
Using Metrics to Evaluate Failure Propagation in
Application Landscapes

Josef Lankes, Christian M. Schweda

Chair Software Engineering for Business Information Systems
Technische Universität München

Boltzmannstr. 3
85748 Garching

{lankes, schweda}@in.tum.de

Abstract: The number of business applications operated by enterprises to provide
support for the business has increased over the last years. With increasing number
of applications and connections between them, also the overall complexity of the
application landscape has grown. A main task in managing an application
landscape is maintaining quality levels. This article contributes a set of metrics for
measuring a specific attribute of an application landscape – failure propagation.

1 Motivation

Today, enterprises operate a large number of applications providing critical support to
the business. These business applications form, when taken together, the application
landscape of an enterprise, which can be seen from a managerial point of view as an
important asset, providing essential support to business processes, but also acting as a
sometimes costly bottleneck. Together with the growing complexity, among others
created by an increasing number of business applications and dependencies between
them, this results in the need to manage the application landscape in a structured and
continuous way. This has lead to approaches as Enterprise Architecture (EA)
management [LW04] or Enterprise Modeling [Fr02] gaining increasing importance.

However, not all approaches available to management activities are common in mana-
ging application landscapes. Metrics, while readily employed in other domains as Soft-
ware Engineering [Fe91] or Business Administration (see e.g. the balanced scorecard
[KN91], or financial metrics [RWJ02]), cannot yet be considered widely used in mana-
ging application landscapes (as one of few examples, [La05] presents a quantitative
approach for assessing performance and workloads for applications). However, we view
metrics, an approach to quantify properties of objects [Kr71], as a powerful aid for
management activities in coping with an application landscape’s complexity. Especially,
visualizing properties by displaying metrics values on diagrams as e.g. software maps
[Bu07b] can enable users to focus on aspects otherwise not easily visible in the often
large application landscape models, which range into thousands of business applications.

1827

One of the aspects, which are of concern regarding an application landscape, is the
propagation of failures through the often dense web of interdependencies between the
business applications, with potentially critical and unforeseen effects on the supported
business processes. It is an aspect especially of importance concerning systems being
directly visible to customers, with the kind of business being conducted by the
organization certainly affecting the criticality (consider e.g. an insurance vs. a stock
exchange). Thus, we provide a metrics based approach to assist in evaluating structures
in an application landscape which are prone to promoting failure propagation. We do not
view this as a standalone approach, but as one to be integrated with existing efforts con-
cerned with managing an application landscape, also ones described in literature (as e.g.
[BW05]). Thereby, the approach can complement evaluations of other quality attributes.

The remainder of this article is structured as follows: Section 2 details our approach to
assess the effect of the application landscape structure on failure propagation, in the
context of an EA management pattern as introduced in [Bu07a]. Therefore, firstly the
concerns to be addressed by measuring failure propagation are detailed and secondly an
appropriate information model fragment containing metrics is given. Thirdly, viewpoints
utilizing the metrics are presented, which are then in the last part of the approach used by
methodologies to address the initial concerns. Section 3 shows the applicability of the
approach in practice and thereby exemplifies adaptations, which have to be made to
tailor the approach to an actual use case. The example is based on a case study executed
in cooperation with a large Swiss bank. Section 4 points to further directions of research.

2 Measuring failure propagation

With the basic makeup of an application landscape as a complex web of interdependent
applications, which communicate a plethora of information objects over a multitude of
communication channels, interfaces, and interconnections, it is not surprising, that the
failure of such an interconnected application is likely to cause other applications not to
perform correctly or to perform at all. This behavior exerts influence on the support for
business processes provided by the application landscape, and therefore on the business
services provided by the enterprise itself. Various approaches for evaluating failure-
specific aspects exist. At the level of business processes, e.g. quality control is concerned
with the subject, employing approaches as control charts, cause-and-effect diagrams, or
QC process charts for process analysis [Is90]. Subsequently, we provide a metrics-based
approach, which, while not neglecting process aspects, is more focused on the
application landscape.

As a metric is only a means in pursuing a specific end, it must be related to a
methodology that gives an indication on how the metric can be employed in addressing
the specific concern. A methodology itself can be seen as based on specific viewpoints,
which visualize the underlying information. Therefore, we structure our presentation of
the failure propagation metrics along three elements: information model, viewpoint
(which can together be seen as a modeling language), and methodology (here describing
some aspects to be considered in an associated process model). Preceding detailed
information on these three parts, the basics underlying our approach are introduced.

1828

2.1 Basic concepts

The basic idea of failure propagation here is that a business application is dependent on
services rendered by other business applications in order to perform specific tasks. A
service can either be necessary for other business applications or directly related to the
provision of a business service and therefore to supporting a business process.

The model subsequently introduced assumes that services are exposed via interfaces, so
that it can be indicated for interfaces, whether they can provide the respective service
(operational) or not (not operational, failure). The idea behind this model is to focus on
inter-application aspects. Figure 1 exemplifies this, showing a situation where the
execution of an Order Management process employs an “Account Info” (user)-interface
and an “Execute Transaction” (user)-interface. These interfaces are offered by an
employee portal, which in turn uses other interfaces offered by two more business
applications. However, considering that not all used interfaces might be necessary for
keeping a specific offered interface of an application operational, the model is also
designed to be able to use specific intra-application details. The Employee Portal e.g.
relies on “Archiving” and “Accept Transaction” for providing “Execute Transaction”,
while its “Account Info” relies on an Account Info – interface from the Order System, as
shown in Figure 2.

Employee
Portal

Order
System

Archiving

Account
info

Execute
Transaction

Archiving

A
cc

ep
t

Tr
an

sa
ct

io
n

A
cc

ou
nt

in

fo

Account
info

Execute
Transaction

Archiving

Ac
co

un
t

in
fo

A
cc

ep
t

Tr
an

sa
ct

io
n

Order
Management

Figure 1: Landscape view on failure
propagation

Employee
Portal

Account
Info

Execute
Transaction

Archiving Accept
Transaction

Account Info

AND

Figure 2: Intra-application view on
failure propagation

In modeling failure propagation, the concept of failure trees, as e.g. in [Ge89] is used as
a well-understood theoretic foundation. In a failure tree, e.g. an offered service (interface
in our model) is represented by the root, while the interfaces used in performing the
service make up the leaves of the tree. In between, different nodes representing different
kinds of dependencies exist, e.g. AND-nodes meaning that both of the child nodes must
be operational (see Figure 2). Both the inter-application and the intra-application aspect
allow making statements about and thus measuring, how prone the application landscape
structure is to failure propagation, and what risks this might pose for the business
processes. The necessary concepts therefore are introduced in detail in the subsequent
section.

1829

2.2 Information model pattern

To introduce the concepts of interest when the propagation of failures between business
applications is concerned, we provide an information model containing the respective
classes, attributes and associations. For the inter-application aspect of failure
propagation, the concepts as introduced in the model in Figure 3 are important1. These
concepts, i.e. classes and associations are explained below – a description of the derived
attributes (the metrics) is given at the end of this section.

BusinessApplication A business application in this context is a system, which is
implemented in software, deployed at a specific location and which provides support for
at least one business process. In performing the business support, a business application
may be dependent on other applications, which is modeled by two associations to the
offered or used interfaces (offers and uses respectively).

BusinessProcess A business process is here understood as a sequence of individual
functions with connections between them. A business process as used in this information
model should not be identified with a single process step or individual functions, but
with high-level processes at a level similar to the one used in value chains. In executing
a business process, a number of interfaces offered by business applications is used (see
association uses), therefore effectively making the process execution dependent on the
utilized business applications. Such a dependency is exemplified in Figure 1, giving an
indication of the interfaces used by the business process “Order Management”.

OfferedInterface An offered interface represents a service, which is provided by a
BusinessApplication and is intended for external use by e.g. another business
application or BusinessProcess (in which it could be a user interface employed in
manual execution). Such an interface has an interface type associated (see isOfType)
and can be connected to many using entities (see connected). This connection
relationship is exemplarily visualized in Figure 1, showing OfferedInterfaces of
business applications via the lollipop symbol.

InterfaceUsage Interface usage represents the fact that a business application or a
business process makes use of an OfferedInterface of another business
application during execution. For having a more detailed view on the services rendered
via an interface used actually employed in execution, the interface usage refers to an
interface type (see isOfType). Interface usages are exemplarily visualized in Figure 1
via the socket symbol, e.g. showing that the Employee Portal uses the Archiving
interface offered by the Archiving business application.

InterfaceType The type of an interface gives information about e.g. the different
types of information exchanged or services rendered/used.

1 Concerning the attributes of the classes displayed, it is assumed that every class holds an attribute name. This
attribute is therefore omitted in the diagram.

1830

Different interface types can be related using a sub-super relationship (see
hierarchy), such that an OfferedInterface could provide some set of infor-
mation/services, from which a corresponding InterfaceUsage only uses a part. In
this example, a subtype would be offered, i.e. a supertype would be used. The
information represented/services described by an InterfaceType are detailed by the
DescribingAspects. Figure 1 annotates the type of each OfferedInterface
and InterfaceUsage next to the respective symbols.

DescribingAspect An aspect of an interface could be a specific operation provided
by the interface. These aspects then together build the entire interface with its full-scale
functionality. DescribingAspects are not explicitely shown in Figure 1 and 2.

Figure 3: Information model for inter-application failure propagation

On the information in Figure 3, some constraints apply, with the essential ones being:

context: InterfaceType
inv: (super==null) or aspects->includesAll(super.aspects)

context: InterfaceUsage
inv: (used==null) or used.type.aspects->includesAll(type.aspects)

These invariants establish the sub-/supertype hierarchy of the InterfaceTypes and
constrain an InterfaceUsage to be connected only to an appropriate
OfferedInterface. Refining these concepts of failure propagation on the intra-
application level, the core concepts of the intra-application failure propagation can be
described in an information model as in Figure 4.

1831

Figure 4: Information model for intra-application failure propagation

Node A node represents the abstract basic element of a failure tree. It either can be a leaf
node as represented by an InterfaceUsage, or an OperatorNode corresponding
to a Boolean operation as detailed below. A node can evaluate to different status
regarding operation, i.e. operational and non-operational.

OperatorNode This node is connected to child nodes (see children) which
represent prerequisites for the OperatorNode to have operational state. The node
itself has an attribute referring a corresponding Boolean operation associated,
determining whether all prerequisites (Operation And) or at least one prerequisite
(Operation Or) is necessary for the OperatorNode to be in operational state.

Additionally, rules for establishing the tree-like buildup have to be incorporated:

context: Node
derive: ancestors=new Set(){parent}->union(parent.ancestors)
derive: descendants=children->union(children.descendants->asSet())
inv: descendants->excludes(self)
inv: ancestors->excludes(self)

Subsequently, the derived attributes are explained, beginning with the simplest metric
which is contained in the information model, the dependencyNumber of a
BusinessProcess. It represents the number of BusinessApplications, of
which the failure directly leads to the failure of an OfferedInterface, which the
process uses. The failureProbability metric of an OfferedInterface is
calculated as the probability that the OfferedInterface is not operational, based on
the respective failure propagation structure, and assuming an availability A for each
BusinessApplication (i.e. it is assumed that an business application fails with
probability 1-A, leading to all its OfferedInterfaces being not operational):

∑
=∈∈

=−= −=
})(|{

|}|{||}|{|)1(i)bability(ofailurePro
falsebFIBbe

trueeiAppNrtrueei

oi
AppNr

ii AA

1832

Thereby, ΒAppNr is a set of vectors, which have a Boolean value for every
BusinessApplication, characterizing whether the application has failed or not.
Foi(b) indicates, whether interface oi is operational given that business applications have
failed as indicated by b. Thus, Foi(b) relies on the failure propagation structures.

The failureExtent of a BusinessApplicaton b calculates the deterioration of
the failureProbability of all OfferedInterfaces in case b has failed. The
metric value is the average over all these values.

It has to be noted, that above metrics do not take into consideration a more fine-grained
structure of the business processes. If such information is available, the approach could
be adapted to consider this information. However, it may be more adequate to use infor-
mation from metrics as above as input into another technique more focused on the pro-
cess level, e.g. using cause-and-effect diagrams [Is90] to analyze problems in a process.

2.3 Viewpoint

Picking up the distinction between inter- and intra-application aspects of failure
propagation, two different viewpoints for these aspects can be applied. Examples for
these viewpoints have already been given in Figure 1 and Figure 2. Complementing the
visual examples, here some more details on the makeup of these viewpoints are given.
The application landscape viewpoint on failure propagation (as exemplified in Figure 1)
centers around one or more business processes of interest, which are shown together
with the application landscape supporting them. Additionally, the visualizations of the
offered interfaces or the business applications can be annotated with additional
information from metrics i.e. derived attributes in the above information model. Figure 5
exemplifies such an annotation, by indicating the failureProbability metric
value of an OfferedInterface as well as the failureExtent of a
BusinessApplication by color coding. Therein, red indicates high, yellow
medium, and green low values of the respective derived metric attribute.

Employee
Portal

Order
System

Archiving

Account
info

Execute
Transaction

Archiving

Ac
ce

pt

Tr
an

sa
ct

io
n

A
cc

ou
nt

in

fo

Account
info

Execute
Transaction

Archiving

A
cc

ou
nt

in

fo
Ac

ce
pt

Tr
an

sa
ct

io
n

Order
Management

Figure 5: Application landscape view with visualized metrics values

1833

The intra-application viewpoint on failure propagation (as exemplified in Figure 2)
focuses on the failure trees of a specific business application. Every interface offered by
the respective application is thereby put in relation to the interface usages of the
application. By this the causes for a distinct interface to be non operational are explicitly
modeled. Another viewpoint for metrics information is subsequently presented in the
case study (see Section 3).

2.4 Methodology

Above metrics and viewpoints are designed as instruments in evaluating and discussing
the tendency of an application landscape to failure propagation. Subsequently, we
outline, how to use these instruments to address concerns as “examine to what extent the
application landscape structure is prone to failure propagation”. Therefore, the usage of
the metrics introduced is described, focussing on how to make sure that the assumptions,
under which they can be used as an indicator of failure propagation, actually apply.

A considerable part of the effort in metrics utilization occurs in the introduction of the
metrics. Aspects of change management, as sparking interest and getting approval of the
respective stakeholders, belong to the organizational part of this effort. Thereby, it
should also be surveyed, in which use cases the metrics are to be employed.

The methodical part of introducing metrics lies in getting and interpreting the necessary
data. Thereby, it has to be distinguished, whether data already available, e.g. in
repositories already maintained for Enterprise Architecture Management, is to be used
for metrics calculation, or the data is yet to be collected.

If already otherwise collected and maintained data is to be used, it may not be expected
that it has been collected in a structure and according to definitions as presented with the
information model in Section 2.2. However, as this information model contains rather
basic concepts of an application landscape, it might very well be possible that at least
some of them are present in the data, e.g. the (deployed) business applications. Other
kinds of information, as e.g. relating to the internal failure propagation structures, might
be less readily found in existing repositories. If it is not feasible to collect this
information, rather general assumptions might be used, e.g. that all offered interfaces of
a business application fail, if at least one of the interfaces used by the application fails.
Thereby, it should be discussed, whether the assumptions are valid and useful in
addressing the respective concern, and explore possibilities for this being not the case.

If data is yet to be collected, getting the support of stakeholders becomes even more
important, but the definitions from Section 2.2 can most probably be directly used.
However, also here, collection effort might lead to using assumptions instead of more
elaborate data collection.

1834

In all cases, steps for validating the model have to be taken, in order to ensure that it is
actually able to measure failure propagation tendencies in the respective use case. A very
straightforward approach therefore is to contrast the results from the metrics with actual
availability indicators collected in the operation of the application landscape. This can be
done graphically and intuitively via an appropriate software map, or statistically, e.g. by
trying to predict actual availability values from the failureProbability-metric
values via regression. Assumptions about the failure propagation within business
applications could be confirmed or refuted by source code analysis, or by analyzing log
data about failures, if available. If assumptions have been made instead of actually
collecting data, this data could be completed in cases, where a validation reveals the
assumptions to be problematic.

Finding the right value for the constant A (the assumed availability of each business
application) can be seen as a related problem. It should be set to a plausible value, to
improve the interpretation of the metrics. However, the importance of setting A should
not be overrated, as it is a rather arbitrary value, affecting more the absolute metrics
values, but not their relations, which can be considered as most important in interpreting
the metrics. However, it is important to leave A the same, once it has been set, in order to
keep the metrics values comparable and focussed on the application landscape.

Use cases, in which the metrics could be employed, include:

• Understanding specific structures in the application landscape and their effects
on failure propagation and thus availability of the offered services

• Comparing scenarios regarding their tendency towards failure propagation

• Depicting scenarios and their benefits, without focusing on technical details

• Setting requirements for the evolution of the application landscape in respect to
failure propagation, without prescribing the actual realization strategy

3 Case study

The metrics based approach for evaluating failure propagation tendencies in application
landscapes is currently tried in a practical use case at a large Swiss bank. Thereby, the
metrics have been applied to a subset of the application landscape supporting private
banking for Switzerland, concentrating on the applications running on the mainframe
platform.

This subset of the application landscape consists of 255 applications, organized into 75
subdomains, which are themselves organized into 18 domains. Together, the applications
amount to about 12 millions lines of PL/1 code. These applications rely on each other by
extensive dependencies of different kinds:

1835

• Synchronous dependencies, which are simple function calls

• Messaging, i.e. asynchronous information exchange via message queues

• Bulk/file exchange, where an application can send a preferably larger amount of
information to one or more other applications in a file

• Database facilitated dependencies, with two or more applications accessing a
shared database

Figure 6: Structure of the available information

The above described subset of the application landscape was used for a case study with
the metrics described above, as a large dataset describing it was available, created from
automatically parsing the code deployed on the mainframe. Figure 6 shows the structure
of the information in this dataset, as it is available to the case study.

The case study is conducted in an iterative way, to be able to accommodate both findings
about the application of the newly developed metrics, and concretizations of the
concerns to be addressed by using the metrics. The first iteration of the case study was
started with the concern being to address “operational independence”, with failure
propagation being one aspect thereof, and the one on which this paper focuses.

In the first iteration, several interpretations of the available data where tried in order to
apply the failure propagation metrics from Section 2. One interpretation consisted of
taking the “Applications” in the available data as the BusinessApplications.
Thereby, OfferedInterfaces where not explicitly considered, however, it was
assumed that all services rendered by an application fail (leading to the application
failing totally) if at least one of the applications it depends on fails. However, these
assumptions turned out to be overly conservative in respect to how failures are
propagated. In spite of setting A to rather optimistic values, the metrics values were
unrealistically pessimistic.

The second interpretation took the modules as BusinessApplications, offering
one kind of service (via a respective interface), and failing if at least one of the modules
it depends on fails. However, also this interpretation had some difficulties. First of all, it
yielded only reasonable results, if the module-specific A was set rather high. Moreover,
we view it more reasonable to consider applications as the units having the availability,
and not the units in which their source code is organized.

1836

Thus, a more sophisticated interpretation was used, which relies on interpreting the
“Applications” from the data as BusinessApplications, and examining the
module structure, in order to derive information about OfferedInterfaces and
InterfaceUsages.

Application 1 Application 2

Mod 2

Mod 1

Mod 3

Mod 4

Mod 5

Application 3

Mod 7

Mod 8

Mod 6

Figure 7: Utilizing the module structure

In Figure 7, an arrow signifies a function call. Thereby, the calling module is at the end
of the arrow, the called module at the arrowhead. Modules called by modules from other
applications are considered as OfferedInterfaces (“interface modules”). Such an
“interface” is assumed to fail if the application, which offers the interface, fails itself, or
an application, of which the “interface module” uses (also transitively) a module, fails.

Figure 8 shows an example of a software map as it has been employed to visualize the
metrics data. Thereby, grey rectangles symbolize domains. The subdomains of a domain
are represented by white rectangles nested within the respective domain-rectangle. In a
similar way, each subdomain-rectangle indicates the subdomain’s applications via
colored rectangles. Size and color of the application-rectangles thereby represent two
metrics: The higher the failureProbability-metric of an application (aggregated
via the applications interface modules by a simple mean), the bigger the respective
rectangle. The failureExtent-metric determines the rectangles color, with lower
metric values leading to greener, higher values to more yellow colors.

Figure 8: Exemplary Software Map (falsified data)

After presenting the approach to stakeholders, it was decided to employ it for
quantitatively comparing the as-is situation to two possible scenarios of the application
landscape, which have been designed to improve the operational independence in the
application landscape. This evaluation is currently performed. The goal is to evaluate,
how the metrics can contribute to decisions, and how domain experts judge their utility.

1837

4 Outlook

While we view above metrics as a valuable instrument in assessing tendencies to failure
propagation in application landscapes, which we plan to further evaluate via case studies,
they measure merely one in a set of interesting aspects about an application landscape.
Of course, we do not consider metrics as the only instrument for assessing application
landscapes, with scenarios as used in software engineering e.g. being an alternative.
However, we see certainly potential for research into metrics for other aspects. An aspect
we thereby look into is modifiability, i.e. to what extent the structure of the application
landscape makes changes in the landscape’s applications (e.g. in the context of
maintenance) more difficult to perform. One approach we consider thereby is looking
into influencing factors on productivity used by effort estimation techniques as Function
Point, to predict them from information about the structure of the application landscape.

A basic prerequisite for using metrics, and thus for evaluating them in case studies, is a
tool allowing automated metric calculation. As we also view adequate metrics
visualization as an enabler for metrics utilization, we align the metrics research with the
development of our SoCaTool [Bu07b], a prototypical tool for automated generation of
application landscape visualizations. Thus, we are setting a tool-specific stage for
research into how metrics can improve the management of application landscapes.

Bibliographical References

[Bu07a] Buckl, S. et al.: A Pattern based Approach for constructing Enterprise Architecture
Management Information Models. In 8. Internationale Tagung Wirtschaftsinformatik,
Karlsruhe, 2007.

[Bu07b] Buckl, S. et al.: Generating Visualizations of Enterprise Architectures using Model
Transformations. In: 2nd International Workshop on Enterprise Modelling and
Informations Systems Architectures - Concepts and Applications, St. Goar/Rhine,
Germany, 2007.

[BW05] Braun, C.; Winter, R.: A Comprehensive Enterprise Architecture Metamodel and Its
Implementation Using a Metamodeling Platform. EMISA 2005, pp. 64 - 79.

[Fe91] Fenton, N.: Software Metrics. A rigorous Approach. Chapman & Hall, London, 1991.
[Fr02] Frank, U.: Multi-Perspective Enterprise Modeling (MEMO) – Conceptual Framework

and Modeling Languages. In: Proceedings of the 35th Annual Hawaii International
Conference on System Sciences 35 (2002), pp. 1258-1267.

[Ge98] Gertsbakh, I.B.: Statistical Reliability Theory. Marcel Dekker, Inc, New York, 1989.
[Is90] Ishikawa, K.: Introduction to Quality Control. Chapman&Hall, London, 1990.
[KN91] Kaplan, R.; Norton, D.: The Balanced Scorecard - Measures That Drive Performance.

Harvard Business Review, 70(1): pp. 71–79, 1991.
[Kr71] Krantz, D. et al.: Foundations of Measurement, volume 1, Additive and Polynomial

Representation. Academic Press, New York, 1971.
[La05] Lankhorst, M.: Enterprise Architecture at Work: Modeling, Communication and

Analysis. Springer, Berlin, Heidelberg, New York, 2005.
[LW04] Langenberg, K.; Wegmann, A.: Enterprise Architecture: What Aspects is Current

Research Targeting? EPFL Technical Report IC/2004/77.
[RWJ02] Ross, S.; Westerfield, R.; Jaffe, J.: Corporate Finance. McGraw-Hill, Boston, 6th edition,

2002.

1838

