
Conceptual Models for Cross-cutting Aspects in
Enterprise Architecture Modeling

Sabine Buckl, Florian Matthes, Christian M. Schweda
Chair for Informatics 19

Technische Universität München
E-mail: {buckls,matthes,schweda}@in.tum.de

Abstract—The benefit of enterprise architecture (EA) manage-
ment is directly coupled to the underlying conceptualization of
the enterprise. This conceptualization should reflect the goals
pursued by the EA management endeavor and focus on the
areas of interest of the involved stakeholders. Whereas this
statements often goes as a matter of course, an enterprise willing
to develop such a goal-adequate conceptualization, finds itself
confronted with a plethora of different approaches typically
proposing a one-size-fits-it-all model, which neglects the subject
of enterprise-specificity. These models are typically described in
an object-oriented manner utilizing concepts like class, property,
and relationship. Specific aspects relevant in the area of EA
management, such as temporality, property-dependency, and
cross-cutting aspects are more often than not neglected in this
approaches.

In this paper, we addresses the challenge of conceptualizing
cross-cutting aspects in EA modeling. Cross-cutting aspects refer
to EA-related concepts, like goals or projects, which may exert
influence on other concepts of the EA model. Therefore, the state-
of-the-art in EA conceptualization is revisited resulting in the
identification of four cross-cutting aspects of EA modeling: goals,
lifecycles, projects, and standards. Along these aspects we raise
questions concerning a suitable alternative modeling language for
EA conceptualizations and discuss options of future research.

Index Terms—enterprise architecture, cross-cutting aspects,
conceptual modeling

I. INTRODUCTION AND MOTIVATION

Today’s enterprises find themselves confronted with a broad
variety of challenging environmental factors that make an
integrated approach to business and IT indispensable. Get-
ting an holistic view on what has in recent years been
called enterprise architecture (EA) is a complicate task. The
enterprise willing to model its EA has to cope with two
challenges. Firstly, it must define procedures for gathering the
needed information. Secondly, the enterprise must devise a
conceptual model defining the necessary information. The first
challenge might be the more obvious one, as each enterprise
forms a specific organizational context that requires dedicated
information gathering procedures, etc. Nevertheless, also the
conceptual model defining what the using enterprise regards an
EA to be, differs from organization to organization. This may
be ascribed to the fact that different enterprises pursue different
goals from an integrated perspective. The rich literature on
EA management, i.e. the management discipline concerned
with the EA, enumerates a plurality of such goals, ranging
from ”increasing transparency” [1], [2] over ”increase stan-
dardization” [3], [4], [2], [5] to ”enhance strategic agility” [6],

[4], [2]. Each of the aforementioned goals may target specific
parts, i.e. area-of-interests, in the enterprise, hence calling for
a goal-adequate conceptualization of the overall architecture.
Moreover, it has repeatedly been discussed in literature e.g.
by Buckl et al. in [7] or Aier et al. in [8] that having a
”complete” conceptualization, i.e. one addressing all possible
goals without asking whether the enterprise is interested in or
not, leads to an overly complex model of the EA. This may
especially be true, as the EA is considered to incorporate a
broad variety of aspects from business to technical infrastruc-
ture but also encompasses manifold cross-cutting aspects, as
strategies, projects, or standards (cf. Figure 1).

A ”giant” model trying to cover the entire EA in an all-
embracing manner typically demands for costly gathering and
maintenance processes for information that is not needed to
pursue the actual goals. On the contrary, a situation where
an enterprise willing to manage its EA, has to develop a
conceptual model for the EA ”from scratch” also reflects an
unsatisfactory situation. Instead of re-inventing the wheel, an
enterprise should be able to call on best-practice solutions
for addressing typical concerns and goals in EA modeling.
This need is to some extent reflected by different EA ap-
proaches and frameworks, as The Open Group Architecture
Framework (TOGAF) [10] or the pattern-based approach to
EA management introduced by Buckl et al. in [7]. These
approaches present fragments for conceptual models for the
EA targeting different architectural concerns and goals. These
fragments are, as the majority of conceptual models (cf. Aier
et al. [11], Johnson and Ekstedt [3] or Buckl et al. [7]) for the
EA, described in an object-oriented manner, using concepts
as class, property, and relationship to conceptualize the EA.
Nevertheless, over the years specific aspects in EA model-
ing, e.g. temporality (cf. Saat [12]), property-dependency (cf.
Johnson [13] and Buckl et al. [14]) and project-dependency
modeling (cf. Buckl et al. [15]), were analyzed more in-depth.
The results of these analyses hint towards possible limitations
of ”purely” object-oriented conceptualizations of the EA. In
line with these arguments, this paper analyzes the state-of-
the-art in modeling cross-cutting aspects, as goals or projects,
in current conceptual models of the EA. The corresponding
research questions driving the paper read as follows:

1) What are typical cross-cutting aspects in the EA that
target manifold architectural concepts?



Fig. 1. Layers and cross-cutting aspects of an EA (according to Matthes et al. [9])

2) How can these cross-cutting aspects be adequately con-
ceptualized?

These two research questions are addressed in the remainder
of the article as follows. In Section II, we revisit selected
approaches to EA modeling in respect to aspects that aim at
manifold different concepts in the EA. The findings of this
section are consolidated to four cross-cutting aspects of EA
modeling in Section III. Along these aspects we propose a suit-
able alternative modeling language for EA conceptualizations.
Concluding Section IV summarizes the findings of the paper
and provides an outlook on directions for future research.

II. STATE OF THE ART

Manifold EA management approaches propose models for
the EA, more precisely introduce information models1 outlin-
ing what an architecture description should consist of. These
models differ in respect to depth and width of coverage of
architectural concepts in general, and cross-cutting aspects in
special. in the following paragraphs, we revisit a selection of
prominent EA management approaches. We thereby focus on
approaches providing an EA information model and put spe-
cial emphasis on models incorporating cross-cutting aspects.

a) Zachman Framework: The perhaps most frequently
quoted framework in the context of EA management is the
Zachman framework, which dates back to the article ?? of
Zachman on ”information systems architecture”. In its first
version the framework applies a set of generic abstractions
and perspectives to the enterprise as a whole. In terms of
Zachman each abstraction describes a different characteristic
of the enterprise, i.e. shapes a specific area-of-interest, such
as ”data”, ”network”, or ”people”. Conversely each abstraction
may be considered from different perspectives ranging from a
”conceptual” one describing scope and objective of the corre-
sponding elements over a ”logical” system model perspective
down to a code-oriented ”out-of-context” perspective. Over
this range of different perspectives the level of detail increases
and certain architectural concepts enter or leave the center of
attention. While this at first sight seems a prominent example
of cross-cutting aspects of an enterprise’s architecture, a look

1

into the more detailed version of the framework as presented
by Sowa and Zachman in [16] sheds a different light on
this fact. The ”detailed cell metamodel” contains information
models separate for the different perspectives but integrated
over the different characteristics. These information models
are structurally equivalent over the perspectives, but undergo
a ”renaming” which might mirror an ontological instantiation
linking them. For example the fact that a ”business relationship
involves business entities” on a higher level perspective is
reflected by an isomorphic modeling of ”data entity rela-
tionship involving datat entities” on a lower level. In this
sense, the framework of Zachman covers the – ontologically
interesting – aspect of repeated ontological instantiation, which
may nevertheless not be considered as a ”true” cross-cutting
aspect applying on different architecture elements.

b) The Open Group Architecture Framework (TOGAF):
A well-known framework for EA management is ”The Open
Group Architecture Framework” (TOGAF) [10], that in its
most recent version 9 brings along a information model
for architectural descriptions – the content meta-model. This
information model does not explicitly account for cross-cutting
aspects but describes several types and attributes that are cross-
cutting of nature. Most evidently, this nature especially applies
for all types that the framework labels with ”associated with
all objects”, which are the types PRINCIPLE, CONSTRAINT,
ASSUMPTION, REQUIREMENT, GAP, and WORK PACKAGE.
Three of these types are intended to reflect evolutional and
intensional aspects in a model, namely:

• PRINCIPLES reflect guidelines how an element in the
architecture should be evolved,

• CONSTRAINTS describe ”prohibited” regions for archi-
tecture development, and

• REQUIREMENTS mirror needs that the architecture evo-
lution should address.

Complementing especially the latter type, GAPS between the
current and the target state are described and WORK PACK-
AGES for closing these gaps as part of a project are devised.
WORK PACKAGES may be regarded actual cross-cutting types,
representing parts of the work breakdown structure of a



project2. GAPS in contrast do not have such clear nature in
TOGAF, existing somehow between architectural states and
not clearly being parts of an architecture, but mere constructs
and vehicles of architecture analysis. While the reification of
differences between distinct architectural states as well as their
description may be an interesting aspect of EA modeling,
TOGAF does not provide additional information on the usage
of GAPS in EA models, such that we cannot ultimately decide
on their cross-cutting nature. The type ASSUMPTION is finally
used to express uncertainty in respect to an architectural fact,
i.e. uncertainty about the existence of an architectural concept
or a relationship, respectively.

Delving deeper into the documentation of the content meta-
model some more cross-cutting aspects can be uncovered.
Different kinds of components, i.e. parts of the ”physical”
structure of the architecture, are equipped with attributes that
reflect the life-cycle of corresponding instances. Speaking
more precisely, these types possess attributes to model, when
the corresponding instance was set ”operational” or is ”re-
tired”. Another cross-cutting aspect reverberates through man-
ifold types in TOGAF’s content metamodel, namely the aspect
of standardization. Many logical and physical components
of the architecture can be classified according their level of
standardization, ranging from ”Non-Standard” via ”Standard”
to ”Retired Standard”. In this sense, TOGAF mirrors the im-
portance of standardization as a main goal commonly pursued
in EA management (cf. e.g. Aier et al. in [17] or Buckl et al.
in [18]) in the content meta-model.

c) Core Business Metamodel and University of St. Gallen
approach: In [19], Österle et al. present the Core Business
Metamodel as information model for modeling EAs in the
context of business-driven EA management. This information
model puts strong emphasis on structural and static aspects
of the architecture and stays on the level of types and re-
lationships, i.e. does not specify attributes. In this respect,
cross-cutting aspects are hardly discussed or made explicit.
A sole exception applies for goals which are introduced in the
information model and are discussed as applicable on multiple
different types. The core business metamodel exemplifies the
role of goals with a relationship to business level concepts,
but alternative applications are discussed alongside.

A different cross-cutting aspect is discussed by Saat in [12].
In the article he emphasizes on the importance of time for
EA models in a twofold sense. Firstly, the EA is alluded
to as evolving subject that changes over time, leading to
the need that also the corresponding models adapt to the
changed situation. Secondly, Saat details on the importance
of lifecycle in the architecture, i.e. describes that certain
architectural components, e.g. business applications or in-
frastructure components, go through different phases in their
existence. Exemplifying this, a business application can be ”in
development”, ”in introduction”, ”operational”, or ”retired”.

2TOGAF sees itself as a framework for ”EA management projects”, whose
structure is modeled in corresponding work packages.

d) EA Analysis and KTH Stockholm approach: Johnson
and Ekstedt present in [3] a number of models dedicated
to analyses of EAs. These models are thereby described
via architecture theory diagrams, which relate observable
(manageable) properties of EA concepts to properties that
operationalize EA-relevant goals. Revisiting the goal of per-
formance, the corresponding theory diagram decomposes the
abstract property to more concrete properties, e.g. latency
and throughput. In a similar way, other goals, as availability
or security are operationalized via measurable architecture
properties. Along the discussion of how to analyze such
properties, Johnson and Ekstedt further discuss on the archi-
tectural concepts on which these properties might apply. While
business applications are often stated as valuable subjects of
these goals, other concepts, e.g. business processes, may also
be subjected to corresponding analyses. An exemplary case
presented by Buckl et al. in [14] shows how architecture theory
diagrams can be applied to analyze availability of EA concepts
ranging from infrastructure components to business services.
This can be regarded a clear indication for the cross-cutting
nature of EA-relevant goals and their operationalizations into
architectural properties. In [3] Johnson and Ekstedt further
discuss relationships connecting different EA-relevant goals
with each other and with corresponding architectural concepts.
These relationships are exemplified in a information model
relating goals to projects that are performed to pursue the goal.
The project may be linked to ”affected architectural concepts”.

In [20] Johnson et al. outline a tool for performing the
EA analysis, more precisely for computing actual values for
properties that operationalize EA-relevant goals. The general
mechanism of the tool is therein based on the conception of the
Bayesian belief network. While the details of this mechanism
are not of high interest for this paper, the usage of belief
networks emphasizes on an important cross-cutting aspect
discussed by Johnson et al., namely the aspect of uncertainty.
The mechanism for dealing with uncertain information in the
EA model presented in the paper goes far beyond the basic
notion of uncertainty as discussed by TOGAF. Nevertheless,
where TOGAF allows to explicitly mark some piece of in-
formation as uncertain, the mechanism of Johnson et al. [20]
sees uncertainty as a general and inevitable fact in any EA
model. Hence, no mechanism to distinguish between certain
and uncertain information in an architecture model is provided.

e) EA management Pattern Catalog: Buckl et al. intro-
duced in [7] a pattern-based approach to EA management. This
approach has ever since been further refined and is nowadays
presented as wiki incorporating a catalog of so called EA
management patterns (see [21]). This catalog describes three
distinct types of EA management patterns, namely methodol-
ogy patterns (M-patterns), viewpoint patterns (V-patterns), and
information model patterns (I-patterns), of which the latter
are most interesting for understanding cross-cutting aspects
in EA models. Each I-pattern presents an information model
consisting of the types, relationships and properties needed
to address a specific EA-related problem. Each I-pattern is
thereby focused on the corresponding problem, such that the



same types may occur more than once in the entire pattern
catalog. Exploring the occurences of the model types, different
cross-cutting aspects can be discovered:

• PROJECTS are contained in multiple I-patterns and affect
different other types, as BUSINESSAPPLICATIONS or
TECHNOLOGIES.

• Different architectural types are subject to lifecycle, as
modeled via a list of properties indicating start- and end-
date of corresponding lifecycle phases, e.g. for BUSINES-
SAPPLICATIONS or INFRASTRUCTURECOMPONENTS.

• STANDARDS are, explicitely as dedicated types and rela-
tionships or implicitly via corresponding standardization-
related properties related with different architectural con-
cepts, as BUSINESSAPPLICATIONS or INFRASTRUC-
TURESERVICES.

• STRATEGIES and GOALS are modeled via dedicated
types that are in different I-patterns linked to different
architectural concepts, e.g. BUSINESSAPPLICATIONS or
BUSINESSSERVICES.

With each pattern describing a practice-proven solution that
has been observed in at least three practice cases, the afore-
mentioned list clearly hints to the importance of cross-cutting
aspects in EA models.

Synopsis The above selection of EA management ap-
proaches and their corresponding EA information models
provides more than a few indications on recurring cross-cutting
aspects in EA modeling. Aspects as project-dependencies, life-
cycles, goal-dependencies, and standardization are discussed
more than once, and may clearly be candidates for a more
detailed analysis.

III. MODELING CROSS-CUTTING ASPECTS

The analyses of the state-of-the-art in EA modeling revealed
four different types of cross-cutting aspects that are included
in current EA modeling approaches, namely lifecycles, stan-
dardization, projects, and goals. For modeling these aspects,
the approaches bring along specific classes that may be linked
to all ”regular” classes representing EA concepts from the
architecture layers (cf. Figure 1). To understand the specifics
of the different types of classes involved in these models, we
resort to ontological foundations of conceptual modeling as
e.g. described by Guizzardi in [22]. In this work, the author
analyzes the general notion of type and relates it to the concept
class from object-oriented modeling. From there, Guizzardi
derives a taxonomy of different ”types of type” and introduces
conceptions that we will rely on in our subsequent discussions.
Guizzardi introduces a distinction between:

• SortalUniversal describing a type that supplies a principle
of identity3 and

• MixinUniversal describing a type that covers entities with
different principles of identity, i.e. is dispersive.

3A principle of identity supports the judgement, if two entities of that type
are the same or not.

a) Modeling projects and lifecycles: Based on this dis-
tinction, we revisit the typical modeling idioms used incor-
porate cross-cutting aspects in conceptual models for the EA.
Figure 2 shows the idiom PROJECT-AFFECTS-ANYOBJECT,
which can be found in different modeling approaches (cf.
Section II), but also in different EA management tools (cf.
Matthes et al. in [9]). The ANYOBJECT class used in the
modeling idiom can be regarded to be a dispersive type, i.e. a
type that does not supply a principle of identity. In line with
this argument we added a stereotype proposed by Guizzardi
in [22] to emphasize the mixin-nature of the corresponding
class. Conversely, the class PROJECT can be regarded to be
a sortal, i.e. a type supplying a principle of identity. Another
stereotype proposed by Guizzardi is used to indicate this.

Fig. 2. Modeling building-block PROJECT-AFFECTS-ANYOBJECT

The modeling idiom presented in Figure 2 is a simplistic but
suitable building-block for incorporating project-effect model-
ing into a conceptual model for EA management. Nevertheless,
later discussions undertaken by Buckl et al. in [23] call for
a more sophisticated building-block allowing to distinguish
different types of project-effects, namely introduces, changes,
and retires. Figure 3 shows the corresponding conceptual
model as an extension of the initial project-effect modeling id-
iom presented above. This extended building-block (PROJECT-
INTRODUCES-CHANGES-RETIRES-ANYOBJECT) employs the
concept of the relationship inheritance as provided by the
Unified Modeling Language (UML) [24].

Fig. 3. Modeling building-block PROJECT-INTRODUCES-CHANGES-
RETIRES-ANYOBJECT

Albeit the UML provides appropriate modeling elements
and notations to describe the extended building-block, the
question how the relationships INTRODUCES, CHANGES, and
RETIRES relate to the relationship AFFECTS deserves ad-
ditional attention. The ontological framework of Guizzardi
(cf. [22]) provides a terminology to analyze this relation4

4In this section, we use the term relation to denote the ”inheritance” con-
necting INTRODUCES and AFFECTS, CHANGES and AFFECTS, and RETIRES
and AFFECTS, respectively to avoid ambiguous statements. In line with this,
we slightly deviate from the original terminology used by Guizzardi in [22].



in more detail. At first, Guizzardi points to a critical dis-
tinction between different types of relationships, namely for-
mal relationship and material relationships. The relationships
from conceptual model PROJECT-INTRODUCES-CHANGES-
RETIRES-ANYOBJECT are all relationships of the later type,
i.e. relationships which ”alter the history of the involved
relata” (cf. Bunge [25]). In contrast, formal relationships exist
as tuples interlinking certain entities without changing the
entities’ very nature. The relationships found in the conceptual
models for EAs in this section all are material relationships
and hence may be reified by a corresponding relator type.
In the considered example these may be the types EFFECT,
INTRODUCTION, CHANGE, and RETIREMENT, respectively.
Based on these reifying types, we can express the relation
between the different relationships more precisely, leading to
a type hierarchy as shown in Figure 4. At this point it should
be noted that the different relators commit to different, but
compatible, multiplicities for the concepts in relationship.

Fig. 4. Relations between EFFECT, INTRODUCTION, CHANGE and RETIRE-
MENT

Before delving deeper into the intricacies of project model-
ing, we shall make a digression on the cross-cutting aspect of
the lifecycle. Different classes modeled in EA meta models as
the ones discussed in Section II are not only of ”punctiform”
interest, i.e. EA models cover the evolution of corresponding
instances over time. To incorporate the evolving nature of
some EA concepts, as business applications or infrastructure
components, we call on non-rigid typing, which means that
an instance can change its type over time. Guizzardi discusses
in [22] several variants of non-rigid types, of which the
phased sortal is most appropriate to cover lifecycle aspects.
Phased sortals describe the different phases that an instance
of an according type goes through in a way that only one
phase applies at a time. Exemplifying this along the business
application concept as discussed by Saat in [12], we provide
a corresponding modeling building-block LIFECYCLED BUSI-
NESSAPPLICATION as shown in Figure 5.

In an actual EA model each instance of a lifecycled type
may retain information on the specific point in time, when
a transition between two phases took place. Additionally, the
phases may be subject to a sort of ordering or more general
a set of constraints of the valid transitions between different
phases. While a mechanisms to describe these constraints may
be an interesting subject to explore, we end our digression on
lifecycled types here and return to the cross-cutting aspect
of project modeling. More precisely, we revisit the project

Fig. 5. Modeling building-block LIFECYCLED applied on BusinessApppli-
cation

modeling technique presented by Buckl et al. in [26] from the
perspective of the therein contained primitives of modeling.

Fig. 6. Modeling building-block PROJECT-LIFECYCLE-ANYOBJECT

Decomposing a project into the single WORK PACK-
AGES that transform architecture components, the model-
ing building-blocks for modeling lifecycles and modeling
projects can be composed into a comprehensive building-block
PROJECT-LIFECYCLE-ANYOBJECT (cf. Figure 6). This block
accounts for the fact that a concept may be in introduction,
operational, or retired. Different types of work packages
mediate the transitions between the different states that an EA
component may commit to. More precisely, while INTRODUC-
TION sets an EA component operational and RETIREMENT
retires an operational EA component, CHANGE is used to
describe that one operational EA component is evolved into
another operational component. This may be exemplified with
a business application that is updated to a newer version.

b) Modeling standards: Having explored different op-
tions to model projects and their influences on EA concepts
on different levels of the architecture (cf. Figure 1), we shortly
explore different ways how standards are incorporated in an
information model for EA modeling. Once again, the mixin
concept may be used to concisely model the true nature of a
”standard”. A fairly simplistic model, as found in TOGAF’s



content metamodel and some patterns of the EA management
pattern catalog, introduces a single property indicating whether
an instance of the given type conforms to a standard or
not. Rewritten in terms of a corresponding mixin this model
building-block (STANDARDIZABLE) presents itself as shown
in Figure 7.

Fig. 7. Modeling building-block STANDARDIZABLE

More sophisticated models for describing standardization
in the EA call on the reification of standards to EA entities,
i.e. introduce types that mirror selected standards and indicate
the standard conformity of an instance via an according rela-
tionship. A corresponding model building-block (STANDARD-
STANDARDIZABLE) is presented in Figure 8.

Fig. 8. Modeling building-block STANDARD-STANDARDIZABLE

Via the derived property as contained in the building-block
STANDARD-STANDARDIZABLE we further show a mechanism
that can be used to consistently exchange these building
blocks. This especially means that an EA type being stan-
dardizable according to the simple model may be augmented
to a type being standardizable via a relationships to a stan-
dard without loosing factual expressiveness. In this sense the
derived property can be regarded as a vehicle of ”backwards-
compatability” of EA information models aligning to the
corresponding notion of sub- and super-concerns in the context
of EA modeling as explored by Buckl et al. in [27].

c) Modeling goals: In the different approaches to EA
modeling mainly two different ways to model goals exist.
These ways are explored in detail by Buckl et al. in [28],
whereas we resort to giving a brief summary of their main find-
ings here. The first technique for modeling goals is described
as GOAL-AFFECTS-ANYOBJECT and contains a similar model
as the PROJECT-AFFECTS-ANYOBJECT building-block shown
in Figure 2. In analogy to this building such way of modeling
may be used to denote which architectural elements are
affected by which specific goals. Nevertheless, relevant parts
of the ”true” nature of a goal are neglected by such model,
most notably the notion of ”measuring the achievement of
a goal”. The second technique, METRICS-TO-INDICATORS,
identified by Buckl et al. in [28] focuses on this aspect of
goal modeling, more precisely of operationalizing goals to
measurable metrics. These metrics are further aggregated to
indicators that conversely characterize an architecture element

in respect to the operationalized goal. By doing so, the tech-
nique augments an EA model for providing decision support
in respect to a selected goal, but fails to establish an ”in-
model” relationship between that goal and its corresponding
indicators.

The analyses presented by Buckl et al. in [28] give an indi-
cation of the special nature of goals compared to other cross-
cutting aspects of EA modeling. This may best be exemplified
by revisiting the aforementioned techniques from a conceptual
perspective. While in GOAL-AFFECTS-ANYOBJECT a goal is
modeled as instances in an EA model, the indicators used
in METRICS-TO-INDICATORS are modeled as properties of
types in an EA information model. Pur more colloquially, one
would say that a goal is modeled ”from above” in the first
technique, while being modeled ”from below” in the second
one. Dealing especially with the latter perspective on goals,
Buckl et al. propose in [28] the concept of the QUESTION
which in line with the Goal-Question-Metric-approach of
Basili et al. (cf. [29]) aggregates the metrics and indicators
to a (dispersive) type, i.e. a mixin. From this perspective a
QUESTION, helping to operationalize an actual goal (instance),
can be incorporated as a cross-cutting aspect similar to the
STANDARD (cf. Figure 7). Further, this points towards a
solution to the problem of the twofold nature of a goal being
a concept located on two ontologically different levels with
respect to instantiation. Using a multiple ontological instanti-
ations, this solution can be described as shown in Figure 9,
where the types GOAL and QUESTION are defined on the
same ontological level. From there, they are instantiated to an
actual goal and a concrete question, of which the latter in turn
acts as mixin on the ontological level below. On this level the
sortal universals from reflecting non-cross-cutting architecture
constituents reside and the question-mixin can be added as
aspect to one of these. The hence augmented architectural
concept is further instantiated to an actual architecture element
describing a distinct and identifiable ”real-world” element,
while retaining the relationship to the according goal on an
ontologically higher level.

Fig. 9. Modeling building-block GOAL-QUESTION-METRIC applied on
BusinessAppplication

Summary The discussions in the preceding paragraphs
showed how selected cross-cutting aspects can be incorporated
in modeling building-blocks facilitating the construction of an
organization-specific EA information model. A brief example



utilizing building-blocks to construct a specific information
model was also given in Figure 5. The different consider-
ations and discussions showed that for concisely modeling
these building-blocks the modeling primitives provided by the
UML [24] did not seem fully sufficient. By introducing more
ontologically richer modeling primitives, as mixins and phases,
we could achieve more concise models and building-blocks.
Stated as response to the article’s second research question,
we derive that cross-cutting aspects can be incorporated into
EA information models by using richer types, namely non-
rigid types (phases) and types not committing to a principle
of identity (mixins). Such ”rich” types may in line with
Guizzardi [22] be considered natural with respect to the
way how humans characterize and conceptualize a universe
of discourse. In this sense they should not be regarded as
”artificial” extensions to a modeling language as the UML,
but as a more detailed perspective on what many object-
oriented languages subsume with the term ”class”. Reflecting
the findings on goal modeling, further modeling mechanisms
are needed, namely ones supporting more than one level
of (ontological) instantiation. With such multi-level modeling
being a requirement that applies to EA information modeling
in general (cf. Buckl et al. in [30]), mechanisms as the
UML powertypes or the clabjects proposed by Atkinson and
Kühne in [31] may deserve a more in-depth evaluation. As the
article presented here has a focus on conceptualizing cross-
cutting aspects, we abstain from analyzing different modeling
facilities and languages that may or may not be suited for
representing such conceptualizations.

IV. OUTLOOK

In this paper we revisited prominent EA information models
in respect to their coverage of cross-cutting aspects. Thereby,
we could show that aspects of project-, goal-, standards-, and
lifecycle-modeling occur in different models and modeling
building-blocks. Based on these findings, we discussed se-
lected aspects in more detail and challenged their recurring
modeling based on the UML [24]. Resorting to a richer
language model grounded in the work of Guizzardi (cf. [22]),
we could show how the selected cross-cutting aspects can be
modeled conceptually in a more concise manner. By doing so,
we laid the basis for modeling building-blocks that can be re-
used in different EA modeling approaches and corresponding
information models, when cross-cutting aspects should be
incorporated.

The findings of this paper are up to this point of theo-
retic nature. This on the one hand ascribes to the focus of
this paper on conceptualizing cross-cutting aspects instead
of proposing ”full-blown” EA information model building-
blocks, which were committed to a specific modeling facility
and language. Nevertheless, for applying the results of this
paper, the conceptualizations have to be mapped to a modeling
language that adequately supports the richer type system of
sortal universals vs. mixin universals as well as supports both
rigid and non-rigid typing. Further, such language had to
commit to multi-level modeling, i.e. should not be confined to

two ontological levels of metaization connected via a single
ontological instantiation. Selecting an appropriate language for
this purpose has nevertheless to account for other requirements
that apply to a meta-language for creating EA information
models. Such requirements are for example put forward by
Buckl et al. in [30].

Concretized using a specific meta-language, it further re-
mains to be proven that the building-blocks targeting cross-
cutting aspects can be utilized to build organization-specific
EA information models. While we do not expect the building-
blocks to be completely self-explanatory, information model-
ing experiments with enterprise architects may be conducted
to show whether the building-blocks are ”usable” for EA
information model creation or not. Usability can in this context
be concretized in different ways, e.g. as decreasing the number
of modeling errors, fastening the creation of information mod-
els, or making the consequences of a certain modeling more
explicit. All these different aspects of usability are nevertheless
inevitably connected to the corresponding meta-language such
that the selection of the language deserves critical attention in
order to not deprive the approach of potential benefits. Linked
to this, it would further be important to find adequate tool
support for the creation of EA information models, not only
in respect to the meta-language but also to the utilization of
building-blocks.

Linking back to EA management tools as currently used to
create, maintain and analyze models of EAs, another aspect
of interest enters the center of attention. While only briefly
discussed in literature, many of the tools provide role-based
access control mechanisms on different levels of detail with
respect to the EA information model or its instantiation.
Matthes et al., who in [9] present practitioners’ requirements
for EA management tools, delineate that access control mech-
anisms are used to technically realize responsibilities and
approve information interests of people concerned with EA
management. In this sense different types of relationships
between EA concepts and ”EA management people” may
actually exist in the EA management processes and functions
of different organizations. Mapping them from the level of the
activities to the level of the EA information models may lead
to another interesting cross-cutting aspect that deserves a more
in-depth research in the future.

REFERENCES

[1] M. Lankhorst, Enterprise Architecture at Work: Modelling, Communi-
cation and Analysis. Berlin, Heidelberg, Germany: Springer, 2005.

[2] J. Schekkerman, Enterprise Architecture Good Practices Guide – How
to Manage the Enterprise Architecture Practice. Victoria, BC, Canada:
Trafford Publishing, 2008.

[3] P. Johnson and M. Ekstedt, Enterprise Architecture – Models and
Analyses for Information Systems Decision Making. Pozkal, Poland:
Studentlitteratur, 2007.

[4] K. D. Niemann, From Enterprise Architecture to IT Governance
– Elements of Effective IT Management. Wiesbaden, Germany:
Vieweg+Teubner, 2006.

[5] B. van der Raadt and H. van Vliet, “Designing the enterprise architecture
function,” in 4th International Conference on the Quality of Software
Architectures (QoSA2008), Karlsruhe, Germany, 2008, pp. 103–118.

[6] G. B. Bird, “The business benefit of standards,” StandardView, vol. 6,
pp. 76–80, 1998.



[7] S. Buckl, A. M. Ernst, J. Lankes, K. Schneider, and C. M. Schweda, “A
pattern based approach for constructing enterprise architecture manage-
ment information models,” in Wirtschaftsinformatik 2007. Karlsruhe,
Germany: Universitätsverlag Karlsruhe, 2007, pp. 145–162.

[8] S. Aier, S. Kurpjuweit, C. Riege, and J. Saat, “Stakeholderorien-
tierte dokumentation und analyse der unternehmensarchitektur,” in GI
Jahrestagung (2), ser. LNI, H.-G. Hegering, A. Lehmann, H. J. Ohlbach,
and C. Scheideler, Eds., vol. 134. Bonn, Germany: Gesellschaft für
Informatik, 2008, pp. 559–565.

[9] F. Matthes, S. Buckl, J. Leitel, and C. M. Schweda, Enterprise Archi-
tecture Management Tool Survey 2008. Munich, Germany: Chair for
Informatics 19 (sebis), Technische Universität München, 2008.

[10] The Open Group, “TOGAF ”Enterprise Edition” Version 9,” http://www.
togaf.org (cited 2010-02-25), San Diego, USA, 2009.

[11] S. Aier, S. Kurpjuweit, O. Schmitz, J. Schulz, A. Thomas, and R. Winter,
“An engineering approach to enterprise architecture design and its
application at a financial service provider,” in Modellierung betrieblicher
Informationssysteme (MobIS 2008) – Modellierung zwischen SOA und
Compliance Management 27.-28. November 2008 Saarbrücken, 2008,
pp. 115–130.

[12] J. Saat, “Zeitbezogene abhängigkeitsanalysen der unternehmensarchitek-
tur,” in Multikonferenz Wirtschaftsinformatik (MKWI) 2010, M. Schu-
mann, L. M. Kolbe, M. H. Breitner, and A. Frerichs, Eds., 2010, pp.
29–30.

[13] P. Johnson, L. Nordström, and R. Lagerström, “Formalizing analysis of
enterprise architecture,” in Enterprise Interoperability. London, UK:
Springer, 2007, pp. 35–44.

[14] S. Buckl, U. Franke, O. Holschke, F. Matthes, C. M. Schweda,
T. Sommestad, and J. Ullberg, “A pattern-based approach to quanti-
tative enterprise architecture analysis,” in 15th Americas Conference on
Information Systems (AMCIS), San Francisco, CA, USA, 2009.

[15] S. Buckl, A. Ernst, F. Matthes, and C. M. Schweda, “An information
model for landscape management – discussing temporality aspects,” in
Pre-Proceedings of the 3rd Workshop on Trends in Enterprise Architec-
ture Research, P. Johnson, J. Schelp, and S. Aier, Eds., Sydney, Australia,
2008, pp. 63–77.

[16] J. F. Sowa and J. A. Zachman, “Extending and formalizing the
framework for information systems architecture,” IBM Systems Journal,
vol. 31, no. 3, pp. 590–616, 1992.

[17] S. Aier, C. Riege, and R. Winter, “Unternehmensarchitektur – liter-
aturüberblick stand der praxis,” Wirtschaftsinformatik, vol. 50, no. 4,
pp. 292–304, 2008.

[18] S. Buckl, A. M. Ernst, J. Lankes, F. Matthes, and C. M. Schweda,
“State of the art in enterprise architecture management 2009,” Chair
for Informatics 19 (sebis), Technische Universität München, Munich,
Germany, Tech. Rep., 2009.

[19] H. Österle, R. Winter, F. Hoening, S. Kurpjuweit, and P. Osl, “Der
St. Galler Ansatz des Business Engineering: Das Core Business Meta-
model,” Wisu – Das Wirtschaftsstudium, vol. 2, no. 36, pp. 191–194,
2007.

[20] P. Johnson, E. Johansson, T. Sommestad, and J. Ullberg, “A tool for
enterprise architecture analysis,” in 11th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2007), 15-19 October
2007, Annapolis, Maryland, USA. Annapolis, Maryland, USA: IEEE
Computer Society, 2007, pp. 142–156.

[21] Chair for Informatics 19 (sebis), Technische Universität München, “Eam
pattern catalog wiki,” http://eampc-wiki.systemcartography.info (cited
2010-02-25), 2010.

[22] G. Guizzardi, “Ontological foundations for structural conceptual mod-
els,” Ph.D. dissertation, CTIT, Centre for Telematics and Information
Technology, Enschede, The Netherlands, 2005.

[23] S. Buckl, A. M. Ernst, J. Lankes, and F. Matthes, “Enterprise
Architecture Management Pattern Catalog (Version 1.0, February
2008),” Chair for Informatics 19 (sebis), Technische Universität
München, Munich, Germany, Tech. Rep., 2008. [Online]. Available:
\url{http://eampc-wiki.systemcartography.info/}

[24] Object Management Group (OMG), “Uml 2.2 superstructure speci-
fication (formal/2009-02-02),” http://www.uml.org (cited 2010-02-25),
2009.

[25] M. Bunge, Treatise on Basic Philosophy – Ontology I: The Furniture
of the World. New York: Reidel Publishing, 1977.

[26] S. Buckl, A. M. Ernst, F. Matthes, and C. Schweda, “An information
model for managed application landscape evolution,” Journal of Enter-
prise Architecture (JEA), vol. 5, no. 1, pp. 12–26, 2009.

[27] S. Buckl, F. Matthes, and C. M. Schweda, “Interrelating concerns in
ea documentation – towards a conceptual framework of relationships,”
in 2nd European Workshop on Patterns for Enterprise Architecture
Management (PEAM2010), Paderborn, Germany, 2010.

[28] ——, “A technique for annotating ea information models,” in 6th

international workshop on Enterprise & Organizational Modeling and
Simulation 2010, ser. Lecture Notes in Business Information Systems,
J. Barjis, Ed. Springer, 2010.

[29] V. R. Basili, G. Caldiera, and H. D. Rombach, The Goal Questin Metric
Approach. New York: Wiley, 1994.

[30] S. Buckl, F. Matthes, and C. M. Schweda, “A meta-language for ea
information modeling – state-of-the-art and requirements elicitation,” in
Enterprise, Business-Process and Information Systems Modeling, ser.
Lecture Notes in Business Information Systems, J. K. S. N. E. P. R. S.
R. U. Ilia Bider, Terry Halpin, Ed. Springer, 2010, pp. 169–181.

[31] C. Atkinson and T. Kühne, “Reducing accidental complexity in domain
models,” Software and Systems Modeling, pp. 345–359, 2007.


