Static Analysis: Automated Bug Hunting and Beyond

Julian Erhard Michael Schwarz
{julian.erhard, m.schwarz}@tum.de

Chair for Formal Languages, Compiler Construction, Software Construction
Department of Informatics, Technical University of Munich

Summer Term 2023
Writing programs is hard.
Writing correct programs is very hard.
Demo
Abstract Interpretation

- Widely used both in Academia & Industry
- Can scale to huge industry-scale codebases
- The technique covered in Program Optimization Course (IN2053)
- Analysis of **multi-threaded**, real-world C
- Efficient solvers for computation of fixpoints
- Winner of **race-detection category** at *Software Verification Competition 2023*
- https://goblint.in.tum.de
Static Analysis: Automated Bug Hunting and Beyond
Topics

- **Termination analysis**
 - Loops & recursion as sources of non-termination
 - Loops: Introduce ghost variables (c.f. ranking functions)
 - Recursion: Check abstract call graph for cycles
Topics

- **Termination analysis**
 - Loops & recursion as sources of non-termination
 - Loops: Introduce ghost variables (c.f. ranking functions)
 - Recursion: Check abstract call graph for cycles

- Analyzing **C11** code: C11 finally gaining traction
 - How can the analysis profit from new features such as `thread_local` variables?
 - New threading library with support for different weak memory models
Benefits

- Prevent the next starship from exploding (maybe)
- Deepen your understanding of
 - The Semantics of C and typical programming errors
 - Static Analysis by Abstract Interpretation
- Level up your functional programming skills
- Become connected to the research we do day-to-day
- Program Optimization Course (IN2053)
- Knowledge of a functional programming language (we use OCaml)
- Be in your Master’s (Advanced Bachelor’s students welcome)
Questions?
github/goblint/analyzer