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1. Motivation and Relevance

m——  Dementia

Challenges of Dementia

* Rising global prevalence of dementia, especially Alzheimer's Disease
» Affects ~57 million in 2021, ~10 million new cases/year.

* Major global cause of death & disability.

* Urgent need for early diagnosis & long-term monitoring.
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ALPHAKI (w«o)

AssistD

« Al-Based Digital Health Assistant * Improving Dementia Care
for Elderly & Chronically IIl. through Adaptive Voice
Assistance.

Sources: [1-4]
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Early Markers and Assessment Tools

» Subtle changes in speech and language are often earliest detectable

markers of cognitive decline.

Voice Assistant (

Cookie Theft Picture ( @

{

* Widely used neuropsychological * Voice assistant interactions
instrument

et
B!

Acoustic and Linguistic Analysis
using Machine Learning
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2. Research Gap & Research Questions TUM

= Research Gap

(m . .
ADReSS Challenge ( AD\E v Lack of Multimodal Analysis
ess ,/
- gm - . 0 . . I
* AD classification: Building a model to predict whether a speech session " « Previous studies mostly use either acoustic (audio) or linguistic (text)
indicates AD or non-AD. I features, sometimes both, but treat them separately.
* MMSE score regression: Creating a model to infer a subject's Mini I » Shakeri et al. focused on multilingual analysis on unified conversational
Mental State Examination (MMSE) score from speech/language data. I' dataset [5].
N & / \ ¢
Few studies focus on HC vs. MCI; mostly focused on HC vs. AD -/ Combining acoustic and linguistic features via multimodal ML remains
_ largely unexplored
- Research Questions g
Cookie Theft Picture ( Voice Assistant (
How accurately can unimodal ML models based on acoustic or . . . o
o . . p How well can unimodal ML models using acoustic or linguistic features
linguistic features from Cookie Theft Picture descriptions . . . . .
Lo . from Alexa interactions differentiate HC and MCI/D patients?

distinguish between HC and MCI patients?
Does integrating audio and linguistic features from Cookie Theft Does integrating audio and linguistic features from Alexa-based
descriptions enhance early dementia classification compared to speech interactions improve early dementia classification compared to
unimodal approaches? unimodal approaches?
How do different transcription representations (orthographic How do different transcription representations (orthographic
versus phonetic ARPAbet) of Cookie Theft Picture descriptions affect m versus phonetic ARPAbet) of Alexa conversations affect the stability
the stability and discriminative power of transformer-based text and and discriminative power of transformer-based text and multimodal
multimodal models? models?

Sources: [5-6]; Abbreviations: AD = Alzheimer’s Dementia, MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control
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3.1 Theoretical Background

= DM vs MCI

(5]

Clinical Background

« Dementia: Progressive cognitive decline affecting daily life; Alzheimer is

the most common cause.

« MCI: Intermediate stage between normal aging and Demenita; may
progress, stay stable, or revert.

« Early Detection: Critical at MCI stage for timely intervention and
treatment trials.

— Speech

Standardized (Cookie Theft Picture)

+ Standardized tasks (e.g., Cookie Theft) guide content and reduce
variability, enabling easier feature extraction.

+ Controlled & Natural: Same visual stimulus enables comparability.

+ Cognitive Support: Reduces memory/attention demands, suitable for
impaired participants.

* MCI Indicators: Less detail, low lexical/syntactic complexity, more
pronouns, reduced fluency.

Sources: [7-21], [27]; Abbreviations: MCI = Mild Cognitive Impairment
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Early Biomarkers of Cognitive Decline

+ Speech as Cognitive Marker: Involves memory, attention, and
language, sensitive to early decline.
+ Early Language Changes in MCI: Reduced lexical variety, vague
words, and semantic errors.
o Simpler Syntax: Shorter sentences, fewer embedded clauses.
o Fluency & Prosody: More pauses, hesitations, and reduced
articulation/emotional tone.

A young boy is reaching for the cookie jar. He is standing on a stool and is almost falling over. His sister is
standing beside him and talking to him.

On the other side of the kitchen their mom is wiping dishes. The water from the faucet is running over on
to the floor.

Boy taking cookies (@) Unimpaired
Mother washing dishes

Missing auxiliary verbs,
articles, punctuation

water overflowing in sink

girl getting cookie from boy

stool falling over (b) Impaired =
washing dishes >
R (c) More

impaired

In addition: misspellings,

) 4 stool tipping ove
missing subjects

water running out
of sink

Source: Figure 1
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3.2 Theoretical Background

= DM vs MCI

Clinical Background

(5]

« Dementia: Progressive cognitive decline affecting daily life; Alzheimer is

the most common cause.
« MCI: Intermediate stage between normal aging and Demenita; may

progress, stay stable, or revert.
« Early Detection: Critical at MCI stage for timely intervention and

treatment trials.

= |nteractions

,What is the weather outside”

»,Add oranges and Grapes to
my shopping list"

Source: Figure 2

Sources: [7-10], [17-21], [27-32]; Abbreviations: MCI = Mild Cognitive Impairment
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Early Biomarkers of Cognitive Decline

Speech as Cognitive Marker: Involves memory, attention, and

language, sensitive to early decline.
Early Language Changes in MCI: Reduced lexical variety, vague

words, and semantic errors.
o Simpler Syntax: Shorter sentences, fewer embedded clauses.

o Fluency & Prosody: More pauses, hesitations, and reduced
articulation/emotional tone.

Voice Assistant (Amazon Alexa) I

Interactions (e.g., Alexa) can offer more natural data but introduces
higher linguistic and acoustic variability, posing challenges for

consistent classification.
Linguistic Markers: Less coherence, fewer content words, more

pronouns & pauses.
Temporal Features: Slower tempo, more hesitations, altered
articulation.

© sebis



4.1 Methodology — Context Understanding TUM

Report Context Understanding

* Project Outcomes * Literature Review
* Answers to Research « Expert Interview
Questions & Implications

Results Data Understanding

 RQ1: Differentiation HC
vs. MCI/D * Dementia TalkBank

« RQ2: Combine features * Delaware & VAS

+ RQ3: ARPA

Modeling & Training Data Preprocessing

* RQ1: Unimodal » Data Cleaning
+ RQ2: Multimodal + Audio Editing
+ RQ3: ARPA

Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control, ARPA = Advanced Research Projects Agency
27.10.2025 | Final Guided Research Presentation © sebis 8



4.2 Methodology — Data

Report

* Project Outcomes
* Answers to Research
Questions & Implications

Results

RQ1: Differentiation HC
vs. MCI/D

RQ2: Combine features
RQ3: ARPA

Modeling & Training

* RQ1: Unimodal
 RQ2: Multimodal
« RQ3: ARPA

Understanding

Context Understanding

» Literature Review
» Expert Interview

Data Understanding

* Dementia TalkBank
* Delaware & VAS

Data Preprocessing

+ Data Cleaning
* Audio Editing

Source: [6], Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control, ARPA = Advanced Research Projects Agency
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TUTI

Delaware @

Standardized dataset.

Picture descriptions; Story-,
Procedural-, Personal-Narratives
Participants: older adults (60-90).
Audio recordings and manually
transcribed and annotated speech
data (CHAT format, 112
Participants).

Includes data from a control group
and individuals diagnosed with
MCI (64 MCI, 48 HC).

Total Length: 18 h.

Data Collection Ongoing.

A . M sistor s
standing beside him and talking to him.

to the floor.

((a) Unimpaired

ﬁ B
(c) More

impaired

Source: Figure 1
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4.2 Methodology — Data Understanding

Report

* Project Outcomes
* Answers to Research
Questions & Implications

Results

RQ1: Differentiation HC
vs. MCI/D

RQ2: Combine features
RQ3: ARPA

Modeling & Training

* RQ1: Unimodal
 RQ2: Multimodal
« RQ3: ARPA

Context Understanding

» Literature Review
» Expert Interview

Data Understanding

* Dementia TalkBank
* Delaware & VAS

Data Preprocessing

+ Data Cleaning
* Audio Editing

Source: [6], Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control, ARPA = Advanced Research Projects Agency
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VAS

Dataset of voice interactions
from older adults (64-94).

Audio recordings and text
transcripts from Amazon Alexa
(CHAT format, 100 Participants).
Includes data from a control
group and individuals diagnosed
with dementia (D:29, HC: 36,
MCI: 35).

Total Length: 3.5h.

.What is the weather outside”
z ,Add oranges and Grapes to
my shopping list*

Source: Figure 2
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4.3 Methodology — Data Preprocessing TUM

Report Context Understanding

* Project Outcomes * Literature Review
* Answers to Research « Expert Interview
Questions & Implications

Results Data Understanding

 RQ1: Differentiation HC
vs. MCI/D * Dementia TalkBank

« RQ2: Combine features * Delaware & VAS

+ RQ3: ARPA

Modeling & Training Data Preprocessing

* RQ1: Unimodal » Data Cleaning
+ RQ2: Multimodal + Audio Editing
+ RQ3: ARPA

Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control, ARPA = Advanced Research Projects Agency
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4.3 Methodology — Data Preprocessing
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Abbreviations: ARPA = Advanced Research Projects Agency, CTP = Cookie Theft Picture
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Data Preprocessing

PARN
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4.3 Methodology — Data Modeling TUM

Report Context Understanding

* Project Outcomes * Literature Review
* Answers to Research « Expert Interview
Questions & Implications

Results Data Understanding

 RQ1: Differentiation HC
vs. MCI/D @  Dementia TalkBank

« RQ2: Combine features * Delaware & VAS
« RQ3: ARPA

Modeling & Training Data Preprocessing

* RQ1: Unimodal » Data Cleaning
* RQ2: Multimodal + Audio Editing
+ RQ3: ARPA

Abbreviations: ARPA = Advanced Research Projects Agency, CTP = Cookie Theft Picture
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4.4 Methodology — Modeling | Unimodal TUM

—’[ Mel-Spectrogram ]—’[ Image Encoder ]—’[ Classifier

CNN | ViT
Audlosl|||||||— HC
{ Audio Encoder ]—{ Classifier ]—» XOR
HUBERT
MCI/D
Text & ARPA | =—— =[ Text Encoder ]—>[ Classifier

Transcripts BERT | DistiilBERT

Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control
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4.4 Methodology — Modeling | Multimodal TUM

—>[ Mel-Spectrogram ]—>[ Image Encoder ]—;

Audiosl||‘||||| CNN | ViT o

=[ Audio Encoder ]—T
HuUBERT 4{ Cross Attention ]—'[ Classifier ]—

_B — MCI/D
J— =[ Text Encoder ]7

BERT | DistiiBERT

Text & ARPA
Transcripts

Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control
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4.4 Methodology — Training

Report Context Understanding

* Project Outcomes * Literature Review
* Answers to Research * Expert Interview
Questions & Implications

Results Data Understanding

RQ1: Differentiation HC '
vs. MCI/DM * Dementia TalkBank

RQ2: Combine features * Delaware & VAS

RQ3: ARPA

Modeling & Training Data Preprocessing

* RQ1: Unimodal + Data Cleaning
+ RQ2: Multimodal * Audio Editing
+ RQ3: ARPA

Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control
27.10.2025 | Final Guided Research Presentation

Training (

Bayesian Optimization with the
Optuna library for efficient search
Objective: Maximize validation F1

Tuned hyperparameters
Early stopping & pruning for
stability and efficiency
Automatic logging (CSV):
hyperparameters, metrics of all
model configurations

© sebis
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4.5 Results

Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control, ARPA = Advanced Research Projects Agency
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Report

* Project Outcomes
* Answers to Research
Questions & Implications

Results
RQ1: Differentiation HC
vs. MCI|/DM

RQ2: Combine features
RQ3: ARPA

Modeling & Training

* RQ1: Unimodal
 RQ2: Multimodal
« RQ3: ARPA

Context Understanding

» Literature Review
+ Expert Interview

Data Understanding

 Dementia TalkBank
* Delaware & VAS

Data Preprocessing

» Data Cleaning
+ Audio Editing

© sebis
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4.5 Results - Delaware

TUTI

Best

Domain - . F1 Bal. Acc. Comment
Configuration

* Indicates that transformer-style patch embeddings (ViT) capture long-range

Audio (unimodal) ViT-tiny 0.77 0.65 spectro-temporal dependencies.
+ HuBERT showed signs of overfitting to waveform variability.
* ARPAbet transcriptions improved BERT’s stability.

Text (unimodal) BERT (ARPA) 0.73 0.59 * DistilBERT gained little benefit due to its compressed architecture,

performing best on orthographic text.
Multimodal CNN + BERT 0.76 0.65 + Gains remained modest due to limited dataset size.
(non-ARPA)

How accurately can unimodal ML models based on acoustic or

linguistic features from Cookie Theft Picture descriptions

distinguish between HC and MCI patients?

» ViT-tiny (audio) achieved the highest F1 and balanced accuracy, significantly
outperforming CNN and HUBERT.

+ BERT-based text models reached moderate accuracy.

» DistilBERT performed comparably but with slightly lower stability.

Does integrating audio and linguistic features from Cookie Theft
descriptions enhance early dementia classification compared to
single-modality models?

« CNN + BERT (non-ARPA) achieved the highest multimodal balanced accuracy.

« Multimodal fusion provided complementary (not superior) diagnostic
information compared to ViT.

How do different transcription representations (orthographic
versus phonetic ARPAbet) of Cookie Theft Picture descriptions affect
the stability and discriminative power of transformer-based text and
multimodal models?

Abbreviations: Bal. Acc. = Balanced Accuracy
27.10.2025 | Final Guided Research Presentation

ARPAbet improved BERT’s stability and performance.

In multimodal setups, ARPAbet enhanced linguistic-acoustic alignment for
spectrogram-based models (ViT, CNN) but showed negligible effect for
waveform-level HUBERT.

* Indicates that phonetic abstraction benefits large transformers and
supports cross-modal synchronization.

—
e
.
()

© sebis
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4.5 Results — VAS

TUTI

H vs. MCI | | Hvs.D
. . . Best
Domain Best Configuration F1 Bal. Acc. Configuration F1 Bal. Acc.
Audio ViT-Small 0.65 0.65 ViT-Tiny 0.92 0.92
(unimodal)
Text BERT (Text) 0.71 0.52 BERT (Text) 0.68 0.58
(unimodal)
Multimodal CNN + BERT (Text) 0.59 0.59 ViT-Small + BERT 0.87 0.88
+ ViT-Small (audio) achieved the best balanced accuracy (0.65) for H vs. MClI,
How well can unimodal ML models using acoustic or linguistic outperforming CNN and ViT-Tiny.
n features from Alexa interactions differentiate HC and MCI/D + All audio models reached high performance for H vs. D (F1 = 0.91-0.92).
patients? + Text-based BERT models showed moderate results (F1 = 0.68-0.71), with
DistilBERT slightly less stable.
\ &
: . . . .. * BERT + CNN achieved the highest multimodal balanced accuracy = 0.59 for
Does integrating audio and linguistic features from Alexa-based H vs. MCI and DistIBERT + ViT-Tiny reached 0.88 for H vs. D
23;“::6':2?32:;100":81; rgpr?nghaerg)dementla classification * Multimodal fusion provided complementary (but not superior) diagnostic
P PP ' information compared to unimodal ViT models.

How do different transcription representations (orthographic

m versus phonetic ARPAbet) of Alexa conversations affect the stability
and discriminative power of transformer-based text and multimodal

models?

Abbreviations: Bal. Acc. = Balanced Accuracy
27.10.2025 | Final Guided Research Presentation

+ Phonetic ARPAbet transcriptions did not improve performance or stability of

transformer-based models.

+ ARPA-based models (e.g., ViT-Small + BERT: Bal. Acc. =0.55; 0.84 for H vs.

D) performed similar to orthographic versions.

+ The limited length of Alexa interactions may have constrained both ARPA and

standard text representations, reducing their discriminative power.

© sebis
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4.6 Methodology — Report TUM

Report Context Understanding

* Project Outcomes * Literature Review
* Answers to Research « Expert Interview
Questions & Implications

Results Data Understanding

 RQ1: Differentiation HC
vs. MCI/DM  DementiaTalkBank

« RQ2: Combine features * Delaware & VAS
« RQ3: ARPA

Modeling & Training Data Preprocessing

* RQ1: Unimodal » Data Cleaning
+ RQ2: Multimodal + Audio Editing
+ RQ3: ARPA

Abbreviations: MCI = Mild Cognitive Impairment, D = Dementia, HC = Healthy Control, ARPA = Advanced Research Projects Agency
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4.7 Methodology — Next Steps TUM

@0

‘:
D £

AssistD ( @f&‘!

Source: [4]
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5. Outlook TUm

= Contribution

Academic Insights Future Research

- Unimodal ViT achieved best performance » k-fold cross validation (resource intensive).

« Multimodal integration yields complementary, not superior, * Develop a larger and more balanced dataset.
diagnostic information. » Establish a consistent transcription protocol.

- Phonetic abstraction (ARPAbet) stabilizes transformer-based * Incorporate diverse Al Assistant interactions to increase variability
language models (in case of CTP, not for Alexa conversations). * Employ IPA (incl. German) for finer phonetic granularity,

. Unified framework for flexible unimodal and multimodal compared to ARPAbet (English-only, lower granularity, suitable for
experimentation (audio, text, and fusion). smaller datasets).

* LLM-based CTP Analysis (LLM as a Judge):
« Extract clinically relevant cues (e.g., clockwise / anti-clockwise
actions).

- Additional Step -

[
Provide supplementary documents containing further findings and relevant details (

Abbreviations: CTP = Cookie Theft Picture, IPA = International Phonetic Alphabet, ARPA = Advanced Research Projects Agency
27.10.2025 | Final Guided Research Presentation © sebis
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Log-Mel spectrogram — Example TUM

Compute log-Mel spectrogram
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* Mel Frequency Bin: represents frequency bands on the perceptual Mel scale
* (lower bins = lower pitch, higher bins = higher pitch)

+ Colorintensity: indicates signal energy (amplitude) in decibels
* bright areas mean stronger energy, dark areas mean weaker energy
* Values are shown relative to the loudest point (0 dB)
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Phonetic Transcription (ARPAbet) — Example

.||‘||.|.
A

“The boy is stealing a cookie”

S
I
PHONETIC

TRANSCRIPTION
(ARPAbet)

27.10.2025 | Final Guided Research Presentation

Healthy Example:

the dh_Bah E

boy b_Boy E

is ih Bz E

stealing s Bt liy Il lih_Ing_E
a ah_S

cookie k_Buh_lk_liy E

Dementia Example:
boy —> b Bow_E

Suffix Meaning
B Begin: phoneme is at the start of the word
| Inside: phoneme is in the middle of the word
_E End: phoneme is at the end of the word
S Single: the word has only one phoneme

© sebis

27



ViT vs. CNN — Example TUM
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DementiaBank Overview UM

*  Whatitis
+ DementiaBank is an online research archive containing transcribed audio and video recordings of conversations and interactions from 4/
individuals with dementia, mild cognitive impairment (MCI), and control groups. y///
*  Purpose l
«  To support research and the development of algorithms that can detect early linguistic signs of cognitive decline, enabling earlier Prof. Brian McWhinney
diagnosis and intervention. Carnegie Mellon University
+ Content
* Includes spoken language samples, CHAT transcripts (compatible with CLAN software), results from clinical tests, and
demographic/medical information.
+ Sources & Formats
« Data come from several corpora (e.g., Delaware and VAS datasets) and include picture description, storytelling, procedural and
personal narratives, and voice commands (e.g., with Alexa).
+ Key Institutions & Funding
+ Part of the TalkBank system (Carnegie Mellon University). Major contributors include Carnegie Mellon University, University of
Pittsburgh, and the TAUKADIAL Challenge consortium (University of Edinburgh, Cardinal Tien Hospital, NCKU).
Funded by NIH and the EU Horizon 2020 SAAM Project.
*+ Access
» Restricted to approved researchers and clinicians within the DementiaBank Consortium.

Source: https://talkbank.org/dementia/
27.10.2025 | Final Guided Research Presentation © sebis 29


https://scholar.google.com/citations?user=V8EhIsIAAAAJ&hl=de

Cross Attention — Example TUM

The model looks at: How was this word spoken? (e.g. pitch, pauses)

K, = pitch pattern at “stealing” V, = rising pitch (emphasis)
K. = silence duration after “boy” V, = pause duration features
Ks = intensity profile at “cookies” V; = clarity / slurred speech

Audios 1 | | ‘ | | 1] —>[ Mel-Spectrogram ]—'[ Image Encoder ] Image Encoding
T Aligns “stealing” (text) with
relevant audio cues:
“The boy is stealing a cookie” L Cross Attention ] « Pitch 1 — V,
* Pause —» V,
* Slurred speech — V;
_ Attention-weighted fusion
Transcripts | —— =[ Text Encoder ]_’@%M J
— [ Classifier ]
Q: “stealing”
o
MCI HC

Inverse Case: Which words (K/V) are most relevant to this audio cue (Q)?
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