Type Inference

fun getNullableInt(): Int? {
return 42

}

fun smartCast() {
var x = getNullableInt()

if (x '= null)
X. O

© 00 9 O g oA W N

10 }

1/8(1)



Type Inference

1 fun getNullableInt(): Int? {
2 return 42

3 }

4

5 fun smartCast() {

6 var x = getNullableInt()
7

8 if (x != null)

9 X. O

10 }

1/8(2)



Type Inference

1 fun getNullableInt(): Int? {
2 return 42

3 }

4

5 fun smartCast() {

6 var x = getNullableInt()
7 run { x = null }

8 if (x !'= null)

9 X. O

10

1/8(3)



Type Inference

1 fun getNullableInt(): Int? {
2 return 42

3 }

4

5 fun smartCast() {

6 var x = getNullableInt()
7 run { x = null }

8 if (x !'= null)

9 X. O

10 }

1/8(4)



Type Inference

1 val a: Any? = TODOQ)
2 val b = a

3 if (b is Int) {

4 a.inc()

5 }

1/8(5)



Type Inference

1 val a: Any? = TODOQ)
2 val b = a

3 if (b is Int) {

4 a.inc() \/
5 }

1/8(6)



Type Inference

» OQOutline the Type Inference of Kotlin in general
» Focus especially on Smart Casts in more detail

> Relate type inference in Kotlin to HINDELY-MILNER type system
and others

» Related to Type Constraint System



Subtyping

fun <T> mk() : T = TODO(Q)

1

2

3 class Foo<A, B : A?> {
4 val b: B = mk()

5 val bQ: B? = mk()
6 val ab: A =D

7 val abQ: A = bQ

8 val aQb: A? =D

9 val aQbQ: A7 = bQ
10 }




Subtyping

1 fun <T> mk() : T = TODO(Q)

class Foo<A, B : A?> {
val b: B = mk()
val bQ: B? = mk()
val ab: A =D X
val abQ: A = bQ
val aQb: A? = Db
val aQbQ: A? = bQ

© 0 9 O O W N

=
S}
(-




Subtyping

1 fun <T> mk() : T = TODO(Q)

class Foo<A, B : A?> {
val b: B = mk()
val bQ: B? = mk()
val ab: A =D
val abQ: A = bQ
val aQb: A? = Db
val aQbQ: A? = bQ

© 0 9 O O W N

=
S}
(-




Subtyping

1 fun <T> mk() : T = TODO(Q)

class Foo<A, B : A?> {
val b: B = mk()
val bQ: B? = mk()
val ab: A =D gg
val abQ: A = bQ
val aQb: A? = Db \/
val aQbQ: A? = bQ

© 0 9 O O W N

=
S}
(-




Subtyping

1 fun <T> mk() : T = TODO(Q)

© 0 9 O O W N

=
S}
(-

val
val
val
val
val
val

class Foo<A, B : A?> {

b: B = mk()

bQ: B? = mk()

ab: A = b gg
abQ: A = bQ

aQb: A7 =D \/
aQbQ: A7 = bQ \/




Subtyping

Outline the Subtyping relation important for the type system

Describe the relation to Type Containment

>
>
» Detail the function of Type Decaying, Union- and Intersection-Types
P> Present the significance of Integer Literal Types

>

Related to other type system related topics



Type Parameters

0w N O o s W N

interface Consumer<A>
interface Producer<A>

var
var

var
var

numConsumer :
intConsumer:

intProducer:
numProducer:

Consumer<Number>7 = TODO()
Consumer<Int>7 = numConsumer

Producer<Int>7 = TODO()
Producer<Number>7 = intProducer




Type Parameters

0o N O o s W N

interface Consumer<A>
interface Producer<A>

var
var

var
var

numConsumer :
intConsumer:

intProducer:
numProducer:

Consumer<Number>?7 = TODO()
Consumer<Int>7 = numConsumer

Producer<Int>7 = TODO()
Producer<Number>7 = intProducer

X




Type Parameters

0o N O o s W N

interface Consumer<in A>
interface Producer<A>

var
var

var
var

numConsumer :
intConsumer:

intProducer:
numProducer:

Consumer<Number>?7 = TODO()
Consumer<Int>7 = numConsumer

Producer<Int>? = TODO()
Producer<Number>?7 = intProducer X




Type Parameters

0o N O o s W N

interface Consumer<in A>
interface Producer<out A>

var
var

var
var

numConsumer :
intConsumer:

intProducer:
numProducer:

Consumer<Number>?7 = TODO()
Consumer<Int>7 = numConsumer

Producer<Int>7 = TODO()
Producer<Number>7 = intProducer

v




Type Parameters

» OQutline the relation of in-/co-/contravariant types to subtyping
» Describe Mixed-Site-Variance in this context

» Detail Type Capturing

> Related to Type Inference and Subtyping

6/8(1)



Null Safety

1
2
3
4
5
6
7
8
9

10
11

12 }

fun main() {

val x: Int
var y: Int

if (cond) {
x = 40
y =4

} else {
x = 20

}

y =25

val z = X + y

7/8(1)



Null Safety

1 fun main() {

2 val x: Int
3 var y: Int
4 if (cond) {
5 x = 40
6 y =4

7 } else {

8 x = 20
9 }

10 y =25

11 val z = x + y

12 } \//

7/8(2)



Null Safety

1
2
3
4
5
6
7
8
9

10
11

12 }

val x: Int
var y: Int
while (cond) {
x = 40
y =4
}
val z = x + y

fun main() {

7/8(3)



Null Safety

1
2
3
4
5
6
7
8
9

10
11

12 }

fun main() {

val x: Int
var y: Int

while
X

y

val z

(cond) {
a0 X

4

7/8(4)



Null Safety

1
2
3
4
5
6
7
8
9

10
11

12 }

fun main() {

val x: Int
var y: Int
(cond) {

while
X

y

val z

a0 X
4

x+y><

7/8(5)



Null Safety

» Outline the function of Variable Initialisation Analysis

» Explain the relation between Nullable and Non-nullable Types

» Describe approaches to handle nullable Types, e.g. Elvis Operator
> Related to Type Inference, esp. Smart-Casts



Contracts

In the example:

P nullability checks and cast checks performed in

1 fun Any?.isValidString(): Boolean {

2 isValidString
Z P however, this is not propagated to call site
5 return this != null && this is String && this.length > 0

6 }

7

8 fun getString() : String? {

9 // Somehow get the string, which might be null.

10 }

11

12 fun testString() {

13 val test = getString()

14

15 if (test.isValidString()) {

16 // Does mot compile:

17 // Type mismatch. Required: String. Found: String?.

18 val result: String = test

19 }




Contracts

In the example:

- P nullability checks and cast checks performed in
@ExperimentalContracts . . .
fun Any?. (): Boolean { isValidString

contract {

returns(true) implies (thisOgetString is String)

! . o ) . Contracts
return this != null && this is String && this. >0

¥ P give additional information to e.g. function
and lambda calls

P however, this is not propagated to call site

fun getString() : String? {
// Somehow get the string, which might be null. » help with smart casts
}
— verification of contracts at declaration site?
fun testString() {
val test = getString()
Topic
if (test. o) {
P assess contract capabilities
// compiles now
val result: String = test » how about verification?

} P details on how are they used?

P details on how are they implemented, esp. on
JVM?



Coroutines

var c: Continuation<Unit>? = null

suspend fun suspendMe() = suspendCoroutine<Unit> { continuation ->

println("Suspended") In the example:

¢ = continuation

1 P first compiled to CPS

P then implemented via one-shot
continuations

P Continuation is exposed via API

fun main() {
val lambda: suspend () -> Unit = {

suspendMe ()
println(1)
suspendMe ()
println(2)
¥
lambda ()




Coroutines

var c: Continuation<Unit>? = null

suspend fun suspendMe() = suspendCoroutine<Unit> { continuation ->
println("Suspended")
¢ = continuation
y >
fun builder(c: suspend () -> Unit) {
c. (object: Continuation<Unit> { >
override val context = EmptyCoroutineContext
override fun resumeWith(result: Result<Unit>) {

In the example:

first compiled to CPS

then implemented via one-shot
continuations

N result. 0 P Continuation is exposed via API
Hr
fun main() { T .
val lambda: suspend () -> Unit = { opic
suspendMe () cpeas .
println(1) P assess capabilities of Coroutines
suspendMe () . . .
printin(2) P shed light on the implemenatation
} concept
builder { . . . .
1ambda () P highlight implementation consequences
} on JVM
c?. (Unit)
c?. (Unit)




Overload Resolution

o
N O ©ONO TR WN =

interface Y

class X : Y {
fun Y.foo() {} // “foo™ is an emtension for Y,
// needs extension receiver to be called
fun bar() {
foo() // “this® reference is both
// the extension and the dispatch receiver
}
}

fun main() {
val x: X = mk(Q)
val y: Y = mk(Q)
/7 y.foo()
// Error, as there is mo implicit receiver
// of type X available
with (x) {
y.foo) // OK!

In the example:

> E.g. Extension Methods complicate Overload
Candidate Set



Overload Resolution

1 fun foo(a: Foo, b: Bar) { In the example:

2 (a+b)42)

3 // Such a call 4s handled as if it is > E.g. Extension Methods complicate Overload
4 // (a + b).invoke(42) Candidate Set

5 }

» Operators / Infix Receivers



Overload Resolution

e
= O ©mNO O A WN R

fun f(arg: Int, arg2: String) {} // (1)
fun f(arg: Any?, arg2: CharSequence) {} // (2)

£(2, "Hello")

fun fi(arg: Int, arg2: String) {
f2(arg, arg2) // VALID: can forward both arguments
}
fun f2(arg: Any?, arg2: CharSequence) {
fi(arg, arg2) // INVALID: function f1 is not applicable
¥

In the example:

> E.g. Extension Methods complicate Overload
Candidate Set
» Operators / Infix Receivers

» Concept of Most Specific Candidate refined



Overload Resolution

1 @OverloadResolutionByLambdaReturnType In the example:
2 fun foo(cb: (Unit) -> String) = Unit // (1) i .
3 » E.g. Extension Methods complicate Overload
4 @OverloadResolutionByLambdaReturnType Candidate Set
5 fun foo(cb: (Unit) -> Int) = Unit // (2)
6 » Operators / Infix Receivers
7 fun test0k01() { » . .
8  foo {42} » Concept of Most Specific Candidate refined
9 // Both (1) and (2) are applicable
10 // (2) is preferred by the lambda return type » Lambda return types also affect the MRO
11}
Topic

P explore Kotlin extension Methods

P elaborate on Overload Candidate Set
Determination

P elaborate how to pick the Most Specific
Candidate



Type Constraints

For each call, we determine function applicability via one ofthe following constraint

systems:

P For every non-lambda argument inferred to have type T;, corresponding to
the function parameter of type U; , a constraint T; < U; is constructed

P All declaration-site type constraints for the function are also added to the
constraint system

P For every lambda argument with the number of lambda arguments known
to be K, corresponding to the function parameter of type U,,, a special
constraint of the form
(FT(Ly, ..., Lx) = R & FTR(RT, Ly, ..., L,) = R) < U, is
added to the constraint system, where R, RT, Ly, ..., Lx are fresh type
variables

P For each lambda argument with an unknown number of lambda

arguments (that is, being equal to 0 or 1), corresponding to the function
parameter of type U,, a special constraint of the form (FT() —

R & FT(L) -+ R & FTR(RT) -+ R & FTR(RT,L) — R) < U, is
added to the constraint system, where R, RT, L are fresh type variables

In the example:
Type constraints stem from several applications:

P Applicability of a function during collection of
Overload Candidate Sets



Type Constraints

In the example:

During MSC selection, for every two distinct members of the candidate set F1 and Type constraints stem from several applications:
F2, the following constraint system is constructed and solved:

P Applicability of a function during collection of

P For every non-default argument of the call and their corresponding

declaration-site parameter types Xi, ..., Xy of F1 and Y7, ..., Y of Overload Candidate Sets

EQ.' a type constraint Xy < Y is built unless both Xy and Y are » comparing two candidate function signatures
uilt-in integer types. If both XK and YK are built-in integer types, a type

constraint Widen(Xx) < Widen(Y) is built instead, where Widen is the during determination of Most Specific

integer type widening operator. During construction of these constraints, Candidate

all declaration-site type parameters Ty, ..., Ty, of F1 are considered

bound to fresh type variables T;, ..., Ty , and all type parameters of F2

are considered free;

P If F1 and F2 are extension callables, their extension receivers are also
considered non-default arguments of the call, even if implicit, and the
corresponding constraints are added to the constraint system as stated
above. For non-extension callables, only declaration-site parameters are
considered;

P All declaration-site type constraints of X;, ..., Xy and Y, ..., Yy are
also added to the constraint system



Type Constraints

In the example:

During MSC selection, for every two distinct members of the candidate set F1 and Type constraints stem from several applications:
F2, the following constraint system is constructed and solved:

P Applicability of a function during collection of
Overload Candidate Sets

P For every non-default argument of the call and their corresponding
declaration-site parameter types Xi, ..., Xy of F1 and Y7, ..., Y of
F2, a type constraint Xx < Y is built unless both Xy and Yy are

built-in integer types. If both XK and YK are built-in integer types, a type
constraint Widen(Xx) < Widen(Yj) is built instead, where Widen is the
integer type widening operator. During construction of these constraints,
all declaration-site type parameters Ty, ..., Ty, of F1 are considered
bound to fresh type variables T;, ..., Ty , and all type parameters of F2
are considered free;

If F1 and F2 are extension callables, their extension receivers are also
considered non-default arguments of the call, even if implicit, and the
corresponding constraints are added to the constraint system as stated
above. For non-extension callables, only declaration-site parameters are
considered;

All declaration-site type constraints of Xj, ..., Xy and Yy, ..., Yy are
also added to the constraint system

» comparing two candidate function signatures
during determination of Most Specific
Candidate

Topic
P give examples for noteworthy applications of
constraint solving

P> assess the expressivity of constraints, as well as
solvable classes

P point out how constraint solving is
implemented in Kotlin



Topic Selection

® N o oW

Type Inference
Subtyping

Type Parameters
Null Safety
Contracts
Coroutines
Overload Resolution

Type Constraints

Proceeding
In order to vote for your preferred topics:
1. Sort the topics in the order that you prefer them,

2. assign them numbers, with your most prefered
topic #1 and the least preferred topic #38

3. Send an email with your ranking to
petter@in.tum.de until Tue April 11th 23:59



mailto:petter@in.tum.de
mailto:petter@in.tum.de

