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Abstract

Due to the rising number of applications for quantum computing, many different
ideas regarding quantum languages and tools have been proposed. In this thesis,
we present and implement an IR in MLIR that is optimized for quantum computing.
In the beginning, we explain the core concepts of quantum computing and MLIR
and give a short overview of related work in this area of expertise. Afterwards,
the details of the implementation and the different features of MLIR are explained.
Furthermore, a variety of optimizations for quantum hybrid programs is discussed and
implemented. We evaluate the efficiency of the optimization passes by counting the
number of used gates during the execution of a test program. The results have shown
that the optimization passes do not offer any improvements compared to the base
program with no optimizations or other frameworks. Nevertheless, the execution time
is nearly constant and independent of the input size. This results in faster execution in
comparison to other frameworks that perform optimizations during runtime, depending
on the input of the program.
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Zusammenfassung

Aufgrund der steigenden Anzahl an Anwendungsmöglichkeiten für Quantencomput-
ing, wurden viele Ideen bezüglich Quantum-Programmiersprachen und Werkzeuge
vorgeschlagen. In dieser These präsentieren und implementieren wir eine IR in MLIR,
welche optimiert für Quantencomputing ist. Am Anfang erklären wir die Grund-
konzepte von Quantum Computing und MLIR, und geben einen kurzen Überblick über
verwandte Arbeiten. Anschließend werden die Details der Implementierung vorgestellt
und einige Bestandteile von MLIR werden erklärt. Zudem werden einige Vorschläge
für Optimierungen in Quantum-Hybrid Programmen diskutiert und implementiert.
Wir messen die Effizienz von den Optimierungspässen durch das Zählen der verwen-
deten R-Gates während der Ausführung eines Testprogramms. Die Ergebnisse zeigen,
dass die Optimierungspässe keine Verbesserung gegenüber dem Standardprogramm
ohne Optimierungen oder anderen Frameworks bringen. Nichtsdestotrotz ist die Aus-
führungszeit nahezu konstant und unabhängig von der Eingabegröße. Dadurch ist die
Ausführung schneller im Vergleich zu anderen Frameworks, welche Optimierungen
während der Laufzeit abhängig von der Eingabe durchführen.
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1. Introduction

Quantum computing is a research field that combines classical computer science with
quantum mechanics. By utilizing the quantum mechanical phenomena, quantum
computers can compute problems that cannot be simulated efficiently with classical
computations [8]. In recent years the number of applications for quantum computing
has risen, such as in the areas of cryptography and machine learning [1]. In order to
utilize quantum computers, many different quantum languages and tools have been
proposed to translate code written by a programmer into instructions that can be
understood and executed by quantum computers. Most quantum languages, such as
Qiskit or ProjectQ, reuse the existing infrastructure of a widely used programming
language and are embedded as a library. They leverage the existing components of
the programming language they are embedded in to generate structures that represent
quantum circuits. The results of these circuits can either be obtained by sending the
data to a quantum computer or by running them through a simulation. Since the data
presenting the quantum circuit is written in a classical programming language, these
structures can be represented in an intermediate representation (IR), a flat data structure
that is designed to be further processed. Since large-scale algorithms for quantum
computing require a large number of gates, these algorithms cannot be represented in
a simple IR as they would require too much space. For example, simulations in the
domain of chemistry require up to 1015 gates [9]. Furthermore, the IR must adhere to
the no-cloning theorem [10] in quantum computing in quantum mechanics.

In this thesis, we introduce the basic outline of an IR that is specialized in quantum
computing using the Multi-Level-Intermediate-Representation framework (MLIR) from
LLVM [4] that accommodates quantum operations and optimizations. In the beginning,
we explain the basic concepts of quantum computing and MLIR. Then we present
related work in this area of expertise. Afterwards, the IR and the requirements for it
are described, followed by an explanation of the individual passes that are applied
to the IR until execution. These implementation details can be found in Chapter 3.
The performance of this IR is then evaluated in Chapter 4 by comparing the number
of R-Gates and the controlled versions of them that are used during the execution of
Shor‘s algorithm.
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2. Background

We explain the basics of quantum computing and what that means for the development
of an IR optimized for quantum computing. Furthermore, a short overview of MLIR,
the framework which is used for the implementation of the IR, is given. The last section
presents a variety of related work regarding MLIR and quantum computing.

2.1. Quantum Computing

Compared to standard computations that operate on classical bits, quantum computers
utilize quantum bits or qubits for computations. A classical bit can only represent either
a 1 or a 0 as its value whereas qubits can represent a 1, a 0 or any combination of both
states, where either state has a certain probability. This is achieved with the quantum
mechanical phenomena of superposition, where the qubit is expressed as a linear
combination of both states. This allows qubits to hold more information compared to
classical bits. The state of a qubit can be notated as follows

|ψ⟩ = α|0⟩+ β|1⟩ (2.1)

where α, β ∈ C are called probability amplitudes and |α|2 + |β|2 = 1 must hold. The
basic states that represent the classical 0 and 1 bit can be expressed as |0⟩ and |1⟩. Multi
qubit systems can be represented through the tensor product of the individual qubit
states.

In order to change the state of a qubit, a quantum operation has to be applied to the
qubit. Quantum gates are unitary operators and are the basic blocks of quantum circuits.
They are the equivalent of logical gates in classical computing. These operations can be
represented as unitary matrices M ∈ C2n×2n

where n denotes the number of qubits the
operation acts on. A quantum gate can operate on any number of qubits and returns
the same number of quantum states as the number of inputs. This can be expressed as
the multiplication of the input quantum state vector and the matrix of the gate:

M|ψ1⟩ = |ψ2⟩ (2.2)

Furthermore, quantum gates are reversible which means that after applying an op-
eration an inverse operation can be applied to reverse the input to its initial state.
Gates that are their own inverse operation are known as Hermitian or self-adjoint
operators. This property of gates can be used in different optimization steps during the
compilation process of a quantum program.
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2. Background

Another peculiarity of quantum computing is the no-cloning theorem of quantum
states [10]. The theorem states that it is impossible to create an independent and
identical copy of an arbitrary unknown quantum state. Therefore, quantum programs
that use multiple copies of the same value are prohibited and are not valid. This must
be checked during the validation process of the input or during the runtime of the
program.

2.2. MLIR

The Multi-Level Intermediate Representation (MLIR) is a static single assignment (SSA)
based IR developed by LLVM and provides an interface to extend the existing compiler
infrastructure for domain-specific problems. This allows the user to define their own
types and operations customized for their own needs. The SSA property of the IR
enforces that each variable must be defined and assigned only once before it is used.
The user-defined operations and types are all defined in a dialect which is akin to a
namespace and is a collection of operations and types. MLIR features a variety of
built-in dialects, such as the arith dialect or the complex dialect, which support different
mathematical operations. These dialects can be used in combination with any other
dialects that are defined.

An operation is the equivalent of an instruction in LLVM and is the core unit of
abstraction and computation. Every operation has its own semantics and can be used
to represent constructs on any level of abstraction.

A program in MLIR is called a module. It consists of several functions that can be
called inside the module, thus linking the functions. A function in MLIR is typically
represented with the func operation of the func dialect and defines a region, which in
turn can contain a number of blocks.

A block in MLIR represents a basic block in a compiler. It contains a list of operations
that needs to be executed in sequential order. These operations can in turn define
another region to support the nesting of operations. The last operation in a block must
be a terminator operation that defines, where the control flow of the program goes next.
An example operation can be seen below with a description of its components:

%result = test.opname %input : i32 -> !test.custom

• %result is the name of the result of the operation. This part is omitted when the
operation provides no results. If the operation provides multiple results, multiple
names are required to bind the values to the SSA values. The % symbol is added
in front of a name to mark the name as an SSA value.

• test.opname is the name of the operation that is performed. The string test is the
name of the dialect and opname is the name of the operation inside the dialect that
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2. Background

is used. The name of the dialect needs to be added as a prefix to the operation
name in order to avoid name collisions.

• %input is the name of another value that is used as an operand for the current
operation. If the operation has multiple inputs, the names of the operands are
typically separated by commas.

• : i32 is the list of the types of the operands. The : symbol marks the beginning
and is followed by a list of types. In the case of standard types, such as i32, the
type does not need a prefix. The number of types that needs to be listed typically
matches the number of operands. Depending on the assembly format of the
operation, some types can be inferred and do not need to be listed explicitly. This
operation has exactly one operand called %input and the type of this value is i32.

• -> !test.custom lists the type of the results of the operation and begins with the ->
symbol. In the case of user-defined types, a prefix in form of an ! symbol and
the name of the dialect needs to be added in front of the name of the type. For
this operation, the return type is a custom type from the test dialect. Similar to
the operand type list, the number of types should typically match the number of
results but depending on the assembly format of the operation, some result types
can be inferred and do not need to be listed explicitly.

A complete function can be seen below that shows a modulo function written in
MLIR.

Listing 2.1: Mod function in MLIR
1 func.func @mod(%a: i32, %N: i32) -> i32 {
2 %cond_0 = arith.cmpi "uge", %a, %N : i32
3 cf.cond_br %cond_0, ^while(%a:i32), ^ret(%a:i32)
4

5 ^while(%a_0 : i32):
6 %a_1 = arith.subi %a_0, %N : i32
7

8 %cond_1 = arith.cmpi "uge" , %a_1 , %N : i32
9 cf.cond_br %cond_1, ^while(%a_1: i32), ^ret(%a_1: i32)

10

11 ^ret(%res: i32):
12 return %res : i32
13 }

MLIR features a variety of tools to help the programmer ranging from transformation
hooks and analysis tools to different debugging tools. The programmer can use the
in-built hooks for canonicalization and folding for specific operations. Furthermore,
general optimizations such as dead code elimination (dce) or common-sub-expression
elimination (cse) can be applied to the program. The user can also implement custom
optimizations or transformations in user-defined passes. The pattern rewriter of MLIR
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2. Background

allows the user to match any operation and rewrite it. The so-called def-use chains
of operations are abstracted in MLIR as direct acyclic graph (DAG) patterns and
connect the arguments and the definition of operations. The rewriter traverses these
def-use chains through the DAG pattern. To improve the matching of operations, MLIR
supports traits that can be attached to any operation. Traits are used as markers for
operations, which can be utilized for further optimizations. For general transformation
passes or analyses that operate on different dialects, MLIR offers interfaces. Interfaces
provide hooks for general transformations and analyses without the knowledge of the
involved operation, thus providing a generic way of interacting with the program. An
example of an interface is the Inliner-interface that inlines operations which have the
CallableOpInterface implemented.

MLIR supports the use of TableGen, which is a generic language that allows the user
to maintain records of domain-specific information. It allows the user to define a dialect
and its containing operations and types in a table-driven manner. Also, it generates
the code for them based on the description inside the TableGen file. It generates all
the necessary functions that are needed for the defined operation or type, such as
getters/setters, building functions, or verifiers. This removes a lot of boilerplate code
that needs to be written and reduces the number of potential errors in the code. Also,
all the necessary information regarding a dialect and its operations, including the
syntax, can be found in a single file. An example operation written in TableGen can be
seen below with a description of the components.

Listing 2.2: Example implementation of an operation in TableGen
1 def HGateOp : Quantum_Op<"H",[HermitianTrait, QuantumTrait,AttrSizedOperandSegments]>{
2 let description = [{
3 Performs the H Gate Operation on the given input or returns the gate itself if no

input is given.
4 }];
5 let arguments = (ins Optional<QuantumType>:$input, Optional<Index>:$index);
6 let results = (outs GateType: $output);
7 let assemblyFormat = "attr-dict ( $input^ (‘[‘$index^‘]‘)? ‘:‘ type($input) ‘->‘ )

: (‘->‘)? type($output)";
8

9 }

• HGateOp is the name of the C++ class that will be generated. Inside this class,
all information and functions for this operation are stored.

• Quantum_Op is the name of the parent class of the operation.

• "H" is the name of the operation that is used in the syntax of the IR. Typically a
prefix of the dialect name must be attached in front of it before the operation can
be called.
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2. Background

• [HermitianTrait,..., AttrSizedOperandsSegments] are the names of the traits
that are attached to the operation. They serve as a marker for certain properties
of the operation. For example, the HermitianTrait indicates that the operation is a
hermitian gate that can be used for further optimizations later on.

• description is used to give a short explanation regarding the operation for anyone
who reads this file.

• arguments define the required input types for this operation. Some types can
also be marked as optional or variadic. The input is usually bound to a name
which is marked by the $ prefix.

• results define the return types for the operation. Same as arguments, the types
can also be marked as optional or variable and are usually bound to a name.

• assemblyformat is used to define the syntax of the operation. The bound names
of the arguments and the results are used to describe the syntax. Also, if any
types are ambiguous or cannot be inferred, then the type must be explicitly stated.
For example, in this case, the return type of the operation is GateType which
could be either a u1 gate, a qubit, or a qubit register type. Since the return type is
not exactly known, it must be explicitly written in the syntax of this operation. An
explanation of each type is found in Section 3.2. Furthermore, if-else statements
can be used to describe the existence of variadic arguments with the ? operator.

In addition to these building blocks, many more options and statements can be used to
define an operation in TableGen. For example, custom builder functions and verifiers
can also be defined in TableGen. The CmakeFile of the project can be modified to
include the generated files in other files during the compilation process. Furthermore,
rewriter patterns can also be written in TableGen and automatically included in the
compilation phase of the optimizer. For further information, please refer to the official
documentation of MLIR.1

2.3. Related Work

In recent years, few efforts have been made to utilize the MLIR framework for a quantum
computing based IR. The Quantum Intermediate Representation for Optimization
(QIRO) was introduced by David Ittah et al. [2] and was the main reference material
for this thesis. They used the MLIR framework to define two different dialects, one for
the translation of the input language and one for the optimization of the input dialect.
The optimization dialect is specifically designed for quantum-classical co-optimization
that utilizes the in-built rewriter patterns and transformation features in MLIR.

1MLIR documentation https://mlir.llvm.org/docs/
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2. Background

A similar IR was developed and introduced by Peduri et al. called QSSA [7]. They
implemented their IR in MLIR based on SSA in order to leverage existing compiler
optimizations and focused on verifying the physical constraints of quantum computing,
such as the no-cloning theorem.

Another project that used the MLIR framework is presented by McCaskey et al. [5].
They focused on the translation of quantum programs written in QASM into their
defined quantum dialect and then into LLVM IR. The output was done with the
Quantum Intermediate Representation (QIR) developed by Microsoft 2 . This LLVM
based IR supports Q# and serves as a common interface for quantum languages and
leverages the existing LLVM compiler infrastructure.

2QIR https://devblogs.microsoft.com/qsharp/introducing-quantum-intermediate-representation-qir/
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3. Implementation

The focus of this chapter is the quantum dialect implementation in MLIR. In the
beginning, we list the requirements for our proposed IR. Afterwards, the implemented
types, operations, and passes until the execution of the program are described in detail.

3.1. Requirements

The proposed IR is implemented in a single dialect called quantum as opposed to the
implementation of David Ittah et al. [2] who implemented their IR in two different
dialects, one for the input and one for optimization. Also, it should fulfill the following
requirements:

• Support common operations and types to construct valid quantum circuits, such
as the allocation of qubits and qubit registers, and operations to manipulate them.

• All operations apart from the memory operations should be free from side effects
and work on value-semantics

• Work in conjunction with classical programs

• Allow the use of classical and quantum-computing specific optimizations

• Provide a resource counter for resource estimation.

In order to ease the difficulty of lowering a quantum programming language to the IR,
the dialect should feature an equivalent to the most common quantum operations. This
includes a set of native gates that can be used. Furthermore, all operations aside from
the memory operations must be free from side effects. In order to achieve that, the
operations must consume the quantum state of the qubit and return a new quantum
state. In addition, values should only be used once to enforce the no-cloning theorem
of quantum computing. Also, the dataflow graph is made explicit in the IR, which
allows the traversal of the use-def chain of the IR, thus allowing further optimizations.
The user should be able to execute the program and get a resource estimation of the
used operations. The quantum operations themselves, however, do not perform any
computations. They are only used for demonstration purposes in this IR and are either
replaced or eliminated before the execution of the program.
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3. Implementation

3.2. Types

The existing types in the quantum dialect are shown in table 3.1. The qubit type
represents a single qubit in the dialect. It can be either created through an alloc
operation or returned from a quantum operation, that manipulates the state of a qubit.
The qubit register is similar to an array and holds n different qubits. The user can
access the qubits inside the register with the subscript operator. The native single- and
two-qubit gate types are given to the set of native quantum gates that are implemented
in this dialect. The circ type represents the type of a circuit in this implementation.
Lastly, the controlled operation type holds information about the base type of the
operation it controls and the number of control bits that are used.

Table 3.1.: List of types defined in the quantum dialect
Type Syntax
Qubit !quantum.qubit

Qubit Register !quantum.qureg<n>
Native 1-Qubit Gate !quantum.u1
Native 2-Qubit Gate !quantum.u2

Circuit !quantum.circ
Controlled Operation !quantum.cop<n, baseT>

3.3. Operations

The quantum operations are split up into four different categories, memory operations,
gate operations, circuit operations, and meta operations. Table 3.2 shows all operations
that we implemented and their syntax in the IR.

3.3.1. Memory Operations

The two alloc operations initialize and return the state of a qubit or a qubit register
in the |0⟩ state. The two free operations are used to free the resource of qubits and
destroy the quantum states they hold. The user must explicitly call these operations to
free the quantum resources. The measure operation takes either a qubit or a register
as its input and returns a single bit for each qubit as its return value. The extract and
combine operations are used internally to manipulate the quantum states of the qubits
inside a register, that is accessed with the subscript operation. The qubits must first be
extracted from the register, and then the given operation is performed on the extracted
qubits returning new quantum state values. Finally, the new values are combined with
the remaining qubit register to create a new qubit register with the updated quantum
state values.
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3. Implementation

3.3.2. Gate Operations

The set of native single- and two-qubit gates implemented in this IR can be seen in
table 3.2. All the gates except the SWAP-Gates are overloaded to take either a direct
qubit, a qubit register, or a qubit from a register via the subscript accessor. In the case
of the qubit register, the given gate operation is applied to all of the qubits inside the
register as their inputs. Furthermore, if no qubit is given as an argument then the gate
itself is returned as the result of the operation. The rotation gates must also take a
float as input that denotes the degree of the rotation. The input can either be given as
another SSA value or directly as a constant attribute.

3.3.3. Circuit Operations

The circuit operation is equivalent to a normal function but for quantum computing.
They can take any number of arguments of any type and equally return any number of
results of any type. The body of the circuit can hold a mix of classical and quantum
operations, but they can only access the values created inside the circuit or the argu-
ments. Furthermore, the last operation inside a circuit must be the return operation
from the quantum dialect, which acts as the terminator operation. The circuit can either
be called explicitly through the call operation of the quantum dialect, which uses the
symbol name of the circuit or implicitly through the SSA value of the circuit. The SSA
value of a circuit is obtained through the getval operation, which takes the symbol
name of the circuit as its input. The returned SSA value of a circuit can be modified
with meta operations and subsequently used with the apply operation.

3.3.4. Meta Operations

Meta operations are used to modify existing operations in the IR. The inputs of the meta
operations are either a native gate or a circuit SSA value. The adjoint operation takes
the input operation and reverses it. In the case of a native gate, the adjoint operation
takes the input qubits that the reversed gate has been applied to as an additional input
and applies the operation immediately. If the input is a circuit, then the reversed
circuit has to be explicitly called with the apply operation that takes the input of the
reversed circuit operation and returns the result of it. Similarly, the controlled meta
operation creates a controlled variant of the input operation and takes a control bit as
an additional argument. The operation will only be applied if the bit is in the |1⟩ state,
otherwise no operation is performed.
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3. Implementation

Table 3.2.: List of operations defined in the quantum dialect
Operation Syntax

Alloc Qubit quantum.alloc -> !quantum.qb
Alloc register quantum.allocreg<n> -> !quantum.qureg<>

Free Qubit quantum.free %qb
Free register quantum.freereg %r

Measurement
quantum.meas %qb -> u1

quantum.meas %r -> memref<?xu1>
Extract quantum.extract %r [i...] : !quantum.qureg<> ->!quantum.qureg<>, !quantum.qb...

Combine quantum.combine %r[i...], %qb ... :!quantum.qureg<>, !quantum.qb... -> !quantum.qureg<>

Native u1 gates
quantum.H/X/Y/Z/S/T %qb : !quantum.qb -> !quantum.qb

quantum.H/X/Y/Z/S/T %r : !quantum.qureg<> -> !quantum.qureg<>
quantum.H/X/Y/Z/S/T -> !quantum.u1

Native u1 rotation gates
quantum.R/Rx/Ry/Rz (ϕ) %qb : !quantum.qb -> !quantum.qb

quantum.R/Rx/Ry/Rz (ϕ) %r : !quantum.qureg<> -> !quantum.qureg<>
quantum.R/Rx/Ry/Rz (ϕ) -> !quantum.u1

CNOT-Gate
quantum.CX %qb, %q : !quantum.qb , !quantum.qb -> !quantum.qb

quantum.CX %qb, %q : !quantum.qb , !quantum.qureg<> -> !quantum.qureg<>
Swap-Gate quantum.SWAP %qb, %qb : !quantum.qb, !quantum.qb

Controlled op
quantum.ctrl %op , %qb , %qb : !quantum.qb, !quantum.qb, !quantum.u1 -> !quantum.qb

quantum.ctrl %circ , %qb : !quantum.circ, !quantum.qb -> !quantum.cop<1, !quantum.circ>

Adjoint op
quantum.adj %op : !quantum.u1, !quantum.qb -> !quantum.qb

quantum.adj %circ : !quantum.circ -> !quantum.circ
Circuit op quantum.circ @name (%arg : type(%arg)... ) ...

Call op quantum.call @name (%arg...) : type(arg)...
Getval op quantum.getval @name -> !quantum.circ
Apply op quantum.apply %circ (%arg...) : type(%arg)...

3.4. Transformation Passes

Before we can apply the optimization passes to the IR, we must decompose the meta
operations into a simpler set of operations that are supported by the target machine.
Furthermore, operations with a register access to a qubit register must be modified with
a combination of extract and combine operations. In order to apply the changes to the
IR, the pattern rewrite infrastructure from MLIR is used. This infrastructure allows the
user to create static optimization and transformation passes for a given input program.
The pattern rewriter walks through the DAG of the IR and matches any operations that
are named as the root operations of the rewriter pattern. If an operation is successfully
matched, then the changes specified in the rewrite function are applied to modify the
operation and subsequently to the DAG of the IR.

3.4.1. Register Access Lowering

In order to lower register accesses to qubit registers for side effect free operations, the
pattern rewriter is set to match any operation that can take a qubit as an input. This
applies to the measure operation, most of the native gates, meta operations and call
operations. After an operation is successfully matched, the root operation is inspected
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whether the input includes a qubit register with an index or not. If it contains a register
access, then the operation has to be changed. A new extract operation has to be inserted
before the matched operation. The extract operation takes the qubit register and the
indices of the qubits that need to be extracted as its inputs. As its result, it returns
the requested qubits and the remaining qubit register from where the qubits were
extracted. The matched operation itself must be replaced by the same operation but
instead of using the qubits from the register access, the qubits obtained from the extract
operation are used as the input. Afterwards, a combine operation has to be inserted
after the modified operation that takes the result qubits of the previous operation and
the remaining qubit register from the extract operation to complete the register again
with the modified qubits. The subsequent uses of the register must be changed to use
the result of the combine operation.

Listing 3.1: Example of register access lowering
1 quantum.circ @lowerRegisterAccess() {
2 %c0 = arith.constant 2 : index
3 %c1 = arith.constant 5 : index
4 %qr = quantum.allocreg(%c1) -> !quantum.qureg<>
5 %ret0 = quantum.H %qr [%c0] : !quantum.qureg<> -> !quantum.qb
6 quantum.return
7 }

w�
1 quantum.circ @lowerRegisterAccess() {
2 %c0 = arith.constant 2 : index
3 %c1 = arith.constant 5 : index
4 %qr = quantum.allocreg(%c1) -> !quantum.qureg<>
5 %remainder, %ex0 = quantum.extract %qr[%c0] : !quantum.qureg<> -> !quantum.qureg<>,

!quantum.qb
6 %ret0 = quantum.H %ex0 : !quantum.qb -> !quantum.qb
7 %combined = quantum.combine %remainder[%c0], %ret0 : !quantum.qureg<>, !quantum.qb

-> !quantum.qureg<>
8 quantum.return
9 }

3.4.2. Adjoint Operation Lowering

The adjoint operation is lowered by matching two different operations, the adjoint
operation and the apply operation. In the case of the adjoint operation, the input must
be checked to see if it is a native gate that has the hermitian trait. If this is the case, then
no changes need to be applied as gates with the hermitian trait are self-inverse and are
not modified by the adjoint operation. They are replaced by the native gate operation
itself. Otherwise, no changes need to be done when matching the adjoint operation.
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If an apply operation is matched, then the input of the operation has to be checked
whether it is the result of an adjoint operation on a circuit or not. In such cases, a
new circuit has to be generated and the apply operation needs to be replaced with a
call operation to the newly generated circuit. The new circuit has the same function
signature and operations as the circuit that the adjoint operation is applied to. Also, all
quantum operations inside the newly generated circuit need to be reversed. Special
care has to be taken by operations that are dependent on each other. For example,
the extract and combine operation surrounding a root operation are bound to the
operation. They do not need to be reversed and are only moved together with the root
operation. Furthermore, if and for loops from the scf dialect that contain any quantum
operations are counted as quantum operations and need to be reversed. Loops also
have to iterate from the upper bound to the lower bound of their range. Lastly, the sign
of all degrees of the rotation gates needs to be flipped as the rotation is applied to the
inverse direction. If the degree is given as a constant attribute to the rotation, then the
change will be applied directly. Otherwise, a new constant operation with the value
-1 has to be inserted before the rotate operation. The new SSA value from the newly
created constant operation is used in combination with the SSA value of the degree to
create a new multiplication operation that takes both values as input and returns the
result of the multiplication. This result is used to construct a new rotation gate with
the negated degree. The usage of the previous rotation gate needs to be replaced with
the new gate and the old gate is removed afterwards.

Listing 3.2: Example of adjoint op lowering
1 quantum.circ @example ( %qb0 : !quantum.qb) -> !quantum.qb {
2 %c0 = arith.constant 13.5 : f64
3 %q0 = quantum.R(%c0 : f64) %qb0 : !quantum.qb -> !quantum.qb
4 %q1 = quantum.H %q0 : !quantum.qb -> !quantum.qb
5 quantum.return %q1 : !quantum.qb
6 }
7

8 quantum.circ @main() {
9 %qb = quantum.alloc -> !quantum.qb

10 %circ = quantum.getval @example -> !quantum.circ
11 %adj = quantum.adj %circ : !quantum.circ -> !quantum.circ
12 %ret = quantum.apply %adj(%qb) : !quantum.circ (!quantum.qb) -> !quantum.qb
13 quantum.return
14 }

w�
1 quantum.circ @example ( %qb0 : !quantum.qb) -> !quantum.qb {
2 %c0 = arith.constant 13.5 : f64
3 %q0 = quantum.R(%c0 : f64) %qb0 : !quantum.qb -> !quantum.qb
4 %q1 = quantum.H %q0 : !quantum.qb -> !quantum.qb
5 quantum.return %q1 : !quantum.qb
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6 }
7

8 quantum.circ @exampleAdj ( %qb0 : !quantum.qb) -> !quantum.qb {
9 %c0 = arith.constant 13.5 : f64

10 %c1 = arith.constant -1.0 : f64
11 %c2 = arith.mulf %c0, %c1 : f64
12 %q0 = quantum.H %qb0 : !quantum.qb -> !quantum.qb
13 %q1 = quantum.R(%c2 : f64) %q0 : !quantum.qb -> !quantum.qb
14 quantum.return %q1 : !quantum.qb
15 }
16

17 quantum.circ @main() {
18 %qb = quantum.alloc -> !quantum.qb
19 %ret = quantum.call @exampleAdj (%qb0) : (!quantum.qb) -> !quantum.qb
20 quantum.return
21 }

3.4.3. Controlled Operation Lowering

Similar to the adjoint operation lowering, the controlled operation is lowered by
matching two different operations, the controlled operation and the apply operation. If
the controlled operation takes a native gate as input, the operation is replaced by itself
and a special attribute is attached to the operation to indicate the number of control
bits that are used to control the operation.

If an apply operation is matched, then the input of the operation has to be checked
if it is the result of a controlled operation on a circuit or a basic gate. If the check is
successful, a new circuit needs to be generated, containing the same operations as the
circuit that the controlled operation is applied to. The signature of the new circuit
operation needs to be modified to include the control bit as an additional parameter.
Also, a special attribute is attached to the circuit function to indicate the number of
control bits for the circuit. This counter is later used for resource estimation. The initial
apply operation is then replaced by a call operation for the new circuit including the
control bit as an additional argument. The control bit must then be propagated to
the operations inside the controlled circuit. All call operations and meta operations
inside the controlled operations need to be replaced to take the control bit as an
additional argument. In some cases, new circuits need to be created. This must be done
recursively to propagate the control operations. In the case of a controlled operation
inside a controlled circuit, the counter attribute of the newly generated circuit needs to
be increased accordingly, including the subsequent operations inside the circuit.

Listing 3.3: Example of controlled op lowering
1 quantum.circ @example ( %qb0 : !quantum.qb) -> !quantum.qb {
2 %c0 = arith.constant 13.5 : f64
3 %q0 = quantum.R(%c0 : f64) %qb0 : !quantum.qb -> !quantum.qb
4 %q1 = quantum.H %q0 : !quantum.qb -> !quantum.qb
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5 quantum.return %q1 : !quantum.qb
6 }
7

8 quantum.circ @main() {
9 %qb = quantum.alloc -> !quantum.qb

10 %cqb = quantum.alloc -> !quantum.qb
11 %circ = quantum.getval @example -> !quantum.circ
12 %ctrl = quantum.ctrl %circ, %qcb : !quantum.circ, !quantum.qb -> !quantum.cop<1, !

quantum.circ>
13 %ret = quantum.apply %ctrl(%qb) : !quantum.cop<1, !quantum.circ> (!quantum.qb) -> !

quantum.qb
14 quantum.return
15 } w�
1 quantum.circ @example ( %qb0 : !quantum.qb) -> !quantum.qb {
2 %c0 = arith.constant 13.5 : f64
3 %q0 = quantum.R(%c0 : f64) %qb0 : !quantum.qb -> !quantum.qb
4 %q1 = quantum.H %q0 : !quantum.qb -> !quantum.qb
5 quantum.return %q1 : !quantum.qb
6 }
7

8 quantum.circ @exampleCtrl ( %qb0 : !quantum.qb, %qcb : !quantum.qb) -> !quantum.qb {
ctrlbit = 1} {

9 %c0 = arith.constant 13.5 : f64
10 %q0 = quantum.R(%c0 : f64) %qb0 : !quantum.qb -> !quantum.qb
11 %q1 = quantum.H %q0 : !quantum.qb -> !quantum.qb
12 quantum.return %q1 : !quantum.qb
13 }
14

15 quantum.circ @main() {
16 %qb = quantum.alloc -> !quantum.qb
17 %cqb = quantum.alloc -> !quantum.qb
18 %ret = quantum.call @exampleCtrl (%qb, %cqb) : (!quantum.qb, !quantum.qb) -> !

quantum.qb
19 quantum.return
20 }

3.5. Optimization Passes

The MLIR infrastructure allows for static optimization of hybrid programs so that
classical and quantum optimizations can be applied to the IR. The same procedure
of matching and rewriting can be applied to perform optimizations. Furthermore, a
number of classical optimizations, such as canonicalization and inlining, are already
implemented for the classical parts of the IR and can be applied to the program. By
reusing these optimization passes, we can also apply the optimizations to the quantum
part of the program.
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3.5.1. Classical Optimization

The canonicalization pass from MLIR performs several optimizations to the base
program and is used to convert the IR into a canonical form. During the canonicalization
pass, optimizations, such as constant folding or dead code elimination, are performed.
We can apply the pass to user-defined operations by utilizing the canonicalization hook
provided by the framework. The dead code elimination pass eliminates all unused
operations where the result of the operation is not used and the operation itself is
free from side effects. Due to the design of the IR, all quantum operations except
the memory operations are free from side effects. The result is that some quantum
operations will be eliminated when their results are not used.

Another classical optimization that we can apply to the quantum dialect is Inlining.
Similar to normal functions that can be inlined, circuits can also be inlined to speed
up the program by reducing the number of jumps that are needed. Furthermore, by
inlining circuits, further optimizations can be applied to the new sequence of operations
that were not possible earlier. The infrastructure offers the inlining interface so that the
inlining feature can easily be extended to circuits and quantum calls.

3.5.2. Quantum Optimization

In combination with classical optimizations, certain optimizations can be applied to the
quantum part of the program with the MLIR infrastructure. By utilizing the hermitian
and unitary traits of native gates and circuits, we can perform a number of peephole
optimizations.

Hermitian Gate Cancellation

Gates that have the hermitian trait are self-inverse and cancel out each other. This
means that adjacent gates of the same type in the use-def chain can be removed from
the IR. The pattern rewriter matches any operations that carry the hermitian trait in the
IR. By following the use-def chain of the operations and the inputs, the rewriter verifies
if the origin of the inputs is the result of an operation of the same kind as the operation
that was matched. In the case of a successful match of two operations, the usage of the
result of the second operation is replaced by the input of the first operation. Afterward,
both operations will be erased from the IR.

Listing 3.4: Example of hermitian gate cancellation
1 quantum.circ @example ( %qb0 : !quantum.qb, %qb1 : !quantum.qb) -> !quantum.qb, !

quantum.qb {
2 %q0, %q1 = quantum.SWAP %qb0, %qb1 : !quantum.qb, !quantum.qb -> !quantum.qb, !

quantum.qb
3 %q2, %q3 = quantum.SWAP %q0, %q1 : !quantum.qb, !quantum.qb -> !quantum.qb, !

quantum.qb
4 quantum.return %q2, %q3 : !quantum.qb, !quantum.qb
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5 }

w�
1 quantum.circ @example ( %qb0 : !quantum.qb, %qb1 : !quantum.qb) -> !quantum.qb, !

quantum.qb {
2 quantum.return %qb0, %qb1 : !quantum.qb, !quantum.qb
3 }

Unitary Gate Cancellation

The same optimization can be applied to adjoint operations and unitary gates. For
example, if the adjoint operation takes as input an unitary gate and a qubit that is the
result of the same unitary gate operation, then both operations cancel out each other
and will be erased. The same matching and verifying conditions apply as in the case
above. The usage of the result of the adjoint operation is replaced with the input of the
unitary gate operation that returned the result for the adjoint operation.

Listing 3.5: Example of unitary gate cancellation
1 quantum.circ @example ( %qb0 : !quantum.qb) -> !quantum.qb {
2 %c0 = quantum.S %qb0 : !quantum.qb -> !quantum.qb
3 %gate = quantum.S -> !quantum.u1
4 %adj = quantum.adj %gate, %q0 : !quantum.u1, !quantum.qb -> !quantum.qb
5 quantum.return %adj : !quantum.qb
6 }

w�
1 quantum.circ @example ( %qb0 : !quantum.qb) -> !quantum.qb {
2 quantum.return %qb0 : !quantum.qb
3 }

Rotation Gate Folding

Another optimization that is equivalent to constant folding for classical programs is the
merging of rotation gates. Two subsequent rotation gates of the same kind where the
input of one gate is the result of the other gate can be combined into a single rotation
gate. Since the rotation gates are overloaded so that they can either get the degree as a
constant attribute or as an SSA value, we need to consider three different cases when
merging the gates.

The first case is when the degree of both gates are stemming from SSA values. In this
case, a new add operation has to be inserted that takes both SSA values of the degrees
as its input. Afterwards, a new rotation gate of the same kind needs to be inserted that
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takes the result of the add operation and the input of the first rotation gate as operands.
The usage of the result of the second rotation is then replaced by the result of the new
rotation gate operation and the two former gates are removed.

The second case is when the degree of one gate is an attribute and the other one is an
SSA value. A new constant operation has to be inserted before the matched gates that
uses the value of the attribute as an operand. Subsequently, the same steps as above
are performed using the SSA value from the rotation gate and the newly created SSA
value from the constant operation.

The last case happens when both rotation gates have attributes for their degrees. In
this case, the value of the first rotation gate in the sequence is modified to be the sum
of both degrees. The usage of the second rotation gate is replaced with the result of the
first gate and the second gate is erased.

Listing 3.6: Example of rotation gate folding
1 quantum.circ @example1 ( %qb0 : !quantum.qb) -> !quantum.qb {
2 %f0 = arith.constant 20.4 : f64
3 %f1 = arith.constant 30.5 : f64
4 %q0 = quantum.R (%f0 : f64) %qb0 : !quantum.qb -> !quantum.qb
5 %q1 = quantum.R (%f1 : f64) %q0 : %quantum.qb -> !quantum.qb
6 quantum.return %q1 : !quantum.qb
7 }
8 quantum.circ @example2 ( %qb0 : !quantum.qb) -> !quantum.qb {
9 %q0 = quantum.R (20.4) %qb0 : !quantum.qb -> !quantum.qb

10 %q1 = quantum.R (30.5) %q0 : %quantum.qb -> !quantum.qb
11 quantum.return %q1 : !quantum.qb
12 }

w�
1 quantum.circ @example1 ( %qb0 : !quantum.qb) -> !quantum.qb {
2 %f0 = arith.constant 20.4 : f64
3 %f1 = arith.constant 30.5 : f64
4 %f2 = arith.addf %f0, %f1 : f64
5 %q0 = quantum.R (%f2 : f64) %qb0 : %quantum.qb -> !quantum.qb
6 quantum.return %q0 : !quantum.qb
7 }
8 quantum.circ @example2 ( %qb0 : !quantum.qb) -> !quantum.qb {
9 %q0 = quantum.R (50.9) %qb0 : !quantum.qb -> !quantum.qb

10 quantum.return %q0 : !quantum.qb
11 }

3.6. Resource Estimation

In order to evaluate the efficiency of the optimization passes, we implemented a
resource counter to count the number of operations that are used during the execution
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of the program. Similar to the evaluation process of Ittah et al. [2] the number of
R-Gates and the controlled versions of them are used to compare the efficiency of the
IR.

The first step of the resource estimation pass is to insert a global variable from the
memref dialect at the beginning of the program. The variable holds the number of
R-Gates and its controlled variants that are used during the execution. Afterwards, the
pattern rewriter is utilized again to match all R-Gate operations. The rotation gates are
then replaced by a combination of load-increment-store operation of the global variable
to increase the gate count every time the operation is executed. Special attention has to
be paid to controlled versions of the operation or operations that reside in a controlled
operation. R-Gate operations that have a special attribute attached or are inside a
controlled circuit need to increment the appropriate counter as the global variable
stores the count of rotation gates separately, depending on the number of control bits.
The number of rotation gates is printed during the execution of the program with the
use of the print operation from the vector dialect.

3.7. Lowering Process

In order to transform the program into an executable, we need to lower the program
to the LLVM IR. As the first step, all quantum operations need to be removed while
maintaining the integrity of the program. The measuring operations need to be replaced
with their estimated outcome. Normally, the measuring of a qubit returns a bit value of
either 1 or 0. Each value is returned with a certain probability given by the probability
amplitudes of the qubit. For this IR, the result of the measurement is always set to 1
so that all measure operations return an u1 value of 1 or an array of u1 values with
1 as their value. The circuits and the quantum call operations are replaced with the
built-in func and call operations from the func dialect. The quantum call operations
are matched and their matching circuits are found. An equivalent function operation
of the circuit needs to be created with the func operation in the func dialect. The
func operation should hold the same operations and arguments as the original circuit.
Afterwards, all quantum operations are removed from the func operation in post-order
so that the use-def chain of the operations is not violated. Then, the arguments of
the newly created function need to be modified so that no argument has a quantum
type. Lastly, the matched call operation is replaced with a standard call operation to
the new function. An example of the lowering process can be seen in listing 3.7. The
initial circuit may not be removed yet as multiple circuits can call a given circuit and an
operation will only be removed when it is used by no other operation.
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Listing 3.7: Example of the circ lowering process
1 quantum.circ @example ( %C : i64 , %r : !quantum.qureg<>, %n : index ) -> !quantum.

qureg<> {
2 %cm1 = arith.constant -1 : i64
3 %mC = arith.muli %C , %cm1 : i64
4 %r0 = quantum.H %r : !quantum.qureg<> -> !quantum.qureg<>
5 %r1 = quantum.call @addConstant ( %mC , %r0 , %n ) : i64 , !quantum.qureg<>, index ->

!quantum.qureg<>
6 quantum.return %r1 -> !quantum.qureg<>
7 }

w�
1 func.func @examplefunc ( %C : i64 , %n : index ) {
2 %cm1 = arith.constant -1 : i64
3 %mC = arith.muli %C , %cm1 : i64
4 func.call @addConstantfunc ( %mC ,%n ) : i64 , index
5 func.return
6 }

3.8. Execution

After the removal of all quantum operations, the program only consists of operations
from built-in dialects including the resource counter for resource estimation. This
program can be lowered with the built-in conversion patterns of MLIR to transform
the program in the llvm dialect. We can then dump the llvm dialect into the LLVM
IR. Finally, we can execute the LLVM IR with a LLVM interpreter such as lli. As the
result of the execution, the number of R-Gates are printed, separated by the number of
control bits that control the operation.

The graphic below illustrates the pass sequence that is applied to the base program
written in MLIR until the execution of the program.
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Figure 3.1.: Flowchart of the different passes in the IR
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In this chapter, the evaluation process and the results of the proposed IR are presented.
The IR is tested with an implementation of Shor‘s algorithm in MLIR. The code of the
implementation in MLIR can be found in the appendix under A.1.

4.1. Testsuite

In order to test the implementation of the proposed quantum IR, we used the number
of R-Gate that are used during the execution of Shor‘s algorithm and the controlled
versions of them. We then used these numbers to measure the effectiveness of the
optimizations. The implementation of Shor‘s algorithm can be found in the appendix
of this work. We compared the optimized program against the unoptimized version
of it to show the efficiency of the implemented optimization passes. Both programs
used the same tools to compile the MLIR implementation of Shor‘s algorithm and
are executed with the lli tool from LLVM. In contrast to the unoptimized program,
the optimized one used the three quantum optimization passes mentioned in section
3.5. Furthermore, we used an implementation of Shor‘s algorithm in ProjectQ as
an additional comparison. The ProjectQ framework was selected as it has a built-in
resource counter for the number of used gates. The code for Shor‘s algorithm in
ProjectQ stems from the ProjectQ repository on GitHub1. In addition, we had a look at
the results obtained in QIRO as they were the main reference for this IR and therefore
used a similar implementation as the one we proposed in this thesis.

1ProjectQ repository https://github.com/ProjectQ-Framework/ProjectQ
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4.2. Results
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Figure 4.1.: R-Gate counts after executing Shor‘s algorithm with N = 2n − 1 n = 5 and
a = 2 for the optimized program and the unoptimized program

In figure 4.1 the number of R-Gates and the controlled versions of them are shown after
executing Shor‘s algorithm with N = 2n − 1, n = 5 as its factor, and a = 2 as its base.
The x-axis labels indicate how many control bits are used to control the R-Gate where
each C refers to one control bit. The graphic compares the results of the optimized
program, highlighted in orange, and the unoptimized program highlighted in blue. The
results reveal that the optimized program does not show any improvements compared
to the base program without any optimizations. This can be explained by looking at
the base program, which can be found in the Appendix of this thesis. After looking
at the program and the possible optimizations, we can see that the source code does
not offer any optimization possibilities for the implemented optimizations in this IR.
The used optimization passes did not find any adjacent gates that could be eliminated
or folded. This can be improved by adding more optimization passes that modify
the IR. The resulting IR could potentially expose more optimization possibilities for
the already implemented passes in addition to the newly introduced improvements.
Especially an optimization pass regarding the controlled operations would be beneficial
as controlled gates are the majority of the used gates. This would reduce the number
of controlled operations and therefore reduce the number of controlled R-Gates that
are used. Another issue lies in the decomposition of the controlled operations. We
simplified the decomposition process of the controlled operations for this IR. Instead
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of propagating the controlled operation to all operations inside the controlled circuit
properly, a copy of the circuit was created and marked with an attribute to indicate that
the circuit is controlled. This causes that some optimizations possibilities would not be
exposed in the IR, resulting in the high number of controlled R-Gates where multiple
control bits are needed.
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Figure 4.2.: R-Gate counts after executing Shor‘s algorithm with N = 2n − 1, n = 5 and
a = 2 for the optimized program and the ProjectQ implementation

The comparison between the optimized program and the ProjectQ implementation is
seen in figure 4.2. We can see that the number of R-Gates and controlled R-Gates differ
between the implementations. While the number of R-Gates and CR-Gates are lower
in the MLIR implementation, the number of R-Gates with more than one control bit
is significantly higher in the MLIR implementation and greatly overshadows the total
number of R-Gates used in ProjectQ. Besides the higher total number of used gates, the
ProjectQ implementation also used less controlled operations than our implementation.
While our IR has R-Gates that are controlled by up to four control bits, the ProjectQ
implementation uses at most two bits to control the R-Gates. As mentioned earlier, the
main reason for that lies in the decomposition of the controlled operations and the
missing optimizations for them.
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Figure 4.3.: Results obtained in QIRO compared to the results in ProjectQ for N =

2n − 1, n ∈ [2, 8]; from Ittah et al. "QIRO: a static single assignment based
quantum program representation for optimization" 2022

The importance of the controlled operations can also be seen by comparing the ProjectQ
results to the results of QIRO. Their results can be seen in figure 4.3 (Ittah et al. 2022).
They also compared the number of the R-Gates used during the execution of Shor‘s
algorithm but they decomposed controlled operations differently and implemented the
resource counter according to Meuli et al. [6]. While there exists a visible difference
between their unoptimized program and ProjectQ, this gap is significantly smaller in
comparison to our results. Their implementation of Shor‘s algorithm is nearly identical
to the one we implemented for this thesis. The main difference is that their program
is written in an input dialect where the operations are performed with side effects.
This input is then translated into their optimization dialect where the operations work
on value-semantics and are free from side effects. By applying the loop boundary
optimizations in QIRO, the number of R-Gates used in QIRO are nearly equivalent to
the numbers obtained in ProjectQ.

Nevertheless, a huge advantage compared to the implementation of ProjectQ is
that the combined compile and execution time is a lot faster in the proposed IR. The
optimizations in ProjectQ are performed at runtime and are dependent on the input
size. This limits the size of the inputs that can be used in ProjectQ. For example, inputs
of the size N = 2n − 1, n = 6 can already take multiple minutes to compute depending
on the hardware that is used. Since all optimizations in the proposed IR are performed
statically during the compile time, the execution time is independent of the size of the
input and stays below one second for inputs of the size of N = 2n − 1, n = 6.
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The goals and the results of the thesis are summarized, followed by a short discussion
about the suitability of MLIR for optimizations. Lastly, an outlook for improvements in
further iterations of this thesis is given.

5.1. Summary

In this thesis, we proposed and implemented an IR optimized for quantum computing
with the MLIR framework from LLVM. We implemented a custom dialect that features
types and operations that are needed for quantum computing. By utilizing this frame-
work we introduce several passes to read, transform, and optimize quantum programs
written in MLIR. Furthermore, quantum programs written in the implemented IR can
be executed in order to get the resource count of the used gates. The tests have shown
that the optimization passes do not reduce the count of R-Gates that are used during
the execution of Shor‘s algorithm. One reason is that the implementation of Shor‘s
algorithm that we used does not expose any possible optimization possibilities for the
currently implemented optimization passes. Also, the decomposition of controlled
operations was simplified so that no further optimization possibilities could happen.
Nevertheless, the compilation of quantum programs in the proposed IR with the opti-
mization passes can be applied in a manageable amount of time as compared to other
frameworks that apply optimizations at run time and are dependent on the input size.

5.2. Suitability of MLIR for Optimizations

MLIR allows the user to create custom dialects for their IR that are specialized for
their specific needs. Thanks to the many built-in tools such as the pattern rewriter
and TableGen, different optimization and transformation passes can be implemented
without a lot of effort. The results achieved with the MLIR framework are also
remarkable as shown by Ittah et al. whose implementation in MLIR showed similar
results as the ProjectQ implementation. In addition to that, most optimization passes are
applied during the compilation phase which results in a significantly faster execution
time. The main caveat of the framework is that the entry level is quite steep. While the
official website offers a few tutorials, these tutorials only cover a fraction of the whole
framework. Furthermore, the documentation of many functions is lacking in some
aspects and does not offer enough information for the user. An example of that is the
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5. Conclusion

description of the print operation in the vector dialect 1. Although the documentation
says that the user has to link another library to lower and execute the print operation,
it does not state which library needs to be linked. Nevertheless, after working with the
framework for a while and getting familiar with it, we can say that the framework itself
is not hard to use and provides many helpful tools to optimize programs. Therefore,
we would say that the framework is suitable for optimizations even though it is difficult
to understand in the beginning.

5.3. Outlook

In future works of this quantum IR, a more detailed algorithm for the decomposition
of controlled operations should be implemented to simulate a more realistic estimation
of resources. Also, this gives more opportunities for optimization as the decomposition
could potentially expose more adjacent gates that can be cancelled or folded. Fur-
thermore, further optimizations such as loop-boundary optimization or adjoint circuit
cancellation as shown by Ittah et al. [2] can be implemented. In addition, optimizations
regarding quantum circuits, such as re-synthesizing them into smaller sub-circuits
which are utilized in the ScaffCC framework [3], may be considered. In order to ease
the use of the IR, a mapping from a higher-level quantum language, such as Q# or
Qiskit, can be introduced, as the IR is not suitable for direct programming.

1Print operation in the vector dialect https://mlir.llvm.org/docs/Dialects/Vector/
#vectorprint-mlirvectorprintop
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A. Appendix

Shor‘s algorithm implementation in MLIR

Listing A.1: Shor‘s algorithm in MLIR
1 module {
2 func.func @mod ( %a : i64 , %N : i64 ) -> i64 {
3 %0 = arith.divui %a , %N : i64
4 %1 = arith.muli %N , %0 : i64
5 %2 = arith.subi %a , %1 : i64
6 return %2 : i64
7 }
8

9 func.func @mod_exp ( %b : i64 , %e : i64 , %N : i64 ) -> i64 {
10 %c0 = arith.constant 0 : i64
11 %c1 = arith.constant 1 : i64
12 %c2 = arith.constant 2 : i64
13 %cond = arith.cmpi "eq" , %N , %c1 : i64
14 cf.cond_br %cond , ^ret ( %c0 : i64 ) , ^reduce
15

16 ^reduce:
17 %res = arith.constant 1 : i64
18 %base = func.call @mod ( %b , %N ) : ( i64 , i64 ) -> i64
19 %cond2 = arith.cmpi "ugt" , %e , %c0 : i64
20 cf.cond_br %cond2 , ^while ( %base , %e , %res : i64 , i64 , i64 ) , ^ret (

%res : i64 )
21

22 ^while ( %base_0 : i64 , %exp_0 : i64 , %res_0 : i64 ):
23 %0 = func.call @mod ( %exp_0 , %c2 ) : ( i64 , i64 ) -> i64
24 %cond3 = arith.cmpi "eq" , %0 , %c1 : i64
25 %res_1 = scf.if %cond3 -> i64 {
26 %1 = arith.muli %res_0 , %base_0 : i64
27 %2 = func.call @mod ( %1 , %N ) : ( i64 , i64 ) -> i64
28 scf.yield %2 : i64
29 } else {
30 scf.yield %res_0 : i64
31 }
32

33 %exp_1 = arith.shrui %exp_0 , %c1 : i64
34 %3 = arith.muli %base_0 , %base_0 : i64
35 %base_1 = func.call @mod ( %3 , %N ) : ( i64 , i64 ) -> i64
36 %cond4 = arith.cmpi "ugt" , %exp_1 , %c0 : i64
37 cf.cond_br %cond4 , ^while ( %base_1 , %exp_1 , %res_1 : i64 , i64 , i64 ) ,

^ret ( %res_1 : i64 )
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38

39 ^ret ( %r : i64 ):
40 return %r : i64
41 }
42

43 func.func @mod_inv ( %C : i64 , %N : i64 ) -> i64 {
44 %c0 = arith.constant 0 : i64
45 %c1 = arith.constant 1 : i64
46 cf.br ^while ( %N , %C , %c0 , %c1 : i64 , i64 , i64 , i64 )
47

48 ^while ( %r_0 : i64 , %old_r : i64 , %s_0 : i64 , %old_s : i64 ) :
49 %q = arith.divui %old_r , %r_0 : i64
50 %qr = arith.muli %q , %r_0 : i64
51 %r_1 = arith.subi %old_r , %qr : i64
52 %qs = arith.muli %q , %s_0 : i64
53 %s_1 = arith.subi %old_s , %qs : i64
54

55 %cond = arith.cmpi "ne" , %r_1 , %c0 : i64
56 cf.cond_br %cond , ^while ( %r_1 , %r_0 , %s_1 , %s_0 : i64 , i64 , i64 ,

i64 ) , ^ret ( %s_0 : i64 )
57

58 ^ret ( %s : i64 ):
59 %0 = arith.addi %s , %N : i64
60 %1 = func.call @mod ( %0 , %N ) : ( i64 , i64 ) -> i64
61 return %1 : i64
62 }
63

64 func.func @calc_qft_angle ( %j : index ) -> f64 {
65 %pi = arith.constant 3.141592653589793238 : f64
66 %c1 = arith.constant 1 : index
67 %0 = arith.addi %c1 ,%j : index
68 %1 = index.shl %c1 ,%0
69 %2 = index.casts %1 : index to i64
70 %3 = arith.uitofp %2 : i64 to f64
71 %4 = arith.divf %pi , %3 : f64
72 return %4 : f64
73 }
74

75 func.func @calc_add_angle ( %i : index , %j : index ) -> f64 {
76 %pi = arith.constant 3.141592653589793238 : f64
77 %c1 = arith.constant 1 : index
78 %0 = arith.subi %i , %j : index
79 %1 = index.shl %c1 , %0
80 %2 = index.casts %1 : index to i64
81 %3 = arith.uitofp %2 : i64 to f64
82 %4 = arith.divf %pi , %3 : f64
83 return %4 : f64
84 }
85

86 func.func @calc_cur_a ( %N : i64 , %n : index , %a : i64 , %i : index ) -> i64 {
87 %c1 = arith.constant 1 : i64
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88 %c2 = arith.constant 2 : i64
89 %k = index.casts %i : index to i64
90 %nbits = index.casts %n : index to i64
91 %0 = arith.muli %nbits , %c2 : i64
92 %1 = arith.subi %0 , %c1 : i64
93 %2 = arith.subi %1 , %k : i64
94 %3 = arith.shli %c1 , %2 : i64
95 %4 = func.call @mod_exp ( %a , %3 , %N ) : ( i64 , i64 , i64 ) -> i64
96 return %4 : i64
97 }
98

99 func.func @calc_shor_angle ( %i : index , %j : index ) -> f64 {
100 %mpi = arith.constant -3.141592653589793238 : f64
101 %c1 = arith.constant 1 : index
102 %0 = arith.subi %i , %j : index
103 %1 = index.shl %c1 , %0
104 %2 = index.casts %1 : index to i64
105 %3 = arith.uitofp %2 : i64 to f64
106 %4 = arith.divf %mpi , %3 : f64
107 return %4 : f64
108 }
109

110 quantum.circ @QFT ( %r : !quantum.qureg<>, %n : index ) -> !quantum.qureg<> {
111 %c0 = arith.constant 0 : index
112 %c1 = arith.constant 1 : index
113 %c2 = arith.constant 2 : index
114 %r1 = scf.for %i = %c0 to %n step %c1 iter_args(%qr = %r) -> !quantum.qureg<> {
115 %0 = arith.addi %i , %c1 : index
116 %k = arith.subi %n , %0 : index
117 %r_h = quantum.H %qr [%k] : !quantum.qureg<> -> !quantum.qb
118 %r2 = scf.for %j = %c0 to %k step %c1 iter_args (%qrr = %qr) -> !quantum.

qureg<> {
119 %phi = func.call @calc_qft_angle ( %j ) : ( index ) -> f64
120 %rg = quantum.R( %phi : f64 ) -> !quantum.u1
121 %1 = arith.addi %j , %c1 : index
122 %h = arith.subi %k , %1 : index
123 %qb2 = quantum.ctrl %rg , %qrr[%h], %qrr[%k] : !quantum.qureg<> , !

quantum.qureg<>, !quantum.u1 -> !quantum.qb
124 scf.yield %qrr : !quantum.qureg<>
125 }
126 scf.yield %r2 : !quantum.qureg<>
127 }
128

129 %nd2 = index.divu %n , %c2
130 %r3 = scf.for %i = %c0 to %nd2 step %c1 iter_args(%qr= %r1) -> !quantum.qureg<>

{
131 %0 = arith.addi %i , %c1 : index
132 %j = arith.subi %n , %0 : index
133 %qb1, %qb2 = quantum.SWAP %qr[%i], %qr[%j] : !quantum.qureg<>, !quantum.

qureg<> -> !quantum.qb , !quantum.qb
134 scf.yield %qr : !quantum.qureg<>
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135 }
136 quantum.return %r3 : !quantum.qureg<>
137 }
138

139 quantum.circ @addConstant ( %C : i64 , %r : !quantum.qureg<>, %n : index ) -> !
quantum.qureg<> {

140 %c0 = arith.constant 0 : index
141 %s1 = arith.constant 1 : index
142 %c1 = arith.constant 1 : i64
143 %rr = quantum.call @QFT (%r , %n ) : (!quantum.qureg<>, index) -> !quantum.

qureg<>
144 %r2 = scf.for %i = %c0 to %n step %s1 iter_args(%qr = %rr) -> !quantum.qureg<> {
145 %ip1 = arith.addi %i , %s1 : index
146 %qr0 = scf.for %j = %c0 to %ip1 step %s1 iter_args(%qrr = %qr) -> !quantum.

qureg<>{
147 %k = arith.subi %i , %j : index
148 %0 = index.casts %k : index to i64
149 %1 = arith.shrsi %C , %0 : i64
150 %2 = arith.andi %1 , %c1 : i64
151 %cond = arith.cmpi "eq" , %2 , %c1 : i64
152 scf.if %cond {
153 %phi = func.call @calc_add_angle ( %i , %k ) : ( index , index ) ->

f64
154 %qb = quantum.R( %phi : f64 ) %qrr[%i] : !quantum.qureg<> -> !

quantum.qb
155 }
156 scf.yield %qrr : !quantum.qureg<>
157 }
158 scf.yield %qr0 : !quantum.qureg<>
159 }
160

161 %qft = quantum.getval @QFT -> !quantum.circ
162 %qft_inv = quantum.adj %qft : !quantum.circ -> !quantum.circ
163 %qar = quantum.apply %qft_inv(%r2,%n ) : !quantum.circ (!quantum.qureg<>, index

) -> !quantum.qureg<>
164 quantum.return %qar : !quantum.qureg<>
165 }
166

167 quantum.circ @subConstant ( %C : i64 , %r : !quantum.qureg<>, %n : index ) -> !
quantum.qureg<>{

168 %cm1 = arith.constant -1 : i64
169 %mC = arith.muli %C , %cm1 : i64
170 %qt = quantum.call @addConstant ( %mC , %r , %n ) : (i64 , !quantum.qureg<>,

index) -> !quantum.qureg<>
171 quantum.return %qt : !quantum.qureg<>
172 }
173

174 quantum.circ @addCmodN ( %C : i64 , %N : i64 , %r : !quantum.qureg<>, %n : index )
-> !quantum.qureg<> {

175 %c1 = arith.constant 1 : index
176 %nm1 = arith.subi %n , %c1 : index
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177 %r1 =quantum.call @addConstant ( %C , %r , %n ) : (i64 , !quantum.qureg<>, index
) -> !quantum.qureg<>

178 %r2 = quantum.call @subConstant ( %N , %r1 , %n) : (i64 , !quantum.qureg<>,
index) -> !quantum.qureg<>

179 %anc = quantum.alloc -> !quantum.qb
180 %qb0, %qb01 = quantum.CX %r2 [ %nm1 ], %anc : !quantum.qureg<>, !quantum.qb -> !

quantum.qb, !quantum.qb
181 %addOp = quantum.getval @addConstant -> !quantum.circ
182 %ctrlAdd = quantum.ctrl %addOp , %anc : !quantum.qb , !quantum.circ -> !quantum.

cop<1, !quantum.circ>
183 %r3 = quantum.apply %ctrlAdd (%N , %r2 , %n ) : !quantum.cop<1 ,!quantum.circ >(

i64 , !quantum.qureg<>, index ) -> !quantum.qureg<>
184 %r4 = quantum.call @subConstant ( %C , %r3 , %n ) : (i64 , !quantum.qureg<>,

index) -> !quantum.qureg<>
185

186 %qb1 = quantum.X %r4 [ %nm1 ] : !quantum.qureg<> -> !quantum.qb
187 %qb2, %qt1 = quantum.CX %qb1, %anc : !quantum.qb, !quantum.qb -> !quantum.qb, !

quantum.qb
188

189 %qb3 = quantum.X %qb2 : !quantum.qb -> !quantum.qb
190 quantum.free %anc : !quantum.qb
191 %r5 = quantum.call @addConstant ( %C , %r4 , %n ) : (i64 , !quantum.qureg<>, index

) -> !quantum.qureg<>
192 quantum.return %r5 : !quantum.qureg<>
193 }
194

195 quantum.circ @subCmodN ( %C : i64 , %N : i64 , %r : !quantum.qureg<>, %n : index )
-> !quantum.qureg<>{

196 %NmC = arith.subi %N , %C : i64
197 %r1 = quantum.call @addCmodN ( %NmC , %N , %r , %n ) : (i64 , i64 , !quantum.qureg

<>, index) -> !quantum.qureg<>
198 quantum.return %r1 : !quantum.qureg<>
199 }
200

201 quantum.circ @mulCmodN ( %C : i64 , %N : i64 , %r : !quantum.qureg<>, %n : index )
-> !quantum.qureg<>{

202 %c0 = arith.constant 0 : index
203 %c1 = arith.constant 1 : index
204 %np1 = arith.addi %n , %c1 : index
205 %anc = quantum.allocreg (%np1) -> !quantum.qureg<>
206 %Cinv = func.call @mod_inv ( %C , %N ) : ( i64 , i64 ) -> i64
207 %anc1, %r1 = scf.for %i = %c0 to %n step %c1 iter_args (%qanc=%anc , %qr = %r) ->

(!quantum.qureg<>, !quantum.qureg<>) {
208 %addOp = quantum.getval @addCmodN -> !quantum.circ
209 %ctrlAdd = quantum.ctrl %addOp , %qr [ %i ] : !quantum.qureg<>, !quantum.circ ->

!quantum.cop<1,!quantum.circ>
210 %0 = index.casts %i : index to i64
211 %1 = arith.shli %C , %0 : i64
212 %2 = func.call @mod ( %1 , %N ) : ( i64 , i64 ) -> i64
213 %qcr = quantum.apply %ctrlAdd (%2 , %N , %qanc , %np1 ) : !quantum.cop<1,!

quantum.circ >( i64 , i64 , !quantum.qureg<>, index ) -> !quantum.qureg<>
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214 scf.yield %qanc, %qcr : !quantum.qureg<>, !quantum.qureg<>
215 }
216 %anc2, %r2= scf.for %i = %c0 to %n step %c1 iter_args (%qanc = %anc1, %qr=%r1)->

(!quantum.qureg<>, !quantum.qureg<>) {
217 %qb1, %qb2 = quantum.SWAP %qanc [ %i ], %qr [ %i ] : !quantum.qureg<> , !quantum.

qureg<> -> !quantum.qb , !quantum.qb
218 scf.yield %qanc, %qr : !quantum.qureg<>, !quantum.qureg<>
219 }
220 %anc3, %r3= scf.for %i = %c0 to %n step %c1 iter_args(%qanc = %anc2, %qr=%r2) ->

(!quantum.qureg<>, !quantum.qureg<>) {
221 %subOp = quantum.getval @subCmodN -> !quantum.circ
222 %ctrlSub = quantum.ctrl %subOp , %qr[%i] : !quantum.qureg<> , !quantum.circ -> !

quantum.cop<1 , !quantum.circ >
223 %3 = index.casts %i : index to i64
224 %4 = arith.shli %Cinv , %3 : i64
225 %5 = func.call @mod ( %4 , %N ) : ( i64 , i64 ) -> i64
226 %qcr = quantum.apply %ctrlSub (%5 , %N , %qanc , %np1 ) : !quantum.cop<1,!

quantum.circ >( i64 , i64 , !quantum.qureg<>, index) -> !quantum.qureg<>
227 scf.yield %qanc, %qr : !quantum.qureg<>, !quantum.qureg<>
228 }
229 quantum.freereg %anc : !quantum.qureg<>
230 quantum.return %r3 : !quantum.qureg<>
231 }
232

233 quantum.circ @shor ( %N : i64 , %a : i64 )->() {
234 %c0 = arith.constant 0 : index
235 %c1 = arith.constant 1 : index
236 %c2 = arith.constant 2 : index
237 %0 = arith.uitofp %N : i64 to f64
238 %1 = math.log2 %0 : f64
239 %2 = math.ceil %1 : f64
240 %3 = arith.fptoui %2 : f64 to i64
241 %n = index.casts %3 : i64 to index
242 %n2 = arith.muli %n , %c2 : index
243 %m0 = arith.constant 0 : i1
244 %meas = memref.alloc ( %n2 ) : memref<?xi1>
245 scf.for %i = %c0 to %n2 step %c1 {
246 memref.store %m0 , %meas [ %i ] : memref<? xi1 >
247 }
248 %r = quantum.allocreg( %n ) -> !quantum.qureg<>
249 %cqb = quantum.alloc -> !quantum.qb
250 %c3 = arith.constant 0 : index
251 %qb = quantum.X %r[%c3] : !quantum.qureg<> -> !quantum.qb
252 %r1, %cqb1 =scf.for %i = %c0 to %n2 step %c1 iter_args (%qr =%r, %qcqb=%cqb) -> (!

quantum.qureg<>, !quantum.qb) {
253 %cur_a = func.call @calc_cur_a ( %N , %n , %a , %i ) : ( i64 , index , i64 ,

index ) -> i64
254 %qcqb1 = quantum.H %qcqb : !quantum.qb -> !quantum.qb
255 %mulOp = quantum.getval @mulCmodN -> !quantum.circ
256 %ctrlMul = quantum.ctrl %mulOp , %qcqb1 : !quantum.qb, !quantum.circ -> !quantum.

cop<1 , !quantum.circ>
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257 %qrr = quantum.apply %ctrlMul ( %cur_a , %N , %qr , %n ) : !quantum.cop<1 , !
quantum.circ>( i64 , i64 , !quantum.qureg<>, index ) -> !quantum.qureg<>

258 %qcqb2 = scf.for %t = %c0 to %i step %c1 iter_args(%qqcqb=%qcqb1)-> !quantum.qb{
259 %cond = memref.load %meas [ %t ] : memref<?xi1>
260 scf.if %cond {
261 %phi = func.call @calc_shor_angle ( %i , %t ) : ( index , index ) -> f64
262 %qqcqb1 = quantum.R ( %phi : f64 ) %qqcqb : !quantum.qb -> !quantum.qb
263

264 }
265 scf.yield %qqcqb : !quantum.qb
266 }
267 %qcqb3 = quantum.H %qcqb2 : !quantum.qb -> !quantum.qb
268 %m = quantum.meas %qcqb3 : !quantum.qb -> i1
269 memref.store %m , %meas [ %i ] : memref <?xi1 >
270 scf.if %m {
271 %qcqb4 = quantum.X %qcqb3 : !quantum.qb -> !quantum.qb
272 }
273 scf.yield %qrr, %qcqb3 : !quantum.qureg<>, !quantum.qb
274 }
275 %mres = quantum.meas %r1 : !quantum.qureg<> -> memref<?xi1 >
276 quantum.free %cqb1 : !quantum.qb
277 quantum.freereg %r1 : !quantum.qureg<>
278 quantum.return
279 }
280

281 quantum.circ @mlir_main ( %N : i64 , %a : i64 ) {
282 quantum.call @shor ( %N , %a ) : (i64 , i64) -> ()
283 quantum.return
284 }
285

286 func.func @main () {
287 %N = arith.constant 5: i64
288 quantum.call @mlir_main(%N,%N) : (i64, i64) -> ()
289 return
290 }
291 }
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