
Type Inference

1 fun getNullableInt(): Int? {
2 return 42
3 }
4

5 fun smartCast() {
6 var x = getNullableInt()
7

8 if (x != null)
9 x.inc()

10 }

1/8(1)



Type Inference

1 fun getNullableInt(): Int? {
2 return 42
3 }
4

5 fun smartCast() {
6 var x = getNullableInt()
7

8 if (x != null)
9 x.inc()

10 }
X

1/8(2)



Type Inference

1 fun getNullableInt(): Int? {
2 return 42
3 }
4

5 fun smartCast() {
6 var x = getNullableInt()
7 run { x = null }
8 if (x != null)
9 x.inc()

10 }

1/8(3)



Type Inference

1 fun getNullableInt(): Int? {
2 return 42
3 }
4

5 fun smartCast() {
6 var x = getNullableInt()
7 run { x = null }
8 if (x != null)
9 x.inc()

10 }

1/8(4)



Type Inference

1 val a: Any? = TODO()
2 val b = a
3 if (b is Int) {
4 a.inc()
5 }

1/8(5)



Type Inference

1 val a: Any? = TODO()
2 val b = a
3 if (b is Int) {
4 a.inc()
5 }

X

1/8(6)



Type Inference

I Outline the Type Inference of Kotlin in general
I Focus especially on Smart Casts in more detail
I Relate type inference in Kotlin to Hindely-Milner type system

and others
I Related to Type Constraint System

2/8(1)



Subtyping

1 fun <T> mk() : T = TODO()
2

3 class Foo<A, B : A?> {
4 val b: B = mk()
5 val bQ: B? = mk()
6 val ab: A = b
7 val abQ: A = bQ
8 val aQb: A? = b
9 val aQbQ: A? = bQ

10 }

3/8(1)



Subtyping

1 fun <T> mk() : T = TODO()
2

3 class Foo<A, B : A?> {
4 val b: B = mk()
5 val bQ: B? = mk()
6 val ab: A = b
7 val abQ: A = bQ
8 val aQb: A? = b
9 val aQbQ: A? = bQ

10 }

3/8(2)



Subtyping

1 fun <T> mk() : T = TODO()
2

3 class Foo<A, B : A?> {
4 val b: B = mk()
5 val bQ: B? = mk()
6 val ab: A = b
7 val abQ: A = bQ
8 val aQb: A? = b
9 val aQbQ: A? = bQ

10 }

3/8(3)



Subtyping

1 fun <T> mk() : T = TODO()
2

3 class Foo<A, B : A?> {
4 val b: B = mk()
5 val bQ: B? = mk()
6 val ab: A = b
7 val abQ: A = bQ
8 val aQb: A? = b
9 val aQbQ: A? = bQ

10 }

X

3/8(4)



Subtyping

1 fun <T> mk() : T = TODO()
2

3 class Foo<A, B : A?> {
4 val b: B = mk()
5 val bQ: B? = mk()
6 val ab: A = b
7 val abQ: A = bQ
8 val aQb: A? = b
9 val aQbQ: A? = bQ

10 }

XX

3/8(5)



Subtyping

I Outline the Subtyping relation important for the type system
I Describe the relation to Type Containment
I Detail the function of Type Decaying, Union- and Intersection-Types
I Present the significance of Integer Literal Types
I Related to other type system related topics

4/8(1)



Type Parameters

1 interface Consumer<A>
2 interface Producer<A>
3

4 var numConsumer: Consumer<Number>? = TODO()
5 var intConsumer: Consumer<Int>? = numConsumer
6

7 var intProducer: Producer<Int>? = TODO()
8 var numProducer: Producer<Number>? = intProducer

5/8(1)



Type Parameters

1 interface Consumer<A>
2 interface Producer<A>
3

4 var numConsumer: Consumer<Number>? = TODO()
5 var intConsumer: Consumer<Int>? = numConsumer
6

7 var intProducer: Producer<Int>? = TODO()
8 var numProducer: Producer<Number>? = intProducer

5/8(2)



Type Parameters

1 interface Consumer<in A>
2 interface Producer<A>
3

4 var numConsumer: Consumer<Number>? = TODO()
5 var intConsumer: Consumer<Int>? = numConsumer
6

7 var intProducer: Producer<Int>? = TODO()
8 var numProducer: Producer<Number>? = intProducer

X

5/8(3)



Type Parameters

1 interface Consumer<in A>
2 interface Producer<out A>
3

4 var numConsumer: Consumer<Number>? = TODO()
5 var intConsumer: Consumer<Int>? = numConsumer
6

7 var intProducer: Producer<Int>? = TODO()
8 var numProducer: Producer<Number>? = intProducer

X

X

5/8(4)



Type Parameters

I Outline the relation of in-/co-/contravariant types to subtyping
I Describe Mixed-Site-Variance in this context
I Detail Type Capturing
I Related to Type Inference and Subtyping

6/8(1)



Null Safety

1 fun main() {
2 val x: Int
3 var y: Int
4 if (cond) {
5 x = 40
6 y = 4
7 } else {
8 x = 20
9 }

10 y = 5
11 val z = x + y
12 }

7/8(1)



Null Safety

1 fun main() {
2 val x: Int
3 var y: Int
4 if (cond) {
5 x = 40
6 y = 4
7 } else {
8 x = 20
9 }

10 y = 5
11 val z = x + y
12 } X

7/8(2)



Null Safety

1 fun main() {
2 val x: Int
3 var y: Int
4 while (cond) {
5 x = 40
6 y = 4
7 }
8

9

10

11 val z = x + y
12 }

7/8(3)



Null Safety

1 fun main() {
2 val x: Int
3 var y: Int
4 while (cond) {
5 x = 40
6 y = 4
7 }
8

9

10

11 val z = x + y
12 }

7/8(4)



Null Safety

1 fun main() {
2 val x: Int
3 var y: Int
4 while (cond) {
5 x = 40
6 y = 4
7 }
8

9

10

11 val z = x + y
12 }

7/8(5)



Null Safety

I Outline the function of Variable Initialisation Analysis
I Explain the relation between Nullable and Non-nullable Types
I Describe approaches to handle nullable Types, e. g. Elvis Operator
I Related to Type Inference, esp. Smart-Casts

8/8(1)



Contracts

1 fun Any?.isValidString(): Boolean {

2

3

4

5 return this != null && this is String && this.length > 0

6 }

7

8 fun getString() : String? {

9 // Somehow get the string, which might be null.

10 }

11

12 fun testString() {

13 val test = getString()

14

15 if (test.isValidString()) {

16 // Does not compile:

17 // Type mismatch. Required: String. Found: String?.

18 val result: String = test

19 }

20 }

In the example:

▶ nullability checks and cast checks performed in
isValidString

▶ however, this is not propagated to call site

Contracts

▶ give additional information to e.g. function
and lambda calls

▶ help with smart casts

→ verification of contracts at declaration site?

Topic

▶ assess contract capabilities

▶ how about verification?

▶ details on how are they used?

▶ details on how are they implemented, esp. on
JVM?



Contracts

1 @ExperimentalContracts

2 fun Any?.isValidString(): Boolean {

3 contract {

4 returns(true) implies (this@getString is String)

5 }

6 return this != null && this is String && this.length > 0

7 }

8

9 fun getString() : String? {

10 // Somehow get the string, which might be null.

11 }

12

13 fun testString() {

14 val test = getString()

15

16 if (test.isValidString()) {

17

18 // compiles now

19 val result: String = test

20 }

21 }

In the example:

▶ nullability checks and cast checks performed in
isValidString

▶ however, this is not propagated to call site

Contracts

▶ give additional information to e.g. function
and lambda calls

▶ help with smart casts

→ verification of contracts at declaration site?

Topic

▶ assess contract capabilities

▶ how about verification?

▶ details on how are they used?

▶ details on how are they implemented, esp. on
JVM?



Coroutines

1 var c: Continuation<Unit>? = null

2

3 suspend fun suspendMe() = suspendCoroutine<Unit> { continuation ->

4 println("Suspended")

5 c = continuation

6 }

7

8

9

10

11

12

13

14 fun main() {

15 val lambda: suspend () -> Unit = {

16 suspendMe()

17 println(1)

18 suspendMe()

19 println(2)

20 }

21

22 lambda()

23

24

25

26 }

In the example:

▶ first compiled to CPS

▶ then implemented via one-shot
continuations

▶ Continuation is exposed via API

Topic

▶ assess capabilities of Coroutines

▶ shed light on the implemenatation
concept

▶ highlight implementation consequences
on JVM



Coroutines

1 var c: Continuation<Unit>? = null

2

3 suspend fun suspendMe() = suspendCoroutine<Unit> { continuation ->

4 println("Suspended")

5 c = continuation

6 }

7 fun builder(c: suspend () -> Unit) {

8 c.startCoroutine(object: Continuation<Unit> {

9 override val context = EmptyCoroutineContext

10 override fun resumeWith(result: Result<Unit>) {

11 result.getOrThrow()

12 }

13 })}

14 fun main() {

15 val lambda: suspend () -> Unit = {

16 suspendMe()

17 println(1)

18 suspendMe()

19 println(2)

20 }

21 builder {

22 lambda()

23 }

24 c?.resume(Unit)

25 c?.resume(Unit)

26 }

In the example:

▶ first compiled to CPS

▶ then implemented via one-shot
continuations

▶ Continuation is exposed via API

Topic

▶ assess capabilities of Coroutines

▶ shed light on the implemenatation
concept

▶ highlight implementation consequences
on JVM



Overload Resolution

1 interface Y

2

3 class X : Y {

4 fun Y.foo() {} // `foo` is an extension for Y,

5 // needs extension receiver to be called

6 fun bar() {

7 foo() // `this` reference is both

8 // the extension and the dispatch receiver

9 }

10 }

11

12 fun main() {

13 val x: X = mk()

14 val y: Y = mk()

15 // y.foo()

16 // Error, as there is no implicit receiver

17 // of type X available

18 with (x) {

19 y.foo() // OK!

20 }

21 }

In the example:

▶ E.g. Extension Methods complicate Overload
Candidate Set

▶ Operators / Infix Receivers

▶ Concept of Most Specific Candidate refined

▶ Lambda return types also affect the MRO

Topic

▶ explore Kotlin extension Methods

▶ elaborate on Overload Candidate Set
Determination

▶ elaborate how to pick the Most Specific
Candidate



Overload Resolution

1 fun foo(a: Foo, b: Bar) {

2 (a + b)(42)

3 // Such a call is handled as if it is

4 // (a + b).invoke(42)

5 }

In the example:

▶ E.g. Extension Methods complicate Overload
Candidate Set

▶ Operators / Infix Receivers

▶ Concept of Most Specific Candidate refined

▶ Lambda return types also affect the MRO

Topic

▶ explore Kotlin extension Methods

▶ elaborate on Overload Candidate Set
Determination

▶ elaborate how to pick the Most Specific
Candidate



Overload Resolution

1 fun f(arg: Int, arg2: String) {} // (1)

2 fun f(arg: Any?, arg2: CharSequence) {} // (2)

3 ...

4 f(2, "Hello")

5

6 fun f1(arg: Int, arg2: String) {

7 f2(arg, arg2) // VALID: can forward both arguments

8 }

9 fun f2(arg: Any?, arg2: CharSequence) {

10 f1(arg, arg2) // INVALID: function f1 is not applicable

11 }

In the example:

▶ E.g. Extension Methods complicate Overload
Candidate Set

▶ Operators / Infix Receivers

▶ Concept of Most Specific Candidate refined

▶ Lambda return types also affect the MRO

Topic

▶ explore Kotlin extension Methods

▶ elaborate on Overload Candidate Set
Determination

▶ elaborate how to pick the Most Specific
Candidate



Overload Resolution

1 @OverloadResolutionByLambdaReturnType

2 fun foo(cb: (Unit) -> String) = Unit // (1)

3

4 @OverloadResolutionByLambdaReturnType

5 fun foo(cb: (Unit) -> Int) = Unit // (2)

6

7 fun testOk01() {

8 foo { 42 }

9 // Both (1) and (2) are applicable

10 // (2) is preferred by the lambda return type

11 }

In the example:

▶ E.g. Extension Methods complicate Overload
Candidate Set

▶ Operators / Infix Receivers

▶ Concept of Most Specific Candidate refined

▶ Lambda return types also affect the MRO

Topic

▶ explore Kotlin extension Methods

▶ elaborate on Overload Candidate Set
Determination

▶ elaborate how to pick the Most Specific
Candidate



Type Constraints

For each call, we determine function applicability via one ofthe following constraint
systems:

▶ For every non-lambda argument inferred to have type Ti , corresponding to
the function parameter of type Uj , a constraint Ti ≤ Uj is constructed

▶ All declaration-site type constraints for the function are also added to the
constraint system

▶ For every lambda argument with the number of lambda arguments known
to be K, corresponding to the function parameter of type Um , a special
constraint of the form
(FT (L1, ..., LK ) → R & FTR(RT, L1, ..., Ln) → R) ≤ Um is
added to the constraint system, where R, RT, L1, ..., LK are fresh type
variables

▶ For each lambda argument with an unknown number of lambda
arguments (that is, being equal to 0 or 1), corresponding to the function
parameter of type Un , a special constraint of the form (FT () →
R & FT (L) → R & FTR(RT ) → R & FTR(RT, L) → R) ≤ Um is
added to the constraint system, where R, RT, L are fresh type variables

In the example:
Type constraints stem from several applications:

▶ Applicability of a function during collection of
Overload Candidate Sets

▶ comparing two candidate function signatures
during determination of Most Specific
Candidate

Topic

▶ give examples for noteworthy applications of
constraint solving

▶ assess the expressivity of constraints, as well as
solvable classes

▶ point out how constraint solving is
implemented in Kotlin



Type Constraints

During MSC selection, for every two distinct members of the candidate set F1 and
F2, the following constraint system is constructed and solved:

▶ For every non-default argument of the call and their corresponding
declaration-site parameter types X1, ..., XN of F1 and Y1, ..., YN of
F2, a type constraint XK ≤ YK is built unless both XK and YK are
built-in integer types. If both XK and YK are built-in integer types, a type
constraint Widen(XK ) ≤ Widen(YK ) is built instead, where Widen is the
integer type widening operator. During construction of these constraints,
all declaration-site type parameters T1, ..., TM of F1 are considered
bound to fresh type variables T1̃, ..., TM̃ , and all type parameters of F2
are considered free;

▶ If F1 and F2 are extension callables, their extension receivers are also
considered non-default arguments of the call, even if implicit, and the
corresponding constraints are added to the constraint system as stated
above. For non-extension callables, only declaration-site parameters are
considered;

▶ All declaration-site type constraints of X1, ..., XN and Y1, ..., YN are
also added to the constraint system

In the example:
Type constraints stem from several applications:

▶ Applicability of a function during collection of
Overload Candidate Sets

▶ comparing two candidate function signatures
during determination of Most Specific
Candidate

Topic

▶ give examples for noteworthy applications of
constraint solving

▶ assess the expressivity of constraints, as well as
solvable classes

▶ point out how constraint solving is
implemented in Kotlin



Type Constraints

During MSC selection, for every two distinct members of the candidate set F1 and
F2, the following constraint system is constructed and solved:

▶ For every non-default argument of the call and their corresponding
declaration-site parameter types X1, ..., XN of F1 and Y1, ..., YN of
F2, a type constraint XK ≤ YK is built unless both XK and YK are
built-in integer types. If both XK and YK are built-in integer types, a type
constraint Widen(XK ) ≤ Widen(YK ) is built instead, where Widen is the
integer type widening operator. During construction of these constraints,
all declaration-site type parameters T1, ..., TM of F1 are considered
bound to fresh type variables T1̃, ..., TM̃ , and all type parameters of F2
are considered free;

▶ If F1 and F2 are extension callables, their extension receivers are also
considered non-default arguments of the call, even if implicit, and the
corresponding constraints are added to the constraint system as stated
above. For non-extension callables, only declaration-site parameters are
considered;

▶ All declaration-site type constraints of X1, ..., XN and Y1, ..., YN are
also added to the constraint system

In the example:
Type constraints stem from several applications:

▶ Applicability of a function during collection of
Overload Candidate Sets

▶ comparing two candidate function signatures
during determination of Most Specific
Candidate

Topic

▶ give examples for noteworthy applications of
constraint solving

▶ assess the expressivity of constraints, as well as
solvable classes

▶ point out how constraint solving is
implemented in Kotlin



Topic Selection

1. Type Inference

2. Subtyping

3. Type Parameters

4. Null Safety

5. Contracts

6. Coroutines

7. Overload Resolution

8. Type Constraints

Proceeding
In order to vote for your preferred topics:

1. Sort the topics in the order that you prefer them,

2. assign them numbers, with your most prefered
topic #1 and the least preferred topic #8

3. Send an email with your ranking to
petter@in.tum.de until Tue April 11th 23:59

mailto:petter@in.tum.de
mailto:petter@in.tum.de

