen page requests per second on stock hardware) but the architecture is
designed for a scale-out to multiple servers using a cluster database.

A Tricia application requires a Java 1.6 runtime environment on Windows
or Linux, a database server, and a Lucene full-text search engine. Currently Tri-
cia supports MySQL, Oracle, and for testing purposes the in-memory database
HSQLDB. There also exists a prototypical implementation which persists data
using the NoSQL database MongoDB.

Data Model Driven Implementation of Web Cooperation Systems with Tricia 3

HTML REST Model Introspection
T T T
Core Plugin File Plugin Wiki

Interaction
| Modeling
Framework

m

Interaction
3 Model

Access
Control
L Model E

k—(Interaction

1)

Access
Control
Framework

Data Data
L Modeling Model
Framework E

fl\ A\ Legend
[Framework
@ @ O Declarative Model

Database Lucene El Hand-written customization

< Depends on

Fig. 1. Architectural overview of a typical web application implemented on the Tricia
platform

A Tricia application consists of a core and one or more plugins that define
the application in a modular fashion (see shaded areas in Figure 1). Each plugin
specifies the plugins it depends on. Cyclic plugin dependencies are not allowed
and are detected at construction time. For example, the plugin Wiki depends on
the plugin File, since files may be attached to wiki pages and wiki management
thus requires file management.

The core defines abstractions required by virtually all applications of the
domain, for example user profiles, groups, memberships, login and registration
procedures. The plugins Wiki and File both use such user profiles to identify
the last editor of a wiki or a file. Other abstractions provided by the core are
discussed in Section 4.4.

Each plugin and the core define a data model, an access control model and
an interaction model. Each model defines a fragment of the data structures and
behavior of the entire application. These models are expressed by graphical and
textual notations (see Section 4) and are available at runtime for introspec-
tion (ovals in Figure 1). If necessary, they can be augmented by customizations
written in Java (e.g., to express business logic). Models from a plugin P may ref-
erence models in P and in plugins imported by P (depicted by arrows in Figure
1). The following rules apply: Interaction models may reference other interac-
tion models, access control models or data models. Access control models may
reference other access control models or data models. Data models may refer-

4 Thomas Biichner, Florian Matthes, and Christian Neubert

ence other data models only. The core is provided as part of the Tricia platform
and consists of three layered Java frameworks (c.f. layered architecture in [8])
for data modeling, access control and user interaction (views and controllers).
Each framework provides abstractions and extension points, which have to be
instantiated or customized in order to build a Tricia application. Frameworks
are developed and maintained by the Tricia core developers as part of the core
development process, customizations are developed by application developers as
part of the application development process [12]. There are two different kinds
of customizations. The majority of customizations can be done in a declarative,
model driven way. This results in models to be created. For some aspects to be
customized it is more convenient to specify them using the full expressive power
of the base language, which is Java in our case. An example for this kind of cus-
tomization is complex business logic. Figure 1 emphasizes the central role of the
data modeling framework as the foundation for model driven web application
development. Due to space limitations we focus in this paper on the concepts
of the data modeling framework. We plan to describe the other frameworks and
their meta models in subsequent papers. The following examples should suffice
to highlight the use of the application-specific data model in all frameworks:

— For each entity type, the Tricia interaction framework can generate multi-
lingual element-oriented CRUD views (create, read, update, delete) and set-
oriented table controls. These views may include rich text attributes and
media attachments (images and files).

— Associations between entities can be navigated in an element-oriented (via
hyperlinks) or set-oriented (declarative queries) style. End users can inter-
actively create full-text and structured queries for entities of a given type or
any type (Google-like searches).

— Tricia can also expose these views and controllers as REST-ful web APIs to
allow external systems to interact with Tricia applications.

— The Tricia access control framework allows application developers or end
users to associate access control policies with entity types or even individual
entities. These policies can restrict read, write and administration rights to
user groups or to individual users (role based access control or discretionary
access control). The policies are enforced automatically at the user interface
and at the web API level.

— The Tricia data modeling framework automates the data migration steps
necessary after (series of) typical incremental schema changes.

3 A small sample application

In the following, we will introduce the concepts of the Tricia data model step by
step using a simple sample application, which allows registered users to manage
a collection of wikis. Each of these wikis contains multiple wiki pages. One of
the pages of a wiki can be specified as the wiki home page. Wikis and wiki pages
are identified by a unique name and a readable, structured and persistent URL.

Data Model Driven Implementation of Web Cooperation Systems with Tricia 5

The content of a wiki page is a rich text (with markup, embedded hyperlinks
and attached media files). This Tricia application consists of a plugin with a
data model that defines the entities Wiki and WikiPage.

Wiki wiki pages WikiPage
name : String wikilfHome home name : String
urName - UrlName urlName : UrIName

. 0..1 1 | content : RichString

Fig. 2. Overview of an exemplary Tricia data model in a UML-based notation

Tricia data models can be visualized at construction time and at run-time in
two different notations:

— A graphical overview notation similar to UML class diagrams (see Figure 2).
— A domain-specific textual syntax which contains all model details (see Figure
3).

The first notation should be self-explanatory and the reader should already
get a first idea of the concepts of the DSL used in Figure 3 which are described
in the next section.

4 The data modeling concepts of Tricia

As explained in the architecture overview section, the data modeling framework
is responsible for the management of persistent and volatile data as specified by
the data models of the core and the plugins. Technically speaking, the framework
provides (possibly abstract and polymorphic) Java classes for each data modeling
concept of Tricia. These classes are instantiated and customized based on the
data model of the specific application.

Figure 4 provides an overview of all concepts of the Tricia data modeling
framework. In the following subsections we present each of these classes and
some of their extension points and illustrate their use with the wiki sample
application introduced in the previous section.

4.1 Entities, properties and roles

Entities Tricia domain objects are represented as objects of type Entity. The
example defines Wiki and WikiPage entities. Entities have a name, identifying
the concept in the data model, and an internationalized label, which is used to
generate views for end users. In our example, a WikiPage has an internationalized

6 Thomas Biichner, Florian Matthes, and Christian Neubert

entity Wiki
label = (en : "Wiki")
mandatoryMixins
Linkable
Seachable
features
name : StringProperty
maxLength = 255
isIndexed = false
isPersistent = true
label = (en : "Name")
validate
MinimalLengthValidator(length = 1)
urlName : UrlNameProperty
maxLength = 255
isIndexed = false
isPersistent = true
label = (en : "Name in URL")
pages : ManyRole (WikiPage)
oppositeRole = wiki : OneRole
isCascadeDelete = true
isPersistent = true
home : OneRole (WikiPage)
oppositeRole = wikiIfHome :
isCascadeDelete = false
isOwner = true
isPersistent = true
label = (en : "Home Page")

OneRole

entity WikiPage
label = (en : "Wiki Page",de :
mandatoryMixins
Commentable
Linkable
Taggable
Seachable
features
name : StringProperty
maxLength = 255
isIndexed = false
isPersistent = true

label = (en : "Name")

validate
MinimalLengthValidator(length = 1)
onChange

updateUrlName (
WikiPage.name,
WikiPage.urlName
)
urlName : UrlNameProperty
maxLength = 255
isIndexed = false
isPersistent = true
label = (en : "Name in URL")
content : RichStringProperty
maxLength = 16777216
isIndexed = false
isPersistent = true
label = (en : "Content")
wiki : OneRole (Wiki)
oppositeRole = pages : ManyRole
isCascadeDelete = false
isOwner = false
isPersistent = true
label = (en : "Wiki")
validate
NotNullOneValidator
wikiIfHome OneRole (Wiki)
oppositeRole = home : OneRole
isCascadeDelete = false
isOwner = false
isPersistent = true

Fig. 3. Detailed Tricia data model in a textual DSL

label with the English text “Wiki Page” as well as the German text “Wikiseite”.

The textual representation of the label is as follows (see also Figure 3)

entity WikiPage
label = (en

"Wiki Page",de : "Wikiseite")

"Wikiseite")

Data Model Driven Implementation of Web Cooperation Systems with Tricia

extends

requires

0.1 Feature Validator
Asset name : String name : String
isPersistent : boolean errorMessage : 118nString [0..*]
. Qe label : 118nString
name : String longHelp : 118nString “_\
shortHelp : 118nString " ChangelListener

0

name : String

=1 isCascadeOnDelete : boolean

Enti
ty Base property types
label : 118nString Role (e.g. IntProperty,
1 A DateProperty)

StringProperty

oppositeRole % %
OneRole ManyRole
1

‘ ...Property ‘

isindexed : boolean
maxLength : int

Translation

«datatype»
118nString

«enum»
Multiplicity

ONE, MANY

language : String
name : String

Built-in property
| types

‘ UriINameProperty ‘ ‘ RichStringProperty ‘

[
Bidirectional

Unidirectional

oppositeMultiplicity : Multiplicity[1]

Fig. 4. Concepts of the Tricia data modeling framework

Properties Properties of domain objects are represented as objects of type
Property. The data modeling framework provides the following predefined ba-
sic property types: BooleanProperty, IntProperty, StringProperty,

DomainValueProperty, DateProperty, TimestampProperty.
Each property type may introduce certain attributes, which can be customized.
For instance, StringProperty represents a character sequence, with a size lim-
ited by the maxLength attribute. The attribute isIndexed indicates whether an
index shoud be created to speed up value-based queries for that property.

Building on the basic property types (e.g., StringProperty) the Tricia core
provides the following domain-specific property types:

— A RichStringProperty is a sub type of StringProperty, which holds

HTML content. The implementation of RichStringProperty ensures, that
the content does not contain malicious scripts, automatically detects dan-
gling hyperlinks and supports a consistent application-wide URL renaming.
An UrlNameProperty is used to provide meaningful URLs for domain ob-
jects. URLs should match as closely as possible the name of the object, but
may be subject to additional constraints due to character set limitations for
URLs.

A PasswordProperty holds encrypted passwords and makes sure that the
content of the property is never displayed in views.

An IdProperty is a sub type of StringProperty with the special semantics
of being a unique identifier for an entity. Each entity has a property of type
IdProperty.

8 Thomas Biichner, Florian Matthes, and Christian Neubert

In our example of Section 3, properties of a Wiki are name of type
StringProperty and urlName of type UrlNameProperty. A WikiPage also has
the properties name, uriName, and additionally a content property of type
RichStringProperty.

Roles Associations between domain objects are represented in Tricia by model-
ing the association ends as objects of type Role. A role specifies the type of the
associated entity, which is represented in the data model framework of Figure 4
by the to reference.

There are two kinds of multiplicities: A single-valued association is mod-
eled using the class OneRole and a multi-valued association through the class
ManyRole. The directionality of a role is expressed by the mandatory concept
Directionality. Bidirectional roles reference the corresponding opposite role.
In this case the multiplicity of the counterpart is given implicitly through the
type of the opposite role instance (OneRole or ManyRole). The bidirectional
pages role from the example data model of Figure 2 is textually represented as
follows:

pages : ManyRole (WikiPage)
oppositeRole = wiki : OneRole

Since an unidirectional role does not specify an opposite role, its multiplicity
cannot be derived and has to be defined explicitly through the
otherMultiplicity attribute.

The attribute isCascadeOnDelete indicates to delete the referenced entities
if the owning entity is deleted (c.f. UML composition). In our example, a wiki is
used as a container for a set of wiki pages:

pages : ManyRole (WikiPage)
isCascadeDelete = true

Features Properties and roles share some common attributes, which are cap-
tured by the abstract super concept Feature. Each feature has a name, an in-
ternationalized label (c.f. entity attributes), as well as the two internationalized
attributes longHelp and shortHelp. These labels are used in generated views
to describe the meaning of a feature to end users in their own language.

The flag isPersistent indicates whether the value of a feature is to be
stored persistently in a database, by default this flag is set. A non-persistent
property can be used for derived values, which are calculated depending on the
values of other persistent properties, and can be shown in certain views. The
Tricia data modeling framework also supports inheritance, i.e., a derived entity
inherits all features of its parent entity. By default, a single-table strategy [11]
is used to map the inheritance tree to a single database table.

Data Model Driven Implementation of Web Cooperation Systems with Tricia 9

4.2 Validators

An important aspect of data modeling is the specification of constraints to ensure
data integrity. In the Tricia data modeling framework constraints can be modeled
through Validators. As part of the declarative model, a validator has a name
and provides error messages, which are shown to end users in case of a validation
failure. The actual algorithm, which computes the state of a validator, is provided
as a hand-written customization as introduced in section 2. Validators can be
specified for all features, i.e., for roles and properties equally.

As an example, a validator verifies whether the value of a StringProperty
satisfies a specific pattern (e.g., e-mail address). An example for role validation
is to constrain the cardinality of an association. In our example, a wiki page has
to be part of a wiki. This can be realized by a role validator applied on role wiki:

wiki : OneRole (Wiki)
validate
NotNullOneValidator

The Tricia data modeling framework provides a set of built-in property val-
idators, e.g., EmailValidator, MinimalLengthValidator, as well as predefined
role validators, e.g., NotNullOneValidator, NotEmptyManyValidator. Valida-
tors can be parameterized with values:

name : StringProperty
validate
MinimalLengthValidator(length = 1)

4.3 Change listener

In the Tricia data modeling framework ChangeListeners are used to propagate
data model changes through the system. A change listener has a name and is
registered on a feature in order to be notified when the value of the feature
changes. Change listeners apply for both kinds of features, i.e., roles and prop-
erties equally.

For example, a change listener updateUrlName can be defined for the name
property (StringProperty) of a WikiPage. If the name property is set for a newly
created page and no URL is given by the end user, the value of the name property
is used as default for the URL. In this case, the URL cannot be empty, this is en-
sured by the validation rule of the name property (cf. MinimalLengthValidator
in section 4.2).

4.4 Entities and mixins

The only way of realizing reuse at the data model level introduced so far is
the mechanism of inheritance. Since models in Tricia are realized by subclassing

10 Thomas Biichner, Florian Matthes, and Christian Neubert

framework classes, this mechanism is constrained by having a single inheritance
chain, which means that an entity can have only one entity it inherits from.
This imposes a severe limitation, and is not sufficient for real-world modeling
problems. To enable reuse on a more fine-grained level, Tricia utilizes the concept
of mizins[1].

Mixins extend entities with additional properties and roles. As shown in
Figure 4, the Entity and Mixin classes are subtypes of the abstract class Asset,
which provides the capability of having features as introduced in 4.1. Mixins can
be assigned to other entities and vice versa, which is expressed by a many-to-
many association between Entity and Mixin as shown in the class diagram in
Figure 4.

We distinguish two kinds of mixins, which are realized by the framework
classes MandatoryMixin and OptionalMixin. Mandatory mixins are assigned
statically to a certain entity and cannot be removed at runtime. In Table 1
an extract of existing mandatory mixin types and their use by entity classes is
shown. These mixins enable fine-grained re-use.

A mixin can depend on other mixins, e.g., a searchable entity (i.e., an entity
the mandatory mixin Searchable is assigned to) requires to be linkable (have a
URL) too, otherwise the asset cannot be accessed if it is shown in a search result
list. In this example, it is not permitted to define searchable entities, which are
not linkable.

Table 1. Mandatory mixins and their usage in the core and in the Wiki plugin

Linkable| Searchable| Taggable| Commentable| Versionable
Group X X X
Membership
Person b'd X X
Principal X X
Comment X X
Search X X X
Version X
Wiki X X
WikiPage X X X b'd b'd

In contrast, optional mixins can be assigned to objects and can be removed at
runtime by end users. An example of an optional mixin is the class CalendarItem,
which can be assigned to wiki pages. It marks the assigned wiki page as rep-
resenting a temporal event, which is characterized by additional features such
as startDate, endDate, and eventCategory. As opposed to mandatory mixins,
this capability is not required for all wiki pages, but can be assigned by end users
at runtime. The existence of this mixin type then indicates whether a specific
wiki page is displayed in a calendar view, or not.

As shown in Table 1, the Tricia core includes predefined entity types which are
essential for the domain of enterprise web applications. They comprise entities for

Data Model Driven Implementation of Web Cooperation Systems with Tricia 11

modeling users and user groups: Person, Group, Membership, and Principal.
These entities are the foundation for the access control framework (see Section
2). Other built-in entites are Link, Comment, Version, which are associated with
the respective mandatory mixin types. For example, the mixin Commentable
establishes a one-to-many association to entities of type Comment:

mandatoryMixin Commentable entity Comment

requires label = (en : "Comment")
Linkable mandatoryMixins

features Linkable
showComments : BooleanProperty Searchable
isIndexed = false features
isPersistent = true authorName : StringProperty
label = (en : "Show Comments") maxLength = 255
comments : ManyRole (Comment) isIndexed = false
isCascadeDelete = true isPersistent = true
isPersistent = true content : StringProperty
oppositeRole = commentable : OneRole maxLength = 16777216

isIndexed = false

isPersistent = true

label = (en : "Content")

validate
MinimalLengthValidator(length = 5)

creationDate : TimestampProperty
isPersistent = true

commentable : OneRole (Commentable)
isCascadeDelete = false

isOwner = false

isPersistent = true

oppositeRole = comments : ManyRole

Fig. 5. Comment and Commentable - textual representation

5 Introspective Implementation

As presented in sections 2 and 4, data models are represented in Tricia as Java
classes, which instantiate and customize classes of the data modeling framework.
In order to enable a model driven development process, declarative models can
be extracted from the Java code by introspection [4-6]. Technically speaking,
the data modeling framework is an introspective whitebox framework, since it
provides annotations in the framework classes, which mark the extension points.
Customizations have to follow an introspective programming model, which en-
ables the extraction of the model information. For more details see [4-6].

As already mentioned, Tricia provides different views to visualize the data
models. The most generic view presents a data model in a tree structure, which
is shown in Figure 6. As it is shown in this Figure, the model view is integrated
with the Java source it is derived from.

12 Thomas Biichner, Florian Matthes, and Christian Neubert

In order to get an overview of a data model, a graphical presentation similar
to UML class diagram notation is provided for Tricia application developers. A
screenshot showing the wiki data model is depicted in Figure 7. More details on
all features in the graphical view are accessible via the textual representation

already introduced as shown in the screenshot.

=] poblic final StringProperty name = new StringProperty () {

r

new InstantChangelistener() {

final Changelistener unpdateUrlName =

BOverride
public void change (Diff diff) {
nrlName.=et (sanitize (name.get ()))

}

Ll
E_(Problems (E Console (@ History IZ@ Search (@ Error Log (’. Assets 38
type filter text

a @ entity Wiki
4 features
a @ name: StringProperty
o maxlength = 255
o islndexed = false
o isPersistent = true
4 onChange
| @ updateUriName (Wiki.urlName, Wiki.name) |
label = (en: "Mame")
lengHelp
shortHelp
o @ validate
@ urlMame : UlNameProperty
- @ pages: ManyRole (WikiPage)
@ home: OneRele (WikiPage)

Fig. 6. Tree view of the entity type Wiki generated through introspection

6 Related Work

There exist numerous approaches to model driven web development [9,15-17,
19]. Since the main focus of this paper is on the data model, we will characterize
the data modeling capabilities of the following approaches:

— WebML [9] uses a notation which is compatible with classical E/R models
and with UML class diagrams. To cope with the requirement of expressing
redundant and calculated information, the structural model also offers a
simplified, OQL-like query language, by which it is possible to specify derived

information.

Data Model Driven Implementation of Web Cooperation Systems with Tricia

® Wiki
Froperties
name ; String

urlMame : UrlName
description : String
showComments : Boolean
scriptable : Boolean

Mixins
Linkahle
Searchahle

pages *

wikilfHome | 1

wiki| 1 home | 1

children *

-

parent 1

@ || = -
E Lt} i E
Jat} = = 5}
Ele|m|E
= 22 =
R P R e

® Principal ...

Fig. 7. Introspective Graphical View

(& WikiPage
FProperties
name : String

urlMame : UriName
content : RichString
readersAreDefault: Boolean
hideMNameOnPage : Boolean
scriptable : Boolean
Mixins
Linkahle
Searchable
Commentahle
ReadProtected
Modifiable
Restorable
“ersionable
Attachments
Taggahle
Draftable
Orderable
Menultam

13

— UWE [15] uses the graphical UML class diagram notation for data modeling.
The main modeling elements used in the conceptual model are: class and
association. Additional features which can be used to semantically improve
data models are: association and role names, multiplicities, different forms of

associations supported by the UML like aggregation, inheritance, composition

and association class.

— Mod4j [17], WebDSL [19], and MontiWeb [16] specify models using a textual
representation, which is transformed by a generator into JPA code.

None of the existing approaches supports mixin types, which enable reuse as

shown in section 4.4.

These existing solutions all use the generative approach to model driven
development, which means that source code is generated from models. What
differentiates our approach from these approaches is the idea to extract models
from the source code through introspection, which improves the integration of
the models with the underlying system [6].

Our introspective approach is closely related to the one introduced in [2]
in the sense that declarative model views are extracted from Java source code.
In [2] this idea is being applied to behavioral models.

14 Thomas Biichner, Florian Matthes, and Christian Neubert
7 Summary

We presented Tricia, an open source Java-based platform for the development of
dynamic data intensive enterprise web applications and social software solutions.

We introduced Tricias architecture, its constituents and interfaces. Tricias
plugins enable componentized large applications and provide with mixins the
basis for supporting software product lines [18] at the data modeling level. Tri-
cia follows a data model driven approach to system implementation. We gave
an example of declarative application development based on the data modeling
framework in the domain of social software. Tricia provides compile-time and
runtime introspection with a strongly typed generic meta-model. We illustrated
how textual and graphical views of introspective models facilitate the under-
standing of complex web applications.

Based on the proposed architecture we built an Enterprise 2.0 tool, which we
compared in [7] to existing commercial and open source tools. Our tool consists
of 15 plugins with 40 entities and about 500 features and is used in production
in several places (e.g., [10,14]). Our experiences in building and maintaining
a system of this size show that a data model driven approach improves the
understandability and quality of the system.

Due to space limitations this paper focuses on the data modeling frame-
work. The access control and interaction modeling framework will be subject of
subsequent papers.

References

1. D. Ancona, G. Lagorio, and E. Zucca. Jam - designing a Java extension with
mixins. ACM Trans. Program. Lang. Syst., 25(5):641-712, 2003.

2. M. Balz, M. Striewe, and M. Goedicke. Embedding Behavioral Models into Object-
Oriented Source Code. In P. Liggesmeyer, G. Engels, J. Miinch, J. Dérr, and
N. Riegel, editors, Software Engineering, volume 143 of LNI, pages 51-62. GI,
20009.

3. Bitbucket - Tricia. Website. http://bitbucket.org/infoasset/tricia-core;
visited on May 30th 2010.

4. T. Biichner. Introspektive Modellgetriebene Softwareentwicklung. PhD thesis, Tech-
nische Universitdt Miinchen, 2007.

5. T. Biichner and F. Matthes. Introspective Model-Driven Development. In
V. Gruhn and F. Oquendo, editors, EWSA, volume 4344 of Lecture Notes in Com-
puter Science, pages 33—49. Springer, 2006.

6. T. Biichner and F. Matthes. Using Framework Introspection for a Deep Integration
of Domain-Specific Models in Java Applications. In Proceedings of the 1. Work-
shop des GI-Arbeitskreises Langlebige Softwaresysteme (L2S2): Design for Future
- Langlebige Softwaresysteme, pages 123-135, 2009.

7. T. Biichner, F. Matthes, and C. Neubert. A concept and service based analysis of
commercial and open source enterprise 2.0 tools. In K. Liu, editor, KMIS, pages
37-45. INSTICC Press, 2009.

Data Model Driven Implementation of Web Cooperation Systems with Tricia 15

8.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

G. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture: a system of patterns, volume 1. John Wiley and
Sons, 1996.

S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Language (WebML): a mod-
eling language for designing Web sites. Computer Networks, 33(1-6):137 — 157,
2000.

ECHORD (European Clearing House for Open Robotics Development). Website.
http://www.echord.info; visited on May 30th 2010.

M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley, 2003.
With contributions from Rice, D., Foemmel, M., Hieatt, E., Mee, R. and Stafford,
R.

G. Froehlich, H. Hoover, L. Liu, and P. Sorenson. Designing object-oriented frame-
works. University of Alberta, Canada, 1998.

infoAsset. Website. http://www.infoasset.de; visited on May 30th 2010.
Intranet, Faculty of Informatics, Technical University Munich. Website.
http://intranet.in.tum.de; visited on May 30th 2010.

N. Koch and A. Kraus. The Expressive Power of UML-based Web Engineer-
ing. In Second International Workshop on Web-oriented Software Technology (IW-
WOST02), volume 16. Citeseer, 2002.

B. R. M. Dukaczewski, D. Reiss and M. Stein. MontiWeb - Modular Development
of Web Information Systems. In Proceedings of the 9th OOPSLA Workshop on
Domain-Specific Modeling (DSM’ 09), Orlando, Florida, USA, 2009.

Mod4j. Website. http://www.mod4j.org/; visited on May 30th 2010.

K. Pohl, G. Bockle, and F. J. van der Linden. Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Berlin, 2005.

E. Visser. WebDSL: A case study in domain-specific language engineering. Gen-
erative and Transformational Techniques in Software Engineering (GTTSE 2007),
Lecture Notes in Computer Science. Springer, pages 2008-039, 2008.

