
Static Analysis:
Automated Bug Hunting and Beyond

Michael Schwarz Julian Erhard
{m.schwarz, julian.erhard}@tum.de

Chair for Formal Languages, Compiler Construction, Software Construction
Department of Informatics

Technical University of Munich

Summer Term 2021



Writing programs is hard.



Writing correct programs is very hard.



Testing

I Widely successful

I Can be automated to some extent

I Can only show that there are bugs, not their absence



Machine-verified proof (e.g. Isabelle)

I Can show bugs & their absence

I A highly manual process requiring highly trained people

I Problem with proof and implementation diverging



Static Analysis

I Fully automated

I Can show absence of certain classes of bugs

I Runs directly on the input program

I Abstract Interpretation, Model Checking, ...



Static Analysis

I Fully automated

I Can show absence of certain classes of bugs

I Runs directly on the input program

I Abstract Interpretation, Model Checking, ...



Abstract Interpretation

I Widely used both in Academia & Industry

I Can scale to huge industry-scale codebases

I The technique covered in Program Optimization Course
(IN2053)



Goblint

I Analysis of multi-threaded, real-world C

I Efficient solvers for computation of fixpoints

I https://goblint.in.tum.de

https://goblint.in.tum.de


Topics

I Integer Domains
I Congruences
I Octagons
I . . .

I Undefined Behavior
I Null-Pointer-Dereference
I Access-Out-Of-Bounds
I . . .



Example 1

Program correctness may depend on relational information
between variables:

void main() {

int n = rand (); // Initialize to random value

if(n<0){

return;

}

int i = 0;

for(; i<n; i++){

printf("foo\n");

}

if(i != n)

crash (); // Something went horribly wrong

}

−→ Use Octagon domain for relational information



Example 1

Program correctness may depend on relational information
between variables:

void main() {

int n = rand (); // Initialize to random value

if(n<0){

return;

}

int i = 0;

for(; i<n; i++){

printf("foo\n");

}

if(i != n)

crash (); // Something went horribly wrong

}

−→ Use Octagon domain for relational information



Octagon Domain

I Store conjunction of constraints of the form ±X ± Y ≤ c
where X and Y are program variables, and c is an integer.

I More precise information than intervals, but also more
computationally expensive



Example 2

#include <stdlib.h>

#define LENGTH 10

int main (){

int *values = malloc(LENGTH * sizeof(int ));

int i;

for(i=0; i<LENGTH; i++){

values[i] = i;

}

for(i=0; i<LENGTH; i++){

values[i] = values[i]+ values [(i%LENGTH )+1];

}

free(values );

}

The values array is accessed outside its bounds!



Example 2

#include <stdlib.h>

#define LENGTH 10

int main (){

int *values = malloc(LENGTH * sizeof(int ));

int i;

for(i=0; i<LENGTH; i++){

values[i] = i;

}

for(i=0; i<LENGTH; i++){

values[i] = values[i]+ values [(i%LENGTH )+1];

}

free(values );

}

The values array is accessed outside its bounds!



Benefits

I Deepen your understanding of
I The Semantics of C and typical programming errors
I Static Analysis by Abstract Interpretation

I Train your functional programming skills

I Give some insights into developing a research prototype



Format

I Teams of 2-4 students

I Course will take place throughout the semester

I (Bi-)weekly meetings with (one of) us
I Presentation at the end (one day, all groups)

I Attendance & Active Participation mandatory(!)



Requirements

I Program Optimization Course (IN2053) (or a similar course at
another university)

I Knowledge of a functional programming language (we use
OCaml)

I Be in your Master’s (Advanced Bachelor’s students welcome)



Questions?



Further Reading

International standard ISO / IEC 9899:1999 Programming
languages C - technical corrigendum 3 - Committee Draft.
ISO, 2007.
URL: http://www.open-std.org/jtc1/sc22/wg14/www/
docs/n1256.pdf.

Antoine Miné.
The octagon abstract domain.
In Elizabeth Burd, Peter Aiken, and Rainer Koschke, editors,
Proceedings of the Eighth Working Conference on Reverse
Engineering, WCRE’01, Stuttgart, Germany, October 2-5,
2001, page 310. IEEE Computer Society, 2001.
URL: https://doi.org/10.1109/WCRE.2001.957836,
doi:10.1109/WCRE.2001.957836.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
https://doi.org/10.1109/WCRE.2001.957836
http://dx.doi.org/10.1109/WCRE.2001.957836

	Introduction

