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1. Motivation and Relevance
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Sources: [1-4]

Dementia

Challenges of Dementia

• Rising global prevalence of dementia, especially Alzheimer's Disease

• Affects ~57 million in 2021, ~10 million new cases/year.

• Major global cause of death & disability.

• Urgent need for early diagnosis & long-term monitoring.

Early Markers and Assessment Tools

• Subtle changes in speech and language are often earliest detectable 

markers of cognitive decline.

Acoustic and Linguistic Analysis 

using Machine Learning

• Widely used neuropsychological 

instrument
• Voice assistant interactions

Voice AssistantCookie Theft Picture

• AI-Based Digital Health Assistant 

for Elderly & Chronically Ill.

• Improving Dementia Care 

through Adaptive Voice 

Assistance.

ALPHA-KI AssistD



2. Research Gap & Research Questions
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Sources: [5-6]; Abbreviations: AD = Alzheimer’s Dementia, MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control 

Research Questions

Few studies focus on HC vs. MCI; mostly focused on HC vs. AD

How well can unimodal ML models using acoustic or linguistic features 

from Alexa interactions differentiate HC and MCI/D patients?

II
Does integrating audio and linguistic features from Alexa-based

speech interactions improve early dementia classification compared to 

unimodal approaches?

I

II

I
How accurately can unimodal ML models based on acoustic or 

linguistic features from Cookie Theft Picture descriptions 

distinguish between HC and MCI patients?

Does integrating audio and linguistic features from Cookie Theft 

descriptions enhance early dementia classification compared to 

unimodal approaches?

Research Gap

Cookie Theft Picture Voice Assistant

• Previous studies mostly use either acoustic (audio) or linguistic (text) 

features, sometimes both, but treat them separately.

• Shakeri et al. focused on multilingual analysis on unified conversational 

dataset [5].

Lack of Multimodal Analysis

Combining acoustic and linguistic features via multimodal ML remains 

largely unexplored

• AD classification: Building a model to predict whether a speech session 

indicates AD or non-AD.

• MMSE score regression: Creating a model to infer a subject's Mini 

Mental State Examination (MMSE) score from speech/language data.

ADReSS Challenge

How do different transcription representations (orthographic 

versus phonetic ARPAbet) of Cookie Theft Picture descriptions affect 

the stability and discriminative power of transformer-based text and 

multimodal models?

How do different transcription representations (orthographic 

versus phonetic ARPAbet) of Alexa conversations affect the stability 

and discriminative power of transformer-based text and multimodal 

models?

III III



3.1 Theoretical Background
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DM vs MCI

Clinical Background

• Dementia: Progressive cognitive decline affecting daily life; Alzheimer is 

the most common cause.

• MCI: Intermediate stage between normal aging and Demenita; may 

progress, stay stable, or revert.

• Early Detection: Critical at MCI stage for timely intervention and 

treatment trials.

• Speech as Cognitive Marker: Involves memory, attention, and 

language, sensitive to early decline.

• Early Language Changes in MCI: Reduced lexical variety, vague 

words, and semantic errors.

o Simpler Syntax: Shorter sentences, fewer embedded clauses.

o Fluency & Prosody: More pauses, hesitations, and reduced 

articulation/emotional tone.

Early Biomarkers of Cognitive Decline

Speech

Standardized (Cookie Theft Picture)

• Standardized tasks (e.g., Cookie Theft) guide content and reduce 

variability, enabling easier feature extraction.

• Controlled & Natural: Same visual stimulus enables comparability.

• Cognitive Support: Reduces memory/attention demands, suitable for 

impaired participants.

• MCI Indicators: Less detail, low lexical/syntactic complexity, more 

pronouns, reduced fluency.

Source: Figure 1Sources: [7-21], [27]; Abbreviations: MCI = Mild Cognitive Impairment



3.2 Theoretical Background
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DM vs MCI

Sources: [7-10], [17-21], [27-32]; Abbreviations: MCI = Mild Cognitive Impairment

Clinical Background

• Dementia: Progressive cognitive decline affecting daily life; Alzheimer is 

the most common cause.

• MCI: Intermediate stage between normal aging and Demenita; may 

progress, stay stable, or revert.

• Early Detection: Critical at MCI stage for timely intervention and 

treatment trials.

• Speech as Cognitive Marker: Involves memory, attention, and 

language, sensitive to early decline.

• Early Language Changes in MCI: Reduced lexical variety, vague 

words, and semantic errors.

o Simpler Syntax: Shorter sentences, fewer embedded clauses.

o Fluency & Prosody: More pauses, hesitations, and reduced 

articulation/emotional tone.

Early Biomarkers of Cognitive Decline

Interactions

• Interactions (e.g., Alexa) can offer more natural data but introduces 

higher linguistic and acoustic variability, posing challenges for 

consistent classification.

• Linguistic Markers: Less coherence, fewer content words, more 

pronouns & pauses.

• Temporal Features: Slower tempo, more hesitations, altered 

articulation.

Voice Assistant (Amazon Alexa)

Source: Figure 2 



4.1 Methodology – Context Understanding
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Data

Context Understanding

Data Understanding

Data PreprocessingModeling & Training

Results

Report

• Literature Review

• Expert Interview

Dementia TalkBankDelaware  VAS
• Dementia TalkBank

• Delaware & VAS

• Data Cleaning

• Audio Editing

• RQ1: Unimodal

• RQ2: Multimodal

• RQ3: ARPA

• RQ1: Differentiation HC 

vs. MCI/D

• RQ2: Combine features

• RQ3: ARPA 

• Project Outcomes 

• Answers to Research 

Questions & Implications

Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control, ARPA = Advanced Research Projects Agency 



4.2 Methodology – Data Understanding
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Delaware

• Standardized dataset.

• Picture descriptions; Story-, 

Procedural-, Personal-Narratives 

• Participants: older adults (60-90).

• Audio recordings and manually 

transcribed and annotated speech 

data (CHAT format, 112 

Participants).

• Includes data from a control group 

and individuals diagnosed with 

MCI (64 MCI, 48 HC).

• Total Length: 18 h.

• Data Collection Ongoing.

Data

Context Understanding

Data Understanding

Data PreprocessingModeling & Training

Results

Report

• Literature Review

• Expert Interview

Dementia TalkBankDelaware  VAS
• Dementia TalkBank

• Delaware & VAS

• Data Cleaning

• Audio Editing

• RQ1: Unimodal

• RQ2: Multimodal

• RQ3: ARPA

• RQ1: Differentiation HC 

vs. MCI/D

• RQ2: Combine features

• RQ3: ARPA 

• Project Outcomes 

• Answers to Research 

Questions & Implications

Source: Figure 1

Source: [6], Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control, ARPA = Advanced Research Projects Agency 



VAS

• Dataset of voice interactions 

from older adults (64-94).

• Audio recordings and text 

transcripts from Amazon Alexa 

(CHAT format, 100 Participants).

• Includes data from a control 

group and individuals diagnosed 

with dementia (D:29, HC: 36, 

MCI: 35).

• Total Length: 3.5h.

4.2 Methodology – Data Understanding
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Data

Context Understanding

Data Understanding

Data PreprocessingModeling & Training

Results

Report

• Literature Review

• Expert Interview

Dementia TalkBankDelaware  VAS
• Dementia TalkBank

• Delaware & VAS

• Data Cleaning

• Audio Editing

• RQ1: Unimodal

• RQ2: Multimodal

• RQ3: ARPA

• RQ1: Differentiation HC 

vs. MCI/D

• RQ2: Combine features

• RQ3: ARPA 

• Project Outcomes 

• Answers to Research 

Questions & Implications

Source: Figure 2 

Source: [6], Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control, ARPA = Advanced Research Projects Agency 



4.3 Methodology – Data Preprocessing
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Data

Context Understanding

Data Understanding

Data PreprocessingModeling & Training

Results

Report

• Literature Review

• Expert Interview

Dementia TalkBankDelaware  VAS
• Dementia TalkBank

• Delaware & VAS

• Data Cleaning

• Audio Editing

• RQ1: Unimodal

• RQ2: Multimodal

• RQ3: ARPA

• RQ1: Differentiation HC 

vs. MCI/D

• RQ2: Combine features

• RQ3: ARPA 

• Project Outcomes 

• Answers to Research 

Questions & Implications

Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control, ARPA = Advanced Research Projects Agency 
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4.3 Methodology – Data Preprocessing
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Data Preprocessing
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Abbreviations: ARPA = Advanced Research Projects Agency, CTP = Cookie Theft Picture



4.3 Methodology – Data Modeling
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Data
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Data Understanding

Data PreprocessingModeling & Training

Results

Report

• Literature Review
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Dementia TalkBankDelaware  VAS
• Dementia TalkBank
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• Data Cleaning

• Audio Editing

• RQ1: Unimodal

• RQ2: Multimodal

• RQ3: ARPA

• RQ1: Differentiation HC 

vs. MCI/D

• RQ2: Combine features

• RQ3: ARPA 

• Project Outcomes 

• Answers to Research 

Questions & Implications

Abbreviations: ARPA = Advanced Research Projects Agency, CTP = Cookie Theft Picture



4.4 Methodology – Modeling | Unimodal
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Mel-Spectrogram

Text Encoder

Image Encoder Classifier

HC

MCI / D

Audios

Text & ARPA 

Transcripts

Classifier

XORAudio Encoder Classifier

CNN | ViT
CNN | ViT

HuBERT

BERT | DistilBERT

Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control
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4.4 Methodology – Modeling | Multimodal

Mel-Spectrogram

Text Encoder

Image Encoder

Cross Attention

Cross Attention Classifier

HC

MCI / D

Audios

Text & ARPA 

Transcripts

XOR

Audio Encoder

CNN | ViT

HuBERT

BERT | DistilBERT

Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control



4.4 Methodology – Training
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Data

Context Understanding

Data Understanding

Data Preprocessing

Results

Report

• Literature Review

• Expert Interview

Dementia TalkBankDelaware  VAS
• Dementia TalkBank

• Delaware & VAS

• Data Cleaning

• Audio Editing

• RQ1: Differentiation HC 

vs. MCI/DM

• RQ2: Combine features

• RQ3: ARPA 

• Project Outcomes 

• Answers to Research 

Questions & Implications

• RQ1: Unimodal

• RQ2: Multimodal

• RQ3: ARPA

Modeling & Training

Training

• Bayesian Optimization with the 

Optuna library for efficient search

• Objective: Maximize validation F1

• Tuned hyperparameters

• Early stopping & pruning for 

stability and efficiency

• Automatic logging (CSV): 

hyperparameters, metrics of all 

model configurations

Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control



4.5 Results
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Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control, ARPA = Advanced Research Projects Agency



Domain
Best

Configuration
F1 Bal. Acc. Comment

Audio (unimodal) ViT-tiny 0.77 0.65

• Indicates that transformer-style patch embeddings (ViT) capture long-range 

spectro-temporal dependencies.

• HuBERT showed signs of overfitting to waveform variability.

Text (unimodal) BERT (ARPA) 0.73 0.59

• ARPAbet transcriptions improved BERT’s stability.

• DistilBERT gained little benefit due to its compressed architecture, 

performing best on orthographic text.

Multimodal
CNN + BERT 

(non-ARPA)
0.76 0.65 • Gains remained modest due to limited dataset size.

4.5 Results - Delaware
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I
How accurately can unimodal ML models based on acoustic or 

linguistic features from Cookie Theft Picture descriptions 

distinguish between HC and MCI patients?

• ViT-tiny (audio) achieved the highest F1 and balanced accuracy, significantly 

outperforming CNN and HuBERT.

• BERT-based text models reached moderate accuracy.

• DistilBERT performed comparably but with slightly lower stability.

II
Does integrating audio and linguistic features from Cookie Theft 

descriptions enhance early dementia classification compared to 

single-modality models?

• CNN + BERT (non-ARPA) achieved the highest multimodal balanced accuracy.

• Multimodal fusion provided complementary (not superior) diagnostic 

information compared to ViT.

How do different transcription representations (orthographic 

versus phonetic ARPAbet) of Cookie Theft Picture descriptions affect 

the stability and discriminative power of transformer-based text and 

multimodal models?

III

• ARPAbet improved BERT’s stability and performance.

• In multimodal setups, ARPAbet enhanced linguistic–acoustic alignment for 

spectrogram-based models (ViT, CNN) but showed negligible effect for 

waveform-level HuBERT.

• Indicates that phonetic abstraction benefits large transformers and 

supports cross-modal synchronization.Abbreviations: Bal. Acc. = Balanced Accuracy



Domain Best Configuration F1 Bal. Acc.
Best

Configuration
F1 Bal. Acc.

Audio 

(unimodal)
ViT-Small 0.65 0.65 ViT-Tiny 0.92 0.92

Text 

(unimodal)
BERT (Text) 0.71 0.52 BERT (Text) 0.68 0.58

Multimodal CNN + BERT (Text) 0.59 0.59 ViT-Small + BERT 0.87 0.88

4.5 Results – VAS
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I
How well can unimodal ML models using acoustic or linguistic 

features from Alexa interactions differentiate HC and MCI/D 

patients?

• ViT-Small (audio) achieved the best balanced accuracy (0.65) for H vs. MCI, 

outperforming CNN and ViT-Tiny.

• All audio models reached high performance for H vs. D (F1 ≈ 0.91–0.92).

• Text-based BERT models showed moderate results (F1 ≈ 0.68–0.71), with 

DistilBERT slightly less stable.

II
Does integrating audio and linguistic features from Alexa-based 

speech interactions improve early dementia classification 

compared to unimodal approaches?

• BERT + CNN achieved the highest multimodal balanced accuracy = 0.59 for     

H vs. MCI and DistilBERT + ViT-Tiny reached 0.88 for H vs. D.

• Multimodal fusion provided complementary (but not superior) diagnostic 

information compared to unimodal ViT models.

How do different transcription representations (orthographic 

versus phonetic ARPAbet) of Alexa conversations affect the stability 

and discriminative power of transformer-based text and multimodal 

models?

III

• Phonetic ARPAbet transcriptions did not improve performance or stability of 

transformer-based models.

• ARPA-based models (e.g., ViT-Small + BERT: Bal. Acc. = 0.55; 0.84 for H vs. 

D) performed similar to orthographic versions.

• The limited length of Alexa interactions may have constrained both ARPA and 

standard text representations, reducing their discriminative power.

H vs. MCI H vs. D

Abbreviations: Bal. Acc. = Balanced Accuracy



4.6 Methodology – Report
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Data
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Results

Report

• Literature Review

• Expert Interview

DementiaTalkBankDelaware  VAS
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• Data Cleaning

• Audio Editing

• RQ1: Unimodal

• RQ2: Multimodal

• RQ3: ARPA
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• RQ3: ARPA 
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• Answers to Research 

Questions & Implications

Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control, ARPA = Advanced Research Projects Agency



4.7 Methodology – Next Steps
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Data

AssistD

Source: [4]



5. Outlook
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• Unimodal ViT achieved best performance

• Multimodal integration yields complementary, not superior, 

diagnostic information.

• Phonetic abstraction (ARPAbet) stabilizes transformer-based 

language models (in case of CTP, not for Alexa conversations).

• Unified framework for flexible unimodal and multimodal 

experimentation (audio, text, and fusion).

Academic Insights

Contribution

• k-fold cross validation (resource intensive).

• Develop a larger and more balanced dataset.

• Establish a consistent transcription protocol.

• Incorporate diverse AI Assistant interactions to increase variability

• Employ IPA (incl. German) for finer phonetic granularity, 

compared to ARPAbet (English-only, lower granularity, suitable for 

smaller datasets).

• LLM-based CTP Analysis (LLM as a Judge):

• Extract clinically relevant cues (e.g., clockwise / anti-clockwise 

actions).

Practical GuidanceFuture Research

Provide supplementary documents containing further findings and relevant details

Additional Step

Abbreviations: CTP = Cookie Theft Picture, IPA = International Phonetic Alphabet, ARPA = Advanced Research Projects Agency 
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Log-Mel spectrogram – Example
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• Mel Frequency Bin: represents frequency bands on the perceptual Mel scale 

• (lower bins = lower pitch, higher bins = higher pitch)

• Color intensity: indicates signal energy (amplitude) in decibels

• bright areas mean stronger energy, dark areas mean weaker energy

• Values are shown relative to the loudest point (0 dB)



Phonetic Transcription (ARPAbet) – Example
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Suffix Meaning

_B Begin: phoneme is at the start of the word

_I Inside: phoneme is in the middle of the word

_E End: phoneme is at the end of the word

_S Single: the word has only one phoneme

“The boy is stealing a cookie”

the                

boy             

is                   

stealing         

a                   

cookie         

dh_B ah_E

b_B oy_E

ih_B z_E

s_B t_I iy_I l_I ih_I ng_E

ah_S

k_B uh_I k_I iy_E

boy

Dementia Example:

b_B ow_E

Healthy Example:



ViT vs. CNN – Example
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Attention of Vision 

Transformer

Convolution of 

CNN

Receptive Field



DementiaBank Overview
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• What it is

• DementiaBank is an online research archive containing transcribed audio and video recordings of conversations and interactions from 

individuals with dementia, mild cognitive impairment (MCI), and control groups.

• Purpose

• To support research and the development of algorithms that can detect early linguistic signs of cognitive decline, enabling earlier 

diagnosis and intervention.

• Content

• Includes spoken language samples, CHAT transcripts (compatible with CLAN software), results from clinical tests, and 

demographic/medical information.

• Sources & Formats

• Data come from several corpora (e.g., Delaware and VAS datasets) and include picture description, storytelling, procedural and 

personal narratives, and voice commands (e.g., with Alexa).

• Key Institutions & Funding

• Part of the TalkBank system (Carnegie Mellon University). Major contributors include Carnegie Mellon University, University of 

Pittsburgh, and the TAUKADIAL Challenge consortium (University of Edinburgh, Cardinal Tien Hospital, NCKU).

Funded by NIH and the EU Horizon 2020 SAAM Project.

• Access

• Restricted to approved researchers and clinicians within the DementiaBank Consortium.

Prof. Brian McWhinney

Carnegie Mellon University

Source: https://talkbank.org/dementia/

https://scholar.google.com/citations?user=V8EhIsIAAAAJ&hl=de


Cross Attention – Example
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Audios

Transcripts

Mel-Spectrogram

Text Encoder

Image Encoder

Cross Attention

Cross Attention

Classifier

MCI HC

Image Encoding

Text Encoding

K/V

Q

“The boy is stealing a cookie”

Q: “stealing”

K₁ = pitch pattern at “stealing” 

K₂ = silence duration after “boy” 

K₃ = intensity profile at “cookies”

V₁ = rising pitch (emphasis)  

V₂ = pause duration features  

V₃ = clarity / slurred speech

Aligns “stealing” (text) with

relevant audio cues:

• Pitch ↑ → V₁
• Pause → V₂
• Slurred speech → V₃
Attention-weighted fusion

Inverse Case: Which words (K/V) are most relevant to this audio cue (Q)?

The model looks at: How was this word spoken? (e.g. pitch, pauses)
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