Static Analysis:
Automated Bug Hunting and Beyond

Profiling & Tuning
Large Functional Programs

Julian Erhard Michael Schwarz
{julian.erhard, m.schwarz}@tum.de

Chair for Formal Languages, Compiler Construction, Software Construction
Department of Informatics, Technical University of Munich

Winter Term 2022/2023

Writing programs is hard.

Writing correct programs is very hard.

Testing

» Widely successful
» Can be automated to some extent

» Can only show that there are bugs, not their absence

Machine-verified proof (e.g. Isabelle)

» Can show bugs & their absence
» A highly manual process requiring highly trained people

» Problem with proof and implementation diverging

Static Analysis

» Fully automated

» Can show absence of certain classes of bugs
» Runs directly on the input program

> Abstract Interpretation, Model Checking, ...

Static Analysis

» Fully automated

» Can show absence of certain classes of bugs
» Runs directly on the input program

» Abstract Interpretation, Model Checking, ...

Abstract Interpretation

» Widely used both in Academia & Industry
» Can scale to huge industry-scale codebases

» The technique covered in Program Optimization Course
(IN2053)

GOBLINT

» Analysis of multi-threaded, real-world C
» Efficient solvers for computation of fixpoints
> https://goblint.in.tum.de

https://goblint.in.tum.de

Example

3 FEile Edit Selection View Go Run Terminal Help example2.c - GobPie-DemoProject - Visual StudioCode [([08 — O X
@ ¢ eomple2c3u x S @b e 0 -
src> € examplezc > @ main)

o) Z I
»

3 int read_from_array(int *arr, int index) { |
® 4 return arr[index];

5)

6 L

7 int mainQ{

8 int arr[25]; 1

10 for(int i = 0; i < 25; i+){
11 arr[i] = 0;

+

13 int x = arr[25];

V@R E

14 int y = read_from_array(arr, -1);
15 return y;
16 |
17
OUTPUT DEBUGCONSOLE PROBLEMS @) TERMINAL v &= Ax
v € example2c s @
® ified p C/c++(1027) [Ln1, Co
® [Behavior > Undefined > GobPie [Ln 4, Col 3]
@ ® [Behavior > Undefined > ArrayOutOfBounds > PastEnd] Must access array past end GobPie [Ln 13, Col 7]

&

Bl ¥~ © ®3A0 PlieShare ©CMake:[Debugl:Ready ¥ [GCCTI20x86 64-inwe-gne] @Buld [al] £ > UTF8 IF G C Lnx &

Figure: VS Code with the GOBPIE extension, showing warnings found by
GOBLINT.

Profiling & Tuning
Large Functional Programs

Profiling & Tuning Large Functional Programs

» Large C programs contain hundreds of thousands of program
points

> Computation can get expensive

» Where exactly are the bottlenecks?

1. Use profiler to identify expensive and frequent operations
2. ldentify opportunities for improvements
3. Implement and benchmark improvements

» Open topic, as it has not been deeply investigated yet.

One Possible Bottleneck?

During analysis of large code bases, we access vast amounts of
program states, stored in a large hashtable, with hundreds of
thousands of keys.

> How expensive are these lookups?
» Are cache-misses to blame?
» Can we do better?

Other Possible Points of Investigation?

P Are there places where naive algorithms can be replaced with
more optimized ones?

> Do we benefit from selectively abandoning immutability?

» Could restricting the types of polymorphic functions increase
performance?

» Would we benefit from flambda'® optimizations?

"https://v2.ocaml.org/manual/flambda.html

https://v2.ocaml.org/manual/flambda.html

Benefits

> Give you insights into profiling functional programs

» Deepen your skills in functional programming and writing
performant code

» Help your understanding of the performance impact of high
level design decisions

> Give you insights into developing a research prototype

Requirements

» Proficient knowledge of a functional programming language
(we use OCaml)

» Program Optimization Course (IN2053) recommended, but
not required

» Be an advanced Bachelor student or in your Master's

Static Analysis:
Automated Bug Hunting and
Beyond

Topics

» More expressive integer domains for detection of overflows
» Integer overflow for signed types is undefined behavior in C
» Mutually refining integer domains already implemented
» Further enhance with e.g. Interval Sets

Topics

» More expressive integer domains for detection of overflows
» Integer overflow for signed types is undefined behavior in C
» Mutually refining integer domains already implemented
» Further enhance with e.g. Interval Sets

> Termination analysis
» Loops & recursion as sources of non-termination
> Loops: Introduce ghost variables (c.f. ranking functions)
» Recursion: Check abstract call graph for cycles

Topics

» More expressive integer domains for detection of overflows
» Integer overflow for signed types is undefined behavior in C
» Mutually refining integer domains already implemented
» Further enhance with e.g. Interval Sets

> Termination analysis
» Loops & recursion as sources of non-termination
> Loops: Introduce ghost variables (c.f. ranking functions)
» Recursion: Check abstract call graph for cycles

» Analyzing C11 code: C11 finally gaining traction
» New threading library
» thread-local variables
» Noreturn keyword

Benefits

» Deepen your understanding of

» The Semantics of C and typical programming errors
» Static Analysis by Abstract Interpretation

» Train your functional programming skills

» Give some insights into developing a research prototype

Requirements

» Program Optimization Course (IN2053)

» Knowledge of a functional programming language (we use
OCaml)

» Be in your Master's (Advanced Bachelor's students welcome)

Profiling & Tuning
Large Functional Programs

&

Static Analysis:
Automated Bug Hunting and Beyond

[l = = = o>

Format

» Teams of 2-5 students
» Course will take place throughout the semester

» (Bi-)weekly meetings with us, default in person
> Presentation at the end (one day, all groups)
> Attendance & Active Participation mandatory(!)

Questions?

	Introduction

