
Towards a Language for Enterprise Architecture
Documentation and Analysis – Extending the Meta

Object Facility
Sabine Buckl, Florian Matthes, René Ramacher, Christian M. Schweda

Chair for Informatics 19
Technische Universität München

E-mail: {buckls,matthes,ramacher,schweda}@in.tum.de

Abstract—Enterprise Architecture (EA) management is widely
alluded to as an important challenge for today’s enterprises. Dif-
ferent approaches from literature target this topic and emphasize
on the importance of analyzing the EA as part of the management
function. In this respect, different analysis techniques have been
proposed, each based on a different representation of the EA in a
model. Largely disconnected, different methods for documenting
and planning the EA and her evolution have been discussed,
leading to object-oriented models for this purpose – the so
called information models. While these both areas are maturing
independently, we experience a low cohesion between them. In
particular, the models created for documentation as well as
planning on the one hand and the models used for analyses on
the other hand differ strongly, when it comes to the underlying
meta models and concepts. In this paper, we aim at closing the
gap resulting from the aforementioned fact. To do so, we discuss
the requirements for a suitable object-oriented meta model and
exemplify the requirements with an extension to the OMG’s Meta
Object Facility.

I. INTRODUCTION & MOTIVATION

Nowadays enterprises have to survive in an ever changing
environment. Therefore, the need to be flexible regarding new
emerging business demands and adapt quickly to changing
market situations is seen as a critical success factor, re-
sulting in special requirements regarding the supporting IT
infrastructure. A commonly accepted means to support this
alignment between business and IT is enterprise architecture
(EA) management. Architecture is, in this context, understood
as the fundamental organization of a system [the enterprise],
embodied in its components, their relationships to each other
and the environment, and the principles governing its design
and evolution [18]. A multitude of approaches to EA man-
agement has been developed by researchers [13], [33], [36],
[37], practitioners [11], [29], public authorities [9], [10], [35]
and tool vendors [27]. Although differing widely regarding the
selected focal points most approaches agree on the main goal
of EA management, which is guiding organizational change
via a managed evolution of the enterprise [28] and enhancing
the alignment between business and IT [16], [32]. Thereby the
tasks of EA management are a) documenting the current state,
b) strategic visioning of future states, c) analyzing EA models
of current and future states d) planning and guiding of EA
transformations and e) enforcing/realizing planned states.

In oder to support the managed evolution of the enter-
prise [28], decisions in the context of EA management have
to be taken with a holistic perspective, which takes aspects
from all layers – strategic via business and organizational, to
IT infrastructure – into account (cf. Figure 1). These decisions
are typically based on and backed by analysis of EA models,
which are used throughout the management process to provide
decision support. Using EA analysis, system properties such
as availability, performance, flexibility, or operational risk, etc.
can be operationalized as metrics and assessed [19]. These
metrics can then be used to compare different future planning
scenarios and thereby provide decision support for the EA
transformation process [24]. Various techniques to perform
this kind of analysis have been proposed, e.g. [15], [17],
[19] varying e.g. regarding the body of analysis – structural,
behavioral, or dynamic behavior – or the time reference – ex
ante vs. ex post analysis.

Fig. 1. A holistic perspective on the enterprise [27]

Similar to the multitude of existing approaches regarding
analysis techniques as alluded to above, a plurality of cor-
responding meta models (cf. [3], [23], [26], [35]), which
we refer to as information models in accordance with [3],
defining how to document the constituents of an enterprise
on the different layers exist. The existing diversity regarding
information models origins on the one hand from the differing
purposes these models have been developed for, e.g. Frank et
al. propose an information model for indicator-based analysis
of EA models [15], while Johnson et al. present an information
model supporting dependency modeling for EA analysis [19],
and Buckl et al. present an information model capable of
storing temporal information to support the managed evolution
of application landscapes [5]. On the other hand no commonly



accepted standard information model yet exists [23], which
advocates for the idea of such models being enterprise-specific
design artifacts.

The decoupled development of information models for EA
analysis and EA documentation as referred to above leads
to a the utilization of different meta models and concepts
for documenting and analyzing the EA. Regarding the close
connection of documentation and analysis in the context of
EA management, an approach to overcome the aforementioned
gap needs to be developed and validated in order to support
reusability of gathered information in the documentation task
of EA management for EA analysis. This especially applies,
as EA analysis and EA documentation are tasks commonly
used in conjunction, i.e. the output of the EA documentation
serves as input for EA analysis. Our contribution presented
in this paper is a first step to the development of an object-
oriented meta model suitable for EA documentation and
analysis purposes by specifying requirements for such a model
and exemplifying the proposed approach by presenting an
extension to the Meta Object Facility (MOF) of the OMG [30].
The MOF is used in this context as modeling facility on the
M2-level (cf. discussions in [30]), which is used to develop
information models, i.e. models on M1-level. Further, the
MOF is used as the majority of approaches for EA analysis
and documentation, as found in literature, is presented in an
object-oriented manner.

The remainder of the article unfolds as follows. Based
on an overview about the state-of-the-art regarding existing
approaches to EA analysis (Section II) and information models
(Section III), requirements for an object-oriented meta model,
which is suitable for EA analysis and documentation are
specified and discussed in Section IV. An approach to address
the collected requirements is exemplified by proposing an
extension to the MOF of the OMG in Section V. Finally, a
critical reflection is given in Section VI, where we discuss
our findings and the limitations of the proposed approach and
provide and outlook to areas, which need further investigation.

II. STATE-OF-THE-ART IN EA ANALYSIS TECHNIQUES

Decisions taken in the context of EA management are
typically based on analysis results of current states of the EA
or assessments of planned future states. Thus, different kinds
of analysis regarding the EA exist, which differ in respect
to coverage of the EA and focal points and the employed
techniques used. According to [7] EA analysis techniques can
be classified utilizing the following dimensions1:

• Three different dimensions regarding the body of anal-
ysis can be distinct – structure, behavior statistics, and
dynamic behavior. Whereas the structural complexity is
concerned with the number of constituents and their
connections, e.g. the number of interfaces of an appli-
cation, the behavior statistics take behavioral complexity
of the system’s constituents into account, e.g. resistance

1[7] states a fifth dimension concerned with self-referentiality of the
analysis approach. We do not regard this dimension to be of interest here,
therefore it is neither presented nor used in the following.

to change of an application [28]. Furthermore, dynamic
behavior regards the systems capability to react to certain
situations, e.g. the impact of a system failure propagating
over time.

• Analysis in the context of EA management, are typically
performed on two different types of models – models
of the current state or models of future planned states
– therefore different time references regarding the real-
ization of the object under investigation can be distinct.
In the former case, analysis can be based on information,
which is measurable as the object of investigation already
exists. These analysis are referred to as ex post analysis.
In the latter case, the analysis are based on assumptions
and predictions about the object of investigation, therefore
these analysis are ex ante analysis.

• The formalization of the analysis technique varies in
the different approaches from expert-based techniques
via rule-based to indicator-based ones. The least formal
technique, the expert-based one, is the most flexible one,
but time-consuming and dependent on the experience
and expertise of the executing person. The rule-based
technique apply on a more formal level describing ei-
ther desirable or avoidable architectural constellations,
which can be automated. The most formal technique, the
indicator-based analysis, allows quantitative assessment
of the object under investigation.

• Two types of analysis concerns regarding the enterprise
function can be distinguished – functional and non-
functional concerns. Whereas functional concerns deal
with the intrinsic goal of the enterprise itself e.g. produc-
tion or sales, non-functional concerns take aspects like
security, operating, or maintenance costs into account.

We will refer to these classification dimensions, with a spe-
cial emphasis on the dimensions body of analysis and time
reference, during analyzing the state-of-the-art in EA analysis
techniques in the following.

In [8], an approach to perform EA analysis with XML
is proposed. Thereby, the article puts a strong emphasis on
issues how to represent the EA in a model for performing
analyses. This model is rather fine grained, proposing to
use state-machines to include behavioral descriptions as well
as XML elements to represent structural information about
the architecture. The time reference in the analyses is not
explicitly alluded to, although the structural analyses can be
applied both ex-ante and ex-post, while the state-machine
based modeling of EA behavior points towards an ex-ante
analysis of behavioral aspects. The question how to calibrate
behavior models against measured behavior is nevertheless not
discussed in the article. Also, the question of the employed
analysis technique is not detailed, but indications pointing
towards rule-based analysis techniques exist. When it comes
to the possible analysis concerns, the paper does neither
advocate functional nor non-functional properties of the EA.
The approach presented nevertheless can be regarded generic
enough to support both types of concerns.



Body of Analysis structure
[29],[8],([15],[20]),[22]

behavior statistics
[17],[15],[20]

dynamic behavior
[8]

Time Reference ex-post
[29],[8],[17],[15],[20],[22]

ex-ante
([8]),[17],[15],[20],([22])

Analysis Technique expert-based
[29]

rule-based
[8],[22]

indicator-based
([29]),[17],[15],[20]

Analysis Concern functional
[29],([8]),[22]

non-functional
([29],[8]),[17],[15],[20],[22]

TABLE I
SUMMARIZING CLASSIFICATION OF EA ANALYSIS APPROACHES

A more quantitative approach to EA analysis is proposed
in [17], where exemplary indicators for analyzing EA behavior
are provided. These indicators are developed to provide aggre-
gated information on the behavior of certain EA artifacts, i.e.
to compute behavior statistics. The analysis model presented
in the approach integrates into the ArchiMate architecture
description language2, whose concepts are augmented with ad-
ditional properties reflecting non-functional aspects of the EA,
as e.g. the execution or completion time for a business process.
The time reference in the analysis is discussed alongside the
question of the quantitative input for the analysis model. In
particular, the authors highlight that measuring the behavior of
an existing system can provide valuable input, but also rise the
question of reproducible circumstances for the measurements.
For systems, which are still to be developed, estimates for
properties, e.g. based on comparable architectures, are noted
as possible source for quantitative information. Based on this
information performance measures for the (planned) system
are derived analytically, i.e. the values for descriptive indica-
tors are computed.

Two prominent approaches for EA analysis are presented
in [15] and [20], respectively. These approaches vary signif-
icantly concerning their origins and concerning the concepts,
which they employ. Concerning the classification dimensions,
both approaches are nevertheless quite similar. The two ap-
proaches support both ex-ante and ex-post analyses of enter-
prise systems represented in EA models. In particular, [15]
emphasizes the importance of an indicator system, which is
used for analyses there, as means to support communication
in an enterprise. The focus of both approaches lies on statistic
information arising from the behavior of the enterprise system,
although to a limited amount also structural aspects of the EA
are analyzed. Beside the indicator-based analysis technique,
a prominent difference exists: the approach of [20] aims at
the development of single indicators, while [15] goes even
further. In particular, the latter approach seeks to develop
integrated and consistent indicator systems. Regarding the
analysis concern, both approaches focus on non-functional
requirements, with the approach of [15] centering on more
economic indicators, whereas [20] puts an emphasis on clas-
sical non-functional aspects, such as availability.

The topic of EA analysis is also discussed in [29]. There
an emphasis is put on the utilization of EA models, which

2For more information see http://archimate.telin.nl.

have been created during other EA management activities.
The models discussed therein reflect structural aspects of
the EA, thus limiting the body of analysis on such aspects.
Furthermore, existing enterprise systems reflected in their EAs
are analyzed according to different concerns. The majority
of these concerns is functional, e.g. homogeneity of the
application landscape or the interdependencies between the
business applications are considered. Complementing, two
non-functional concerns, namely costs and benefits, are alluded
to as typical EA analysis concerns. Nevertheless, the measures
for those costs and benefits remain on a rather abstract level.
The different analysis concerns are addressed by different
techniques, of which the majority is expert-based, i.e. utilizes
specific viewpoints to present architecture information to an
enterprise architect, who informally assesses e.g. the level of
homogeneity. When it comes to the non-functional concerns,
the predominance of the expert-based analysis is broken in
favor of a few quantitative indicators, which are especially
used to operationalize benefits.

Agreeing with the overall understanding of EA analysis
as proposed in [29] (cf. [2]), a dedicated support of impact
analyses is discussed in [22]. In particular, the EA is thereby
understood as a directed graph reflecting the structure of
the enterprise system. On this graph, rule-based analyses are
performed to assess and evaluate the transitive impact of an EA
constituent, e.g. in cases of failure. Thereby, the analyses are
applied to current architectures, although the proposed method
is not limited and could hence also be applied on planned
architectures. Regarding the analysis concerns, the approach
does not make assumptions, i.e. it can handle both functional
and non-functional ones. The following two analysis questions
taken from [22] exemplify this: Which business applications
are used during the creation of a selected product? and Which
applications fail, if a certain server fails?.

The results of the state-of-the-art analysis are summarized
in Table I. Summing up, it can be stated, that the above
presented approaches differ widely regarding the focus set in
the analysis. Nevertheless, their description represent a good
starting point to specify requirements for a meta model suitable
for EA documentation and analysis as presented in Section IV.

III. STATE-OF-THE-ART IN EA INFORMATION MODELING

In the preceding section, we discussed the plurality of
analysis techniques that are applied in the context of EA
management. This plurality is also reflected in the manifold



types of EA models, the techniques rely on. This section is
dedicated to these models, in particular to their meta models,
which are subsequently called information models. Preparing
the subsequent discussions, it has to be noted that irrespective
the prominence of EA management as research field, no
standard information model for EA management yet exists.
In contrast, the different EA management approaches from
literature bring along their own information models varying
greatly in respect to both coverage and level of detail. To
prevent misunderstands, we apply a writing convention to
the names of information model concepts on the one hand
and corresponding meta level concepts on the other hand.
An information model concept is hence denoted as follows
Concept, while a meta level concept of the same name was
denoted as Concept.

A language for EA descriptions is introduced in [21],
as a language following the paradigm of object-orientation.
Therefore, the basic concepts Thing and Relation are intro-
duced, from which subconcepts specific to the EA domain are
derived by refinement. Due to this restriction, attributes for
the modeling concepts cannot be supplied by means of the
language, although the respective instance models advocate
for the existence of a name attribute. Centrally, the language
builds on a conceptual framework, partitioning the EA along
three different aspects and three different layers. The topmost
layer of the framework is concerned with business concepts
such as business processes, which are supported by application
layer concepts as applications. The latter themselves rely on in-
frastructure layer concepts as infrastructure components. The
aspects establish a partition of the EA concepts in structure,
information, and behavior concepts. This partition further is
aspect-independent, such that generic concepts for structure
(e.g. services), information (e.g. messages), and behavior (e.g.
events) are introduced. These concepts are additionally con-
nected by generic relationships. By refinement, layer specific
concepts are derived, but no refinement applies to the relation-
ships. This modeling technique introduces additional flexibility
to the information model of [21], as it allows to omit e.g.
application layer concepts, if no information is present. This
flexibility nevertheless does not come without cost, but can
lead to imprecisions and inconsistencies, if application layer
concepts are amended later.

The core business meta model presented in [34] is according
to its intended usage context an information model for EA
modeling. This information model is described using a subset
of the modeling facilities as presented by the UML [31],
namely classes, associations, aggregations, and associ-
ation classes. The core business meta model prominently
focuses on describing business concepts, such as processes and
products, and relating them to supportive concepts as business
applications. Nevertheless, the overall perspective is strongly
business centric. Due to the decision of only using a subset of
the UML, powerful concepts, such as properties, for further
detailing the described EA are omitted. Also, concepts for
ensuring model consistency, such as multiplicities, are not
present in the core business meta model. Nevertheless, they are

alluded to in [34], where they are described to be enterprise-
specific and hence are subject to introduction in an model
adaptation process complementing model usage. The authors
of [34] further describe that during the adaptation mechanism
the using enterprise can decide to set aside some concepts
or to replace association classes by simple associations, if
the corresponding more detailed information is not needed.
Nevertheless, no statements are made on the exact procedure
of the adaptation mechanism, nor on a relationship between
the adapted model and the analysis techniques applied upon.

The multi-perspective enterprise modeling (MEMO)
method [13] emphasizes on the specificity of EA models in
respect to their stakeholders. Therefore, different aspects of
the EA, e.g. the IT aspect or the business process aspect,
are each incorporated into a single modeling language,
bringing along a dedicated information model for the aspect.
Using these languages, the enterprise can be described
from different perspectives which correspondingly focus on
selected aspects of the enterprise. Complementing the special
purpose modeling language, an integrative meta language,
called MEMO meta modeling language (MML) [14] exists.
This language introduces a common object-oriented meta
model for the different languages’ information models. This
meta model shares multiple characteristics and concepts of
the UML [31], beginning with the graphical notation for
the language concepts. The most prominent exception of
standard UML is the concept of the intrinsic feature, which
breaks the strict type-instance layering of the UML. With an
intrinsic feature, it is e.g. possible to also model properties,
not only meta properties, on the meta level. These properties
are used normally on the instance-level, thus omitting further
specification demands on the intermediary information model
level. This resembles the notion of the clabject and the
potency as discussed in [1], although only potencies of 1 and
2 are supported via the intrinsic features.

In [4], [12] a pattern-based approach to EA management is
presented. Therein, so called I-patterns (short for information
model patterns) are introduced, that supply the information
models for describing the EA. The I-patterns are therein
understood as best-practice solutions to recurring problems in
EA modeling, which themselves are connected to recurring
problems in EA management, the so-called concerns. By
applying the idea of patterns to this context, the information
models can be kept small and narrowly focused to the problem,
they are meant to address. In this respect, the approach
continues the basic intention of MEMO to a smaller scale, i.e.
where languages in MEMO represent a distinct perspective,
the concerns decompose the perspective to typical problems.
The I-patterns utilize the meta concepts as provided by the
OMG’s MOF, more precisely the essential parts thereof as
subsumed in the EMOF. Additionally, selected patterns as
presented in [25] employ the Object Constraint Language
(OCL) to provide additional information, e.g. to specify rules
and indicators for analyzing EA models instantiating the corre-
sponding information model. Nevertheless, the employment of
both EMOF and OCL has some subtle complexities associated,



which are not discussed in detail by the approach. At first,
a language binding of OCL to EMOF does not exist, i.e.
OCL expects language features that are not present in EMOF
such that the semantics of OCL-expression is not always
clear. Secondly, the I-patterns present solutions for specific EA
management problems. A holistic EA management endeavor
would hence have to utilize several of them in an integrated
manner. For this integration question, the standard mechanisms
of the EMOF do not provide a comprehensive solution.
Mechanisms for merging packages3 as introduced in the UML
infrastructure [31] might be helpful in this context, but are not
without difficulties regarding their formal semantics.

The above list of approaches to EA information modeling
is by far not complete but does nonetheless provide a good
overview on the state-of-the-art by detailing representative and
prominent approaches in this area.

IV. REQUIREMENTS FOR AN EA META MODEL FOR
SUPPORTING EA ANALYSES

Having discussed the state-of-the-art in the fields of EA
analysis and of EA information modeling, it quickly becomes
obvious that only weak links between these fields exist.
Especially, the way to represent EAs as instances of EA
information model concepts differs strongly from the EA
representations as used by the different analysis techniques.
An exception in this context is the approach of the Score-ML
that combines the object-oriented multi-perspective enterprise
modeling (MEMO) [13] with a technique to augment the
object-oriented models with business indicators. The require-
ments that led to this combination technique are discussed
in [15] and are revisited below.

The Score-ML method supports and enforces the design of
comprehensive and consistent, i.e. non-contradicting and non-
conflicting indicator systems. Further, the method allows to
support the user with documentation helpful for interpreting
the indicators and understanding the context, in which the
indicators apply. In this vein, the rationale for an indicator
can also be supplied. The indicators should be represented
on different levels of abstraction for different stakeholders.
Finally, the method of the Score-ML is intended to foster the
creation of a software system implementing the corresponding
indicator systems.

Concluding, it can be said, that the above requirements
strongly emphasize the consistent usage of the analysis model
and elaborate on ways to ensure this consistency by construc-
tion. Therefore, interconnections are introduced to describe
that (and how) an indicator is influenced by related architec-
tural indicators. In contrast, details of setting up the analysis
model and calibrating the model are only rudimentarily alluded
to. Applying the classification dimensions body of analysis
and time reference as introduced in Section II, this quickly be-
comes obvious. The analysis technique claims to be applicable
for both ex-ante and ex-post analyses, although especially with
the former, the situation is not that clear. Looking at analyses

3One could assume an I-pattern to be a package.

of the EA behavior (either statistic or dynamic), one quickly
recognizes that the analysis technique of the Score-ML does
not comprise means for supporting ex-ante analyses of the
behavior. Such analyses can only be built on estimations of
the behavior, which are per se only feasible regarding behavior
statistics.

With the above discussions in mind, we complement the def-
initional relationships between architectural properties and in-
dicators as introduced by [15] with cause-effect relationships.
The latter concept should be used to incorporate behavioral
aspects into a model of the EA. To detail on the distinction
between the two types of relationships, we subsume them as
two requirements as follows:

R1 Not all indicators used for EA analysis are directly
observable architectural properties. For the indica-
tors, which are not directly observable, the infor-
mation model must be augmented with information
on their definition, i.e. on the architectural properties
that these indicators depend on.

R2 Certain architectural properties might exist, which
do not change their values independently, but are
related to each other in a way that a change of one
property causes effects on the values of dependent
properties. This change is therein not the immediate
consequence of an existing definitional relationship.

Exemplifying the above requirements, one could think of the
property available of a server. It can either take the value
true or false at a given point in time; further, the value
of the property can be determined by observation. Presenting
the time-series of the property available might not be
sensible during EA analysis; in contrast, a derived property
availability is computed from the time-series. In terms
of the above relationship concepts hence a definitional relation-
ship between available and availability would exist.
Continuing the example, think of an e-mail service installed
on the aforementioned server. This service would also have a
property available associated in the EA model. Obviously
the value of this property would depend on the value of the
server’s availability property. Put in other words, the
e-mail service cannot be available, if the underlying server is
not. This kind of relationship is in contrast no definitional one,
but is intrinsic to the system under consideration, i.e. it is a
cause-effect relationship.

Retrospecting requirements R1 and R2, one notices the
repeated usage of the term observable. This should not surprise
anyone, as analyzing architectures is mostly to be related to
observing them, especially if behavioral aspects are consid-
ered. Consistent with a central idea of the architecture theory
diagrams (cf. [20]), we establish a corresponding requirement
(R3) for our approach. Additionally, it has to be noted that
in our above considerations, no assumptions on the details
of a relationship between architectural properties have been
made. In particular, the exact type of the relationship as
expressed e.g. via a computation rule remains open. We do
not assume this to be a drawback of the approach, as the



relationships are primarily intended to express that a relation
exists. Nevertheless, the approach must provide a method
to complement this qualitative relationship information with
computable rules. Requirement R4 formulates this.

R3 Architectural properties can be distinguished into
observable properties and latent ones. The values of
the latter properties are hence not determined by
observation. The distinction between the types of
properties is not fixed, but depends on the actual
decision of what to observe.

R4 Definitional and cause-effect relationships only ex-
press that two architectural properties are related. In
this respect, it must be possible to complement these
relationships with computable rules expressing the
actual type of relation, i.e. providing an operational-
ization.

In terms of the running example from this section, require-
ment R3 expects us to mark the available properties of
the server and the business application as observable. The
availability of the server would in contrast be marked
as latent. In the vein of R4, the definitional relationship be-
tween available and availability is operationalized
by a moving average function. The cause-effect relationship
between the two available properties is complemented by
a conditional probability table, indicating that the business
application can only be available, if the underlying server is.

A final requirement (R5) can be derived by revisiting the
notion of the architecture theory diagrams from [20]. There,
intermediary properties are introduced, i.e. properties that
are neither relevant indicators nor observable architectural
properties. In particular, the intermediary properties only serve
as means to simplify the formulation of the dependencies. In
an object-oriented technique for describing relationships be-
tween properties, one could also expect that such intermediary
properties exist. This would especially be the case, if no direct
association between the class with the source property and
the class holding the target, i.e. the related, property existed.
We nevertheless, regard the introduction of such intermediary
properties as unnecessary complification of the model that
is detrimental to the readability of the model. Therefore,
the following requirement formulates our demand to support
transitive property relationships without using intermediary
properties:

R5 Definitional and cause-effect relationships cannot
only relate architectural properties in the same class.
In the case, where the source and the target property
of a relationship are owned by different classes,
the relationship must specify the association(s) that
(transitively) link the two owning classes.

V. AN EXTENSION TO EMOF FOR SUPPORTING EA
DOCUMENTATION AND ANALYSES

Based on the requirements specified in the preceding sec-
tion, we develop a meta model for supporting EA documen-
tation and analyses. As a starting point, we take the object-
oriented meta model of the OMG’s EMOF [30] and provide

extensions to ensure that the model fulfills the requirements.
Thereby, build on preliminary results in this respect from [6].
Preparing our subsequent discussions, we introduce a writing
convention to prevent mixing up concepts on meta level (M2)
and concepts from the information model (M1) – meta level
concepts are added the prefix meta- in the following, while
information level concepts are denoted without prefix. The
type-setting convention as introduced above further applies
here.

Requirement R3 demands that architectural properties are
distinguished into observable and latent ones. Consistent with
the findings from Section III, we assume that those properties
are mostly reflected in the information model by Property
concepts, i.e. instances of the meta-class Property. In this
respect, R3 is quite simple to fulfill by introducing an addi-
tional meta-property to the respective meta-class. This meta-
property isObservable is of boolean type and allows to
indicate, whether the respective property can be observed
or not. Complementing the extension of the abstract syntax
of the EMOF via an additional meta-property, we further
propose to use a graphical symbol to indicate the status
of the isObservable meta-property for a property from the
information model. In a simplistic case, one could add the
term {observable}, where the meta-property is true.

Two aspects of adding the meta-property to the concept
Property remain to be discussed at this point. At first, one
could have used the standard meta-property isDerived instead.
Secondly, meta-properties of EMOF are also used to model
relationships between meta-classes – what is the implication
of observable in this context. Discussing this second aspect
first, the fact that also relationships can be marked as ob-
servable seems to be quite consistent with the understanding
of architectural documentation. In particular, this relates to
the first question regarding the distinction between derived
and observable. Derived properties in the understanding of
the MOF do not bear additional information in their values,
as those can be computed from the values of the other non-
derived properties. In contrast, the observable meta-property
does not make assumptions on the values of some properties
to be computed (they could have been estimated instead). The
meta-property only indicates, that the value of a respective
property is gained by observation of the enterprise under
consideration, i.e. is manifest.

The AttributeRelationship as proposed and exemplified
in [6] provides a suitable technique for expressing that two
properties relate. Nevertheless, the concept cannot be used to
specify the type of relationship, i.e. to distinguish between
definitional and cause-effect relationships. In this respect,
we introduce the generic and abstract PropertyDependen-
cyRelationship concept, from which dedicated concepts for
the different relationship types are derived by specialization.
Before describing these specialized classes, we elaborate on
the influenceType meta-property of the base class. This meta-
property allows to optionally specify, what kind of influence
the related property receives from the source property. One can
abstain from providing a value, if the exact type of influence is



Fig. 2. Meta model extension for modeling EA analyses

unknown, or can select a value from the three choices positive,
negative, and indifferent. Thereby, it can be expressed that
the related property behaves similar to the source property
(positive) or the exact opposite (negative), or nothing can be
said about the relative behavior (indifferent)4.

Requirement R5 demands the PropertyDependencyRe-
lationship meta-class to have a meta-property for supplying
the path of associations connecting the class owning the
source with the class owning the target architectural property.
Therefore, the dependencyPath meta-property is introduced
as a multi-valued one, referencing properties describing a
(transitive) link from the source to the target class. To ensure,
that this kind of path modeling leads to sensible models, we
further must introduce some additional constraints, which are
detailed at the end of the section with the respective UML-
model of the provided extension.

Making explicit the actual type of dependency represented
(as demanded by R4) by the respective instances, the generic
concept allows to optionally supply an expression (type
OpaqueExpression as defined in the UML infrastructure).
This expression provides the actual rules for computing the
dependency, i.e. for determining the target value based on the
corresponding source values. As multiple dependency relation-
ships can target the same target value, an additional concept
PropertyDependencyEndpoint is introduced. Via this con-
cept, it is possible to supply another expression for combining
the values supplied by the dependency relationships. The type
OpaqueExpression is – according to its definition in the
UML infrastructure – a base type for expresions over object-
oriented models. Different languages can subclass the concept
to introduce their own hierarchy of expressions. The OCL, for
example, introduces the OCLExpression concept that inherits
from OpaqueExpression; therefore, OCL expressions can be
supplied to detail the actual relationship between the source
and the target property. This possibility should nonetheless
not be mistaken: we do not advocate the use of the OCL for
detailing property dependency relationships. This language is
not especially designed towards the purpose and hence leads

4One can identify the last relationship type with a knowing null different
from the unknown type case.

to cumbersome expressions mimicking a relationship, which
can be expressed more concisely in a different language – we
even show this problem in our running example below.

From the general relationship concept more specific con-
cepts representing the definitional and cause-effect relationship
respectively are derived by inheritance. Thereby, requirements
R1 and R2 are fulfilled, respectively. The class Definition-
alPropertyRelationship expresses, that the target property is
defined on the source properties. In this respect, the target
property does not have a dedicated value assigned, but the
value is computed from the source properties via the supplied
expressions. In contrast, the class CausalPropertyRelation-
ship expresses, that the target property has a dedicated value,
which is influenced by the value of the corresponding source
property. Therefore, the supplied expression is different in its
signature, i.e. it does not only have one input value (the source
value) but also takes the current target value as input value.
The expression then evaluates to the new target value, i.e.
a target value of a later period in time. In this vein, causal
property relationships can be used to model behavioral aspects
of the system under consideration. In particular, a notion of
time introduced into the model, although the time reference,
e.g. the length of the periods, is not explicitly alluded to.

Complementing the above discussions on the respective
model concepts, we provide the corresponding meta model
extension for EMOF in Figure 2. Two constraints apply for
all PropertyDependencyRelationship instances. At first, the
source property and the target property, as associated via
the corresponding PropertyDependencyEndpoint instance,
must not be identical. Secondly, the path must connect the
source must connect the class owning the source property and
the one owning the target property in an acyclic manner.

VI. CONCLUSION AND OUTLOOK

In this paper, we discussed the state-of-the-art in EA analy-
sis and in EA modeling. In this discussion, we could show that
the fields develop independently. This results in the absence
of a common meta model, suitable for analyzing the EA
on the one hand and modeling, especially documenting and
planning, the EA on the other hand. To close the resulting
gap, we spawned the idea of an integrated meta model for



EA modeling and EA analysis. Taking an object-oriented
modeling technique for EA documentation and planning as
given, we specified additional requirements an object-oriented
meta model had to fulfill to adequately integrate EA analysis
techniques. In a final section, we showed how these require-
ments can be addressed in an extension to the OMG’s EMOF.

The extended meta modeling facility, presented in response
to the experience lack of support, has yet not been applied
in practice. Initial projects are under way and show the
applicability, but are far from a comprehensive validation of
the proposed meta model. In this context, initial findings
reveal that adequate tool support would be very beneficial
in applying the modeling technique in practice. Furthermore,
the utilization of the OpaqueExpression concept to allow
for operationalizing the property relationships introduced an
additional complexity to the meta model, whose full potential
was yet not leveraged. In particular, as only OCLExpression
concepts are currently used to implement the operationaliza-
tion, the intended decoupling of qualitative dependency mod-
eling and dependency operationalization is not fully realized.
This opens to an interesting area of future research, as object-
oriented formalizations of other computation models exist. It
would hence be both interesting and beneficial to see, how
these models could be integrated to the analysis formalism
via appropriate inheritance from OpaqueExpression. In this
respect, challenges regarding analysis models that are non
isomorph to the documentation models might arise.

A even more general question for future research is con-
cerned with the basic object-oriented meta modeling facility
herself. Having shown in the field of EA analysis, that basic
object-oriented facilities are not sufficient, one might rise
the question, if there were activities in the context of EA
management which advocate additional extensions for the
meta modeling facilities. Especially the MML meta language
presented in [14] supports this idea, although we discussed that
this facility lacks specific support for EA analysis concepts
(cf. Section III). With this general question is background, we
expect the area of meta modeling language for EA information
modeling to be an interesting field for future research.

REFERENCES

[1] C. Atkinson and T. Kühne. Reducing accidental complexity in domain
models. Software and Systems Modeling, pages 345–359, 2007.

[2] T. Bucher, R. Fischer, S. Kurpjuweit, and R. Winter. Analysis and
application scenarios of enterprise architecture: An exploratory study.
In Tenth IEEE International Enterprise Distributed Object Computing
Conference (EDOC 2006), 16-20 October 2006, Hong Kong, China,
Workshops, IEEE Computer Society, Washington, DC, USA, 2006.

[3] S. Buckl, A. M. Ernst, J. Lankes, and F. Matthes. Enterprise Architecture
Management Pattern Catalog (Version 1.0, February 2008). Technical re-
port, Chair for Informatics 19 (sebis), Technische Universität München,
Munich, Germany, 2008.

[4] S. Buckl, A. M. Ernst, J. Lankes, K. Schneider, and C. M. Schweda. A
pattern based approach for constructing enterprise architecture manage-
ment information models. In Wirtschaftsinformatik 2007, pages 145 –
162, Universitätsverlag Karlsruhe, Karlsruhe, Germany, 2007.

[5] S. Buckl, A. M. Ernst, F. Matthes, and C. A. Schweda. An informa-
tion model for managed application landscape evolution. Journal of
Enterprise Architecture (JEA), 5(1), pages 12 – 26, 2009.

[6] S. Buckl, U. Franke, O. Holschke, F. Matthes, C. M. Schweda,
T. Sommestad, and J. Ullberg. A pattern-based approach to quantitative
enterprise architecture analysis. In 15th Americas Conference on
Information Systems (AMCIS), San Francisco, USA, 2009.

[7] S. Buckl and C. M. Schweda. Classifying enterprise architecture
analysis approaches. In: 2nd IFIP WG5.8 Workshop on Enterprise
Interoperability (IWEI’2009), Valencia, Spain, 2009.

[8] F. S. de Boer, M. M. Bonsangue, J. Jacob, A. Stam, and L. van der
Torre. Enterprise architecture analysis with xml. In Proceedings of
the 38th Annual Hawaii International Conference on System Sciences
(HICSS 2005), volume 8, page 222b, IEEE Computer Society Press, Los
Alamitos, CA, USA, 2005.

[9] Department of Defense (DoD) USA. DoD Architecture Framework Ver-
sion 1.5: Volume I: Definitions and Guidelines. http://www.defenselink.
mil/cio-nii/docs/DoDAF Volume I.pdf (cited 2009-06-30), 2007.

[10] Department of Defense (DoD) USA. DoD Architecture Framework
Version 1.5: Volume II: Product Descriptions. http://www.defenselink.
mil/cio-nii/docs/DoDAF Volume II.pdf (cited 2009-06-30), 2007.

[11] G. Dern. Management von IT-Architekturen (Edition CIO). Vieweg,
Wiesbaden, Germany, 2006.

[12] A. Ernst. Enterprise architecture management patterns. In PLoP 08:
Proceedings of the Pattern Languages of Programs Conference 2008,
Nashville, USA, 2008.

[13] U. Frank. Multi-perspective enterprise modeling (memo) – conceptual
framework and modeling languages. In Proceedings of the 35th Annual
Hawaii International Conference on System Sciences (HICSS 3003,
pages 1258–1267, 2002.

[14] U. Frank. The memo meta modelling language (mml) and language ar-
chitecture (icb-research report). Technical report, Institut für Informatik
und Wirtschaftsinformatik, Duisburg-Essen, Germany, 2009.

[15] U. Frank, D. Heise, H. Kattenstroth, and H. Schauer. Designing and
utilising business indicator systems within enterprise models – outline
of a method. In Modellierung betrieblicher Informationssysteme (MobIS
2008) – Modellierung zwischen SOA und Compliance Management 27.-
28. November 2008, Saarbrücken, Germany, 2008.

[16] J. C. Henderson and N. Venkatraman. Strategic alignment: leveraging
information technology for transforming organizations. IBM Systems
Journal, 38(2-3), pages 472–484, 1999.

[17] M.-E. Iacob and H. Jonkers. Quantitative analysis of enterprise architec-
tures. In D. Konstantas, J.-P. Bourrières, M. Léonard, and N. Boudjlida,
editors, Interoperability of Enterprise Software and Applications, pages
239–252, Springer, Geneva, Switzerland, 2006.

[18] International Organization for Standardization. ISO/IEC 42010:2007
systems and software engineering – recommended practice for architec-
tural description of software-intensive systems, 2007.

[19] P. Johnson, E. Johansson, T. Sommestad, and J. Ullberg. A tool for
enterprise architecture analysis. In 11th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2007), 15-19 October
2007, Annapolis, Maryland, USA, pages 142–156. IEEE Computer
Society, 2007.

[20] P. Johnson, L. Nordström, and R. Lagerström. Formalizing analysis of
enterprise architecture. In Interoperability for Enterprise Software and
Applications Conference, page 10, Springer, Bordeaux, France, 2006.

[21] H. Jonkers, R. van Burren, F. Arbab, F. de Boer, M. Bonsangue,
H. Bosma, H. ter Doest, L. Groenewegen, J. Scholten, S. Hoppenbrouw-
ers, M.-E. Iacob, W. Janssen, M. Lankhorst, D. van Leeuwen, E. Proper,
A. Stam, L. van der Torre, and G. van Zanten. Towards a language
for coherent enterprise architecture descriptions. In 7th International
Enterprise Distributed Object Computing Conference (EDOC 2003),
IEEE Computer Society, Brisbane, Australia, 2003.

[22] S. Kurpjuweit and S. Aier. Ein allgemeiner Ansatz zur Ableitung
von Abhängigkeitsanalysen auf Unternehmensarchitekturmodellen. In
9. Internationale Tagung Wirtschaftsinformatik (WI 2007), pages 129–
138, Österreichische Computer Gesellschaft, Wien, 2009.

[23] S. Kurpjuweit and R. Winter. Viewpoint-based meta model engineering.
In M. Reichert, S. Strecker, and K. Turowski, editors, Enterprise
Modelling and Information Systems Architectures – Concepts and Appli-
cations , Proceedings of the 2nd International Workshop on Enterprise
Modelling and Information Systems Architectures (EMISA’07), St. Goar,
Germany, October 8-9, 2007, LNI, pages 143–161. GI, 2007.

[24] J. Lankes. Metrics for Application Landscapes – Status Quo, Develop-
ment, and a Case Study. PhD thesis, Technische Universität München,
Fakultät für Informatik, Munich, Germany, 2008.



[25] J. Lankes and C. M. Schweda. Using metrics to evaluate failure propa-
gation and failure impacts in application landscapes. In Multikonferenz
Wirtschaftsinformatik, GITO-Verlag, Berlin, Germany, 2008.

[26] M. Lankhorst. Introduction to enterprise architecture. In Enterprise
Architecture at Work, Springer, Berlin, Heidelberg, New York, 2005.

[27] F. Matthes, S. Buckl, J. Leitel, and C. M. Schweda. Enterprise
Architecture Management Tool Survey 2008. Chair for Informatics 19
(sebis), Technische Universität München, Munich, 2008.

[28] S. Murer, C. Worms, and F. Furrer. Managed evolution. Informatik
Spektrum, 31(6) pages 527–536, 2008.

[29] K. D. Niemann. From Enterprise Architecture to IT Governance –
Elements of Effective IT Management. Vieweg+Teubner, Wiesbaden,
Germany, 2006.

[30] OMG. Meta Object Facility (MOF) core specification, version 2.0
(formal/06-01-01), 2006.

[31] OMG. UML 2.2 Infrastructure Specification (formal/2009-02-04), 2009.
[32] W. Ross, Jeanne, P. Weill, and C. Robertson, David. Enterprise

Architecture as Strategy. Harvard Business School Press, Boston,
Massachusetts, USA, 2006.

[33] A.-W. Scheer. ARIS – Modellierungsmethoden, Metamodelle, Anwen-
dungen. Springer, Berlin, Germany, 4 edition, 2001.

[34] H. Österle, R. Winter, F. Hoening, S. Kurpjuweit, and P. Osl. Der St.
Galler Ansatz des Business Engineering: Das Core Business Metamodel.
Wisu – Das Wirtschaftsstudium, 2(36), pages 191–194, 2007.

[35] The Open Group. TOGAF ”Enterprise Edition” Version 9. San Diego,
USA, http://www.togaf.org (cited 2009-07-10), 2009.

[36] R. Winter and R. Fischer. Essential layers, artifacts, and dependencies
of enterprise architecture. In EDOC Workshop on Trends in Enterprise
Architecture Research (TEAR) within the Tenth IEEE International
EDOC Conference (EDOC 2006), page 30. IEEE Computer Society,
2006.

[37] J. Zachman. Enterprise architecture: The issue of the century.
DATABASE PROGRAMMING AND DESIGN, pages 1–13, 1997.


