Tl_r" TECHNISCHE ‘ 0o
s (D sebis

Constructing Application Landscape Metrics:
Why & How

Technical Report TB 0701
Josef Lankes, Christian M. Schweda

Software Engineering for Business Information Systems (sebis)
Ernst Denert-Stiftungslehrstuhl
Chair for Informatics 19
Technische Universitat Miinchen

Boltzmannstrafie 3, 85748 Garching b. Miinchen, Germany
{lankes, schweda}@in.tum.de

July 2007

Abstract

The report presents metrics as an approach for supporting the management of
an application landscape by quantifying specific structural aspects. It derives ba-
sic guidelines for the construction of such metrics from a comparison of current
application landscape metrics to metrics in software engineering and business
administration. Thereby, it puts a special emphasis on integrating the met-
rics into methodologies for addressing concerns relevant to application landscape
management. The report exemplifies these guidelines by describing application
landscape metrics for testability aspects, together with a viewpoint for visualizing
and a methodology for using the metrics.

Keywords: application landscape, metrics, testability

(© TU Miinchen, sebis, 2007. All rights reserved.

II

CONTENTS

Contents
1 Motivation 1
2 Status Quo 1
2.1 Maturity of the field o 2
2.2 Conceptual Models 3
2.3 Metrics Validation 4
2.4 How metricsareused e 5
3 Approach to Metrics for Application Landscapes 6
3.1 Methodologies and Visualizations for Metrics 6
3.2 Metrics Definition and Information Models 7
3.3 Making Assumptions Explicit: Models and Theories 7
4 Exemplifying the Approach 8
4.1 Basicconcepts o e 9
4.2 Information model pattern 10
4.3 Viewpoint oL 11
4.4 Methodology 12
4.4.1 Metrics and Metrics Calculation 12
4.4.2 Testability Assessment oL 14
4.5 Theoretical foundations L L 14
5 Outlook 16

(© TU Miinchen, sebis, 2007. All rights reserved. 111

1. Motivation

1 Motivation

Nowadays organizations operate hundreds or even thousands of business applications in order
to support their business processes [LMWO05]. These applications, when taken together, form
the application landscape. The application landscape provides critical support to processes of
the respective organization and is in turn evolved and operated by this organization, creating
a complex web of interdependencies: Business applications are installed on hardware, are
operated by organizational units or modified by projects, which should be in accordance to
certain business objectives, just to name a few relevant concepts. In practice, concepts for
supporting the management of this environment are often based on information models that
deal with these concepts, together with the respective associations. Thereby, ”information
model” refers, in accordance with [Bu07], ”to a model which specifies, which information [...]
should be documented, and how the respective information should be structured. This is
usually achieved via a model expressed in a language suitable for conceptual modeling, as e.g.
UML, enriched with descriptions detailing the exact meaning of the concepts”.

The structure of the application landscape with its interdependencies exerts a strong influence
on critical success factors [AD05, BT00, Ro00]. As an example, the ability to incorporate
new requirements into the application landscape or the ability to adapt to new requirements
depend on a structure friendly to modifications.

Decisions that influence the structure of the application landscape, e.g. in projects, can be
considered critical, affecting the value of the application landscape as a long-term, important
investment of an organization. We hold the opinion, that such decisions should not be totally
based on ad-hoc arbitrations made in a state of insufficient information about their potential
effects. This sets the stage for explicit evaluation techniques, as e.g. metrics, that are able
to assess implications of changes. Quite similar, decision making in the field of business
administration is often supported by metrics and measures, as e.g. yield and risk measures for
assessing financial investments. Comparable problems in the domain of software engineering
have been addressed by software metrics and architectural metrics [Fe91, Ve05, AM96].

In order to leverage research available in the area of software metrics and business science, the
work pinpoints differences between use of metrics regarding application landscapes and use of
metrics in software engineering and business administration (section 2). The goal is to derive
lessons learned, which are used for providing guidelines for metrics based methodologies in the
context of application landscape management (section 3), which are exemplified by a metrics
system for assessing testability (section 4).

2 Status Quo

Use of metrics is common to a multitude of domains. Many of the foundations of measurement
theory originate from natural sciences. Further developments have been introduced in social
sciences [Kr71] or economics [Ei87]. This section summarizes, how metrics are used in the
management of application landscapes, not by merely listing what aspects have been measured
in a specific way, but by contrasting this metrics utilization with two fields, which can be seen
as bordering to the management of application landscapes: software engineering and business

(© TU Miinchen, sebis, 2007. All rights reserved. 1

2.1 Maturity of the field

administration.

Metrics in software engineering, as e.g. described by [Fe91], target a wide range of aspects,
from the software development processes to the different products created therein, as architec-
tures, sourcecode, or the developed software itself. Thereby, this article’s focus tends toward
product and sourcecode metrics.

Business administration, ranging from strategy to operations research, from human resources
to finance, encompasses a multitude of fields where measurement plays a role. To provide
a manageable counterpart for the comparison mentioned above, the article focuses on some
of these areas as recurring examples: measures in finance and accounting ratios, and the
balanced scorecard.

The contrasts between current application landscape metrics and software engineering metrics
on the one hand, and measurement in business administration on the other hand, are sketched
in respect to different aspects below.

2.1 Maturity of the field

The use of metrics in the context of application landscapes is relatively young. When taking
literature as an indicator for the maturity of the field, two characteristics become visible:

Awvailability of Literature: Relatively few literature is available about metrics utilization for
application landscapes. Some works presented on conferences [AD05, SW05] or contained in
monographs [Ma05] touch the area. We have also found attempts of practitioners, which have
not been made public but are sketched in the respective project documentation, most often
in presentation slides.

Product metrics in software engineering, in contrast, date back to e.g. the McCabe [Mc76]
metric, which was introduced to measure complexity aspects of software from sourcecode.
Since then, the field has brought forward a multitude of different approaches for measuring
software, from information theory based architecture metrics [Sh02] to metrics sets specialized
in object oriented software, including metrics designed to be applied to architectures or designs
instead of sourcecode. Today, periodicals, as e.g. the Journal of Software Measurement!
present metrics as a mature field in software engineering.

Regarding business administration, literature describing aspects of measurement abounds in a
multitude of fields. Accounting ratios and basic guidelines for their interpretation are covered
by textbooks in the respective field [RWJ02]. The same is true for other measures in finance
and investment, as e.g. return measures or risk measures for investments [RWJ02]. Metrics
targeting the performance of companies are not solely the subject of textbooks, but also of
research, as e.g. documented in dissertations [Sc05]. Regarding the balanced scorecard, a lot
of literature has been published since the introduction of this instrument in [KN91], discussing
e.g. the application of the balanced scorecard to different fields.

Theoretical Foundations: Even fewer literature is available regarding theoretical foundations
of application landscape metrics. Contrary to this, several theoretical treatments of software
engineering metrics have been published, from general treatments of the topic [Fe91] to more

!See http://jsm.cs.uni-magdeburg.de.

(© TU Miinchen, sebis, 2007. All rights reserved. 2

http://jsm.cs.uni-magdeburg.de

2.2 Conceptual Models

specialized elaborations, e.g. on metrics validation [EE00].

Summary: The above comparison presents use of metrics for application landscapes as a
rather young field, in need of publications that enable discussion and development of such
approaches. In order to avoid theoretical mistakes common to measurement and known from
other domains, we deem it advisable to build metrics on a sound theoretical basis. Such
theoretical foundations might very well be ”borrowed” from the fields introduced above.

Nevertheless, we see works with their focus on specific metrics and their use in practice as more
fruitful than contributions narrowly focused on ”theory of application landscapes metrics”,
as we see a need for approaches for managing application landscapes, but currently not a
community concerned with such a theory in itself.

2.2 Conceptual Models

Basically, the process of measurement can be described as assigning numbers to objects of
classes in a way to faithfully represent certain properties [Kr71]. Thus, measurement can
be seen as based on a conceptual model of the respective domain, defining the classes and
their relations. These concepts determine, what can be counted, summed up, etc. to derive
a measure.

In the context of software engineering, this does not commonly appear as problematic. In
many areas, these conceptualizations have been readily available and strictly defined when the
respective metrics have been built. An example are control flow graphs, on which McCabes
Cyclomatic Complexity [Mc76] is built.

The same is true for many metrics in business administration. Accounting ratios as mentioned
above can rely on a substantial body of regulations and guidelines in the field of accounting,
which can also serve as definitions for concepts relevant to finance specific metrics. Other
fields in business administration can be seen as laying less stable foundations for the definition
of metrics. When looking at a balanced scorecard, which might e.g. use goals like ” customer
satisfaction” or ”employees per *”, it becomes obvious, that no exact and universally accepted
definition of a customer? or an employee® exists.

This more resembles the situation regarding the management of application landscapes and
the conceptual models used therein, which we subsequently call information models*. Un-
fortunately, no common information model for application landscapes exists, as described
in [Bu07]. Defining such information models is aggravated by ambiguously used terms in this
field. This is problematic to metrics definition, as it endangers the advantage of metrics being
objective characterizations of the aspect under consideration: a metric is likely to conceal
subjectivity by providing a perfectly objective measurement procedure, not taking into ac-
count subjective interpretations or ambiguous definitions of the concepts in the underlying
model.

Summary: [Bu07] presents a pattern-based approach for creating information models, which
we deem applicable also in the context of application landscape metrics. This approach

2Consider e.g. how to count institutional customers vs. private customers.
3Consider e.g. part time employees or temporary employees.
4We have found this to be common terminology in the field of application landscapes.

(© TU Miinchen, sebis, 2007. All rights reserved. 3

2.3 Metrics Validation

deviates from the common practice in management of application landscapes to start with
the creation of an information model covering all relevant aspects of the application landscape.
Instead, the pattern-based approach focuses on a specific problem, and provides the concepts
necessary in this respect. Regarding metrics definition, this means that an information model
pattern defining the concepts for specific metrics is provided. Such patterns can then be used
in constructing comprehensive, organization specific information models.

This can be seen as congruent with the two domains alluded to above. After all, while
there are many well-defined metrics in the context of software engineering, there is no single
conceptual model of this domain. Object-oriented metrics for example, rely on the concepts
introduced in the paradigm of object orientation. Failure modeling, in contrast, might be
more concerned with redundant and non-redundant units and their failure probabilities.

The situation is similar in business administration. Accounting ratios rely on the balance sheet
as an abstraction of the organization under consideration. Other finance-specific metrics might
include stock prices or market capitalization, however abstracting from the field of human
resources, which may be of fundamental importance to certain metrics used in a balance
scorecard.

When providing precise definitions of the concepts used in the information model, necessary
to enable the provision of objective data for metrics calculation, two points should be kept in
mind. Firstly, the importance of a shared understanding of the concepts, e.g. of a ”part time
employee”. Secondly, that the understanding should be useful in the context of the metrics
and methodologies, in which it is employed.

In order to minimize subjective influence on the models built according to an information
model underlying a metrics definition, we propose paying special attention to the incorpo-
ration of constructs into the information model, of which it can be easily and objectively
verified, whether they actually apply.

2.3 Metrics Validation

In software engineering, the validation of metrics has not been without some misunderstand-
ings and misconceptions, as e.g. detailed in [Fe91]. In order to avoid such problems, we use
the terms introduced by [Fe91] to provide more conceptual rigor in metrics validation:

o Internal Validation/Theoretical Validation is meant to demonstrate that a metric char-
acterizes the attribute it is meant to measure [EE00]. This can be seen as proofing that
the attribute can be measured on a certain level of measurement.

e External Validation/Empirical Validation builds on the internal validation and tries to
establish that the metric is useful in predicting an important characteristic (also called
external attribute). This is relevant as the real benefit of a metric is the information it
provides about this external attribute.

A common approach for empirical validation is based on the construction of a model explaining
the relationship between the metric under consideration and the respective external attribute.
Statistical hypothesis testing is then a possibility to confirm or refute such a model.

(© TU Miinchen, sebis, 2007. All rights reserved. 4

2.4 How metrics are used

This approach is propagated by literature about software engineering metrics, as e.g. in [Fe91]
or in the ”laws and theories” from [ERO03].

Statistical studies for confirming such models are always subject to empirical data, on which
the specific statistical techniques can work. Thereby, difficulties can arise in the field of
application landscapes, where data collection is known as problematic [LMWO05].

Summary: Above elaborations point to the importance of models explaining the relationship
between a metric and an external attribute.

Firstly, in the creation of such a model, assumptions regarding the conditions, under which the
supposed relationship between the metric and the external attribute holds, become explicit.
This enables reflecting how realistic these assumptions are, leading to refinement or refutation
of the model, without conducting a statistical survey. Also, an underlying model should,
according to [Fe91], be present before such a statistical validation is performed.

Moreover, an useful description of a methodology employing a metric should encompass the
assumptions, under which a metric is a valid predictor of the respective external attribute.
It has to make sure, that the assumptions are true under the usage conditions. A model as
described above simplifies this.

Also theoretical validation should not be neglected when defining metrics and the method-
ologies using them. It should be verified, whether a metric is consistently defined. Thus,
issues in the metric can be found without an empirical validation, or without finding them
via potentially costly errors in practical use.

2.4 How metrics are used

Software engineering has brought forward many different ways of utilizing metrics. Using the
models linking metrics to external attributes for actually predicting the external attributes
may not even be the most prominent one, due to the often extensive data needs for model
parameterization. Other ways may include the support of review processes, e.g. via using
metrics to determine what should be subjected to an especially thorough review [Ve05]. Such
approaches are sometimes supported with metrics visualizations. Management dashboards,
giving an overview of specific metrics values, are another example here.

In business administration, visualization of metrics to support decision making is widely used,
with Boston Square Diagrams as an example. The Balanced Scorecard [KN91] is a prominent
example of metrics in strategy management.

Summary: The multitude of approaches for using metrics in efforts to address specific
concerns in software engineering or business administration shows that in devising metrics
based methodologies, one should not feel constrained to a specific approach. Thereby, of
course, the concern, which is to be addressed by the respective methodology, should always
be in the focus of the efforts.

(© TU Miinchen, sebis, 2007. All rights reserved. 5

3. Approach to Metrics for Application Landscapes

Information
model pattern

Methodolo Viewpoint
G 9 use concepts G P illustrate concepts G

* *

Figure 1: Three kinds of Enterprise Architecture Management patterns [Bu07]
3 Approach to Metrics for Application Landscapes

A metric in itself is only a means to pursue specific ends, and, if used in an engineering-like
manner, a methodology describes how it can be employed to pursue such an end, addressing
a concern in a planned way. In order to focus on the practical use alluded to in section 2.1, we
propose to have the description of application landscape metrics connected to methodologies
that employ them in order to address specific concerns.

Thereby, we rely on the pattern-based approach mentioned in section 2.2, detailed in [Bu07]

and outlined in Figure 1, with metrics usage concerning the three kinds of patterns as follows:

e the information model pattern contain the conceptual model defining both the classes,
on which the metrics are defined, and the metrics characterizing objects of specific
classes, e.g. as attributes

e the viewpoint describes, how these metrics can be visualized

e the methodology is a description how to systematically address a concern, here focusing
on how the metrics values are derived and how these values should be employed in
addressing the respective concern

Subsequently, the metrics-related issues of these three concepts are explored.

3.1 Methodologies and Visualizations for Metrics

As sketched in section 2.4, there are many different ways to benefit from metrics in method-
ologies for application landscape management. A small subset of these may include:

Support of review processes Metrics may e.g. be used to detect areas of the application
landscape where analysis determining potential for improvement can be expected to be
especially fruitful.

Support for decision making Metrics may present information in a more suitable form,
e.g. by preparing, enriching, or summarizing.

Support for goal operationalization Metrics may be used in operationalizing goals or

controlling goal achievement, similar as in a balanced scorecard.

Adequate visualizations can play an important part here, e.g. different Excel-like diagrams,
portfolio matrices, or layers® on software maps [Bu07, LMWO05], as exemplified in section 4.

5Layering here can be understood as in e.g. Microsoft Visio.

(© TU Miinchen, sebis, 2007. All rights reserved. 6

3.2 Metrics Definition and Information Models

These possibilities should be fully taken into account, also considering that not every aspect
of the respective methodology has to be addressed strictly by using a metric. ”Not everything
that counts can be counted, and not everything that can be counted counts”, can serve as a
proverbial summary here.

3.2 Metrics Definition and Information Models

To serve as a solid building block of a methodology, a metric should be defined in an un-
ambiguous way. A metric thus defined can be subjected to internal validation, as outlined
in section 2.3. This ensures that the metric is consistently defined. Ruling out, or being
able to control unsuitable behavior is essential to avoiding systematic measurement errors,
potentially flawing the methodology using the respective metric.

Furthermore, only knowledge of the level of measurement enables efficient use of a metric in
a methodology. It establishes, which interpretation of the respective metric values are mean-
ingful, and which not. Assuming a level of measurement too low forfeits valuable information,
whereas assuming a level of measurement too high leads to using information, which might
actually not be contained in the respective values, yielding unjustified results.

The basis for a metric definition as described above is a suitable conceptual model or infor-
mation model. As outlined in section 2.2, we propose the conceptual model, on which the
metric definition is built, to be based on an information model pattern.

Section 2.2 also alludes to the benefits of objectively enforceable modeling guidelines in in-
formation models. When e.g. modeling business objects used by business applications, it
is to a certain degree a subjective decision, at which granularity such objects are modeled.
However, when considering a deployed business application, and a set of infrastructure service
realizations, it can be seen as rather objectively verifiable, on which of the service realizations
the deployed business application depends.

3.3 Making Assumptions Explicit: Models and Theories

Underlying a metrics based methodology are assumptions about how a specific metric connects
to a specific concern. While different kinds of assumptions can be involved therein, the link
between metrics and external attributes, as described in section 2.3, is often essential in
metrics based methodologies.

The models or theories giving this link should be explicated, if not in the description of the
methodology itself, then in another document where they can be referenced. Such models
should also explicitly state, under which conditions they are applicable. It then clearly has to
be ensured by the methodology that these usage conditions are met when the methodology is
applied. A core problem hereby is tied to the ”objectively enforceable modeling guidelines”
mentioned in section 3.2. Due to insufficient objectively enforceable modeling guidelines, it
may be possible that some precautions have to be taken to know with a specific degree of
certainty that the application landscape is modeled in a way leading to usable results for the
respective metric. Possibilities here include:

(© TU Miinchen, sebis, 2007. All rights reserved. 7

4. Exemplifying the Approach

e Reviews could be conducted, possibly on excerpts of the respective part of the applica-
tion landscape model, to check whether it is a suitable base for metrics calculation, or
to discover possible caveats for metrics interpretation.

e Model changes could be tied to review workflows, in order to keep the respective models
constantly in a state suitable for metrics calculation.

e Test procedures could be applied, offering more potential for automatization. If a metric
is used to make predictions about an external attribute, the prediction accuracy could
be checked ex post, if the respective values of this attribute are available.

e Visualizations could be employed, contrasting metric values with ex-post realizations of
the respective external attribute. If tests are not deemed appropriate, one may thus get
an impression of the predictive qualities of a metric.

Last but not least, it can be noted that a metrics based methodology directly profits from
successful validation studies of the underlying models.

4 Exemplifying the Approach

The approach to metrics based evaluation of an application landscape outlined in section 3
is subsequently exemplified via the influence of the application landscape structure on an
issue well known from the field of software engineering, testability of a business application.
While testability is certainly not the only relevant criterion influenced by the structure of an
application landscape, it should not be neglected in considerations affecting this structure, as
e.g. selecting projects or setting up long term visions of the application landscape.

In the field of application landscapes, testability has e.g. been stated as an important aspect
by [Wo06], or by Deutsche Borse Systems, which defined the term in a project conducted
together with the chair for Software Engineering for Business Information Systems as follows:

Tests with predefined test coverage should be realizable with reasonable effort. In this context
the functional coverage is important as well as the size of the test installation. The functional
coverage of the test implicates the tested amount of functionality, e.g. how many test cases
of which size are executed? The size of the test installation is influenced by e.g. the number
of systems and interfaces taking part in the test, whether batches are part of the test, etc. To
minimize the effort, the tests should include as few systems as possible.

We choose testability for exemplifying our approach, as we deem it relatively straightforwardly
addressable, compared e.g. to flexibility or changeability. Thus, we try to focus on how
to use the guidelines from section 3 in defining metrics, instead of having to focus on an
overly complex metrics definition and its underlying theory. Below, an introductory section
provides basic ideas of the metrics set to be presented, followed by three sections presenting
an excerpt of the metrics in the context of a methodology as described in section 3, while a
last section sketches the theoretical foundations of the metrics, as suggested in section 3.3.
The descriptions allude to how similar constructs might be used in defining changeability
metrics.

(© TU Miinchen, sebis, 2007. All rights reserved. 8

4.1 Basic concepts

4.1 Basic concepts

There are obviously many differing approaches to ”"testing”, originating from different fields
and usage contexts. In order to give explicit account for the intended usage context, we
subsequently give the definition of testing this article relies on by explicating the testing
process assumed therein.

In this testing process, the tests are conducted with knowledge of the test objects’ inter-
faces and functionalities, but without knowing details of its implementation, as in a black
box test according to [So04]. Thereby, we see the testing process as composed of the fol-
lowing four activities. This results in corresponding efforts for an installation/deployment
of a business application b providing services supporting the business (subsequently called
BusinessServiceProviderInstance, as defined in section 4.2):

Test case construction Here, the functionalities that should be tested have to be identified.
For these functionalities, adequate test cases have to be derived. The respective effort
is subsequently called eT'est Planning(b).

Infrastructure setup The deployment to be tested has to be linked to a set of infrastruc-
ture elements that actually enable it to operate. Here, an infrastructure functionally
identical to the actual operating infrastructure has to be provided. elnfraSetup(b) is
the respective effort.

Simulated environment setup This task encompasses simulating the environment of the
deployment in an appropriate way. This may include the construction of simulations
for systems the actual deployment exchanges data with. eSetupTest Env(b) constitutes
the respective effort.

Test execution This activity, for which the effort is called eTestExec(b), is composed of
actions as e.g. invoking operations on interfaces, specifying the used data or recording
operation results, in order to execute the planned test cases.

Having defined our testing process as above, it becomes obvious, that on the one hand distinct
aspects of the structure of the application landscape may influence the testing effort for
specific BusinessServiceProviderInstances. On the other hand, also situative aspects in the
actual testing process influence the testing effort. As the later factors do not depend on
the structure of the application landscape, we chose not to address them in depth, but to
focus on systematic aspects, tied to the following application landscape specific concepts: The
functionalities that should be tested, the instances of BusinessServiceProviders that provide
these functionalities, and the infrastructure services these instances rely on.

Subsequently, we incorporate such concepts in an information model pattern as described
in section 3.2, a viewpoint, and a methodology, relying on each other to support testability
considerations in planning the evolution of an application landscape. Thereby, we describe
four metrics, each acting as an indicator for eInfraSetup(b) respectively. We do not address
the other steps of the assumed testing process with their effort components here, due to
reasons of brevity.

(© TU Miinchen, sebis, 2007. All rights reserved. 9

4.2 Information model pattern

Similar assumptions could most probably be relevant to changeability metrics. When trying
to model the influence of the application landscape structure on e.g. change efforts, basic
assumptions about the process in which these efforts occur are most probably relevant.

4.2 Information model pattern

The information model pattern modeling testability related concepts is concerned with appli-
cation landscape elements providing functionalities supporting the business, so called Busi-
nessServices. Furthermore, infrastructure components supportive of the respective service
providers are modeled in the information model pattern as shown in Figure 2. The concepts
are defined as follows:

BusinessServiceProviderInstance represents the entity providing realizations of business
services. Such a provider can be a deployment of a business application.

BusinessServiceProvider represents a type of actual providers for realizations of business
services. This may be a specific business application or its version that can be deployed.

InfrastructureServiceRealization represents infrastructure services that are operated and
support instances of business service providers. A service realization may be e.g. an
actual ”http-service”. We view the usage of InfrastructureServiceRealizations as objec-
tively verifyable according to section 3.2, making it a suitable component in an infor-
mation model for metrics calculation.

InfrastructureService represents a type of service in the field of infrastructure. This type
can be realized by different InfrastructureServiceRealizations.

InfrastructureServiceProviderInstance represents the entity providing realizations of
infrastructure services. Such a provider can be a deployment of a system, e.g. an
installation of ” Oracle 9.2i”.

InfrastructureServiceProvider represents a type of providers for realizations of infras-
tructure services. Such a type could be ”Oracle 9.2i”.

The metrics are here represented by derived attributes. Subsequently, we provide OCL ex-
pressions for calculating the values of the derived attributes, while a detailed discussion of
the metrics is provided in section 4.4.1:

context BusinessServiceProviderInstance: :NoISRealizations:Integer

derive: reliesOn->size()

context BusinessServiceProviderInstance: :NoISPInstances:Integer

derive: reliesOn->provider->asSet()->size()

context InfrastructureService: :NoUsages:Integer

derive: realizations->supports->size()

context InfrastructureServiceProvider: :NoInstances:Integer

derive: instances->size()

(© TU Miinchen, sebis, 2007. All rights reserved. 10

4.3 Viewpoint

BusinessServiceProviderinstance
BusinessServiceProvider +type +instances

- instanciates +name : String
+ name : String 1 " + [NolSRealizations : Integer
+ /[MolSPInstances : Integer
+ supports
supports
+ reliesOn
InfrastructureService | +template sl +realizations | InfrastructureServiceRealization
+ name : String j + name : String |
+ /Molsages : Integer 1
+ provides
provides
InfrastructureServiceProvider 1 | + pravider
+name : String +lype inshincas instances InfrastructureServiceProviderinstance
+ /Nolnstances : Integer . + name : String

1

Figure 2: The information model pattern used in the testability metrics

4.3 Viewpoint

For visualizing testability aspects based on the information model pattern outlined above, a
viewpoint, exemplified in Figure 3, is given. This viewpoint comprises a software map, as
described in [Bu07], consisting of four layers, as detailed below:

The BusinessService layer contains rectangular symbols representing the BusinessService-
ProviderInstances under consideration. These symbols comprise three compartments, the
topmost labeled with the name of the instance and of the corresponding provider. On
this layer, the second compartment shows the value of NolSRealizations, the third shows
NolSPInstances.

The InfrastructureService layer contains rectangles representing InfrastructureServiceReal-
izations supportive of the BusinessServiceProviderInstances. The rectangles are labeled with
the name of the respective service realization and the name of the service. Further, they
are placed in the second compartment of the symbol representing the supported BusinessSer-
viceProviderInstance. Thus, the same InfrastructureServiceRealization may be represented
by multiple rectangles, if they are used by different BusinessServiceProviderInstances. The
background color of the rectangles indicates NoU sages.

The InfrastructureService Provider layer contains rectangles representing InfrastructureServi-
ceProviderInstances, which provide InfrastructureServiceRealizations and support the Busi-
nessServiceProviderInstances. The rectangles on this layer are labeled with the name of the
respective InfrastructureServiceProviderInstance and the name of the respective Infrastruc-
tureServiceProvider. Further, they are placed in the third compartment of the symbol repre-
senting the associated BusinessServiceProviderInstance. As above, the same Infrastructure-
ServiceProviderInstance may be represented by multiple rectangles, of which the background
color is used to indicate Nolnstances.

The ProvidesRelationship layer contains lines attached to the symbols representing providing
InfrastructureServiceProviderInstances and their provided InfrastructureServiceRealizations,
as long as they are located in the same BusinessServiceProviderInstance symbol.

(© TU Miinchen, sebis, 2007. All rights reserved. 11

4.4 Methodology

OS1 : Online Shop PS1 : Shipment System
#ISR: 3 #ISR: 2
http OS1 : webdav OS1 : DB OS1: DB PS1: smtp PS1:
http Serv. webdav Serv. DB Serv. DB Serv. smtp Serv.
\ [\ \

#ISP: 2 ﬁ #ISP: 2 7 f
Apache Munich : Oracle Munich : Oracle Munich : Exchange Muc :
Apache 2.5.1 Oracle 9.2i Oracle 9.2i Exchange 5.0
“Legend: - - - - - - - - -—-—-——-7"

A:B BusinessServiceProviderinstance A of Line connecting an InfrastructureService-
type B with compartments for Infrastruc- Realization and its COI'I'eSpOnding Provider
tureServiceRealizations (+ number) and - U ‘ ndi (high)

Providers (+ number) l:\:\:‘ Sage requenCy indicator (low to |g y

representing NoUsages & Nolnstances

Figure 3: The viewpoint used in the testability metric

4.4 Methodology
4.4.1 Metrics and Metrics Calculation

Subseqgently, the four metrics introduced above are detailled, especially giving the assumptions
under which they can be used as an indicator of the respective effort.

NolSRealizations(b), as obvious from the OCL definition given in section 4.2, counts the
instances of InfrastructureServiceRealizations referenced (b.reliesOn). This metric can be
used as an indicator of elnfraSetup(b) under the following assumptions:

e For each InfrastructureServiceRealization used by b, a corresponding InfrastructureSer-
viceRealization is used in the test installation.

e The effort necessary for configuring the test installation to use a specific Infrastruc-
tureServiceRealization is roughly the same for each InfrastructureServiceRealization.
This does not mean that all efforts must be the same. It only means, that the dis-
crepancies must lie within specific limits, and that there should be no concentrations of
hard or easy to configure InfrastructureServiceRealizations at specific BusinessService-
ProviderInstances, in order to ensure the predictive quality of the metric.

NoISPInstances(b) counts the InfrastructureServiceProviderInstances that together provide
the set of InfrastructureServiceRealizations (b.reliesOn) used by b, as defined by the OCL
expression in section 4.2. This metric is another indicator for elnfraSetup(b), under the
following assumptions:

e The test installation is set up to have its InfrastructureServiceRealizations provided by

(© TU Miinchen, sebis, 2007. All rights reserved. 12

4.4 Methodology

a set of InfrastructureServiceProviderInstances that has a corresponding Infrastructure-
ServiceProviderInstance for each InfrastructureServiceProviderInstance used by b.

e The effort necessary for setting up an InfrastructureServiceProviderInstance is roughly
the same for each InfrastructureServiceProviderInstance. Again, this does not demand
identical efforts. It only means, that the differences of the effort must be within certain
limits, again also avoiding concentrations of hard or easy to install instances at specific
BusinessServiceProviderInstances, as this would endanger the predictive quality of the
metric.

Nolnstances(isp) represents the number of instances of an InfrastructureServiceProvider isp
that exist in the used model of the application landscape. If the subsequently stated assump-
tions hold, the metric can be used as an indicator for the effort necessary for setting up an
instance ispi of isp in the test installation, which might influence eInfraSetup(b) if there is
an InfrastructureServiceRealization r for which r € b.reliesOn and r.provider = ispi holds.

e The model from which the metric is calculated covers the application landscape rather
completely, giving an accurate impression of the number of instances of a Infrastruc-
tureServiceProvider actually used.

e Due to learning effects, installing a ”common” InfrastructureServiceProvider tends to
be connected to less effort than installing a rather ”exotic” one.

NoUsages(is), counting how often an InfrastructureServiceRealization of a given type supports
a BusinessServiceProviderInstance, is also based on learning effects. It can be used as an
indicator for the effort necessary for configuring a BusinessServiceProviderInstance to use a
InfrastructureServiceProviderInstance, if the following assumptions hold. Then, it is also an
indicator of eInfraSetup(b) for a respective BusinessServiceProviderInstance b.

e As with NolInstances(isp), the metric relies on the model being complete enough to
reflect the actual number of usages in the application landscape.

e Also here, we assume a tendency towards reduced effort in using InfrastructureService-
Realizations of a commonly employed type (i.e. InfrastructureService).

Although we merely discuss them in the context of testability here, the last two metrics might
also be useful in the context of other homogenization or consolidation specific concerns.

Outlook on other possible metrics: Certainly, a complete metrics set would have to consider
all activities in the assumed testing process. Thereby, the functionalities of the BusinessSer-
viceProviderInstances would have to be considered. While we do not describe the necessary
methodologies and concepts here, for reasons of brevity, we are currently developing an ap-
proach for describing these functionalities by linking a colored petri net based process model
to the BusinessServiceProviderInstances. From such a model, metrics could be calculated,
which measure structural aspects about the functionalities influencing e.g. eT'est Planning(b),
eSetupTestEnv(b), or eTestExec(b).

(© TU Miinchen, sebis, 2007. All rights reserved. 13

4.5 Theoretical foundations

4.4.2 Testability Assessment

Metrics as described above can be used when assessing and discussing different scenarios of an
application landscape. A scenario in this respect may be a planned version of the application
landscape, which could be created by one or more projects. Also different planned states,
created by alternative solutions via alternative projects, can be seen as scenarios here. Due
to their ordinal nature (see section 4.5), they should not be added, e.g. in order to get an
impression of the total testabiliy of an application landscape.

When making assessments of such scenarios, a multitude of different aspects has to be consid-
ered, ranging from the functionality a solution can provide to the business to the knowledge
implementing the solution demands from developers. The above metrics can help in address-
ing testability aspects. Therefore, they rely on the viewpoint from section 4.3, in which the
visualized metrics provide additional information to reasoning about testability. This infor-
mation could e.g. lead to certain aspects being examined more thoroughly, or additional
realization strategies, potentially characterized by better metrics values, being considered.

In order to safely use the metrics, the respective assumptions should be checked. Thereby, the
user of the methodology firstly has to decide whether his testing process shares similarities
with the one on which the metrics are built. Then, the assumptions of the specific metrics
and the suitablity of the actual models should be examined, with approaches as mentioned
in section 3.3 basically applicable, and knowlege about the theoretical model behind the met-
rics helpful (see section 4.5). Here,especially NolInstances(isp) and NoU sages(is) should be
taken into consideration. If these metrics indicate a concentration of InfrastructureService-
Realzations and InfrastrcutrueServiceProviderInstances that are hard or easy to install and
configure, one should check, whether such tendencies might be opposed to the relationship of
the efforts indicated by the other metrics. This would certainly have to be considered in an
interpretation of the respective metrics.

If data about the actual test effort is available, it may be advisable to use this possiblity to
make ex-post checks of the metrics predictive quality.

4.5 Theoretical foundations

On the one hand, the subsequent models clarify the assumptions of the metrics system,
which have already been verbally sketched in section 4.4. On the other hand, we view the
construction of such models as an important step in constructing such descriptions, as it
allows to clearly verify their theoretical plausibility. Handling random variables, as used
below, solely by textual arguments might too easily lead to false assumptions.

Before we sketch the models linking the metrics to the respective efforts below, we shortly dis-
cuss the level of measurement of the metrics introduced above. Basically, NolS Realizations
and NolSPInstances are defined as cardinalities of sets, thus being (at least) ordinally
scaled allowing the operations used below. This especially means, that one should be careful
in adding NolSRealizations and NolSPInstances, as e.g. two BusinessServiceProviderIn-
stances might share e.g. an InfrastructureServiceProviderInstance and the tests might e.g. be
carried out in a shared test environment. This ordinal interpretation also has to be applied
to the elnfraSetup below.

(© TU Miinchen, sebis, 2007. All rights reserved. 14

4.5 Theoretical foundations

NoUsages and Nolnstances being simple counts of elements, are rationally scaled, allowing
the use of covariance as employed below.

Modelling eIn fraSetup(b) The relevance of the metrics used as indicators for eIn fraSetup(b)
is based on modelling this effort as consisting of two basic components: the effort for setting
up InfrastructureServiceProviderInstances eInfIns(b) and the effort for configuring the test
installation in a way that it uses the InfrastructureServiceRealizations of these Infrastructure-
ServiceProviderInstances eInfConf(b), thus eInfraSetup(b) = eInfIns(b) + eInfConf(b)
holds.

The effort for setting up an InfrastructureProviderInstance ispi of type isp is composed of a
systematic effort (random variables isE f fort*¥s(isp) with a shared expectation) and a situ-
ative effort (random variables isEf fort*®(ispi) with expectation 0). The systematic effort
depends on the InfrastructureProvider to be set up itself, the situative one on other factors, as
e.g. the tester, possible interruptions, etc. The effort for all InfrastructureServiceProviderIn-
stances for b is derived by summing up these efforts.

The effort for configuring the test installation to use InfrastructureServiceRealizations isr of
type is is derived by summing up the effort for each service realization, which is composed of
a systematic (random variables scE f fort®¥*(is) with a shared expectation scE f fort®¥?) and
a situative part (scEf fort*®(isr) with expectation 0).

The model is here detailled in resepct to eIn fConf(b), while leaving out a similar explication
linking NolSInstances(b) to eInfIns(b) for reasons of brevity: assuming effort distributions
as above, eInfConf(b) = 3, cpreticson (SCEf fort™s (r.type) + scE f fort*®(r)).

Thus, subsequent statements about expectation and variance of eInfConf(b) can be made®:

e E(eInfConf(b)) = NolSRealizations(b) scEffort*¥s. This” shows, that the higher
NolSRealizations(b), the higher the eInfConf(b) and thus elnfraSetup(b), if all
other factors stay the same, that can be expected.

e Var(eInfConf(b))=3",cpretieson (SCEf fort¥(r.type)+scEf fort*"(r))

+2 Ei<j;i,jEeInfConfSummands(b) COU(i?])

Therein, a set containing all summands adding to elnfConf(b) is defined as:
eInfConfSummands(b) = U,y provides SCE f fort™*(r.type) U scEf forts(r)).
The variance is important in making statements about the predictive quality of the met-
ric. The smaller variances as mentioned above are, the smaller is the probability that an
eInfConf(bl) is smaller than elnfConf(b2), although b1 received a higher metric value
than 62. Thus, the subsequent properties positively influence the predictive quality of the
metric, when comparing two BusinessServiceProviderInstances b1 and b2:

e Var(eInfConf(bl)) and Var(eInfConf(b2)) should be small, which means that the
services should be modelled in a way that the terms of which these two variances are com-
posed, variances of and covariances between the scE f fortsy*(r.type) and scE f fort®®(r)

5Basically, variance and expectation make only sense for metric variables. While we deem the interpretations
made here as applicable, the values should be interpreted carefully.

"This does not directly extend into the case where two BusinessServiceProviderInstances are concerned
(e.g. due to shared infrastructure), reflecting the ordinal nature of the metric mentioned above. However, the
metric is able to address the comparison of different plans or scenarios as described in section 4.4.

(© TU Miinchen, sebis, 2007. All rights reserved. 15

5. Outlook

(for b1 and b2 respectively), should be small. This corresponds to the statements ”the
effort [...] is roughly equal” and ”there should be no concentrations” made in sec-
tion 4.4.1.

e A big Cov(eInfConf(bl),eInfConf(b2)) is advantageous, as it counters tendencies
that by chance the two efforts diverge in the opposite directions®. While we do not
derive this covariance here from covariances between the components of eInfConf(bl)
and eInfConf(b2), one might hint that this term might be rather high in case b1
and b2 are rather similar, making the metric e.g. especially suitable for comparing
subsequent versions of the same BusinessServiceProviderInstance. This corresponds
to the statement ”predictive quality is improved in case subsequent versions [...] are
compared” in section 4.4.1.

Due to learning effects, Cov(isE f fort*®(ispi), NoInstances(isp)) < 0 and

Cov(scEf forts(isr), NoRealizations(is))) < 0, with isp = ispi.type and is = isr.type, can
be assumed, as they incorporate these effects with commonly used InfrastructureServices or
InfrastructureServiceProviders. These influences might negatively affect the above properties
on which the predictive quality of the metrics NoISRealizations(b) and NolSPInstances(b)
depends. NoUsages(is) and Nolnstances(isp) allow capturing these learning effects related
influcences, as allued to in the statement about reduced efforts for a ”common type” and
higher efforts for a ”rather exotic InfrastructreServiceProvider” in section 4.4.1.

Statistical modeling, as employed above, might easily be relevant to modeling changes of an
application landscape as a foundation for changeability metrics. Certain change efforts might
e.g. be modeled as random variables, possibly with covariances to specific attributes of the
application landscape, as e.g. interface counts.

5 Outlook

Of course, the exemplary metrics for testability can only be a starting point for supporting
management of application systems with metrics based methodologies. On the one hand,
we have to admit that we made the simplest possible assumptions in the construction of
the metrics. All of the assumptions made can be challenged and improved in any specific
situation, further developing and improving the metrics set.

On the other hand, testability is only one, and probably not the most important aspect about
an application landscape, which leads to the development of other metrics as an obvious next
step. In this respect, we view the aspects ”changeability /modifiability” and ”support of the
functional processes by the application landscape” as promising areas.

Such metrics provide a way to enhance methodologies with a way to use and present infor-
mation more adequate to the respective stakeholders and concerns. They can process data
to present specific information focused on specific stakeholders. They can summarize or se-
lectively present information, to give users of a methodology improved overview. In all this,
they can rely on explicit theories, possibly minimizing the influence of implicit assumptions,
which may originate from overgeneralizations, trends or hypes.

8See the equation Var(z —y) = Var(z) + Var(y) — 2Cov(z,).

(© TU Miinchen, sebis, 2007. All rights reserved. 16

REFERENCES

References

[ADO5]

[AMO96]

[BTOO]

[Bu07]

[EE00]

[Ei87]

[ERO03]

[Fe91]

[KNO1]

[Kr71]

[LMWO5]

[Ma05]
[Mc76]

[Ro00]

[RWJ02]

Aier, S.; Dogan, T.: Indikatoren zur Bewertung der Nachhaltigkeit von Un-
ternehmensarchitekturen. In (Ferstl, O. K. et al., Editor): 7. Internationale Tagung
Wirtschaftsinformatik 2005, Bamberg, Germany, 2005. Physica-Verlag.

Abreu, F.; Melo, W.: Evaluating the Impact of Object-Oriented Design on Software
Quality. In (7, Editor): Proceedings of the 3 rd International Software Metrics
Symposium, Berlin, 1996. IEEE Computer Society.

Byrd, T.; Turner, D.: Measuring the Flexibility of Technology Infrastructure: Ex-
ploratory Analysis of a Construct. Journal of Management Information Systems,
17(1), 2000.

Buckl, S. et al.: A Pattern based Approach for constructing Enterprise Architecture
Management Information Models. In 8. Internationale Tagung Wirtschaftsinfor-
matik (to be published), Karlsruhe, 2007. Karlsruher Universitatsverlag.

El Emam, K.: A Methodology for Validating Software Product Metrics, 2000.
FEichhorn, W. E.: Measurement in Economics. Physica-Verlag, Heidelberg, 1987.

Endres, A.; Rombach, D.: A Handbook of Software and Systems Engineering.
Empirical Observations, Laws and Theories. Pearson Education, Harlow, England,
2003.

Fenton, N.: Software Metrics. A rigorous Approach. Chapman & Hall, London,
1991.

Kaplan, R.; Norton, D.: The Balanced Scorecard - Measures That Drive Perfor-
mance. Harvard Business Review, 70(1):S. 71-79, 1991.

Krantz, D. et al.: Foundations of Measurement, volume 1, Additive and Polynomial
Representation. Academic Press, New York, 1971.

Lankes, J.; Matthes, F.; Wittenburg, A.: Architekturbeschreibung von Anwen-
dungslandschaften: Softwarekartographie und IEEE Std 1471-2000. In (Ligges-
meyer, P.; Pohl, K.; Goedicke, M., Editor): Software Engineering 2005, volume
P-64 of Lecture Notes in Informatics (LNI) - Proceedings, pages 43-54, Essen,
Germany, 2005. Kéllen Druck+Verlag.

Masak, D.: Moderne Enterprise Architekturen. Springer, Berlin, 2005.

McCabe, T.: A Complexity Measure. IEEE Transactions on Software Engineering,
2(4), 1976.

Ross, J.: Creating a Strategic IT Architecture Competency: Learning in Stages.
MIS Quarterly Executive, 2(1), 2000.

Ross, S.; Westerfield, R.; Jaffe, J.: Corporate Finance. McGraw-Hill, Boston, 6th,
edition, 2002.

(© TU Miinchen, sebis, 2007. All rights reserved. 17

REFERENCES

[Sc05] Schedler, B.: Leistungsmessung in multinationalen Unternehmen. Dissertation,
Universitat St. Gallen, 2005.

[Sh02] Shereshevsky, M. et al.: Information Theoretic Metrics for Software Architectures.
In Proceedings of the 25th Annual International Computer Software and Applica-
tions Conference (COMPSAC 2001), Chicago, 2002. IEEE Computer Society.

[So04] Sommerville, I.: Software Engineering. Pearson Education, Essex, England, 7th
edition, 2004.

[SW05] Schwinn, A.; Winter, R.: Entwicklung von Zielen und Messgrifien zur Steuerung
der Applikationsintegration. In (Ferstl, O. K. et al., Editor): 7. Internationale
Tagung Wirtschaftsinformatik 2005, Bamberg, Germany, 2005. Physica-Verlag.

[Ve05] Verlage, M. et al.: Uberwachung der Qualitit der Architektur einer Software-
Produktlinie am Beispiel eines web-basierten Wertpapierinformationssystems. In
(Liggesmeyer, P.; Pohl, K.; Goedicke, M., Editor): Software Engineering 2005,
volume P-64 of Lecture Notes in Informatics (LNI) - Proceedings, Essen, Germany,
2005. Kollen Druck+Verlag.

[Wo06] Wolff, H.: Transparenz schaffen, Strukturen erkennen, Landschaften gestalten.
Eine Fallstudie zur Einfiihrung von EAM bei der SBB. Presentation, 2006.

(© TU Miinchen, sebis, 2007. All rights reserved. 18

	1 Motivation
	2 Status Quo
	2.1 Maturity of the field
	2.2 Conceptual Models
	2.3 Metrics Validation
	2.4 How metrics are used

	3 Approach to Metrics for Application Landscapes
	3.1 Methodologies and Visualizations for Metrics
	3.2 Metrics Definition and Information Models
	3.3 Making Assumptions Explicit: Models and Theories

	4 Exemplifying the Approach
	4.1 Basic concepts
	4.2 Information model pattern
	4.3 Viewpoint
	4.4 Methodology
	4.4.1 Metrics and Metrics Calculation
	4.4.2 Testability Assessment

	4.5 Theoretical foundations

	5 Outlook

