
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Hardware-Dependent Visualization of
Quantum Circuits

Donia Fouzri

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Hardware-Dependent Visualization of
Quantum Circuits

Hardware-Abhängige Visualisierung von
Quanten-Schaltkreisen

Author: Donia Fouzri
Supervisor: Prof. Dr. Helmut Seidl
Advisors: M.Sc. Yannick Stade and M.Sc. Yanbin Chen
Submission Date: 15.05.2023

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 15.05.2023 Donia Fouzri

Acknowledgments

I would like to express my gratitude to my supervisors, Yannick Stade and Yanbin
Chen, without whom this work would not have been possible. Their continuous
support and constructive feedback have been of great help during the period of this
thesis. Our multiple discussions and exchange of ideas have only made this work a
more valuable and enriching undertaking.

I would also like to thank Dr. Johannes Zeiher, at the Max Planck Institute of
Quantum Optics, for providing and discussing information contributing to this work.

Abstract

Quantum compilers play a key role in quantum computing. They adjust quantum
software and adapt it to the constraints of the quantum platform. However, the
black-box approach of these compilers gives little control to the programmer over the
compiling process and the changes made to the quantum code. It can jeopardize the
optimization techniques used by the programmer before compiling. As a solution, we
present an implementation of a tool that connects quantum hardware and software and
allows the developer to take a closer look into the hardware. It will support hardware
compatibility testing and both manual and built-in code adjustment. It offers a step by
step compiling process, controlled by the programmer.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Background 3
2.1 Quantum Computing . 3

2.1.1 Qubits and Quantum State . 3
2.1.2 Quantum Gates . 3
2.1.3 Quantum Circuit . 4
2.1.4 Quantum Hardware . 4

2.2 Qiskit . 5
2.3 Related Work . 6

2.3.1 Quantum Compilers . 6
2.3.2 Related Compilers . 6

3 Description of the Tool and User Interface 7
3.1 Functionalities . 7
3.2 Hardware Configurations . 10
3.3 Visualization . 12

3.3.1 Standard Visualization . 12
3.3.2 Time Scaled visualization . 13
3.3.3 Max justify-left . 15

4 Test Software-Hardware Compatibility 18
4.1 Circuit Information and General Compatibility 18
4.2 Connectivity Test . 18
4.3 Crosstalk Test . 19
4.4 Optimization Test . 20

v

Contents

5 Solve Software-Hardware Compatibility Issues 22
5.1 Solve Connectivity Issue . 22

5.1.1 Solution . 23
5.1.2 Limitations . 25

5.2 Solve Crosstalk . 25
5.2.1 Solution . 27
5.2.2 Limitations . 31
5.2.3 Correctness . 31

5.3 Solve Crosstalk - Time Dependent . 32
5.3.1 Solution . 32
5.3.2 Limitations . 41
5.3.3 Correctness . 42

6 Conclusion and Future Work 47
6.1 Conclusion . 47
6.2 Future Work . 47

List of Figures 49

Bibliography 51

vi

1 Introduction

With a billion times faster calculations and potentially unbreakable cryptography
protocols[7], quantum computing is indeed a revolutionary technology. Using quantum
entanglement and superposition[7], two of the most important principles in quantum
mechanics, quantum platforms can achieve high levels of parallelism and perform
complex computations, previously unattainable with classical computing.

These opportunities that quantum computing promises, have lead to a race towards
the newest most efficient and error-free platforms. Research centers and tech-companies
are also developing different programming languages, frameworks and kits, at a fast
pace, to support this new field of computations and bring it closer to the user.

Given that quantum computers are physical systems run by the laws of quantum
mechanics, quantum algorithms need to be dissected and transformed into simple
machine instructions executable on a low hardware level. These intermediate tools,
connecting quantum code and low level platforms, are quantum compilers and there is
a variety of them available today, for different quantum backends[17].

Additionally, every quantum computer imposes several constraints on quantum
code[17], which need to be respected in order for the code to run. These constraints
can change from one computer to another[17], and it is the job of the compiler to apply
the necessary adjustments to the algorithm before it is executed.

Our main problem, however, is that quantum compilers have a black-box approach.
They run in the background after the developer starts the code simulation. Compilers
will transform the code, apply the necessary changes and send it to the hardware. This
process leaves the programmer in the dark concerning the compiling process and the
state of the code which will be sent to the backend. This would not be a problem,
if it was not for the critical changes happening to the quantum code, concerning its
hardware compatibility.

In order to fully understand why changing the quantum code in the compilation
can be problematic, we need to observe the limitations of quantum computing. Un-
fortunately, despite their immense potential, these platforms are still limited due to
the occurring error which corrupts the output results. Error being a central object of
concern in quantum computing[7], programmers use different optimization techniques
in their code to minimize the error[8]. These optimizations will not necessarily be
preserved in the compiling process, due to the divergent priorities of the programmer

1

1 Introduction

and the compiler.
To solve this problem, we need to fill the gap between quantum software and

hardware while allowing developers more control over the transformations happening
to their code in the compiling process. In other words we will implement a white-box
approach of a quantum compiler.

We develop a tool where the user has direct access to the quantum hardware char-
acteristics and constraints. For this, we need to find a universal data structure with
which we can represent any quantum computer regardless of its nature. We then offer
the possibility to test the compatibility of the code with the chosen hardware. After
running the tests, we will provide the user with detailed information concerning any
potential problems that might need adjustments. The user can rely on this feedback to
manually make the necessary changes to the code and, therefore, adjust the algorithm
without ruining the previous optimization efforts. This is a user-controlled compiling
process, tailored to the priorities of the programmer with respect to the hardware
specifications. Moreover, we will provide built-in solutions for the occurring issues in
case the user chooses not to solve them manually. We will also add other features for a
better usability and functionality of the tool.

In this work, we go through some background concepts of quantum computing and
available tools that are similar to our implementation. Next, we will explain the tool
we developed, its structure, key features and the different algorithms implemented.
This will also be presented in fig. 3.1 with a detailed diagram. We will provide proof
of correctness for complex algorithms and expose their limitations. Finally, we will
suggest possible improvements to be performed in the future.

2

2 Background

In this Chapter, we explain the concepts of quantum computing that are relevant to our
work. We will handle the concept of both, quantum hardware and quantum software.
Additionally, we will introduce Qiskit due to its important role in this work. Finally,
we discuss some other tools and frameworks that are related to our topic.

2.1 Quantum Computing

Quantum computing is a new computation technology, based on the laws of quantum
mechanics and capable of exponentially reducing the runtime of many algorithms and
complex calculations. It has different characteristics from classical computing which
we will explore in this section.

2.1.1 Qubits and Quantum State

Instead of classical bits, quantum computers use quantum bits usually referred to as
qubits[7]. Qubits can take the values 0, 1 or a superposition of these two. This is a key
to the efficiency of this technology. The quantum state of a qubit can be represented as:

|ψ⟩ = α|0⟩+ β|1⟩

where α2 and β2 are respectively the probabilities of the states |0⟩ and |1⟩ after mea-
surement. Additionally, α and β have to verify the condition[7]: |α|2 + |β|2 = 1.

2.1.2 Quantum Gates

To operate on qubits we use unitary 2n × 2n matrices in C with n the number of qubits
involved in the operation. Such matrices are also referred to as quantum gates. They
are applied to the quantum state vector of the qubits to generate a new state vector[7,
chapter. 3].

As an example, applying the Not operator, also known as the X gate, to the initial

state |1⟩ results in the following:
(

0 1
1 0

) (
0
1

)
=

(
0 + 1
0 + 0

)
=

(
1
0

)
= |0⟩.

3

2 Background

An important gate, for this work, is the Swap gate. It switches the state of two
qubits[7].

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Applying Swap to |10⟩ =

0
0
1
0

 results in the state vector: |01⟩ =

0
1
0
0

.

2.1.3 Quantum Circuit

Quantum algorithms are modelled as quantum circuits. A circuit consists of a set of
quantum gates applied to a set of qubits in a certain order [10]. Aside from quantum
gates, a circuit can also include barriers and measurements. A barrier delays the
execution of gates subsequent to it, until all prior operations are terminated.

Each quantum circuit has specific semantics depending on the nature and order of
the gates and the initial state vector.

The depth of a circuit is also an important feature. This is the size of the longest path
of non-parallel gates acting on a common qubit[10].

In order to visualize a quantum circuit we represent a qubit with a line also called a
wire. On the other hand, we denote most unary and binary gates with a box containing
their name placed on the wires of the corresponding qubits as presented in fig. 2.1.

Figure 2.1: Unary and binary gates representation in circuit visualization

2.1.4 Quantum Hardware

To create a qubit based system, we need to conduct a variety of physical experiments[7,
chapter. 5]. Their goal is to produce single units of information behaving similar to
quantum particles and adhering to the rules of quantum mechanics[7, chapter. 5]. These
will represent the qubits of the platform.

4

2 Background

There are different ways to build such platforms. Some popular approaches are:
Neutral Atoms, Superconducting Qubits, Trapped Ions and Spin Qubits.[7, chapter. 5].

The physical implementation of quantum platforms influences some key characteris-
tics of the hardware such as error and connectivity.

Error handling plays an important role in quantum computing, and errors can arise
due to external and internal factors. One form of error that is relevant to our work is
crosstalk. Crosstalk happens when applying two or more gates simultaneously, usually
acting on qubits within a short distance from each other[25]. In this case, the operations
are not isolated, and they influence each other causing inaccurate results[7, chapter. 5].
Depending on the hardware, the qubits that can potentially have crosstalk between
them can vary.

Connectivity is also a key feature, because multi-qubit gates can only be applied to
connected qubits. It is dependent on the physical architecture of the qubits and their
spatial location[7, chapter. 5].

Later in this work, we will mention other important quantum hardware features, that
are linked to the nature of the platform.

2.2 Qiskit

Qiskit is one of the various quantum software development kits available today. It is an
open-source kit created by IBM. It offers multiple libraries to manipulate and simulate
quantum algorithms[19].

Some other useful functionalities offered by this tool are quantum circuits visualiza-
tion, support of Quantum Assembly (QASM) code[4] and running quantum algorithms
on IBM’s quantum computers via API tokens[19].

To handle quantum circuits in the background, qiskit transforms them into directed
acyclic graphs[16] and then generates a layered data structure of the gates[16]. These
layers will then be used by the built-in compiler to process and adjust the code to the
backend of choice[20].

Each layer is a list containing parallel gates only, with a limit of one gate per qubit.
The layers are then collected in a list. The indices of the layers inside the outer list
indicate their order of execution. So the gates in Layeri are executed before those in
Layeri+1.

At the end we obtain a similar data structure:

Layers = [[gate0, gate1, ...]; [gatej, gatej+1, ...]...]

This data structure conserves the topological order of the gates while making the
distinction between parallel and non-parallel gates.

5

2 Background

In this work, many Qiskit libraries are used via function calls or using the initial code
from the repository and making changes to it. Any code used from Qiskit has been
taken from their open-source GitHub repository[15].

2.3 Related Work

With the growing focus on quantum compilers, we can find compilers allowing the
user more flexibility and control over the compiling process. In this section we will
explain the concept of a quantum compiler, and we will discuss some modern tools
which share some common features with our work.

2.3.1 Quantum Compilers

Similar to classical computing, quantum compilers translate high-level code into ma-
chine instructions specific to the quantum hardware [10]. Considering the specific
characteristics of the hardware, they transform the initial program into a set of low-level
gates runnable on the platform[17].

Compilers also have different optimization algorithms which they run over the code
for a more accurate output[17]. Some frequently used algorithms are: gate cancellation,
gate fusion and pattern matching[21].

There is also a special part of the compiler usually referred to as the scheduler [9].
This component has the task of assigning to gates the order and time of their execution.
It usually aims to minimize the global runtime of the circuit and the decoherence[9].

2.3.2 Related Compilers

Among the many compilers available in the field, some of them allow the user to have
control over the different optimizations and adjustments applied to the quantum code.
Compilers such as the Qiskit Transpiler[21], Cirq[5] and Quil[3] allow the user to choose
the level and type of optimization to be applied. In addition, Quil and Cirq allow the
user to define their own custom compilation passes.

In order to solve crosstalk, compilers such as the Qiskit Transpiler combine logical to
physical qubit mapping algorithms with the insertion of barriers between every two
problematic gates[20].

Another important factor is that each of these compilers is compatible with more
than one quantum hardware. However, there is still no tool available that supports all
types of quantum backends.

6

3 Description of the Tool and User Interface

In this chapter, we will explain how the tool works and go through the different features
offered in the user interface. Next, We will focus on the hardware configuration files
and the various types of circuit visualization.

We chose to leave testing the software-hardware compatibility for chapter 4 and the
solution for the potential issues for chapter 5.

3.1 Functionalities

Our goal with this tool is to enable quantum programmers to have a closer look into
the constraints of the quantum platforms they are using. Via this tool, we also want to
give them more control on the overall process of mapping their quantum code to the
hardware of choice.

In order to make this a user-friendly experience, we decided to implement this tool
as a desktop application. The global structure of our app is shown in a diagram form
in fig. 3.1. The figure also enumerates the files containing the code for each element of
the app, which will be discussed in this chapter and in the next ones.

The application is implemented in Python using the framework PyQt6. This enabled
us to use the Qiskit libraries with Python. We use those libraries to analyze the quantum
code, represent quantum circuits, gates and registers and other concepts.

In the app, the user can choose the hardware they want to run their code on. All
available quantum platforms are represented through configuration files. We display
a summarized description of the chosen hardware along with a graph representing
the qubit connectivity[23]. In fig. 3.2, we can see how the information of the chosen
hardware is presented in the application.

After selecting the platform, the user needs to enter the quantum code to be processed.
For this purpose we offer a built-in text editor, which supports code in Quantum
Assembly Language (QASM 2.0)[4]. The user can write the desired code in there or
upload a (.qasm) file from an external source. This code will be then displayed in the
text editor. The user is allowed to edit the code at any time while using the app.

Now that the code is loaded, the developer can start using the different features in
the app.

7

3 Description of the Tool and User Interface

Figure 3.1: Diagram representing the main parts of the implementation with their
respective code files

First, we offer three different circuit visualization options, which we will explain in
section 3.3. These options are shown in fig. 3.3 along with the code editor, containing
QASM code which would be visualized.

Next, the user can start testing the circuit for hardware compatibility. The tool offers
different testing options and thorough feedback for the different issues (more about
this in chapter 4). In fig. 3.4, we have different feedback boxes for the various tests. We
can see the "Test" and "Solve" buttons in each box and how the feedback is formulated.

The user can choose to solve the suggested issues manually or apply the built-in
solutions. The built-in solution will return new code with the same semantics as the
input code. This will be discussed in chapter 5. At any point the user can change the
code, test or solve the issues. There is no order imposed on how to run the different
features.

8

3 Description of the Tool and User Interface

Figure 3.2: Screen capture, from the app, representing how the hardware information
are displayed

Figure 3.3: Screen capture, from the app, containing the code editor, visualization
options and the toolbar for file management and hardware selection

Another important point is the ability to switch from one hardware to another at any
point. This is particularly useful when observing the difference in the constraints that

9

3 Description of the Tool and User Interface

Figure 3.4: Screen capture, from the app, showing the different testing feedback and
solution options

the platforms impose on the code.
If the platform does not give any feedback containing issues, then the QASM code

can be run on the hardware of choice.
It is important to note that in this app, the tests and solutions support single qubit

and two-qubit gates only. Gates operating on more than two qubits will be ignored.

3.2 Hardware Configurations

An essential part of our application, relies on the ability to store all relevant information
of the quantum hardware. Finding a data structure that can store all those specifications
and trying to make it as universal as possible was challenging. Our goal was to create
a tool that can support almost all types of platforms. The problem we encountered
is that each platform is built differently[22]. Some main differences are of course the
qubits nature, layout and distance, which lead to other divergences between quantum
computers such as qubit fidelity, error model, connectivity of the qubits and other
characteristics[22].

We finally decided to store the information in a (.yaml) file or else known as "config-
uration file". Each (.yaml) file represents a hardware. The hardware characteristics are

10

3 Description of the Tool and User Interface

contained in lists and dictionaries. We will now display the different hardware features
we store in those files.

The first main characteristics [7, p. 54] are:

• Name of the platform

• Number of qubits supported

• Maximum circuit depth

Furthermore, at the beginning of this project we had access to information describing
the MQV Neutral − atoms plat f orm1.

We noticed that it only supports certain sets of gates. This can also be the case
for other platforms. To cover such cases, we added a list of supported gates to the
configurations. Each gate in this list has the following attributes: Name and Time. The
attribute Time represents the time it takes the hardware to execute the gate [14].

In our implementation, only Name and Time are being used. However, in the (.yaml)
file, two additional attributes are generated: Global and U3− f orm. These are possible
features to be supported in the future. Global can be set to True or False. If it is set
to True, this means this gate can be applied globally to many qubits at the same time.
This is a special addition for the MQV Neutral − atom plat f orm where such gates are
supported. For now, the value of this attribute does not influence any of the upcoming
functionalities of the app. The U3− f orm is an attempt to generalize the gates that
the app supports. Instead of checking the gates names to see if they are supported,
we check their U3− f orm. This can become useful if the hardware and the user are
naming the gates differently. This is however not yet implemented, and the attribute is
always set to null. The gate information will be presented as follows:

List of gates: {gate : name | time | u3− f orm | global}

Moving on, we need to find a way to save the qubits layout in the form of a list
with the ability to build the exact layout again, based on this list only. In order to
do that, we create a dictionary called Double Qubits. The elements of this dictionary
are the pairs of qubits of the quantum platform. For each pair of qubits, we save two
main properties: connectivity [23] and distance. The distance is not relevant in our tool
but the connectivity is a crucial constraint for code compatibility [7, p. 53-54]. We set
connectivity to 1 if they are directly connected otherwise it is 0.

To these two attributes, we add the other most relevant criteria in our tool: crosstalk
[25]. Each qubit or pair of qubits can have potential crosstalk partners [7, p. 53-54]. In

1These data stems are based on personal discussion with physicists from the Max Planck Institute for
quantum optics

11

3 Description of the Tool and User Interface

case a gate is applied to a qubit(s) and another gate is applied in parallel to one of their
potential crosstalk partners, it results in a crosstalk condition [7, p. 53-54]. For each
qubit pair we have two lists of crosstalk partners in crosstalk, pairs and single:

Double Qubits: {(index1, index2) : crosstalk : {pairs : [], single : []} | connectivity | distance}

We also need to implement a dictionary called Single Qubit. It contains the qubits
individually and each has two attributes: crosstalk(single and pairs) and f idelity

Single Qubit: {index : crosstalk : {pairs : [], single : []} | f idelity}

The f idelity is not used in this tool, but it can be considered as a mean to minimize the
error [7, Chapter 5].

Finally, we get a configuration file with all the relevant hardware information. It will
enable us to figure out how to make quantum code work on the desired platform.

Note: You can generate an empty configuration file via calling the function MakeCon f ig
in the file con f ig.py. This will generate a Mock.yaml file with all the lists and attributes.
You can change the information inside it to fit your hardware.

3.3 Visualization

For a better understanding of quantum code, we can draw the quantum circuit and
have a graphical representation of the gates as mentioned in section 2.1.3. For this
purpose, the tool offers three visualization options:

• Standard Visualization

• Time Scaled visualization

• Max justify-left

Each of these options is based on the visualization of quantum circuits in Qiskit[19].
The original code is taken from the Qiskit source code[15]. However, it was largely
modified by adding new features and options for the purpose of this tool.

3.3.1 Standard Visualization

The standard visualization is a way for the user to better visualize the gates that can be
run in parallel or sequentially. This option does not take the execution time of the gates

12

3 Description of the Tool and User Interface

into consideration and considers all gates the same. It displays the circuit similar to
the standard Qiskit method. However, the standard visualization in Qiskit attributes
to each gate box a length according to the text that it contains. Naturally some gates
contain more text than others. An example would be the U − Gate. Besides its name,
the gate-box contains its parameters. This makes it larger than an X− Gate. So in our
tool, we want the standard visualization to have a unified width for all boxes. For
that we set the width of all gate-boxes to the width of the largest gate in the quantum
circuit. This will particularly make sense in the next visualization, where the width of
the boxes is related to their execution time.

3.3.2 Time Scaled visualization

In this project, we decided to take the time of the gates into consideration when
visualizing the quantum circuit. This gives the user an outlook over the runtime of
the circuit, which can be useful when trying to optimize the code. Based on the times
of the gates in the configuration file of the chosen hardware, a scaling dictionary will
be produced. Each gate has a width proportional to its time, at the exception of gates
which symbols do not include rectangular shaped boxes. In order to get the scaling
dictionary, we implemented algorithm 1.

The function GetScaleDictionary, algorithm 1, returns the scale dictionary that will be
used to set the width of the different gates in the quantum circuit. We get the width
of a gate by multiplying the scale corresponding to the gate with the unified width
explained in section 3.3.1.

Visual inconveniences might happen when there is a big difference between the times
of the gates. This can lead to very large gate-boxes. We have a similar case in the
MQV Neutral − atoms plat f orm2, where an Rz gate takes 100 ns while an Rx gate can
take 100, 000 ns to finish execution.

To avoid this problem we added the condition in line 13, which limits the scale to 8.
It is, however, important to make it clear to the user that the width of such gates is not
true to their real scale. We opted for the design that you can observe in the U − gate in
fig. 3.5. The blue middle part of the U − gate indicates that its true width is larger than
what is being visualized. It is also clear for the user, in fig. 3.5, that the CY− gate takes
more time in execution than the X− gate.

The next step is to set the width of each layer within the layers of gates to the width
of the largest gate in that layer. This enables the different layers to contain all their
gates without visually interfering with one another. Other changes also need to be

2These data stems are based on personal discussion with physicists from the Max Planck Institute for
quantum optics

13

3 Description of the Tool and User Interface

Algorithm 1 Get Scale Dictionary

1: Input: Configuration File
2: Output: ScaleO f EachGate
3: Initialize the scale dictionary: ScaleO f EachGate← {}
4: if TimeScale == f alse then
5: ScaleO f EachGate[”gateName”]← 1
6: else
7: if TimeScale == True then
8: minimumTime← the minimum time of all gates in Configuration File
9: for gateName ∈ Con f igurationFile[”ListO f Gates”] do

10: Set the scale of each gate:
11: gateTime← Con f igurationFile[”ListO f Gates”][gateName][”Time”]
12:

GateScale← gateTime
minimumTime

13: if GateScale > 8 then
14: GateScale← 8
15: end if
16: ScaleO f EachGate[”gatename”]← GateScale
17: end for
18: end if
19: end if

Figure 3.5: Time-Scaled Gate designs

14

3 Description of the Tool and User Interface

made to the different functions of the file to adjust to the new method of visualizing
the quantum circuit.

3.3.3 Max justify-left

The maximum justification is a way of emphasizing the parallelism of the gates by
aligning them on the same vertical line, visually. This option can be applied to both
standard and time-scaled visualizations. In order to achieve the desired visual outcome
we move gates that can be executed in parallel into one layer.

To showcase the result of applying this feature, fig. 3.6 and fig. 3.7 represent the
circuit before and after the application. You can notice in fig. 3.7 how the CY− gate,
I − gate and H− gate are now on the same vertical line. However, in the same example,
it can become unclear whether it is an H − gate or a CH − gate due to overlapping
with the CY− gate. This is a clear disadvantage in this visualization. Therefore, it can
not be used as a reference to identify clearly the different gates in the quantum circuit.
Despite the shortcomings, it can be very useful in many cases. As an example, if the
depth of the circuit is large, the user would benefit from making the visualization more
compact.

Figure 3.6: Gates before applying max justify-left

Figure 3.7: Gates after applying max justify-left

15

3 Description of the Tool and User Interface

The function MaximizeParallelism, algorithm 2, has as input all the gates of the
quantum circuit represented as Layers, see section 2.2. The loop in line 6 runs through
the layers. For each gate in the layer on the right, we check if the qubits in the layer on
the left are free. If the condition is met, we move the gate from the right, Layeri+1, to
the left, Layeri. After removing gates from Layeri+1, we check if it became empty and
needs to be removed. The direction of the process, from right to left, is why the process
is called left justification. We run an outer loop in line 3, which repeats the process
until there is no change happening in the layers. This way, we ensure the maximized
left-justification.

Despite the difference between the input and output layers, if we create a new
quantum circuit out of the output, it will have the same semantics as the initial circuit.
The reason is that we are only changing the order of gates which are independent of
each other. We move a gate from one layer to another, only if the qubits on which
the gate is acting are free. This ensures that the order of the gates acting on commun
qubits does not change. Also, no gates are being removed from the circuit, they are
only moved around. Therefore, the order and nature of the gates on each qubit is not
compromised.

16

3 Description of the Tool and User Interface

Algorithm 2 Maximize Parallelism

1: Input: Layers of gates
2: Output: Layers of gates after change
3: while changed do
4: changed← False
5: i← len(Layers)− 2
6: while i ≥ 0 do
7: Layeri, Layeri+1 ∈ Layers
8: occupiedQubits← []

9: for gate ∈ Layeri do
10: occupiedQubits.add(gate.qubitsIndices)
11: end for
12: for gate ∈ Layeri+1 do
13: if gate.qubitsIndices

⋂
occupiedQubits = ∅ then

14: move gate f rom Layeri+1 to Layeri
15: occupiedQubits.add(gate.qubitsIndices)
16: changed← True
17: end if
18: end for
19: if Layeri+1 = ∅ then
20: remove Layeri+1 f rom Layers
21: end if
22: i← i− 1
23: end while
24: end while

17

4 Test Software-Hardware Compatibility

The main goal of this application is to enable the user to test the compatibility of their
code with the chosen hardware. Therefore, we need to run a series of tests on the given
QASM code and display the potential issues to the user. The main requirement for
these tests is to be able to run them at any time, as many times as wanted and even
after changing the code in the code editor. The tests can be run all at the same time
through the option Test or separately via their own test options, which we will discuss
next.

4.1 Circuit Information and General Compatibility

We start by collecting the circuit information and displaying it. The option Get In f ormation
fetches the depth, qubit count and number of gates of the quantum circuit. Some func-
tions used for this purpose are: qubitNumberCheck, circuitDepthCheck and getAvailibilityCheck.

Now we can choose Test Compatibility to test the general compatibility of the input
code with the hardware information (see section 3.2). We need to check if the depth of
the circuit respects the maximum depth imposed by the hardware. If this constraint is
not respected, we give the user a list of the qubits whose depth surpasses the limit.

Next we check if the number of qubits used in the circuit is below the limit. Last
we go over the gates used in the code and make sure they are contained in the list of
supported gates in the hardware. The user will get feedback containing the gates that
are not supported.

4.2 Connectivity Test

A very essential condition for quantum code is that the multi-qubit gates need to
be applied to connected qubits. Connected qubits are the pairs of qubits in the
configuration file with the connectivity = 1. In this tool we only consider single-qubit
and two-qubit gates. Once we choose the option Test Connectivity, a list of all qubit
pairs that are connected is formed. Then it checks if the two-qubit gates use pairs
from that list. The problematic gates, if there are any, are returned along with their
corresponding qubits.

18

4 Test Software-Hardware Compatibility

4.3 Crosstalk Test

Crosstalk detection is an important step in error correction and prevention in quantum
computing. As mentioned in section 2.1.4, crosstalk occurs when gates are executed
simultaneously on problematic qubits[24]. This condition depends on the qubits that
are being used and their physical layout[24]. In this work we only detect crosstalk
between two gates at a time.

To check whether two gates have crosstalk, we first check if they can be run in parallel,
then we check if they are operating on qubits that can potentially have crosstalk between
them.

There are different situations for crosstalk detection and each needs to be dealt with
differently. We will explain them one by one using abstract examples where G1 and G2

are quantum gates and qi, qj, ql and qk are qubits.
For each example, if any of the conditions given as a list, is True, then the two gates are
considered as crosstalk generators.

For the first situation, we have gate G1 operating on qubits qi and qj, parallel to gate
G2 operating on qk and ql . The crosstalk conditions are the following:

• (qk, ql) ∈ DoubleQubits[(qj, qi)][crosstalk][pairs]

• (qj, qi) ∈ DoubleQubits[(qk, ql)][crosstalk][pairs]

The second case is when G1 operates only on qi and G2 operates on qk and ql . The
crosstalk requirements become as follows:

• (qk, ql) ∈ SingleQubit[qi][crosstalk][pairs]

• qi ∈ DoubleQubits[(qk, ql)][crosstalk][single]

The last case would be, G1 operates on qi and G2 operates on qk. The conditions for
this situation are:

• qk ∈ SingleQubit[qi][crosstalk][single]

• qi ∈ SingleQubit[qk][crosstalk][single]

In our implementation, the function CrosstalkCheck, algorithm 3, returns a string
containing all the information about the gates causing crosstalk in each layer. We start
by calling the function MaximizeParallelism, algorithm 2. This call ensures that every
layer of gates contains all the gates that can be run in parallel. This is important because
we only detect crosstalk within the layer itself and not across layers.

The next step is to go through each layer separately. For each gatej inside the layer,
we check if it has crosstalk with any other gate starting with gatej+1. Restricting the

19

4 Test Software-Hardware Compatibility

search to the latter part of the layer optimizes the search time. In case crosstalk is
detected, the function getFeedbackCrosstalk(gatei, gatej) is called. This function returns
a string containing the information of gatei and gatej. This information will be collected
in the string CrosstalkFeedback which will be returned at the end. The purpose of
collecting the information as a string is to be able to display it to the user when the
Test Crosstalk option in the app is chosen.

Algorithm 3 Crosstalk Check

1: Input: the gates of the quantum circuit in form of Layers
2: Output: CrosstalkFeedback
3: MaximizeParallelism(Layers) -algorithm 2-
4: CrosstalkFeedback = ” ”
5: for Layer ∈ Layers do
6: j← 0
7: for gate1 ∈ Layer do
8: i← j + 1
9: while i < len(Layer) do

10: gate2 ← Layer[i]
11: if (gate1.qubitsIndices ∈ gate2.potentialCrosstalkPartners) or

(gate2.qubitsIndices ∈ gate1.potentialCrosstalkPartners) then
12: CrosstalkFeedback+ = getFeedbackCrosstalk(gate1, gate2)

13: end if
14: i← i + 1/watch
15: end while
16: j← j + 1
17: end for
18: end for

4.4 Optimization Test

The Tool supports the detection of some gate patterns that can be optimized or removed.
The user can test the circuit for potential optimizations by choosing Test Optimization.
The following patterns[7, Chapter 14] can be detected by the app:

• I − gate can be removed

• HH ⇔ I − gate

• XX ⇔ I − gate

20

4 Test Software-Hardware Compatibility

• ZZ ⇔ I − gate

• HXH ⇔ Z− gate

• HZH ⇔ X− gate

The algorithm analyses all gates in their topological order and detects the previous gate
sequences. The patterns found will then be returned as feedback. The optimizations,
however, need to be done manually by the user.

21

5 Solve Software-Hardware Compatibility
Issues

After having visualized and tested the quantum circuit for possible issues in chapter 3,
the user now has to solve those problems in order to obtain a functional QASM code.
The general compatibility problems described in section 4.1, such as gate types, number
of qubits used and circuit depth, need to be solved manually by the user before moving
on to the ones described in this chapter.

However, the user can choose not to solve those issues and still apply the built-in
connectivity and crosstalk solutions available in the app. The algorithms take into
consideration the possibility that the initial compatibility problems might not be solved
and treat these special cases without generating errors.

5.1 Solve Connectivity Issue

The most common solution for connectivity problems is adding SWAP− gates to the
quantum circuit[12]. Applying Swap(q1, q2) is equivalent to switching |ψ⟩ and |ϕ⟩
which are respectively the current states of q1 and q2. We can see this switch of states
in fig. 5.1 after applying the SWAP− gate.

After switching the values stored in the two qubits, we can operate on q1 as if it
were q2 and vice versa. The mathematical implementation of the Swap can be found in
section 2.1.2.

Figure 5.1: Swap gate [2]

22

5 Solve Software-Hardware Compatibility Issues

5.1.1 Solution

Small Scale Solution

To better understand the logic of a swap and how it solves our connectivity problem,
we will consider a small scale example. We have a two-qubit gate G that operates on q1

and q2. However, q1 and q2 are not connected, which results in a connectivity conflict.
In this case, we need to find a bridge between the two qubits to establish a connection
between them. A possible approach is to find a qubit q3 that is connected to q1 and q2.
The next step would be to apply Swap(q3, q1). This results in storing the value collected
in q1 till now, in q3. Finally, we can apply G(q3, q2).

It is also very important to replace q1 by q3 and q3 by q1 in the rest of the circuit.
We need to access the qubits of every gate that comes after the Swap and change their
indices in case they contain q3 or q1. The change of indices needs to be done manually
because Swap only affects the value stored in the physical qubits and does not switch
the indices of the logical qubits in the circuit1. Adding a swap gate without switching
the indices in the upcoming gates would result in corrupting the semantics of the initial
circuit.

In conclusion:

G(q1, q2)⇔ Swap(q3, q1), G(q3, q2) then switch q1 and q3 in the remaining circuit

Another important point is that q3 has to be connected to both q1 and q2 because the
swap operation also imposes a connectivity constraint.

Figure 5.2: An example of an undirected connectivity graph of six qubits

Unfortunately, finding such a bridge, inter-qubit, may not be as simple as the previous
example. In many cases there is no qubit which is directly connected to both q1 and
q2. In fig. 5.2, we can observe an example of a qubit layout where this problem might
occur. It visualizes the layout as a graph where the qubits are represented as nodes and

1To better understand the difference behind the logical and physical qubits check chapter 2

23

5 Solve Software-Hardware Compatibility Issues

the edges are the existing connections between them. As a result finding a replacement
is equivalent to finding a connected path from q1 to q2. We could also try to find a
path from q2 to q1, and we will end up with the same results due to the connectivity
graph being undirected. In our implementation, the starting qubit is the first index in
gate.qubits, in this case it is q1. We can see in fig. 5.2 that there is more than one path
connecting q1 and q2:

1. [1→ 0→ 3→ 2]

2. [1→ 0→ 4→ 5→ 2].

Of course in order to optimize the number of Swap− gates added to the circuit we
look for the shortest path, in this case it is the first option. The reason we implement this
optimization is because of the correlation between error and circuit depth[1]. Increasing
the circuit depth leads to a decrease in the correctness of the output and increase in the
noise[1].

Finally, we proceed to swap the nodes in [1→ 0→ 3→ 2] pair by pair till we connect
both qubits. It is important to note that we would obtain a correct solution if we opt for
the path: [2→ 3→ 0→ 1].

The first swapping is: Swap(q1, q0). After inserting this gate we change any occur-
rence of q1 with q0 and q0 with q1. So now we operate on q0 as if it were q1 because it
contains the old state of q1. We resume the swapping with the second and last gate:
Swap(q0, q3) and we follow it with the indices update throughout the rest of the circuit
like we did before. At the end of the two swaps, the initial state of q1 is now in q3. As a
result we can apply the gate G on q3 and q2.

G(q1, q2)⇔ Swap(q1, q0), Swap(q0, q3), G(q3, q2) then update qubits indices

General Solution

The configuration file of the hardware contains the connectivity information of all pairs
of qubits. Using that information we start by creating a connectivity dictionary, that
represents the graph of the qubits:

Graph = {Key : qubit | Value : list o f directly connected qubits}

We then apply the function addSwaps (algorithm 4) to the quantum circuit in order
to add the different swap gates and update the logical qubits in the circuit afterwards.
The algorithm goes through the different gates of the quantum circuit until it finds a
gate applied on qubits qi and qj that are not connected. Once such a gate is found, we
call the function getShortestPath which returns the shortest path from qi and qj. This
path is found running a standard breadth first search algorithm on the Graph[18].

24

5 Solve Software-Hardware Compatibility Issues

Once we have the list of qubits connecting qi and qj, we start creating new Swap−
gates. However, we can encounter a problem while creating swaps with the new indices
found in the path. The user might choose to create a quantum circuit using a number
of qubits lower than the number supported by the hardware. On the other hand the
getShortestPath function considers all qubits supported by the hardware to find the
path not just the ones supported by the circuit. Therefore, if the path from qi to qj
contains an index n and the highest index supported by the circuit is m with m < n,
applying a swap− gate with qn is problematic. To make it feasible, we need to make the
quantum register of the circuit larger to support the use of the qubit n. The minimum
new size of the quantum register has to be n + 1. We check this condition before
creating the swap gates. We make sure that the quantum register is larger than the
maximum index in the path.

After inserting each swap, we run through the rest of the current Layer of gates
then the rest of the Layers to switch the indices of qubits that have been swapped.
There is another very important step, not mentioned in algorithm 4, that needs to be
done after finishing adding the swaps and changing the circuit. We go through all the
instructions from the beginning and update the quantum register they are using to the
last version of the circuit.quantumRegister. At the end we have new quantum circuit
with no connectivity conflicts.

An important note for the user is to apply the connectivity solution on a circuit that
respects the maximum number of qubits supported by the hardware. In case the circuit
contains gates operating on qubits with indices higher than the limit of the hardware, it
is impossible to find a path connecting the qubits as they don’t exist in the connectivity
graph of the hardware. The algorithm will not cause any errors but will simply ignore
those gates and not solve the related issue.

5.1.2 Limitations

In this approach to connectivity, we only focused on solving the problem without
taking the circuit depth into consideration. The algorithm 4 does not aim to add a
minimal number of swaps.

Another point to be criticized concerns the algorithm that provides the shortest path
from one qubit to another. The algorithm does not try to limit the qubits in the path to
those supported by the circuit, which can lead to an increased circuit width.

5.2 Solve Crosstalk

As discussed in section 4.3, operating on certain qubits at the same time can create noise
between them and cause errors in the results. In our implementation we are bound

25

5 Solve Software-Hardware Compatibility Issues

Algorithm 4 Add Swaps

1: Input: Graph, Layers of Gates
2: Output: Layers of gates after adding the swap gates and updating the qubit indices
3: for Layer ∈ Layers do
4: j = 0
5: while j < length(Layer) do
6: gate← Layer[j]
7: if (gate is a 2-qubit gate) and (gate.qubits are not connected) then
8: path← getShortestPath(Graph, gate.q0, gate.q1)

9: if path exists then
10: size← circuit.quantumRegister.size
11: highestIndex← Max(path)
12: if highestIndex ≥ size then
13: Change the size of the quantum register of the circuit to

size← highestIndex + 1
14: end if
15: for k ∈ [0..length(path)− 3] do
16: swap← createSwapGate(gate, circuit, path[k], path[k + 1])
17: Insert the new swap gate in current Layer in position j
18: Update the indices of qubits of all the gates in Layer starting from

position j + 1
19: Update the indices of qubits in all Layers after the current Layer
20: j← j + 1
21: end for
22: end if
23: end if
24: j← j + 1
25: end while
26: end for

26

5 Solve Software-Hardware Compatibility Issues

to solve crosstalk only by changing the QASM code. An intuitive solution for this
issue can be to cancel the parallelism and serialize the operations causing the crosstalk
[11]. There are of course other approaches to the problem. We will mention some of
them in section 6.2. Meanwhile, our implementation is based on the intuitive approach
mentioned.

We have briefly discussed in section 2.3 the approach that Qiskit uses to solve this
issue [20]. The logic found in the Qiskit, "separating the problematic gates with barriers",
will also be found in our implementation. Although, the implementation of the solution
and the resulting circuit will be different from the Qiskit approach. We implemented
two different ways to solve the crosstalk. We will explain the first solution in this
section and the second one in section 5.3.

The algorithm 5 represents the first approach. It contains the different steps leading to
the final crosstalk-free circuit. The general idea is: If two parallel gates cause crosstalk,
they should not be in the same layer. At the end, each layer is crosstalk-free. We then
separate the different layers with global barriers making sure there is no interference
between them in runtime. In the following subsection we will go through the different
steps of the algorithm and explain the logic behind them.

Algorithm 5 Crosstalk Solution

1: Input: Circuit, Layers, Configuration Data
2: Output: New Circuit, New Layers
3: MaximizeParallelism(Layers) -algorithm 2-
4: NewLayers← CrosstalkRemoval -algorithm 6-
5: MaximizeParallelismNoCrosstalk(NewLayers)
6: Barriers← generateBarriers(circuit, NewLayers) -algorithm 7-
7: Create a NewCircuit using the NewLayers and the Barriers, creating a separation

between the layers.

5.2.1 Solution

Step 1: Maximize Parallelism

Our initial input are layers of gates. We start by calling the function MaximizeParalle-
lism(Layers) (line 3), which we used in section 3.3.3. This will make sure that we have
compact layers and will lead to a high number of parallel gates and reduced circuit
depth. This function call is particularly important because at the end we will separate
the layers with barriers. That separation will lead to forcing a serialization of the gates
in the different layers. Therefore, it is better that we make sure we have the maximum

27

5 Solve Software-Hardware Compatibility Issues

number of gates possible in each layer before we start the separation. In summary, we
increase the parallelism inside the layers to compensate for their later serialization.

Step 2: Cancel Crosstalk

Now that we have our compact layers of gates, we call the function CrosstalkRemoval
(line 4). We iterate through the Layers, and we go through each gate of Layeri ∈ Layers.
For each gatej ∈ Layeri, we check if it has any crosstalk conflict with any gatek ∈ Layeri
with k > j. We check the existence of crosstalk using the lists of potential crosstalk
partners for the qubits:

• gatej.qubits ∈ gatek.potentialCrosstalkPartners

• gatek.qubits ∈ gatej.potentialCrosstalkPartners.

These lists are found in the configuration data of the hardware as explained in sec-
tion 3.2.

If we find a crosstalk issue between gatej and gatek, then we move gatek from Layeri
to Layeri+1. However, Layeri+1 might have other gates operating on gatek.qubits. In this
case, we insert an empty layer [] in Layers at index i + 1. To this new Layer we add
gatek. At the end we remove gatek from Layeri. Once we finish moving gates around,
we remove all resulting empty layers. After running CrosstalkRemoval, we obtain new
layers, each containing parallel gates that can be executed crosstalk-free.

To better understand the algorithm we observe how it performs on a simple quantum
circuit. Initially we have:

Layers = [Layer0 : [Y(4), Z(2), X(0), X(3), X(1)]; Layer1 : [Y(1)]]

The left side of fig. 5.3 represents a visualization of this initial circuit. The barriers
separating the layers in the example are for visualization purpose only and do not
represent real barriers in the code (not to be confused with the barriers we will add to
the code in Step 4).

The crosstalk information we get from the configuration file of the hardware is the
following:

{(qubit4 : [0, 1, 2, 3]), (qubit2 : [1]), (qubit3 : [2])}

The first gate we start with, in Layer0, is Y(4). This gate has crosstalk with all the
gates in Layer0 according to the information above. As a result, we start moving the
following gates to Layer1 : Z(2), X(0) and X(3). The order in which we move the gates
depends on their order inside Layer0. The result of this action is presented on the right
side of fig. 5.3.

28

5 Solve Software-Hardware Compatibility Issues

Now we check Y(4) and X(1), the last gate in Layer0. We need to move X(1) to
Layer1. However, it is impossible due to the existence of the gate Y(1), which occupies
qubit1. Therefore, we create a new layer at index 1 and move X(1) to this new layer.
We can notice in fig. 5.4 that now we have 3 Layers. The algorithm continues iterating
through Layer1 and Layer2 moving the gates around to solve crosstalk conflicts. This
was a sample solution to better visualize the way the algorithm works.

Figure 5.3: Moving the gates: X(0); Z(2) and X(3) to next layer due to crosstalk

Figure 5.4: Insert X(1) in a new layer at index 1 due to crosstalk

Step 3: Maximize Parallelism -Avoiding Crosstalk-

In Step 2 (section 5.2.1), solving the crosstalk conflicts was our only priority. However,
a possible side effect of the solution is having multiple layers that can be merged
together and run in parallel. For this purpose we wrote an algorithm very similar
to MaximizeParallelism(Layers) (algorithm 2) called MaximizeParallelismNoCrosstalk.
The new algorithm does the same function as the old version except that it does a
crosstalk check before moving a gate. For a gate to be moved from Layeri+1 to Layeri,

29

5 Solve Software-Hardware Compatibility Issues

two conditions need to be met instead of one.
Condition 1: In Layeri, the qubits on which the gate operates need to be free
Condition 2: The gate does not result in crosstalk with the gates of Layeri
Similar to MaximizeParallelism(Layers), we will repeat this process until there is no
gate that can moved to the left.

An example of a situation where this is needed is in fig. 5.5. All three gates:
X(1), X(0) and X(3) can be run in parallel without causing crosstalk according to the
hardware information in section 5.2.1. Therefore, Layer2 and Layer1 are merged together
after running MaximizeParallelismNoCrosstalk. On the other hand, the gate Z(2) was
not pushed to the previous layer despite the available space. This is due to the crosstalk
between (qubit1, qubit2) and also (qubit3, qubit2). This example perfectly explains the
difference between the original algorithm (algorithm 2) and the new one.

Figure 5.5: Last Iteration of Crosstalk Removal

Step 4: Generate New Circuit With Barriers

This final step plays a major role in the solution. Out of step 1, 2 and 3, we obtain a data
structure representing the gates of our quantum circuit. However, if we translate the
data structure directly to a quantum circuit we will end up having our initial circuit with
unsolved crosstalk issues. This is because the layers are a theoretical way of separating
the different quantum gates to better manipulate them. If we want to preserve the new
crosstalk free layers we obtained, we need to create a tangible separation between them
in the code.

A simple and efficient way to do that is to apply global barriers at the end of each
layer. Global barriers are barriers that are applied to all the qubits of the circuit. It is
a way of forcing the hardware to execute all the gates in one layer first, then move to
the next layer. Because we separate the gates causing crosstalk problems into different

30

5 Solve Software-Hardware Compatibility Issues

layers, we are certain that those gates can never be run in parallel due to the global
barriers[11].

The function generateBarriers(circuit, NewLayers) (algorithm 7) generates those barri-
ers between layers. It also avoids creating double barriers in case the circuit initially has
global barriers. This condition is important especially because in the app Solve Crosstalk
can be called an unlimited number of times. Therefore, the barriers are to be added
only when needed.

Finally, we obtain a new circuit out of the layers from step 3 and the barriers we just
generated. We return this circuit in form of QASM code displayed in the text editor in
the app.

5.2.2 Limitations

Although the presented algorithm solves the initial problem, it is not the best approach.
This solution does not consider the time of the different gates. It allows only one gate
per qubit in each layer. Therefore, when one gate finishes operating first, its qubits will
remain free until the next layer is reached. This is caused by the global barriers we
apply to the circuit. So there is a chance that we are increasing the total runtime of the
circuit, which can lead to decoherence [7, chapter 5].

Another point is that we don’t consider gate commutation which can lead to a
reduced number of layers. There are different optimization passes [8] that can be run
on the circuit before applying the global barriers and forcing a certain scheduling on
the hardware.

5.2.3 Correctness

Two main things that are needed to prove the correctness of this solution:

1. There are no crosstalk issues in the final circuit

2. The semantics of the initial circuit is preserved

Starting with crosstalk, we have explained in a detailed manner throughout Step 1, 2
and 3, in section 5.2, why this solution actually works. We also explained that adding
the global barriers at the end plays the most important role in isolating the layers in the
actual code. This prevents simultaneous execution of problematic gates.

Moving on to the semantics, our only concern in this algorithm is conserving the
relative order of the gates when rearranging them, as no other changes are being made
to the circuit.

We move our gates inside the layers in two directions. We can move gates from right
to left, and we call these, the parallelism-maximization algorithms. Those algorithms,

31

5 Solve Software-Hardware Compatibility Issues

however, only push all gates to the left in the order they are initially in. Basically, if
the qubit in the layer on the left is occupied, we quit the "move" and go to the next
gate. Also, we only move gates between two successive layers. This means there is no
situation where a gate from Layeri+2 is moved to Layeri while there is a gate in Layeri+1

that must come before.
The second direction we move gates in, is from left to right. This is during the

crosstalk removal (algorithm 6). This does not cause a problem, because we are
separating gates that can be run in parallel, so there is no order involved. Also, we are
pushing gates to a directly subsequent layer to the right if there is space or insert it
right before the next layer. In both situations the order is conserved.

5.3 Solve Crosstalk - Time Dependent

Part of the hardware specifications is the time it takes the hardware to execute the
different gates. This fact can be utilized to optimize the circuit runtime[9]. We can
try to maximize the parallelism of the gates based on their single operating times. A
simple example would be: A gate G1 with Time = 100t can be parallel to two serialized
G2 gates with Time = 30t with t representing a time unit.

The main method (algorithm 11) of our 2nd approach, is actually a mixture between
crosstalk solving and scheduling. This solution generates a circuit where each layer
contains high parallelism and efficient use of the different runtimes of the gates.

In this section, we will introduce a new concept of Layers. Contrary to what we
explained in chapter 2, a Layer in this approach can contain serialized gates as well
as parallel gates. After applying this solution to the initial layers, we still end up with
new layers that are crosstalk-free, however, not all gates inside one layer are parallel.

In fig. 5.6 we can observe an example of what a layer can look like after applying the
second approach.

In this example, gate SX takes more time than gate Rz. We can fit multiple Rz gates
during the runtime of one SX gate. This is noticeable even from the proportionality of
the gates to each other as explained in section 3.3.2. We can see that Rz(2) and Rz(3)
would be run after each other due to the barrier between them. Those barriers are a
mean of preventing crosstalk between the gates.

5.3.1 Solution

We will now explain in details the different algorithms that make up the solution and
the special cases that we had to pay attention to. The different steps are displayed in
algorithm 8. We will divide them in 4 steps and discuss them separately.

32

5 Solve Software-Hardware Compatibility Issues

Figure 5.6: Layer after time-optimized crosstalk solution

Step 1: Run the First Approach

We start by applying the 3 algorithms that were used in section 5.2 to our initial layers:

• MaximizeParallelism(Layers) -algorithm 2-

• CrosstalkRemoval(Layers) -algorithm 6-

• MaximizeParallelismNoCrosstalk(Layers)

The function-calls above were discussed thoroughly in section 5.2. These will give us
crosstalk-free compact layers. Those will be used in the next steps.

Step 2: Necessary Initialization

Before we start moving the gates around, we have a couple of dictionaries to initialize.
These will be used later in the main algorithm.

The first dictionary we will need is the Time Dictionary, and it contains the times of
all gates in the quantum circuit:

TimeDict = {Key : GateName 7→ Value : Time}

We also look for the minimum time of all gates and assign it to gates in the circuit
that are not supported by the quantum hardware. This is an error prevention in case

33

5 Solve Software-Hardware Compatibility Issues

the user does not solve the first hardware compatibility issues, see section 4.1, before
solving the crosstalk.

Next we need to set the width of each layer in a LayersWidth list.

LayersWidth[i] = Width o f Layeri = Max(Times o f the gates in Layeri)

The layer’s width corresponds to the gate in the layer that takes the most time to
execute. This width is the maximum execution time of all gates inside the layer. In
other words, the totality of gates acting on each qubit in Layeri need to finish running
in less or equal time than the width of Layeri.

To better visualize this constraint we observe the two layers in fig. 5.7. In the Time
Dictionary, the time of gate Y is 500 time units and the time of X is 100 time units. As a
consequence the width of Layer0 is set to 500. Therefore, in Layer0 we can only fit five
X− gates consecutively and the 6th X− gate stays in Layer1.

Figure 5.7: Layer width as a time constraint

The last initialization is the time available per qubit in each layer (algorithm 9).
Previously we described the layer’s width as the upper bound for execution time in the
layer. However, this upper bound is not always reached due to the different timings of
the gates. The free time for each qubit inside a layer where no gate is operating on it, is
stored in AvailableTime. The AvailableTime is a list of dictionaries, each representing a
layer. Inside each dictionary we have an association of (qubit, time).

AvailableTime[i][qubitj]← LayersWidth[i]− Σ time o f gate in Layeri acting on qubitj

This is the time which will be utilized in the next steps to serialize gates that can be run
consecutively within the time constraint. After Initializing the AvailableTime dictionary
for the sample circuit in fig. 5.8, we get:

AvailableTime = [{(qubit0, 0), (qubit1, 400), (qubit2, 500)}]

34

5 Solve Software-Hardware Compatibility Issues

Figure 5.8: Example of different time availability on qubit0, qubit1 and qubit2

Step 3: Removing the Crosstalk

In this step we call the function "Crosstalk Removal-Time Dependent-" implemented
in algorithm 11. This algorithm is composed of multiple case-checks. We will explain,
when each case can occur and how it will be treated.

Free Gaps Dictionary:
We create a dictionary called FreeGapsPerQubit. This is a similar dictionary to
AvailableTime. We initialize the values corresponding to the different qubits in the
different layers to 0: FreeGapsPerQubit[i][qubitj] ← 0 with i an index of a layer and j
index of a qubit.

Qubit Availability Dictionary:

Now we iterate through the different layers, and for each Layeri we check whether
we can move gates from Layerj with j > i. For each Layeri we create a QubitAvailibility
dictionary: QubitAvailibility = {Key:qubit 7→ Value:True or False}.

The logic behind the QubitAvailibility dictionary is to preserve the order of the gates.
So if a gate G(qubitk) can not be moved into Layeri, we set qubitk in QubitAvailibility
to False. Now any gate that acts on qubitk and comes after G(qubitk) in topological
order can not be moved to Layeri even if there is enough space or other conditions are
met. This is because setting the availability of qubitk to False indicates that there is a
gate that came before and is blocking this qubit.

In conclusion, the value corresponding to each qubit represents a permission (or
not) to move an outside gate operating on that qubit, to the current layer. All the
values in QubitAvailibility are originally set to True when a layer is first entered. Then,
every time an outside gate can not be moved into the current layer, we set the qubits
corresponding to that gate to False in QubitAvailibility.

In fig. 5.9, we can see that on qubit2, there is space next to gate Z in Layer0. Theoret-
ically gate X can fit in there. However, the gate SX came before it in Layer1 and has

35

5 Solve Software-Hardware Compatibility Issues

already blocked qubit2. Therefore, gate X can not be moved from Layer2 to Layer0. The
gate-blocking prevents gates from jumping before other gates that normally need to be
executed before them. This way we preserve the semantics of the quantum circuit.

Figure 5.9: Example of gates blocking each other via QubitAvailibility

Case 1:
We start by fixing a Layeri to which we want to move all possible gates from all layers
that come after it. Suppose gate0(qh) is a gate that we want to add to Layeri from Layerj
with j > i.

First, we check the availability condition. As we discussed previously, QubitAvailibility[qh]

need to be True to be able to move the gate. In case we have a multi-qubit gate acting
on more than a qubit, all those qubits need to be set to True in order to enable the move.
If any of the qubits on which the gate operates is set to False in QubitAvailibility, the
move is cancelled. We then proceed to set all gate.qubits in QubitAvailibility to False
and continue with the next gate.

Case 2:
Next we check if there is enough space in Layeri to add gate0(qh). For that, we check
if FreeGapsPerQubit[i][qh] ≥ gate0.time or AvailableTime[i][qh] ≥ gate0.time. If none
of these two conditions is fulfilled, gate0 can not be added to Layeri, we set qh in
QubitAvailibility to False and move on to the next gate.

Case 3:
We suppose that there is enough space and the qubits are available. We go check if the
free gaps have enough space to fit gate0(qh). We left it to this point to explain what is
the meaning behind those gaps. In order to understand what a gap is, we consider the
example in fig. 5.10. The barrier(q1, q2, q3) is acting as a crosstalk solution because here
we have crosstalk (q2,q3) and (q2,q1). How and when to add a barrier will be discussed

36

5 Solve Software-Hardware Compatibility Issues

in the next steps of this algorithm. We bring this up here because adding the barrier
can result in a wasted space between the barrier and the gates before it and we want to
exploit that space to increase parallelism.

As we see in the example, the gate Z takes longer to execute than the gate X.
Eventually gate X(3) will finish execution, and we have to wait for gate Z(1) to finish
due to the barrier. As a consequence, qubit3 was free for a period of time equal to
Z.time− X.time. This time slot is what we refer to as a gap. These gaps are a result of
adding barriers. We can keep track of them and add gates in those time slots.

As an example, we consider a gate operating on qubit3. This gate comes after the
gate X(2) in terms of topological order, it checks the previously mentioned conditions
and can fit in FreeGapsPerQubit[0][qubit3]. This gate will be inserted in the position
right after X(3). We can see in fig. 5.11 how we could fit another X(3) gate before the
barrier.

Figure 5.10: Gap space between barrier and X(3)

It is very important to know how we find the index where we insert the gate. For
this we need to go back to our initial example where we are trying to move gate0(qh)

in Layeri. It is not enough to find free gaps for all of gate0.qubits, in this case qh, where
the gate can fit. We need to find a gate in the initial Layeri that operates on exactly the
same qubits as gate0. So if we had gate1(qh, qk), we do not insert gate0(qh) next to it.
The reason for this is that, when inserting a gate in a gap we do not check for crosstalk.
This is due to the fact that the kind of crosstalk we are dealing with in this approach
depends on the qubits not the nature of the gates.

So if we have a gate2 in Layeri that operates on exactly the same qubits as gate0 then
we can be certain that any kind of crosstalk for those qubits has been already treated.
By adding gate0 directly consecutive to gate2, we make sure that any barrier that is
applied to gate2 will be also applied to gate0. This is also shown in fig. 5.11. By adding
the new X(3) on the left side of the barrier, we have no crosstalk with X(2).

If the gate0 can be moved in the gap after gate2 in Layeri, we need to update the gap
time: FreeGapsPerQubit[i][qh] ← FreeGapsPerQubit[i][qh]− gate0.time. We then move

37

5 Solve Software-Hardware Compatibility Issues

on to the next gate.

Figure 5.11: Inserting a new gate X(3) in the gap before the barrier

Case 4:
In case we were unable to insert a gate0(qh) in a free gap in Layeri, we close all gaps
corresponding to gate0.qubits: FreeGapsPerQubit[i][qh]← 0. We do this because if gate0

can not fit in the gap, no subsequent gate operating on the same qubits is allowed be
moved in there.

Now the only option left is to append gate0 at the end of Layeri, if possible. Therefore,
we start with checking if there is any crosstalk between gate0 and any other gate in
Layeri. For this, we call a function BarrierToCreate.

Inside the function BarrierToCreate, we check for crosstalk. We start by creating a list
called BarrierIndices← []. Every time we find a problematic gate, gatep, in Layeri we
check if there is already a barrier preventing gatep and gate0 from running in parallel.
If this barrier already exists, we consider the crosstalk issue solved and do not require
an additional barrier.

However, in case we need to add a barrier before adding gate0, we add gate0.qubits
and gatep.qubits to BarrierIndices. We do this for all the gates in Layeri. At the end
we return BarrierIndices. The returned list represents the barrier that needs to be
implemented before moving gate0 to Layeri

Back to the main algorithm (algorithm 11), we check if BarrierIndices is empty.
This means we can just move gate0(qh) to Layeri without adding any barriers. Af-
ter that, we update the time available on qh, and we move on to the next gate:
AvailableTime[i][qubith]← AvailableTime[i][qubith]− gate0.time.

Case 5:
Another case is when BarrierIndices is not empty. Meaning, we have to add a barrier
to Layeri, if we want to move gate0 there. However, after adding a barrier there is a

38

5 Solve Software-Hardware Compatibility Issues

possibility that we will not have enough space for gate0. This is caused by the updates
to AvailableTime and FreeGapsPerQubit that happen as a consequence of adding a
barrier to a layer.

This is where algorithm 10 "Update Time And Gaps Before Adding Crosstalk Barrier"
is useful. We run this algorithm before moving the barrier and the gate. This algorithm
checks if there will be enough space for gate0 after adding the barrier. If there is not
enough space, it does not change anything and returns False. If there is space available,
it updates AvailableTime and FreeGapsPerQubit and returns True.

In case algorithm 10 returns True, we proceed with creating a barrier with the indices
in BarrierIndices. Next, we move the new barrier then gate0 to Layeri. Otherwise, we
leave gate0 in its original layer, and we do not add any barriers to Layeri. In case we
don’t move the gate, it is important to go and set qh in QubitAvailibility to False. We
finally move on to the next gate.

To better understand how algorithm 10 works, we will discuss the circuit presented
in fig. 5.12. In the hardware, we run the code on, we have:

TimeDict = {(SX, 600)|(Y, 500)|(X, 100)|(Z, 200)}

On the left we have the initial Layer0. Layer0 contains the following gates: SX(0), Y(2)
and X(4). LayersWidth[0]← SX.time given that the gate SX takes the most time. We
have a Z(3) gate that we want to move to Layer0. However, we have crosstalk issues in
(q2, q3) and (q3, q4). In this case, we need to add a barrier(q2, q3, q4).

Figure 5.12: Example of a problematic crosstalk-cancelling barrier

At first sight, we notice that qubit3 is empty. We have AvailableTime[0][qubit3] =

600 > Z.time. This however is not the real time available for the gate Z(3). We can see
in fig. 5.12 on the right side, how when adding a barrier we actually reduce the time
available for Z(3). This is due to the fact that the barrier forces Z(3) to wait for Y(2)
and X(4) to finish. This serialization is necessary to avoid crosstalk. For this reason we
need to calculate a new AvailableTime[0][qubit3].

39

5 Solve Software-Hardware Compatibility Issues

We start by finding the minimum time available of all qubits ∈ BarrierIndices. In our
case, it is LayersWidth[0]−Y.time = 100. This represents the new available time of all
qubits ∈ BarrierIndices.

Now we compare the new available time to the time of the gate we want to add. If
the gate takes more time than the time available, it will lead to surpassing the time
limit set through the Layer’s width. In this case we do not move the gate, nor add the
barrier, and we do not update the AvailableTime with the new values. This is what
happens in this example: Z.time = 200 > 100. We can see on the right of fig. 5.12 that
if we move Z(3), it exceeds the layer’s width.

Figure 5.13: Example of a successful gate mitigation with the proper crosstalk-cancelling
barrier

Now, we consider an example where we can move the gate and the corresponding
barrier into the layer. The fig. 5.13 is very similar to the example in fig. 5.12 to the
exception to the gate Y(2) which was replaced with a shorter Z(2) gate.

In this situation, the minimum time available of all qubits ∈ BarrierIndices is
LayersWidth[0]− Z.time = 400. There is enough time available for Z(3) after adding
the barrier. We proceed with updating the gaps then the time available for all qubits in
barrier.qubits.

We start setting the gaps first because we need the old AvailableTime values. Fur-
thermore, we set the gaps corresponding to the qubits of the added gate to 0, in this
case it is Z(3).
This is because the gate is located after the barrier. This means it blocks every gate com-
ing after it, which can fit in the gap before the barrier. So FreeGapsPerQubit[0][q3] = 0.

Moreover, we treat the qubits that are contained in BarrierIndices, but the moved
gate do not operate on them, in this case we have q2 and q4:
FreeGapsPerQubit[0][qubit] = AvailableTime[0][qubit]−minimum available time.
In this example:

40

5 Solve Software-Hardware Compatibility Issues

FreeGapsPerQubit[0][q2] = 400− 400 = 0 and FreeGapsPerQubit[0][q4] = 500− 400 =

100.
Now we assign for all qubits ∈ the barrier, AvailableTime[0][qubit] = 400. Addi-

tionally, we subtract the time of the added gate from its available time. As a result,
AvailableTime[0][q3] = 400− 200 = 200.

Finally, the time available and the free gaps have been updated and the gate and
barrier were successfully moved. Now we can proceed with the next gate.

Clean Up
After reaching the end of every Layerj, from which we have been moving gates to a
prior Layeri, we need to clean up Layerj. We call an update function which updates
AvailableTime and LayersWidth according to the new state of Layerj. In case a layer
has become empty then we remove the layer and all information corresponding to it in
AvailableTime and LayersWidth.

Step 4: Generate New Circuit

After running algorithm 11 "Crosstalk Removal-Time Dependent-", we obtain crosstalk-
free layers with high runtime optimization. Now, to finish off this algorithm, we
generate the barriers separating the layers to preserve their structure. Then, we generate
a new circuit out of the new layers and the barriers.

5.3.2 Limitations

In this approach we actually present a way of scheduling the different gates and how
they can be run on the hardware. This time-aware approach aims to optimize the
runtime of the circuit. However, it does not necessary give the optimal solution. To find
the optimal solution, we need to consider all feasible permutations of the gates while
conserving there topological order. Then, from all the possibilities, we choose the one
that has the least runtime.

This algorithm can be further improved to find the best combination for the gates to
run in the least period of time possible. A specific condition in the algorithm that can
cause a non-optimal solution is the time availability constraint. If the available time on
a qubit in a layer is slightly less than the execution time of a gate, we do not move the
gate. However, sometimes, that difference is so small that it is better to move the gate
to the left than to leave it in the layer to the right and increase the global runtime of the
circuit. In this case, the algorithm will not give the most optimized solution.

41

5 Solve Software-Hardware Compatibility Issues

5.3.3 Correctness

Very similar to the first approach (section 5.2), we need to prove that this new solution
solves all crosstalk issues and also preserves the semantics by conserving the order of
gates. The first point has been made clear while explaining the different algorithms
previously. We explained how we separate the problematic gates via small barriers
inside the same layer. Additionally, if the gate has not been moved because there is not
enough space but has crosstalk problems with gates in the next layer, this issue will be
solved through the global barriers that we apply at the end.

Now coming to the order of the gates we have made it clear that every time a gate
cannot be moved to the layer on the left, we block the qubits in QubitAvailibility. This
is what prevents gates from jumping in front of other gates that should be executed
before. So we check the QubitAvailibility before any move to make sure we do not
mess the topological order of the gates. This preserves the execution order of the gates
on each qubit.

42

5 Solve Software-Hardware Compatibility Issues

Algorithm 6 Crosstalk Removal

1: Input: Layers, Configuration Data
2: Output: Layers after solving crosstalk issues
3: k← 0
4: while k < (length(Layers)− 1) do
5: for i ∈ [0..length(Layerk)− 1] do
6: if i < length(Layerk)− 1 then
7: j← i + 1
8: while j < length(Layerk) do
9: crosstalkCheck← crosstalkExists(Layerk[i], Layerk[j], Con f igurationData)

10: if crosstalkCheck then
11: TransferCheck← Layerk+1 has no gates operating on Layerk[j].qubits

→ the gate Layerk[j] can be transferred to Layerk+1
12: if k < (length(layers)− 1) and Trans f erCheck then
13: Move Layerk[j] to Layerk+1
14: Remove Layerk[j] from Layerk
15: else
16: Insert an empty layer [] in position k + 1 in Layers
17: Move Layerk[j] to Layerk+1
18: Remove Layerk[j] from Layerk
19: end if
20: else
21: j← j + 1
22: end if
23: end while
24: end if
25: end for
26: if Layerk is empty then
27: Remove Layerk from Layers
28: end if
29: k← k + 1
30: end while

43

5 Solve Software-Hardware Compatibility Issues

Algorithm 7 Generate Barriers

1: Input: Layers, Circuit
2: Output: Barriers
3: existingBarriers = deleteDoubleBarriers(Layers, circuit)
4: barriers← []

5: Create a barrier gate that goes over all qubits in the circuit
6: i← 0
7: for Layer ∈ Layers do
8: if i = 0 then
9: i← i + 1

10: continue
11: end if
12: if Layer[0] is not a barrier over all the qubits of the circuit then
13: if Not (i− 1 ∈ existingBarriers) then
14: Barriers.add(barrier)
15: end if
16: end if
17: i = i + 1
18: end for

Algorithm 8 Crosstalk Solution -Time Dependent-

1: Input: Circuit, Layers, Configuration Data
2: Output: New Circuit, New Layers
3: MaximizeParallelism(Layers) -algorithm 2-
4: NewLayers← CrosstalkRemoval -algorithm 6-
5: MaximizeParallelismNoCrosstalk(NewLayers)
6: Create a Time Dictionary:

TimeDict = {Key : GateName 7→ Value : Time}

7: Initialize the width of Layers: Layer Width=Max(Times of the gates in Layer)
8: Initialize available time per qubit with the function: GetAvailableTime -algorithm 9-
9: New Layers← CrosstalkRemoval − TimeDependant− -algorithm 11-

10: Barriers← generateBarriers(circuit, NewLayers) -algorithm 7-
11: Create a NewCircuit using the NewLayers and the Barriers, creating a separation

between the layers.

44

5 Solve Software-Hardware Compatibility Issues

Algorithm 9 Get Available Time

1: TimeAvailable← []

2: for Layeri ∈ Layers do
3: timePerQubit←
4: for gate ∈ Layeri do
5: for qubit ∈ gate.qubits do
6: timePerQubit[qubit]← (widtho f Layeri)− (timeo f gate)
7: end for
8: end for
9: TimeAvailable.add(timePerQubit)

10: end for

Algorithm 10 Update Time And Gaps Before Adding Crosstalk Barrier

1: Input: LayerWidth, LayerIndex, TimeAvailable, FreeGaps, Barrier, Gate
2: Get the minimum time available of all qubits ∈ Barrier
3: if minimum time available > gate.time then
4: for qubit ∈ Barrier.qubits do
5: if qubit ∈ gate.qubits then
6: TimeAvailable[LayerIndex][qubit]=minimum time - gate.time
7: FreeGaps[LayerIndex][qubit]=0
8: else
9: FreeGaps[LayerIndex][qubit]=TimeAvailable[LayerIndex][qubit]-

minimum time
10: TimeAvailable[LayerIndex][qubit]=minimum time
11: end if
12: end for
13: return True
14: else
15: return False
16: end if

45

5 Solve Software-Hardware Compatibility Issues

Algorithm 11 Crosstalk Removal-Time Dependent-

1: Initialize gaps to 0 for all qubits in all layers
2: k← 0
3: for Layerk ∈ Layers do
4: Initialize qubit availability: qubitAvailability = {Key : Qubit|Value : True}
5: j = k + 1
6: while j < length(Layers) and there are available qubits in qubitAvailability do
7: for gatei ∈ Layerj do
8: if Not (qubitAvailability of all gatei.qubits is True) then
9: Set qubitAvailability of all gatei.qubits to False

10: continue
11: end if
12: if There is no space left in each gate.qubit in Layerk then
13: Set qubitAvailability of gatei.qubits to False
14: continue
15: end if
16: if There is a gap with enough space for the gatei in Layerk then
17: GetInsertionIndex, insert the gatei in the free gap and update the gaps
18: continue
19: end if
20: close the gaps for gatei.qubits in Layerk
21: if There is no crosstalk between gatei and all gates in Layerk then
22: Move gatei from Layerk+1 to Layerk and update time in Layerk
23: continue
24: end if
25: if No need to add a barrier to prevent crosstalk then
26: Move gatei from Layerk+1 to Layerk and update time in Layerk
27: continue
28: end if
29: Update available time and gaps before adding crosstalk barrier-

algorithm 10
30: if There is no space left to add gatei then
31: Set qubitAvailability of gatei.qubits to False
32: else
33: Add a sub-barrier to Layerk
34: Move gatei from Layerk+1 to Layerk
35: end if
36: end for
37: Update the information of Layerj and remove it, if it is empty
38: j = j + 1
39: end while
40: end for 46

6 Conclusion and Future Work

6.1 Conclusion

The compiling process of quantum code is as crucial as writing the code. Therefore, it
can be beneficial for programmers and researchers to control the compilation process
of their code and have a closer look into the specifications of the hardware they use.

This gives them more control over the changes happening to the code and a better
understanding of the output.

To achieve this goal, we implemented an app joining the software and the hardware
parts of quantum computing. We are able to represent any quantum hardware with
a general data structure without having access to the real quantum computer. We
enabled the programmer to test code compatibility with any desired hardware and solve
these problems manually or automatically. In this work, we implemented innovative
visualization algorithms by scaling the gate size to its execution time. We also created a
solution to the crosstalk problem combined with a scheduling technique.

At the end, we provide an independent tool which can be used to detect some
compilation problems and solve them. It is a useful tool to fill the gap between
quantum programming and quantum platforms.

However, our application has its limitations and many aspects of it can be improved.
We have already discussed in previous chapters the limitations of the main algorithms
in our work, and in the next section we will show, what improvements can be made in
the future.

6.2 Future Work

Our implementation can be further improved to generate a more optimized circuit with
minimal error. The first algorithm we can add is logical to physical qubits remapping
for minimal crosstalk and connectivity issues[6].

Next, we can run optimization passes on the gates such as gate merging, gate
cancellation, gate decomposition, pattern matching and others[21].

Moreover, We can reimplement the connectivity solution using qubit routing[13] to
minimize the number of swap gates added.

47

6 Conclusion and Future Work

Additionally, we can improve the time-dependent visualization of the quantum
circuit for a better representation of the time aware crosstalk solution. We also can
modify the app to support gates operating on more than two gates.

Last but not least, we can improve the supported hardware characteristics. We can
support an error model to enable the user to track the error throughout the circuit.
Also, we can make the gates more universal by only using the U-form of the quantum
operators.

In conclusion, with the rapid development of quantum technology and especially
quantum compilers, there are many features and algorithms to be added in order to
refine and enhance our tool and make it future-proof.

48

List of Figures

2.1 Unary and binary gates representation in circuit visualization 4

3.1 Diagram representing the main parts of the implementation with their
respective code files . 8

3.2 Screen capture, from the app, representing how the hardware informa-
tion are displayed . 9

3.3 Screen capture, from the app, containing the code editor, visualization
options and the toolbar for file management and hardware selection . . 9

3.4 Screen capture, from the app, showing the different testing feedback and
solution options . 10

3.5 Time-Scaled Gate designs . 14
3.6 Gates before applying max justify-left . 15
3.7 Gates after applying max justify-left . 15

5.1 Swap gate [2] . 22
5.2 An example of an undirected connectivity graph of six qubits 23
5.3 Moving the gates: X(0); Z(2) and X(3) to next layer due to crosstalk . . . 29
5.4 Insert X(1) in a new layer at index 1 due to crosstalk 29
5.5 Last Iteration of Crosstalk Removal . 30
5.6 Layer after time-optimized crosstalk solution 33
5.7 Layer width as a time constraint . 34
5.8 Example of different time availability on qubit0, qubit1 and qubit2 . . . 35
5.9 Example of gates blocking each other via QubitAvailibility 36
5.10 Gap space between barrier and X(3) . 37
5.11 Inserting a new gate X(3) in the gap before the barrier 38
5.12 Example of a problematic crosstalk-cancelling barrier 39
5.13 Example of a successful gate mitigation with the proper crosstalk-

cancelling barrier . 40

49

List of Algorithms

1 Get Scale Dictionary . 14
2 Maximize Parallelism . 17
3 Crosstalk Check . 20
4 Add Swaps . 26
5 Crosstalk Solution . 27
6 Crosstalk Removal . 43
7 Generate Barriers . 44
8 Crosstalk Solution -Time Dependent- . 44
9 Get Available Time . 45
10 Update Time And Gaps Before Adding Crosstalk Barrier 45
11 Crosstalk Removal-Time Dependent- . 46

50

Bibliography

[1] D. Azses, M. Dupont, B. Evert, M. J. Reagor, and E. G. D. Torre. “Navigating the
noise-depth tradeoff in adiabatic quantum circuits.” In: Physical Review B 107.12
(Mar. 2023). doi: 10.1103/physrevb.107.125127.

[2] S. Balakrishnan. “Various Constructions of Qudit SWAP Gate.” In: Physics Research
International 2014 (Aug. 2014).

[3] R. Computing. The Quil Compiler. 2021. url: https://pyquil-docs.rigetti.
com/en/stable/compiler.html.

[4] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Open Quantum
Assembly Language. 2017. arXiv: 1707.03429 [quant-ph].

[5] C. Developers. Cirq. https://github.com/quantumlib/Cirq. 2019.

[6] Y. Ding, P. Gokhale, S. F. Lin, R. Rines, T. Propson, and F. T. Chong. “Systematic
Crosstalk Mitigation for Superconducting Qubits via Frequency-Aware Compila-
tion.” In: 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, Oct. 2020. doi: 10.1109/micro50266.2020.00028.

[7] J. D. Hidary. Quantum Computing: an Aplied Approach. Springer International
Publishing AG, 2019-09-20.

[8] K. Hietala, R. Rand, S.-H. Hung, X. Wu, and M. Hicks. “A verified optimizer for
Quantum circuits.” In: Proceedings of the ACM on Programming Languages 5.POPL
(Jan. 2021), pp. 1–29. doi: 10.1145/3434318.

[9] T. Itoko and T. Imamichi. Scheduling of Operations in Quantum Compiler. 2020.
arXiv: 2011.04936 [quant-ph].

[10] M. Maronese, L. Moro, L. Rocutto, and E. Prati. Quantum Compiling. 2021. arXiv:
2112.00187 [quant-ph].

[11] P. Murali, D. C. Mckay, M. Martonosi, and A. Javadi-Abhari. “Software Mitigation
of Crosstalk on Noisy Intermediate-Scale Quantum Computers.” In: Proceedings
of the Twenty-Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM, Mar. 2020. doi: 10.1145/3373376.
3378477.

51

https://doi.org/10.1103/physrevb.107.125127
https://pyquil-docs.rigetti.com/en/stable/compiler.html
https://pyquil-docs.rigetti.com/en/stable/compiler.html
https://arxiv.org/abs/1707.03429
https://github.com/quantumlib/Cirq
https://doi.org/10.1109/micro50266.2020.00028
https://doi.org/10.1145/3434318
https://arxiv.org/abs/2011.04936
https://arxiv.org/abs/2112.00187
https://doi.org/10.1145/3373376.3378477
https://doi.org/10.1145/3373376.3378477

Bibliography

[12] J. Pointing, O. Padon, Z. Jia, H. Ma, A. Hirth, J. Palsberg, and A. Aiken. Quanto:
Optimizing Quantum Circuits with Automatic Generation of Circuit Identities. 2021.
arXiv: 2111.11387 [quant-ph].

[13] M. G. Pozzi, S. J. Herbert, A. Sengupta, and R. D. Mullins. Using Reinforcement
Learning to Perform Qubit Routing in Quantum Compilers. 2020. arXiv: 2007.15957
[quant-ph].

[14] I. Quantum. Operations glossary. 2023. url: https://quantum-computing.ibm.
com/composer/docs/iqx/operations_glossary.

[15] I. Research. Qiskit. https://github.com/Qiskit. 2023.

[16] I. Research. Qiskit DAG Circuit. https://github.com/Qiskit/qiskit-terra/
blob/main/qiskit/dagcircuit/dagcircuit.py. 2023.

[17] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and R. Dun-
can. “t|ket〉: a retargetable compiler for NISQ devices.” In: Quantum Science and
Technology 6.1 (Nov. 2020), p. 014003. doi: 10.1088/2058-9565/ab8e92.

[18] Stack overflow: Shortest path Graph BFS python. 2022 Accesssed: 2022-05.

[19] Q. D. Team. Qiskit. 2023. url: https://qiskit.org/documentation/index.html.

[20] Q. D. Team. Qiskit: Crosstalk Adaptive Schedule. 2023/04/13. url: https://qiskit.
org/documentation/stubs/qiskit.transpiler.passes.CrosstalkAdaptiveSchedule.
html.

[21] Q. D. Team. Transpiler. 2023. url: https://qiskit.org/documentation/apidoc/
transpiler.html.

[22] K. Wintersperger, F. Dommert, T. Ehmer, A. Hoursanov, J. Klepsch, W. Mauerer, G.
Reuber, T. Strohm, M. Yin, and S. Luber. Neutral Atom Quantum Computing Hard-
ware: Performance and End-User Perspective. 2023. arXiv: 2304.14360 [quant-ph].

[23] J. R. Wootton. Benchmarking of quantum processors with random circuits. 2018. arXiv:
1806.02736 [quant-ph].

[24] L. Xie, J. Zhai, and W. Zheng. “Mitigating Crosstalk in Quantum Computers
through Commutativity-Based Instruction Reordering.” In: 2021 58th ACM/IEEE
Design Automation Conference (DAC). 2021, pp. 445–450. doi: 10.1109/DAC18074.
2021.9586145.

[25] P. Zhao, K. Linghu, Z. Li, P. Xu, R. Wang, G. Xue, Y. Jin, and H. Yu. Quantum
crosstalk analysis for simultaneous gate operations on superconducting qubits. 2022.
arXiv: 2110.12570 [quant-ph].

52

https://arxiv.org/abs/2111.11387
https://arxiv.org/abs/2007.15957
https://arxiv.org/abs/2007.15957
https://quantum-computing.ibm.com/composer/docs/iqx/operations_glossary
https://quantum-computing.ibm.com/composer/docs/iqx/operations_glossary
https://github.com/Qiskit
https://github.com/Qiskit/qiskit-terra/blob/main/qiskit/dagcircuit/dagcircuit.py
https://github.com/Qiskit/qiskit-terra/blob/main/qiskit/dagcircuit/dagcircuit.py
https://doi.org/10.1088/2058-9565/ab8e92
https://qiskit.org/documentation/index.html
https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.CrosstalkAdaptiveSchedule.html
https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.CrosstalkAdaptiveSchedule.html
https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.CrosstalkAdaptiveSchedule.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://qiskit.org/documentation/apidoc/transpiler.html
https://arxiv.org/abs/2304.14360
https://arxiv.org/abs/1806.02736
https://doi.org/10.1109/DAC18074.2021.9586145
https://doi.org/10.1109/DAC18074.2021.9586145
https://arxiv.org/abs/2110.12570

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Quantum Computing
	Qubits and Quantum State
	Quantum Gates
	Quantum Circuit
	Quantum Hardware

	Qiskit
	Related Work
	Quantum Compilers
	Related Compilers

	Description of the Tool and User Interface
	Functionalities
	Hardware Configurations
	Visualization
	Standard Visualization
	Time Scaled visualization
	Max justify-left

	Test Software-Hardware Compatibility
	Circuit Information and General Compatibility
	Connectivity Test
	Crosstalk Test
	Optimization Test

	Solve Software-Hardware Compatibility Issues
	Solve Connectivity Issue
	Solution
	Limitations

	Solve Crosstalk
	Solution
	Limitations
	Correctness

	Solve Crosstalk - Time Dependent
	Solution
	Limitations
	Correctness

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	Bibliography

