
SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Leveraging Bayesian Optimization for
Accelerating RAG Pipeline Optimization

Xueru Zheng

SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Leveraging Bayesian Optimization for
Accelerating RAG Pipeline Optimization

Nutzung der Bayesschen Optimierung zur
Beschleunigung der

RAG-Pipeline-Optimierung

Author: Xueru Zheng
Supervisor: Prof. Dr. Florian Matthes
Advisor: Anum Afzal
Submission Date: 15.10.2025

I confirm that this master’s thesis in informatics is my own work and I have documented all
sources and material used.

Munich, 15.10.2025 Xueru Zheng

Location, Submission Date Author

AI Assistant Usage Disclosure

Introduction

Performing work or conducting research at the Chair of Software Engineering for Business
Information Systems (sebis) at TUM often entails dynamic and multi-faceted tasks. At sebis,
we promote the responsible use of AI Assistants in the effective and efficient completion of
such work. However, in the spirit of ethical and transparent research, we require all student
researchers working with sebis to disclose their usage of such assistants.

For examples of correct and incorrect AI Assistant usage, please refer to the original,
unabridged version of this form, located at this link.

Use of AI Assistants for Research Purposes

I have used AI Assistant(s) for the purposes of my research as part of this thesis.

x Yes No

Explanation:
ChatGPT were used in this research for the following purposes:

1. Obtaining LaTeX syntax guidance and retrieving relevant literature references

2. Enhancing text clarity and coherence, correcting grammatical issues, and refining
academic language

3. Translating the abstract from English to German

I confirm in signing below, that I have reported all usage of AI Assistants for my research,
and that the report is truthful and complete.

Munich, 15.10.2025 Xueru Zheng

Location, Date Author

iii

https://wwwmatthes.in.tum.de/file/11opikwrji2aw/Sebis-Public-Website/Student-Theses-Guided-Research/Guidelines-for-student-research-projects/240208%20sebis%20Responsible%20Research.pdf

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Anum Afzal, for her
exceptional guidance, continuous support, and invaluable feedback during the thesis. Her
dedication, responsibility, and insightful suggestions greatly contributed to the completion of
this work.

I am also sincerely thankful to Prof. Dr. Florian Matthes for providing me the opportunity
to conduct my thesis at the Chair of Software Engineering for Business Information Systems
(SEBIS) and for his overall support.

Furthermore, I would like to extend my appreciation to Tobias Müller and Atreya Biswas
from SAP for their assistance and collaboration. Their help in understanding and deploying
the LLM and reranker models was instrumental in the practical implementation of my
research.

Finally, I would like to extend my heartfelt thanks to my family, friends, and my boyfriend
for their constant support, encouragement, and understanding. Their presence and belief in
me have been a constant source of motivation throughout this journey.

Abstract

Retrieval-Augmented Generation (RAG) systems have become essential for providing domain
specific and up-to-date information while reducing hallucination in large language models.
RAG works by retrieving relevant documents from a knowledge base and using them as con-
text for generation. For each dataset, a different RAG configuration might be optimal because
datasets vary in document structure, query types, and information requirements. Finding
optimal configurations through traditional grid search methods remains computationally
expensive as the number of components and hyperparameters grows. Grid search is also
unintuitive as it provides no insight into the parameter space and cannot learn from previous
evaluations.

This thesis presents a comprehensive empirical study investigating Bayesian Optimiza-
tion (BO) as an efficient alternative to grid search. BO builds a surrogate model of the
objective function and uses acquisition functions to balance exploration and exploitation
in the parameter space. For RAG optimization, BO can be helpful by modeling complex
interactions between pipeline components with fewer evaluations. AutoRAG is a framework
that automates the configuration selection for RAG systems using grid search. We extend
this framework by integrating BO methods to improve optimization efficiency. The main idea
behind our approach is treating the entire RAG pipeline as a black box function mapping
configurations to performance metrics. This allows BO algorithms to optimize without requir-
ing detailed knowledge of component interactions. Our study compares seven BO strategies
combining four surrogate models with two multi-fidelity methods across FiQA, SciFact, and
HotpotQA datasets.

Our experiments demonstrate that BO achieves comparable model performance to grid
search while reducing optimization time by up to 85 percent. SMAC3 using Random Forest
and Optuna TPE emerged as the most effective algorithms. The study reveals that local
optimization provides rapid results matching baseline performance while global optimization
can exceed it with additional computational investment. BO effectiveness varies significantly
across data domains through adaptive exploration strategies. These findings establish em-
pirical evidence for BO superiority in complex pipeline optimization and provide practical
guidelines for implementing efficient RAG optimization in resource-constrained production
environments, making sophisticated hyperparameter tuning accessible without sacrificing
model quality.

v

Kurzfassung

Retrieval-Augmented Generation (RAG)-Systeme sind unverzichtbar geworden, um domä-
nenspezifische und aktuelle Informationen bereitzustellen und gleichzeitig Halluzinationen
in großen Sprachmodellen zu reduzieren. RAG funktioniert durch das Abrufen relevanter
Dokumente aus einer Wissensdatenbank und deren Verwendung als Kontext für die Ge-
nerierung. Für jeden Datensatz könnte eine unterschiedliche RAG-Konfiguration optimal
sein, da Datensätze in Dokumentstruktur, Abfragetypen und Informationsanforderungen
variieren. Das Finden optimaler Konfigurationen durch traditionelle Grid-Search-Methoden
bleibt rechnerisch aufwendig, da die Anzahl der Komponenten und Hyperparameter wächst.
Grid-Search ist zudem unintuitiv, da es keine Einblicke in den Parameterraum bietet und
nicht aus vorherigen Evaluierungen lernen kann.

Diese Arbeit präsentiert eine umfassende empirische Studie, die Bayessche Optimierung
(BO) als effiziente Alternative zur Grid-Search untersucht. BO erstellt ein Surrogat-Modell
der Zielfunktion und nutzt Akquisitionsfunktionen, um Exploration und Exploitation im
Parameterraum auszubalancieren. Für die RAG-Optimierung kann BO hilfreich sein, indem
es komplexe Interaktionen zwischen Pipeline-Komponenten mit weniger Evaluierungen
modelliert. AutoRAG ist ein Framework, das die Konfigurationsauswahl für RAG-Systeme
mittels Grid-Search automatisiert. Wir erweitern dieses Framework durch die Integration
von BO-Methoden zur Verbesserung der Optimierungseffizienz. Die Hauptidee unseres
Ansatzes besteht darin, die gesamte RAG-Pipeline als Black-Box-Funktion zu behandeln,
die Konfigurationen auf Leistungsmetriken abbildet. Dies ermöglicht es BO-Algorithmen
zu optimieren, ohne detaillierte Kenntnisse über Komponenteninteraktionen zu benötigen.
Unsere Studie vergleicht sieben BO-Strategien, die vier Surrogat-Modelle mit zwei Multi-
Fidelity-Methoden über die Datensätze FiQA, SciFact und HotpotQA kombinieren.

Unsere Experimente zeigen, dass BO eine vergleichbare Modellleistung wie Grid-Search
erreicht, während die Optimierungszeit um bis zu 85 Prozent reduziert wird. SMAC3 mit Ran-
dom Forest und Optuna TPE erwiesen sich als die effektivsten Algorithmen. Die Studie zeigt,
dass lokale Optimierung schnelle Ergebnisse liefert, die der Baseline-Leistung entsprechen,
während globale Optimierung diese mit zusätzlichem Rechenaufwand übertreffen kann. Die
BO-Effektivität variiert erheblich über Datendomänen hinweg durch adaptive Explorationss-
trategien. Diese Erkenntnisse liefern empirische Belege für die Überlegenheit von BO bei der
komplexen Pipeline-Optimierung und bieten praktische Richtlinien für die Implementierung
effizienter RAG-Optimierung in ressourcenbeschränkten Produktionsumgebungen, wodurch
anspruchsvolle Hyperparameter-Abstimmung zugänglich wird, ohne die Modellqualität zu
opfern.

vi

Contents

Acknowledgments iv

Abstract v

Kurzfassung vi

List of Figures x

List of Tables xi

1. Introduction 1

2. Background 4
2.1. Retrieval-Augmented Generation (RAG) . 4

2.1.1. Foundation Concepts and Architecture 4
2.1.2. Advanced Components and Implementation 5
2.1.3. RAG Evaluation Metrics . 7

2.2. Hyperparameter Optimization . 8
2.3. Bayesian Optimization Fundamentals . 9

3. Related Work 12
3.1. Current Practices in RAG Optimization . 12
3.2. AutoRAG Frameworks and Their Limitations 13
3.3. Bayesian Optimization in Machine Learning . 14
3.4. Prior Work on RAG Pipeline Optimization . 15

3.4.1. Research Gaps and Motivation . 16

4. Datasets 17
4.1. Data Preprocessing and Validation Set Construction 17

4.1.1. Data Format Conversion . 17
4.1.2. Ground Truth Generation . 18
4.1.3. Validation Set Selection . 19

4.2. Dataset Selection and Characteristics . 19
4.3. Annotation Limitations and Semantic Evaluation Adjustment 21

5. Methodology 24
5.1. Research Questions . 24
5.2. Pipeline Architecture . 26

vii

Contents

5.3. Pipeline Components . 27
5.4. Optimization Framework . 30

5.4.1. Bayesian Optimization Libraries for RAG Pipelines 31
5.4.2. Search Space Definition . 31
5.4.3. Multi-Objective Optimization . 32
5.4.4. Optimization Efficiency Strategies . 33
5.4.5. Local vs. Global Optimization Strategies 34

5.5. Evaluation . 35
5.5.1. Component-Specific Metrics . 35
5.5.2. LLM-Based Compressor Evaluation . 36
5.5.3. End-to-End Generation Metrics . 37
5.5.4. RAGAS Evaluation Framework . 38

6. Experimental Setup 40
6.1. Implementation Details . 40
6.2. Experimental Procedures . 41

6.2.1. Reproducibility Measures . 41
6.2.2. Optimization Runs . 42

6.3. Experimental Designs . 43
6.3.1. Comparative Analysis of Bayesian Optimization Algorithms 43
6.3.2. Scope of Bayesian Optimization in RAG Pipelines 44
6.3.3. Determining Optimal Sample Size for Configuration Exploration 45
6.3.4. Outcome Robustness Across Datasets . 46

7. Evaluation Results 47
7.1. Comparative Analysis of Bayesian Optimization Algorithms 47
7.2. Scope of Bayesian Optimization in RAG Pipelines 51

7.2.1. SciFact . 51
7.2.2. FIQA . 54
7.2.3. HotpotQA . 55
7.2.4. Summary: Local vs. Global Optimization Scope 56

7.3. Determining Optimal Sample Size for Configuration Exploration 58
7.3.1. SciFact . 59
7.3.2. FIQA . 60
7.3.3. HotpotQA . 60

7.4. Outcome Robustness Across Datasets . 61
7.4.1. Scifact . 62
7.4.2. FIQA . 64
7.4.3. HotpotQA . 64

viii

Contents

8. Discussion 67
8.1. Interpretation of Results . 67

8.1.1. Which Bayesian Optimization algorithms are most effective for optimiz-
ing Retrieval-Augmented Generation pipelines in terms of achieving
high quality scores and computational efficiency? 67

8.1.2. Should Bayesian Optimization be applied globally across the entire
RAG pipeline or locally at individual module levels to achieve optimal
end-to-end generation quality? . 68

8.1.3. What is the relationship between the number of configurations ex-
plored through Bayesian Optimization and the final performance scores
achieved in RAG pipeline tuning? . 69

8.1.4. How do dataset domain characteristics influence the effectiveness and
stability of Bayesian Optimization when tuning RAG pipeline configu-
rations across different application contexts? 70

8.2. Limitations and Threats to Validity . 71
8.2.1. Experimental Limitations . 71
8.2.2. Generalizability . 72
8.2.3. Future Work . 73

9. Conclusion 76

A. LLM Evaluator Prompt for Compressor Component 78

B. Configuration Specifications 79
B.1. SAP API Configuration . 79
B.2. Open-Source Model Specifications . 83

C. Implementation Details 85
C.1. Hardware Specifications . 85
C.2. Software Libraries and Versions . 85

C.2.1. Bayesian Optimization Libraries . 85
C.2.2. Core Framework and Dependencies . 85
C.2.3. Environment Configuration . 86

Bibliography 87

ix

List of Figures

4.1. Comparison of dataset characteristics across SciFact, FiQA-2018, and Hot-
potQA. Each row shows the distribution of document lengths (left) and the
number of ground truth documents per query (right) for one dataset. 22

5.1. Sequential RAG pipeline architecture with six processing stages from query
to response generation. Components marked with asterisks support pass-
through functionality, enabling the optimizer to bypass stages when they do
not improve performance. 26

5.2. Bayesian Optimization framework for RAG pipeline configuration. The itera-
tive process begins with input data preparation including retrieval documents,
evaluation queries, and search space definition. The optimizer samples config-
urations based on its acquisition function, evaluates them on the RAG pipeline,
and updates its surrogate model with the results. This cycle continues until the
evaluation budget is exhausted, outputting the configuration with the highest
combined retrieval and generation score. 30

7.1. Bayesian Optimization algorithm comparison across datasets. Different colors
represent optimization algorithms. The x-axis shows total optimization time in
seconds, the y-axis shows the best score achieved, and bubble size corresponds
to latency of the best configuration. 50

7.2. Optimization performance analysis across datasets and model types. Top: SAP
models. Bottom: Hugging Face models. Each chart shows combined scores (left
panel) and total execution time (right panel) for local and global optimization
methods. Grid search baseline is marked with stars. 57

7.3. Pareto front visualizations across all datasets comparing TPE-100, SMAC3-100,
and Random-200 optimization methods. Red crosses indicate Pareto-optimal
configurations balancing score and latency. Rows represent different datasets
(SciFact, FIQA, HotpotQA) while columns represent different optimization
methods (TPE, SMAC3, Random). 63

x

List of Tables

4.1. Examples of ground truth annotation limitations in FiQA-2018 23

6.1. Overview of Bayesian Optimization strategies 44

7.1. Comparison of Bayesian Optimization algorithms on SciFact and FIQA datasets.
Best scores for each dataset highlighted in bold. 49

7.2. Local optimization results (SAP Models) across datasets. Scores are reported
per component, with the final combined score shown in the last column. . . . 52

7.3. Global optimization results (SAP Models) across datasets. 52
7.4. Local optimization results across datasets (Hugging Face models). Scores are

reported per component, with the final combined score shown in the last column. 52
7.5. Global optimization results across datasets (Hugging Face models). 53
7.6. Results comparing sample sizes in global optimization across datasets. The "Top

Configuration Distribution" column shows the distribution of configurations
across score ranges. 58

B.1. Hugging Face Embedding Models . 84
B.2. Hugging Face Generator Models . 84

C.1. Bayesian Optimization libraries used in experiments 85

xi

1. Introduction

While large language models demonstrate remarkable capabilities in understanding and
generating human-like text, they face fundamental limitations that restrict their practical
deployment in knowledge-intensive applications. These models cannot access information
beyond their training data cutoff date, making them unable to provide current information
about recent events or evolving topics. They generate responses based solely on parameters
learned during training, which leads to hallucinations when answering questions about
specialized domains or factual queries requiring precise information. Models also lack trans-
parency in their knowledge sources, making it impossible to verify claims or trace information
back to authoritative documents. These constraints become particularly problematic in en-
terprise settings where accuracy, verifiability, and currency of information are essential for
decision-making and regulatory compliance.

Retrieval-Augmented Generation systems address these limitations by enabling large
language models to access and utilize external information. RAG enables models to retrieve
relevant documents from knowledge bases and incorporate them into generation processes.
Lewis et al. [1] introduced RAG as a framework consisting of two fundamental components:
a retriever that finds relevant documents and a generator that produces augmented responses.
This architecture addresses critical limitations of standalone language models by providing
access to external knowledge, ensuring up-to-date information retrieval, and significantly
reducing hallucination rates. While the core RAG architecture comprises these two basic
components, real-world implementations often incorporate additional modules such as
rerankers, filters, and compressors to enhance performance. Organizations now deploy
these advanced RAG systems for customer support, technical documentation, regulatory
compliance, and decision support across industries.

Despite these advantages, the architecture of RAG systems introduces substantial opti-
mization challenges. Each component in the pipeline contains numerous hyperparameters
requiring careful tuning. The retriever requires choosing between dense retrieval with em-
bedding models, sparse retrieval with tokenizers and BM25 variants, or hybrid approaches
combining both methods. Configuration also includes top-k counts and similarity thresholds
that significantly impact retrieval quality and computational cost. Filters involve threshold
and percentile settings. Generators demand configuration for temperature and maximum
tokens. A complete RAG pipeline can easily generate thousands of possible configurations.
These parameters interact in complex ways where changes in a single component can sig-
nificantly affect overall system performance [2]. The interdependence between components
makes optimization particularly challenging as improvements in one module may degrade
performance in another.

Traditional optimization methods fail to scale for RAG pipelines due to combinatorial

1

explosion. Grid search exhaustively evaluates all parameter combinations, but with dozens
of configurable parameters across multiple components, the search space easily exceeds
millions of possible configurations. With each configuration requiring several minutes for
evaluation on standard benchmarks, exhaustive search becomes computationally intractable.
For example, evaluating just 10,000 configurations at 5 minutes each would require over
800 hours of computation. Random search reduces the computational burden but lacks the
systematic exploration needed to identify optimal configurations in high-dimensional spaces.
Manual tuning based on domain expertise provides no guarantees of optimality and suffers
from poor reproducibility and incomplete coverage of the configuration space.

Production environments demand more efficient optimization strategies. Companies need
to deploy RAG systems quickly to meet business requirements. Cloud computing costs make
extensive optimization prohibitively expensive. Development teams require rapid iteration
to improve model performance. Extended optimization cycles delay product launches and
increase development costs. Many organizations accept suboptimal RAG performance rather
than invest in comprehensive tuning. This gap between optimization needs and available
methods limits RAG adoption and effectiveness.

Bayesian Optimization offers a principled solution to expensive optimization problems.
BO builds a probabilistic surrogate model of the objective function and uses this model to
guide the search process. Instead of evaluating configurations randomly or exhaustively, BO
selects the most promising candidates based on prior observations. This approach balances
exploration of unknown regions with exploitation of promising areas, making it particularly
suitable for expensive function evaluations. The efficiency of BO in handling expensive
evaluations has made it a standard approach for hyperparameter optimization in machine
learning, where it consistently outperforms grid search and random search by requiring fewer
evaluations [3, 4]. BO has been successfully applied across diverse ML applications including
neural network optimization [5], automated machine learning systems [6], and combined
algorithm selection and hyperparameter optimization [7]. These successes demonstrate BO’s
effectiveness in navigating complex, high-dimensional parameter spaces where traditional
exhaustive methods become computationally prohibitive.

This thesis investigates whether Bayesian Optimization can effectively optimize RAG
pipelines while reducing computational costs. We address four critical research questions.
First, which BO algorithms perform best for RAG optimization among available options.
Second, whether optimization should target the entire pipeline globally or individual compo-
nents locally. Third, how many configurations BO needs to sample for effective optimization.
Fourth, how data domain characteristics influence BO effectiveness and stability.

We conduct comprehensive experiments comparing seven distinct BO strategies, combining
four surrogate models (Random Forest, Gaussian Process, Tree-structured Parzen Estimator,
and Heteroscedastic Gaussian Process) with two multi-fidelity methods (Successive Halving
and Hyperband). The evaluation uses FiQA, SciFact, and HotpotQA datasets representing
different domains. Our framework measures both optimization efficiency and final model
performance against grid search baselines. This systematic evaluation aims to provide
practitioners with evidence based guidelines for selecting appropriate optimization strategies

2

for their specific RAG deployment requirements.
This work makes the following contributions to RAG optimization research. First, we

provide systematic empirical evidence that Bayesian Optimization is a viable alternative to
grid search for RAG pipelines, achieving significant computational savings without sacrificing
performance. Second, we establish clear guidance on the global versus local optimization
trade-off, demonstrating when each approach is most beneficial. Third, we quantify the
relationship between the number of configurations explored and the resulting optimization
performance, establishing practical guidelines for defining trial budgets and early stopping
criteria. Fourth, we analyze how dataset domain characteristics influence optimization
stability and effectiveness, revealing domain-dependent performance patterns that guide
algorithm selection. Together, these contributions bridge the gap between theoretical BO
capabilities and practical RAG system optimization.

The remainder of this thesis is organized as follows. Chapter 2 provides background on
RAG systems, hyperparameter optimization challenges, and Bayesian Optimization funda-
mentals. Chapter 3 reviews related work in RAG tuning approaches, AutoRAG frameworks,
applications of Bayesian Optimization in machine learning and existing studies on hyperpa-
rameter optimization within RAG pipelines. Chapter 4 describes the datasets used, including
data preprocessing, validation set construction, and the handling of annotation limitations.
Chapter 5 presents the methodology, covering research questions, pipeline architecture, op-
timization framework, and evaluation metrics. Chapter 6 details the experimental setup,
implementation details, and reproducibility measures. Chapter 7 presents comprehensive
evaluation results for each research question, analyzing algorithm performance, optimization
scope, sample efficiency, and cross-dataset robustness. Chapter 8 discusses the interpretation
of results, trade-offs between optimization strategies, experimental limitations and future
work. Chapter 9 concludes the thesis by summarizing the key findings, highlighting the main
contributions, and outlining directions for future research.

3

2. Background

2.1. Retrieval-Augmented Generation (RAG)

2.1.1. Foundation Concepts and Architecture

Large Language Models (LLMs) are neural networks trained on vast text corpora to generate
human-like text. These models learn patterns from training data and produce responses
based on learned representations. However, LLMs face inherent limitations. They cannot
access information beyond their training cutoff date. They struggle with domain-specific or
proprietary knowledge that is absent from their training data, which often leads to halluci-
nated outputs [8]. Models trained on general corpora lack specialized knowledge required
for technical domains. They cannot adapt to new information without expensive retraining
processes. These limitations restrict their utility in dynamic enterprise environments.

Retrieval-Augmented Generation addresses LLM limitations by combining retrieval with
generation. Lewis et al. [1] introduced RAG as a framework with two fundamental compo-
nents: a retriever and a generator. The retriever finds relevant documents from a knowledge
base using dense or sparse retrieval methods. The generator produces responses conditioned
on both the query and retrieved documents. This architecture enables access to external
knowledge without retraining the model. The system maintains a separate knowledge base
that can be updated independently. New information becomes immediately available through
the retrieval mechanism.

Retrieval in RAG systems employs two primary approaches: sparse and dense retrieval.
Sparse retrieval methods like BM25 use term frequency and inverse document frequency
to match keywords between queries and documents [9]. BM25 remains effective for exact
term matching and requires no training. Dense retrieval uses embeddings to capture se-
mantic meaning beyond literal keywords. Embeddings are dense vector representations
that encode text into high-dimensional spaces. Similar texts produce similar vectors in the
embedding space, enabling efficient similarity search across large document collections [10].
Modern embedding models like BERT [11] and Sentence Transformers [12] create high-quality
representations for retrieval tasks. These models transform both queries and documents
into comparable vector spaces. The cosine similarity between vectors determines seman-
tic relevance. Dense retrieval surpasses traditional keyword matching by understanding
conceptual relationships between texts. Hybrid approaches combining sparse and dense
retrieval can achieve improved performance by leveraging both exact matching and semantic
understanding [13, 10, 14].

Vector databases enable efficient similarity search through specialized indexing structures.
ChromaDB [15] provides a developer friendly interface for vector storage and retrieval,

4

2.1. RETRIEVAL-AUGMENTED GENERATION (RAG)

automatically handling index management and supporting both in memory and persistent
storage modes. FAISS [16] offers more granular control with multiple indexing algorithms
including flat indexes for exact search and approximate methods like IVF [17] and HNSW [18]
for scalability. Pinecone [19] and Weaviate [20] provide managed vector database services with
built in scaling and query optimization. These databases must balance index construction time,
memory usage, query latency, and ease of integration. ChromaDB’s simplicity makes it ideal
for prototyping and moderate scale deployments, while FAISS excels in high performance
scenarios requiring fine tuned index configurations. The choice of vector database and
indexing strategy significantly impacts retrieval performance, especially for large document
collections exceeding millions of vectors.

The RAG process follows a systematic workflow that begins with query processing. First,
the system receives a user query and preprocesses it for optimal retrieval. The retrieval
method determines the subsequent processing steps. For dense retrieval, the retriever encodes
the query into an embedding vector using the same model that encoded the document
collection. It searches a vector database to find semantically similar documents through
approximate nearest neighbor search. For sparse retrieval like BM25, the system tokenizes
the query and matches terms against an inverted index based on term frequency statistics.
Hybrid systems may execute both retrieval methods in parallel and combine their results. The
system retrieves k most relevant documents, where k is a critical hyperparameter requiring
careful tuning. These documents provide essential context for the generation phase. The
generator then combines the original query with retrieved documents to produce an informed
response. The final output reflects both the model’s parametric knowledge and the retrieved
information.

2.1.2. Advanced Components and Implementation

Modern RAG implementations extend significantly beyond the basic two-component archi-
tecture. Advanced systems enhance each stage of the retrieval and generation process to
improve overall performance.

Document chunking strategies critically affect retrieval effectiveness [1]. Fixed size chunking
divides documents into uniform token segments but may split semantic units. Sliding window
chunking creates overlapping segments to preserve context across boundaries. Semantic
chunking uses natural language processing to identify coherent text units such as paragraphs
or sections. Recent approaches employ recursive chunking that adapts segment sizes based
on content structure [21]. The chunk size parameter directly impacts the tradeoff between
context completeness and retrieval precision. Smaller chunks improve precision but may lack
sufficient context, while larger chunks provide more context but reduce specificity.

Query expansion techniques address vocabulary mismatch between user queries and
document content. These methods transform the original query before retrieval to improve
coverage. Hypothetical Document Embeddings (HyDE) [22] generates a hypothetical answer
to create a more document-like query for dense retrieval. Multi-query expansion creates
multiple query variations to capture different aspects of the information need. Query
decomposition [23] breaks complex questions into simpler sub-queries that are easier to

5

2.1. RETRIEVAL-AUGMENTED GENERATION (RAG)

match. These techniques help bridge the semantic gap between how users express queries
and how information is stored in documents.

After initial retrieval, rerankers improve result quality by reordering documents. Rerankers
address a fundamental limitation of first-stage retrieval: the tradeoff between efficiency and
accuracy. While initial retrievers must search a very large collection of documents quickly,
rerankers can apply more sophisticated models to a smaller candidate set [24].

Reranking approaches fall into three main categories. Cross-encoder models, such as
MonoT5 [25] and UPR [26], encode query–document pairs jointly and capture detailed
interactions between terms. Late-interaction models, such as ColBERT [27], keep separate
query and document representations but compute token-level interactions, balancing accuracy
with efficiency. Lightweight rerankers, such as FlashRank [28] and FlagEmbedding [29], use
optimized or embedding-based architectures to achieve fast inference with lower resource
costs. The choice of reranker significantly impacts system performance and latency. In
practice, reranker selection depends on accuracy requirements, latency constraints, and
available computational resources.

After reranking improves the relevance ordering of retrieved documents, additional pro-
cessing stages further refine the context provided to the generator. These post-retrieval
components address specific challenges in managing retrieved information effectively.

Filters serve as quality control mechanisms in the RAG pipeline. They remove irrelevant
or low quality documents that could introduce noise into the generation context. Filtering
strategies include threshold-based cutoffs that exclude documents below a minimum relevance
score. Percentile cutoffs retain only the top percentage of retrieved documents. Similarity-
based filters compare semantic similarity scores against predefined thresholds. Filters can
also consider document metadata such as source credibility, publication date, or content type.
The filtering stage prevents marginally relevant content from degrading the context quality.
This becomes particularly important when initial retrieval returns documents with varying
relevance levels.

Compressors address the context length limitations of language models. They reduce
token counts while preserving essential information, enabling more efficient processing [30].
Compression techniques range from extractive summarization that selects key sentences to
abstractive methods that generate condensed representations [21, 31]. These components
work together in a pipeline where each stage refines the information flow.

Effective prompt design significantly influences how generators utilize retrieved context.
Common prompting strategies vary in complexity and structure. The f-string method is
based on Python’s f-string formatting to insert retrieved documents directly into predefined
templates, providing consistent structure across queries. Window replacement techniques [32]
substitute placeholder tokens with retrieved content, allowing flexible positioning of context
within the prompt. Long context reorder [33] reorganizes retrieved documents based on
relevance scores or other criteria, placing the most important information in positions where
language models pay most attention. Recent work shows that document position significantly
affects how well models utilize retrieved information, with many models exhibiting a "lost in
the middle" phenomenon where they better utilize information at the beginning or end of the

6

2.1. RETRIEVAL-AUGMENTED GENERATION (RAG)

context window. The choice of prompt template and document ordering strategy becomes a
critical hyperparameter affecting both response quality and hallucination rates.

The integration of these components requires careful orchestration, beginning with query
expansion decisions that affect all subsequent stages. Expanded queries flow to retrievers
configured for dense, sparse, or hybrid search. Rerankers then use more computationally
expensive models than initial retrievers, scoring each document pair with the query to
determine relevance more accurately. Filters apply various criteria including relevance
thresholds, document freshness, and source credibility. Compression strategies range from
extractive summarization to abstractive methods, operating on the filtered document set.
Each component introduces its own hyperparameters and configuration choices, with query
expansion parameters particularly influential as they determine the input characteristics
for the entire pipeline. The interactions between components create complex optimization
challenges that traditional methods struggle to address, especially when considering how
query expansion strategies must align with retriever architectures and downstream processing
requirements.

2.1.3. RAG Evaluation Metrics

The effectiveness of RAG systems fundamentally depends on comprehensive evaluation
at multiple levels: component level metrics assess individual modules, while end-to-end
metrics measure overall pipeline performance. These evaluation metrics become particularly
critical when optimizing RAG pipelines, as they define the objective function that guides any
optimization process. The selection of these metrics directly influences what configurations
are considered optimal. A system optimized for retrieval precision may differ substantially
from one optimized for generation fluency or end-to-end accuracy.

Retrieval metrics form the foundation for evaluating how well the system identifies rele-
vant documents from the knowledge base. Precision@k measures the fraction of retrieved
documents that are relevant among the top k results. Recall@k calculates the proportion of all
relevant documents that appear in the top k retrieved items [34]. These metrics often conflict,
as improving recall by retrieving more documents typically reduces precision. The F1 score
provides a harmonic mean of precision and recall, offering a single metric that balances both
concerns. These retrieval metrics can be computed efficiently without requiring expensive
language model inference, making them suitable for rapid configuration evaluation during
optimization.

Generation metrics evaluate the quality of the final output produced by the language model.
Exact match scores determine whether the generated response perfectly matches reference
answers, providing a strict evaluation criterion. Token level F1 scores offer a softer metric
by computing precision and recall at the word level between generated and reference texts.
Semantic similarity metrics assess meaning preservation beyond surface level matching.

Recently, LLM based evaluation has emerged as a scalable alternative to human judgment
[35, 36]. Language models can assess aspects like faithfulness to retrieved context, answer rel-
evance, and response coherence [37]. These LLM evaluators provide consistent scoring across
large test sets, though they may inherit biases from their training data. The computational

7

2.2. HYPERPARAMETER OPTIMIZATION

cost of generation metrics, especially those requiring LLM inference, makes them expensive
objective functions for optimization.

The properties of evaluation metrics significantly impact optimization strategy selection.
Metrics must provide consistent and meaningful signals about configuration quality for
Bayesian Optimization to function effectively. Noisy or unreliable metrics can mislead the
surrogate model, causing it to build incorrect beliefs about the parameter landscape. The
computational cost of metric evaluation also affects strategy choice. Expensive metrics that
require full pipeline execution favor sample efficient methods like Bayesian Optimization,
while cheap component level metrics might permit more exhaustive search approaches. In
multi objective scenarios, the choice of which metrics to optimize simultaneously determines
the trade offs embodied in the final system. These diverse metrics reflect different aspects
of system performance, and their selection directly determines what type of RAG system
emerges from the optimization process.

2.2. Hyperparameter Optimization

Hyperparameter optimization determines the configuration settings that control machine
learning model behavior and training processes [38]. Unlike model parameters learned during
training, hyperparameters must be set before training begins. These settings fundamentally
influence model performance, training efficiency, and generalization capabilities. In complex
systems like RAG pipelines, hyperparameter optimization becomes even more critical as
multiple components interact through shared configurations.

Traditional optimization approaches include grid search, random search, and manual tun-
ing. Grid search exhaustively evaluates all combinations of predefined hyperparameter values.
This method guarantees finding the best configuration within the search space but suffers
from exponential scaling. Random search samples configurations from specified distributions
rather than testing all combinations. Empirical studies demonstrate that random search often
matches or exceeds grid search performance while evaluating fewer configurations [38]. This
efficiency gain occurs because many hyperparameters have minimal impact on performance,
making exhaustive search wasteful.

The computational demands of hyperparameter optimization escalate dramatically in
modern deep learning contexts. Each configuration evaluation requires complete model
training and validation. For large language models, a single training run can take hours
or days on expensive GPU hardware. RAG systems compound this challenge by requiring
evaluation across multiple components. A configuration must be assessed on retrieval
metrics, generation quality, and overall pipeline performance. The evaluation process involves
processing hundreds or thousands of test queries through the entire pipeline. This makes
traditional optimization methods prohibitively expensive for production systems.

Recent advances in optimization leverage adaptive and model-based approaches. Population-
based methods like evolutionary algorithms explore multiple configurations simultaneously
[39]. These techniques maintain diversity while converging toward promising regions.
Gradient-based hyperparameter optimization computes gradients with respect to validation

8

2.3. BAYESIAN OPTIMIZATION FUNDAMENTALS

loss [40]. This enables efficient optimization but requires differentiable validation procedures.
Multi-fidelity methods, including Successive Halving [41] and Hyperband [42], allocate re-
sources adaptively by evaluating configurations on reduced datasets or with fewer training
epochs. These approaches identify promising configurations quickly before committing full
resources.

The challenge of hyperparameter optimization intensifies when dealing with multiple ob-
jectives. RAG systems must balance retrieval accuracy, generation quality, and computational
efficiency. Configurations that maximize retrieval precision may increase latency beyond
acceptable limits. Settings that improve generation fluency might reduce factual accuracy.
Multi-objective optimization frameworks address these tradeoffs by finding Pareto-optimal
configurations, where no objective can be improved without degrading at least one other
objective [43]. A configuration is Pareto-optimal if no other configuration exists that performs
better in all objectives simultaneously [44]. These Pareto-optimal points form the Pareto front,
representing the set of all optimal tradeoffs between competing objectives. However, selecting
among Pareto-optimal solutions still requires human judgment about relative importance
of objectives, as all points on the Pareto front are mathematically equivalent in terms of
optimality.

Hyperparameter optimization for RAG systems presents unique challenges beyond tra-
ditional ML settings. The sequential nature of pipeline components creates dependencies
between optimization stages. Changes in early components propagate through the pipeline,
affecting downstream performance in unpredictable ways. Furthermore, the discrete choices
of component selection combine with continuous hyperparameters to create mixed opti-
mization spaces. Selecting between BM25 and dense retrieval represents a discrete choice,
while filter thresholds for relevance cutoffs require continuous optimization. This mixture
complicates optimization algorithms designed for purely continuous or discrete spaces. Addi-
tionally, evaluation costs vary significantly across components, with some requiring expensive
LLM inference while others involve only embedding computations. These characteristics
make RAG optimization particularly suited for intelligent search methods that can navigate
complex parameter spaces efficiently while managing computational budgets.

2.3. Bayesian Optimization Fundamentals

Bayesian Optimization (BO) provides a principled framework for optimizing expensive
black box functions where evaluations are costly and gradients are unavailable [45]. Unlike
traditional optimization methods that treat each evaluation independently, BO builds a
probabilistic model of the objective function and uses this model to guide the search process.
This model based approach fundamentally changes how the optimization proceeds. While
grid search and random search evaluate configurations without learning from previous
evaluations, BO actively learns the function landscape and focuses on promising regions.
The framework consists of two essential components: a surrogate model that approximates
the objective function with uncertainty estimates and an acquisition function that uses these
predictions to select the next evaluation point. The surrogate model predicts both the expected

9

2.3. BAYESIAN OPTIMIZATION FUNDAMENTALS

performance and uncertainty at unobserved points, enabling intelligent selection of the next
configuration to evaluate. This approach is particularly effective when function evaluations
involve time consuming processes such as training machine learning models or running
complex simulations.

The sample efficiency of Bayesian Optimization makes it especially valuable for expensive
optimization problems like RAG pipeline configuration. Empirical studies show BO requires
orders of magnitude fewer evaluations than random search for achieving similar performance
[3]. This efficiency stems from two key capabilities of the surrogate model. First, it predicts
poor configurations without requiring actual evaluation, effectively pruning large portions
of the search space. Second, the uncertainty quantification ensures sufficient exploration to
avoid premature convergence to local optima. For RAG pipelines, where each configuration
evaluation requires processing numerous test queries through multiple components, this
efficiency translates to significant time and computational cost savings. A single RAG
evaluation might take minutes to hours depending on the dataset size and model complexity,
making the sample efficiency of BO crucial for practical optimization.

The surrogate model in Bayesian Optimization approximates the unknown objective func-
tion based on observed evaluations. Common surrogate models include Gaussian Processes
(GP) [46], Random Forests [47], and Tree-structured Parzen Estimators (TPE) [48]. Each model
offers distinct advantages for hyperparameter optimization, including applications in RAG
pipelines. Gaussian Processes provide well-calibrated uncertainty estimates but scale poorly
with observations, typically being limited to hundreds of evaluations. Random Forests handle
discrete and continuous parameters naturally but provide only approximate uncertainty
estimates. Tree-structured Parzen Estimators model parameter distributions directly and
scale better to high dimensions, though they assume parameter independence. The surrogate
maintains a posterior distribution over the objective function, providing both predictions
and uncertainty estimates for any point in the parameter space. As new observations are
collected, the model updates its beliefs about the function landscape. This probabilistic repre-
sentation enables informed decisions about where to sample next. The choice of surrogate
model influences optimization efficiency and the types of parameters that can be optimized
effectively.

The acquisition function determines which configuration to evaluate next by balancing
exploration and exploitation. It leverages the surrogate model’s predictions and uncertainty
estimates to identify promising regions of the search space. Expected Improvement (EI)
quantifies the expected gain over the current best observation [49, 50], while Probability of
Improvement (PI) measures only the likelihood of surpassing the current optimum [51]. Upper
Confidence Bound (UCB) trades off predicted value and uncertainty through an exploration
parameter [52]. These acquisition functions reformulate the expensive optimization problem
into a series of manageable optimization steps over the surrogate. The selected point is
then evaluated on the true objective, and the surrogate model is updated with this new
information.

While standard Bayesian Optimization assumes uniform evaluation cost across all configu-
rations, practical optimization scenarios often provide opportunities to reduce computational

10

2.3. BAYESIAN OPTIMIZATION FUNDAMENTALS

expense through approximate evaluations. Multi-fidelity optimization extends Bayesian
Optimization by leveraging cheaper approximations of the objective function. These meth-
ods evaluate configurations at different fidelity levels, such as using data subsets or fewer
training epochs [53]. Successive Halving [41] allocates resources through a tournament style
elimination process. It starts with many configurations at low fidelity and progressively
eliminates poor performers while increasing resources for survivors. Hyperband [42] com-
bines Successive Halving with different initial budget allocations to balance exploration and
exploitation. These methods assume that relative performance at low fidelity correlates with
high fidelity performance. For RAG optimization, this might mean evaluating on fewer test
queries initially.

The integration of multi-fidelity methods with Bayesian Optimization creates powerful
hybrid approaches. BOHB (Bayesian Optimization and Hyperband) [54] uses a TPE surrogate
model to select configurations within Hyperband’s framework. This combination leverages
both the sample efficiency of BO and the adaptive resource allocation of Hyperband. The
surrogate model learns from evaluations at all fidelity levels, improving its predictions across
the entire space. Early stopping mechanisms prevent wasting resources on clearly inferior
configurations. These hybrid methods are particularly effective for RAG optimization where
evaluation costs vary significantly between quick retrieval tests and full pipeline evaluations
with expensive LLM inference.

While multi-fidelity methods address computational efficiency, practical RAG systems
must also handle multiple competing objectives simultaneously. Multi-objective Bayesian
Optimization extends the standard framework to optimize several goals at the same time. In
RAG pipelines, this often means balancing accuracy with latency or cost. The optimization
problem can be written as

min
λ∈Λ

f(λ) =
(

f1(λ), f2(λ), . . . , fk(λ)
)

where λ is a configuration in the search space Λ, and each fi(λ) represents an objective
such as error rate, latency, or resource usage. The outcome is not a single solution but a
set of Pareto-optimal configurations. A configuration is Pareto-optimal if no objective can
be improved without degrading another. This representation allows system designers to
choose the most suitable trade-off for deployment needs. Approaches such as ParEGO [55]
use scalarization to combine multiple objectives into a single function, while other methods
rely on hypervolume improvement to guide the search.

These advanced Bayesian Optimization techniques collectively address the unique chal-
lenges of RAG pipeline optimization. The combination of surrogate modeling for sample
efficiency, multi-fidelity evaluation for computational tractability, and multi-objective opti-
mization for practical deployment requirements provides a comprehensive framework for
navigating the complex configuration spaces of modern RAG systems.

11

3. Related Work

This chapter reviews prior work on Retrieval-Augmented Generation (RAG) optimization and
the use of Bayesian Optimization (BO) in machine learning. We first outline current practices
in RAG system design and tuning, highlighting the reliance on manual configuration and the
limitations of existing optimization workflows. We then discuss recent AutoRAG frameworks,
general methods for Bayesian hyperparameter optimization, and their applications in natural
language processing. The chapter concludes by identifying key research gaps that motivate
our proposed approach to systematic RAG pipeline optimization.

3.1. Current Practices in RAG Optimization

Early RAG implementations relied on manual configuration selection through trial and error.
Practitioners typically selected components based on intuition or limited experimentation.
This approach proved inefficient as the number of possible configurations grows exponentially
with the number of components and parameters. Manual tuning also lacks reproducibility
and fails to explore the configuration space systematically. These limitations highlight the
need for automated optimization approaches.

Recent toolkits provide building blocks for RAG systems but leave the optimization
challenge unresolved. In particular, Jin et al. [56] introduce FlashRAG, which emphasizes
comparing different RAG pipeline architectures rather than automating component selection.
Their toolkit implements 23 distinct algorithms across four paradigms (sequential, conditional,
branching, and loop), enabling evaluation of architectural strategies. However, users must
still manually select which components to use within their chosen algorithm and tune
corresponding hyperparameters. This manual selection process remains a bottleneck for
achieving optimal performance.

Moreover, Abdallah et al. [57] present Rankify, which illustrates the component selection
challenge. Their framework supports 7 retrieval techniques and 24 re-ranking models
combined via a unified API. Given the vast number of possible component combinations
and hyperparameters, identifying the optimal configuration demands extensive manual
experimentation. The absence of automated tuning mechanisms in Rankify reinforces the
case for using structured optimization like Bayesian methods.

Additionally, Y. Chen et al. [58] propose UltraRAG, focusing on domain-specific adaptation
via automated knowledge generation, but they do not address pipeline configuration opti-
mization. Although UltraRAG adapts data to particular domains, it assumes fixed component
choices and hyperparameter settings. This limitation indicates that even advanced, adaptive
RAG systems still do not resolve the underlying challenge: automatically selecting and tuning

12

3.2. AUTORAG FRAMEWORKS AND THEIR LIMITATIONS

components tailored to datasets. Thus, the disconnect between component availability and
optimization capabilities motivates applying Bayesian optimization to RAG pipelines.

3.2. AutoRAG Frameworks and Their Limitations

While the previously discussed toolkits require manual configuration, recent work has
attempted to automate the RAG optimization process. D. Kim et al. [59] introduce AutoRAG,
the first comprehensive attempt at automated RAG pipeline optimization. The framework
provides an end-to-end solution covering the entire RAG workflow, from data preprocessing
and chunking to automatic component selection and evaluation. AutoRAG employs a
node-based architecture where each node represents a pipeline component such as retriever,
reranker, or generator. Users can configure multiple options for each node, including
different chunking strategies, retrieval methods, and evaluation metrics. The framework then
systematically explores these configurations to identify the best performing combination for a
given dataset.

Despite its comprehensive nature, AutoRAG’s optimization strategy presents fundamental
limitations that restrict its effectiveness. The system uses local optimization, evaluating each
component independently before combining the best-performing modules. In local optimiza-
tion, each component focuses solely on optimizing its own configurations, such as top-k values
for retrievers or threshold values for filters. The system selects the best configuration for the
current component and passes this fixed choice to the next component, which then optimizes
its own parameters based on the output from the previous stage. This sequential approach
assumes that optimal components at each stage will combine to form an optimal pipeline.
However, this assumption may not capture the full picture as components can have complex
interactions that influence overall performance. In contrast, global optimization considers
all components and their corresponding configurations simultaneously, evaluating the entire
pipeline performance rather than individual component performance. Global optimization
captures interdependencies between components that local optimization misses. For example,
a retriever that performs well with one reranker may perform poorly with another, and these
subtle interdependencies cannot be detected through independent evaluation. While local
optimization can find reasonably good configurations efficiently, it potentially misses superior
configurations that arise from synergistic component combinations.

The computational efficiency of AutoRAG’s optimization approach poses additional chal-
lenges. The system relies on grid search methods that exhaustively evaluate predefined
configuration sets without intelligent sampling strategies. While the discrete number of
component options may be manageable, grid search becomes inefficient as it scales with the
number of components and their parameters. More critically, AutoRAG cannot effectively
handle continuous hyperparameters. Parameters such as threshold values, percentiles, and
temperature settings must be discretized into predefined values (e.g., [0.1, 0.3, 0.5, 0.7, 0.9]
for temperature). This discretization limits the search to a fixed set of points, potentially
missing optimal values that lie between the predefined options. For continuous parameters
that significantly impact performance, this limitation prevents fine-grained optimization and

13

3.3. BAYESIAN OPTIMIZATION IN MACHINE LEARNING

forces users to either accept coarse-grained search or manually test intermediate values. Fur-
thermore, the framework does not leverage information from previous evaluations to guide
the search process, missing opportunities for more efficient exploration of the configuration
space. Such challenges motivate the application of advanced hyperparameter optimization
methods.

3.3. Bayesian Optimization in Machine Learning

Bayesian Optimization (BO) has established itself as a leading approach for hyperparameter
optimization in machine learning systems. Snoek et al. [5] demonstrated that BO can achieve
state-of-the-art performance for neural network optimization while requiring significantly
fewer evaluations than traditional methods. Their implementation, Spearmint, outperformed
manual tuning and random search across several challenging benchmarks. This success
motivated widespread adoption of BO across the machine learning community and inspired
its integration into automated machine learning (AutoML) frameworks.

The integration of BO into AutoML systems marked a significant advance in automated
model design. Thornton et al. [7] introduced Auto-WEKA, which formulated the Combined
Algorithm Selection and Hyperparameter Optimization (CASH) problem and used BO to
jointly optimize algorithms and hyperparameters. Feurer et al. [6] developed Auto-sklearn,
extending this concept with meta-learning and ensemble construction. Mendoza et al.
[60] proposed Auto-PyTorch, applying BO to deep neural network architecture search and
demonstrating that BO can manage complex, hierarchical configuration spaces. Empirical
studies further confirmed BO’s superiority over alternative optimization methods. Bergstra
and Bengio [38] showed that BO consistently outperforms grid search and random search
across diverse datasets and model types, typically requiring an order of magnitude fewer
evaluations. These results highlight BO’s efficiency and scalability for optimizing large,
expensive, and structured search spaces—properties that closely align with the requirements
of RAG pipeline optimization.

Beyond these early AutoML systems, several modern frameworks have further advanced
BO for practical large-scale applications. SMAC3 [47] extends BO using random forest
surrogates and is widely used for algorithm configuration. Optuna [61] and Ray Tune [62]
provide flexible, scalable implementations that support Tree-structured Parzen Estimators and
parallelized optimization. More recently, HEBO [63] introduced a heteroscedastic Gaussian
Process surrogate with input/output warping and multi-objective acquisition ensembles for
more robust performance in high-dimensional search spaces. These toolkits demonstrate
the maturity and adaptability of BO across diverse domains and reinforce its suitability for
complex configuration optimization tasks such as RAG pipelines.

Given these successes, applying BO to the configuration optimization of RAG systems
represents a natural and promising progression.

14

3.4. PRIOR WORK ON RAG PIPELINE OPTIMIZATION

3.4. Prior Work on RAG Pipeline Optimization

Beyond manual configuration approaches, several research efforts have explored automated
optimization techniques for RAG pipelines. LlamaIndex [64] provides ParamTuner, an
experimental framework for hyperparameter optimization in RAG systems. The base Param-
Tuner iterates through all parameter combinations using exhaustive grid search, while the
AsyncParamTuner enables parallel evaluation of multiple configurations. The framework
also integrates with Ray Tune through RayTuneParamTuner, which provides access to more
advanced optimization algorithms, though the default implementation uses grid search.
ParamTuner allows optimization of parameters such as chunk size and top-k retrieval values,
evaluating configurations based on metrics like semantic similarity. While ParamTuner pro-
vides basic optimization functionality, it primarily targets continuous parameters within fixed
pipeline architectures and requires manual specification of the parameter grid to search.

To address the inefficiency of exhaustive search, more sophisticated algorithms have
been applied to RAG optimization. Fu et al. [65] propose AutoRAG-HP, which formulates
hyperparameter tuning as an online multi-armed bandit problem and introduces a two-level
Hierarchical MAB method to explore search spaces. The framework optimizes top-k retrieved
documents, prompt compression ratio, and embedding methods, achieving comparable
performance using only 20% of the LLM API calls required by grid search through intelligent
sampling strategies.

Building on the success of intelligent sampling, recent work has adopted Bayesian opti-
mization as a principled approach for navigating complex RAG configuration spaces. Barker
et al. [66] introduce multi-objective parameter optimization for RAG systems, simultaneously
optimizing cost, latency, safety, and alignment. Their method employs Bayesian optimization
with the qLogNEHVI acquisition function to handle noisy objective evaluations and discovers
Pareto-optimal configurations. Experimental results on financial and medical QA benchmarks
demonstrate that Bayesian optimization significantly outperforms random search in obtaining
superior Pareto fronts.

Several frameworks have since leveraged Bayesian optimization for different aspects of
RAG pipeline tuning. RAGBuilder [67] focuses on continuous hyperparameter tuning using
Bayesian optimization, targeting parameters such as chunk size, temperature, and top-k
values. The tool provides pre-defined RAG templates and synthetic test dataset generation
capabilities.

Extending Bayesian optimization to handle the full complexity of modern RAG systems,
Conway et al. [68] introduce Syftr, the most comprehensive multi-objective optimization
framework for RAG pipelines to date. The system performs efficient search over a vast
configuration space containing over 1023 unique RAG flows, including both agentic and non-
agentic configurations. Syftr employs Bayesian optimization to discover Pareto-optimal flows
that jointly optimize task accuracy and cost. Across multiple benchmarks, Syftr identifies
flows that are approximately nine times cheaper while preserving most of the accuracy.

15

3.4. PRIOR WORK ON RAG PIPELINE OPTIMIZATION

3.4.1. Research Gaps and Motivation

While the aforementioned approaches have demonstrated the potential of automated opti-
mization for RAG pipelines, they collectively exhibit several critical limitations that constrain
their practical applicability and optimization effectiveness.

First, most existing methods optimize only a limited subset of hyperparameters rather than
the full configuration space. Current approaches typically handle either discrete component
selection or continuous hyperparameter tuning, but rarely address both simultaneously
within a unified framework. Second, there is no systematic comparison of different Bayesian
optimization algorithms or surrogate models to identify which configurations are most
effective for RAG optimization. Third, the influence of global versus local optimization
strategies remains largely unexplored, leaving uncertainty about which approach better
balances exploration and exploitation in complex configuration spaces. Finally, existing
studies seldom examine how optimization performance varies across dataset domains or
analyze the stability and transferability of optimized configurations.

These gaps motivate the need for a comprehensive investigation of Bayesian optimization
techniques specifically tailored to RAG pipeline configuration challenges. To address these
limitations, we extend AutoRAG’s modular architecture with advanced Bayesian optimization
capabilities. Our framework handles the full complexity of RAG configuration through
hierarchical optimization that addresses three levels of decisions. First, it determines whether
to include optional components such as rerankers, filters, and compressors. Second, it
selects the specific method to use within each included component. Third, it optimizes the
continuous hyperparameters associated with the selected methods. This unified approach
enables joint optimization of both discrete choices and continuous parameters, overcoming
the separation that limits existing methods.

To comprehensively evaluate the effectiveness of different Bayesian optimization strategies,
we experiment with various surrogate models, including Random Forest (RF), Tree-Structured
Parzen Estimator (TPE), Gaussian Process (GP), and Heteroscedastic Gaussian Process (HGP),
together with multi-fidelity algorithms, namely Successive Halving and Hyperband. These
configurations are evaluated across three datasets (SciFact, FiQA, and HotpotQA) to examine
performance and generalizability across diverse domains.

16

4. Datasets

This chapter describes the datasets used to evaluate the proposed optimization framework. It
outlines the dataset selection process, data preprocessing workflow, construction of validation
sets, and challenges encountered during dataset analysis. The datasets represent diverse
domains and reasoning requirements, enabling a comprehensive evaluation of retrieval-
augmented generation (RAG) pipelines under varied conditions.

Each dataset was selected based on three main criteria: (1) availability of query–document
pairs suitable for retrieval-based evaluation, (2) manageable corpus size for repeated optimiza-
tion runs, and (3) sufficient query diversity to assess generalization across domains. These
criteria ensure that the experiments capture realistic retrieval challenges while remaining
computationally feasible for large-scale optimization.

The chapter also details the creation of consistent validation subsets for all datasets to
ensure fair comparisons between optimization runs. This design allows the optimizer to
explore configuration performance systematically without variance introduced by query
sampling.

Finally, it discusses practical issues observed during data preparation, such as incomplete or
inconsistent ground-truth annotations that affect retrieval metrics. These limitations motivated
the introduction of large language model (LLM)–based semantic evaluation, providing a more
accurate measure of retrieval relevance.

4.1. Data Preprocessing and Validation Set Construction

The experiments utilize three established benchmark datasets from different domains: SciFact
for scientific fact verification, FiQA-2018 for financial question answering, and HotpotQA for
multi-hop reasoning tasks. SciFact and FiQA-2018 were obtained through institutional
access via SAP’s research collaboration portal, while HotpotQA was sourced from the
BEIR benchmark collection [69]. These datasets were selected to represent diverse retrieval
challenges across scientific, financial, and general knowledge domains while maintaining
computational feasibility for repeated optimization experiments.

4.1.1. Data Format Conversion

The datasets required conversion from their original JSONL format to Parquet files compatible
with the optimization framework. Following AutoRAG’s data schema, we structured the
data into two Parquet files: qa.parquet containing query-answer pairs with columns for qid
(unique query identifier), query (question text), retrieval_gt (ground truth document IDs),

17

4.1. DATA PREPROCESSING AND VALIDATION SET CONSTRUCTION

and generation_gt (reference answer text); and corpus.parquet containing document col-
lections with doc_id (unique document identifier), contents (document text), and metadata
(additional document properties). Parquet format was chosen for its columnar storage effi-
ciency, which significantly reduces file sizes and improves I/O performance when processing
large document collections, particularly beneficial for the 57,638 documents in FiQA-2018.

The conversion process loads corpus documents and queries from their respective JSONL
files, then maps retrieval ground truth document IDs using qrels (query relevance) files that
specify which documents are relevant for each query. Document chunking was not applied
as the datasets already provide documents in appropriate granularity for retrieval tasks,
with each document representing a complete semantic unit—scientific abstracts in SciFact,
financial articles in FiQA-2018, or Wikipedia passages in HotpotQA. Additionally, embedding
generation for dense retrieval methods occurs dynamically during optimization runs rather
than during preprocessing. When a configuration selects dense retrieval methods, the system
generates embeddings on demand if not already cached, then stores them for subsequent
runs. This lazy evaluation approach avoids generating embeddings for retrieval methods that
do not require them, such as BM25. The reported optimization times in our results exclude
initial embedding generation to ensure fair comparison across different retrieval methods.

4.1.2. Ground Truth Generation

Since the original datasets lack generation ground truths necessary for evaluating the gen-
erator component, we employed AutoRAG’s generation ground truth creation framework
using GPT-4. This automated process provides the retrieval ground truth documents to
the language model, which generates reference answers that serve as targets for generation
metrics evaluation. The generated answers establish a baseline for assessing the quality of the
RAG pipeline’s final outputs, enabling comprehensive evaluation beyond retrieval accuracy
alone.

The ground truth generation process follows a structured approach to ensure consistency
across datasets. For each query, the system retrieves the annotated ground truth documents
from the corpus and constructs a prompt that includes both the original question and the
relevant documents. GPT-4 then generates a comprehensive answer based solely on the
provided documents, ensuring that the reference answers remain grounded in the actual
retrieval results rather than relying on the model’s parametric knowledge. This approach
creates evaluation targets that accurately reflect what an ideal RAG system should produce
when given perfect retrieval results.

The quality and consistency of these generated ground truths directly impact the reliability
of generation metrics. While human-annotated answers would provide the gold standard
for evaluation, the automated approach offers practical advantages for large-scale optimiza-
tion experiments, including consistent answer formatting across hundreds of queries and
reproducibility across different experimental runs. The use of GPT-4 ensures high-quality
reference answers that capture the essential information from the retrieved documents while
maintaining natural language fluency.

18

4.2. DATASET SELECTION AND CHARACTERISTICS

4.1.3. Validation Set Selection

Each dataset’s validation set consists of 200 randomly sampled queries from the available
query pool, providing sufficient statistical power while maintaining computational feasibility.
For SciFact and FIQA, we directly used the provided corpus files since their sizes were
appropriate for our experimental setup. In contrast, the original HotpotQA corpus exceeds
2GB, which was not suitable for our setup. Therefore, we constructed a reduced corpus by
first randomly selecting 200 queries without replacement and then including all documents
referenced in the retrieval ground truth of these queries, along with additional documents to
preserve realistic retrieval challenges. This approach ensures that each validation set contains
both relevant and nonrelevant documents, preventing artificially high retrieval scores that
would occur if only ground truth documents were included.

The 200 query sample size balances evaluation thoroughness with computational effi-
ciency. Preliminary experiments with 500 samples demonstrated that larger validation sets
significantly increased processing time, particularly for configurations involving reranking
components that must score all retrieved documents for each query. The computational bur-
den scales linearly with sample size, with each configuration evaluation requiring processing
all queries through the complete pipeline. For a 50 configuration optimization run with 200
samples, this results in approximately 10,000 total query evaluations, making larger validation
sets impractical for extensive optimization experiments.

Validation sets remain fixed across all experiments to ensure fair comparison between
optimization methods and configurations. The same 200 queries are used for all optimization
runs on a given dataset, eliminating variance from query selection and enabling direct
performance comparison. No separate training set was created as Bayesian Optimization
learns directly from evaluation results rather than requiring pretraining on dataset specific
patterns. The optimizer discovers effective configurations through iterative evaluation on the
validation set, with the surrogate model learning the relationship between configurations and
performance without access to held out data.

4.2. Dataset Selection and Characteristics

This section introduces the three benchmark datasets used in this study: SciFact, FiQA-2018,
and HotpotQA. These datasets were selected to represent distinct domains and reasoning
requirements, enabling comprehensive evaluation of retrieval-augmented generation (RAG)
pipelines across scientific, financial, and general multi-hop contexts. The selection ensures
realistic retrieval challenges while maintaining computational feasibility for large-scale op-
timization experiments. All length-related statistics in this chapter are reported in tokens,
corresponding to the model’s input units, to provide a consistent measure across retrieval
and generation components.

19

4.2. DATASET SELECTION AND CHARACTERISTICS

SciFact

The SciFact dataset contains 5,183 scientific abstracts focused on fact verification within
research literature. Each query represents a scientific claim, and the task involves retrieving
abstracts that support or contradict the claim. The dataset was obtained through institutional
access via SAP’s research collaboration portal. SciFact was selected for its domain-specific
language, moderate corpus size, and clearly defined ground truth labels, which make it
suitable for repeated optimization runs. Its structured and concise abstracts provide an
effective setting for evaluating retrieval accuracy and optimization efficiency in specialized
scientific contexts.

The full SciFact corpus contains 5,183 documents and 1,409 annotated claims, while 200
queries were randomly sampled for validation experiments. The average document length is
215 tokens, and the average query length is 12 tokens. On average, each query is associated
with 1.15 relevant documents, indicating a focused retrieval task where precision plays a
central role.

Figure 4.1a illustrates the distribution of document lengths. Most abstracts range between
100 and 300 tokens, reflecting consistent structure and concise writing typical of scientific
literature. The x-axis is truncated at 500 tokens to highlight the main distribution range;
fewer than 1% of documents exceed this length. Figure 4.1b shows the number of ground
truth documents per query. Nearly 90% of the queries are associated with a single relevant
document, and only a few require multiple sources for verification. This confirms that SciFact
primarily evaluates precise retrieval rather than large-scale recall, making it an appropriate
dataset for analyzing fine-grained optimization behavior in RAG systems.

Overall, SciFact provides a compact and well-structured benchmark for evaluating retrieval
and generation performance under domain-specific constraints. Its concise abstracts, consis-
tent annotations, and low redundancy make it ideal for testing optimization frameworks that
rely on precise retrieval and efficient configuration tuning.

FiQA-2018 Dataset

The FiQA-2018 dataset comprises 57,638 financial documents drawn from diverse sources
such as news articles, company reports, and social media posts. It was originally developed
for financial question answering and sentiment analysis tasks, focusing on domain-specific
reasoning over economic and investment focused content. This dataset provides a valuable
benchmark for evaluating RAG optimization in specialized and information rich domains.

The validation subset used in this study includes 200 randomly sampled queries paired
with ground truth document identifiers. The corpus presents a moderately sized retrieval
challenge suitable for large-scale optimization experiments while remaining computationally
feasible. The average document length is 133 tokens, and the average query length is 12
tokens. Each query is associated with an average of 2.68 relevant documents, indicating that
queries often require integrating information across multiple short documents.

Figure 4.1c shows the distribution of document lengths in FiQA. Most documents contain
fewer than 200 tokens, reflecting the concise style typical of financial writing. A small number

20

4.3. ANNOTATION LIMITATIONS AND SEMANTIC EVALUATION ADJUSTMENT

of documents exceed 500 tokens, corresponding to long-form reports or analytical summaries.
Figure 4.1d displays the number of ground truth documents per query. While the majority of
queries have one or two relevant documents, a subset of queries links to over ten relevant
entries, suggesting uneven annotation density across the dataset.

Additional analysis of annotation inconsistencies and their implications for retrieval evalu-
ation are discussed in Section 4.3.

HotpotQA Dataset

The HotpotQA dataset contains 13,783 documents and was obtained from the BEIR benchmark
collection [69]. It is designed for multi-hop question answering tasks, where each query
requires reasoning across multiple supporting documents to produce an answer. This property
makes HotpotQA an effective benchmark for evaluating retrieval-augmented generation
systems in complex reasoning scenarios.

For this study, 200 queries were randomly selected for validation. To maintain compu-
tational feasibility while preserving realistic retrieval conditions, a reduced corpus was
constructed by including all documents referenced in the retrieval ground truths of the
sampled queries, along with additional unrelated documents. The average document length
is 69 tokens, and the average query length is 16 tokens. Each query is linked to exactly two
ground truth documents, reflecting the multi-step reasoning structure of the dataset.

Figure 4.1e shows the distribution of document lengths in HotpotQA. Most documents are
short, typically under 100 tokens, representing concise information passages from Wikipedia
articles. Figure 4.1f illustrates the number of ground truth documents per query, confirming
that all queries are associated with two relevant documents. This consistent structure provides
a stable setting for evaluating retrieval and reranking components that rely on multi-document
reasoning.

4.3. Annotation Limitations and Semantic Evaluation Adjustment

A critical observation during dataset analysis revealed limitations in the retrieval ground
truth annotations, particularly in FiQA-2018. The ground truth document IDs do not always
comprehensively capture all documents containing answer-relevant information. This incom-
pleteness likely stems from the practical constraints of manual annotation, where annotators
may not exhaustively review all 57,638 documents for each query, leading to false negatives
where relevant documents remain unmarked. Table 4.1 illustrates four representative ex-
amples where retrieved documents contain accurate, answer-relevant information but are
marked as incorrect by ID-based metrics.

These examples demonstrate that retrieved documents not present in the ground truth
IDs can provide factually correct and relevant answers. Among 200 validation samples in
FiQA, approximately 20 cases (10%) demonstrated high LLM relevance scores (above 0.7)
despite retrieval ID mismatches. This pattern suggests systematic under-annotation rather
than isolated errors, as the overlooked documents often contain substantive relevant content

21

4.3. ANNOTATION LIMITATIONS AND SEMANTIC EVALUATION ADJUSTMENT

(a) SciFact: document lengths (tokens). (b) SciFact: ground truth per query.

(c) FiQA: document lengths (tokens). (d) FiQA: ground truth per query.

(e) HotpotQA: document lengths (tokens). (f) HotpotQA: ground truth per query.

Figure 4.1.: Comparison of dataset characteristics across SciFact, FiQA-2018, and HotpotQA.
Each row shows the distribution of document lengths (left) and the number of
ground truth documents per query (right) for one dataset.

22

4.3. ANNOTATION LIMITATIONS AND SEMANTIC EVALUATION ADJUSTMENT

rather than peripheral or incidental references.
The implications of these annotation limitations extend beyond simple metric calculation.

ID-based evaluation would penalize a retrieval system for finding these semantically relevant
documents, potentially steering optimization toward configurations that miss valuable infor-
mation sources. This discrepancy between ID-based retrieval metrics and semantic relevance
evaluations influenced our decision to incorporate LLM-based evaluation for compression.
By using semantic evaluation alongside traditional metrics, the optimization process can
recognize and reward the retrieval of semantically relevant content regardless of ID matching,
leading to more robust configurations that prioritize actual information utility over strict
adherence to potentially incomplete ground truth annotations.

Table 4.1.: Examples of ground truth annotation limitations in FiQA-2018
Query Ground

Truth IDs
Retrieved
ID

Retrieved Content (excerpt) LLM Score

"What does APR
mean I’m pay-
ing?"

263949,
279845,
551424

59540 "APR stands for ’annual percent-
age rate.’ This means when you
see a loan with a 6% rate, it is 6%
per year..."

0.85

"What does in-
flation actually
mean?"

302792,
593820

117578,
513249

"Inflation is an attempt to mea-
sure how much less money is
worth. It is a weighted average
of some bundle of goods and ser-
vices price’s increase..."

0.80

"Can I pay
estimated taxes
based on last
year’s taxes if I
anticipate more
income this
year?"

191965 418871,
127974

"You can simply use the previ-
ous year’s tax liability as your
basis for payments... You can
completely base your estimated
taxes for this year on last year’s
tax return and avoid any under-
payment penalty..."

0.95

"When after a
companys IPO
date can I pur-
chase shares?"

591436 200894,
573600

"By definition, an IPO’d stock is
publicly traded, and you can buy
shares if you wish... The first mo-
ment of trading usually occurs
even later than that. It may take
a few hours to balance the cur-
rent buy/sell orders and open
the stock..."

0.9

23

5. Methodology

This chapter presents the experimental methodology for optimizing Retrieval-Augmented
Generation pipelines using Bayesian Optimization techniques. The methodology encompasses
five primary aspects that form the foundation of this research.

First, the research questions section establishes the specific inquiries that guide our investi-
gation and experimental design. Second, the pipeline architecture establishes the modular
RAG framework used for evaluation, defining how components interact and process in-
formation from query to response generation. Third, the detailed pipeline components
section examines each module’s available algorithms and configuration options, creating
the vast search space that requires intelligent optimization. Fourth, the optimization frame-
work introduces Bayesian Optimization as the core approach for efficiently exploring this
high-dimensional configuration space, comparing global and local optimization strategies to
understand their effectiveness in finding optimal pipeline configurations. Fifth, the evaluation
methodology defines the metrics and assessment criteria used to measure both component-
level and end-to-end performance, enabling multi-objective optimization that balances quality,
latency, and computational efficiency.

Together, these methodological components provide a systematic approach to answering
the research questions about which Bayesian Optimization algorithms perform best for RAG
optimization, whether global or local optimization yields superior results, how the number
of explored configurations affects final performance, and how dataset domains influence
optimization stability.

5.1. Research Questions

This study addresses four fundamental research questions that guide the experimental design
and evaluation approach for optimizing RAG pipelines through Bayesian Optimization.
Each question targets a specific aspect of the optimization challenge and requires distinct
experimental methodologies to provide comprehensive answers.

The research questions are formulated as follows:

• RQ1: Which Bayesian Optimization algorithms are most effective for optimizing
Retrieval-Augmented Generation pipelines in terms of achieving high quality scores
and computational efficiency?

• RQ2: Should Bayesian Optimization be applied globally across the entire RAG pipeline
or locally at individual module levels to achieve optimal end-to-end generation quality?

24

5.1. RESEARCH QUESTIONS

• RQ3: What is the relationship between the number of configurations explored through
Bayesian Optimization and the final performance scores achieved in RAG pipeline
tuning?

• RQ4: How do dataset domain characteristics influence the effectiveness and stability
of Bayesian Optimization when tuning RAG pipeline configurations across different
application contexts?

To identify the most suitable optimization algorithms, we examine the comparative per-
formance of multiple Bayesian Optimization variants including different surrogate models
such as Gaussian Processes, Random Forests, and Tree Parzen Estimators. The experimental
design evaluates each algorithm’s ability to navigate the complex mixed discrete and con-
tinuous search space while balancing exploration of new configurations against exploitation
of promising regions. Performance metrics include both the final achieved scores and the
convergence speed to identify algorithms that not only reach optimal solutions but do so
efficiently within limited computational budgets.

Beyond algorithm selection, the optimization scope presents another critical design decision.
Global optimization treats the entire pipeline as a single black box function and considers in-
teractions between components to optimize the pipeline holistically. This approach potentially
discovers synergistic configurations that component level optimization might miss. Con-
versely, local optimization decomposes the problem into smaller subproblems and optimizes
each module separately before combining the best configurations. This comparison reveals
whether component interactions significantly influence overall performance and determines
the most effective optimization granularity for practical deployments.

Equally important is understanding how sampling budget affects optimization outcomes.
This investigation examines whether doubling the configuration budget from 50 to 100 sam-
ples yields substantial performance improvements or if the baseline budget already captures
most achievable gains. By comparing the final scores achieved with different sampling
budgets, we determine whether extended exploration justifies the additional computational
cost. This analysis helps establish practical guidelines for budget allocation and identifies the
point where additional sampling provides diminishing returns.

Finally, the influence of dataset characteristics on optimization behavior requires careful
examination. The study employs datasets from distinct domains including scientific literature,
financial documents, and multi hop reasoning tasks to analyze how different optimization
landscapes affect Bayesian Optimization performance. We investigate whether difficult
optimization landscapes with clear failure modes actually benefit BO by providing strong
gradient signals for learning, while seemingly easier domains with acceptable performance
plateaus might trap the optimizer in premature convergence. This analysis reveals how
dataset characteristics such as query complexity, document length distribution, and retrieval
difficulty patterns influence BO convergence behavior and stability across different domains.

These research questions collectively address the practical challenges of deploying Bayesian
Optimization for RAG systems in production environments. The answers guide practitioners
in selecting appropriate algorithms, determining optimization scope, allocating computational

25

5.2. PIPELINE ARCHITECTURE

budgets, and understanding how domain characteristics affect optimization behavior. The
experimental methodology designed to answer these questions ensures reproducible results
while providing actionable insights for real world RAG optimization tasks.

5.2. Pipeline Architecture

Overall RAG Pipeline Design

The proposed framework employs a modular RAG pipeline architecture consisting of six se-
quential processing stages that transform user queries into generated responses. The pipeline
begins with optional query expansion followed by document retrieval from a knowledge
base. Retrieved documents pass through reranking, filtering, and compression stages before
reaching the final generator component. Each stage offers multiple algorithm choices and
hyperparameter configurations, creating a vast combinatorial search space. The architecture
draws inspiration from AutoRAG [59], a framework that provides automated search capa-
bilities for finding optimal pipeline configurations. This modular design enables systematic
evaluation of different component combinations while maintaining clear interfaces between
processing stages.

Figure 5.1.: Sequential RAG pipeline architecture with six processing stages from query to
response generation. Components marked with asterisks support pass-through
functionality, enabling the optimizer to bypass stages when they do not improve
performance.

Modular Approach and Component Flow

The pipeline illustrated in Figure 5.1 follows a strictly sequential data flow where each
component processes the output from its predecessor and passes refined results to the next
stage. The architecture begins with an optional query expansion phase that enriches the
original query, followed by retrieval that identifies potentially relevant documents from the
corpus. Retrieved documents then flow through progressive refinement stages including
reranking for improved relevance scoring, filtering to remove low-quality results, and com-
pression to fit within context limits. Finally, the prompt maker combines the processed context
with the query for the generator to produce the final response. Each component maintains
standardized interfaces that accept specific input formats and produce outputs compatible
with downstream components, enabling modular replacement during optimization. This
sequential architecture ensures that each stage can focus on its specialized task while building

26

5.3. PIPELINE COMPONENTS

upon previous processing results. The pass-through option available in every component
allows the optimizer to discover simplified pipelines by bypassing unnecessary processing
stages.

Component Interactions and Dependencies

The pipeline architecture enforces specific constraints and dependencies between components
to ensure valid configurations. The reranker’s top-k parameter must not exceed the retriever’s
top-k value since the reranker can only reorder documents that were initially retrieved. When
the reranker selects only a single document by setting top-k to one, the filter component
automatically bypasses processing as no further selection is necessary. The filter component
itself maintains a minimum output constraint, ensuring at least one document per query is
retained even when all documents fall below the specified threshold, preventing empty inputs
to downstream components. These dependencies create a complex optimization landscape
where component interactions significantly influence overall performance. The handling of
these constraints differs between optimization strategies, where global optimization must
respect all constraints simultaneously while local optimization can handle component-specific
constraints independently.

5.3. Pipeline Components

This section presents the six primary components that constitute the RAG pipeline, each
offering multiple algorithmic choices and parameter configurations that collectively define
the optimization search space. Each component represents a distinct processing stage with
specialized functionality, from initial query understanding through final response generation.
The diversity of algorithms within each component creates a heterogeneous search space
combining discrete method selection with continuous hyperparameter tuning.

In addition to the six core components, the pipeline supports two categories of language
models: open-source models from Hugging Face and proprietary models accessed through
SAP APIs. These model sources differ in transparency, configurability, and deployment
environment, which affects how the optimization framework interacts with them. Their
characteristics are described in the final subsection of this section.

Query Expansion

Query expansion enhances the original user query to improve retrieval effectiveness by
generating alternative formulations or additional context. The component offers four strate-
gies: pass-through which uses the original query unchanged, query decomposition [23]
that breaks complex queries into simpler sub-questions, HyDE (Hypothetical Document
Embeddings) [22] which generates hypothetical answer documents to match against the
corpus, and multi-query expansion that creates multiple query variations to capture different
aspects of the information need. Each strategy except pass-through requires language model

27

5.3. PIPELINE COMPONENTS

support and introduces additional latency, creating a trade-off between retrieval improvement
and computational cost that the optimization framework must balance.

Retriever

The retriever component performs the initial document selection from the corpus using either
sparse or dense retrieval methods. Sparse retrieval employs BM25 [9] and its variants for
keyword-based matching, providing efficient and interpretable results without requiring
specialized infrastructure. Dense retrieval [10] uses embedding models to capture semantic
similarity between queries and documents through vector representations. The retriever’s
top-k parameter determines the number of documents passed to subsequent stages, directly
impacting both recall potential and computational requirements for downstream components.
This component serves as the foundation for the entire pipeline’s performance, as documents
not retrieved cannot be recovered by later stages.

Reranker

The reranker refines the initial retrieval results using more computationally intensive but
accurate relevance models. Available methods include pass-through for no reranking, MonoT5
[25] for sequence-to-sequence scoring, UPR (Universal Passage Reranking) [26], cross-encoders
such as MiniLM [24, 12], late-interaction models like ColBERT [27], and lightweight rerankers
including FlagEmbedding [29] and FlashRank [28]. Each reranking method typically offers
multiple model variants that differ in size, training data, and performance characteristics.
The reranker’s top-k parameter must respect the retriever’s output size while determining
how many documents proceed to filtering, creating a critical bottleneck that balances quality
against computational efficiency.

Filter

The filter component removes documents below quality thresholds using four distinct strate-
gies that evaluate either similarity scores or retrieval scores. Pass-through bypasses filtering
entirely when all retrieved documents are considered necessary. Threshold cutoff filters
documents based on the retrieval scores from the previous component, removing those below
an absolute threshold value. Percentile cutoff similarly uses retrieval scores but filters based
on a percentile of the score distribution, retaining only documents above a specified per-
centile threshold. Similarity threshold cutoff recalculates each document’s similarity with the
original query and removes documents below a similarity threshold, providing query-aware
filtering independent of retrieval scores. Similarity percentile cutoff also recalculates query
similarity but applies percentile-based filtering relative to the content length distribution.
The component ensures pipeline robustness by maintaining at least one document per query
regardless of scores, preventing downstream component failures. The distinction between
retrieval-score-based filtering and similarity-based filtering allows the optimizer to choose be-
tween trusting upstream component scores or performing independent relevance assessment,

28

5.3. PIPELINE COMPONENTS

adding another dimension to the optimization space.

Compressor

The compressor reduces document content to fit within generator context limits while preserv-
ing essential information. Available methods include pass-through for no compression, tree
summarization [21] for hierarchical content reduction, Refine [21] for iterative summarization,
linguistic feature-based extraction, and graph-based sentence selection methods. Compression
becomes critical when filtered documents exceed token limits, requiring intelligent content
selection that maintains answer-relevant information while discarding redundancy. The
choice of compression method significantly impacts both the quality of generated responses
and processing latency.

Generator

The generator produces final responses by combining compressed context with the original
query through prompt templates. The component supports various language models with
configurable parameters including temperature for response variability and maximum token
limits for output length. Prompt maker strategies include simple template filling, long context
reorder [33] to optimize context window usage, and window replacement [21] for managing
extensive contexts. The generator’s performance depends heavily on the quality of its input
context, making it sensitive to all upstream component choices while simultaneously being
influenced by the prompt template selection. The interaction between context quality and
prompt strategy creates a complex optimization surface where optimal prompt templates
may vary depending on the characteristics of the filtered and compressed documents.

Model Sources and Characteristics

The RAG pipeline uses two types of language models that differ in design and deployment:
open-source models from Hugging Face and proprietary models accessed through SAP’s API
services.

Open-source models provide full access to their architecture and parameters, allowing
detailed tuning of embeddings, tokenization, and generation settings. This flexibility supports
fine-grained optimization and makes experiments easier to reproduce.

In contrast, SAP-provided models are available only through managed APIs. Their internal
architecture and parameters are not publicly accessible, so they are treated as black-box
systems. While this limits direct tuning, these models offer stable performance, strong
integration with enterprise systems, and consistent inference times.

Using both model categories allows the framework to test optimization strategies in different
environments. This setup helps assess whether methods that work well with open, tunable
models also perform effectively with closed, service-based models.

29

5.4. OPTIMIZATION FRAMEWORK

5.4. Optimization Framework

This section presents the Bayesian Optimization framework employed to efficiently navigate
the vast configuration space of the RAG pipeline. Given the combinatorial explosion of
possible configurations from multiple components and their parameters, exhaustive evaluation
is computationally infeasible, necessitating intelligent search strategies that can identify well-
performing configurations within limited evaluation budgets. The optimization framework
addresses this challenge through Bayesian Optimization, which builds probabilistic models
of the objective function to guide the search toward promising regions of the configuration
space. The framework encompasses both global optimization strategies that evaluate complete
pipeline configurations to capture component interactions, and local optimization approaches
that decompose the problem into component-wise optimization subproblems. Figure 5.2
illustrates the iterative optimization process, showing how configurations are sampled,
evaluated, and used to update the surrogate model that guides future sampling decisions.

Figure 5.2.: Bayesian Optimization framework for RAG pipeline configuration. The itera-
tive process begins with input data preparation including retrieval documents,
evaluation queries, and search space definition. The optimizer samples config-
urations based on its acquisition function, evaluates them on the RAG pipeline,
and updates its surrogate model with the results. This cycle continues until the
evaluation budget is exhausted, outputting the configuration with the highest
combined retrieval and generation score.

The optimization process shown in Figure 5.2 operates through a continuous feedback
loop where each evaluation informs subsequent configuration sampling. The Bayesian Op-
timizer maintains a surrogate model that approximates the relationship between pipeline
configurations and performance metrics, enabling it to predict which unexplored configu-

30

5.4. OPTIMIZATION FRAMEWORK

rations are likely to yield improvements. This approach significantly reduces the number
of evaluations required compared to random or grid search methods, making it practical to
optimize complex pipelines despite computational constraints. The framework must handle
both discrete choices such as algorithm selection and continuous parameters like thresholds
and top-k values, requiring sophisticated optimization techniques that can navigate mixed
variable types while respecting component dependencies and constraints.

5.4.1. Bayesian Optimization Libraries for RAG Pipelines

The optimization experiments employ established Bayesian Optimization libraries to imple-
ment the described framework. SMAC3 [70] provides the Random Forest surrogate models
with support for mixed parameter types and conditional dependencies. Optuna [61] im-
plements Tree-structured Parzen Estimator as its primary approach and provides Gaussian
Process models through BoTorch integration. RayTune [62] enables distributed evaluation of
configurations across multiple compute nodes. HEBO [63] offers Heteroscedastic Gaussian
Process models that account for varying noise levels across the parameter space. These imple-
mentations handle the computational complexities of surrogate model fitting and acquisition
function optimization while providing the flexibility required for RAG pipeline optimization.
Our experiments evaluate multiple surrogate models to determine which approach most
effectively navigates the mixed discrete-continuous search space of RAG pipelines. Each sur-
rogate model offers different trade-offs between modeling accuracy, computational efficiency,
and ability to handle the hierarchical structure of component configurations.

For RAG pipeline optimization, the Bayesian Optimizer must handle the mixed-variable na-
ture of the search space where each component involves both categorical choices of algorithms
and continuous hyperparameters specific to the selected algorithm. This hierarchical structure
creates conditional dependencies where certain hyperparameters only exist when specific
algorithms are selected, such as temperature settings only being relevant when particular
generators are chosen. The optimizer addresses this challenge through structured approaches
that model these conditional relationships explicitly, enabling efficient exploration of the
structured search space while maintaining the probabilistic framework that guides sampling
decisions.

5.4.2. Search Space Definition

The RAG pipeline optimization involves navigating a vast hierarchical search space comprising
both discrete algorithm selections and continuous hyperparameter configurations. This space
exhibits a three-level hierarchical structure where the first level selects which components to
activate, the second level chooses specific algorithms for each active component, and the third
level determines the hyperparameter values for the selected algorithms.

The search space complexity increases substantially due to conditional dependencies where
certain parameters only become relevant when specific algorithms are selected. For instance,
selecting BM25 as the retriever requires choosing among different tokenizer options such
as space [34], GPT-2[71], or other tokenization strategies, while dense retrieval methods

31

5.4. OPTIMIZATION FRAMEWORK

require embedding model selection. These conditional relationships create a tree-structured
search space where different branches represent different algorithm choices, each with its
own parameter subspace. The optimizer must efficiently navigate this structure, avoiding
evaluation of irrelevant parameter combinations while ensuring comprehensive exploration
of valid configurations.

The mixed-variable nature of the search space requires optimization techniques capable
of handling both categorical and continuous variables simultaneously. Categorical variables
include algorithm selections for each component, tokenizer choices for BM25, embedding
model selections for dense retrieval, and prompt template strategies. Continuous variables
encompass retrieval parameters such as top-k values, filtering thresholds and percentiles,
compression ratios and iterations, and generation parameters including temperature and
maximum token limits. The primary inter-component constraint ensures the reranker’s top-k
parameter cannot exceed the retriever’s value, while the filter component maintains at least
one document output regardless of threshold settings. These constraints reduce the effective
search space while ensuring all evaluated configurations produce valid pipeline executions.
The specific parameter ranges and configurations explored in our experiments, including the
exact bounds for continuous variables and the complete set of algorithm choices, are detailed
in the Experimental Setup chapter where we present the actual search space instantiation
used for evaluation.

5.4.3. Multi-Objective Optimization

The optimization of RAG pipelines involves balancing multiple competing objectives beyond
simply maximizing performance metrics. While achieving high retrieval and generation
quality remains the primary goal, the computational cost and time required to find optimal
configurations represent equally critical considerations. Bayesian Optimization addresses this
multi-objective challenge by efficiently exploring the configuration space to minimize the
number of expensive pipeline evaluations needed to identify high-performing configurations.
This efficiency gain becomes particularly important when optimizing pipelines for production
deployment where both model performance and optimization time directly impact system
feasibility.

The framework considers three primary objectives that often conflict with each other.
First, maximizing pipeline performance through the weighted combination of retrieval and
generation metrics ensures the system produces accurate and relevant responses. Second,
minimizing the number of configuration evaluations reduces computational costs and opti-
mization time, making the approach practical for real-world applications. Third, reducing
pipeline latency ensures that selected configurations meet production requirements for re-
sponse time. These objectives create trade-offs where the highest-performing configuration
may require extensive computational resources or exhibit unacceptable latency, while faster
configurations may sacrifice quality.

In the implementation, latency per configuration is incorporated as a second optimization
criterion alongside the primary metric score. The component-specific metrics are combined

32

5.4. OPTIMIZATION FRAMEWORK

into a final optimization objective defined as:

Final Score = 0.5 × Retrieval (last component) + 0.5 × Generation Score.

The retrieval score represents the F1 score from the last active retrieval component in the
pipeline, as some components may be configured as pass-through operations. The final
metric score remains the primary optimization goal, with the highest scoring configuration
being selected as the best result, while latency serves as a secondary objective to guide the
search toward efficient solutions. This dual-objective approach enables the discovery of
configurations that balance quality with computational efficiency.

The time efficiency of Bayesian Optimization compared to exhaustive search methods
represents a crucial advantage for practical deployment. While grid search must evaluate
predetermined configurations regardless of their performance, and random search explores
the space without learning from previous evaluations, Bayesian Optimization intelligently
focuses computational resources on promising regions. This targeted exploration can reduce
optimization time from days to hours while achieving comparable or superior performance.
The surrogate model’s ability to predict performance without evaluation enables rapid
assessment of potential configurations, directing actual evaluations only to those most likely
to improve upon current results.

5.4.4. Optimization Efficiency Strategies

Two distinct early stopping strategies enhance the multi-objective nature of the optimization
by preventing wasted computation on inferior or sufficient configurations. Multi-fidelity early
stopping evaluates configurations with progressively larger budgets, terminating unpromising
configurations early based on performance at lower fidelity levels. This approach reduces
computational waste on configurations that show poor performance even with limited
evaluation resources.

Threshold-based early stopping terminates the optimization process under two conditions:
when a configuration performs below a predefined threshold for any component, indicating
poor quality, or when the overall score exceeds 0.9, suggesting that further optimization
would yield minimal improvements. Poor configurations terminate early when components
fail performance thresholds, saving the computational cost of completing full pipeline evalua-
tion. Exceptional configurations trigger optimization termination when performance targets
are met, recognizing that further search may yield marginal improvements at substantial
computational cost.

These mechanisms implicitly encode a preference for computational efficiency alongside
performance optimization, automatically balancing the exploration budget against the ex-
pected performance gains. Note that early stopping is not applied to grid search experiments,
as exhaustive exploration of all predefined configuration options is required for complete
baseline comparison. The framework thus achieves practical optimization that considers not
only what configuration performs best, but also how quickly and efficiently that configuration
can be discovered.

33

5.4. OPTIMIZATION FRAMEWORK

5.4.5. Local vs. Global Optimization Strategies

The optimization framework implements two distinct strategies for navigating the RAG
pipeline configuration space, each with different assumptions about component interactions
and computational trade-offs. Global optimization treats the entire pipeline as a single black-
box function, sampling complete configurations that specify algorithms and parameters for
all components simultaneously. This approach captures complex interactions between com-
ponents where upstream choices influence downstream performance, such as how retriever
quality affects optimal reranker selection or how document characteristics impact compression
effectiveness. The global strategy requires evaluating full pipeline configurations for each
sample, resulting in higher computational cost per evaluation but potentially discovering
synergistic component combinations that local approaches might miss.

Local optimization decomposes the pipeline optimization into separate subproblems,
optimizing each component independently while holding others fixed. This strategy assumes
that components can be optimized in isolation, treating each module as an independent
optimization problem with its own objective function based on component-specific metrics.
Local optimization significantly reduces the search space complexity by transforming a
single high-dimensional problem into multiple lower-dimensional problems, enabling more
thorough exploration within each component’s configuration space.

The computational efficiency of local optimization comes from its ability to evaluate
components individually while reusing results from previously optimized stages. The process
begins with optimizing the first component in the pipeline, then passes its best output to
the next component as fixed input data. Each subsequent component optimization uses the
preprocessed data from all previous stages rather than recomputing them, only calculating its
own component-specific metrics. For example, when optimizing the reranker, it receives the
retriever’s output documents as input and only computes reranking metrics, avoiding the
need to re-execute retrieval or any downstream processing. This sequential optimization with
data passing between stages dramatically reduces computational cost and processing time.
The efficiency gain allows for more configuration samples within the same computational
budget, potentially achieving better component-level performance through more thorough
exploration of each module’s search space. However, this approach may miss important
interdependencies where optimal configurations depend on upstream and downstream
component choices, potentially leading to suboptimal end-to-end performance despite strong
individual component metrics.

Both strategies incorporate early stopping mechanisms but apply them differently. Global
optimization implements bidirectional early stopping, terminating poor configurations when
components fail to meet minimum thresholds and ending the entire optimization process
when exceptional configurations exceed performance targets. Local optimization only em-
ploys early stopping for high-performing components, bypassing subsequent retrieval-focused
modules when earlier components achieve sufficient quality. These different stopping crite-
ria reflect the fundamental difference in optimization objectives, with global optimization
targeting end-to-end performance while local optimization focuses on component-specific
excellence. The choice between strategies involves balancing the desire to capture component

34

5.5. EVALUATION

interactions against computational constraints and the dimensionality of the search space.

5.5. Evaluation

The evaluation framework employs a comprehensive set of metrics to assess pipeline perfor-
mance at both component and end-to-end levels, providing the necessary feedback signals
for Bayesian Optimization to effectively navigate the configuration space. Since the optimizer
learns from these metric scores to guide its sampling decisions, the choice and calculation of
evaluation metrics directly influences optimization effectiveness. The evaluation methodology
draws inspiration from the AutoRAG framework while extending it with additional metrics
and refined calculations to ensure robust performance assessment across diverse pipeline
configurations.

5.5.1. Component-Specific Metrics

Evaluation at the component level enables fine-grained performance assessment and supports
local optimization strategies by providing targeted feedback for each pipeline stage. For
components focused on retrieval including the retriever, reranker, and filter, the framework
implements standard information retrieval metrics calculated against groundtruth document
sets. The implementation supports multiple retrieval metrics including F1, recall, precision,
NDCG (Normalized Discounted Cumulative Gain) [72], MAP (Mean Average Precision)
[34], and MRR (Mean Reciprocal Rank) [73], allowing flexible evaluation based on task
requirements. When multiple metrics are specified, the framework computes their arithmetic
mean to provide a single optimization objective, though our experiments primarily utilize F1
score as it balances precision and recall considerations. These metrics evaluate document-level
retrieval quality by comparing retrieved document identifiers against ground-truth relevant
documents, providing clear signals about each component’s ability to identify and rank
relevant content.

The compressor component requires specialized evaluation metrics that assess information
preservation during content reduction. The framework implements token level evaluation
metrics including token F1, token recall, and token precision, which measure the overlap
between tokens in the compressed passage and tokens in the ground truth answer. Token
recall captures the proportion of answer tokens that appear in the compressed output, token
precision measures what fraction of compressed tokens are relevant to the answer, and token
F1 provides a balanced assessment combining both perspectives. These metrics evaluate
compression effectiveness by directly comparing the compressed text against ground truth
answers on a per token basis, ensuring that compression retains information necessary to
answer the query while removing irrelevant content. Our experiments primarily utilize token
F1 as the optimization objective for compression, as it provides a balanced signal that prevents
both over compression leading to answer relevant information loss and under compression
resulting in unnecessary token usage.

Query expansion evaluation presents unique challenges as its quality cannot be measured

35

5.5. EVALUATION

directly but only through its impact on downstream retrieval performance. In our framework,
query expansion and retriever evaluations are unified, with the pass through option serving
as a baseline where original queries are used without expansion. This integrated approach
allows the optimizer to learn whether query expansion techniques improve retrieval metrics
(F1, recall, precision) for specific dataset characteristics. The evaluation framework treats the
query expansion and retriever combination as a single evaluation unit, computing retrieval
metrics on the final retrieved documents regardless of whether queries were expanded. This
design eliminates redundant evaluation while allowing the optimizer to discover when query
expansion adds value versus when simpler pass through retrieval suffices.

The prompt maker component, unlike query expansion, cannot be bypassed as it performs
the essential function of formatting retrieved context with the query for generation. Since
prompt maker lacks standalone metrics, its evaluation occurs indirectly through generation
performance. Different prompt templates such as Fstring, long context reorder, or window
replacement affect how effectively the generator utilizes retrieved information, with this
impact captured in generation metrics. The evaluation framework thus handles components
without direct metrics by measuring their contribution to downstream performance, allowing
the optimizer to select configurations that maximize end-to-end effectiveness rather than
isolated component scores.

5.5.2. LLM-Based Compressor Evaluation

While traditional metrics provide valuable signals for most components, certain pipeline
stages require specialized evaluation approaches to capture their true effectiveness. The
compressor component exemplifies this challenge, where conventional token based metrics
consistently favor uncompressed text regardless of the compression algorithm employed.
This bias toward original text prevents the optimizer from discovering effective compression
strategies, as token F1 scores invariably decrease when any compression is applied, even
when the compressed text retains all answer relevant information.

Beyond the inherent limitations of token F1 metrics, the evaluation datasets themselves
introduce additional challenges. The ground truth answer sets may not capture all valid
retrieved passages that contain correct information. A retrieved passage might provide
accurate and relevant information for answering the query but receive a low score because
its ID does not appear in the annotated answer set. This occurs when multiple passages in
the corpus contain similar or complementary information, yet only a subset receives ground
truth labels. The retrieval metrics therefore penalize correct retrievals that fall outside the
predetermined answer set. Such incomplete annotations create misleading signals for the
optimizer, as components that successfully retrieve relevant information receive unfairly low
scores. This issue particularly affects the optimization of retrieval and reranking components,
where the optimizer may discard effective configurations based on artificially deflated metrics.

To address these limitations, we developed an LLM-based evaluation approach specifically
for the compressor component that assesses compression quality through multiple dimensions.
The LLM evaluator employs GPT-4o to score compressed contexts on a scale from 0.0
to 1.0 based on four weighted criteria. Atomic fact preservation (50% weight) verifies

36

5.5. EVALUATION

that all specific facts from the ground truth answer remain in the compressed context,
with penalties for missing critical information such as methods, measurements, or specific
comparators. Completeness (15% weight) evaluates whether the compressed context contains
sufficient information to reconstruct the exact ground truth answer. Relevance and accuracy
(20% weight) penalizes irrelevant or incorrect information that could mislead the generator.
Efficiency and precision (15% weight) rewards brevity when all atomic facts are preserved
while penalizing excessive length with unrelated content.

This evaluation across multiple criteria enables the optimizer to discover compression
strategies that balance information preservation with context reduction, rather than defaulting
to pass through configurations. In addition, the LLM-based approach also helps correct
unfairly low scores in retrieval evaluation when correct answers are present in the compressed
text but absent from the annotated ground truth set. By rewarding factual correctness and
relevance directly, the evaluator reduces the bias of token-based metrics and incomplete
answer sets, providing fairer signals for both compression and retrieval components.

The LLM evaluator processes samples in batches to improve efficiency while maintaining
consistent scoring across evaluations. When combined with traditional metrics for other
components, this evaluation across multiple objectives ensures that each pipeline stage
receives appropriate signals that reflect its actual contribution to overall performance. The
detailed evaluation prompt and implementation are provided in Appendix A.

5.5.3. End-to-End Generation Metrics

End-to-end generation metrics evaluate the quality of the final system output, measuring how
well the generated response matches expected answers. These metrics provide the ultimate
assessment of pipeline effectiveness, capturing the combined impact of all component choices
on generation quality. The framework implements multiple complementary generation
metrics from AutoRAG to capture different aspects of response quality, recognizing that no
single metric fully characterizes generation performance.

The evaluation framework incorporates standard natural language generation metrics with
specific interpretations for RAG systems. BLEU (Bilingual Evaluation Understudy) [74]
measures the extent to which words in the LLM generated response appear in the ground
truth answer, providing an assessment based on n-gram precision. ROUGE (Recall Oriented
Understudy for Gisting Evaluation) [75] evaluates the extent to which words from the ground
truth answer appear in the generated response, focusing on recall rather than precision.
METEOR (Metric for Evaluation of Translation with Explicit ORdering) [76] computes the
harmonic mean of unigram precision and recall, with recall weighted more heavily than
precision, while also incorporating stemming and synonym matching beyond exact word
matching. This metric was designed to address limitations in BLEU and to achieve better
correlation with human judgments at the sentence level.

Beyond lexical matching, the framework includes semantic similarity capabilities through
semantic score, which measures semantic similarity between ground truth and generated
responses using an embedding model [77]. This provides assessment of semantic alignment
regardless of specific word choices, capturing when responses convey correct information

37

5.5. EVALUATION

through different phrasings. While the framework also implements BERT Score and G-Eval
metrics for comprehensive evaluation capabilities, our experiments focus on the core metrics
that provide stable and interpretable signals for optimization.

For optimization purposes, our experiments compute the arithmetic mean of BLEU, ME-
TEOR, ROUGE, and semantic score to create a balanced generation quality measure. This
ensemble approach prevents optimization from overfitting to any single metric’s biases, as
BLEU emphasizes precision while ROUGE focuses on recall, and semantic metrics capture
meaning beyond surface forms. The combined generation score, when integrated with re-
trieval metrics in a weighted way, provides the complete performance signal that guides the
optimizer toward configurations performing well at both information retrieval and accurate
response generation. The decision to use these four metrics balances comprehensive eval-
uation with computational efficiency, as these metrics provide reliable signals without the
additional computational overhead of more complex evaluation methods.

5.5.4. RAGAS Evaluation Framework

The RAGAS (Retrieval Augmented Generation Assessment) framework [37] provides ad-
vanced LLM-based evaluation metrics that assess RAG pipeline quality through multiple
dimensions beyond traditional lexical matching. While RAGAS offers comprehensive pipeline
evaluation capabilities, its computational expense and time requirements make it impractical
for iterative optimization where hundreds of configurations require evaluation. Therefore,
our methodology employs RAGAS exclusively for post-optimization validation, evaluating
only the final best configurations identified by different optimization approaches to verify
that our primary metrics accurately guided the optimization process.

The RAGAS metrics employed in our validation encompass both retrieval and genera-
tion quality dimensions. Faithfulness measures the factual consistency between generated
responses and retrieved context, ensuring that the model does not hallucinate information
beyond what the context supports. Response Relevancy evaluates how well the generated
answer addresses the specific question asked, using both LLM judgment and assessment
based on embeddings to identify irrelevant or off-topic content.

For retrieval quality assessment, RAGAS provides context-aware metrics that evaluate the
retrieved documents’ utility. LLM Context Precision Without Reference measures the precision
of retrieved context by evaluating whether each retrieved passage contains information
relevant to answering the query, using an LLM judge without requiring reference passages.
Context Recall assesses the proportion of answer relevant information successfully retrieved
from the corpus, requiring reference contexts to measure retrieval completeness. These metrics
offer more nuanced evaluation than traditional retrieval metrics by considering semantic
relevance at the passage level.

The framework additionally includes direct answer quality metrics through Factual Correct-
ness and Semantic Similarity. Factual Correctness evaluates whether the generated response
contains accurate information when compared to ground truth answers, computing an F1
based score for factual alignment. Semantic Similarity measures the semantic alignment
between generated and reference answers using embedding based comparison. The imple-

38

5.5. EVALUATION

mentation computes mean scores across retrieval metrics, generation metrics, and an overall
RAGAS mean score, providing comprehensive validation that examines multiple quality
dimensions.

The validation results using RAGAS metrics serve to confirm that configurations achieving
high scores on our primary optimization metrics also perform well on these sophisticated
evaluation criteria. This validation approach ensures that the optimization process, guided
by computationally efficient metrics, produces configurations that perform well not only
in traditional metrics but also in advanced dimensions such as faithfulness and contextual
relevance. The strong correlation between optimization metrics and RAGAS scores validates
our evaluation methodology while avoiding the computational burden of using RAGAS
throughout the optimization process.

39

6. Experimental Setup

This chapter details the experimental configuration used to evaluate the Bayesian Optimization
approaches for RAG pipeline optimization. Building on the theoretical framework from the
previous chapter, we present the concrete experimental choices made to validate our four
research questions across different domains and optimization strategies.

The experimental setup encompasses three main components. First, we present the im-
plementation details, including model configurations, hardware specifications, and software
frameworks necessary for reproducibility. Second, we outline the experimental procedures
governing optimization runs, evaluation budgets, and baseline comparisons. Third, we de-
scribe the detailed experimental designs corresponding to each research question, including
the baselines used, the model sets evaluated, and the number of samples selected for each
optimization process. The experiments explore a search space exceeding 50 million possible
configurations while maintaining computational feasibility through strategic sampling and
early stopping mechanisms.

6.1. Implementation Details

Model Configurations

The optimization framework evaluates a diverse set of models spanning both proprietary
APIs and open source implementations to comprehensively explore the configuration space.
Model access was provided through two distinct infrastructures: SAP’s AI Core platform
for commercial models and local VLLM deployment for open source models, enabling
comparison across different model architectures and sizes.

For query expansion and generation tasks, the framework includes commercial models
accessed via SAP APIs: Claude 4 Sonnet (Anthropic), GPT-3.5 Turbo (OpenAI), Mistral Large
Instruct (MistralAI), and Gemini 2.0 Flash (Google). Open-source alternatives, sourced from
the Hugging Face model repository, range from compact models such as TinyLlama 1.1B and
Qwen 2.5 1.5B to mid-sized models including Llama 2 7B and Llama 2 13B. This diversity
allows the optimizer to discover whether task performance correlates with model size or if
smaller, faster models suffice for specific pipeline components.

Embedding models for dense retrieval include OpenAI’s text-embedding series (ada-
002, 3-small, 3-large), Google’s Gemini embeddings, and open-source alternatives such as
BGE models (small, m3), all-mpnet-base-v2, and domain-specific models like rubert-tiny2.
The embedding models are integrated with ChromaDB for persistent vector storage, with
embeddings generated on demand and cached for subsequent runs.

40

6.2. EXPERIMENTAL PROCEDURES

Reranking components leverage specialized cross-encoder models including MonoT5 vari-
ants (base and large), multiple BAAI BGE rerankers, FlashRank models, and sentence trans-
former cross-encoders. Additionally, Cohere’s Rerank v3.5, accessed via the SAP API, provides
a commercial reranking option. These rerankers offer varying trade offs between accuracy and
latency, allowing the optimizer to select appropriate models based on dataset characteristics
and performance requirements.

All models support configurable parameters including temperature (0.0 to 1.0), maximum
token limits, and model specific settings such as batch sizes for embedding generation. The
configuration space includes both the discrete choice of model selection and continuous
hyperparameter tuning within each model, creating a hierarchical optimization problem. The
complete configuration specifications detailing all available models, and their parameters are
provided in Appendix B for reproducibility.

Implementation Environment

The experiments were conducted on a high-performance computing cluster equipped with
GPUs providing 80GB of memory for model loading and inference. Hardware configuration
significantly influenced component performance variability, particularly for computationally
intensive operations like reranking. During experiments, identical reranker configurations
exhibited substantial runtime variations across different runs, with some executions taking
several times longer than others despite using the same dataset and parameters. This vari-
ability likely stems from GPU resource contention in the shared cluster environment, where
concurrent jobs and memory allocation patterns affect individual component performance.
Such performance fluctuations impact Bayesian Optimization decisions, as execution time
serves as one of the optimization objectives alongside quality metrics.

The optimization framework was implemented in Python using multiple Bayesian opti-
mization libraries to compare different surrogate modeling approaches, including SMAC3
for Random Forest surrogates, Optuna for Tree-Structured Parzen Estimator and Gaussian
Process surrogates, Ray Tune for the BOHB implementation, and HEBO for Heteroscedastic
Gaussian Process–based optimization. The AutoRAG framework provided the foundational
pipeline architecture including data schemas, evaluation metrics, and component interfaces.
Complete hardware specifications and software library versions are detailed in Appendix C.

6.2. Experimental Procedures

6.2.1. Reproducibility Measures

The experimental framework employs standard reproducibility practices, though complete
determinism remains challenging due to the inherent stochasticity in language model infer-
ence and distributed computing environments. Random seeds were fixed at 42 for Bayesian
Optimization algorithms and model initialization. Python environments were managed
through virtual environments with pinned package versions as specified in the previous
section, ensuring consistent dependencies across experimental runs. While generator model

41

6.2. EXPERIMENTAL PROCEDURES

temperatures varied as part of hyperparameter optimization (0.0 to 1.0), evaluation models
including the LLM-based compressor evaluator maintained temperature 0 to minimize scoring
variability.

Despite these measures, evaluation noise persists from multiple sources that affect opti-
mization trajectories. Language models, particularly when accessed through APIs, exhibit
nondeterministic behavior even with temperature set to 0, producing slightly different outputs
for identical inputs across runs. Embedding models accessed through SAP APIs demonstrate
similar variability, where identical queries to the same model can return different retrieved
documents across runs. For example, using Gemini embeddings with top-k=2 on FiQA, exam-
ination of the first 10 queries showed that 2 queries retrieved completely different document
IDs between runs, directly impacting retrieval metrics. Latency measurements vary due to
GPU resource contention, API response times, and network conditions, introducing variance
into the execution time objective. These sources of noise compound to create situations where
identical configurations yield different scores and latencies across runs.

The impact of this nondeterminism on Bayesian Optimization is particularly notable. Since
the optimizer adapts its sampling strategy based on observed results, small variations in early
evaluations can lead to divergent search trajectories. In HotpotQA experiments with SMAC3,
identical configurations evaluated at different points produced score variations exceeding 0.02
with latency differences over 80 seconds. These differences cause the surrogate model to build
different representations of the objective landscape, leading subsequent samples to explore
different regions of the configuration space. Consequently, while the optimizer consistently
identifies high performing configurations, the specific configurations discovered and their
evaluation order vary across runs. While perfect reproducibility cannot be guaranteed due to
the stochastic nature of LLM-based components and API services, these measures ensure that
the experimental methodology can be replicated and that similar performance ranges can be
achieved.

6.2.2. Optimization Runs

The standard optimization experiments employed 50 configuration evaluations as the budget
for Bayesian Optimization methods, determined through preliminary analysis showing that
most optimizers achieved substantial performance improvements within this range while
maintaining reasonable computational costs. Additional experiments with varying budgets
were conducted to examine whether extended exploration yields proportional performance
gains.

The early stopping thresholds for poor performing configurations were set based on
component specific minimum viable scores: retrieval and query expansion components
required scores above 0.1, rerankers above 0.2, filters above 0.25, and compressors above 0.3.
These thresholds were empirically determined from preliminary experiments as the minimum
scores below which downstream components cannot recover meaningful performance. When
any component fails to meet its threshold, the entire configuration evaluation terminates
immediately, saving computational resources for more promising candidates. For high
performing configurations, optimization terminates when the combined score exceeds 0.9, as

42

6.3. EXPERIMENTAL DESIGNS

further improvements beyond this threshold typically yield marginal gains.
Due to computational constraints, the grid search baseline employed a component-wise

evaluation strategy rather than exhaustive full pipeline search. This approach optimizes each
component independently, selecting the best configuration per component and combining
them for the final pipeline, providing an approximation of the best achievable performance.
The grid search configuration space was necessarily restricted compared to Bayesian Opti-
mization: continuous parameters such as temperature and thresholds were fixed to typical
values (e.g., 0.5 for compression ratio, 0.0 for temperature), top-k ranges were limited to [2, 4]
rather than the broader ranges available to Bayesian methods, and only the most promising
algorithm variants were included based on preliminary experiments. This substantially re-
duced search space contrasts with the millions of possible configurations available to adaptive
methods, highlighting the computational advantage of guided exploration over exhaustive
search.

To account for the nondeterministic effects described in previous section, multiple indepen-
dent runs were conducted for each experimental condition. To compare different Bayesian
Optimization algorithms, each optimizer was evaluated with three independent runs to
assess performance stability and variance. The best performing optimizers identified from
these comparisons were then applied to subsequent research questions. Random search
was allocated four times the budget of Bayesian methods (200 configurations for standard
experiments) to provide a stronger baseline, as random search typically requires more sam-
ples to achieve comparable performance without learning from previous evaluations. The
convergence criterion for all methods was budget exhaustion rather than performance plateau,
ensuring fair comparison across different optimization strategies that may exhibit varying
convergence rates.

6.3. Experimental Designs

This section details the specific experimental configurations designed to address each research
question. The experiments progressively build upon each other, with findings from earlier
questions informing the design of subsequent investigations.

6.3.1. Comparative Analysis of Bayesian Optimization Algorithms

To investigate which Bayesian Optimization algorithms are most effective for optimizing RAG
pipelines, we evaluated seven strategies derived from different combinations of surrogate
models, multi-fidelity techniques, and multi-objective formulations (Table 6.1). In total,
four surrogate models were selected: Random Forest, Tree-structured Parzen Estimator
(TPE), Gaussian Process, and Heteroscedastic Gaussian Process. Two multi-fidelity methods,
Successive Halving and Hyperband, were used to allow early stopping of unpromising
configurations with lower budgets.

All experiments in this research question utilized open-source models from Hugging Face
to ensure reproducibility and accessibility. Each Bayesian Optimization (BO) method was

43

6.3. EXPERIMENTAL DESIGNS

allocated 50 sampled configurations, and results were compared against a random search
baseline consisting of 50 randomly sampled configurations drawn from a pool of more than
34,000 possible combinations. In total, this setup resulted in 24 optimization runs, including
the random baseline.

For the compressor component, we did not use the LLM-based evaluator; instead, we relied
on token-wise precision, recall, and F1 as provided by the AutoRAG evaluation framework.
Each optimizer was executed multiple times on three datasets, and only the highest score
achieved by each optimizer is reported in the results tables.

The optimization objectives were twofold:

1. Multi-objective optimization: maximize evaluation scores while minimizing total
pipeline execution time (latency).

2. Multi-fidelity optimization: evaluate performance under varying computational bud-
gets (e.g., epochs, dataset subsets) before full training completes.

Performance comparison was carried out across global optimization runs to identify the
most effective BO strategy.

Table 6.1.: Overview of Bayesian Optimization strategies
Library Surrogate Model Multi-Fidelity Multi-Objective
1 SMAC3 Random Forest + Hyperband Yes Yes
2 SMAC3 Random Forest + Successive Halving Yes Yes
3 SMAC3 Random Forest No Yes
4 Optuna Tree-structured Parzen Estimator (TPE) No Yes
5 Optuna Gaussian Process No Yes
6 RayTune TPE + Hyperband Yes No
7 HEBO Heteroscedastic Gaussian Process No Yes

6.3.2. Scope of Bayesian Optimization in RAG Pipelines

Building upon the algorithm comparison results, this experiment investigates whether opti-
mization should target the entire pipeline globally or individual components locally. Based
on insights from the previous research question, we selected two representative Bayesian
optimization algorithms for further evaluation in this experiment.

To ensure sufficient configuration diversity within each pipeline component, we expanded
the parameter options available at the component level. As a result, the overall search
space increased from approximately 34,000 to more than 50 million possible configurations,
reflecting the cumulative effect of the extended component-level settings.

For global optimization, we allocated 50 sampled configurations per optimizer. This
decision was informed by our previous analysis, where 50 samples provided a reasonable
balance between runtime and the ability to identify competitive configurations relative to
grid search.

44

6.3. EXPERIMENTAL DESIGNS

For local optimization, each component was restricted to 20 sampled configurations. Since
the configuration space at the component level is much smaller than the global search space,
fewer samples are required to cover it meaningfully. At the same time, allocating 20 samples
ensures that the optimizer has a sufficient number of initial points to train its surrogate model
and refine the search effectively. This choice therefore reflects a compromise between coverage
of the component-level space and computational efficiency.

To ensure a comprehensive evaluation, we conducted experiments using two distinct sets
of models:

• A configuration consisting solely of embedding and generator models provided by SAP.
These models represent strong industrial baselines and are designed for enterprise-grade
applications, making them a valuable benchmark for assessing optimization strategies.

• A configuration using open-source embedding and generator models from Hugging
Face, combined with compressor modules that rely on OpenAI models. This setup
allows us to evaluate optimization strategies under a more diverse set of publicly
available models.

By evaluating both model sets, we aim to test the robustness of optimization strategies across
different deployment contexts, ranging from proprietary industrial models to open-source
alternatives. The baseline for this research question is a component-wise grid search. Since the
configuration space for global optimization extends to 50 million possible combinations, grid
search is computationally infeasible at the global level. Instead, grid search is applied locally
within each component to provide an approximate view of the best possible configuration
achievable in isolation.

In total, we conducted 30 experiments: 15 using SAP-provided models (via API access)
and 15 using open-source models on GPUs. For each dataset and model set, we performed
one component-wise grid search, one global optimization run with each selected Bayesian
optimization algorithm, and one local optimization run per algorithm.

6.3.3. Determining Optimal Sample Size for Configuration Exploration

Having established the effectiveness of different optimization scopes, we next investigate
the impact of sample size on optimization performance. We focus on global optimization,
where the search space is largest and the potential benefits of increased sampling are most
pronounced. Based on previous findings showing that local optimization with limited samples
already approximates grid search performance, we concentrate our analysis on the more
challenging global optimization scenario.

We conducted experiments comparing two sample sizes for Bayesian optimization: 50
configurations serving as the baseline established in earlier experiments, and 100 config-
urations to test whether doubling the sample size yields continued improvement. As a
baseline for comparison, we use random search with 200 configurations. Since exhaustive grid
search is computationally infeasible in the global space (exceeding 50 million combinations),

45

6.3. EXPERIMENTAL DESIGNS

random search with substantial sampling provides a reasonable upper bound for expected
performance without intelligent exploration.

All experiments utilize Hugging Face models, which exhibited greater sensitivity to op-
timization strategies and thus provide a more informative test case for analyzing sample
size effects. We evaluate both selected Bayesian optimization algorithms to ensure robust
conclusions about the relationship between sample size and optimization performance.

6.3.4. Outcome Robustness Across Datasets

The final experimental design investigates how dataset characteristics influence the perfor-
mance of Bayesian optimization methods. This experiment builds upon the configurations
from the previous research question, focusing on the optimization results obtained with 100
samples for each Bayesian optimization algorithm and 200 samples for random search. To
analyze differences across domains, we employ Pareto front charts to visualize the trade-off
between performance and latency for each dataset—SciFact (scientific literature), FiQA (fi-
nancial documents), and HotpotQA (multi-hop reasoning). This visualization allows us to
examine how Bayesian optimization behaves under varying dataset characteristics and to
assess how domain complexity affects the optimization dynamics.

46

7. Evaluation Results

In this chapter, we present the evaluation results of our proposed optimization framework.
The experiments were conducted on three datasets: SciFact, FIQA, and HotpotQA. For each
dataset, we randomly selected 200 queries to construct validation sets used consistently
across all experimental runs. Each query is paired with a groundtruth context and retrieval
identifiers, while generation groundtruth answers were obtained using the data generation
framework provided by AutoRAG.

Two early-stopping strategies were employed during experimentation. The multi-fidelity
algorithm-level early stopping mechanism was applied only in the initial algorithm compari-
son experiments to identify the most effective Bayesian optimization methods by allocating
reduced budgets to unpromising configurations. In subsequent experiments, a component-
level threshold-based early stopping strategy was employed to improve runtime efficiency by
terminating low-performing configurations early.

As baselines, we adopted grid search for local optimization and random sampling for
global optimization. Grid search was conducted over a reduced configuration space, restricted
to promising parameter ranges to ensure computational feasibility. In total, our evaluation
comprised 63 experimental runs, covering multiple datasets, optimization strategies, and
Bayesian optimization methods.

Following the presentation of results for each research question, we discuss how these
findings informed the optimization of our RAG framework and what adjustments proved
most effective. This analysis not only addresses our initial research questions but also
highlights practical insights and opportunities for future improvements in the design of RAG
pipelines.

7.1. Comparative Analysis of Bayesian Optimization Algorithms

This section investigates which Bayesian Optimization algorithms are most effective for tuning
RAG pipelines. Since RAG involves a large configuration space and multiple interacting
components, the choice of optimization algorithm directly affects both the quality of results
and the efficiency of the search process. Prior works in related domains have applied methods
such as random search, grid search, and Optuna’s TPE [68], but it remains unclear which
strategies perform best in the context of complex RAG pipelines.

To address this, we compare a set of representative BO approaches that differ in their surro-
gate models, use of multi-fidelity techniques, and support for multi-objective optimization.

We report results separately for the SciFact, FIQA and HotpotQA datasets. For each dataset,
we compare the seven BO strategies against the random baseline. Performance is evaluated

47

7.1. COMPARATIVE ANALYSIS OF BAYESIAN OPTIMIZATION ALGORITHMS

in terms of best score achieved, latency of the best configuration, and total time used.
We explicitly measure latency since it directly contributes to the overall optimization time.

Lower latency per configuration reduces the total optimization time and therefore improves
efficiency. In addition, latency provides an estimate of the expected processing time when
deploying the configuration to handle 200 queries in practice, which is important for real
world applications where users must balance performance against runtime.

SciFact Dataset

Performance comparisons on the SciFact dataset appear in Table 7.1. The best performance
was achieved by SMAC3 with a Random Forest surrogate, reaching a score of 0.6759 with a
latency of 81.18 seconds and a total optimization time of 1h 39m 46s. This outperformed all
other methods on both score and stability. The next best results were obtained by Optuna
with TPE (0.62878) and Optuna with Gaussian Process (0.62778), both achieving competitive
performance with lower latencies of 63.82s and 74.67s respectively. In contrast, multi-fidelity
approaches yielded notably lower performance. SMAC3 with Hyperband achieved a score
of 0.5339, showing shorter runtime but reduced effectiveness, while RayTune with TPE +
Hyperband produced the lowest score overall (0.36365).

These results indicate that full-budget optimization using SMAC3 with Random Forest is
most effective on SciFact, while Optuna’s surrogate models offer a good trade-off between
runtime and performance.

FIQA Dataset

Results from the FIQA dataset experiments are presented in Table 7.1. The best performance
was achieved by SMAC3 with a Random Forest surrogate, reaching a score of 0.4976 with
a latency of 92.2 seconds and a total optimization time of 2h 42m 42s. The second best
method was Optuna with TPE, which achieved a score of 0.4688 with lower latency (64.81s)
and shorter total runtime (1h 42m 26s). In contrast, multi-fidelity methods such as SMAC3
with Successive Halving (0.3564) and RayTune with TPE + Hyperband (0.3913) performed
considerably worse, suggesting that early stopping terminated promising configurations too
early in this case.

HotpotQA Dataset

Results for the HotpotQA dataset are shown in Table 7.1. The best performance was achieved
by SMAC3 with a Random Forest surrogate, reaching a score of 0.7441 with a latency of
123.83 seconds and a total optimization time of 2h 37m 13s. Optuna with the Tree-structured
Parzen Estimator performed comparably well (0.7437) but required a longer runtime (2h 45m
25s). Unlike the SciFact and FIQA datasets, multi-fidelity methods such as SMAC3 with
Successive Halving (0.7224) and SMAC3 with Hyperband (0.7137) achieved relatively stronger
results, narrowing the performance gap with full-budget optimization.

48

7.1. COMPARATIVE ANALYSIS OF BAYESIAN OPTIMIZATION ALGORITHMS

Table 7.1.: Comparison of Bayesian Optimization algorithms on SciFact and FIQA datasets.
Best scores for each dataset highlighted in bold.

Library Surrogate Model Best Score Latency (s) Total Time Used
SciFact Dataset

1 SMAC3 Random Forest + Hyperband 0.53388 90.40 1h 01m 15s
2 SMAC3 Random Forest + Successive

Halving
0.3998 66.67 49m 11s

3 SMAC3 Random Forest 0.6759 81.18 1h 39m 46s
4 Optuna Tree-structured Parzen Esti-

mator
0.62878 63.82 1h 44m 43s

5 Optuna Gaussian Process 0.62778 74.67 1h 22m 02s
6 RayTune TPE + Hyperband 0.36365 407.59 1h 11m 50s
7 HEBO Heteroscedastic Gaussian Pro-

cess
0.62255 72.76 2h 25m 16s

8 Optuna Random 0.57856 68.94 2h 17m 54s
FIQA Dataset

1 SMAC3 Random Forest + Hyperband 0.39259 97.18 1h 03m
2 SMAC3 Random Forest + Successive

Halving
0.3564 141.58 47m 25s

3 SMAC3 Random Forest 0.4976 92.2 2h 42m 42s
4 Optuna Tree-structured Parzen Esti-

mator
0.4688 64.81 1h 42m 26s

5 Optuna Gaussian Process 0.4168 143.51 2h 21m 49s
6 RayTune TPE + Hyperband 0.3913 191.75 3h 11m 25s
7 HEBO Heteroscedastic Gaussian Pro-

cess
0.4111 391.08 2h 29m 41s

8 Optuna Random 0.3826 153.06 2h 18m
HotpotQA Dataset

1 SMAC3 Random Forest + Hyperband 0.7137 96.67 1h 20m 8s
2 SMAC3 Random Forest + Successive

Halving
0.7224 105.97 1h 38m 49s

3 SMAC3 Random Forest 0.7441 123.83 2h 37m 13s
4 Optuna Tree-structured Parzen Esti-

mator
0.7437 172.18 2h 45m 25s

5 Optuna Gaussian Process 0.6716 217.15 1h 52m 8s
6 RayTune TPE + Hyperband 0.7112 191.75 2h 12m 35s
7 HEBO Heteroscedastic Gaussian Pro-

cess
0.7105 115.207 2h 55m 14s

8 Optuna Random 0.7309 182.81 3h 11m 33s

49

7.1. COMPARATIVE ANALYSIS OF BAYESIAN OPTIMIZATION ALGORITHMS

(a) SciFact dataset (b) FIQA dataset (c) HotpotQA dataset

Figure 7.1.: Bayesian Optimization algorithm comparison across datasets. Different colors
represent optimization algorithms. The x-axis shows total optimization time in
seconds, the y-axis shows the best score achieved, and bubble size corresponds to
latency of the best configuration.

Findings

Across all datasets in our experiments, the best results were consistently achieved by SMAC3
with a Random Forest surrogate without multi-fidelity extensions. This configuration reached
the highest scores overall (0.4976 on FIQA, 0.6759 on SciFact, and 0.7441 on HotpotQA) and
outperformed all other surrogate model combinations in terms of average metric scores.

Multi-fidelity approaches, including SMAC3 (random forest) with Successive Halving or
Hyperband and RayTune with TPE + Hyperband, achieved shorter runtimes but generally
lower scores on the FIQA and SciFact datasets. This indicates that early stopping often
terminated promising configurations prematurely, making these methods less effective for
RAG pipeline optimization under those conditions. A likely reason is that when configurations
are evaluated on reduced budgets (e.g., fewer samples or partial epochs), the observed scores
may not reflect their true potential. In addition, RAG evaluation metrics are subject to noise,
and an underperforming early trial can lead to discarding a configuration that might have
yielded strong results if fully evaluated.

However, on the HotpotQA dataset, which involves more complex multi-hop reasoning,
multi-fidelity methods performed relatively better and narrowed the gap to full-budget
optimization. This suggests that adaptive evaluation strategies may be more beneficial in
settings where partial evaluations still provide informative signals about configuration quality.

Optuna with the Tree-structured Parzen Estimator (TPE) provided a competitive and
consistent alternative across all datasets. It achieved scores of 0.4688 on FIQA, 0.6288 on
SciFact, and 0.7437 on HotpotQA, with relatively low latencies ranging from 63s to 172s.
Although it did not surpass SMAC3 with Random Forest in absolute performance, it also
offered a strong balance between runtime efficiency and result quality, demonstrating stable
behavior across both simpler (FIQA, SciFact) and more complex (HotpotQA) tasks.

The random baseline performed consistently below all Bayesian Optimization methods,
with best scores of 0.3826 on FIQA, 0.5786 on SciFact, and 0.7309 on HotpotQA. This confirms
that Bayesian Optimization is more sample-efficient and effective in navigating the configura-
tion space than unguided search, achieving higher-quality configurations within the same

50

7.2. SCOPE OF BAYESIAN OPTIMIZATION IN RAG PIPELINES

budget.
In summary, SMAC3 with Random Forest consistently delivered the best overall results in

our RAG pipeline settings, while Optuna with TPE offered a comparably stable and reliable
alternative with competitive performance across datasets. Multi-fidelity methods, although
appealing for speed, did not yield reliable improvements in this setting.

Thus, to determine which Bayesian Optimization algorithm performs most effectively in
our RAG pipeline settings, SMAC3 with a Random Forest surrogate emerges as the optimal
choice, consistently delivering the highest scores across datasets. Optuna with TPE also
proves to be a competitive alternative, offering a favorable balance between performance
and latency. Based on these results, in the subsequent experiments we focus on SMAC3 and
Optuna TPE as the representative optimizers for further investigation.

7.2. Scope of Bayesian Optimization in RAG Pipelines

This section investigates the scope at which Bayesian Optimization should be applied in
RAG pipelines. Specifically, we compare global optimization, where BO samples full pipeline
configurations across all components, against local optimization, where each component is
optimized independently and the best configuration from each stage is passed on to the next.
For these experiments, we employed an LLM-based evaluator for the compressor component
to better assess compression quality beyond simple token matching metrics.

Global optimization has the advantage of capturing composite effects arising from interac-
tions between components, but requires exploring an extremely large configuration space
and incurs higher computational cost. In contrast, local optimization is more efficient and
allows each module to be tuned individually, but it risks ignoring cross component synergies
that may affect end-to-end generation quality.

The goal of this evaluation is to determine whether Bayesian Optimization should be
applied globally or locally to most effectively improve generation performance in RAG
pipelines. As these experiments employed an LLM-based evaluator for the compressor
component, the reported scores are not directly comparable to those from the previous
section, which used token matching metrics. The use of the LLM evaluator provides a more
semantic measure of compression quality, which in turn influences the overall combined
scores reported here.

7.2.1. SciFact

Local Optimization (SAP Models)

As presented in Table 7.2, grid search achieved the highest combined score of 0.6875, but
required 18h 43m 34s. Both SMAC3 and Optuna TPE achieved competitive scores (0.6715
and 0.6720) with substantially reduced runtime: SMAC3 completed in 6h 06m (saving 67% of
time compared to grid search), while Optuna TPE completed in 5h 54m (saving 69%). This
indicates that sampling 20 configurations locally per component can approach the quality of
exhaustive grid search while requiring only about one-third of the total runtime.

51

7.2. SCOPE OF BAYESIAN OPTIMIZATION IN RAG PIPELINES

Table 7.2.: Local optimization results (SAP Models) across datasets. Scores are reported per
component, with the final combined score shown in the last column.

Method Query Expansion + Retriever Reranker Filter Compressor Prompt + Generator Combined Score Total Time Used
SciFact Dataset

SMAC3 0.6702 0.7545 / 0.8025 0.5404 0.6715 6h 06m 49s
Optuna TPE 0.7643 0.7987 / 0.8497 0.4943 0.6720 5h 53m 49s
Grid Search 0.7747 0.8353 / 0.8702 0.5048 0.6875 18h 43m 34s

FIQA Dataset
SMAC3 0.3822 0.3822 / 0.7125 0.4373 0.5749 11h 38m 00s
Optuna TPE 0.4522 0.4537 / 0.7100 0.4172 0.5636 7h 22m 00s
Grid Search 0.4646 0.4777 / 0.7370 0.4245 0.5807 20h 24m 38s

HotpotQA Dataset
SMAC3 0.7858 0.7858 0.7858 0.7147 0.7055 0.7107 5h 49m 42s
Optuna TPE 0.9050 / / / 0.8177 0.8584 3h 22m 28s
Grid Search 0.9050 0.9050 0.9050 0.8260 0.6761 0.7510 15h 26m 43s

Table 7.3.: Global optimization results (SAP Models) across datasets.
Method Combined Score Total Time Used

SciFact Dataset
SMAC3 0.6335 12h 46m 55s
Optuna TPE 0.6663 13h 42m 36s

FIQA Dataset
SMAC3 0.5207 17h 48m 08s
Optuna TPE 0.5482 17h 02m 12s

HotpotQA Dataset
SMAC3 0.7128 8h 38m 30s
Optuna TPE 0.7236 10h 16m 01s

Table 7.4.: Local optimization results across datasets (Hugging Face models). Scores are
reported per component, with the final combined score shown in the last column.

Method Query Expansion + Retriever Reranker Filter Compressor Prompt + Generator Combined Score Total Time Used
SciFact Dataset

SMAC3 0.7430 0.8265 / 0.7288 0.4248 0.5768 1h 21m 55s
Optuna TPE 0.7806 0.8175 0.8262 0.7695 0.4133 0.5914 3h 16m 19s
Grid Search 0.7175 0.8137 / 0.7750 0.4568 0.6159 8h 35m 58s

FIQA Dataset
SMAC3 0.1494 0.2236 / 0.4667 0.3757 0.4212 4h 44m 45s
Optuna TPE 0.3381 0.3537 0.3595 0.5647 0.3903 0.4775 2h 29m 50s
Grid Search 0.3525 0.3525 / 0.5450 0.3913 0.4682 8h 35m 03s

HotpotQA Dataset
SMAC3 0.7950 0.7950 0.7950 0.7107 0.6843 0.6975 1h 48m 15s
Optuna TPE 0.7583 0.7583 0.7583 0.6570 0.5176 0.5873 1h 08m 42s
Grid Search 0.9200 0.9200 0.9200 0.8210 0.5712 0.6961 5h 04m 59s

52

7.2. SCOPE OF BAYESIAN OPTIMIZATION IN RAG PIPELINES

Table 7.5.: Global optimization results across datasets (Hugging Face models).
Method Combined Score Total Time Used

SciFact Dataset
SMAC3 0.6313 4h 24m 54s
Optuna TPE 0.6265 4h 01m 48s

FIQA Dataset
SMAC3 0.4464 9h 08m 50s
Optuna TPE 0.4868 6h 12m 14s

HotpotQA Dataset
SMAC3 0.5728 3h 56m 44s
Optuna TPE 0.5944 2h 10m 14s

Global Optimization (SAP Models)

When examining global optimization strategies (Table 7.3), Optuna TPE achieved the best
score (0.6663) in 13h 43m, while SMAC3 reached 0.6335 in 12h 47m. Although both methods
explored only 50 configurations globally, Optuna TPE came close to the performance of grid
search (0.6875) while saving 27% of total runtime. SMAC3 was less effective, with a 5.2%
lower score than Optuna TPE.

Local Optimization (Hugging Face Models)

The local optimization results with Hugging Face models (Table 7.4) reveal that grid search
achieved the highest combined score of 0.6159, but required 8h 36m. Optuna TPE achieved a
score of 0.5914 in 3h 16m, while SMAC3 reached 0.5768 in only 1h 22m. Both BO methods
therefore achieved scores within 4–6% of grid search while saving between 62–84% of
runtime, demonstrating that sampling 20 configurations locally per component is sufficient to
approximate exhaustive search with much lower computational cost.

Global Optimization (Hugging Face Models)

In the global optimization setting (Table 7.5), SMAC3 achieved the best score (0.6313) in 4h
25m, while Optuna TPE achieved a slightly lower score (0.6265) in 4h 02m. Both methods
explored 50 global configurations and outperformed their local optimization counterparts
in terms of score, while still saving around 50% of runtime compared to grid search. Impor-
tantly, both global optimization methods surpassed the component-wise grid search baseline,
demonstrating that jointly optimizing all pipeline components yields configurations superior
to those found through exhaustive local tuning, while remaining substantially more efficient.

Across both SAP and Hugging Face model settings, Bayesian optimization methods
achieved performance comparable to or exceeding grid search while requiring substan-
tially less runtime. With limited samples (20 local per component or 50 global), Bayesian
optimization was able to approach or surpass grid search quality while saving significant

53

7.2. SCOPE OF BAYESIAN OPTIMIZATION IN RAG PIPELINES

computational cost. For SAP models, local optimization proved particularly competitive,
achieving results comparable to grid search while reducing runtime by more than two-thirds.
For Hugging Face models, both global Bayesian optimization methods outperformed the
component-wise grid search baseline, achieving higher scores while requiring less than half
of the runtime.

These results indicate that the relative effectiveness of local versus global optimization
depends on the model set. Local optimization is more efficient and reliable for SAP models,
while global optimization provides a better trade-off between performance and efficiency for
Hugging Face models.

7.2.2. FIQA

Local Optimization (SAP Models)

Local optimization results (Table 7.2) demonstrate that grid search achieved the highest
combined score of 0.5807, requiring 20h 24m 38s. SMAC3 achieved a score of 0.5749 in 11h
38m (saving 43% of time compared to grid search), while Optuna TPE reached 0.5636 in
7h 22m (saving 64%). Both BO methods achieved scores within 1-3% of grid search while
significantly reducing runtime. Notably, SMAC3 matched grid search performance closely
despite using only 20 samples per component.

Global Optimization (SAP Models)

Turning to global optimization approaches (Table 7.3), Optuna TPE achieved the best score
(0.5482) in 17h 02m, while SMAC3 reached 0.5207 in 17h 48m. Optuna TPE’s performance
was 5.3% better than SMAC3. However, both global optimization approaches underper-
formed compared to grid search (0.5807), with Optuna TPE achieving 94.4% of grid search
performance.

Local Optimization (Hugging Face Models)

For Hugging Face models in the local optimization setting (Table 7.4), Optuna TPE achieved
the highest combined score of 0.4775 in just 2h 29m 50s, outperforming grid search (0.4682)
while saving 71% of runtime. SMAC3 reached 0.4212 in 4h 44m 45s. This represents a case
where Optuna TPE not only matched but exceeded grid search performance with substantially
less computational cost.

Global Optimization (Hugging Face Models)

The global optimization experiments with Hugging Face models (Table 7.5) yielded particu-
larly interesting results. Optuna TPE achieved the best score (0.4868) in 6h 12m 14s, while
SMAC3 achieved 0.4464 in 9h 08m 50s. Optuna TPE outperformed both SMAC3 and grid
search (0.4682), demonstrating that global optimization with 50 samples can identify superior

54

7.2. SCOPE OF BAYESIAN OPTIMIZATION IN RAG PIPELINES

configurations compared to exhaustive component-wise search. The runtime savings were
substantial, with Optuna TPE saving 28% of runtime compared to grid search.

For the FIQA dataset, the relative performance of optimization strategies differed across
model sets. With SAP models, grid search achieved the highest overall score, but local
Bayesian optimization, particularly SMAC3, closely matched grid search performance while
substantially reducing runtime. Global optimization, by contrast, was less effective for this
model set.

For Hugging Face models, Optuna TPE demonstrated consistently strong performance
in both local and global optimization settings, surpassing the component-wise grid search
baseline while requiring significantly less computational time. These findings suggest that
the effectiveness of Bayesian optimization strategies depends on both dataset characteristics
and underlying model architectures: local optimization is more effective for SAP models,
whereas global optimization with Optuna TPE provides superior performance for Hugging
Face models.

7.2.3. HotpotQA

Local Optimization (SAP Models)

Analysis of local optimization performance (Table 7.2) reveals that Optuna TPE achieved
the highest combined score of 0.8584 in 3h 22m 28s, significantly outperforming grid search
(0.7510) while saving 78% of runtime. SMAC3 reached 0.7107 in 5h 49m 42s. Notably, Optuna
TPE skipped the reranker, filter, and compressor components entirely, relying solely on
retrieval and generation optimization. This omission requires careful interpretation as the
compressor evaluation was bypassed, potentially affecting score comparability. Grid search
required 15h 26m 43s but achieved a lower score than Optuna TPE.

Global Optimization (SAP Models)

In contrast, global optimization results (Table 7.3) show more modest improvements. Optuna
TPE achieved a score of 0.7236 in 10h 16m 01s, while SMAC3 reached 0.7128 in 8h 38m 30s.
Both methods performed below grid search (0.7510), with Optuna TPE achieving 96.3% of
grid search performance. The runtime for both methods was lower than grid search, with
SMAC3 saving 44% and Optuna TPE saving 33% of time.

Local Optimization (Hugging Face Models)

Examining the Hugging Face model results for local optimization (Table 7.4), SMAC3 achieved
the highest combined score of 0.6975 in 1h 48m 15s, slightly outperforming grid search (0.6961)
while saving 65% of runtime. Optuna TPE reached 0.5873 in 1h 08m 42s, the fastest runtime
but with lower performance. Grid search achieved 0.6961 in 5h 04m 59s. All three methods
utilized the full pipeline including filter and compressor components.

55

7.2. SCOPE OF BAYESIAN OPTIMIZATION IN RAG PIPELINES

Global Optimization (Hugging Face Models)

Finally, the global optimization experiments (Table 7.5) produced lower scores overall. Optuna
TPE achieved a score of 0.5944 in 2h 10m 14s, while SMAC3 reached 0.5728 in 3h 56m 44s.
Both methods underperformed compared to grid search (0.6961), achieving 85.4% and 82.3%
of grid search performance respectively. However, both offered substantial runtime savings,
with Optuna TPE requiring only 43% of grid search time.

For the HotpotQA dataset, optimization behavior varied notably between model sets. With
SAP models, Optuna TPE’s local optimization strategy of skipping intermediate components
produced the highest score but raises comparability concerns. With Hugging Face models,
SMAC3 demonstrated strong local optimization performance, matching grid search quality
with significant runtime reduction. Global optimization generally underperformed local
approaches on this dataset, suggesting that component-wise optimization may be more
effective for multi-hop question answering tasks.

7.2.4. Summary: Local vs. Global Optimization Scope

Our experiments reveal that the optimal scope for applying Bayesian Optimization in RAG
pipelines depends on both the model architecture and dataset characteristics. Neither local
nor global optimization consistently dominates across all settings.

For SAP models, local optimization generally provides the best balance between perfor-
mance and efficiency. On SciFact and FIQA datasets, local optimization with 20 samples per
component achieved scores within 1-3% of exhaustive grid search while reducing runtime
by 43-69%. On HotpotQA, Optuna TPE’s local optimization even surpassed grid search
performance (0.8584 vs. 0.7510), though this result requires careful interpretation due to
component skipping. Global optimization with SAP models typically underperformed local
approaches while requiring comparable or longer runtime.

For Hugging Face models, the optimal scope varies by dataset. Global optimization proved
more effective on SciFact, achieving scores within 2-3% of grid search. On FIQA, both Optuna
TPE’s local and global optimization outperformed grid search (0.4775 and 0.4868 vs. 0.4682),
suggesting that intelligent sampling can identify superior configurations that exhaustive
search misses. However, on HotpotQA, local optimization with SMAC3 matched grid search
performance while global optimization fell short.

The runtime savings are substantial across both optimization scopes. Local optimization
typically saves 60-75% of grid search time, while global optimization saves 20-50%. The choice
between local and global optimization thus depends on specific deployment requirements.

Notably, these experiments show that Optuna TPE often matches or outperforms SMAC3 in
both efficiency and final metric scores. This variation from our initial algorithm comparison
may stem from several experimental differences. The configuration space expanded from
approximately 34,000 to over 50 million possible combinations, the LLM evaluator for com-
pression provided more nuanced quality signals, and threshold-based early stopping changed
the optimization dynamics. These modifications create a different optimization landscape
that may favor TPE’s probabilistic modeling approach in certain scenarios. Despite these

56

7.2. SCOPE OF BAYESIAN OPTIMIZATION IN RAG PIPELINES

Figure 7.2.: Optimization performance analysis across datasets and model types. Top: SAP
models. Bottom: Hugging Face models. Each chart shows combined scores (left
panel) and total execution time (right panel) for local and global optimization
methods. Grid search baseline is marked with stars.

57

7.3. DETERMINING OPTIMAL SAMPLE SIZE FOR CONFIGURATION EXPLORATION

variations, both SMAC3 and Optuna TPE demonstrate strong performance, confirming that
their selection as representative optimizers remains valid.

Our findings indicate that practitioners should consider their specific context when choosing
optimization scope. For enterprise deployments with established model sets, local optimiza-
tion offers reliable performance with significant efficiency gains. For experimental settings
with heterogeneous models, global optimization may uncover valuable cross-component
synergies despite higher computational costs. The 20-sample local and 50-sample global
configurations both prove sufficient to approach or occasionally exceed exhaustive search
performance, validating Bayesian Optimization as an effective approach regardless of scope.

7.3. Determining Optimal Sample Size for Configuration
Exploration

This section examines whether increasing the number of configurations explored in Bayesian
Optimization leads to improved final scores in RAG tuning. While our initial analysis es-
tablished that 50 samples provide reasonable performance relative to grid search, and we
demonstrated that local optimization with 20 samples per component can approximate grid
search results, the optimal sample size for global optimization remains unclear. This investi-
gation explores whether expanding the sampling budget yields proportional performance
gains or whether diminishing returns emerge at certain thresholds.

Table 7.6.: Results comparing sample sizes in global optimization across datasets. The "Top
Configuration Distribution" column shows the distribution of configurations across
score ranges.

Method Best Score (Trial #) Total Time Used Top Configuration Distribution Improved with More Samples?
SciFact Dataset

Grid Search Local 0.6159 8h 35m 58s - -
Random 200 0.6086 (trial 158) 19h 48m 12s 1 config ∼0.58, 2 configs ∼0.57, 2 configs ∼0.56 -
SMAC3 50 0.6313 (trial 48) 4h 25m 04s 2 configs ∼0.62, 5 configs ∼0.61, 5 configs ∼0.60 -
SMAC3 100 0.6366 (trial 54) 7h 02m 37s 2 configs ∼0.63, 5 configs ∼0.62, 6 configs ∼0.61 Yes (+0.0053)
Optuna TPE 50 0.6265 (trial 32) 4h 01m 48s 2 configs ∼0.61, 2 configs ∼0.60, 2 configs ∼0.59 -
Optuna TPE 100 0.6325 (trial 98) 6h 30m 28s 1 config ∼0.62, 3 configs ∼0.60, 4 configs ∼0.59 Yes (+0.0060)

FIQA Dataset
Grid Search Local 0.4682 8h 35m 03s - -
Random 200 0.4536 (trial 143) 23h 53m 07s 1 config ∼0.45, 2 configs ∼0.43, 4 configs ∼0.42 -
SMAC3 50 0.4464 (trial 20) 9h 08m 00s 5 configs ∼0.44, 3 configs ∼0.43, 4 configs ∼0.42 -
SMAC3 110 0.4744 (trial 108) 13h 14m 00s 6 configs ∼0.47, 5 configs ∼0.46, 7 configs ∼0.45 Yes (+0.0280)
Optuna TPE 50 0.4686 (trial 22) 6h 12m 14s 2 configs ∼0.46, 2 configs ∼0.45, 2 configs ∼0.44 -
Optuna TPE 100 0.4910 (trial 45) 7h 52m 13s 3 configs ∼0.47, 2 configs ∼0.46, 4 configs ∼0.45 Yes (+0.0224)

HotpotQA Dataset
Grid Search Local 0.6961 5h 04m 59s - -
Random 200 0.6242 (trial 110) 15h 08m 03s 1 config ∼0.58, 2 configs ∼0.57, 2 configs ∼0.56 -
SMAC3 50 0.5727 (trial 48) 3h 56m 44s 2 configs ∼0.54, 1 config ∼0.53, 1 config ∼0.52 -
SMAC3 100 0.6606 (trial 92) 6h 17m 59s 1 config ∼0.64, 1 config ∼0.61, 1 config ∼0.60 Yes (+0.0879)
Optuna TPE 50 0.5944 (trial 28) 2h 10m 14s 1 config ∼0.57, 2 configs ∼0.56, 1 config ∼0.55 -
Optuna TPE 100 0.6057 (trial 12) 4h 51m 10s 1 config ∼0.58, 1 config ∼0.57, 1 config ∼0.56 Yes (+0.0113)

58

7.3. DETERMINING OPTIMAL SAMPLE SIZE FOR CONFIGURATION EXPLORATION

7.3.1. SciFact

Table 7.6 presents the results for varying sample sizes on the SciFact dataset. Both SMAC3 and
Optuna TPE show improvement when doubling the sample size from 50 to 100 configurations.
SMAC3 improved from 0.6313 to 0.6366, an increase of 0.0053 points. Optuna TPE showed
similar gains, improving from 0.6265 to 0.6325, an increase of 0.0060 points.

The distribution of high-performing configurations reveals interesting patterns. For SMAC3-
50, beyond the best score of 0.6313, the top configurations included 2 configs in the 0.62 range,
5 configs around 0.61, and 5 configs around 0.60. SMAC3-100 showed improvement with its
best score of 0.6366, plus 2 additional configs in the 0.63 range, 5 configs around 0.62, and
6 configs around 0.61. This indicates that doubling the samples not only improved the best
score but also increased the density of high-performing configurations.

For Optuna TPE, the 50-sample run achieved 0.6265 as its best score, with 2 configs each
in the 0.61, 0.60, and 0.59 ranges. Optuna TPE-100 improved to 0.6325, with 1 additional
config around 0.62, 3 configs around 0.60, and 4 configs around 0.59. While Optuna TPE-100
discovered higher-scoring configurations, it showed less consistency in the high-score regions
compared to SMAC3.

The modest improvements from doubling the sample size (0.0053 for SMAC3, 0.0060 for
Optuna TPE) suggest potential diminishing returns in the optimization process. These small
gains indicate that either 50 samples may already be approaching the practical performance
ceiling for these models and datasets, or that substantially more than 100 samples would
be required to achieve meaningful further improvements. The fact that both optimizers
show similar marginal gains despite different search strategies supports the hypothesis that
the optimization may be converging toward an inherent performance limit of the pipeline
configuration space.

Random search with 200 samples performed poorly despite exploring four times as many
configurations as the 50-sample BO methods. Its best score of 0.6086 occurred late in the
search (trial 158), and the top configurations clustered in lower score ranges (0.56-0.58). This
demonstrates that intelligent exploration through Bayesian Optimization is more effective
than brute-force sampling.

Regarding computational cost, doubling the sample size roughly doubles the runtime.
SMAC3-100 required 7h 02m compared to 4h 25m for SMAC3-50, while Optuna TPE-100
needed 6h 30m versus 4h 02m for Optuna TPE-50. Both 100-sample configurations still
completed faster than grid search (8h 36m) while achieving superior scores.

The timing of best configurations provides additional insights. SMAC3-50 found its best
configuration at trial 48, near the end of its budget. SMAC3-100 found its optimum at trial 54,
suggesting continued exploration value beyond 50 samples. Optuna TPE shows even stronger
evidence for extended sampling, with its best configuration appearing at trial 98, indicating
that the optimizer continued discovering improvements throughout the expanded search.

59

7.3. DETERMINING OPTIMAL SAMPLE SIZE FOR CONFIGURATION EXPLORATION

7.3.2. FIQA

The FIQA dataset presents a challenging optimization landscape characterized by sparse
high-performing configurations. Grid search local optimization establishes a baseline score of
0.4682 in 8h 35m, serving as the benchmark for global optimization methods.

Random search with 200 configurations requires 23h 53m to achieve a maximum score of
0.4536, finding only seven configurations above 0.42. This inefficiency highlights the difficulty
of the search space, where viable configurations represent a small fraction of the total space.

SMAC3 demonstrates interesting scaling behavior. With 50 configurations, it reaches 0.4464
at trial 20 in 9h 8m. When extended to 110 configurations1, SMAC3 achieves 0.4744 at trial
108, exceeding the grid search baseline. The additional computational investment of 4 hours
yields a meaningful improvement, with 18 configurations scoring above 0.45.

Optuna exhibits superior efficiency in navigating the sparse landscape. With only 50
configurations, Optuna matches the grid search baseline (0.4686) in 6h 12m. Scaling to 100
configurations, Optuna achieves the highest score of 0.4910 at trial 45 in 7h 52m, surpassing
all other methods while maintaining computational efficiency.

The distribution of high-scoring configurations reveals the optimization dynamics. While
random search struggles to consistently find configurations above 0.43, both SMAC3 and
Optuna concentrate their search in productive regions, with SMAC3-110 identifying 18
configurations above 0.45, and Optuna-100 identifying 9 configurations above 0.45. This
concentrated exploration pattern confirms that Bayesian optimization effectively learns and
exploits the narrow band of viable configurations in FIQA’s harsh landscape.

7.3.3. HotpotQA

HotpotQA presents a deceptive optimization landscape where Bayesian optimization methods
struggle to consistently outperform grid search local optimization (0.6961). The dataset’s
multi-hop reasoning requirements create complex component interactions that challenge
global optimization approaches.

Random search with 200 configurations achieves 0.6242 after 15 hours, finding only five
configurations above 0.56. This sparse distribution of high-performing configurations confirms
the challenging nature of the search space, yet differs fundamentally from FIQA’s harsh
landscape. Here, many configurations achieve acceptable scores, creating a plateau effect.

SMAC3 demonstrates interesting scaling behavior. With 50 configurations, it reaches 0.5727
in under 4 hours. Scaling to 100 configurations yields 0.6606 at trial 92, approaching the grid
search baseline while exploring the full 50 million configuration space.

Optuna TPE shows rapid initial convergence, reaching 0.5944 at trial 28 in just 2h 10m
with 50 configurations, the fastest result among all methods. The 100-configuration run
finds a slightly better score of 0.6057, but notably at trial 12 rather than through extended
exploration. This early discovery (trial 12 vs trial 28) suggests the improvement is not a

1SMAC3 occasionally explores more configurations than the specified budget of 100, running up to 110
configurations in this experiment. This behavior occurs due to SMAC’s internal acquisition function, which
may initiate additional evaluations when promising regions are identified.

60

7.4. OUTCOME ROBUSTNESS ACROSS DATASETS

result of the increased configuration budget but rather reflects the stochastic nature of the
optimization process. As detailed in our experimental procedures, evaluation noise from
GPU, language models and embedding APIs causes identical configurations to produce
different latencies and scores across runs. This variability influences the surrogate model’s
representation of the search space, leading the optimizer to explore different regions and
potentially discover high-performing configurations at different trials. The earlier discovery
in the 100-configuration run thus appears to be a consequence of this stochastic exploration
pattern rather than the benefit of additional sampling budget.

The configuration distribution patterns reveal the optimization dynamics. While SMAC3-
100 identifies one exceptional configuration near 0.64, it finds few other high-scoring alter-
natives. This suggests the algorithm occasionally discovers promising regions but fails to
systematically exploit them. The deceptive plateau of acceptable scores appears to satisfy the
acquisition function, reducing exploration pressure toward truly optimal configurations.

Across all three datasets, our experiments reveal a consistent pattern: doubling the configu-
ration budget from 50 to 100 samples yields diminishing returns with increased sampling.
The magnitude of improvement varies by dataset characteristics. SciFact shows minimal
gains (+0.005-0.006), FIQA exhibits moderate improvement (+0.022-0.028) due to its harsh
landscape, while HotpotQA presents algorithm-specific responses with SMAC3 improving
substantially (+0.088) but Optuna plateauing early (+0.011). This variation reflects how
different optimization landscapes interact with the acquisition functions: harsh landscapes
like FIQA benefit from extended exploration to find sparse viable regions, while deceptive
plateaus like HotpotQA can trap optimizers in comfortable but suboptimal configurations.

The computational trade-offs further reinforce this diminishing returns pattern. Doubling
the sample size consistently doubles runtime across all methods, yet yields only 2-8% score
improvements. However, even with limited budgets, Bayesian Optimization demonstrates
clear superiority over random search. Both SMAC3-50 and Optuna-50 outperform random-
200 despite using 4x fewer samples, confirming that intelligent exploration through surrogate
modeling and acquisition functions provides more value than additional random sampling.

These findings suggest that 50 configurations represent a practical sweet spot for global
RAG optimization, providing most achievable performance at reasonable computational
cost. Extending to 100 configurations may be justified only when the optimization landscape
is known to be particularly challenging or when marginal improvements justify doubled
runtime. The consistent pattern of diminishing returns indicates that further increases beyond
100 configurations would likely yield even smaller gains, establishing 50-100 samples as the
effective range for cost-efficient Bayesian Optimization in RAG pipelines.

7.4. Outcome Robustness Across Datasets

Previous research questions established that Bayesian Optimization’s performance varies
significantly across datasets, but the underlying causes remain unclear. This analysis exam-
ines the Pareto fronts, which represent configurations that optimally balance accuracy and
latency, to understand how dataset-specific characteristics influence optimization stability and

61

7.4. OUTCOME ROBUSTNESS ACROSS DATASETS

effectiveness. By visualizing the distribution and density of Pareto-optimal configurations,
we can identify whether domain properties create smooth optimization landscapes conducive
to BO or problematic patterns that hinder convergence.

The Pareto front visualizations identify optimal configurations using the principle of Pareto
dominance in multi-objective optimization. A configuration appears as a red ’X’ marker on the
Pareto front when no other configuration simultaneously achieves both higher score and lower
latency. Formally, a configuration belongs to the Pareto front if it is non-dominated, meaning
that improving either its score or latency would necessarily worsen the other objective. For
instance, a configuration with score 0.65 and latency 100 seconds dominates another with
score 0.60 and latency 150 seconds since it performs better in both dimensions. However, a
configuration with score 0.70 and latency 200 seconds represents a different valid trade-off
and would also appear on the Pareto front. The scattered blue points represent all evaluated
configurations during optimization, while the red markers highlight only those achieving
optimal trade-offs. The density and distribution of these Pareto points reveal how effectively
each optimization method navigates the performance-latency trade-off space and whether the
dataset characteristics support finding diverse optimal solutions.

7.4.1. Scifact

SciFact demonstrates ideal characteristics for Bayesian Optimization, with clear performance
gradients that enable efficient navigation of the configuration space. As shown in Figures 7.3a-
7.3c, the Pareto fronts reveal distinct optimization behaviors across methods.

TPE-100 and SMAC3-100 exhibit concentrated exploration patterns, with Pareto-optimal
points clustering in the 0.55-0.65 score range while maintaining remarkably low latencies
(under 200s). Both methods consistently identify high-performing regions. This concentrated
pattern indicates that the surrogate models successfully learn the underlying performance
landscape and exploit promising regions effectively.

For Random-200, despite exploring 200 configurations over 19h 48m, the results show lim-
ited diversity in latency performance. The sparse Pareto front confirms that high-performing
configurations are rare in the search space, precisely the scenario where BO’s intelligent
exploration provides maximum value over random sampling.

The moderate score ceiling (0.55-0.65) combined with clear performance gradients creates an
optimization landscape that enables several key advantages. Surrogate models can accurately
predict nearby configuration performance due to the smooth landscape structure. The
acquisition functions effectively balance exploration and exploitation because the performance
signals provide clear guidance. Component interactions remain sufficiently decoupled to
avoid performance cliffs that would confuse the optimizer. Additionally, early iterations
quickly identify and converge on promising regions since the gradients point toward optimal
areas.

This analysis confirms that Scifact’s domain characteristics, specifically its structured
performance gradients without excessive coupling between components, make it particularly
amenable to Bayesian Optimization, resulting in both time efficiency (84% reduction in local
optimization) and superior global optimization performance.

62

7.4. OUTCOME ROBUSTNESS ACROSS DATASETS

(a) SciFact - TPE 100 (b) SciFact - SMAC3 100 (c) SciFact - Random 200

(d) FIQA - TPE 100 (e) FIQA - SMAC3 100 (f) FIQA - Random 200

(g) HotpotQA - TPE 100 (h) HotpotQA - SMAC3 100 (i) HotpotQA - Random 200

Figure 7.3.: Pareto front visualizations across all datasets comparing TPE-100, SMAC3-100,
and Random-200 optimization methods. Red crosses indicate Pareto-optimal con-
figurations balancing score and latency. Rows represent different datasets (SciFact,
FIQA, HotpotQA) while columns represent different optimization methods (TPE,
SMAC3, Random).

63

7.4. OUTCOME ROBUSTNESS ACROSS DATASETS

7.4.2. FIQA

FIQA presents a challenging optimization landscape characterized by sparse viable config-
urations. Figures 7.3d-7.3f reveal how different optimization methods navigate this harsh
terrain.

TPE-100 and SMAC3-100 demonstrate concentrated exploration patterns with Pareto points
clustering between 0.45 and 0.47 scores while maintaining latencies below 200 seconds. This
tight clustering indicates that Bayesian Optimization successfully identifies the narrow band
of acceptable configurations and exploits this region efficiently. The concentration around this
specific performance range suggests these methods learn to avoid the vast regions of poor
configurations that dominate the search space.

Random-200 exhibits fundamentally different behavior, with configurations scattered across
the entire performance spectrum from 0.15 to 0.45. While the explored configurations show
latencies ranging from 200 to 1400 seconds, the few Pareto-optimal points discovered by
random search cluster around 200 seconds latency. This sparse Pareto front, containing
only a handful of points despite 200 trials, confirms that high-performing configurations
with efficient latency are extremely rare in the search space. Random search struggles to
consistently find these needle-in-a-haystack configurations, discovering them only occasionally
through chance.

The sparse distribution of viable configurations, where most score below 0.30, creates a
paradoxical advantage for Bayesian Optimization. Initial samples likely fail significantly,
which forces the acquisition function to explore diverse regions rather than settling into local
optima. Once the narrow band of viable configurations between 0.45 and 0.50 is discovered,
both TPE and SMAC3 concentrate their search in this productive region. This harsh landscape
provides clear signals about which regions to avoid, enabling more focused exploration than
would occur in a landscape with gradual performance transitions.

The contrast between Bayesian Optimization and random search on FIQA demonstrates how
domain characteristics fundamentally shape optimization effectiveness. The harsh landscape
that makes random search inefficient becomes an advantage for intelligent exploration
methods that can learn from failures and concentrate sampling in the sparse regions of
acceptable performance.

7.4.3. HotpotQA

HotpotQA exhibits a deceptive optimization landscape that challenges Bayesian Optimization
methods, as shown in Figures 7.3g-7.3i. Grid search local optimization achieves 0.6961,
establishing a high baseline that global methods struggle to match.

TPE-100 produces Pareto points scattered across the 0.44 to 0.55 score range with latencies
below 200 seconds. This wide distribution suggests that TPE explores various regions but fails
to converge on the highest performing areas. The scattered pattern indicates the optimizer
gets trapped in local optima, unable to systematically improve beyond the comfortable middle
range of scores.

SMAC3-100 displays a unique pattern with one exceptional Pareto point near 0.64 while

64

7.4. OUTCOME ROBUSTNESS ACROSS DATASETS

other configurations cluster around 0.5. This isolated high performer represents a golden
configuration that SMAC3 discovered but failed to exploit systematically. The inability to find
similar high-scoring neighbors suggests either the configuration space has isolated peaks or
the limited budget prevents thorough exploration of promising regions.

Random-200 identifies only two Pareto points despite 200 trials, with both appearing at
different performance extremes. This extreme sparsity confirms that configurations optimally
balancing score and latency are rare in HotpotQA’s search space. The minimal Pareto front
despite extensive sampling highlights the challenge of finding efficient high-performing
configurations through random exploration.

The broad distribution of acceptable scores between 0.40 and 0.55 creates a deceptive plateau
that misleads Bayesian Optimization. Most configurations achieve reasonable performance in
this range, causing the surrogate model to perceive the current region as satisfactory. The
acquisition function lacks strong signals to push exploration toward truly optimal regions
since the plateau provides consistently moderate rewards. This comfortable middle ground
reduces exploration pressure, causing both TPE and SMAC3 to settle for local improvements
rather than seeking the global optimum near 0.70.

The multi-hop reasoning requirements of HotpotQA appear to create complex component
interactions that global optimization struggles to capture. The fact that local componentwise
optimization achieves 0.6961 while global methods reach only 0.64 suggests that sequential
optimization better respects the pipeline’s inherent dependencies. The deceptive plateau
combined with strong component coupling makes HotpotQA particularly challenging for
standard Bayesian Optimization approaches.

The analysis of Pareto fronts across three datasets reveals that domain characteristics
fundamentally determine Bayesian Optimization success in RAG pipeline tuning. Each
dataset presents distinct optimization challenges that interact differently with BO’s core
mechanisms.

Scifact represents the ideal case for Bayesian Optimization, with clear performance gra-
dients and moderate component coupling. Both TPE and SMAC3 consistently identify and
exploit the narrow band of high-performing configurations between 0.55 and 0.65, achieving
concentrated Pareto fronts with low latencies. The structured landscape enables surrogate
models to accurately predict configuration performance, resulting in efficient convergence
and superior results compared to random search.

FIQA’s harsh landscape, where most configurations score below 0.30, paradoxically aids
Bayesian Optimization. The sparse distribution of viable configurations forces aggressive
exploration after initial failures. Once the narrow band of acceptable configurations around
0.45 to 0.47 is discovered, both optimizers concentrate sampling in this productive region.
The clear failure signals help BO avoid unproductive areas, making the harsh landscape
advantageous for intelligent exploration.

HotpotQA demonstrates how deceptive optimization landscapes can undermine Bayesian
Optimization. The plateau of acceptable scores between 0.40 and 0.55 satisfies the acquisition
function prematurely, reducing exploration pressure toward the true optimum near 0.70.
SMAC3 finds one exceptional configuration but cannot systematically exploit it, while TPE

65

7.4. OUTCOME ROBUSTNESS ACROSS DATASETS

remains trapped in the comfortable middle range. The multi-hop reasoning requirements
create complex component interactions that global optimization fails to capture effectively.

These findings establish that Bayesian Optimization effectiveness depends primarily on
landscape topology rather than dataset complexity or baseline performance. Domains with
clear gradients or harsh failure modes provide strong signals for optimization, while deceptive
plateaus with acceptable but suboptimal configurations mislead surrogate models. The success
of BO in RAG pipeline tuning therefore requires careful consideration of domain-specific
characteristics beyond simple performance metrics.

66

8. Discussion

8.1. Interpretation of Results

8.1.1. Which Bayesian Optimization algorithms are most effective for optimizing
Retrieval-Augmented Generation pipelines in terms of achieving high
quality scores and computational efficiency?

The experimental results provide clear evidence about which optimization algorithms are
most effective for RAG pipeline optimization. SMAC3 with a Random Forest surrogate
model and Optuna’s Tree-structured Parzen Estimator (TPE) emerge as the most competitive
approaches, each excelling in different aspects. SMAC3 consistently achieves the highest
overall scores across datasets, while Optuna TPE provides comparable results with strong
stability and moderate computational cost. Both methods substantially outperform other
alternatives, including Gaussian Process models, HEBO’s Heteroscedastic Gaussian Process,
and RayTune implementations.

The performance advantage of SMAC3 stems from several key characteristics that align
well with RAG pipeline optimization challenges. Random Forest surrogate models excel at
handling the mixed discrete and continuous parameter spaces typical in RAG configurations.
The algorithm demonstrates superior multi-objective optimization capabilities, effectively
balancing the dual goals of maximizing evaluation metrics while minimizing execution time.
Random Forests can efficiently model non-linear relationships between pipeline components
without requiring complex kernel specifications, making them particularly suitable for the
heterogeneous parameter types found in RAG systems. This modeling capability often
enables SMAC3 to discover higher-scoring configurations, though the exploration process
may require additional computational investment.

Optuna’s Tree-structured Parzen Estimator represents an attractive alternative when op-
timization time is critical. TPE consistently maintains lower latency during optimization
compared to other surrogate model approaches, making it valuable in scenarios where rapid
iteration matters more than absolute maximum performance. The algorithm’s probabilistic
model separates good and bad configurations more simply than complex Gaussian Process
approaches, enabling faster convergence in early optimization stages. While TPE may not
always achieve the highest possible scores that SMAC3 can reach, its time efficiency and
competitive performance levels make it particularly suitable for resource-constrained envi-
ronments or when quick optimization cycles are required. The trade-off between SMAC3’s
potential for higher scores and TPE’s faster optimization represents a key decision factor for
practitioners selecting optimization strategies.

Multi-fidelity methods using Hyperband and Successive Halving produced unexpectedly

67

8.1. INTERPRETATION OF RESULTS

poor results despite their theoretical advantages. RAG pipelines require complete execution
through all components to properly assess configuration quality, and early stopping based
on incomplete results leads to premature rejection of potentially high-performing configura-
tions. While multi-fidelity methods reduce optimization time significantly across all tested
scenarios, the substantial performance degradation makes them unsuitable for RAG pipeline
optimization where quality remains the primary objective.

HEBO’s Heteroscedastic Gaussian Process approach achieved moderate scores but suffered
from high computational overhead. The heteroscedastic modeling that accounts for varying
noise levels across the search space theoretically provides advantages but unnecessary for
RAG optimization. The additional complexity increased optimization time without delivering
corresponding performance improvements over simpler approaches. This finding suggests
that the noise characteristics in RAG pipeline evaluation remain relatively uniform across the
configuration space, reducing the value of heteroscedastic modeling.

Random search baseline experiments provide important context for interpreting Bayesian
optimization performance. Across tested datasets, Bayesian optimization methods consistently
achieve substantial improvements over random search baselines while evaluating the same
number of configurations. These gains become particularly significant in high-dimensional
configuration spaces where random search often performs surprisingly well. The consistent
performance advantage demonstrates that intelligent search strategies provide real value
through their ability to learn from previous evaluations and focus exploration on promising
regions. The efficiency advantage of Bayesian methods becomes more pronounced as the
configuration space complexity increases, validating the investment in more sophisticated
optimization approaches for production RAG systems.

8.1.2. Should Bayesian Optimization be applied globally across the entire RAG
pipeline or locally at individual module levels to achieve optimal
end-to-end generation quality?

The experimental comparison between global and local optimization strategies reveals com-
plex trade-offs in RAG pipeline optimization. Local optimization consistently achieves
competitive performance while requiring substantially less computational time than global
approaches. The key insight is that local optimization provides an efficient path to near-
optimal performance, achieving approximately 96 percent of grid search baseline scores while
reducing optimization time by over 60 percent.

The advantage of local optimization stems from its decomposition of the optimization
problem. With global configuration spaces exceeding 50 million possibilities, even 50 con-
figurations represent negligible coverage. Local optimization allocates 20 configurations
per component, providing much denser sampling of each module’s parameter space. This
focused exploration proves more effective for identifying high-performing configurations
within practical time constraints.

Component independence analysis supports the effectiveness of local optimization. Each
RAG component operates with distinct optimization objectives: retrievers maximize document
relevance, rerankers score passage quality, filters apply threshold-based rules, compressors

68

8.1. INTERPRETATION OF RESULTS

reduce tokens based on importance scores, and generators produce coherent text from
provided context. These natural boundaries create optimization subspaces that local methods
exploit efficiently. The weak interaction effects discovered through global optimization
indicate that optimal component configurations remain relatively stable regardless of other
pipeline components’ settings.

While global optimization occasionally achieves marginally higher absolute scores, the
performance gains rarely justify the computational overhead. The diminishing returns become
particularly problematic as pipeline complexity increases. Global optimization must evaluate
complete pipeline configurations for every trial, accumulating computational costs across all
components while exploring an exponentially larger space. This makes global optimization
increasingly impractical for rapid iteration or resource-constrained environments.

Scenarios that might justify global optimization remain limited based on the experimental
evidence. Pipelines with explicitly designed component interactions, shared parameters
across modules, or cascading effects where early components fundamentally alter down-
stream behavior could benefit from joint optimization. However, standard RAG architectures
demonstrate sufficient component independence that local optimization delivers superior
efficiency. The practical implications strongly favor adopting local optimization for most RAG
deployment scenarios, enabling incremental component improvements, targeted bottleneck
resolution, and modular development practices that accelerate iteration cycles.

8.1.3. What is the relationship between the number of configurations explored
through Bayesian Optimization and the final performance scores achieved in
RAG pipeline tuning?

The experimental analysis of configuration budgets reveals distinct convergence patterns
across different datasets, demonstrating how the number of configurations explored directly
impacts final performance scores. Both SMAC and TPE with moderate trial budgets achieve
superior score-latency trade-offs compared to random search with double the number of
trials, establishing that intelligent sampling outweighs raw sample quantity.

Diminishing returns analysis across trial budgets reveals non-monotonic improvement
patterns. Larger configuration budgets do not guarantee better maximum scores when
evaluation noise is present. Stochastic evaluation from language models and varying GPU
latencies cause optimization trajectories to diverge, where small differences in early eval-
uations shift the acquisition function’s focus toward different search space regions. This
non-deterministic behavior means identical initial configurations can lead to substantially
different final outcomes.

The optimal configuration budget varies significantly by optimization objectives. Datasets
with clear gradients typically reach convergence within moderate trial counts (50-100 samples),
showing minimal improvement with extended budgets. Harsh landscapes benefit from
extended exploration (100+ samples) to escape local optima, while deceptive plateaus may
require alternative strategies beyond simply increasing trial counts. These might include
forced exploration mechanisms or modified acquisition functions that explicitly seek diversity
rather than exploitation.

69

8.1. INTERPRETATION OF RESULTS

Sample efficiency improvements from Bayesian optimization become most pronounced
when considering the multi-objective nature of RAG optimization. The ability to find
configurations that simultaneously optimize for high scores and low latency within limited
trials represents a critical advantage over random search, which requires extensive sampling
to accidentally discover balanced solutions. The Pareto front visualizations demonstrate
that Bayesian methods learn to navigate the performance-latency trade-off space efficiently,
gradually concentrating samples in regions offering optimal compromises between competing
objectives.

The presence of evaluation noise from language model components introduces additional
complexity to convergence analysis. Fixed random seeds produce identical initial configu-
rations, but subsequent trials diverge as variations in scores and latencies accumulate. This
non-determinism means convergence patterns should be interpreted as probabilistic trends
rather than deterministic trajectories. Organizations should expect variation in optimization
outcomes and consider running multiple optimization sessions with different seeds when the
stakes justify the additional computational investment.

8.1.4. How do dataset domain characteristics influence the effectiveness and
stability of Bayesian Optimization when tuning RAG pipeline
configurations across different application contexts?

Dataset domain characteristics fundamentally determine how Bayesian optimization methods
navigate the configuration space, with distinct patterns emerging across different application
contexts. The optimization landscape topology—whether presenting clear gradients, harsh
terrain, or deceptive plateaus—directly influences both the effectiveness and stability of the
optimization process.

On datasets presenting ideal optimization landscapes with clear performance gradients
(such as scientific fact verification), Bayesian methods concentrate their Pareto-optimal points
in high-scoring regions with remarkably low latencies. This concentration indicates rapid
convergence to high-performing regions within early trial stages. In contrast, random
search finds significantly fewer Pareto-optimal configurations despite extensive runtime,
with discovered points clustering at similar latency levels. The sparse Pareto fronts from
random search confirm that high-performing configurations are rare but achievable, exactly
the scenario where Bayesian optimization’s intelligent search excels over random exploration.

Harsh optimization landscapes (characteristic of financial question-answering domains)
force extensive exploration patterns. In these cases, Bayesian optimization Pareto points
cluster tightly in moderate-scoring regions with controlled latencies, demonstrating the
ability to find sweet spots that balance near-optimal scores with minimal computational cost.
Random search exhibits widespread scatter across both performance dimensions. This pattern
suggests random methods only achieve competitive scores by accidentally encountering
computationally expensive configurations.

Deceptive optimization landscapes (found in multi-hop reasoning tasks) reveal an inter-
esting failure mode for Bayesian methods. When datasets present broad distributions of
acceptable scores creating performance plateaus, the surrogate model becomes satisfied

70

8.2. LIMITATIONS AND THREATS TO VALIDITY

without pushing for further exploration. These scenarios show Bayesian optimization finding
isolated exceptional configurations but generally remaining trapped in comfortable middle
regions. This pattern contradicts the typical assumption that difficult landscapes always
benefit from intelligent search, suggesting that deceptively acceptable plateaus can lead to
premature convergence.

The stability of optimization outcomes varies dramatically across domain characteristics.
Domains with clear gradients exhibit consistent convergence patterns across multiple runs,
while harsh and deceptive landscapes show higher variance in final performance. This
domain-dependent stability has practical implications: organizations working with well-
structured domains can confidently rely on single optimization runs, while those dealing
with complex reasoning tasks should budget for multiple optimization attempts to ensure
robust configuration selection.

8.2. Limitations and Threats to Validity

8.2.1. Experimental Limitations

The experimental design faces several limitations that may affect the generalizability of
findings. The study evaluated optimization strategies on three datasets representing different
domains: scientific fact verification (Scifact), financial question answering (FIQA), and multi-
hop reasoning (HotpotQA). While these datasets provide diversity in task complexity and
domain characteristics, they remain relatively small-scale compared to production RAG de-
ployments. The limited dataset size may not fully capture the optimization challenges present
in large-scale enterprise systems processing millions of documents across heterogeneous
domains.

A critical limitation involves the use of LLM generated ground truth for evaluation rather
than human-written reference texts. The evaluation metrics rely on automated scoring from
language models serving as judges, introducing potential biases. Human-written ground
truth would provide more robust evaluation but was not feasible within the experimental con-
straints. This reliance on synthetic evaluation may overestimate performance improvements
and miss quality dimensions that matter to human users.

Computational constraints imposed practical boundaries on the experimental scope. Each
optimization run required substantial GPU resources, limiting the number of trials, datasets,
and configuration variations that could be explored. The experiments used fixed trial budgets
of 50 to 200 configurations, which may be insufficient for exploring the massive configuration
spaces exceeding 50 million possibilities. Production deployments with larger computational
budgets might discover superior configurations or reveal different convergence patterns.
Additionally, the experiments focused on single GPU execution, not accounting for dis-
tributed computing scenarios where parallelization could fundamentally change optimization
dynamics.

The choice of evaluation metrics presents another limitation. The experiments weighted
retriever and generator metrics equally at 50 percent each, but optimal weighting likely

71

8.2. LIMITATIONS AND THREATS TO VALIDITY

varies by application. Some use cases prioritize retrieval precision while others emphasize
generation fluency. The fixed weighting scheme may bias results toward configurations that
balance both objectives rather than excelling at task specific requirements. Furthermore, the
metrics focus on accuracy and latency while neglecting other important dimensions such as
cost per query, or robustness to adversarial inputs.

Temporal stability represents an unexplored dimension in the experimental design. The
optimization assumes static data distributions and consistent model behavior over time.
Production systems face concept drift, evolving document collections, and changing user
query patterns. Configurations optimized for current conditions may degrade as these factors
shift. The experiments did not evaluate how quickly optimized configurations become stale
or whether Bayesian optimization can efficiently adapt to temporal changes without complete
re-optimization.

The experimental setup used specific model architectures from both Hugging Face and
state-of-the-art commercial LLMs, including GPT-3.5 Turbo, Claude 4 Sonnet, Gemini 2.0
Flash, and Mistral AI Large Instruct. While this selection covers a range of model capabilities
and providers, it may not represent the full spectrum of available architectures. Recent
advances in retrieval methods, including learned sparse representations and late interaction
models, were not comprehensively evaluated. The generator components focused on standard
language models without exploring retrieval-augmented training or specialized architectures
explicitly designed for RAG systems. Despite testing commercial SOTA models through
API calls, the experiments could not modify their internal configurations or fine-tune them
for specific RAG tasks, potentially missing optimization opportunities available with fully
controllable models. These architectural constraints may limit the applicability of findings
to next generation RAG systems employing novel components or custom trained models
optimized specifically for retrieval augmented generation.

8.2.2. Generalizability

The generalizability of findings to other RAG architectures remains partially uncertain. The
experiments focused on a specific pipeline structure: query expansion, retrieval, reranking,
filtering, compression, and generation. While this represents a common RAG architecture,
many variations exist in practice. Systems using iterative retrieval, multy-stage reasoning,
or hybrid dense-sparse retrieval may exhibit different optimization characteristics. The
component independence assumption underlying successful local optimization may not hold
for architectures with tighter integration between modules.

Architectural variations in production systems introduce additional complexity not cap-
tured in the experiments. Some RAG systems employ ensemble methods combining multiple
retrievers or generators, creating intricate interaction patterns that global optimization might
better capture. Others use adaptive components that modify their behavior based on query
characteristics or retrieved content quality. These dynamic elements could fundamentally
alter the optimization landscape, potentially favoring different optimization strategies than
those identified in the static pipeline experiments.

Scalability to larger systems presents both opportunities and challenges for the optimization

72

8.2. LIMITATIONS AND THREATS TO VALIDITY

approaches. Larger document collections may create more distinct performance regions in
the configuration space, potentially benefiting Bayesian optimization’s intelligent exploration.
However, increased scale also amplifies the curse of dimensionality, where even intelligent
sampling becomes insufficient for adequate coverage. The experiments with millions of
possible configurations already showed coverage challenges; production systems with billions
of documents and hundreds of tunable parameters may require fundamentally different
optimization approaches.

The transferability of optimized configurations across domains and languages was not
evaluated. Organizations often deploy RAG systems across multiple use cases, raising
questions about whether optimization must be repeated for each domain or if configurations
generalize. Cross-lingual applications introduce additional complexity, as optimal retrieval
and generation strategies may vary significantly between languages. The monolingual,
domain-specific optimization performed in the experiments may overstate the practical
benefits if extensive re-optimization is required for each deployment context.

8.2.3. Future Work

The findings from this study open several promising avenues for future research in RAG
pipeline optimization. These directions address current limitations while building on the
demonstrated effectiveness of Bayesian optimization approaches.

Human-in-the-Loop Optimization

The reliance on LLM-generated ground truth and automated metrics represents a signifi-
cant limitation that future work should address through human-in-the-loop optimization
frameworks. Incorporating human feedback during the optimization process could capture
quality dimensions missed by automated metrics, particularly for nuanced tasks requiring
domain expertise. Active learning strategies could efficiently utilize limited human evaluation
budgets by focusing human assessment on the most informative configuration comparisons.
This approach could also enable preference learning, where the optimizer learns to balance
multiple objectives according to stakeholder preferences rather than fixed metric weightings.

Scalability and Distributed Optimization

Addressing the computational constraints that limited experimental scope requires devel-
oping distributed Bayesian optimization methods tailored for RAG pipelines. Future work
should investigate how to parallelize configuration evaluation across multiple GPUs while
maintaining coherent surrogate model updates. Hierarchical optimization strategies could
decompose the massive configuration spaces of production systems, using coarse-grained
search to identify promising regions before fine-grained local optimization. Additionally,
investigating early stopping criteria based on partial evaluation results could reduce the
computational cost of exploring poor configurations.

73

8.2. LIMITATIONS AND THREATS TO VALIDITY

Robustness and Safety Considerations

Production deployments require configurations that are not only high-performing but also
robust and safe. Future research should extend optimization objectives to include robustness
metrics, ensuring configurations perform well under distribution shift and adversarial inputs.
Incorporating safety constraints into the optimization process could prevent selection of
configurations that achieve high scores through undesirable behaviors like hallucination
or information leakage. Multi-objective optimization frameworks that explicitly model the
trade-offs between performance, latency, cost, robustness, and safety would better serve
real-world deployment needs.

Architecture-Agnostic Optimization Frameworks

While this study focused on a specific pipeline architecture, production RAG systems em-
ploy diverse architectural patterns including iterative retrieval, multi-stage reasoning, and
hybrid dense-sparse approaches. Future research should develop optimization methods that
automatically adapt to different architectural patterns without manual reconfiguration. This
includes investigating how to detect component interaction patterns to determine whether
local or global optimization is more appropriate, and developing graph-based representations
of RAG architectures that enable automated optimization strategy selection. Meta-learning
approaches could leverage optimization experiences across different architectures to identify
transferable configuration principles. Such architecture-agnostic frameworks would eliminate
the need to develop custom optimization strategies for each RAG variant, enabling practi-
tioners to apply Bayesian optimization effectively regardless of their specific architectural
choices.

Adaptive Optimization for Temporal Dynamics

The static optimization used in this study assumes stable data and consistent model behavior.
However, real RAG systems operate in changing environments. Future work should design
online optimization methods that can detect and adjust to shifts in document content and
query patterns. This includes exploring efficient triggers for re-optimization that balance
system performance with computational cost, and creating incremental methods that update
settings without full re-evaluation. Transfer learning can help retain useful optimization
knowledge when data changes, using past results as informed priors instead of starting over.
Such time-aware optimization would keep system settings effective throughout deployment,
preventing performance decline as conditions change.

Cross-Modal and Multilingual Extensions

Modern RAG systems increasingly handle multiple modalities and languages, requiring
optimization strategies that account for these complexities. Future work should investigate
how configuration optimization transfers across languages, potentially identifying language-
agnostic parameters versus those requiring language-specific tuning. For multimodal RAG

74

8.2. LIMITATIONS AND THREATS TO VALIDITY

systems combining text, images, and structured data, optimization methods must balance
performance across different input types while managing increased configuration complexity.
Understanding how optimal configurations vary across modalities could inform the design of
adaptive pipelines that adjust their behavior based on input characteristics.

These future directions collectively aim to transform RAG optimization from an empirical
art to a principled science, enabling reliable and efficient deployment of high-performing
retrieval-augmented generation systems across diverse applications and scales.

75

9. Conclusion

This research investigated Bayesian optimization strategies for automating RAG pipeline con-
figuration, addressing the challenge of navigating complex parameter spaces with millions of
possible combinations. The study compared seven different Bayesian optimization approaches
across three diverse datasets to identify which algorithms work best for RAG optimization
and where optimization effort should be applied within the pipeline architecture.

The experimental results show that SMAC3 with Random Forest surrogates and Optuna
TPE are the most effective and reliable optimizers overall, though their relative advantages
vary across datasets and optimization settings. SMAC3 often identifies higher scoring
configurations, while Optuna TPE achieves comparable or better results in some cases with
strong stability and efficient convergence. The observed differences suggest that optimizer
performance is highly context dependent, influenced by dataset characteristics, evaluation
metrics, and the underlying configuration space. Both approaches demonstrate variable
improvements over random search baselines, with gains ranging from marginal to substantial
depending on dataset characteristics and optimization landscape complexity. While some
configurations achieve improvements exceeding 20 percent, others show more modest gains
or occasionally underperform, particularly when using multi-fidelity methods.

The comparison between global and local optimization strategies revealed that local op-
timization delivers the best balance of performance and computational efficiency. Local
optimization methods achieve 90 to 100 percent of grid search performance in most cases,
with occasional instances exceeding grid search scores, while consistently reducing opti-
mization time by 45 to 85 percent. This efficiency stems from the natural decomposition
of RAG pipelines where components operate with distinct objectives and minimal interde-
pendencies. Global optimization occasionally identifies marginally better configurations but
incurs substantially higher computational cost, limiting its practicality for most deployment
scenarios.

Analysis of sample efficiency and convergence patterns in our experiments demonstrated
that 50 trials provided sufficient exploration for the tested configurations and datasets. The
experimental results show that increasing trial budgets from 50 to 100 configurations yielded
only marginal improvements in best scores discovered. This finding suggests that within
our experimental setup, 50 configurations represented an effective balance point where most
high-performing regions had been identified, and additional sampling exhibited diminishing
returns. The Pareto front visualizations revealed that Bayesian methods effectively navigated
multi-objective trade-offs between performance and latency within these modest trial budgets,
consistently finding better balanced solutions than random search even with 200 trials.
However, evaluation noise from language model components introduced non-deterministic
behavior that could cause larger trial budgets to occasionally produce worse results than

76

smaller ones, further supporting the use of conservative configuration budgets rather than
extensive exploration in our tested scenarios.

The research contributes practical guidelines for implementing Bayesian optimization in
production RAG systems. Organizations should prioritize local optimization with SMAC3 or
TPE depending on whether they value maximum performance or rapid iteration. Configura-
tion budgets should be adjusted based on dataset characteristics and available computational
resources. The weak component interactions observed suggest that current RAG architectures
could benefit from modular optimization approaches that enable incremental improvements
without full pipeline reconfiguration.

Several limitations affect the generalizability of findings. The reliance on LLM-generated
ground truth and automated evaluation metrics may not fully capture quality dimensions
important to human users. The experiments focused on specific pipeline architectures and
model selections that may not represent all RAG variations in production. Computational con-
straints limited the exploration of very large configuration spaces and prevented investigation
of temporal stability and cross-domain transferability.

Future work should address these limitations through several research directions. Incor-
porating human-in-the-loop evaluation frameworks would provide more robust validation
of optimization effectiveness, capturing quality dimensions that automated metrics miss
while enabling preference learning aligned with stakeholder needs. Developing scalable
and distributed optimization methods would overcome computational constraints, allowing
exploration of larger configuration spaces through parallelization and hierarchical search
strategies. Investigating adaptive optimization strategies that handle temporal dynamics
would address the unexplored dimension of configuration stability, ensuring optimized
pipelines remain effective as document collections grow and query patterns evolve over
time. Creating architecture-agnostic optimization frameworks would extend beyond the
specific pipeline structure tested, enabling automatic adaptation to diverse RAG architectures
including iterative retrieval and hybrid approaches. Extending optimization frameworks to
handle cross-modal and multilingual RAG systems would address the growing complexity of
production deployments that process diverse data types and languages. Finally, integrating
robustness and safety considerations into the optimization process would ensure configura-
tions not only achieve high performance but also maintain reliability under distribution shifts
and prevent undesirable behaviors such as hallucination. These research directions would
collectively advance RAG optimization from current empirical approaches toward a more
principled and generalizable framework suitable for diverse production environments.

This research demonstrates that Bayesian optimization provides substantial value for RAG
pipeline configuration, enabling organizations to achieve near-optimal performance with
reasonable computational investment. The findings support adopting local optimization with
intelligent search strategies as the pragmatic approach for most RAG deployments, balancing
performance requirements with resource constraints while maintaining development agility.

77

A. LLM Evaluator Prompt for Compressor
Component

The following prompt was used for the LLM-based evaluation of compressed contexts. The
evaluator uses GPT-4 with temperature 0.0 to ensure consistent scoring across evaluations.

1 Question: {question}
2 Ground Truth Answer: {ground_truth}
3 Compressed Context: {context}
4

5 Score this compressed context (0.0-1.0) based on:
6

7 **1. ATOMIC FACT PRESERVATION (50%)**
8 - List all atomic facts in the ground truth (specific terms, numbers, methods,

comparisons, measurements).
9 - Check if EACH fact exists in the compressed context.

10 - Missing fact: -0.15
11 - Missing critical fact (methods, measurements, specific comparator): -0.25
12 - Replaced with vague/general term: -0.20
13

14 **2. COMPLETENESS (15%)**
15 - Can someone write the EXACT ground truth answer using ONLY this context?
16 - If NO due to missing specifics: cap total score at 0.5
17

18 **3. RELEVANCE & ACCURACY (20%)**
19 - Irrelevant, off-topic, or wrong facts: -0.15 each
20 - If >25% of content is unrelated: cap at 0.5
21 - If unrelated content changes meaning or causes confusion: max 0.3
22

23 **4. EFFICIENCY & PRECISION (15%)**
24 - Brevity bonus (+0.1) if ALL atomic facts are preserved AND context is under 70

words
25 - Excessive length with unrelated filler: -0.1 to -0.3 depending on severity
26

27 Return only a number between 0.0 and 1.0

78

B. Configuration Specifications

The complete configuration file defining the search space for the optimization experiments is
provided below. This specification includes all model options, parameter ranges, and evalua-
tion metrics used by the Bayesian Optimizer. Two configuration variants were employed: the
primary configuration shown here uses SAP’s AI Core infrastructure for commercial models,
while a secondary configuration (not shown) substitutes open-source models deployed via
VLLM, including Llama 2/3 variants, Qwen models, and TinyLlama for generation tasks,
with corresponding open-source embedding models such as BGE and MPNet. The structure
and parameter ranges remain identical across both configurations.

B.1. SAP API Configuration

1 vectordb:
2 - name: text-embedding-3-large
3 db_type: chroma
4 client_type: persistent
5 embedding_model: <SAP_EMBEDDING_ENDPOINT_LARGE>
6 path: ${PROJECT_DIR}/resources/chroma
7 - name: text-embedding-3-small
8 db_type: chroma
9 client_type: persistent

10 embedding_model: <SAP_EMBEDDING_ENDPOINT_SMALL>
11 path: ${PROJECT_DIR}/resources/chroma
12 - name: text-embedding-ada-002
13 db_type: chroma
14 client_type: persistent
15 embedding_model: <SAP_EMBEDDING_ENDPOINT_ADA>
16 path: ${PROJECT_DIR}/resources/chroma
17 - name: gemini
18 db_type: chroma
19 client_type: persistent
20 embedding_model: <SAP_GEMINI_EMBEDDING_ENDPOINT>
21 path: ${PROJECT_DIR}/resources/chroma

Listing B.1: SAP API configuration - Embedding models

79

B.1. SAP API CONFIGURATION

1 node_lines:
2 - node_line_name: pre_retrieve_node_line
3 nodes:
4 - node_type: query_expansion
5 strategy:
6 metrics: [retrieval_f1]
7 speed_threshold: 10
8 top_k: [2, 6]
9 retrieval_modules:

10 - module_type: bm25
11 bm25_tokenizer: [porter_stemmer, space, gpt2]
12 - module_type: vectordb
13 vectordb: [text-embedding-3-large, text-embedding-3-small,
14 text-embedding-ada-002, gemini]
15 embedding_batch: 256
16 modules:
17 - module_type: pass_query_expansion
18 - module_type: hyde
19 generator_module_type: sap_api
20 llm: anthropic
21 model: claude-4-sonnet
22 max_token: [64, 128]
23 api_url: <SAP_CLAUDE_ENDPOINT>
24 - module_type: query_decompose
25 generator_module_type: sap_api
26 llm: anthropic
27 model: claude-4-sonnet
28 api_url: <SAP_CLAUDE_ENDPOINT>
29 - module_type: multi_query_expansion
30 generator_module_type: sap_api
31 llm: anthropic
32 model: claude-4-sonnet
33 temperature: [0.0, 1.0]
34 api_url: <SAP_CLAUDE_ENDPOINT>
35

36 - node_line_name: retrieve_node_line
37 nodes:
38 - node_type: retrieval
39 strategy:
40 metrics: [retrieval_f1]
41 speed_threshold: 10
42 top_k: [2, 6]
43 modules:
44 - module_type: bm25
45 bm25_tokenizer: [porter_stemmer, space, gpt2]
46 - module_type: vectordb
47 vectordb: [text-embedding-3-large, text-embedding-3-small,
48 text-embedding-ada-002, gemini]
49 embedding_batch: 256

Listing B.2: SAP API configuration - Query expansion and retrieval

80

B.1. SAP API CONFIGURATION

1 - node_type: passage_reranker
2 strategy:
3 metrics: [retrieval_f1]
4 speed_threshold: 10
5 top_k: [1, 4]
6 modules:
7 - module_type: pass_reranker
8 - module_type: monot5
9 model_name:

10 - castorini/monot5-base-msmarco-10k
11 - castorini/monot5-large-msmarco-10k
12 - unicamp-dl/ptt5-base-en-pt-msmarco-100k-v2
13 - unicamp-dl/mt5-base-mmarco-v1
14 - module_type: upr
15 - module_type: colbert_reranker
16 - module_type: sentence_transformer_reranker
17 model_name:
18 - cross-encoder/ms-marco-MiniLM-L12-v2
19 - cross-encoder/ms-marco-TinyBERT-L2-v2
20 - cross-encoder/stsb-distilroberta-base
21 - module_type: flag_embedding_reranker
22 model_name:
23 - BAAI/bge-reranker-large
24 - BAAI/bge-reranker-base
25 - module_type: flag_embedding_llm_reranker
26 model_name:
27 - BAAI/bge-reranker-v2-m3
28 - BAAI/bge-reranker-v2-gemma
29 - module_type: flashrank_reranker
30 model:
31 - ms-marco-MiniLM-L-12-v2
32 - ms-marco-MultiBERT-L-12
33 - rank-T5-flan
34 - module_type: sap_api
35 model_name: cohere-rerank-v3.5
36 api-url: <SAP_COHERE_RERANK_ENDPOINT>
37

38 - node_type: passage_filter
39 strategy:
40 metrics: [retrieval_f1]
41 speed_threshold: 5
42 modules:
43 - module_type: pass_passage_filter
44 - module_type: percentile_cutoff
45 percentile: [0.4, 0.9]
46 - module_type: similarity_threshold_cutoff
47 threshold: [0.45, 0.95]
48 - module_type: similarity_percentile_cutoff
49 percentile: [0.4, 0.9]

Listing B.3: SAP API configuration - Reranking and filtering

81

B.1. SAP API CONFIGURATION

1 - node_type: passage_compressor
2 strategy:
3 metrics: [retrieval_token_f1, retrieval_token_recall,
4 retrieval_token_precision]
5 speed_threshold: 10
6 modules:
7 - module_type: pass_compressor
8 - module_type: lexrank
9 compression_ratio: [0.3, 0.7]

10 threshold: [0.05, 0.3]
11 damping: [0.75, 0.9]
12 max_iterations: [15, 40]
13 - module_type: spacy
14 compression_ratio: [0.3, 0.5]
15 spacy_model: ["en_core_web_sm", "en_core_web_md", "en_core_web_lg", "en_core_web_trf"]
16 - module_type: tree_summarize
17 generator_module_type: sap_api
18 llm: anthropic
19 model: claude-4-sonnet
20 api_url: <SAP_CLAUDE_ENDPOINT>
21 - module_type: refine
22 generator_module_type: sap_api
23 llm: anthropic
24 model: claude-4-sonnet
25 api_url: <SAP_CLAUDE_ENDPOINT>
26

27 de_line_name: post_retrieve_node_line
28 des:
29 - node_type: prompt_maker
30 strategy:
31 metrics:
32 - metric_name: bleu
33 - metric_name: meteor
34 - metric_name: rouge
35 - metric_name: sem_score
36 embedding_model: openai
37 speed_threshold: 10
38 modules:
39 - module_type: fstring
40 prompt: [<Three prompt templates>]
41 - module_type: long_context_reorder
42 prompt: [<Three prompt templates>]
43 - module_type: window_replacement
44 prompt: [<Three prompt templates>]

Listing B.4: SAP API configuration - Compression and generation

82

B.2. OPEN-SOURCE MODEL SPECIFICATIONS

1 - node_type: generator
2 strategy:
3 metrics:
4 - metric_name: bleu
5 - metric_name: meteor
6 - metric_name: rouge
7 - metric_name: sem_score
8 embedding_model: openai
9 speed_threshold: 10

10 modules:
11 - module_type: sap_api
12 llm: mistralai
13 model: [mistralai-large-instruct]
14 temperature: [0.0, 1.0]
15 max_token: 512
16 api_url: <SAP_MISTRAL_ENDPOINT>
17 - module_type: sap_api
18 llm: openai
19 model: [gpt-3.5-turbo]
20 temperature: [0.0, 1.0]
21 max_token: 512
22 api_url: <SAP_OPENAI_ENDPOINT>
23 - module_type: sap_api
24 llm: gemini
25 model: Gemini-2.0-flash
26 temperature: [0.0, 1.0]
27 max_token: 512
28 api_url: <SAP_GEMINI_ENDPOINT>
29 - module_type: sap_api
30 llm: anthropic
31 model: claude-4-sonnet
32 temperature: [0.0, 1.0]
33 max_token: 512
34 api_url: <SAP_CLAUDE_ENDPOINT>

Listing B.5: SAP API configuration - Generator models

Note: The open-source configuration follows an identical structure but substitutes VLLM-deployed
models (Llama, Qwen, TinyLlama variants) for API calls and uses Hugging Face embedding models
(BGE, MPNet) instead of commercial embeddings.

B.2. Open-Source Model Specifications

The following tables present the comprehensive list of open-source models utilized in our
Hugging Face-based configuration. These models serve as alternatives to the commercial
APIs described in the previous section, enabling fully self-hosted RAG pipelines without
external dependencies.

Table B.1 lists the embedding models used for vector representation, ranging from lightweight
models like BGE-Small to multilingual models such as BGE-M3. Table B.2 enumerates the

83

B.2. OPEN-SOURCE MODEL SPECIFICATIONS

language models used for response generation, featuring various model sizes from 1.1B
to 13B parameters to accommodate different computational constraints and performance
requirements.

Table B.1.: Hugging Face Embedding Models
Model Checkpoint
BGE Small huggingface_baai_bge_small
RuBERT huggingface_cointegrated_rubert_tiny2
MPNet huggingface_all_mpnet_base_v2
BGE-M3 huggingface_bge_m3

Table B.2.: Hugging Face Generator Models
Model Checkpoint
Llama 2 7B Chat meta-llama/Llama-2-7b-chat-hf
Llama 3.2 1B Instruct meta-llama/Llama-3.2-1B-Instruct
Phi-3 Mini 4K microsoft/Phi-3-mini-4k-instruct
Qwen 3 4B Qwen/Qwen3-4B
Qwen 2.5 1.5B Instruct Qwen/Qwen2.5-1.5B-Instruct
Gemma 2B google/gemma-2b
Gemma 3 1B IT google/gemma-3-1b-it
Gemma 2 2B IT google/gemma-2-2b-it
DeepSeek R1 Distill Qwen 1.5B deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
Llama 2 7B Chat AWQ TheBloke/Llama-2-7B-Chat-AWQ
Llama 2 13B Chat AWQ TheBloke/Llama-2-13B-chat-AWQ
CodeLlama 7B Instruct AWQ TheBloke/CodeLlama-7B-Instruct-AWQ
TinyLlama 1.1B Chat TinyLlama/TinyLlama-1.1B-Chat-v1.0

84

C. Implementation Details

C.1. Hardware Specifications

The experiments were conducted on a high-performance computing cluster equipped with
NVIDIA A100-SXM4-80GB GPUs, providing 80GB of GPU memory per device for model
loading and inference. This substantial memory capacity proved essential for loading multi-
ple transformer models simultaneously during optimization, particularly when evaluating
configurations with large reranking models or processing extensive document collections.

For experiments using SAP API models, GPU acceleration is not strictly required for
inference but benefits preprocessing steps including embedding generation and document
processing.

C.2. Software Libraries and Versions

C.2.1. Bayesian Optimization Libraries

Library Version Primary Use
SMAC3 v2.3.1 Random forest surrogates, multi-fidelity BO
Optuna v4.3.0 TPE and GP surrogates via BoTorch
Ray Tune v2.44.1 BOHB implementation
HEBO v0.3.6 Heteroscedastic GP optimization
HpBandster v0.7.4 Hyperband-based multi-fidelity

Table C.1.: Bayesian Optimization libraries used in experiments

C.2.2. Core Framework and Dependencies

• Python: 3.12

• AutoRAG: v0.3.13 - Pipeline architecture, evaluation metrics, data schemas

• ChromaDB: v0.5.13 - Vector database for embedding storage

• VLLM: Latest stable - Local model serving

• Weights & Biases: v0.20.1 - Experiment tracking and visualization

85

C.2. SOFTWARE LIBRARIES AND VERSIONS

C.2.3. Environment Configuration

All experiments were conducted in isolated Python virtual environments to ensure depen-
dency consistency. The complete dependency tree, including transitive dependencies, is
available in the project repository at requirements.txt.

86

Bibliography

[1] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis,
W.-t. Yih, T. Rocktäschel, S. Riedel, and D. Kiela. Retrieval-Augmented Generation for
Knowledge-Intensive NLP Tasks. 2020. arXiv: 2005.11401 [cs.CL]. url: https://arxiv.
org/abs/2005.11401.

[2] Q. R. Lauro, S. Shankar, S. Zeighami, and A. Parameswaran. RAG Without the Lag:
Interactive Debugging for Retrieval-Augmented Generation Pipelines. 2025. arXiv: 2504.
13587 [cs.HC]. url: https://arxiv.org/abs/2504.13587.

[3] R. Turner, D. Eriksson, M. McCourt, J. Kiili, E. Laaksonen, Z. Xu, and I. Guyon. Bayesian
Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning:
Analysis of the Black-Box Optimization Challenge 2020. 2021. arXiv: 2104.10201 [cs.LG].
url: https://arxiv.org/abs/2104.10201.

[4] J. Kim, S. Kim, and S. Choi. Learning to Warm-Start Bayesian Hyperparameter Optimization.
2018. arXiv: 1710.06219 [stat.ML]. url: https://arxiv.org/abs/1710.06219.

[5] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian Optimization of Machine
Learning Algorithms. 2012. arXiv: 1206.2944 [stat.ML]. url: https://arxiv.org/abs/
1206.2944.

[6] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and F. Hutter.
“Efficient and robust automated machine learning”. In: Proceedings of the 29th Interna-
tional Conference on Neural Information Processing Systems - Volume 2. NIPS’15. Montreal,
Canada: MIT Press, 2015, pp. 2755–2763.

[7] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Combined
Selection and Hyperparameter Optimization of Classification Algorithms. 2013. arXiv: 1208.
3719 [cs.LG]. url: https://arxiv.org/abs/1208.3719.

[8] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. J. Bang, A. Madotto, and P.
Fung. “Survey of Hallucination in Natural Language Generation”. In: ACM Computing
Surveys 55.12 (Mar. 2023), pp. 1–38. issn: 1557-7341. doi: 10.1145/3571730. url: http:
//dx.doi.org/10.1145/3571730.

[9] S. Robertson and H. Zaragoza. “The Probabilistic Relevance Framework: BM25 and
Beyond”. In: Foundations and Trends® in Information Retrieval 3.4 (2009), pp. 333–389. issn:
1554-0669. doi: 10.1561/1500000019. url: http://dx.doi.org/10.1561/1500000019.

[10] V. Karpukhin, B. Oğuz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen, and W.-t. Yih.
Dense Passage Retrieval for Open-Domain Question Answering. 2020. arXiv: 2004.04906
[cs.CL]. url: https://arxiv.org/abs/2004.04906.

87

https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2504.13587
https://arxiv.org/abs/2504.13587
https://arxiv.org/abs/2504.13587
https://arxiv.org/abs/2104.10201
https://arxiv.org/abs/2104.10201
https://arxiv.org/abs/1710.06219
https://arxiv.org/abs/1710.06219
https://arxiv.org/abs/1206.2944
https://arxiv.org/abs/1206.2944
https://arxiv.org/abs/1206.2944
https://arxiv.org/abs/1208.3719
https://arxiv.org/abs/1208.3719
https://arxiv.org/abs/1208.3719
https://doi.org/10.1145/3571730
http://dx.doi.org/10.1145/3571730
http://dx.doi.org/10.1145/3571730
https://doi.org/10.1561/1500000019
http://dx.doi.org/10.1561/1500000019
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2004.04906

Bibliography

[11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. 2019. arXiv: 1810.04805 [cs.CL]. url: https:
//arxiv.org/abs/1810.04805.

[12] N. Reimers and I. Gurevych. Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks. 2019. arXiv: 1908.10084 [cs.CL]. url: https://arxiv.org/abs/1908.10084.

[13] G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bojanowski, A. Joulin, and E. Grave.
Unsupervised Dense Information Retrieval with Contrastive Learning. 2022. arXiv: 2112.
09118 [cs.IR]. url: https://arxiv.org/abs/2112.09118.

[14] J. Lin, X. Ma, S.-C. Lin, J.-H. Yang, R. Pradeep, and R. Nogueira. Pyserini: An Easy-to-Use
Python Toolkit to Support Replicable IR Research with Sparse and Dense Representations. 2021.
arXiv: 2102.10073 [cs.IR]. url: https://arxiv.org/abs/2102.10073.

[15] C. Team. Chroma: The AI-Native Open-Source Embedding Database. https://github.com/
chroma-core/chroma. Accessed: 2025-09-23. 2023.

[16] J. Johnson, M. Douze, and H. Jégou. “Billion-scale similarity search with GPUs”. In:
arXiv preprint arXiv:1702.08734 (2017).

[17] H. Jégou, M. Douze, and C. Schmid. “Product Quantization for Nearest Neighbor
Search”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 33.1 (2011),
pp. 117–128. doi: 10.1109/TPAMI.2010.57.

[18] Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search
using Hierarchical Navigable Small World graphs. 2018. arXiv: 1603.09320 [cs.DS]. url:
https://arxiv.org/abs/1603.09320.

[19] Pinecone Systems Inc. Pinecone: Managed Vector Database for Scalable Similarity Search.
https://docs.pinecone.io. Accessed: 2025-10-12. 2023.

[20] Weaviate.io. Weaviate: Open Source Vector Database for AI Applications. https://weaviate.
io. Accessed: 2025-10-12. 2023.

[21] J. Liu. LlamaIndex. Nov. 2022. doi: 10.5281/zenodo.1234. url: https://github.com/
jerryjliu/llama_index.

[22] L. Gao, X. Ma, J. Lin, and J. Callan. Precise Zero-Shot Dense Retrieval without Relevance
Labels. 2022. arXiv: 2212.10496 [cs.IR]. url: https://arxiv.org/abs/2212.10496.

[23] J. Pereira, R. Fidalgo, R. Lotufo, and R. Nogueira. Visconde: Multi-document QA with
GPT-3 and Neural Reranking. 2022. arXiv: 2212.09656 [cs.CL]. url: https://arxiv.
org/abs/2212.09656.

[24] R. Nogueira and K. Cho. Passage Re-ranking with BERT. 2020. arXiv: 1901.04085 [cs.IR].
url: https://arxiv.org/abs/1901.04085.

[25] R. Nogueira, Z. Jiang, and J. Lin. Document Ranking with a Pretrained Sequence-to-Sequence
Model. 2020. arXiv: 2003.06713 [cs.IR]. url: https://arxiv.org/abs/2003.06713.

[26] D. S. Sachan, M. Lewis, M. Joshi, A. Aghajanyan, W.-t. Yih, J. Pineau, and L. Zettlemoyer.
Improving Passage Retrieval with Zero-Shot Question Generation. 2023. arXiv: 2204.07496
[cs.CL]. url: https://arxiv.org/abs/2204.07496.

88

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2102.10073
https://arxiv.org/abs/2102.10073
https://github.com/chroma-core/chroma
https://github.com/chroma-core/chroma
https://doi.org/10.1109/TPAMI.2010.57
https://arxiv.org/abs/1603.09320
https://arxiv.org/abs/1603.09320
https://docs.pinecone.io
https://weaviate.io
https://weaviate.io
https://doi.org/10.5281/zenodo.1234
https://github.com/jerryjliu/llama_index
https://github.com/jerryjliu/llama_index
https://arxiv.org/abs/2212.10496
https://arxiv.org/abs/2212.10496
https://arxiv.org/abs/2212.09656
https://arxiv.org/abs/2212.09656
https://arxiv.org/abs/2212.09656
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/2003.06713
https://arxiv.org/abs/2003.06713
https://arxiv.org/abs/2204.07496
https://arxiv.org/abs/2204.07496
https://arxiv.org/abs/2204.07496

Bibliography

[27] O. Khattab and M. Zaharia. ColBERT: Efficient and Effective Passage Search via Con-
textualized Late Interaction over BERT. 2020. arXiv: 2004.12832 [cs.IR]. url: https:
//arxiv.org/abs/2004.12832.

[28] P. Damodaran. FlashRank, Lightest and Fastest 2nd Stage Reranker for search pipelines.
Version 1.0.0. Dec. 2023. doi: 10.5281/zenodo.10426927. url: https://github.com/
PrithivirajDamodaran/FlashRank.

[29] J. Chen, S. Xiao, P. Zhang, K. Luo, D. Lian, and Z. Liu. BGE M3-Embedding: Multi-Lingual,
Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation.
2023. arXiv: 2309.07597 [cs.CL].

[30] F. Xu, W. Shi, and E. Choi. RECOMP: Improving Retrieval-Augmented LMs with Compres-
sion and Selective Augmentation. 2023. arXiv: 2310.04408 [cs.CL]. url: https://arxiv.
org/abs/2310.04408.

[31] G. Erkan and D. R. Radev. “LexRank: Graph-based Lexical Centrality as Salience in Text
Summarization”. In: Journal of Artificial Intelligence Research 22 (Dec. 2004), pp. 457–479.
issn: 1076-9757. doi: 10.1613/jair.1523. url: http://dx.doi.org/10.1613/jair.
1523.

[32] Metadata replacement — LlamaIndex API Reference. https://developers.llamaindex.
ai/python/framework-api-reference/postprocessor/metadata_replacement/. Ac-
cessed: 2025-10-12.

[33] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang. Lost in
the Middle: How Language Models Use Long Contexts. 2023. arXiv: 2307.03172 [cs.CL].
url: https://arxiv.org/abs/2307.03172.

[34] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval. USA:
Cambridge University Press, 2008. isbn: 0521865719.

[35] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li,
E. P. Xing, H. Zhang, J. E. Gonzalez, and I. Stoica. Judging LLM-as-a-Judge with MT-Bench
and Chatbot Arena. 2023. arXiv: 2306.05685 [cs.CL]. url: https://arxiv.org/abs/
2306.05685.

[36] Y. Liu, D. Iter, Y. Xu, S. Wang, R. Xu, and C. Zhu. G-Eval: NLG Evaluation using
GPT-4 with Better Human Alignment. 2023. arXiv: 2303.16634 [cs.CL]. url: https:
//arxiv.org/abs/2303.16634.

[37] ExplodingGradients. Ragas: Supercharge Your LLM Application Evaluations. https://
github.com/explodinggradients/ragas. 2024.

[38] J. Bergstra and Y. Bengio. “Random search for hyper-parameter optimization”. In:
13.null (Feb. 2012), pp. 281–305. issn: 1532-4435.

[39] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regularized Evolution for Image Classifier
Architecture Search. 2019. arXiv: 1802.01548 [cs.NE]. url: https://arxiv.org/abs/
1802.01548.

89

https://arxiv.org/abs/2004.12832
https://arxiv.org/abs/2004.12832
https://arxiv.org/abs/2004.12832
https://doi.org/10.5281/zenodo.10426927
https://github.com/PrithivirajDamodaran/FlashRank
https://github.com/PrithivirajDamodaran/FlashRank
https://arxiv.org/abs/2309.07597
https://arxiv.org/abs/2310.04408
https://arxiv.org/abs/2310.04408
https://arxiv.org/abs/2310.04408
https://doi.org/10.1613/jair.1523
http://dx.doi.org/10.1613/jair.1523
http://dx.doi.org/10.1613/jair.1523
https://developers.llamaindex.ai/python/framework-api-reference/postprocessor/metadata_replacement/
https://developers.llamaindex.ai/python/framework-api-reference/postprocessor/metadata_replacement/
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2303.16634
https://arxiv.org/abs/2303.16634
https://arxiv.org/abs/2303.16634
https://github.com/explodinggradients/ragas
https://github.com/explodinggradients/ragas
https://arxiv.org/abs/1802.01548
https://arxiv.org/abs/1802.01548
https://arxiv.org/abs/1802.01548

Bibliography

[40] D. Maclaurin, D. Duvenaud, and R. P. Adams. Gradient-based Hyperparameter Optimization
through Reversible Learning. 2015. arXiv: 1502.03492 [stat.ML]. url: https://arxiv.
org/abs/1502.03492.

[41] K. Jamieson and A. Talwalkar. Non-stochastic Best Arm Identification and Hyperparameter
Optimization. 2015. arXiv: 1502.07943 [cs.LG]. url: https://arxiv.org/abs/1502.
07943.

[42] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A Novel
Bandit-Based Approach to Hyperparameter Optimization. 2018. arXiv: 1603.06560 [cs.LG].
url: https://arxiv.org/abs/1603.06560.

[43] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. “A fast and elitist multiobjective
genetic algorithm: NSGA-II”. In: IEEE Transactions on Evolutionary Computation 6.2 (2002),
pp. 182–197. doi: 10.1109/4235.996017.

[44] K. Deb. “Multiobjective Optimization Using Evolutionary Algorithms. Wiley, New
York”. In: Jan. 2001.

[45] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. “Taking the Human
Out of the Loop: A Review of Bayesian Optimization”. In: Proceedings of the IEEE 104.1
(2016), pp. 148–175. doi: 10.1109/JPROC.2015.2494218.

[46] J. Snoek, H. Larochelle, and R. P. Adams. “Practical Bayesian optimization of machine
learning algorithms”. In: Advances in neural information processing systems. 2012, pp. 2951–
2959.

[47] F. Hutter, H. H. Hoos, and K. Leyton-Brown. “Sequential Model-Based Optimization
for General Algorithm Configuration”. In: Learning and Intelligent Optimization. 2011.
url: https://api.semanticscholar.org/CorpusID:6944647.

[48] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. “Algorithms for hyper-parameter
optimization”. In: Proceedings of the 25th International Conference on Neural Information
Processing Systems. NIPS’11. Granada, Spain: Curran Associates Inc., 2011, pp. 2546–2554.
isbn: 9781618395993.

[49] J. Mockus, V. Tiesis, and A. Zilinskas. “The application of Bayesian methods for seeking
the extremum”. In: Towards Global Optimization. Vol. 2. Elsevier, 1978, pp. 117–129.

[50] D. R. Jones, M. Schonlau, and W. J. Welch. “Efficient global optimization of expensive
black-box functions”. In: Journal of Global optimization 13.4 (1998), pp. 455–492.

[51] H. J. Kushner. “A New Method of Locating the Maximum Point of an Arbitrary
Multipeak Curve in the Presence of Noise”. In: Journal of Basic Engineering 86 (1964),
pp. 97–106. url: https://api.semanticscholar.org/CorpusID:62599010.

[52] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger. “Information-Theoretic Regret
Bounds for Gaussian Process Optimization in the Bandit Setting”. In: IEEE Transactions
on Information Theory 58.5 (May 2012), pp. 3250–3265. issn: 1557-9654. doi: 10.1109/tit.
2011.2182033. url: http://dx.doi.org/10.1109/TIT.2011.2182033.

90

https://arxiv.org/abs/1502.03492
https://arxiv.org/abs/1502.03492
https://arxiv.org/abs/1502.03492
https://arxiv.org/abs/1502.07943
https://arxiv.org/abs/1502.07943
https://arxiv.org/abs/1502.07943
https://arxiv.org/abs/1603.06560
https://arxiv.org/abs/1603.06560
https://doi.org/10.1109/4235.996017
https://doi.org/10.1109/JPROC.2015.2494218
https://api.semanticscholar.org/CorpusID:6944647
https://api.semanticscholar.org/CorpusID:62599010
https://doi.org/10.1109/tit.2011.2182033
https://doi.org/10.1109/tit.2011.2182033
http://dx.doi.org/10.1109/TIT.2011.2182033

Bibliography

[53] K. Kandasamy, G. Dasarathy, J. Schneider, and B. Poczos. Multi-fidelity Bayesian Op-
timisation with Continuous Approximations. 2017. arXiv: 1703.06240 [stat.ML]. url:
https://arxiv.org/abs/1703.06240.

[54] S. Falkner, A. Klein, and F. Hutter. BOHB: Robust and Efficient Hyperparameter Optimiza-
tion at Scale. 2018. arXiv: 1807.01774 [cs.LG]. url: https://arxiv.org/abs/1807.
01774.

[55] J. Knowles. “ParEGO: a hybrid algorithm with on-line landscape approximation for
expensive multiobjective optimization problems”. In: IEEE Transactions on Evolutionary
Computation 10.1 (2006), pp. 50–66. doi: 10.1109/TEVC.2005.851274.

[56] J. Jin, Y. Zhu, X. Yang, C. Zhang, and Z. Dou. “FlashRAG: A Modular Toolkit for
Efficient Retrieval-Augmented Generation Research”. In: Proceedings of the ACM Web
Conference 2025. 2025.

[57] A. Abdallah, B. Piryani, J. Mozafari, M. Ali, and A. Jatowt. Rankify: A Comprehensive
Python Toolkit for Retrieval, Re-Ranking, and Retrieval-Augmented Generation. 2025. arXiv:
2502.02464 [cs.IR]. url: https://arxiv.org/abs/2502.02464.

[58] Y. Chen, D. Guo, S. Mei, X. Li, H. Chen, Y. Li, Y. Wang, C. Tang, R. Wang, D. Wu,
Y. Yan, Z. Liu, S. Yu, Z. Liu, and M. Sun. UltraRAG: A Modular and Automated Toolkit
for Adaptive Retrieval-Augmented Generation. 2025. arXiv: 2504.08761 [cs.IR]. url:
https://arxiv.org/abs/2504.08761.

[59] D. Kim, B. Kim, D. Han, and M. Eibich. AutoRAG: Automated Framework for optimization
of Retrieval Augmented Generation Pipeline. 2024. arXiv: 2410.20878 [cs.CL]. url: https:
//arxiv.org/abs/2410.20878.

[60] H. Mendoza, A. Klein, M. Feurer, J. T. Springenberg, and F. Hutter. “Towards Automatically-
Tuned Neural Networks”. In: Proceedings of the Workshop on Automatic Machine Learning.
Ed. by F. Hutter, L. Kotthoff, and J. Vanschoren. Vol. 64. Proceedings of Machine
Learning Research. New York, New York, USA: PMLR, 24 Jun 2016, pp. 58–65.

[61] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A Next-generation
Hyperparameter Optimization Framework. 2019. arXiv: 1907.10902 [cs.LG]. url: https:
//arxiv.org/abs/1907.10902.

[62] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E. Gonzalez, and I. Stoica. Tune: A Research
Platform for Distributed Model Selection and Training. 2018. arXiv: 1807.05118 [cs.LG].
url: https://arxiv.org/abs/1807.05118.

[63] A. I. Cowen-Rivers, W. Lyu, R. Tutunov, Z. Wang, A. Grosnit, R. R. Griffiths, A. M.
Maraval, H. Jianye, J. Wang, J. Peters, and H. B. Ammar. HEBO Pushing The Limits
of Sample-Efficient Hyperparameter Optimisation. 2022. arXiv: 2012.03826 [cs.LG]. url:
https://arxiv.org/abs/2012.03826.

[64] LlamaIndex. Hyperparameter Optimization for RAG - LlamaIndex. https://docs.llamaindex.
ai/en/stable/examples/param_optimizer/. Accessed: 2025-09-23. 2024.

91

https://arxiv.org/abs/1703.06240
https://arxiv.org/abs/1703.06240
https://arxiv.org/abs/1807.01774
https://arxiv.org/abs/1807.01774
https://arxiv.org/abs/1807.01774
https://doi.org/10.1109/TEVC.2005.851274
https://arxiv.org/abs/2502.02464
https://arxiv.org/abs/2502.02464
https://arxiv.org/abs/2504.08761
https://arxiv.org/abs/2504.08761
https://arxiv.org/abs/2410.20878
https://arxiv.org/abs/2410.20878
https://arxiv.org/abs/2410.20878
https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1807.05118
https://arxiv.org/abs/1807.05118
https://arxiv.org/abs/2012.03826
https://arxiv.org/abs/2012.03826
https://docs.llamaindex.ai/en/stable/examples/param_optimizer/
https://docs.llamaindex.ai/en/stable/examples/param_optimizer/

Bibliography

[65] J. Fu, X. Qin, F. Yang, L. Wang, J. Zhang, Q. Lin, Y. Chen, D. Zhang, S. Rajmohan, and Q.
Zhang. AutoRAG-HP: Automatic Online Hyper-Parameter Tuning for Retrieval-Augmented
Generation. 2024. arXiv: 2406.19251 [cs.CL]. url: https://arxiv.org/abs/2406.
19251.

[66] M. Barker, A. Bell, E. Thomas, J. Carr, T. Andrews, and U. Bhatt. Faster, Cheaper, Better:
Multi-Objective Hyperparameter Optimization for LLM and RAG Systems. 2025. arXiv:
2502.18635 [cs.LG]. url: https://arxiv.org/abs/2502.18635.

[67] A. Aravind. RAGBuilder: Open Source Tool Kit for RAG Hyperparameter Tuning. https:
//github.com/ragbuilder/ragbuilder. Accessed: 2025-09-23. 2024.

[68] A. Conway, D. Dey, S. Hackmann, M. Hausknecht, M. Schmidt, M. Steadman, and
N. Volynets. syftr: Pareto-Optimal Generative AI. 2025. arXiv: 2505.20266 [cs.AI]. url:
https://arxiv.org/abs/2505.20266.

[69] N. Thakur, N. Reimers, A. Rücklé, A. Srivastava, and I. Gurevych. “BEIR: A Hetero-
geneous Benchmark for Zero-shot Evaluation of Information Retrieval Models”. In:
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2). 2021. url: https://openreview.net/forum?id=wCu6T5xFjeJ.

[70] M. Lindauer, K. Eggensperger, M. Feurer, A. Biedenkapp, D. Deng, C. Benjamins, T.
Ruhopf, R. Sass, and F. Hutter. SMAC3: A Versatile Bayesian Optimization Package for
Hyperparameter Optimization. 2022. arXiv: 2109.09831 [cs.LG]. url: https://arxiv.
org/abs/2109.09831.

[71] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. “Language Models
are Unsupervised Multitask Learners”. In: 2019. url: https://api.semanticscholar.
org/CorpusID:160025533.

[72] K. Järvelin and J. Kekäläinen. “Cumulated gain-based evaluation of IR techniques”.
In: ACM Trans. Inf. Syst. 20.4 (Oct. 2002), pp. 422–446. issn: 1046-8188. doi: 10.1145/
582415.582418. url: https://doi.org/10.1145/582415.582418.

[73] E. Voorhees and D. Tice. “The TREC-8 Question Answering Track Evaluation”. In:
Proceedings of the 8th Text Retrieval Conference (Nov. 2000).

[74] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. “Bleu: a method for automatic evaluation
of machine translation”. In: Proceedings of the 40th annual meeting of the Association for
Computational Linguistics. 2002, pp. 311–318.

[75] C.-Y. Lin. “ROUGE: A Package for Automatic Evaluation of Summaries”. In: Text Sum-
marization Branches Out. Barcelona, Spain: Association for Computational Linguistics,
July 2004, pp. 74–81. url: https://aclanthology.org/W04-1013/.

[76] S. Banerjee and A. Lavie. “METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments”. In: Proceedings of the acl workshop on
intrinsic and extrinsic evaluation measures for machine translation and/or summarization. 2005,
pp. 65–72.

92

https://arxiv.org/abs/2406.19251
https://arxiv.org/abs/2406.19251
https://arxiv.org/abs/2406.19251
https://arxiv.org/abs/2502.18635
https://arxiv.org/abs/2502.18635
https://github.com/ragbuilder/ragbuilder
https://github.com/ragbuilder/ragbuilder
https://arxiv.org/abs/2505.20266
https://arxiv.org/abs/2505.20266
https://openreview.net/forum?id=wCu6T5xFjeJ
https://arxiv.org/abs/2109.09831
https://arxiv.org/abs/2109.09831
https://arxiv.org/abs/2109.09831
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://aclanthology.org/W04-1013/

Bibliography

[77] A. Aynetdinov and A. Akbik. SemScore: Automated Evaluation of Instruction-Tuned LLMs
based on Semantic Textual Similarity. 2024. arXiv: 2401.17072 [cs.CL]. url: https:
//arxiv.org/abs/2401.17072.

93

https://arxiv.org/abs/2401.17072
https://arxiv.org/abs/2401.17072
https://arxiv.org/abs/2401.17072

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Retrieval-Augmented Generation (RAG)
	Foundation Concepts and Architecture
	Advanced Components and Implementation
	RAG Evaluation Metrics

	Hyperparameter Optimization
	Bayesian Optimization Fundamentals

	Related Work
	Current Practices in RAG Optimization
	AutoRAG Frameworks and Their Limitations
	Bayesian Optimization in Machine Learning
	Prior Work on RAG Pipeline Optimization
	Research Gaps and Motivation

	Datasets
	Data Preprocessing and Validation Set Construction
	Data Format Conversion
	Ground Truth Generation
	Validation Set Selection

	Dataset Selection and Characteristics
	Annotation Limitations and Semantic Evaluation Adjustment

	Methodology
	Research Questions
	Pipeline Architecture
	Pipeline Components
	Optimization Framework
	Bayesian Optimization Libraries for RAG Pipelines
	Search Space Definition
	Multi-Objective Optimization
	Optimization Efficiency Strategies
	Local vs. Global Optimization Strategies

	Evaluation
	Component-Specific Metrics
	LLM-Based Compressor Evaluation
	End-to-End Generation Metrics
	RAGAS Evaluation Framework

	Experimental Setup
	Implementation Details
	Experimental Procedures
	Reproducibility Measures
	Optimization Runs

	Experimental Designs
	Comparative Analysis of Bayesian Optimization Algorithms
	Scope of Bayesian Optimization in RAG Pipelines
	Determining Optimal Sample Size for Configuration Exploration
	Outcome Robustness Across Datasets

	Evaluation Results
	Comparative Analysis of Bayesian Optimization Algorithms
	Scope of Bayesian Optimization in RAG Pipelines
	SciFact
	FIQA
	HotpotQA
	Summary: Local vs. Global Optimization Scope

	Determining Optimal Sample Size for Configuration Exploration
	SciFact
	FIQA
	HotpotQA

	Outcome Robustness Across Datasets
	Scifact
	FIQA
	HotpotQA

	Discussion
	Interpretation of Results
	Which Bayesian Optimization algorithms are most effective for optimizing Retrieval-Augmented Generation pipelines in terms of achieving high quality scores and computational efficiency?
	Should Bayesian Optimization be applied globally across the entire RAG pipeline or locally at individual module levels to achieve optimal end-to-end generation quality?
	What is the relationship between the number of configurations explored through Bayesian Optimization and the final performance scores achieved in RAG pipeline tuning?
	How do dataset domain characteristics influence the effectiveness and stability of Bayesian Optimization when tuning RAG pipeline configurations across different application contexts?

	Limitations and Threats to Validity
	Experimental Limitations
	Generalizability
	Future Work

	Conclusion
	LLM Evaluator Prompt for Compressor Component
	Configuration Specifications
	SAP API Configuration
	Open-Source Model Specifications

	Implementation Details
	Hardware Specifications
	Software Libraries and Versions
	Bayesian Optimization Libraries
	Core Framework and Dependencies
	Environment Configuration

	Bibliography

	mygroup: \Fld@default
	mygroup: \Fld@default

