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1. Motivation and Relevance
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Sources: [1-4]

Dementia

Challenges of Dementia

• Rising global prevalence of dementia, especially Alzheimer's Disease

• AD affected ~57 million in 2021, ~10 million new cases/year

• Major global cause of death & disability

• Urgent need for early diagnosis & long-term monitoring

Early Markers and Assessment Tools

• Subtle changes in speech and language are often earliest detectable 

markers of cognitive decline

Acoustic and Linguistic Analysis 

using Machine Learning

• Widely used neuropsychological 

instrument

• Naturalistic voice assistant 

interactions

Free SpeechCookie Theft Picture

• AI-Based Digital Health Assistant 

for Elderly & Chronically Ill 

• Improving Dementia Care 

through Adaptive Voice 

Assistance

ALPHA-KI AssistD



2. Research Gap & Research Questions
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Sources: [5-6]; Abbreviations: AD = Alzheimer’s disease, MCI = Mild Cognitive Impairment, DM = Dementia, HC = Healthy Control 

Research Questions

Few studies focus on HC vs. MCI; mostly focused on HC vs. AD/DM

How well can ML models using acoustic and linguistic 

features from Alexa conversations differentiate HC and 

DM/MCI patients?

II
Does integrating audio and linguistic features from Alexa-

based free speech responses improve early dementia 

classification compared to unimodal approaches?

I

II

I
How accurately can ML models based on acoustic and 

linguistic features from Cookie Theft Picture descriptions 

distinguish between HC and MCI patients?

Does combining audio and text features from Cookie Theft 

descriptions enhance early dementia classification 

compared to single-modality models?

Research Gap

Cookie Theft Picture Free Speech

• Previous studies mostly use either acoustic (audio) or linguistic (text) 

features, sometimes both, but treat them separately.

• [5] focused on multilingual analysis on unified conversational dataset

Lack of Multimodal Analysis

Combining acoustic and linguistic features via multimodal ML remains 

largely unexplored

• AD classification: Building a model to predict whether a speech session 

indicates AD or non-AD

• MMSE score regression: Creating a model to infer a subject's Mini 

Mental State Examination (MMSE) score from speech/language data

ADReSS Challenge



3.1 Theoretical Background
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DM vs MCI

Sources: [7-21], [27]; Abbreviations: AD = Alzheimer’s disease, MCI = Mild Cognitive Impairment, DM = Dementia, HC = Healthy Control

Clinical Background

• Dementia: Progressive cognitive decline affecting daily life; AD is the 

most common cause

• MCI: Intermediate stage between normal aging and DM; may progress, 

stay stable, or revert.

• Early Detection: Critical at MCI stage for timely intervention and 

treatment trials.

• Speech as Cognitive Marker: Involves memory, attention, and 

language, sensitive to early decline.

• Early Language Changes in MCI: Reduced lexical variety, vague 

words, and semantic errors.

o Simpler Syntax: Shorter sentences, fewer embedded clauses.

o Fluency & Prosody: More pauses, hesitations, and reduced 

articulation/emotional tone.

Early Biomarkers of Cognitive Decline

Speech

Standardized (Cookie Theft Picture)

• Standardized tasks (e.g., Cookie Theft) guide content and reduce 

variability, enabling easier feature extraction

• Controlled & Natural: Same visual stimulus enables comparability

• Cognitive Support: Reduces memory/attention demands, suitable for 

impaired participants

• MCI Indicators: Less detail, low lexical/syntactic complexity, more 

pronouns, reduced fluency

Source: Figure 1



3.2 Theoretical Background

© sebis02.06.2025 | Kick-off Guided Research 7

DM vs MCI

Sources: [7-10], [17-21], [27-32]; Abbreviations: AD = Alzheimer’s disease, MCI = Mild Cognitive Impairment, DM = Dementia, HC = Healthy Control 

Clinical Background

• Dementia: Progressive cognitive decline affecting daily life; AD is the 

most common cause

• MCI: Intermediate stage between normal aging and AD; may progress, 

stay stable, or revert.

• Early Detection: Critical at MCI stage for timely intervention and 

treatment trials.

• Speech as Cognitive Marker: Involves memory, attention, and 

language, sensitive to early decline.

• Early Language Changes in MCI: Reduced lexical variety, vague 

words, and semantic errors.

o Simpler Syntax: Shorter sentences, fewer embedded clauses.

o Fluency & Prosody: More pauses, hesitations, and reduced 

articulation/emotional tone.

Early Biomarkers of Cognitive Decline

Speech

• Free speech (e.g., Alexa) offers more natural data but introduces 

higher linguistic and acoustic variability, posing challenges for 

consistent classification

• Linguistic Markers: Less coherence, fewer content words, more 

pronouns & pauses

• Temporal Features: Slower tempo, more hesitations, altered 

articulation

Free Speech (Amazon Alexa)

Source: Figure 2 



3.3 Theoretical Background
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Machine Learning

Cognitive Impairment Detection

• ML detects cognitive decline: Scalable, non-invasive alternative to 

MRI and lab tests

• Deep learning: CNNs, RNNs, and Transformers (e.g., BERT, wav2vec2) 

learn directly from speech/text

• Key features: MFCCs, eGeMAPS etc. reflect pitch and pauses

Sources: [22-27], [33-35]

Audio

Linguistics

Acoustics

LIWC

MFCC

ComParE

(e)GeMAPS

Paraling.

BERT

Transcripts

ASR

Classifier

AD/DM

Classifier

HC

AD/DM

HC

Legend

• ASR: Automatic Speech Recognition

• Acoustics : Acoustic feature extraction 

• Linguistics: Text feature extraction



Mel-Spectrogram

Text Encoder

Image Encoder Classifier

MCI

HC

Audios

Transcripts

Getting to Know the Mel Spectrogram | by Dalya Gartzman | TDS Archive |  Medium

Classifier

HC

MCI

⌀

3.3 Theoretical Background
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Machine Learning

Cognitive Impairment Detection

• ML detects cognitive decline: Scalable, non-invasive alternative to 

MRI and lab tests

• Deep learning: CNNs, RNNs, and Transformers (e.g., BERT, wav2vec2) 

learn directly from speech/text

• Key features: MFCCs, eGeMAPS etc. reflect pitch and pauses

• Multimodal Fusion: Combines speech and text for better dementia 

detection

o Late-Level Fusion: Combines modalities after individual 

classification; processes each modality separately

Multimodal Fusion

Sources: [22-27], [33-35], Mel-Spectrogram: Figure 3 



3.3 Theoretical Background
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Machine Learning

Cognitive Impairment Detection

• ML detects cognitive decline: Scalable, non-invasive alternative to 

MRI and lab tests.

• Deep learning: CNNs, RNNs, and Transformers (e.g., BERT, wav2vec2) 

learn directly from speech/text.

• Key features: MFCCs, eGeMAPS etc. reflect pitch and pauses

• Multimodal Fusion: Combines speech and text for better dementia 

detection.

o Early-Level: Combines modalities before classification; merges 

features or embeddings; enables cross-modal interactions; requires 

synchronized inputs 
o Cross-Attention: One modality attends to another; captures inter-

modal dependencies

Multimodal Fusion

Mel-Spectrogram

Text Encoder

Image Encoder

Cross Attention

Cross Attention Classifier

MCI

HC

Audios

Transcripts

Sources: [22-27], [33-35], Mel-Spectrogram: Figure 3 



4.1 Methodology – Context Understanding
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Data

Context Understanding

Data Understanding

Data PreparationModeling

Evaluation

Report

• Literature Review

• Expert Interview

• Dementia TalkBank

• Delaware & VAS

• Data Cleaning

• Audio Editing

• RQ1: Unimodal

• RQ2: Multimodal

• RQ1: Differentiation HC 

vs. MCI/DM

• RQ2: Combine features 

• Project Outcomes 

• Answers to Research 

Questions & Implications



4.2 Methodology – Data Understanding
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Delaware

• Standardized dataset 

• Picture descriptions; Story-, 

Procedural-, Personal-Narratives 

• Participants: older adults (61-91)

• Audio recordings and manually 

transcribed and annotated speech 

data (CHAT format, 95 

Participants).

• Includes data from a control group 

and individuals diagnosed with 

MCI (61 MCI, 34 HC).

• Number of .mp3 files: 111

• Total Length: 18 h

• Data Collection Ongoing

Source: [6], Abbreviations: MCI = Mild Cognitive Impairment, HC = Healthy Control 

Data

Context Understanding

Data Understanding

Data PreparationModeling

Evaluation

Report

• Literature Review

• Expert Interview

• Dementia TalkBank

• Delaware & VAS

• Data Cleaning

• Audio Editing

• RQ1: Unimodal

• RQ2: Multimodal

• RQ1: Differentiation HC 

vs. MCI/DM

• RQ2: Combine features 

• Project Outcomes 

• Answers to Research 

Questions & Implications

Source: Figure 1



VAS

• Dataset of voice interactions 

from older adults (64-94).

• Audio recordings and text 

transcripts from Amazon Alexa 

(CHAT format, 101 Participants).

• Includes data from a control 

group and individuals diagnosed 

with dementia (DM:30, HC: 36, 

MCI: 35).

• Number of .mp3 files: 101

• Total Length: 3.5h

4.2 Methodology – Data Understanding
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Data

Context Understanding

Data Understanding

Data PreparationModeling

Evaluation

Report

• Literature Review

• Expert Interview

• Dementia TalkBank

• Delaware & VAS

• Data Cleaning

• Audio Editing

• RQ1: Unimodal

• RQ2: Multimodal

• RQ1: Differentiation HC 

vs. MCI/DM

• RQ2: Combine features 

• Project Outcomes 

• Answers to Research 

Questions & Implications

Source: Figure 2 

Source: [6]; Abbreviations: MCI = Mild Cognitive Impairment, DM = Dementia, HC = Healthy Control 



4.3 Methodology – Data Preparation
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Delaware

VAS

• Clean Dataset

• Isolate participant speech 

• Reduce to CTP descriptions

• Estimated Total Length: 3h

• Clean Dataset

• Split Audios

• Separate audios for each 

Alexa request

Data

Context Understanding

Data Understanding

Data PreparationModeling

Evaluation

Report

• Literature Review

• Expert Interview

• Dementia TalkBank

• Delaware & VAS

• Data Cleaning

• Audio Editing

• RQ1: Unimodal

• RQ2: Multimodal

• RQ1: Differentiation HC 

vs. MCI/DM

• RQ2: Combine features 

• Project Outcomes 

• Answers to Research 

Questions & Implications

Abbreviations: CTP = Cookie Theft Picture



4.4 Methodology – Modeling
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Data

Context Understanding

Data Understanding

Data PreparationModeling

Evaluation

Report

• Literature Review

• Expert Interview

• Dementia TalkBank

• Delaware & VAS

• Data Cleaning

• Audio Editing

• RQ1: Unimodal

• RQ2: Multimodal

• RQ1: Differentiation HC 

vs. MCI/DM

• RQ2: Combine features 

• Project Outcomes 

• Answers to Research 

Questions & Implications

RQ1 - Unimodal

RQ2 - Multimodal

• Late Fusion

• Simplified Model:

• Early Fusion with Cross Attention

• Simplified Model:

Source: [Figure 3]



4.5 Methodology – Evaluation
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Delaware

VAS

• How accurately can ML models 

based on acoustic and linguistic 

features from Cookie Theft Picture 

descriptions distinguish between 

HC and MCI patients?

• Does combining audio and text 

features from Cookie Theft 

descriptions enhance early 

dementia classification compared 

to single-modality models?

• How well can ML models using 

acoustic and linguistic features 

from Alexa conversations 

differentiate HC and DM/MCI 

patients?

• Does integrating audio and 

linguistic features from Alexa-

based free speech responses 

improve early dementia 

classification compared to 

unimodal approaches?

Data

Context Understanding

Data Understanding

Data PreparationModeling

Evaluation

Report

• Literature Review

• Expert Interview

• Dementia TalkBank

• Delaware & VAS

• Data Cleaning

• Audio Editing

• RQ1: Unimodal

• RQ2: Multimodal

• RQ1: Differentiation HC 

vs. MCI/DM

• RQ2: Combine features 

• Project Outcomes 

• Answers to Research 

Questions & Implications

Abbreviations: MCI = Mild Cognitive Impairment, DM = Dementia, HC = Healthy Control 



4.6 Methodology – Report
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Data

Context Understanding

Data Understanding

Data PreparationModeling

Evaluation

Report

• Literature Review

• Expert Interview

• DementiaTalkBank

• Delaware & VAS

• Data Cleaning

• Audio Editing

• RQ1: Unimodal

• RQ2: Multimodal

• RQ1: Differentiation HC 

vs. MCI/DM

• RQ2: Combine features 

• Project Outcomes 

• Answers to Research 

Questions & Implications



4.7 Methodology – Future Work
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Data

AssistD

Source: [4]



5. Outlook
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Preprocess Data

• Deeper insights into MCI vs. HC, addressing the prior focus on 

AD/DM vs. HC in most studies

• Comparison of multimodal vs. unimodal model performance

• Comparative analysis of spontaneous speech versus 

standardized speech in terms of classification accuracy

Academic Insights

Modeling

Expected Contribution

• Test both standardized (CTP) and free/spontaneous (Alexa) 

improves clearness in regard to future projects (e.g. Smartwatch)

• Offer guidance on (standardized) data collection and task setup 

for consistent dataset quality and better accuracy

Practical GuidancePractical Guidance

Evaluation

Next Steps

Abbreviations: MCI = Mild Cognitive Impairment, DM = Dementia, HC = Healthy Control, CTP = Cookie Theft Picture 



6. Timeline
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Literature Review

April May June July August September/October

Data Collection

Data Collection 

Expert Interview

Expert Interview

Data Preparation

Data Preparation

RQ1

RQ1

Finalize

Finalize

Documentation

Documentation

Model Selection

Model Selection

RQ2

RQ2

Official Start

Expert Interview

Presentation

Presentation
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Getting to Know the Mel Spectrogram | by Dalya Gartzman | TDS Archive |  Medium
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Source: Figure 3 



Cross Attention – Example
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Audios

Transcripts

Mel-Spectrogram

Text Encoder

Image Encoder

Cross Attention

Cross Attention

Classifier

MCI HC

Image Encoding

Text Encoding

K/V

Q

“The boy is stealing a cookie”

Q: “stealing”

K₁ = pitch pattern at “stealing” 

K₂ = silence duration after “boy” 

K₃ = intensity profile at “cookies”

V₁ = rising pitch (emphasis)  

V₂ = pause duration features  

V₃ = clarity / slurred speech

Aligns “stealing” (text) with

relevant audio cues:

• Pitch ↑ → V₁
• Pause → V₂
• Slurred speech → V₃
Weighted combination → 

fused output

Source: Mel-Spectrogram: Figure 3 
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