TECHNISCHE UNIVERSITÄT MÜNCHEN SCHOOL of COMPUTATION. INFORMATION and TECHNOLOGY

Language Desing: Internals of Kotlin Kickoff

Dr. Michael Petter, Yannick Stade

SS 2023

Organization

Schedule

Jan. 31st Pre-course meeting

Apr. 3rd Kick-off meeting with topic revealing

Apr. 11th Submission of topic ratings

Today Introductory meeting

Until May 12th At least 1 individual meeting

(contact your supervisor to set a date, send any references you want to

discuss in advance)

Jun. 14th Draft paper submission

Jun. 19th Review submission

Jun. 28th Final paper submission

Jul. 12th Talks

Deliverables and Grading

- ► Report (40%)
 - ▶ 5-7 pages
 - ▶ use the provided double-column LaTeX-template
- ► Presentation (40%)
 - ▶ 20-25 min
- ▶ 2 Reviews (20%)
- ► We will use grading rubrics (and let you know beforehand)
- ▶ It is mandatory to be present during the 2-3 days of presentations

Literature

Citable Literature

Good to use

- Papers (conf./journal)
- ► Books, book chapters
- Published articles
- Manuals

Try to avoid

- ► Websites, Blog articles
- Wikipedia
- Advertisements
- Lecture slides and notes
- Source code

Finding literature

- ► Kotlin KEEP
- ▶ Starting points: DBLP, IEEExplore, ACM DL, Google Scholar, . . .
 - Select appropriate keywords
 - ▶ Many papers/books accessible freely via the library / TUM VPN/Proxy
- Graph algorithms
 - Publications of the same author(s)
 - Publications at the same venue
 - Cites . . . (listed references)
 - Cited by ...
- Relevant conferences: POPL, PLDI, ICFP, OOPSLA, (TACAS, CAV)
- Another starting point: your advisor

How to read a paper

Run 1:

- Abstract
- ▶ What does the paper present? (technique/tool/...)

Run 2:

- ► Abstract + Introduction + Conclusion
- ► Skim the rest, no details

Run 3:

► Full text in detail

How to read a paper

- Keep notes and questions as you read
- ▶ While reading, try out concepts/codes, recompute/check examples
 - annotate/highlight the paper, on whatever suits you
 - → do not blindly accept everything for granted
- Try to summarise it with your own words
 - don't copy or look at the abstract
- ► Make a list of contributions & limitations
- What are the key ideas and insights?
 - may not be the same!
- ▶ What is new?
 - you don't have the background, but try to 'derive' from the paper/related work itself

Scientific Writing

Writing Style

- Writing for Computer Science, Justin Zobel, Springer 2014 (→ online access via https://opac.ub.tum.de)
- ► Factual, precise, focused
 - Stay on topic, no storytelling, . . .
 - Limit to important and necessary topics
 - Don't omit necessary prerequisites
- → hold back on baseless opinions and presumptuous phrasing ("it is well established, that")
- Avoid forward references
- Avoid I, prefer we (or passive voice)
- 'We' only describes the authors, not the reader

Citing

- ▶ All work that is not yours must be cited
 - Clearly describe the source
 - ▶ But: no wrong/inaccurate attributions
- Citing styles:
 - Literal (direct) quote
 - ▶ indirect quote (rephrase) ← strongly preferred
- Exception: foundations can be assumed (generally first few Bachelor semesters)

Citing: Examples

The $\times 86$ architecture defines the register CR2 [1].

The x86 architecture defines the register CR2. It can be used with the instruction MOV. [1]

Valgrind [1] is a tool for run-time instrumentation.

Other approaches [1,2,3] ...

The x86 architecture defines the register CR2 ~\cite{intel2019man}.

The x86 architecture defines the register CR2. It can be used with the instruction MOV. ~\cite{intel2019man} (paragraph)

Valgrind \cite{nethercote2007} is a tool for run-time instrumentation.

Other approaches \cite{foo,bar,baz} \dots

Seminar Report

- ▶ like a *Review Paper*
- Abstract: brief summary of the area, problem, approach
- ▶ Introduction: problem statement, motivation, . . .
- Background: required prerequisites
- ► Main part: summarize/explain different approaches, show applications/examples, evaluation, comparison, discussion
- Summary and outlook

Reviews

Review

- ▶ short summary 1-2 paragraphs
- obligatory: positive feedback
- ▶ if necessary: negative critical feedback
 - in a constructive form,
 - if feasible with suggestions for improvement
- ightarrow do not shy away from critical feedback, as long as you stay factual

Presentation

Content Selection

Presentation for the audience!

- What do you want the audience to take away? (Not: what can I talk about!)
- What are the key points?
- ▶ How much content fits into the time slot?
 - ! Do not be afraid to reduce the amount of content, however:
 - make sure that you mention at least some crucial contribution
 - do not conceal problematic content
 - introduce background information by need, not for the sake of it

Structure

For example:

- Motivation
 - ▶ Why is the topic relevant? Consider an eye-opening example
- Background
 - ► Consider referencing information from previous talks
- Concept
 - Use good/helpful examples, preferably running examples
- Evaluation
 - ► How good is the described concept?
 - Critical discussion of the topic
- Conclusions and outlook

Media

- Slides
 - For illustration purposes during the talk
 - Good to prepare elaborate examples and diagrams
 - ▶ Backup slides as preparation for questions
- ▶ Whiteboard, blackboard
 - Sticky place for permanently needed information
 - ▶ Helps to retrace the development of an example/diagram/code/algorithm execution
 - Answering questions
 - Spontaneously involve the audience
- ► Hardware, demonstration projects, etc.
- Check possibilities in advance

Slides: Style

- ► Title page: Title, name, institution, date, location
- On every other slide: number and title
- One topic per slide
- Avoid text
 - ► < 10 lines
- Prefer graphics/illustrations
 - You may copy figures from the paper
- ► No unused points
 - Cover everything on the slides in your talk (i.e. not only mention but explain)
 - ▶ If not covered, remove!

Slides: Colors

- Few colors
 - Use colors sparingly, but systematically
- Sufficient contrast
 - ▶ Dark on white
 - ► Be careful with gradients
- ► Use special effects **only** when necessary
 - ► No annoying backgrounds (wave textures, etc.)
 - ► Animations only with sufficiently added value

Before the Talk

- ▶ Prepare slides, practice live examples/demonstrations, etc.
- Do a timed dry-run
 - Always recommended
 - ▶ Helps with uncertainity and time estimation
- Prepare on-site
 - Laptop, Beamer, laser pointer, clock, etc.

Talking Style

- ► Speak freely, with elevated volume
- ► Don't go too fast/slow
- ► Stay in contact with the audience
 - Eye contact, position, body posture, gestures etc.
 - Do not drink in the middle of a sentence, wait e.g. until a slide changes
- Usually at least 1 minute per slide
- Stay in time limit
 - Optional slides can fill time
 - Regularly consult a watch
- ▶ Stay calm, without radiating boredom or disdain