
Static Analysis:
Automated Bug Hunting and Beyond

Julian Erhard Michael Schwarz
{julian.erhard, m.schwarz}@tum.de

Chair for Formal Languages, Compiler Construction, Software Construction
Department of Informatics

Technical University of Munich

Summer Term 2022



Writing programs is hard.



Writing correct programs is very hard.



Testing

I Widely successful

I Can be automated to some extent

I Can only show that there are bugs, not their absence



Machine-verified proof (e.g. Isabelle)

I Can show bugs & their absence

I A highly manual process requiring highly trained people

I Problem with proof and implementation diverging



Static Analysis

I Fully automated

I Can show absence of certain classes of bugs

I Runs directly on the input program

I Abstract Interpretation, Model Checking, ...



Static Analysis

I Fully automated

I Can show absence of certain classes of bugs

I Runs directly on the input program

I Abstract Interpretation, Model Checking, ...



Abstract Interpretation

I Widely used both in Academia & Industry

I Can scale to huge industry-scale codebases

I The technique covered in Program Optimization Course
(IN2053)



Goblint

I Analysis of multi-threaded, real-world C

I Efficient solvers for computation of fixpoints

I https://goblint.in.tum.de

https://goblint.in.tum.de


Topics

I Abstract domain for floating point numbers
I Important part of many programs, especially embedded
I We have various domains for integers, but none for floats

I More expressive integer domains for detection of overflows
I Integer overflow for signed types is undefined behavior in C
I e.g. Interval Sets

I Tooling surrounding Goblint
I Present analysis results to developers / users
I Web-based frontend leveraging Js of ocaml



Topics

I Abstract domain for floating point numbers
I Important part of many programs, especially embedded
I We have various domains for integers, but none for floats

I More expressive integer domains for detection of overflows
I Integer overflow for signed types is undefined behavior in C
I e.g. Interval Sets

I Tooling surrounding Goblint
I Present analysis results to developers / users
I Web-based frontend leveraging Js of ocaml



Topics

I Abstract domain for floating point numbers
I Important part of many programs, especially embedded
I We have various domains for integers, but none for floats

I More expressive integer domains for detection of overflows
I Integer overflow for signed types is undefined behavior in C
I e.g. Interval Sets

I Tooling surrounding Goblint
I Present analysis results to developers / users
I Web-based frontend leveraging Js of ocaml



Benefits

I Deepen your understanding of
I The Semantics of C and typical programming errors
I Static Analysis by Abstract Interpretation

I Train your functional programming skills

I Give some insights into developing a research prototype



Format

I Teams of 2-4 students

I Course will take place throughout the semester

I (Bi-)weekly meetings with us, default in person
I Presentation at the end (one day, all groups)

I Attendance & Active Participation mandatory(!)



Requirements

I Program Optimization Course (IN2053)

I Knowledge of a functional programming language (we use
OCaml)

I Be in your Master’s (Advanced Bachelor’s students welcome)



Questions?


	Introduction

