
Static Analysis:
Automated Bug Hunting and Beyond

Profiling & Tuning
Large Functional Programs

Julian Erhard Michael Schwarz
{julian.erhard, m.schwarz}@tum.de

Chair for Formal Languages, Compiler Construction, Software Construction
Department of Informatics, Technical University of Munich

Winter Term 2022/2023



Writing programs is hard.



Writing correct programs is very hard.



Testing

I Widely successful

I Can be automated to some extent

I Can only show that there are bugs, not their absence



Machine-verified proof (e.g. Isabelle)

I Can show bugs & their absence

I A highly manual process requiring highly trained people

I Problem with proof and implementation diverging



Static Analysis

I Fully automated

I Can show absence of certain classes of bugs

I Runs directly on the input program

I Abstract Interpretation, Model Checking, ...



Static Analysis

I Fully automated

I Can show absence of certain classes of bugs

I Runs directly on the input program

I Abstract Interpretation, Model Checking, ...



Abstract Interpretation

I Widely used both in Academia & Industry

I Can scale to huge industry-scale codebases

I The technique covered in Program Optimization Course
(IN2053)



Goblint

I Analysis of multi-threaded, real-world C

I Efficient solvers for computation of fixpoints

I https://goblint.in.tum.de

https://goblint.in.tum.de


Example

Figure: VS Code with the GobPie extension, showing warnings found by
Goblint.



Profiling & Tuning
Large Functional Programs



Profiling & Tuning Large Functional Programs

I Large C programs contain hundreds of thousands of program
points

I Computation can get expensive
I Where exactly are the bottlenecks?

1. Use profiler to identify expensive and frequent operations
2. Identify opportunities for improvements
3. Implement and benchmark improvements

I Open topic, as it has not been deeply investigated yet.



One Possible Bottleneck?

During analysis of large code bases, we access vast amounts of
program states, stored in a large hashtable, with hundreds of
thousands of keys.

I How expensive are these lookups?

I Are cache-misses to blame?

I Can we do better?



Other Possible Points of Investigation?

I Are there places where naive algorithms can be replaced with
more optimized ones?

I Do we benefit from selectively abandoning immutability?

I Could restricting the types of polymorphic functions increase
performance?

I Would we benefit from flambda1 optimizations?

1https://v2.ocaml.org/manual/flambda.html

https://v2.ocaml.org/manual/flambda.html


Benefits

I Give you insights into profiling functional programs

I Deepen your skills in functional programming and writing
performant code

I Help your understanding of the performance impact of high
level design decisions

I Give you insights into developing a research prototype



Requirements

I Proficient knowledge of a functional programming language
(we use OCaml)

I Program Optimization Course (IN2053) recommended, but
not required

I Be an advanced Bachelor student or in your Master’s



Static Analysis:
Automated Bug Hunting and

Beyond



Topics

I More expressive integer domains for detection of overflows
I Integer overflow for signed types is undefined behavior in C
I Mutually refining integer domains already implemented
I Further enhance with e.g. Interval Sets

I Termination analysis
I Loops & recursion as sources of non-termination
I Loops: Introduce ghost variables (c.f. ranking functions)
I Recursion: Check abstract call graph for cycles

I Analyzing C11 code: C11 finally gaining traction
I New threading library
I thread-local variables
I Noreturn keyword



Topics

I More expressive integer domains for detection of overflows
I Integer overflow for signed types is undefined behavior in C
I Mutually refining integer domains already implemented
I Further enhance with e.g. Interval Sets

I Termination analysis
I Loops & recursion as sources of non-termination
I Loops: Introduce ghost variables (c.f. ranking functions)
I Recursion: Check abstract call graph for cycles

I Analyzing C11 code: C11 finally gaining traction
I New threading library
I thread-local variables
I Noreturn keyword



Topics

I More expressive integer domains for detection of overflows
I Integer overflow for signed types is undefined behavior in C
I Mutually refining integer domains already implemented
I Further enhance with e.g. Interval Sets

I Termination analysis
I Loops & recursion as sources of non-termination
I Loops: Introduce ghost variables (c.f. ranking functions)
I Recursion: Check abstract call graph for cycles

I Analyzing C11 code: C11 finally gaining traction
I New threading library
I thread-local variables
I Noreturn keyword



Benefits

I Deepen your understanding of
I The Semantics of C and typical programming errors
I Static Analysis by Abstract Interpretation

I Train your functional programming skills

I Give some insights into developing a research prototype



Requirements

I Program Optimization Course (IN2053)

I Knowledge of a functional programming language (we use
OCaml)

I Be in your Master’s (Advanced Bachelor’s students welcome)



Profiling & Tuning
Large Functional Programs

&
Static Analysis:

Automated Bug Hunting and Beyond



Format

I Teams of 2-5 students

I Course will take place throughout the semester

I (Bi-)weekly meetings with us, default in person
I Presentation at the end (one day, all groups)

I Attendance & Active Participation mandatory(!)



Questions?


	Introduction

