Pre-meeting for Development of LLM-driven GUI Agents

Dr. Shengcheng Yu

Chair of Software Engineering & AI School of CIT, TUM

shengcheng.yu@tum.de
https://www.cs.cit.tum.de/en/seai/homepage/

Course Info

- **Pre-meeting time**: 10.07.2025
- **Deadline for preference list**: 20.07.2025
 - Basic information + Motivation statement
 - https://forms.gle/4C2xisLD4UehtuGn8
- Dropping out deadline: 19.10.2025 (one week after semester starting)
- **Upper student limit**: 12 (3*4groups)
- **Course time**: *expected* Mon 16:00 17:30

Context

- Development of AI agents that autonomously interact with graphical user interfaces (GUI)
- Combination of:
 - Large Language Models (LLMs)
 - GUI Automation
 - Computer Vision
- Evaluation on standardized benchmarks

Content

ТШП

- Learn about state-of-the-art LLM-driven GUI agents
- Implement an agent for a selected benchmark
- Evaluate and document the results
- Project Focus:
 - Implementation: Building agents that can autonomously interact with GUIs
 - Benchmark Performance: Meeting specific task criteria
 - Evaluation: Comparing against baseline metrics

Example Benchmark: OSWorld

- Real-world GUI tasks across platforms
- 369 standardized tasks (web, desktop, file operations)
- Current SOTA: 38.1% success rate
- Provides reproducible evaluation metrics
- See: <u>https://os-world.github.io</u>

> Structure

- Foundation Phase
 - Introduction to LLM-driven GUI agents
 - Overview of relevant technologies and frameworks
 - Formation of groups (2~3 people) and selection of benchmark
- Research & Prototype Phase
 - Working on prototypes
 - Weekly meetings with assigned tutor
 - Midterm presentation (10%) progress check
- Implementation Phase
 - Complete implementation (50%)
 - Benchmark evaluation and documentation (30%)
 - Final presentation (10%) demonstrating achievements

> Expectation

ТШП

- Working Prototype
 - Demonstrable on real examples
 - Reproducible results
 - Well-structured implementation
- Documentation
 - Clear code structure
 - Key methods explained
 - Setup and usage instructions
- Presentation
 - Midterm: Show clear progress and planning
 - Final: Demonstration of achievements

Additional Information

- All implementations should use open-source LLMs
- Computing Resources
 - Three NVIDIA RTX 4090 GPUs available for student use
 - Dedicated for running open-source LLMs
 - Suitable for models like:
 - Llama variants
 - Mistral
 - DeepSeek R1

Q & A

Contact

Dr. Shengcheng Yu

shengcheng.yu@tum.de
https://www.cs.cit.tum.de/en/seai/homepage/
https://www.seysc.com