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Abstract

Prediction markets have increasingly emerged as alternatives to traditional polling meth-
ods. Decentralised designs, in particular, reduce reliance on central operators and enable
more transparent forecasting. A persistent challenge, however, lies in liquidity provision.
Automated Market Makers (AMMs), while popular in decentralised finance, suffer from
impermanent loss, an issue that is especially severe in prediction markets, since one of the
outcome tokens becomes worthless once the event resolves. This study focuses on Polymarket,
a leading decentralised prediction market built on Polygon, and compares two market de-
signs it has employed: AMM-based and Central Limit Order Book (CLOB)-based systems.
Our analysis shows that liquidity provision in the CLOB-based design is significantly more
profitable than in the AMM-based design, where most potential profits are eroded by realised
impermanent loss. We also find that LP strategies differ across the two systems. In AMMs,
providers often use Just-in-Time (JiT) liquidity and remove liquidity before market resolution
to reduce exposure to impermanent loss. In CLOBs, LPs dynamically adjust bid-ask quotes
to manage inventory risk while maximising platform rewards. These results highlight how
market design directly impacts LP behaviour and profitability, and offer insights for the
development of more sustainable prediction markets.
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1. Introduction

Political betting markets date back as early as the 16th century, with records of civic election
and papal selection betting in Italy, and to 18th-century England, where election betting was
common in universities and coffeehouses [1]. One of the earliest modern electronic prediction
markets was the Iowa Electronic Markets (IEM) [2], established as a research project by the
University of Iowa in 1988. It allowed students and faculty to invest real money in contracts
whose payoffs were tied to real-world events ranging from political elections to stock market
performance.

1.1. Background and Motivation

Prediction markets are essentially information aggregation platforms where different actors,
each with their own models, information, and beliefs, come together for price discovery of
a future event. The market price of the event or an outcome reflects a collective estimate of
the probability that the event will occur, making these markets useful for both trading and
forecasting. They have been shown to outperform traditional polling methods [3, 4, 5], as they
align incentives with correct information. Informed investors can profit from their knowledge
while simultaneously contributing to a more accurate representation of the likelihood of
different outcomes.

Unlike traditional stock markets, where traders rely on derivative contracts such as futures
and options to speculate on asset prices, prediction markets provide a more straightforward
way to trade on the likelihood of real-world outcomes [6]. This accessibility makes them
appealing to both professional traders and casual participants who want to express a belief or
hedge against a potential event.

In prediction markets, the price of a contract serves as an estimate of probability: the
higher the price, the greater the perceived likelihood that the corresponding event will take
place. An outcome token or contract represents a conditional claim, entitling the holder to
payment if the outcome resolves to true. Similar to financial securities, the value of such
a contract fluctuates over time as new information becomes available. Prediction market
platforms facilitate this trading by providing counterparties for buy and sell orders, thereby
enabling continuous price discovery. A key enabler of this process is liquidity provision.
Liquidity providers (LPs) supply the market with capital by continuously posting buy and
sell offers, ensuring that traders can always find a counterparty. Without them, markets
would be illiquid, spreads would widen, and price discovery would become less efficient. By
narrowing spreads and absorbing order flow, LPs make trading possible on a large scale.
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1.2. Problem Statement

A central challenge for prediction market platforms lies in attracting sufficient liquidity to
support active trading. In traditional financial markets, organised around centralised order
books maintained by exchanges, liquidity providers are incentivised through mechanisms
such as rebates and reduced transaction fees [7]. In decentralised finance, by contrast,
market design can be based on automated market makers (AMM), central limit order books
(CLOB), or hybrid structures, each of which creates unique incentives and risks for liquidity
providers. This thesis examines Polymarket, one of the largest prediction markets, to assess
how its transition from a fully decentralised design to a hybrid model in 2022 influenced
the profitability of liquidity providers. Furthermore, it explores whether liquidity providers
adopted specific strategies in response to these design features.

1.3. Research Questions

* RQ1: What factors determine the profitability of liquidity provision in AMMs on
Polymarket prediction markets?

Liquidity provision in AMM pools requires depositing two complementary tokens of equal
value. In return, liquidity providers (LPs) receive LP tokens that represent their proportional
share of the pool. LPs earn a portion of the trading fees generated by activity in the pool.

In prediction markets, liquidity is typically provided using USDC as collateral, which is
split into equal-value complementary tokens. The LP tokens obtained by providers fluctuate
in value as arbitrageurs trade against the pool when its prices deviate from those on external
markets. As a result, the value of LP tokens is not constant over the market’s lifetime. If an
LP redeems tokens when the relative proportions of the pool have shifted compared to when
liquidity was first added, a loss may occur.

This research question investigates whether the trading fees earned by LPs are sufficient to
offset losses caused by price divergence. It further examines how factors such as the duration
of liquidity provision, the trading volume of the market, and the amount of collateral supplied
influence the overall profitability of liquidity providers.

* RQ2: How can liquidity providers optimise their strategies to improve profitability in
prediction market AMMs?

Building on the profitability analysis from RQ1, this question explores whether liquidity
providers actively deploy strategies to outperform their peers, or whether a more passive
approach proves to be more effective. The focus is on identifying patterns of behaviour
among profitable LPs and understanding which tactics contribute to better outcomes.

Key considerations include whether actively managing liquidity—such as frequently adjust-
ing positions, entering or exiting at specific times, or withdrawing liquidity close to market
resolution reduces losses and improves profitability compared to simply remaining passive.
The analysis also examines whether AMM-specific strategies, such as concentrating liquidity
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during high-volume periods or timing entry and exit to minimise exposure to adverse price
movements, are already being employed by existing LPs. By comparing these approaches,
this research question aims to determine which strategies, if any, offer a consistent advantage
in prediction market AMMs.

* RQ3: What factors determine the profitability of liquidity provision in CLOB-based
prediction markets?

In CLOB-based designs, similar to traditional financial markets, an order book facilitates
trading by matching bids and asks of comparable size. Liquidity providers in this environment
act as counterparties to trades, ensuring sufficient liquidity and depth in the book. Their
profitability typically comes from capturing the bid—ask spread, defined as the difference
between the highest bid and the lowest ask.

Some platforms, such as Polymarket, further incentivise liquidity provision by offering
rewards to those who place orders close to the mid-point of the spread. This research
question examines whether liquidity providers in CLOB-based prediction markets are able
to generate consistent profits from spreads and platform rewards, and to what extent these
rewards contribute to their overall returns. It also considers whether liquidity providers
employ specific strategies to maximise profitability—for example, optimising order placement,
adjusting positions in response to market activity, or competing for rewards near the mid-
price.




2. Background

This section provides an overview of key terms relevant to the thesis. It introduces the
Polygon blockchain, which serves as the settlement layer for Polymarket, Oracles, and
the Gnosis Conditional Token Framework, which underpins its market design. It also
presents an overview of decentralised finance (DeFi), including core components such as
automated market makers (AMMSs) and impermanent loss. Together, these elements provide
the necessary background to understand the analysis in this thesis.

2.1. Polygon

Polygon[8], formerly known as the Matic Network, is a framework designed to address
Ethereum’s [9] scalability limitations. It operates as a layer-2 scaling solution by processing
transactions on separate Ethereum-compatible blockchains and then anchoring the results
back to Ethereum. This approach reduces network congestion, lowers transaction costs to a
fraction of a cent, and significantly increases throughput compared to Ethereum’s base layer.

The network was founded in 2017 and initially launched as the Matic Network and later
rebranded as Polygon in 2021. Polygon supports multiple scaling technologies, including
plasma chains, proof-of-stake (PoS) sidechains [10], and rollup-based solutions such as zk-
rollups and optimistic rollups [11]. This flexibility allows developers to select the most suitable
approach for their decentralised applications (DApps). As a result, Polygon has become
one of the most widely adopted Ethereum scaling platforms, enabling faster and cheaper
interactions with DApps while maintaining compatibility with Ethereum’s ecosystem.

Polymarket! uses the Polygon blockchain as a settlement layer and for deploying its smart
contracts. By leveraging Polygon’s low fees and high throughput, Polymarket ensures efficient
trading and settlement of prediction market positions.

2.2. Blockchain Oracles

Blockchains, by design, cannot directly access external information such as asset prices,
weather data, or IoT sensor outputs. This isolation ensures security and determinism but also
creates a limitation known as the oracle problem [12]. To unlock most real-world use cases,
smart contracts must consume off-chain data in a reliable, trust-minimised way. Oracles serve
as this bridge between blockchains and external systems.

A blockchain oracle is middleware that listens for smart contract requests, fetches off-chain
data from APIs or other sources, formats it into an on-chain compatible form, validates it

Ihttps://polymarket.com/
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through cryptographic proofs or consensus, and delivers it to the blockchain. In some cases,
oracles also relay blockchain outputs back to external systems. Because centralised oracles
introduce a single point of failure, decentralised oracle networks (such as Chainlink[13]) have
emerged as the standard approach for secure data delivery.

An important recent development is the rise of optimistic oracles [14]. These operate under
the assumption that most submitted data is correct and only escalate to a dispute resolution
layer if challenged. This allows faster and cheaper data feeds compared to constant multi-
party consensus. UMA’s Optimistic Oracle [15] is a leading example: it accepts asserted data,
gives a predefined window for disputes, and relies on UMA’s Data Verification Mechanism
(DVM) to resolve disagreements if they arise.

2.3. Decentralised Finance

Decentralised finance, or DeFi, represents a shift away from traditional financial systems
that rely on banks and other centralised institutions as intermediaries. At its core, DeFi uses
blockchain technology and smart contracts to create financial applications that operate on
permissionless networks, allowing users to trade, lend, borrow, and invest directly with each
other without needing a middleman [16, 17].

The philosophy behind DeFi is to make financial services more accessible, transparent, and
cost-effective [18]. Unlike traditional finance, where banks control access and set rules, DeFi
operates on public blockchains where anyone with an internet connection can participate [19].
The key components that make DeFi work include automated market makers (AMMs) and
decentralised exchanges (DEXs).

2.3.1. AMM

AMMs [20, 21] are algorithmic systems that facilitate trades between cryptocurrencies without
relying on traditional order books or direct counterparties. Instead of matching buyers and
sellers, AMMs use mathematical formulas to determine prices and execute trades against
liquidity pools.

Liquidity providers (LPs) supply equal values of paired tokens to AMM pools, earning a
share of fees proportional to their contribution [22]. While this broadens access to market
making, LPs face the risk of impermanent loss [23], which occurs when the relative price of
deposited tokens diverges compared to simply holding them. Trading fees can partially offset
these losses, but profitability is not guaranteed.

Automated Market Makers (AMMs) were formalised by Angeris et al. [24]. A widely
adopted AMM design is the Constant Product Market Maker (CPMM), as implemented in
UniswapZ, which maintains the invariant:

x-y=k
Where:

’https://app.uniswap.org/swap
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¢ x — the quantity of token A in the pool,
¢ y — the quantity of token B in the pool,
® k — the constant product preserved during trades.

This mechanism adjusts prices automatically in response to supply and demand [25]. For
example, when a user purchases ETH from a USDC/ETH pool, they deposit USDC and
receive ETH, with quantities calculated to preserve k. This reflects the economic principle
that increased demand leads to higher prices [26].

AMMs provide an alternative to central limit order books (CLOBs), since prices are
determined algorithmically through constant-function mechanisms rather than continuous
quoting by market makers. This design has been widely adopted in decentralised exchanges
such as Uniswap and Sushiswap®. Similarly, decentralised prediction markets often rely on
AMMs deployed on-chain via smart contracts. For example, Polymarket relied on AMMs
until 2022, while Augur continues to use them on Ethereum.

Challenges of AMM-based order matching: In AMMs, liquidity pools serve as the counter-
party to trades. This design introduces certain drawbacks. Liquidity providers may experience
impermanent loss, i.e., a temporary reduction in the value of their locked tokens relative to
holding them outright. AMMs are also subject to slippage, where large trades move prices
significantly, particularly in pools with low liquidity [20]. Execution speed is constrained
by the underlying blockchain, meaning slow transaction finality can lead to delays in trade
settlement. Additionally, AMMs are vulnerable to Miner/Maximal Extractable Value (MEV)
[27], where validators or block producers reorder or insert transactions for profit.

Liquidity provision in imbalanced pools: Over time, as market participants buy and sell
outcome tokens, the AMM may hold unequal amounts across outcomes. When a liquidity
provider adds liquidity under such conditions, the AMM preserves the existing proportions
of tokens in the pool. Rather than accepting all of the newly deposited tokens, the AMM
refunds the excess back to the liquidity provider so that the relative balance of outcome
tokens remains unchanged (see Fig.2.1).

2.3.2. Impermanent Loss

Impermanent loss [28], also referred to as divergence loss, is the temporary reduction in the
value of collateral provided by a liquidity provider to an AMM pool. It occurs when the
token prices in the pool lag behind those on centralised exchanges or, in the case of prediction
markets, the perceived fair value of the outcome tokens. While this loss is considered
temporary, it becomes a realised loss if the liquidity provider withdraws their funds when
prices diverge from the levels at which the liquidity was supplied initially. In essence, the size

Shttps://www.sushi.com/ethereum/swap
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# of LP Shares Received

0:100 50:50 100:0
Outcome Price

Figure 2.1.: Number of shares received on providing liquidity in AMM.

of the loss corresponds to the difference between the value of the tokens withdrawn from the
pool and the value the provider would have had if they had held the tokens outside the pool.

It can be expressed mathematically as a function of the price ratio between the two assets.
This loss is measured relative to simply holding the two assets (HODLing), and is given by
[29]:

Losses to liquidity providers due to price variation
Compared to holding the original funds supplied

0%

20% -

-40%

60%

Change in total liquidity value

80%

-100% T T T T
0% 100% 200% 300% 400% 500%

Current price as percentage of initial price

Figure 2.2.: Impermanent loss (divergence loss) experienced by liquidity providers compared
to holding assets.

2
Divergence Loss(r) = 1 ﬁ -1 (2.1)
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Where:

¢ ris the price ratio between the new price and the initial price (e.g., r = 2 means the
price has doubled),

¢ /r arises from the geometric mean used in CPMMs,

¢ The entire expression compares the value of the LP position to the value if the user had
held the assets.

To express this as a loss (i.e., a positive percentage), we can rewrite it as:

2Vr
- 2.2
1+7r @2
This form yields a percentage loss that increases as the price diverges more from the
original.

Impermanent Loss(r) =1

2.4. Central Limit Order Book (CLOB)

In a CLOB, trades are executed by matching bids and asks stored in a central order book.
The midpoint between the highest bid and the lowest ask often serves as a reference for the
market price. To ensure smooth functioning, CLOBs rely on active market making to maintain
sufficient liquidity. Market makers provide this liquidity by continuously posting orders on
both sides of the book, while traders interact with these orders depending on their trading
needs.

In practice, traders submit price-quantity orders to the book: buy (bid) or sell (ask). Makers
post resting limit orders and supply liquidity, whereas takers consume liquidity by accepting
outstanding quotes. When compatible orders cross, a trade is executed at the agreed price.
Orders that are not immediately filled remain in the book until matched or cancelled. In some
cases, only part of an order is filled, and the remainder stays in the book as a smaller order.
This process creates a constantly updating view of supply and demand, which allows prices
to adjust quickly as new information arrives.

CLOBs can be implemented either fully on-chain or with off-chain matching and on-
chain settlement. Fully on-chain CLOBs provide maximum transparency but suffer from
high latency and gas costs. Off-chain CLOBs, by contrast, offer lower latency and richer
matching functionality, while settling the final trades on-chain for auditability and security.
This separation of responsibilities enables higher performance without fully sacrificing
transparency.

Because order matching is centralised, CLOBs introduce a potential point of centralisation:
the operator could censor, delay, or prioritise specific trades. However, compared to AMMs,
they are generally faster and more capital-efficient for market makers, as they avoid issues
such as impermanent loss. In prediction markets, where participants frequently update
beliefs and trading activity can spike around key events, this efficiency can be particularly
important. To balance efficiency with transparency, some platforms such as Polymarket
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adopt hybrid designs where order matching occurs off-chain via a CLOB, while settlement
is performed on-chain. This hybrid model supports standard order types (e.g., market and
limit), preserves a public record of executed trades, and maintains a clear separation between
off-chain discovery/matching and on-chain transfer/settlement.

Challenges of CLOB-based prediction markets: CLOBs depend on continuous participation
from market makers, which may discourage smaller liquidity providers. Thin order books
can result in poor execution quality, wide bid-ask spreads, and high volatility in illiquid
markets. Moreover, centralised matching engines can become bottlenecks or single points of
failure, raising concerns about fairness and censorship resistance. Maintaining low-latency
infrastructure is also costly and tends to benefit sophisticated traders who can invest in better
technology. This dynamic may reduce accessibility for retail participants and shift profitability
towards professional market makers.

2.5. Gnosis Conditional Token Framework (CTF)

The Gnosis Conditional Token Framework (CTF) [30] provides a framework for tokenising
outcomes in prediction markets. Each outcome, represented by a positionId, is issued as a
token conforming to the ERC-1155 standard [31], created by locking some collateral, typically
USDC.

The framework enables users to split collateral into outcome tokens or merge outcome tokens
back into the underlying collateral (see Fig. 2.3). This mechanism is extensively employed
by platforms such as Polymarket. In the CPMM design, when collateral is supplied by a
liquidity provider to the AMM contract, the CTF splits the collateral into an equal number
of complementary outcome tokens, which are then added to the pool. When liquidity is
withdrawn, these outcome tokens are merged to return the underlying collateral to the
provider.

Beyond splitting and merging, the framework also supports two further core functionalities.
First, reporting payouts, which is performed by the designated oracle. Once a market has
resolved, the oracle submits the payout vector for the condition, specifying the share of collat-
eral assigned to each outcome. Second, redemption, which allows holders of outcome tokens
to exchange them for their share of collateral based on the reported payouts. Redemption
can only take place once the condition has been resolved, ensuring that holders of winning
outcome tokens receive their proportional claim.?

By standardising the creation, management, and settlement of outcome tokens, the CTF
simplifies the development of decentralised prediction markets and ensures interoperability
across platforms.

4https://github.com/gnosis/conditional-tokens-contracts
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Splitting Merging
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Figure 2.3.: Gnosis Conditional Token Framework.

2.5.1. ERC-1155 Token Standard

A key technical foundation of the Conditional Token Framework is the ERC-1155 token stan-
dard [31], which was introduced to address limitations of earlier Ethereum token standards,
particularly ERC-20 [32] and ERC-721 [33]. The ERC-20 standard is designed for fungible
tokens, where each token unit is identical and interchangeable with any other. Examples of
such tokens include cryptocurrencies like USDC. In contrast, the ERC-721 standard is used
for non-fungible tokens (NFTs), where each token is unique and can represent distinct assets
such as digital art or collectables.

ERC-1155 builds on these ideas by providing a unified interface that can represent both
fungible and non-fungible tokens within a single smart contract. This means that a single
ERC-1155 contract can manage multiple types of tokens at the same time. For example, it
can issue fungible tokens for in-game currency as well as non-fungible tokens for unique
items or achievements, all under the same contract address. Each token type is identified
by a unique ID, and the contract keeps track of balances for each address and token ID pair.
This approach removes the need to deploy separate contracts for each new token type, as is
required with ERC-20 and ERC-721, which helps reduce both deployment and transaction
costs.

Another important feature of ERC-1155 is its support for batch operations. Functions such
as safeBatchTransferFrom make it possible to execute multiple token transfers in a single
transaction, even if the transfers involve different token types and recipients. This batching
capability reduces the total amount of gas required and improves scalability. It is especially
useful in applications where users may need to transfer many tokens at once, such as in
gaming platforms or digital marketplaces.

To ensure safety and compatibility, ERC-1155 includes mechanisms that require receiving
contracts to explicitly confirm their support for the standard. Specifically, the functions
onERC1155Received and onERC1155BatchReceived must be implemented by contracts that
are intended to receive ERC-1155 tokens. If a token is sent to a contract that does not
implement these functions, the transfer will fail. This prevents tokens from being accidentally
lost by being sent to contracts that cannot process them, which was a more common issue
with earlier token standards.

10



2. Background

ERC-1155 provides a flexible and cost-efficient token model that unifies fungible and
non-fungible tokens under one interface. This reduces complexity for both developers and
users, while also improving scalability and safety. Its adoption within the Conditional Token
Framework enables efficient management of outcome tokens and supports the scalability
required for decentralised prediction markets.

11



3. Prediction Market Structure

Prediction markets can be designed differently depending on how orders are matched and
prices are determined. Common approaches include Automated Market Makers (AMMs) and
Central Limit Order Books (CLOBs). Each design comes with distinct trade-offs, and many
platforms experiment with hybrid models to balance efficiency, decentralisation, and user
experience.

3.1. Prediction Market Mechanisms

The design of a prediction market directly influences liquidity, price discovery, and barriers
to participation.

3.1.1. Price Discovery

How prices are determined in prediction markets depends on the underlying market mecha-
nism. In AMMs, the price is set algorithmically and updates continuously based on the ratio
of outcome tokens in the liquidity pool, moving as traders buy or sell. In contrast, in CLOBs,
prices emerge from the interaction of buyers and sellers, with the prevailing market price
typically reflected by the midpoint between the highest bid and the lowest ask in the order
book.

3.1.2. Liquidity Provision

Liquidity providers, or market makers, are essential to ensure continuous trading. They take
on market risk by maintaining a “two-way quote,” i.e., simultaneously offering to buy and
sell at competitive prices. In traditional financial markets, market makers are compensated
by earning the bid-ask spread. In AMM-based prediction markets, liquidity providers are
rewarded through trading fees, whereas in CLOB-based systems, they can earn both from the
bid-ask spread and from rewards distributed by the platform for supplying liquidity.

In prediction markets, liquidity provision is particularly challenging because providers risk
holding tokens that may become worthless once the market resolves. Adequate liquidity is
therefore critical not only for smooth trading but also for effective information aggregation.
Deep markets reduce transaction costs for arbitrageurs, encouraging their participation and
allowing new information to be incorporated more efficiently, which in turn helps correct
mispricing.

12
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3.1.3. Market Resolution

A market is considered resolved once the final outcome becomes known. Resolution rules are
usually specified before the market opens. Upon resolution, tokens corresponding to losing
outcomes become worthless, while winning tokens settle at $1, and trading is halted.

Different platforms employ different resolution mechanisms. For example, Polymarket
relies on UMA’s decentralised oracle [34]: UMA token holders propose an outcome, which
can be disputed if contested by the community [35]. In contrast, Kalshi' uses dedicated
review teams that interpret market rules and declare the final outcome.

3.2. Centralised Prediction Markets

Historically, most prediction markets have been centralised, with a central operator responsible
for matching bids and asks through mechanisms such as the Continuous Double Auction.
Well-known examples include Bet365 [36], Predictlt [37], and Kalshi [38]. While effective in
some respects, centralisation introduces several drawbacks:

1. Single Point of Failure: Centralised systems depend on a single entity or server. If the
operator’s infrastructure fails, the entire market may become inaccessible.

2. Lack of Transparency: The central operator controls both market data and decision-
making processes. Participants, therefore, lack full visibility into how data is handled
or how disputes are resolved.

3. Higher Costs: Operating a centralised market entails significant overhead, which is
often passed on to users in the form of fees or commissions.

4. Limited Access: Access can be restricted based on geography or regulatory requirements
set by the operator. For example, Kalshi is only accessible to participants within the U.S.
jurisdiction.

5. Market Manipulation: Concentrated control creates the risk of manipulation, whether
by insiders or the operator itself. Academic literature further highlights that participants
with non-public insider information gain an advantage over others [39, 40]. This issue
affects both centralised and decentralised prediction markets, but in centralised systems,
such participants” holdings are not publicly visible, reducing accountability.

3.3. Decentralised Prediction Markets

Decentralised prediction markets are platforms that allow users to trade on the outcome of
future events without relying on a central authority. By leveraging blockchain technology
and smart contracts, these markets enable transparent, permissionless, and trust-minimised

Ihttps://kalshi.com/
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trading of event-based tokens. Participants can buy and sell shares representing different out-
comes, with prices reflecting the collective beliefs of market participants about the likelihood
of each event. This approach not only democratizes access to prediction markets but also
provides a robust mechanism for aggregating information and forecasting real-world events.

3.3.1. Polymarket

Polymarket is the largest decentralised prediction market, handling over $9 billion in trading
volume in 2024 [41]. Launched in 2020 and originally based on the Gnosis CTF framework
(see Section 2.5), the platform gradually transitioned from an AMM-based model to a CLOB
design by the last quarter of 2022.

Older AMM-based design

Until the last quarter of 2022, Polymarket employed a CPMM architecture implemented
through the FixedProductMarketMaker smart contract. This design is based on the founda-
tional CPMM principle where the product of token quantities remains constant: x -y = k,
where x and y represent the quantities of outcome tokens in the liquidity pool, and k is the
invariant constant.

The FixedProductMarketMaker? contract integrates with the CTF to facilitate trading of
prediction market outcomes. The contract maintains pools of conditional outcome tokens,
where each outcome represents a distinct market scenario. Users could interact with the
market through four primary operations: liquidity provision (addFunding), liquidity removal
(removeFunding), token purchases (buy), and token sales (sell).

Price discovery occurs algorithmically through the CPMM formula. The calcBuyAmount
and calcSellAmount functions implement the mathematical relationships that determine
token quantities based on the current pool state.

The contract incorporates a fee mechanism (typically 2%) that is extracted from each
trade and distributed proportionally to liquidity providers based on their share of the total
liquidity pool. Liquidity providers receive ERC-20 LP tokens representing their proportional
ownership of the pool, enabling them to claim accumulated fees and withdraw their share of
the underlying collateral.

The design leverages the Conditional Tokens Framework’s position splitting and merging
capabilities to handle complex multi-outcome scenarios. When liquidity is added, the contract
splits collateral tokens into conditional outcome tokens across all possible market outcomes.
Conversely, when liquidity is removed or trades are executed, the contract merges conditional
tokens back into collateral through the resolution process.

2https://github.com/Polymarket/conditional - tokens-market-makers/blob/a48f865d702bcda35bbl3aeb6c1840eal6453d24,
contracts/FixedProductMarketMaker.sol
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Current CLOB-based design

Currently, on Polymarket, all trades are peer-to-peer. Users bet on event outcomes by
purchasing Yes or No outcome tokens, whose prices reflect the market-implied probability of
that outcome. For example, if a Yes token is priced at $0.20, this implies a 20% chance that the
event will resolve to Yes. The token price is determined by the balance of buy and sell orders.
It is typically set at the midpoint between the highest bid and the lowest ask, or, if the bid—ask
spread is too wide, by the last traded price. All markets on Polymarket are binary, meaning
that every market can be expressed in terms of two mutually exclusive outcomes: Yes or No.
Fig.3.1 depicts the current design of the Polymarket order flow and resolution.

1. Market setup. Each binary market is instantiated in the Conditional Tokens Framework
(CTF). The exchange (CTFExchange) is configured with the ERC20 collateral (USDC) and
the ERC1155 conditional tokens contract; tokenlds for the two complementary outcomes
are registered.

2. User order creation. A trader prepares either a market or limit order (buy or sell of
an outcome token) as EIP-712 typed data. The order specifies maker/taker assets and
amounts (USDC or outcome token), price, expiry, and a base fee rate. The trader signs
the order off-chain.

3. Off-chain matching. The Polymarket’s centralised operator collects signed orders,
matches compatible orders off-chain. When a cross is found, the operator submits
a transaction to the exchange, calling matchOrders with the matched orders and fill
amounts.

4. On-chain settlement (atomic). The exchange transfers assets according to the match:

* Normal path (token < collateral): ERC1155 outcome tokens and USDC are exchanged
between the two parties.

* Mint path (collateral — token set): If both sides provide collateral for complementary
outcomes, the exchange mints a set of complementary tokens (CTF split) and
delivers the requested side to each counterparty.

* Merge path (token set — collateral): If complementary tokens are supplied, the
exchange merges them to collateral and pays out USDC (CTF merge).

5. Resolution. Upon event close, the oracle adapter posts the winning outcome to the CTF
(e.g., via an optimistic-oracle mediated resolution flow with a dispute window). If no
dispute succeeds, the condition is resolved on-chain.

6. Redemption. After resolution, winning outcome tokens are redeemable 1:1 for USDC
(losing tokens redeem to $0).

Shttps://rocknblock.io/blog/polymarket-clob-design
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Figure 3.1.: Polymarket CLOB mechanism and design.’

Unified Order Books

In Polymarket’s binary markets, a single underlying order book governs trading for both
outcomes (e.g., YES and NO). Rather than maintaining separate books for each side, the
platform uses a unified structure where the representation of orders depends on the outcome
being viewed. This means that placing a bid for one outcome automatically appears as an ask
on the complementary outcome’s book, and vice versa.

This is achieved through a simple inversion: bids become asks, asks become bids, and
order prices are adjusted by taking their complement with respect to 1 (i.e., 1 — p) as depicted
in fig.3.2. Importantly, this is purely a visual change; orders themselves are not duplicated
or altered. This design allows for all trading directions (buy/sell for either outcome) to be
fulfilled from a shared liquidity pool, improving efficiency and reducing fragmentation in
binary markets.

Market Resolution

Prediction markets on Polymarket are resolved using UMA'’s Optimistic Oracle (OO)*, which
provides a permissionless mechanism to finalise market outcomes [15]. The OO operates
as an escalation game: proposed resolutions are assumed to be correct unless challenged,

4https://oracle.uma.xyz/
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Figure 3.2.: Unified Order-book on Polymarket.

in which case the dispute is referred to UMA'’s Data Verification Mechanism (DVM), where
tokenholders vote on the correct outcome. This structure allows markets to resolve quickly
when there is agreement, while still providing a robust dispute process when disagreement
arises.

To integrate with conditional tokens, Polymarket employs a custom contract called the
UmaCtfAdapter®. This adapter connects the conditional token framework with the OO and
manages the resolution process. When a market is created, the adapter initialises the resolution
parameters by submitting ancillary data (the market question and clarifications), the reward
amount for proposers, the bond size, and the liveness period during which proposals can be
challenged.

The resolution process unfolds in several stages. Once the outcome of the underlying event
is known, any participant may propose a resolution by submitting a price to the OO together
with the required proposal bond. If the proposal is not challenged within the liveness period,
it is accepted, and holders of winning outcome tokens can redeem them for $1 each. In this
case, the proposer receives their bond back along with the reward for successful resolution.

If another participant disputes the proposed outcome, they must post an equal bond, and
the dispute is escalated. Depending on the implementation, this can trigger either a second
round of proposals or referral to the DVM for a vote among UMA tokenholders. The dispute
process ensures that only well-supported resolutions succeed, while discouraging incorrect
proposals through the risk of bond forfeiture.

The possible outcomes of the dispute process are straightforward. If the proposer is correct,
they recover their bond and receive half of the challenger’s bond as a bounty. If the challenger
prevails, they keep their own bond and receive half of the proposer’s bond. Proposals that are
made prematurely, before the underlying event has concluded, are treated as invalid, with
the challenger rewarded accordingly. In rare cases where the event cannot be clearly resolved,
the market may settle at a predefined fallback, such as a 50/50 outcome.

Shttps://github.com/Polymarket/uma-ctf-adapter
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Market Making Rewards

Polymarket operates a market-making rewards program designed to sustain liquidity across
all active markets. The objective is to incentivise resting limit orders that provide two-sided
depth close to the midpoint price of each market throughout its lifecycle [42]. By rewarding
passive quoting, the system promotes tighter spreads, deeper order books, and balanced
liquidity on both the YES and NO sides of each market.

Eligibility for rewards depends on a market maker’s order placement. Only limit orders
above a minimum size and within a specified distance from the midpoint are considered. The
midpoint is calculated as the average of the best bid and best ask, and each market specifies a
maximum spread threshold. Orders placed outside this range do not contribute to scoring.
An order is eligible for rewards if

midpoint — spread < price < midpoint + spread . .
Once filtered, eligible orders are scored according to three dimensions:

¢ Tightness: Orders closer to the midpoint earn higher scores. A quadratic scoring rule
increases the reward for orders that narrow the spread.

* Size: Larger orders contribute proportionally more to a participant’s score.

¢ Two-sided quoting: Participants providing liquidity on both sides of the book are
rewarded more heavily than those quoting on only one side. Single-sided liquidity is
down-weighted but not excluded.

Scores are sampled at regular intervals and aggregated over a reward epoch. A participant’s
final score in a market, Qepoch, reflects their share of total qualified liquidity during that
period. Rewards for that market are then allocated proportionally, according to

Qe och,i,m
Reward, ,, = =PV X Ry,

Z] eroch,j,m
where R, is the total reward pool allocated to market m.
i indexes the individual liquidity provider, and m indexes the market under consideration.
Rewards are distributed directly to market makers” addresses in USDC.
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The first step involved fetching relevant on-chain data for markets deployed on the AMM:s,
followed by filtering the required events. The processed data was then analysed and used to
generate plots.

For CLOB data, Polymarket’s Gamma API! was used to obtain off-chain order data, since
orders are matched off-chain but settled on-chain.

4.1. Data Gathering

To obtain the list of AMM markets, the Polymarket Subgraphs were utilised. A subgraph[43]
is a custom API built on blockchain data that extracts, processes, and stores information
in a manner that can be efficiently queried using GraphQL. All Split and Merge events, as
well as all Fixed Product Market Maker (FPMM) addresses, were fetched from the Subgraph.
The subgraph IDs used for this analysis were Bx1W4S-n2DiBp? and 81Dm16-£66nyC>. Each
FPMM address corresponds to a market, which is a contract deployed on the Polygon
blockchain. From these contracts, token transfers and transaction details were retrieved using
the Polygonscan APT*. For each transaction, the senders, receivers, and funding-related events
such as FPMMFundingAdded, FPMMFundingRemoved, FPMMBuy, and FPMMSell were extracted
and stored locally in MongoDB. Additional details, such as block metadata, were queried
separately to obtain timestamps and stored in MongoDB.

Listing 4.1: FPMM events

event FPMMFundingAdded(
address indexed funder,
uint [] amountsAdded,
uint sharesMinted

);

event FPMMFundingRemoved(
address indexed funder,
uint[] amountsRemoved,

Ihttps://docs.polymarket .com/developers/gamma-markets-api/overview

’https://thegraph.com/explorer/subgraphs/Bx1W4S7kDVxs9gC3s2G6DS8kANBINVhMyiCtin2DiBp?view=
Query&chain=arbitrum-one

3https://thegraph.com/explorer/subgraphs/81Dm16JjuFSrqz813HysXoUPvzTwE7 fsfPk2RTf66nyC?view=
Query&chain=arbitrum-one

4https://polygonscan. com/
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uint collateralRemovedFromFeePool,
uint sharesBurnt
)3
event FPMMBuy (
address indexed buyer,
uint investmentAmount,
uint feeAmount,
uint indexed outcomelndex,
uint outcomeTokensBought
)3
event FPMMSell(
address indexed seller,
uint returnAmount,
uint feeAmount,
uint indexed outcomelndex,
uint outcomeTokensSold
)3
For the CLOB Polymarket data, the Gama API was utilised to obtain all available market
details. The Subgraph IDs EZCTgS-Mnjm9D® were queried for all OrderFilled events in order
to gather the executed orders for each market. However, the OrderFilled event does not
include the actual makers of the filled order. To identify them, it was necessary to access
the input to the matchOrders function of the CTFExchange contract, which contains the list of
maker orders matched with a taker order. The corresponding matchOrders input for each
filled order was queried using the PolygonScan API using the transaction IDs, and all maker
orders were collected.
The scripts used for querying and storing data are available in the GitHub repository®. The
FPMM’(AMM markets) and CTFExchange®(CLOB markets) can be accessed on GitHub as
well.

Listing 4.2: CTFExchange OrderFilled event and matchOrders function

event OrderFilled(
bytes32 indexed orderHash,
address indexed maker,
address indexed taker,
uint256 makerAssetlId,

Shttps://thegraph.com/explorer/subgraphs/EZCTgSzLPuBSqQcuR3ifeiKHKBnp jHSNbYpty8Mn jmOD?view=
Query&chain=arbitrum-one

®https://github.com/singhparshant/polymarketData

"https://github.com/Polymarket/conditional -tokens-market-makers/blob/a48f865d702bcda35bbl3aeb6c1840eal6453d24,
contracts/FixedProductMarketMaker.sol

8https://github.com/Polymarket/ctf-exchange/blob/00945f5c5a47560bf5764b6d977f2a1ce4e8526d/src/
exchange/CTFExchange.sol
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uint256 takerAssetlId,
uint256 makerAmountFilled,
uint256 takerAmountFilled,
uint256 fee

);

function matchOrders(
Order memory taker(Order,
Order[] memory makerOrders,
uint256 takerFillAmount,
uint256[] memory makerFillAmounts

4.2. FPMM Data Analysis

Based on the events shown in code snippets 4.1, the timeline of transactions on each FPMM
market was reconstructed. Since the amounts being added to and removed from the pool
are available, the state of the pool can be inferred, as the ratio of tokens added to and
removed from the pool represents the current ratio of tokens present. The price of each
token is calculated by taking the ratio of the quantities of the two tokens. When a liquidity
provider transfers the collateral amount (in USDC) to the pool, equal amounts of the two
complementary tokens are minted, and the quantities are rebalanced according to the ratio of
the quantities in the pool. The higher-valued token, which is present in lower quantities in
the pool, is returned to the liquidity provider(Fig.2.1). Therefore, the actual amount in USDC
that becomes locked in the pool is not the full collateral amount, but rather the quantities of
complementary tokens added to the pool multiplied by their respective prices.

4.2.1. Impermanent Loss Calculation

As discussed in Section 2.3.2, impermanent loss refers to the deviation in the value of a
liquidity provider’s collateral in an AMM pool compared to simply holding the tokens. From
on-chain data, the sharesMinted values from funding-added events and sharesBurnt values
from funding-removed events are observed. These represent the provider’s share of the pool
over time.

When liquidity is withdrawn, the realised impermanent loss is given by the difference
between (i) the actual value of tokens removed from the pool, and (ii) the value of the same
proportion of tokens had they simply been held.

The variables are defined as follows:

* g;: Quantity of token i actually withdrawn from the pool.

¢ p;: Current market price of token i.
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* Q;: Quantity of token i that the liquidity provider would hold if they had simply held
their original deposit instead of providing liquidity.

¢ shares_burnt: Number of liquidity pool shares burned (i.e., removed) when liquidity
is withdrawn.

* total_shares_held: Total liquidity pool shares held by the provider prior to with-
drawal.

* token_value: Value of tokens actually withdrawn from the pool, computed as ) ; q; - p;.

® hodl_total_value_now: Current total value of the provider’s original tokens if they had
not been deposited in the pool, computed as ) ; Q; - p;.

® proportion_removed: Fraction of the provider’s pool shares withdrawn, given by

shares_burnt
shares_held *

® hodl_value_removed: Value of the proportion of the original tokens corresponding to
the withdrawn shares.

® Realised IL: Realised impermanent loss, i.e., the difference between the actual with-
drawn token value and the corresponding holding value.

removed_token_value = Zqi “ pi
i

hodl_total_value_now =) _Q; - p;
i

shares_burnt

roportion_removed =
prop - total_shares_held

hodl_value = proportion_removed x hodl_total_value_now

Realised IL = hodl_value — removed_token_value

To calculate the total realised impermanent loss, this loss is summed across all liquidity
removal events and across all markets.

4.2.2. P&L Calculation

Liquidity providers (LPs) earn trading fees by supplying liquidity to the AMM pool. The fee
rate is determined by the market contract creator and typically ranges between 2% and 9%.
However, LPs also face impermanent loss (IL), which occurs when token prices diverge from
the original price at which the tokens were deposited into the pool.
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To obtain a more realistic measure of profitability, both the fees earned and the realised
impermanent loss are accounted for. The effective profit and loss (P&L) of a liquidity provider
across all markets is given by:

Effective P&L = ) Fees, — ) IL,
mem mem

where M denotes the set of markets in which the LP has participated, Fees,, is the total
trading fee earned in market m, and IL,, is the realised impermanent loss in market m
calculated in 4.2.1.

4.3. CLOB Data Analysis

In CLOBs, unlike in AMM-based markets where any participant in a funding add or removal
event is certainly a liquidity provider (since the primary goal is to earn trading fees rather
than to bet on outcomes), the situation differs. In CLOBs, any user can place limit orders in
the order book. This means it is not always possible to distinguish between a user who is
genuinely providing liquidity and one who is simply speculating on future prices. To address
this, users are considered liquidity providers only if they meet two criteria: (i) at least two
buy and sell order matches in each order book in which they participate, and (ii) activity
in at least five different markets. Another clarification: when referring to a “market” in the
context of CLOBEs, this denotes the two complementary order books ("Yes” and "No” tokens)
associated with the same condition ID.

Market makers in CLOB markets earn revenue in two main ways: (i) through spread
capture and (ii) through rewards distributed by Polymarket. To capture revenue from bid-ask
spreads, the market maker places limit orders on both sides of the order book. When passive
orders are matched on both sides, revenue equal to the spread between bids and asks is
earned.

However, market makers face certain risks when providing liquidity on order books:

¢ Directional risk: The risk of holding a position that loses value if the market moves
strongly in one direction. For example, if the market price drifts away from the market
maker’s quoted range, an increasingly unprofitable position may be accumulated.

¢ Inventory risk: This arises when a market maker’s buy and sell orders are not matched
evenly, resulting in an imbalanced inventory of assets. If the price then moves against
this imbalance, losses are incurred.

To manage these risks, market makers must constantly rebalance their inventory and adjust
their bids and asks to avoid excessive exposure to large price swings or inventory imbalances.

4.3.1. Spread Capture P&L Calculations

Spread capture is calculated as the difference between the total value bought and sold by
addresses that act as makers in matched orders. Since every taker order can be matched
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against multiple maker orders (as seen in the input of the matchOrders method discussed in
Section 4.2), all maker orders are iterated over and the net difference between their executed
buys and sells is computed.

This difference, however, does not directly represent the maker’s P&L, as it ignores the
possibility that some tokens may have been acquired earlier as a taker, which would not
appear in the above calculation. To obtain a more accurate measure of P&L, an inventory-
neutral assumption is enforced: the maker should end the calculation with the same inventory
level as at the start (i.e., zero net position).

To achieve this, an adjustment is made for any residual inventory at the end of the
calculation:

¢ If the maker has sold more quantity than bought, it is assumed that the excess inventory
was acquired earlier and is sold off at the last execution price until the inventory returns
to zero.

¢ If the maker has bought more quantity than sold, the excess holdings are liquidated at
the last execution price in order to neutralize the position.

By enforcing a flat inventory, profits attributable purely to spread capture are isolated,
avoiding distortions from directional exposure. This approach enables a more accurate
estimation of P&L for liquidity provision in CLOB markets.

4.3.2. Rewards Distribution

Rewards are distributed daily in USDC by the reward distribution contract 0xc288. All token
transfers from this contract between 2023-11-25 and 2025-07-24 were collected.

Unfortunately, Polymarket does not publish data on which rewards correspond to which
specific markets. In other words, it is not possible to attribute rewards on a per-market basis.
As a result, only the addresses that received the most rewards overall can be identified, but
not the exact markets for which these rewards were earned.
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5. Results

This chapter presents the empirical findings from the analysis of liquidity provision and
market making in both AMM-based and CLOB-based prediction markets on Polymarket.
The results are structured to address the research questions outlined previously, with a focus
on profitability, strategy optimization, and the factors influencing outcomes for liquidity
providers and market makers.

51. AMM

A total of 2,643 unique FPMM markets were observed over the period from October 2020
to November 2024. Approximately 3,000 unique liquidity providers participated in these
markets, resulting in roughly 21,000 unique market-LP pairs.

Average Fees & IL - Log Scale

$100K 4

$25K 1

$15K 1
$10K 7

$5K 1

$2K 1

$1K 1

$500 1

$250 1

$100 1

FPMM Performance: Trading Volume vs Avg. Fee Generation & IL (Binned Analysis)
(1484 FPMMs)

Bins with data: 19
Avg bin size: 78.1 FPMMs
Numbers show FPMM count per bin
4
=@= Average Fees per Bin
93 =@=Average IL per Bin
Volume Bins
$100 $1K $2K $5K $10K $25K  $50K  $100K $250K $500K $1.0M

Total Trading Volume - Log Scale

Figure 5.1.: Average fee earned, realised impermanent loss vs Total Trading volume of FPMM

(Binned analysis)

To understand the effect of trading volume on LP profitability, a line graph (Fig. 5.1) was
plotted, showing the average fees earned and the average impermanent loss on the y-axis

25



5. Results

against the total market volume on the x-axis. Markets with similar volumes were grouped
into bins, with the numbers on the bars indicating the number of markets in each bin. The
results indicate that the average fees earned by LPs increase almost linearly with market
volume, with the highest-volume markets generating nearly $25K USDC in fees on average.
However, the average impermanent loss also rises with volume, and across all bins, the
realised impermanent loss exceeds the fees earned. This suggests that, while higher-volume
markets generate greater fee revenue through increased trading activity, the fees are not
sufficient to offset the realised impermanent loss incurred by LPs.

LP Performance Analysis: Profitability vs Capital Efficiency vs Fees
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Figure 5.2.: Capital efficiency

Having established that higher-volume markets cannot offset the losses for LPs, the rela-
tionship between locking larger amounts of collateral for longer durations and LP profitability
was examined. To this end, a dual-axis graph (Fig. 5.2) was plotted with capital efficiency on
the x-axis, the number of LP-market pairs on the left y-axis, and average fees on the right
y-axis. Capital efficiency is defined as the product of the collateral value supplied by an LP
and the time (in seconds) it remained locked in the pool. For example, an LP providing a
large amount of collateral for a short period may have a lower capital efficiency than one
providing a smaller amount over a longer duration. This measure allows for the evaluation of
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Figure 5.3.: Fee earned vs the duration collateral is locked in the pool

whether locking funds for longer periods can help offset impermanent losses.

The plot (Fig. 5.2) illustrates this relationship: the blue line shows the average fees per
capital efficiency bin, while the bars represent the number of LP-market pairs in each bin,
with green portions indicating profitable pairs and red portions indicating unprofitable ones.
The results show that higher capital efficiency does not lead to improved LP profitability, as
the proportion of profitable LP-market pairs remains roughly constant across all levels of
capital efficiency. Although the average fees earned increase with capital efficiency, there
is no corresponding rise in the share of profitable pairs. This finding reinforces the earlier
observation from the fees-versus-volume analysis; even as fees increase, they are not sufficient
to offset the losses incurred by LPs.

Fees were also plotted against the duration for which collateral remained locked in the pool
(Fig. 5.3). The results show that longer lock-up periods do not improve the profitability of
LPs. In fact, the share of profitable LPs remains roughly constant or even declines as duration
increases. This indicates that extending the lock-up period neither enhances profitability nor
guarantees higher fee income. Instead, fee earnings depend primarily on trading volume, as
well as the interaction between the amount of collateral locked and the duration, but not on
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duration alone.

Top 10 LPs by Fees
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Figure 5.4.: Top 10 highest fee-earning LPs with total fees and realised impermanent losses
across all markets

In Fig. 5.4, the highest fee-earning LPs and the corresponding realised impermanent loss
across all the markets in which they acted as makers are displayed. Although the address
0xfcbe2 earned more than $130K USDC in fees, this amount is dwarfed by the realised
impermanent loss suffered across all markets (>$400K USDC).

In Fig. 5.5, the most profitable LPs across all markets (by numbers) are shown. The
methodology to calculate the P&L was discussed in Section 4. The most profitable LP 0x39ee
earned $8.6K just from a single market. This market was "Will EIP-1559 be implemented on the
Ethereum mainnet by August 5, 20212"1.

As shown in the pie chart in Fig. 5.6, only 26% of individual LPs and about 24% of LP-
market pairs are profitable, highlighting the overall low profitability of liquidity provision
in AMM-based prediction markets. A large share of neutral outcomes among both groups
corresponds to addresses that engaged in Just-in-Time (JiT) liquidity provision but accrued
either zero or negligible fees.

When neutral LPs are excluded and only more involved providers earning at least $10
in fees are considered (Fig. 5.7), the share of profitable addresses increases to 37% among
LPs and 31% among LP-market pairs. Nevertheless, these figures still indicate that liquidity
provision in AMM-based prediction markets is largely unprofitable.

Ihttps://polygonscan. com/address/0x24a8b5b25eb8b2512a94982ede3319ca635936a6
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Figure 5.5.: Top 10 most profitable LPs across all markets.
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Figure 5.6.: Profitability percentage of all individual LPs and LP-market pairs

LP strategies used in AMM-based markets

In Fig. 5.8, a recurring pattern is observed in which an LP repeatedly adds and removes
liquidity within the lifetime of a market. The circles, representing funding removed events,
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LP Profitability Pair Profitability
(554 Unique LPs) (3,924 Total Pairs)

Profitable

Profitable

Unprofitable
Unprofitable

Figure 5.7.: Profitability percentage of individual LPs and pairs of LP and market earning at
least $10 fee.

and the "+’ signs, representing funding added events, often coincide. This behaviour is
common across several LP-market pairs, where liquidity is added and then withdrawn within
a very short period, often within just one to two minutes. Such behaviour is characteristic of
a mechanism known as Just-In-Time (JIT) liquidity [44], also referred to as an LP Sandwich.

Funding Events Timeline

-O- FundingRemoved
—} FundingAdded
i

Number of Events

—2000 —1’750 —1;}00 —1’250 —1000 =75 —5’00 —2’50 0
Hours Relative to Resolution

Figure 5.8.: Funding events timeline

In an AMM, trading fees are distributed proportionally to LPs based on their share of
the pool. If a user can anticipate or detect an incoming trade to the market, liquidity can
be strategically added right before the trade and withdrawn immediately after, effectively
“sandwiching” the trade. While this is not harmful to the trader whose transaction is
sandwiched—in fact, they may even benefit from reduced slippage due to the temporary
increase in liquidity—it negatively impacts passive LPs. The reason is that the fees generated
from the trade are now shared among all LPs, including the opportunistic JIT provider. By
quickly removing liquidity, the attacker avoids exposure to impermanent loss while still
capturing a share of the fees. In practice, such an attacker can monitor the mempool to detect
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Entry Price Distribution for All Profitable LPs (n=517)
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Figure 5.9.: Entry Price Distribution for All Profitable LPs

incoming trades and exploit this mechanism.

Approximately 30,000 transactions were observed in which an LP added liquidity and
subsequently removed it entirely (i.e., withdrew all shares) within a span of five minutes,
capturing a total of roughly $15,000 in fees. While this figure should be interpreted as a lower
bound, since the analysis does not capture every possible JIT liquidity event, it nevertheless
provides strong evidence that such practices were fairly common in AMM-based markets.

Another notable pattern among profitable LPs concerns the state of the market at the
time of entry. As shown in Fig. 5.9, most profitable LPs added liquidity when the market
was already leaning strongly toward resolution, with prices hovering around 75% for one
outcome. This behaviour is consistent with the mechanics of impermanent loss: the potential
loss is maximised when liquidity is provided near 50%, since one of the outcome tokens is
guaranteed to become worthless at resolution. By contrast, entering the pool later, when
prices are skewed toward one outcome, reduces the exposure to this loss.

In other words, by timing entry to coincide with a market that was already partially
resolved, these LPs could limit downside from impermanent loss and rely on fee accrual to
offset the smaller losses incurred.

In Fig. 5.10, the aggregate LP shares (pool tokens) held by all profitable LPs over the life
of each market are plotted. The x-axis tracks market time from creation to resolution. At
each FundingAdded event, newly minted shares are added; at each FundingRemoved event,
shares burnt are subtracted. The series shows a pronounced decline in outstanding LP shares
as resolution approaches, collapsing to (approximately) zero at resolution. This is consistent
with risk management by LPs, where AMM LP shares represent a bundle of outcome tokens,
one of which becomes worthless at resolution. Remaining in the pool through resolution
concentrates risk and can crystallise large losses. Profitable LPs therefore exit shortly before
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Figure 5.10.: Total Share Holdings Across All Profitable LPs vs market completion

resolution and redeem their position back to collateral, avoiding the binary jump after having
earned fees earlier in the market.

5.2. CLOB

A total of 3,100 unique markets were analysed, along with more than 1.2 million matched
order transactions. Nearly 800 unique liquidity providers were identified and analysed.
Fig. 5.11 shows the cumulative and weekly rewards distributed by the rewards contract over
the last 1.5 years. In total, about $9.3 million in rewards were distributed, with the highest
weekly distribution reaching $242.4K in the final quarter of 2024. This can be attributed to
the high trading volumes during this period, particularly due to the US presidential election.

As shown in Fig. 5.12, the top five addresses account for about 22% of all rewards. The single
highest-earning address (0x9d. . 1344) alone received over $1 million in rewards. However,
the remaining 78% of rewards were distributed across many other addresses (46,653 in total),
suggesting that rewards were not overly concentrated among a few large players.

Fig. 5.13 and Fig. 5.14 illustrate how market makers earn revenue through spreads.
For example, the maker (0xal..36d9) places limit orders for the tokens (6241..6338) and
(2939. .8334), which are then executed. The basic strategy is to buy low and sell high,
adjusting bids and asks as token prices move.

The spread depends on both competition in the market and the reward rules. In order to be
eligible to earn rewards, spreads must remain within a certain range specified for each market.
Since Polymarket does not make the order book data (bids and asks) publicly available, only
execution prices are observed. To approximate spreads, opposing trades by the same maker
within a one-hour window are paired, and the average across all such pairs is calculated.
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Figure 5.11.: Weekly and cumulative rewards over time.
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Figure 5.12.: Top 5 reward-earning addresses relative to all others.

From roughly 59,000 observations, an average spread of $0.023 (2.3 cents) is found, which
falls within the typical reward-eligible range of 3 cents.

The P&L of makers was calculated following the methodology outlined in Section 4.3.1.
The results show that the share of profitable individual makers and maker-market pairs is
substantially higher than in AMM-based markets, at 69.7% and 76.1%, respectively.
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Figure 5.14.: Spread 2

It is important to note that these profitability figures are based solely on spread capture and
do not include rewards distributed by Polymarket, as per-market reward data is not publicly
available. Fig. 5.15 illustrates the profits earned through spreads by the top 20 makers.

With the results from Section 5, the research questions introduced in Section 1.3 can now
be addressed.

5.3. Research Questions

Based on the results from Sections 5.1 and 5.2, the research questions detailed in Section 1.3
are addressed as follows.

5.3.1. RQ1: Profitability Factors in AMMs

Research Question: What factors determine the profitability of liquidity provision in AMMs
on Polymarket prediction markets?
The most decisive factor for AMM profitability is the realised impermanent loss. The results
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Top-20 most profitable makers (22 buy/sell trades per market, 25 markets)
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Figure 5.15.: Top-20 most profitable market makers and the number of markets they were
involved in

indicate that most liquidity providers suffer impermanent losses that significantly exceed
the trading fees earned. This effect is particularly pronounced in prediction markets, where
extreme price divergence amplifies impermanent loss.

Passive LPs are therefore at a disadvantage: locking capital in pools for long durations
does not offset impermanent loss, even when higher cumulative fees are earned. In fact, the
highest fee-earning LPs often realise the largest net losses, as their higher capital locking
magnifies exposure to impermanent loss.

5.3.2. RQ2: Strategy Optimization in AMMs

Research Question: How can liquidity providers optimise their strategies to improve prof-
itability in prediction market AMMSs?

One way LPs attempt to mitigate impermanent loss is by adding liquidity when the market
is already leaning toward resolution. Entering at such a stage reduces the potential price
divergence compared to providing liquidity at a balanced 50% state, where one of the tokens is
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Maker-Market Pair Profitability Individual Maker Profitability
(=2 buy/sell trades per market, =5 markets) (=2 buy/sell trades per market, =5 markets)
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Figure 5.16.: Makers profitability comparison

certain to become worthless at settlement. Another effective strategy identified is Just-In-Time
(JIT) liquidity, as discussed in Section 5.1. By providing liquidity only during periods of high
trading activity and withdrawing it quickly thereafter, LPs can capture fees while minimising
exposure to impermanent loss. Shorter provisioning windows, timed to coincide with bursts
of trading volume, prove to be far more profitable than long-term passive liquidity provision.

5.3.3. RQ3: Profitability in CLOB Market Making

Research Question: What determines the profitability of market-making strategies in Central
Limit Order Books for prediction markets?

In CLOBs, market makers earn primarily through spread capture and through the liquidity
rewards distributed by Polymarket. Successful makers continuously adjust their bids and
asks to avoid excessive inventory accumulation and to maintain a balanced flow of buys and
sells, which maximises revenue from spreads.

From the reward formula, it is established that rewards increase with the square of the
distance from the mid-price, while makers placing orders on both sides of the book earn
proportionally more than those quoting on a single side. Thus, active order management and
balanced quoting are key drivers of profitability.
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6. Discussion

This thesis examines how the design of decentralised prediction markets affects the profitabil-
ity of liquidity providers (LPs). The analysis is based on historical data from Polymarket, the
largest decentralised prediction market, covering its transition from an AMM-based design to
a CLOB-based design. The focus was on comparing the outcomes for LPs under both models.

The two main designs implemented so far are Automated Market Makers (AMMs) and
Central Limit Order Books (CLOBs). A key drawback of AMM-based designs is impermanent
loss. The results show that, on average, the impermanent losses suffered by LPs consistently
outweigh the fees they earn, across all market sizes and volumes. Simply providing liquidity
for longer durations or in larger amounts does not reduce this issue. Impermanent loss
grows when the prices of the tokens in the pool diverge from their initial ratio. This effect is
particularly severe in prediction markets because one of the two tokens eventually becomes
worthless when the market resolves. As a result, LPs are often left holding only the worthless
token due to the mechanics of the AMM pool.

Some strategies were observed among LPs to limit or avoid impermanent loss. One such
approach is “Just-in-Time” (JIT) liquidity provision, where LPs add and remove liquidity over
short periods to capture fees from large trades. Another common strategy is withdrawing
liquidity as the market approaches resolution. The most profitable LPs were typically those
who exited their positions before market resolution, thereby avoiding being left with the
worthless token.

In contrast, under the CLOB design, LPs earn through two channels: spreads and rewards
distributed by Polymarket. LPs adjust their bid and ask quotes as market prices shift, with
the aim of avoiding large imbalances in their token inventory. The observed average spread
was around three cents, suggesting that LPs are primarily focused on both capturing rewards
and earning from spreads.

Overall, LP profitability in the CLOB design is significantly higher than in the AMM design.
In AMMs, trading fees alone were not sufficient to offset the impermanent losses incurred
by LPs. By comparison, the CLOB model offers greater profitability, but it requires active
participation. LPs must continuously update their bids and asks to remain competitive,
whereas in AMMs liquidity is provided passively and prices are set algorithmically.

There are other AMM designs, such as Uniswap’s concentrated liquidity model, which
may offer better outcomes for LPs and could be explored further in the context of prediction
markets. The precise algorithms used by LPs in the CLOB setting could not be identified
due to the lack of detailed quote-level data for each LP. Access to such data would provide a
clearer understanding of how LPs place resting orders and manage their strategies within the
CLOB design.
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Alternative AMM Pool Designs and Their Impact on LP Profitability

Polymarket’s AMM design was based on a pool containing “Yes” and “No” tokens, whose
prices diverge to extreme levels as the market approaches resolution. Specifically, as the
outcome becomes certain, one token approaches a value of zero while the other approaches
$1. This dynamic results in severe impermanent loss for LPs, as they are left holding only the
token that becomes worthless at settlement.

An alternative design that could mitigate this issue involves using pools composed of
collateral and a single complementary outcome token, such as USDC/Yes and USDC/No
pools. In this structure, each pool contains the stable collateral (e.g., USDC) and only one
outcome token. For example, in a USDC/Yes pool, the price of the “Yes” token would move
between zero and one USDC as the market evolves, but the USDC side of the pool would
remain stable. This reduces the extent of price divergence compared to the Yes/No pool,
where one token’s value collapses entirely.

To illustrate, consider an LP that provides liquidity to a USDC/Yes pool. If the market
moves in favour of “Yes,” the price of the “Yes” token increases, and the LP’s share of USDC
decreases while their share of “Yes” tokens increases. However, since USDC retains its value,
the LP is not exposed to the risk of holding a completely worthless asset. The maximum
impermanent loss is therefore less severe than in a Yes/No pool, where the LP could end
up with only the losing token, which is worth nothing. This design could provide a more
balanced risk profile for LPs and potentially improve their profitability.

Another promising direction for improving LP outcomes in AMM:s is the adoption of
dynamic fee mechanisms. Unlike traditional AMMSs that charge a fixed fee on each trade,
dynamic fee models adjust trading fees in real time based on market conditions such as price
volatility or deviations from external reference prices. By increasing fees during periods of
high volatility or when arbitrage opportunities are more likely, these models make arbitrage
less profitable and help recapture more value for LPs. Protocols like Arrakis' and HOT AMM?
have implemented such mechanisms, with fees rising as the risk of loss-versus-rebalancing
(LVR)[45] increases.

Concentrated Liquidity AMMs

Another AMM model that could enhance LP profitability is the concentrated liquidity
model, as implemented in Uniswap v3 [46]. In this design, LPs can specify a price range
within which their liquidity is active, rather than providing liquidity across the entire price
spectrum. This allows LPs to concentrate their capital in the price ranges where most trading
occurs, thereby increasing their share of trading fees and reducing exposure to impermanent
loss outside their chosen range.

For example, in a prediction market, an LP might choose to provide liquidity only in the
price range where the market is most likely to trade, based on current information or their
own beliefs. If the market price remains within this range, the LP earns a higher proportion
of fees relative to the amount of capital deployed. If the price moves outside the specified

1https ://arrakis.finance/blog/the-amm-renaissance-how-mev-auctions-and-dynamic-fees-prevent-1lvr
’https://arrakis.finance/blog/hot-the-mev-aware-amm-built-to-empower-1lps-is-live
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6. Discussion

range, the LP’s liquidity is no longer active, which limits further exposure to impermanent
loss. This targeted approach can be more capital-efficient and may result in better outcomes
for LPs, especially in markets with volatile or skewed price movements.
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7. Conclusion

The mechanisms and designs of prediction markets play a central role in shaping liquidity
provision, participant incentives, and profitability. An analysis of Polymarket before and after
its transition in the last quarter of 2022 from an AMM-based design to a CLOB-based design
provides important insights into these dynamics.

The AMM-based design of Polymarket was found to be largely unprofitable for liquidity
providers. In most cases, the trading fees earned were insufficient to offset impermanent loss,
which became realised once liquidity was withdrawn. Certain strategies were employed by
liquidity providers in an attempt to mitigate these losses, such as late entry into markets to
reduce exposure, removing liquidity near resolution or the use of Just-in-Time (JIT) liquidity,
where liquidity was temporarily added immediately before trades and removed afterwards
to capture fees. While these strategies occasionally yielded positive outcomes, they did not
fundamentally alter the overall unprofitability of AMM-based prediction markets.

In contrast, the transition to a CLOB-based design substantially improved outcomes for
liquidity providers. Profitability increased as liquidity providers were able to consistently
earn from both the bid—ask spread and platform rewards. Over the past 1.5 years, the top
5 addresses receiving Polymarket rewards accounted for approximately 22% of the total
rewards distributed, with the highest-earning address capturing around 11%. The remaining
78% of rewards were distributed among other addresses, indicating that reward distribution
has not yet become highly centralised. This suggests that smaller participants are still able to
obtain rewards by providing liquidity to the order book. The dual source of income rendered
the CLOB model significantly more favourable compared to the AMM model.

These findings underscore the critical importance of market design in determining the
sustainability of liquidity provision and the efficiency of information aggregation in prediction
markets.

40



8. Future Work

Several directions remain open for future research. One is to conduct a more detailed study
of Just-in-Time (JIT) liquidity strategies on Polymarket, quantifying how much profit liquidity
providers were able to generate through such practices. This would help establish the extent
to which JIT liquidity was prevalent in Polymarket transactions.

For the CLOB-based design, our analysis was limited to executed trades, as we did not
have access to the full order book, including bids and asks placed by market makers. Access
to such data, along with detailed information on market-specific rewards distributed by
Polymarket, would enable a clearer understanding of the algorithms and quoting strategies
employed by sophisticated market makers when adjusting their bid—ask spreads.

Beyond Polymarket, future work could also explore and compare other prediction market
designs, such as Augur or Limitless, examining how their mechanisms differ and how these
differences affect the profitability and behaviour of liquidity providers.
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A. Apendix

A.1. Top 20 Most Profitable Makers by spread capture (CLOB)

Table A.1.: Top 20 Most Profitable Makers by spread capture (CLOB)

Rank Maker Address PnL (USDC) Markets Total Trades Buy Trades Sell Trades

1 0x9f4..af93 295,900 35 15,859 15,179 680
2 0x3cf..87b3 286,100 734 44,890 30,181 14,709
3 Ox15a..bf5d 226,400 7 617 429 188
4 0xd42..047d 216,000 754 39,684 27,823 11,861
5 0x30e..5102 151,600 278 8,982 4,833 4,149
6 Oxe5c¢..d3e7 124,400 11 2,968 2,074 894
7 Ox44c..ebcl 111,600 48 1,535 868 667
8 0x8a4c..532b 101,500 89 4,263 2,514 1,749
9 0x47bc..c043 99,900 46 1,460 1,017 443
10  0xc615..221d 67,200 61 1,609 871 738
11 0x24c8..el 65,400 322 16,132 11,142 4,990
12 0xc620..da3 48,500 49 2,598 1,435 1,163
13 0x7bda..21b 47,200 17 2,557 2,320 237
14  Oxald7.17e 45,100 41 7,361 3,969 3,392
15  Oxflbb..f09 40,600 41 1,009 561 448
16  0xc8c8..407 39,900 8 365 256 109
17 0Oxc41l..aa7 37,400 6 312 292 20
18  0xa710..173 36,700 11 512 382 130
19  0x6356..885 36,200 321 15,597 8,776 6,821
20  0x579a..6d5 34,900 79 1,517 999 518

Note: Makers with >2 buy and >2 sell trades per market, >5 markets total.
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A. Apendix

A.2. Top 10 LPs by Net Profit (AMM)

Table A.2.: Top 10 LPs by Net Profit (AMM)

Rank LP Address Fees (USDC) IL (USDC) Net Profit (USDC) Markets
1 0x39ee..177 11,200 -2,600 8,600 1
2 0xf130..6ab 14,000 -7,300 6,700 143
3 0x3d8a..724 18,700 -15,700 3,000 53
4 0x4£70..185 3,800 -1,400 2,400 125
5 0xc941..0b 2,600 -300 2,300 17
6 0x74ae..0c 2,200 -200 2,100 15
7 0x8a4c..32b 9,100 -7,400 1,700 184
8 Oxcf5c..al 4,000 -2,400 1,600 17
9 0x5489..18a 2,200 -700 1,500 5
10 0Ox5dee..35f 2,900 -1,500 1,300 1
Note: Net Profit = Fees - |IL 1. IL values are negative indicating losses.
A.3. Top 10 LPs by Fees (AMM)
Table A.3.: Top 10 LPs by Fees (AMM)
Rank LP Address Fees (USDC) IL (USDC) Markets
1 Oxfcbe..a8b 130,600 -488,800 423
2 0xd7a3..f3c 115,200 -379,900 101
3 0x19bc..834 67,200 -321,500 334
4 0x730a..0fe 52,800 -120,600 26
5 Oxbabe..598 51,500 -155,200 68
6 0xb9eb..b05 36,100 -167,000 6
7 Oxfef5..fb5 35,600 -57,300 42
8 0x0b00..69d 34,800 -148,000 102
9 0x8ad5..a26 28,100 -94,900 173
10 0x6431..f1f 26,200 -31,900 77

Note: Net Profit = Fees - |IL|. IL values are negative indicating losses.
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A. Apendix

A.4. Top Rewards-Earning Addresses

Table A.4.: Top Rewards-Earning Addresses (Dec 23-Aug "25)

Rank Address Rewards (USDC) Share
1 0x9d84..1344 1,011,500  9.9%
2 0x7789..£823 289,343  2.8%
3 0x3cf3..87b3 264,727  2.6%
4 Oxlcfc..2111 247471  2.4%
5 Ox6b7e..4562 217,238 2.1%
6 0x96b5..f5e7 208,028  2.0%
7 Oxc8ab..6418 191,250 1.9%
8 0Ox4cc3..7552 183,953 1.8%
9 0xd42f..047d 171,122 1.7%

10  0x6356..1885 145,887  1.4%
Others 72M  71.2%
Total 9.1M
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