
TECHNICAL UNIVERSITY OF MUNICH
SCHOOL OF COMPUTATION, INFORMATION AND TECHNOLOGY -

INFORMATICS

Master’s Thesis in Informatics

Adaptation of Classical Optimizations to
Hybrid Quantum-Classical Programs

Joachim Marin

TECHNICAL UNIVERSITY OF MUNICH
SCHOOL OF COMPUTATION, INFORMATION AND TECHNOLOGY -

INFORMATICS

Master’s Thesis in Informatics

Adaptation of Classical Optimizations to Hybrid
Quantum-Classical Programs

Anpassung Klassischer Optimierungen an Hybride
Quantenklassische Programme

Author: Joachim Marin
Supervisor: Prof. Dr. Helmut Seidl
Advisor: M.Sc. Yannick Stade
Date: 15.4.2023

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Munich, 15.4.2023 Joachim Marin

Acknowledgements

I would like to thank my advisor Yannick Stade for his continuous guidance and support
during my Master’s program. His knowledge and enthusiasm about quantum computing
and static optimization helped me complete this thesis.

I am also grateful to my supervisor Prof. Dr. Helmut Seidl for giving me the opportunity
to write this thesis at his chair.

Finally, I would like to thank Lukas Burgholzer for his work on the Munich Quantum
Toolkit and our discussions about quantum circuit mapping.

v

vi

Abstract

Optimization of quantum circuits is an important topic, because current quantum com-
puters suffer from big error rates for large quantum circuits. In hybrid quantum-classical
computing, the quantum circuit is assembled at run time by a classical program and sent to
the quantum computer, which then returns the measured results to the classical program.
The final quantum circuit may depend on run time values, so optimization is frequently
performed just before the quantum circuit is sent to the quantum computer. In classical
computing, static optimization is often preferred, because it is performed at compile time
and does not require time during the execution of the program. We therefore present an
implementation of a static optimizer for hybrid quantum-classical programs that optimizes
quantum circuit generating functions in the program at compile time, so that it produces
more efficient quantum circuits at run time. Our implementation is based on the LLVM
tool chain and reuses classical optimization techniques to improve the effectiveness of the
static optimization.

vii

viii

Contents

Acknowledgements v

Abstract vii

Contents ix

1. Introduction 1

I. Theoretical Background 3

2. Quantum Computing 4
2.1. Qubits . 4
2.2. Quantum Gates . 6
2.3. Quantum Circuits . 8
2.4. Quantum Computers and Architectures . 9
2.5. Hybrid Quantum-Classical Computing . 9

3. Static Optimization of Hybrid Quantum-Classical Programs 11
3.1. Joint Optimization of Quantum Instructions 11
3.2. Optimization of the Start of a Quantum Circuit 14
3.3. Optimization of the End of a Quantum Circuit 15
3.4. Optimization of Complete Quantum Circuits 16
3.5. Optimization of Quantum Gate Sequences 16
3.6. Target Specific Optimization . 18

II. Implementation 20

4. Related Work 23

5. Description of Tools 25
5.1. LLVM Tool Chain . 25
5.2. Munich Quantum Toolkit . 26
5.3. Quantum++ . 27

6. QuLib - Quantum Circuit Library 28

7. Linker Interface 32

ix

8. Optimization Pass 34
8.1. Quantum Circuit Representations . 34

8.1.1. LLVM Intermediate Representation 35
8.1.2. OpenQASM 2.0 . 38
8.1.3. QFR . 39
8.1.4. Custom Quantum Circuit Representation 39

8.2. Replacing Quantum Circuits in LLVM . 42
8.3. Optimization of Quantum Gate Sequences . 51
8.4. Optimization of Complete Quantum Circuits 53
8.5. Run Time Optimization . 53

9. CMake Integration 55

10.Implementation Details 56

III. Results 57

11.Optimization Correctness 59

12.Optimization Effectiveness 60

13.Optimization Running Time 61

IV. Conclusion 63

Bibliography 65

V. Appendix 68

List of Figures 69

List of Tables 70

List of Algorithms 71

1. Introduction

The first computers were programmed by changing the wiring between their components
[Ros69]. Since then, programming has advanced a lot and high level programming languages
supported by powerful compilers make programming much easier, allowing the creation of
more complex and potent programs. In order to ensure the high level language is translated
into efficient machine code, a compiler often comes with an advanced optimizer that performs
several transformations on the program before it is translated into machine code.

Quantum computing is still in its infancy and quantum algorithms are generally described
at a very low level by the quantum circuit consisting of individual quantum gates acting on
specific quantum bits [SEL04]. Still, optimization of these quantum circuits is already an
important topic in quantum computing, because larger quantum circuits are more likely to
lead to errors on current quantum computers [BKM+14]. So optimizing the quantum circuit
and reducing the number of gates not only speeds up the computation, but also reduces the
probability of incorrect results. In the future, optimization will become even more important,
as higher level programming languages for quantum computing are introduced and most of
the quantum circuit generation is done by the compiler rather than the programmer.

In hybrid quantum-classical computing, a classical computer drives the overall program
flow and uses quantum circuits to perform certain tasks on quantum computers. In the most
general case, these quantum circuits can be generated by the classical program at run time,
so that arbitrary quantum circuits can be built. However, this creates a big challenge for the
static optimization of quantum circuits, because the quantum circuit cannot be determined
at compile time. As a result, optimization of quantum circuits is often done during run time,
just before the complete quantum circuit is sent to the quantum computer [SHT18, Qis23].
In this work, it will be discussed how optimization can already be done at compile time,
so that the hybrid quantum-classical program spends less time on optimizing the quantum
circuit at run time, improving its performance.

There are several challenges of static quantum circuit optimization that will be explained
in more detail throughout this work. In general, the optimizer needs to find statements that
generate quantum circuits in the program and replace them by statements that generate the
optimized version of that quantum circuit. Since most quantum circuits are described on a
low level, a single statement in the program code is usually equivalent to a single quantum
circuit gate and offers little opportunities for optimization, so the optimizer has to find
sequences of statements that it can optimize together. This process is not easy, because the
optimizer must be able to tell what quantum circuit will be generated by this sequence at
run time. These sequences of instructions lack the context of the entire quantum circuit and
may even contain arguments whose values are not known at compile time. As a result, the
static optimization of quantum circuits must be able to work with very little information
about the final quantum circuit at run time.

The main part of this work is an implementation of static quantum circuit optimization
based on the LLVM tool chain [LA04] for hybrid quantum-classical programs written in C

1

1. Introduction

or C++. It contains all the required components from compiling the source code to LLVM
bitcode files, performing different optimization passes on these LLVM bitcode files and
finally linking the final executable. The primary focus of the implementation is a custom
LLVM optimization pass for static quantum circuit optimization. This pass translates
quantum circuit generating functions into a custom quantum circuit representation, performs
optimization on this representation and finally translates it back into function calls, so that
the optimized quantum circuit will be generated at run time. Our implementation mostly
focuses on the quantum circuit representation and its translation, whereas the optimization
performed on this representation is rather basic.

Before the implementation is described, the necessary theoretical background about
quantum circuits, hybrid quantum-classical programs and their static optimization will
be introduced. Important design decisions, quantum circuit representations, optimization
algorithms and implementation details of the implementation will be explained. In the end,
the implementation will be evaluated and possible future improvements will be presented.

2

Part I.

Theoretical Background

3

2. Quantum Computing

Quantum computing is a complicated and broad topic, so it cannot be explained in detail in
this work. The interested reader can find further information in other works, such as [NC00]
and [Hid19]. Nevertheless, the most important concepts and definitions to explain quantum
circuit optimization will be introduced in this section.

2.1. Qubits
The key difference between classical and quantum computing is the usage of quantum bits,
also called qubits, instead of regular bits. A regular bit is either one or zero, so it can only
hold two distinct values. Qubits on the other hand can be a combination of the zero and
one states. The state of a qubit |ψ⟩ is a linear combination of the zero state |0⟩ and the one
state |1⟩ with complex coefficients α and β [NC00]:

|ψ⟩ = α |0⟩ + β |1⟩

This linear combination is generally referred to as superposition in quantum computing.
There are physical limitations when dealing with qubits that do not allow us to directly
retrieve the state of a qubit. Instead, a qubit is measured and will return either the zero or
one state. According to Born’s rule, the probability of a state being measured is equal to
the square of the absolute value of its coefficient [Bor26]. As the probabilities need to sum
up to one, the following must hold as well:

|α|2 + |β|2 = 1

Another way to visualize the state of a qubit is the Bloch sphere shown in Figure 2.1.
The state of a qubit is given by a vector from the origin to a point on the sphere that is
associated with the state of the qubit. The sphere lives in a three dimensional space with
x, y and z coordinate axes. The special zero state |0⟩ is on the positive z-axis, while the
one state |1⟩ is on the opposite side of this axis. The superposition (|0⟩ + |1⟩)/

√
2 is on

the positive x-axis, while (|0⟩ + i |1⟩)/
√

2 is on the y-axis. Modifications of the qubit state
can then be seen as rotations on the Bloch sphere, which allows us to give more intuitive
descriptions of individual quantum gates.

If the states |0⟩ and |1⟩ are written as two-dimensional basis vectors, quantum gates can
easily be described by matrices. The basis vector belonging to the qubit states are given by
[Hid19]:

|0⟩ =
(

1
0

)
and |1⟩ =

(
0
1

)

4

2.1. Qubits

Z

Y

X

|0⟩ + i |1⟩√
2

|0⟩ + |1⟩√
2

|0⟩

|1⟩

|ψ⟩

Figure 2.1.: The Bloch sphere represents the state of a qubit as a vector starting at the
origin and ending at a specific point on the sphere. This point is associated
with the state of the qubit. A change in the state of the qubit can be seen as a
rotation of the vector on the Bloch sphere.

Then a quantum gate like the X gate can easily be described as a matrix:

X =
(

0 1
1 0

)

Applying this gate on a qubit is the same as a matrix multiplication between the gate
matrix and the state of the qubit:

X |0⟩ =
(

0 1
1 0

)(
1
0

)
=
(

0
1

)
= |1⟩

X |1⟩ =
(

0 1
1 0

)(
0
1

)
=
(

1
0

)
= |0⟩

X |ψ⟩ = X (α |0⟩ + β |1⟩) =
(

0 1
1 0

)(
α
β

)
=
(
β
α

)
= β |0⟩ + α |1⟩

The X gate is also known as the NOT gate and flips the qubit state, turning |0⟩ into |1⟩
and |1⟩ back into |0⟩.

This idea can easily be extended to several qubits. The state of a two-qubit system can
then be described as follows [NC00]:

|ψ⟩ = α00 |00⟩ + α01 |01⟩ + α10 |10⟩ + α11 |11⟩ (2.1)

= α00

1
0
0
0

+ α01

0
1
0
0

+ α10

0
0
1
0

+ α11

0
0
0
1

 (2.2)

5

2. Quantum Computing

The probability to measure a specific state is again the square of the absolute value of
its coefficient, meaning that |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1 must hold. More generally,
for n qubits, the combined state is a linear combination of 2n basis vectors and coefficients.
This is an interesting property, because it means the combined state of multiple qubits
contains more coefficients than just the number of qubits times the number of coefficients
per qubit. Every additional qubit doubles the number of coefficients, leading to the immense
computational power of quantum computers. However, these coefficients cannot be obtained.
When a qubit is measured, its state collapses to the measured result of |0⟩ or |1⟩ [NC00].

2.2. Quantum Gates
The X gate was already mentioned, but there are many more quantum gates. Explaining
all of them is outside the scope of this thesis, so only the most important ones for our
implementation will be introduced. For a detailed overview of the quantum gates the reader
is referred to other works such as [Wil11].

The U gate is defined in the OpenQASM 2.0 standard [CBSG] and is used as the primary
single qubit gate in our implementation. Its matrix is given by:

U(θ, ϕ, λ) =
(
e−i(ϕ+λ)/2cos(θ/2) −e−i(ϕ−λ)/2sin(θ/2)
ei(ϕ−λ)/2 sin(θ/2) ei(ϕ+λ)/2 cos(θ/2)

)
(2.3)

This gate is the universal single qubit gate, because all other single qubit gates can be
translated into it.

Single qubit gates can be extended to two-qubit gates by adding a control qubit. A
controlled gate is only applied to the target qubit, if the control qubit is one. Since these
gates operate on two qubits, they require a state vector of size 22 = 4 and hence their matrix
must also have that same number of rows and columns. The controlled versions of the
already mentioned X and U gates have the following matrix representations [Qis23]:

CX =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 (2.4)

CU =

1 0 0 0
0 cos(θ/2) 0 −eiλ sin(θ/2)
0 0 1 0
0 eiϕ sin(θ/2) 0 ei(ϕ+λ) cos(θ/2)

 (2.5)

Note that there are different conventions on the order of the target and control qubit,
resulting in slightly different matrices. Here, the convention from OpenQASM 2.0 [CBSG]
and Qiskit [Qis23] will be used, as OpenQASM 2.0 code is used by our implementation
to output the generated quantum circuit. OpenQASM 2.0 is a well established language
for quantum circuits and is supported by many quantum computing tools, allowing our
implementation to be used with a wide array of existing tools.

6

2.2. Quantum Gates

By combining the U gate with either the CX or the CU gate, a universal gate set is
already achieved, meaning that any quantum gate can be built with its gates [NC00]. A
single CU gate can be used to express the CX gate, while multiple CX and U gates are
required to express the CU gate[CBSG] as shown in Algorithm 1. As the CX gate is part
of the basis gate set of OpenQASM 2.0 and CU is defined as shown in the algorithm, our
implementation will also assume a basis gate set of U and CX gates. The basis gate set will
be important in the evaluation of the optimizer, because its effectiveness can be quantified
by the reduction in the number of basis gates.

Algorithm 1: Expressing CX gate and CU gate with each other. The gate
arguments c and t are the control and target qubits.
1 Function CX(c, t):
2 CU(π, 0, π, c, t);

3 Function CU(θ, ϕ, λ, c, t):
4 U(0, 0, (λ+ ϕ)/2, c);
5 U(0, 0, (λ− ϕ)/2, t);
6 CX(c, t);
7 U(−θ/2, 0, −(ϕ+ λ)/2, t);
8 CX(c, t);
9 U(θ/2, ϕ, 0, t);

As the U and CU gates form a universal gate set, they are sufficient to describe any
quantum circuit. However, for the purpose of optimization additional gate definitions are
useful, because they introduce certain optimization opportunities. The first group of gates
are rotational gates. These gates rotate the qubit about one coordinate axis on the Bloch
sphere. They are particularly useful for optimization, because two consecutive rotations
with angles θ1 and θ2 about the same axis are obviously equivalent to a single rotation with
angle θ1 + θ2. These rotational gates are defined as follows [NC00]:

Rx(θ) =
(

cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

)
(2.6)

Ry(θ) =
(

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
(2.7)

Rz(θ) =
(
e−iθ/2 0

0 eiθ/2

)
(2.8)

Another important gate is the Hadamard or H gate. This gate transforms the computa-
tional basis states |0⟩ and |1⟩ into the superposition states (|0⟩ + |1⟩)/

√
2 and (|0⟩ − |1⟩)/

√
2

and back [Wil11]:

H = 1√
2

(
1 1
1 −1

)
(2.9)

7

2. Quantum Computing

|0⟩

|0⟩ U(0.25,0.5,0.75)

Figure 2.2.: Quantum circuits can be described by intuitive circuit diagrams.

The last gate that will be introduced is the SWAP gate, which simply swaps the states
of two qubits. Its governing matrix is given by [NC00]:

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (2.10)

2.3. Quantum Circuits
Using these gates, a quantum circuit can be built. The most intuitive way to describe
quantum circuits are circuit diagrams, as shown in Figure 2.2. The quantum circuit diagram
is read from left to right, each horizontal line presenting a qubit. The depicted quantum
circuit starts with both qubits in state |0⟩. After that, the U gate is applied to the second
qubit and then a CX gate is performed on the first qubit with the second qubit as the
control. Most gates are indicated by a rectangle containing the gate name, but the X gate
usually only uses the ⊕ symbol [Hid19]. Control qubits are shown as small dark dots
connected to the gate symbol on the target qubit. At the end, both qubits are measured.

OpenQASM 2.0 offers an alternative way to describe quantum circuits that is shown in
Listing 2.1. At the start, the OpenQASM version is indicated by OPENQASM 2.0;. After that,
additional files can be included. For our purposes this will always be the quantum experience
standard header qelib1.inc, which defines the most common gates apart from the basic U
and CX gates that are always part of OpenQASM 2.0. This is followed by definitions of the
qubit and classical bit registers. Quantum gates acting on the qubits can then be added to
the quantum circuit. Gate parameters are specified in parentheses, while the affected qubits
are always at the end. The control qubit always comes before the target qubit and this
convention will also be followed in our implementation. There are generally measurements

Listing 2.1.: OpenQASM 2.0 is a language specification to describe quantum circuits.

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[2];
4 creg c[2];
5 U(0.25, 0.5, 0.75) q[1];
6 CX q[1], q[0];
7 measure q[0] -> c[0];
8 measure q[1] -> c[1];

8

2.4. Quantum Computers and Architectures

at the end of the quantum circuit, which are listed with an arrow from a qubit to a classical
bit. There also exists a shorthand for measuring all qubits at once by not specifying the bit
indexes.

Two quantum circuits will be considered equivalent, if their measured results written to
the classical bits have the same probabilities. As explained, a two-qubit state can be written
as |ψ⟩ = α00 |00⟩ + α01 |01⟩ + α10 |10⟩ + α11 |11⟩, and the probability to measure a certain
qubit state is equal to the square of the absolute value of its coefficient. So measuring
state |01⟩ has probability |α01|2. When the i-th qubit is written to the i-th classical bit,
measuring the qubit state |01⟩ results in the classical state 01. However, if measured qubits
are written differently to the classical bits, one might get the classical state 10 from the
qubit state |01⟩, because the first qubit is written to the second classical bit and vice versa.
As a result, the way qubit measurements are written to classical bits plays an important
role when determining the equivalence of quantum circuits. The notion of equivalence of
quantum circuits is very important for optimization, because an optimized quantum circuit
must always be equivalent to the original one, leading to the same observable outcome.

2.4. Quantum Computers and Architectures
Much like classical computers, quantum computers also use different architectures. For the
purpose of this paper, two important aspects of the architecture are required. The first one
is the basis gate set, which contains the gate types the quantum computer can run. All gates
that are not in the basis gate will be called advanced gates and need to be translated into
basis gates before the quantum circuit can be run on the quantum computer. The second
aspect is the connectivity of the qubits, controlling which qubits can be affected by the same
gate. The connectivity can be represented by a directed graph, which is also called coupling
map. Making quantum circuits compatible with a coupling map is called quantum circuit
mapping. This process is more complicated and is explained in Section 3.6.

Quantum computers do not only differ in which gates they support, but also how well they
can perform specific gates. Different quantum computers may have different error rates for
the same gate. Gates with higher error rates can sometimes be expressed as an equivalent
sequence of different gates to reduce the overall error rate of the circuit.

These different architectures motivate target specific optimization, so that the optimizer
makes different choices depending on the target architecture and produces an optimized
circuit using the basis gate set of the target architecture. Our implementation mostly focuses
on target independent optimization, but it contains a limited version of quantum circuit
mapping, which is explained in Section 8.4.

2.5. Hybrid Quantum-Classical Computing
Current quantum computers are fundamentally different from their classical counterparts.
Not just from a technical or physical perspective, but also a conceptual. Classical computers
work on bits that are just zeros or ones and a lot of technology has been built around these
bits. They are used to represent many different files, including text, images, videos and
many more. Modern computers are also capable of taking input from the user via mouse or
keyboard and produce images on the screen or play sounds through speakers.

9

2. Quantum Computing

In contrast, quantum computers are much more limited. Their qubits do not have these
many different interpretations as regular bits and quantum computers also have many
technical limitations, such as qubits collapsing and losing their state. For these reasons,
quantum computers are not used on their own, but in combination with classical computers
to perform hybrid quantum-classical computing. There, the classical computer can handle
the majority of the program flow. In particular, file access, user input, video and audio
output all need to be done by the classical computer. The quantum computer is only
employed, once a particular task can be solved by a quantum algorithm. The classical
computer then assembles the quantum circuit for this quantum algorithm, sends it to the
quantum computer and gets back the measured values as regular bits. In that sense, the
quantum computer can be seen as a hardware acceleration unit employed by the classical
general-purpose computer.

10

3. Static Optimization of Hybrid
Quantum-Classical Programs

Static optimization of hybrid quantum-classical programs is a special form of optimization,
because it does change the semantics of the program. The hybrid quantum-classical program
produces a quantum circuit at run time with which the programmer can interact. The
programmer can retrieve information about the circuit, such as the number of qubits, the
number of gates, or even a full representation of the quantum circuit via OpenQASM for
instance. If the quantum circuit is optimized at compile time, all this information will differ
in the optimized program, resulting in observable differences in the outcome of the program.
These differences are not allowed in regular optimization, but for hybrid quantum-classical
programs changes in the generated quantum circuit are allowed and desired as long as they
result in equivalent measured results on a perfect quantum computer.

Technically, a hybrid quantum-classical program is just a classical program and all its
instructions are classical instructions. It is only considered hybrid quantum-classical, because
at some point during run time the program communicates with a quantum computer or
simulator. The form of communication depends on the target quantum computer, but it
usually contains some representation of the quantum circuit that is supposed to be executed.
How this quantum circuit is built at run time is also not defined. It could be a quantum
circuit language such as OpenQASM, that is included as a string literal or file path in
the program or library calls to build a quantum circuit data structure. As a result, it is
impossible for an optimizer to perform static optimization of quantum circuits, because it
simply does not know what instructions affect the quantum circuit. For that reason, we will
introduce specific functions to build quantum circuits and only support static optimization of
quantum circuits generated by these functions. Using these functions, all instructions of the
hybrid quantum-classical program can be divided into quantum and classical instructions.

3.1. Joint Optimization of Quantum Instructions
One important aspect of quantum instructions is that they do not have any effect until the
generated quantum circuit is read. Suppose there are five quantum instructions after each
other and only the last instruction reads the generated quantum circuit in order to send it
to the quantum computer or simulator. The intermediate state of the quantum circuit after
the first four instructions does not matter, as long as the state after the last instruction is
correct, because only this state is observed. This idea is central to static quantum circuit
optimization, because it allows us to produce arbitrary intermediate quantum circuits as
long as all observed quantum circuits in the optimized program are equivalent to the original
program. The first major challenge is to find sequences of instructions where the quantum
circuit is not observed in between. This sequence can then be replaced by a new sequence
resulting in an equivalent quantum circuit after the last instruction. These sequences will

11

3. Static Optimization of Hybrid Quantum-Classical Programs

Algorithm 2: Coin optimization of a simple program with linear control flow,
reducing the number of coins from 3 to 2.
1 Function Original():
2 GiveCoin(20)
3 GiveCoin(20)
4 GiveCoin(20)

1 Function Optimized():
2 GiveCoin(10)
3 GiveCoin(50)

be called chunks and are the basis for static quantum optimization. In most cases a chunk
does not end because the quantum circuit is definitely read by an instruction, but because it
cannot be statically verified that the quantum circuit will not be read. This is especially the
case just before a branch instruction or at the end of a function, where the next instruction
is not known at compile time. Chunks may also contain classical instructions that must be
preserved by the optimization.

The instructions contained in the chunk generate the quantum circuit at run time and
can be analyzed and optimized at compile time. There are very little restrictions on the
instructions in the chunk, as long as the requirement of the quantum circuit never being read
is fulfilled. As a result, the instructions may still contain complex control flow, leading to
fundamentally different quantum circuits depending on run time values. In order to explain
optimization of chunks in a more intuitive and shorter way, the program being optimized
will now have a different task. The program will now return coins of a certain total value.
We will assume, that coins of values 1, 2, 5, 10, 20, 50 and 100 exist. Two programs are
considered equivalent, if they return the same total value. A simple example of such an
optimization is shown in Algorithm 2, which reduces the number of coins by one.

Algorithm 3: Coin optimization of a program with control flow statements
resulting in different outcomes at run time. All outcomes are enumerated and each
one is optimized individually. The optimized outcomes are selected by a condition.
1 Function Original():
2 GiveCoin(20)
3 GiveCoin(20)
4 GiveCoin(20)
5 if x then
6 GiveCoin(20)
7 GiveCoin(20)
8 GiveCoin(20)

9 if y then
10 GiveCoin(50)

1 Function Optimized():
2 if x and y then
3 GiveCoin(100)
4 GiveCoin(50)
5 GiveCoin(20)
6 else if x and not y then
7 GiveCoin(100)
8 GiveCoin(20)
9 else if not x and y then

10 GiveCoin(100)
11 GiveCoin(10)
12 else
13 GiveCoin(50)
14 GiveCoin(10)

12

3.1. Joint Optimization of Quantum Instructions

By allowing control flow statements in chunks, the problem becomes more complicated
as shown in Algorithm 3. Here, the desired result depends on some run time value. The
optimal solution is to enumerate all individual execution paths and optimize the instructions
contained within each path. This approach does not work well for several reasons. Every
if-condition doubles the number of execution paths, while a loop can even result in infinite
execution paths, because the number of iterations may be unknown at compile time. Even if
the number of execution paths is limited, the resulting execution paths might be very long.
The problem of optimizing a long sequence of quantum instructions as a whole is difficult
[SBM06] and time intensive [AMMR13, DM16].

A simpler and more efficient way to optimize quantum circuits is peephole optimization,
which only looks at a short section of the quantum gate sequence and optimizes this short
section. After the section is optimized, the next section is considered until the end of the
sequence is reached. As a result, this method scales linearly with the size of the entire
sequence. Obviously, this approach can be used to optimize different execution paths
individually. In order to avoid the problems caused by too many or infinite execution paths,
chunks can simply be broken up at control flow statements. This may result in significantly
more, but smaller chunks. However, as long as the chunks do not get too small, peephole
optimization will still be effective. This is because peephole optimization within each chunk
will stay the same and only optimization across the new chunk border will be prevented.
Therefore, removing control flow statements from chunks and applying peephole optimization
results in very fast optimization and still good results for most use cases.

By splitting chunks at control flow statements, three chunks are obtained in the given coin
example. These chunks are all optimized individually as shown in Algorithm 4. Obviously,
this method does not yield optimal results, but also does not result in exponential optimization
time when conditions are encountered, due to the exponential number of execution paths.

Algorithm 4: Coin optimization of a program with control flow statements
resulting in different outcomes at run time. The original control flow is preserved
and the chunk is split up, resulting in three chunks being optimized individually.
As the optimization cannot consider all instructions at the same time, no optimal
solution is obtained.
1 Function Original():
2 GiveCoin(20)
3 GiveCoin(20)
4 GiveCoin(20)
5 if x then
6 GiveCoin(20)
7 GiveCoin(20)
8 GiveCoin(20)

9 if y then
10 GiveCoin(50)

1 Function Optimized():
2 GiveCoin(50)
3 GiveCoin(10)
4 if x then
5 GiveCoin(50)
6 GiveCoin(10)

7 if y then
8 GiveCoin(50)

Whether a chunk is split up at diverging control flow or each execution path is optimized
individually, the optimization is performed on a sequence of quantum instructions without

13

3. Static Optimization of Hybrid Quantum-Classical Programs

control flow. There exists a lot of literature on the optimization of quantum circuits
[SP08, KM13, AMM14, HHT20]. However, in static quantum circuit optimization, the
optimized chunk may only be a part of the final circuit at run time and not all gate
arguments may be known at compile time. As a result, not all optimization techniques are
applicable to static quantum circuit optimization. In the following, several optimization
methods for static optimization of quantum circuits will be presented. This is far from an
exhaustive list and is tailored towards optimization techniques that are well suited for the
optimization of chunks. To enable the best optimization, different cases of the chunk in
relation to the final quantum circuit at run time should be distinguished.

3.2. Optimization of the Start of a Quantum Circuit

If a chunk is known to not be preceded by another chunk, it can be considered the start of
the quantum circuit. Before quantum gates can be added to a quantum circuit, the quantum
circuit must be created and stored in a variable that will be passed to the function calls
adding quantum gates. This creation usually happens with a function call itself, so the
optimizer can easily tell if a chunk is the start of a quantum circuit by checking whether the
quantum circuit is created at the start of the chunk.

All qubits start at qubit state |0⟩. If a controlled gate is encountered and the control qubit
is known to be in state |0⟩, the controlled gate can be removed. If the optimizer can verify
that the qubit is in state |1⟩, the controlled gate can be replaced by its regular version. An
example of this optimization process can be seen in Listing 3.1. The first CX gate can safely
be removed, because the control qubit q[0] still has its initial state of |0⟩. The next CX
gate can be replaced by a regular X gate, because the control qubit q[0] is only modified by
a single X gate before, meaning it is now in state |1⟩. This is a very simple version of state
dependent optimization and more advanced optimization methods can be found in [LBZ21]
and [JTS+22].

Listing 3.1.: The optimizer can infer the current state of the control qubit q[0] at the
controlled gates and optimize the controlled gates. If the control qubit is known
to be in the state |0⟩, the controlled gate is removed. While the gate is replaced
by its non-controlled version if the control qubit is known to be in the state |1⟩.

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[2];
4 creg c[2];
5 CX q[0], q[1];
6 H q[1];
7 X q[0];
8 CX q[0], q[1];
9 ...

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[2];
4 creg c[2];
5

6 H q[1];
7 X q[0];
8 X q[1];
9 ...

14

3.3. Optimization of the End of a Quantum Circuit

3.3. Optimization of the End of a Quantum Circuit

If a chunk is known to not be followed by another chunk, it can be considered the end of
the quantum circuit. In general, this property is difficult to determine statically, because it
is hard to tell whether a given quantum circuit may be used in the future. The optimizer
can only confirm this property, if the quantum circuit is removed or made immutable at
the end of the chunk. In both cases, the quantum circuit cannot be altered any further at
run time, meaning the current chunk will be the last one for this quantum circuit. In many
applications, a quantum circuit is generated once, but executed several times at different
points in the program. In that case, the circuit is not removed in the same chunk it is
defined, so the optimizer will not know whether it is the last chunk. For that reason, a
specific function to mark a quantum circuit as finished may be added. This function makes
the quantum circuit immutable at run time and allows the optimizer to more easily detect
the end of a quantum circuit. Since the quantum circuit will be complete when this function
is executed at run time, additional run time optimization may be performed as well.

The end of a quantum circuit allows special optimization techniques. A SWAP gate may
be eliminated by adjusting all following gates and measurements acting on the swapped
qubits. This is shown in Listing 3.2. It is important to note, that this kind of optimization
may be detrimental, if the SWAP gates are introduced to make the circuit compatible
with the target architecture. As a result, this optimization should only be applied, if the
optimizer also comes with a good algorithm to map quantum circuits to target architectures.
In that case, the quantum circuit can first be stripped from SWAP gates and later add
SWAP gates again if necessary.

Listing 3.2.: A SWAP gate at the end of quantum circuit may be eliminated by adjusting
all following gates and measurements acting on the swapped qubits.

1 ...
2 CX q[0], q[1];
3 SWAP q[0], q[1];
4 H q[1];
5 CX q[1], q[0];
6 X q[0];
7 measure q[0] -> c[0];
8 measure q[1] -> c[1];

1 ...
2 CX q[0], q[1];
3

4 H q[0];
5 CX q[0], q[1];
6 X q[1];
7 measure q[1] -> c[0];
8 measure q[0] -> c[1];

Additionally, the end of the quantum circuit can be searched for gates that do not affect
the measured results. This optimization should be done iteratively from the back, because
removing a gate can open further optimization possibilities. For instance, a qubit may
only affect the measured result because it is used as control qubit by another gate. If the
controlled gate is removed, the control qubit no longer affects the measurements and previous
gates on the control qubit may become candidates for this optimization. This process is
shown in Listing 3.3. Only q[2] is measured, so the gates CX q[0], q[1] and X q[1] can be
removed, as both target q[1], which is not read afterwards. By removing CX q[0], q[1], a
read of q[0] is removed, so that now H q[0] can be eliminated as well.

15

3. Static Optimization of Hybrid Quantum-Classical Programs

Listing 3.3.: Quantum gates targeting qubits whose state is not measured or read by following
gates can be removed. As the removal of a gate can also remove a read of a
qubit, this can allow removal of additional gates.

1 ...
2 CX q[0], q[2];
3 CX q[1], q[2];
4 X q[2];
5 H q[0];
6 CX q[0], q[1];
7 X q[1];
8 measure q[2] -> c[0];

1 ...
2 CX q[0], q[2];
3 CX q[1], q[2];
4 X q[2];
5 H q[0];
6

7

8 measure q[2] -> c[0];

1 ...
2 CX q[0], q[2];
3 CX q[1], q[2];
4 X q[2];
5

6

7

8 measure q[2] -> c[0];

3.4. Optimization of Complete Quantum Circuits

Combining the two previous concepts, one can obtain complete quantum circuits in a single
chunk. However, some arguments of quantum gates may still have unknown values at
compile time. On the other hand, if all gate arguments are known at compile time, the
quantum circuit is fully resolved at compile time. Such a quantum circuit could even be
computed at compile time and the entire run time execution of the quantum circuit replaced
by the precomputed result. For quantum circuits, every state has a certain probability to
be measured, so the run time could essentially be implemented using a random number
generator. Obviously, computing all the probabilities is expensive as it is a form of quantum
simulation. As a result, optimization time could be very slow. Additionally, this optimization
can only be used in a very specific case, so this optimization is not very effective on average.

In general, there exist a multitude of optimization methods for complete quantum circuits,
as many quantum computing frameworks employ run time optimization [SHT18, SPSD20,
SDC+21]. This work mostly focuses on the challenges of incomplete quantum circuits caused
by the limited knowledge of the quantum circuit at compile time, so optimization of complete
quantum circuits will not be covered further.

3.5. Optimization of Quantum Gate Sequences

The by far most common occurrence are chunks containing sequences of quantum gates with
no information on how the chunk may be combined with other chunks at run time. Without
knowledge about possible preceding chunks, the optimizer cannot make any assumptions
about the initial state of the qubits. Additionally, there is no information about how the
outgoing qubits will be used, so all the outgoing qubit states as well as their indices need
to be preserved in the optimized quantum gate sequence. In other words, the optimized
quantum gate sequence must be equivalent to the original quantum gate sequence for all
qubit states.

As already mentioned, peephole optimization is much faster than optimizing the entire
chunk at once. Therefore, this technique is used in our implementation and the individual
peephole transformations used by our implementation will be introduced in this section.

16

3.5. Optimization of Quantum Gate Sequences

Identity Elimination

The identity gate has no effect and can be safely removed from any quantum circuit.
Obviously, adding this gate in the first place seems pointless, but it can also be the result of
certain parameter combinations of more advanced gates. The U gate becomes equivalent to
the identity gate when all three parameters are zero, because then the gate matrix becomes
the identity matrix. As a result, if an advanced gate contains a U gate and it is possible
that all arguments of said U gate become zero, the identity gate may be included indirectly
in the final circuit. In general, if a specific gate such as the identity gate is used within
an optimization, it is important to interpret more generic gates such as the U gate as the
specific gate if they are equivalent considering the arguments of the more generic gate.

CX Elimination

Two consecutive CX gates with the same control and same target qubit can be removed.
Intuitively, if the control qubit is one, the target bit is flipped twice, leading to no change.
If the control qubit is zero, no gate is ever applied. As the control qubit may also be in
a superposition, it makes sense to look at the matrices to confirm that this optimization
always works:

CX · CX =

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

By obtaining the identity matrix, it is proven that two consecutive CX gates do not affect

the qubit state and can be removed.

SWAP Elimination

Swapping two qubits twice in a row returns them to their original position, so these instances
of repeated SWAP operations on the same qubits can be removed. As the argument order
does not matter for the SWAP operation, this also works if the two consecutive SWAP
operations have flipped arguments.

Rotation Folding

This optimization was already explained in Section 2.2 and affects two consecutive rotations
about the same axis. If one of the rotational gates Rx(θ), Ry(θ) or Rz(θ) is encountered
twice in a row, the gates can be merged by adding the angles together. Obviously, the
gates must also act on the same qubit. This optimization can be extended to the controlled
version of the rotational gates, which adds the requirement that the control qubit must also
be the same between the two consecutive controlled gates.

More Optimization Possibilities

The presented optimization methods were chosen for this implementation, because they
are easy to implement and showcase how optimization can be performed on chunks. There

17

3. Static Optimization of Hybrid Quantum-Classical Programs

are many more possible optimization methods. Peephole optimization can be improved by
adding optimization methods that look at larger sections than just two consecutive gates.
For smaller sequences, it might make sense to avoid peephole optimization and directly
optimize the sequence as a whole, leading to better results at still fast optimization times
due to the small problem size.

3.6. Target Specific Optimization

As explained in Section 2.4, different target architectures support different gate sets and the
coupling map limits which qubits can be affected by the same gate. Additionally, different
quantum computers will have specific error rates for every gate. All of this information can be
incorporated into target specific optimization. The optimizer must put out a quantum circuit
only using gates that are supported by the target architecture and the qubit arguments of
the gates must be connected in the coupling map of the architecture.

Translating advanced gates into basis gates is quite straight forward, because equivalencies
between the common gates exist and are well known. For instance, OpenQASM 2.0 contains
definitions of many common gates based on its basis gates [CBSG]. This can be done for
every advanced gate individually, so it can be applied to chunks without having to worry
about the relation to other chunks.

Ensuring compatibility with the coupling map is much more difficult, because it cannot
simply be done locally. This process is also called quantum circuit mapping and works
by distinguishing between logical and physical qubits [WB23]. The logical qubits are the
qubits specified in the original quantum circuit, where gates may act on arbitrary qubits.
The mapping algorithm then needs to map every logical qubit to a physical one. This
mapping may change throughout the circuit, if no single mapping fulfilling all requirements
can be found. Additional gates, such as SWAP gates are added to the circuit to update
the mapping throughout the circuit. Suppose there is a simple star-shaped coupling map
containing four qubits with physical qubit p0 in the center and the three other qubits only
connected to qubit p0. Listing 3.4 shows how a simple quantum circuit can be mapped to
this architecture. Clearly, the quantum circuit contains two similar parts in which a single
qubit interacts with three different ones. As a result, this single logical qubit is mapped
to the center of the star, resulting in the mapping q2 → p0 for the first part. The other
mappings can be chosen freely, because all other physical qubits are equivalent in the star
architecture, resulting in {q0 → p2, q1 → p1, q2 → p0, q3 → p3} as a possible initial mapping.
In the second part, the logical qubit q3 interacts with the other qubits, so now this qubit
must be mapped to the physical qubit p0 in the center of the star architecture. The current
qubit in the center, must be mapped to one on the outside, though it again does not matter
which one. As a result, the physical qubit p0 in the center is swapped with the physical
qubit p3, resulting in the new mapping {q0 → p2, q1 → p1, q2 → p3, q3 → p0}. The new
mapping must also be applied to the measurements, so that the classical bits contain the
results according to the logical qubits as defined by the original quantum circuit.

Finding the optimal mappings is a complicated task and there exist exact [WBZ19] and
heuristic [ZPW19] algorithms for it. One important challenge is to add as few additional
operations as possible. This makes the mapping of chunks difficult, because different chunks
running after each other at run time might have completely different mappings, requiring

18

3.6. Target Specific Optimization

Listing 3.4.: Mapping a quantum circuit to a specific quantum circuit requires a mapping
from logical qubits to physical ones. This mapping is adjusted throughout the
circuit by the addition of SWAP gates.

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[4];
4 creg c[4];
5 CX q[2], q[0];
6 CX q[2], q[1];
7 CX q[2], q[3];
8 CX q[3], q[0];
9 CX q[3], q[1];

10 CX q[3], q[2];
11 measure q -> c;

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[4];
4 creg c[4];
5 // 0->2, 1->1, 2->0, 3->3
6 CX q[0], q[2];
7 CX q[0], q[1];
8 CX q[0], q[3];
9 SWAP q[0], q[3];

10 // 0->2, 1->1, 2->3, 3->0
11 CX q[0], q[2];
12 CX q[0], q[1];
13 CX q[0], q[3];
14 measure q[0] -> c[3];
15 measure q[1] -> c[1];
16 measure q[2] -> c[2];
17 measure q[3] -> c[0];

many SWAP operations to be inserted at run time. This problem cannot fully be solved,
but there are several strategies to combat it. Finding larger chunks reduces the number of
chunk borders, where different mappings meet each other and SWAP operations need to
be added at run time. The mapping algorithm could also consider this uncertainty of chunk
relations and try to minimize different mappings at chunk borders. The mapping algorithm
could find a global mapping that all chunk borders must adhere to and simply add additional
SWAP operations at the start and end of chunks to conform to this global mapping. The
algorithm could find such a global mapping that requires a minimum number of SWAP
operations at the start and end of chunks on average. This strategy produces chunks with
the same mappings, so that no SWAP operations need to be added at run time, forming a
fully static quantum circuit mapping. However, this approach cannot guarantee optimal
mapped quantum circuits and may end up adding many additional SWAP operations.

Another approach is a form of hybrid static-dynamic mapping. The mapping algorithm
would analyze possible mappings within the chunk, but not finalize them. Instead, the
analysis results are written into the program code, so that they can be used at run time.
This could speed up the mapping process, because analysis within the chunk does not have
to be performed at run time, while the run time still has access to the full quantum circuit
allowing an optimal circuit mapping. However, this requires the mapping algorithm to be
able to perform meaningful analysis on small portions of the quantum circuit that can be
reused when making mapping choices for the entire quantum circuit.

Regardless of the strategy used, adding SWAP operations to translate between two
mappings is not trivial, because the SWAP operations itself must also adhere to the
coupling map. As a result, it is far easier to reuse existing mapping algorithms at run time
when the entire quantum circuit is known.

19

Part II.

Implementation

20

In this part, we present an implementation of static optimization for hybrid quantum-
classical programs. This implementation adds an extra compilation step that detects
quantum circuit chunks in the user program, optimizes the chunks and then writes the
optimized chunk back to the user program, so that the optimized quantum circuit will be
generated at run time. As there already exist several optimization algorithms for entire
quantum circuits, this implementation focuses on performing optimization statically and
uses only basic optimization algorithms.

The communication between the classical program and the quantum computer or simulator
can be realized with quantum circuit languages such as OpenQASM 2.0 [CBSG]. As a
result, hybrid quantum-classical programs can be written in arbitrary classical languages by
assembling an OpenQASM 2.0 string at run time and sending it to the quantum computer.
However, the optimizer needs to be able to detect quantum circuit generating instructions
in the program, so that they can be optimized. Therefore, the quantum circuit must
be generated by a well defined instruction set and the optimizer must be designed to
understand these instructions. There are several ways to achieve this well defined instruction
set. Hybrid quantum-classical languages that already include quantum instructions could
be designed. Quantum instructions can also be added to existing classical languages via
language extensions or libraries. For this purpose, we define a new C library called QuLib.
This allows the programmer to write the hybrid quantum-classical program in a well known
language with extensive library and tooling support. This library is described in more detail
in Chapter 6.

By using the C language for the hybrid quantum-classical program, existing compiler
technology can be reused. The LLVM project[LA04] is a modern compiler framework written
in C++ and comes with its own intermediate representation that simplifies writing custom
optimization passes. The LLVM Clang compiler serves as an entry point to convert the
hybrid quantum-classical program into LLVM bitcode files, which can then be used as
input for LLVM optimization passes. As LLVM Clang also supports C++, the hybrid
quantum-classical program can be written in both C and C++. These languages are some
of the most commonly used languages, so supporting them makes the optimizer accessible
for many projects.

Once the LLVM bitcode files are obtained, several optimization passes are applied to them.
These optimization passes are triggered by the Linker Interface, which is an executable
replacing the original linker. As a result, the quantum circuit optimization happens between
compilation and linking of the hybrid quantum-classical program. Once the optimization
passes are finished, the Linker Interface sends the optimized LLVM bitcode files together
with other linker arguments to the real linker that produces the final executable. The Linker
Interface is explained in Chapter 7.

The optimization passes applied to the LLVM bitcode files are a combination of existing
LLVM optimization passes and a custom optimization pass for static quantum circuit
optimization. This custom optimization pass is presented in Chapter 8. This entire
compilation process is visualized in Figure 3.1.

Outside of these three main components, there are some additional adjustments required
compared to the regular compilation process. In particular, special compile and link flags
must be set to use LLVM bitcode files during the compilation process.

This project provides new CMake functions to simplify the process of triggering this new
compilation process. This contains the inclusion of the QuLib headers, linking the QuLib

21

ExecutableSource Code

Linker
Interface

Libraries

QuLib

Optimization Passes

Linker
Static Quantum

Circuit Optimization

Clang
Compiler

Figure 3.1.: Modified compilation process with new components marked as dashed boxes.
The source code is compiled to LLVM bitcode files with the Clang compiler.
The Linker Interface triggers optimization passes on the LLVM bitcode files
before passing them to the linker, while libraries are directly passed to the linker.
The linker then produces the final executable.

library, enforcing the correct flags in the LLVM Clang compiler and using the Linker Interface
instead of the regular linker. The CMake integration is explained briefly in Chapter 9.

22

4. Related Work

Optimization of quantum circuits in itself is an important topic, because more instructions
are more likely to introduce errors in the computation. As a result, there exists a lot of work
related to the optimization of quantum circuits, such as [SP08, KM13, AMM14, HHT20].
There also exist several compilers for quantum programs that often come with optimizations
as well.

ScaffCC

ScaffCC [JPK+14] introduces the Scaffold programming language, which is an extension of
C. This project also uses LLVM, but works differently, because it compiles an extension of
the C language. ScaffCC does not support arbitrary hybrid quantum-classical programs and
requires the classical control flow within quantum modules to be statically resolvable.

ProjectQ

ProjectQ [SHT18] is a compiler framework for quantum computing. It defines a high level
language as an embedded domain specific language in Python. The compiler then optimizes
the quantum program over different intermediate representations and compiles it to a given
back-end. This back-end may be a quantum computer with a specific architecture, a quantum
simulator or even just a circuit drawer. As an embedded language in Python, there is no
static compilation and the quantum circuit must be compiled and optimized at run time.

t|ket⟩

t|ket⟩ [SDC+21] is a compiler that enables targeting different quantum architectures. Nat-
urally, it supports multiple quantum computer and simulator back-ends with different
architectures. It can also work with multiple different front-ends, including OpenQASM,
Qiskit and ProjectQ. t|ket⟩ is especially designed to perform target specific optimization,
minimizing the error caused by the target quantum computer. However, static optimization
is only indirectly possible with t|ket⟩. The project itself can optimize quantum circuits given
in any of its front-ends, so one would need to obtain such a representation at compile time.

QIRO

Perhaps the most closely related project is QIRO or Quantum Intermediate Representation
for Optimization [IHKH22]. This is an intermediate representation designed for quantum-
classical co-optimization, meaning that both quantum and classical instructions are optimized
within the same intermediate representation. This is different from our approach, because
we only extract quantum instructions, transform them into a quantum circuit representation
and optimize this representation independently from the classical instructions. QIRO is

23

4. Related Work

based on the Multi-Level Intermediate Representation (MLIR) [LAB+21], which allows
many existing optimization passes from MLIR to be applied to QIRO. This is similar to
how our implementation reuses LLVM optimization passes. QIRO is intended to be used
with a high level quantum programming language as the front-end and a quantum computer
or simulator at the back-end. However, the front-end and back-end are not part of QIRO
itself and require future contributions to create a full compilation stack for static quantum
circuit optimization.

24

5. Description of Tools

This chapter introduces various tools and libraries related to static optimization and quantum
computing that make this implementation possible:

5.1. LLVM Tool Chain

The LLVM toolchain1 [LA04] is used to perform static optimization during compilation.
It contains several sub projects relevant for our implementation that are described in this
section.

LLVM Intermediate Representation

The LLVM intermediate representation (LLVM IR) is the abstraction layer on which all
optimization passes of LLVM operate. It is employed to detect quantum circuit generating
function calls in the program code. The found functions calls are then processed to build
chunks. The quantum circuit represented by the chunk is then optimized. Finally, the
optimized circuit is written back to the LLVM intermediate representation, replacing the
initially detected quantum circuit generating functions. The intermediate representation
gives a hierarchical view of the program code, exposes the control flow of the program and
allows the optimizer to easily distinguish between many different instruction types, such as
function calls, variable assignments or conditions. This allows us to understand how the
program will behave at run time. This information is then used to properly optimize the
quantum circuit generating functions.

LLVM Clang

The Clang2 compiler produces LLVM bitcode files from the C or C++ source code of the
hybrid quantum-classical program. Special compiler flags are required to enforce the output
of these LLVM bitcode files instead of regular object files. These bitcode files are essentially
the LLVM intermediate representation as binary files. LLVM bitcode files are required as
input for the other LLVM tools, so Clang serves as an entry point for the entire LLVM tool
chain.

llvm-link - LLVM Bitcode Linker

The llvm-link3 binary combines several LLVM bitcode files into one, simplifying working
on the LLVM bitcode. Dealing with a single file is easier for two reasons. Firstly, the

1https://github.com/llvm/llvm-project
2https://clang.llvm.org
3https://llvm.org/docs/CommandGuide/llvm-link.html

25

https://github.com/llvm/llvm-project
https://clang.llvm.org
https://llvm.org/docs/CommandGuide/llvm-link.html

5. Description of Tools

optimization process only has to be started once. Secondly and more importantly, the
optimization pass has access to the entire LLVM bitcode at once, allowing it to use more
information to make optimization choices.

opt - LLVM Optimizer

The opt4 binary runs an optimization pass by reading a LLVM bitcode file, turning it into
LLVM intermediate representation in memory and then performing the actual optimization
pass on the LLVM intermediate representation. After the pass, the LLVM intermediate
representation is turned back into a LLVM bitcode file. Many optimization passes are
implemented by opt already, but it is also possible to load and run new optimization passes
with this binary.

llvm-dis - LLVM Disassembler

The llvm-dis5 binary converts a LLVM bitcode file to the human-readable LLVM assembly
language. This is mostly useful during development. For our purposes this binary is also
used to distinguish between regular object files and LLVM bitcode files, as our optimizer
only operates on the LLVM bitcode files.

LLVM LLD Linker

The final optimized LLVM bitcode file, regular object files, and library files are linked to the
final executable using the LLD6 linker. This linker is required, as it supports LLVM bitcode
files unlike the regular ld linker.

5.2. Munich Quantum Toolkit
The Munich Quantum Toolkit is a quantum computing framework that comes with many
useful sub projects, some of which are used in our implementation and will be explained in
this section.

QFR - Quantum Functionality Representation

The Quantum Functionality Representation (QFR)7 is a quantum circuit representation
written in C++ and is described in [BRSW21]. It is used by the other tools of the Munich
Quantum Toolkit. In order to use these other tools, the quantum circuit must first be
defined as a QFR circuit. This representation is explained in more detail in Subsection 8.1.3.

QMAP - Quantum Circuit Compilation

QMAP8 is a quantum circuit mapping tool that makes quantum circuits compatible with
the coupling map of a given architecture as described in Section 3.6. It contains both

4https://llvm.org/docs/CommandGuide/opt.html
5https://llvm.org/docs/CommandGuide/llvm-dis.html
6https://lld.llvm.org/
7https://github.com/cda-tum/qfr
8https://github.com/cda-tum/qmap

26

https://llvm.org/docs/CommandGuide/opt.html
https://llvm.org/docs/CommandGuide/llvm-dis.html
https://lld.llvm.org/
https://github.com/cda-tum/qfr
https://github.com/cda-tum/qmap

5.3. Quantum++

exact [WBZ19] and heuristic [ZPW19] mapping algorithms and is summarized in [WB23].
However, the exact algorithm is much slower and only works for up to eight qubits according
to the documentation of QMAP, so this implementation makes use of the heuristic mapping
algorithm. The tool is easy to use and only requires as input the QFR circuit and the
coupling map and returns the optimized OpenQASM 2.0 code. It is important to note,
that there are some limitations on which QFR circuits can be used with QMAP. At the
time of writing, the CX gate is the only two-qubit gate that is allowed, though there is
active development for bringing support for arbitrary two-qubit gates. This is not much of a
problem for our implementation though, because our basis gates U and CX are supported.

QCEC - Quantum Circuit Equivalence Checking

The Quantum Circuit Equivalence Checking (QCEC)9 tool is not directly used in our
implementation, but is invaluable during development and for evaluating the implementation.
This tool takes two QFR circuits as input and checks them for equivalence as described in
[BW21]. As optimized quantum circuits need to be equivalent to the original circuits, this
tool allows us to easily verify this property.

5.3. Quantum++
Quantum++10 is a modern quantum simulator written in C++ and is explained in [Ghe18].
As a header only library, it is easy to add to C++ programs and does not add additional
requirements for the user program. It is used in implementation to run the generated
quantum circuits.

9https://github.com/cda-tum/qcec
10https://github.com/softwareQinc/qpp

27

https://github.com/cda-tum/qcec
https://github.com/softwareQinc/qpp

6. QuLib - Quantum Circuit Library

The first component of the project is a custom circuit library called QuLib that allows
the user to generate quantum circuits at run time. Our optimizer requires a specific set
of quantum circuit generating functions, so that it can detect them at compile time and
distinguish quantum circuit generating instructions from regular instructions. It would
also be possible to use an existing quantum circuit library for that task, though defining
a new one gives us full control over it and enables us to specifically design it with static
optimization in mind.

In this section, the different functions from this quantum circuit library will be explained,
focusing on why certain design decisions have been made to either simplify or improve static
optimization. While the overall project is mostly written in C++, the quantum circuit
library itself is written in C with additional compatibility for C++ compilation, so that both
C and C++ programs can make use of QuLib. As a result, the internal quantum circuit
class cannot directly be part of the signature of QuLib functions and instead a wrapper
struct is used as the main quantum circuit data type, as shown in Listing 6.1. Additional
data types are a 32-bit unsigned integer for the indices of qubits and classical bits, as well
as 64-bit double precision floating points for most gate arguments.

Listing 6.1.: The C++ class type is included as a void pointer in a C compatible wrapper
struct. This allows the header file to be used by C programs while the imple-
mentation in the C++ source file can access the class type by casting the void
pointer to the class type.

1 typedef struct {
2 void* cppCircuit;
3 } cCircuit;

The function signatures shown here are simplified versions of the actual implementation
that hide certain implementation details that are not important for the optimization process.
Every QuLib function will also be classified as a read, write or special operation. This
classification decides how the function affects the chunk detection process. A read operation
reads some information about the quantum circuit object, so the optimized quantum circuit
must always be equivalent to the original quantum circuit before every read operation in
the program code. A write operation modifies the quantum circuit object. The special
classification is used, if a function affects the chunk detection in a unique way. This chunk
detection process is described in more detail in Section 8.2.

28

cCircuit* qulib_alloc(uint32 numberOfQubits)

This function creates a new quantum circuit with numberOfQubits qubits and returns a pointer
to it. The type uint32 is a 32-bit unsigned integer, as the number of qubits obviously cannot
be negative. Additionally, 32 bits is more than enough to represent the number of qubits,
considering the largest quantum computer in 2022 only has 433 qubits [Gam22], and the
largest 32-bit number is over four billion. By not choosing 64-bit integers, there are still qubit
indices that are not available to the user of QuLib, but can help us during the optimization
process. For example, an optimization algorithm might require all qubit indices to be known,
but during the static compilation process some qubit indices are variables rather than known
values. Then every unique variable can be mapped to a qubit index that is equal or greater
than 232, so that they cannot collide with regular qubit indices. While this is currently not
used by our optimizer, the 32-bit limitation comes at no cost due to the already mentioned
comparatively small number of qubits in current quantum computers, so keeping some qubit
indices reserved for the optimizer is a good way to simplify further optimizations in the
future.

This function conveys two important pieces of information for the optimization process.
If the static optimizer encounters this function call, the number of qubits of the current
quantum circuit is known and more importantly it is also clear, that this is the start of a
quantum circuit and it contains no gates yet. This allows the optimizer to see the start of a
quantum circuit definition. For these reasons, this function is always at the start of a chunk
and is considered a special operation.

void qulib_free(cCircuit* circuit)

Freeing the struct itself is not enough, because it contains a pointer to the quantum circuit
object that needs to be freed as well. Therefore, qulib_free is supposed to be used in order
to free both the quantum circuit object and the wrapper struct at the same time. This
function is a special operation, because it can never be part of a chunk.

char* qulib_compile(cCircuit* circuit, int optimize, const char* architecture)

This function compiles the quantum circuit and returns the compiled circuit as OpenQASM
2.0 code. It also performs run time optimization if optimize is true. By providing an
architecture string, the quantum circuit will be mapped to this architecture at run time
using QMAP. The string is passed directly to QMAP, so it must adhere to QMAP’s format
for architecture strings.

As some of these steps can majorly transform the quantum circuit, the quantum circuit
is marked immutable and can no longer be modified by other functions. This is necessary,
because the mapping can result in swapped qubit indices, so that newly added gates would
also need to be adjusted. Furthermore, this allows the optimizer to more easily detect the
end of quantum circuits, which enables additional optimization as described in Section 3.3.
As a result, this function is also a special operation.

Our implementation also allows static target specific optimization, even if it is very basic
at the moment. This requires the target architecture to be provided at compile time. Since
this function could be used to target different architectures at run time, the architecture

29

6. QuLib - Quantum Circuit Library

parameter is ignored while target specific static optimization is used and replaced by the
architecture provided at compile time.

char* qulib_get_openqasm(cCircuit* circuit)

It is also possible to obtain the OpenQASM 2.0 code of the quantum circuit without
compiling it. This is mostly useful for debugging, in order to get the OpenQASM 2.0 code
before the circuit is optimized at run time. This function is a read operation, because it
only reads the quantum circuit and does not alter it. This is important, because static
optimization must ensure the optimized circuit is equivalent to the original circuit at any
point it may be read, as explained in Section 3.1.

void qulib_simulate(const char* openQASM, uint32 numberOfShots, void* outResults)

This function is different from other QuLib functions, because it is not related to static
optimization at all. It is simply a utility function to make it easier to simulate quantum
circuits without requiring additional dependencies. It does not operate on our quantum
circuit type, but on a string instead. This means it is neither a read nor a write operation
and can be ignored by the static optimization.

void qulib_measure_single(cCircuit* circuit, uint32 qubit, uint32 clbit)

This function inserts a measurement operation in the quantum circuit that measures the
qubit with index qubit and writes the result into the classical bit with index clbit. This
function modifies the quantum circuit and is therefore a write operation.

void qulib_measure_all(cCircuit* circuit)

In many applications all qubits are measured, so this function allows the user to formulate
these quantum circuits more concisely. This function inserts a measurement for every qubit
index and writes the result into the classical bit with the same index. Like the previous
function, this is also a write operation.

void qulib_u(cCircuit* circuit, double theta, double phi, double lambda, uint32

targetQubit)

void qulib_cx(cCircuit* circuit, uint32 controlQubit, uint32 targetQubit)

void qulib_cu(cCircuit* circuit, double theta, double phi, double lambda, uint32

controlQubit, uint32 targetQubit)

These functions insert the respective gates. They are currently the only gates available in
QuLib in order to keep it small and make the detection of QuLib calls easier. However,
additional gates can easily be added to QuLib and the internal quantum circuit data structure
already uses additional gates to efficiently perform quantum circuit optimization. All gate
functions modify the circuit and are write operations.

30

void qulib_message(cCircuit* circuit, const char* message)

This function exists solely for the optimizer and it can be inserted to move arbitrary
information from the compile time to the run time. Currently, this function is used to notify
the run time how much a particular quantum circuit has already been optimized at compile
time and whether run time optimization is still necessary. Additionally, if the program is
compiled for a specific target architecture, this function is used to pass the architecture
information to the run time. As this function is inserted by the optimizer itself and is not
supposed to be part of the original user program, this function is not relevant for finding
chunks. Still, it could be considered a write operation, because it adds information to the
quantum circuit object.

31

7. Linker Interface

The custom optimization passes from opt operate on LLVM bitcode files. The regular C
and C++ compilation processes do not use LLVM bitcode files, so some adjustments are
required. The regular compilation process first compiles source files to object files and then
links the object files and required library files to an executable. This two step compilation
process is often automated by build tools, because invoking the compiler and linker manually
requires passing many arguments, especially for large projects consisting of multiple files
and many dependencies. The object files generated by the compiler are then merely input
files for the linker and the user does not have to interact with them directly.

One can use the Clang compiler with special flags and the LLD linker to use LLVM bitcode
files instead of the regular object files. However, when using build tools to automate this
compilation process, the object files or LLVM bitcode files are merely temporary files. For
our optimizer on the other hand, the LLVM bitcode files must be optimized before they are
linked.

A possible solution is to use another executable, which we will call Linker Interface, in
place of the LLD linker. The Clang compiler will still produce LLVM bitcode files, but instead
of invoking the LLD linker, it will invoke our Linker Interface with the exact same arguments.
This allows us to store the arguments, perform optimization on the LLVM bitcode files
and then invoke the LLD linker with the stored arguments and the now optimized LLVM
bitcode files. The entire process from the original arguments of the Linker Interface to the
invocation of the LLD linker is visualized in Figure 7.1.

The linker is invoked by the compiler using many different arguments. The most important
arguments are the object and library files that are linked together. In the case of the LLD
linker, there might also be LLVM bitcode files. The Linker Interface needs to find all LLVM
bitcode file arguments, so that it can perform quantum circuit optimization on them. This
process is fairly straight forward, as a linker argument needs to meet three requirements
for it to be considered a valid LLVM bitcode file. The argument must be a valid path to
an existing file, because only those can be processed. Additionally, the file extension must
be .o . Even though LLVM bitcode files generally use the extension .bc, LLVM Clang
always produces .o files whether they are regular object files or LLVM bitcode files. Finally,
llvm-dis is used to verify that a given file is indeed an LLVM bitcode file. This binary of
the LLVM tool chain converts an LLVM bitcode file to the human-readable LLVM assembly
language and will return an error message if the input file is not a valid LLVM bitcode file.

Once all LLVM bitcode files in the arguments have been found, the remaining arguments
are stored, because they will later be passed unaltered to the real linker. This is required,
so that all functionality of the original linker is preserved. The LLVM bitcode files are
then processed. At first, they are combined into a single LLVM bitcode file via llvm-link.
Always having a single LLVM bitcode file simplifies any further steps, because they only
have to be run on a single file. Additionally, this file contains all the available context, so
that optimization can be as effective as possible.

32

All Linker Arguments

Object File Arguments Other Arguments

LLVM Bitcode Regular Object Files

Merge

LLVM Optimization

Custom Optimization

LLVM Optimization

Modified Linker Arguments

Link

Figure 7.1.: The Linker Interface is initially used instead of the real linker, receiving the
same arguments. The arguments are filtered for LLVM bitcode files, which
are merged into a single LLVM bitcode file. Different optimization steps are
then performed on the merged LLVM bitcode file. Finally, the resulting LLVM
bitcode file is passed with all other original arguments to the real linker to
produce the final executable.

In the next step, the LLVM bitcode file receives several optimization passes. At first the
file is optimized with the regular optimization group O3 of LLVM, which contains many
common optimization methods. The optimized code is easier to work with for our custom
optimization pass, because unnecessary parts are removed, function calls are inlined and
loops unrolled. This removes many control flow statements and produces longer sequences
of basic function calls, increasing the size of chunks.

After the regular LLVM optimization passes have simplified the program as much as
possible, our custom optimization pass runs as described in Chapter 8 and produces a new
LLVM bitcode file once again. The regular LLVM optimization passes are run another
time, since our own optimization pass can transform the program quite a bit and open up
additional optimization opportunities.

Finally, the LLD linker is invoked with the stored arguments that are not LLVM bitcode
files together with the path of the newly produced LLVM bitcode file. The difference between
the original arguments and the new ones is that all LLVM bitcode files have been replaced by
the single bitcode file that went through the custom optimization pass, essentially running
custom optimization passes just before linking the final executable.

33

8. Optimization Pass
The custom optimization pass written for the opt tool is the main part of the implementation,
as it takes the existing program and modifies it to produce more optimized quantum circuits
at run time.

8.1. Quantum Circuit Representations
Due to the different tools used by this project, multiple different quantum circuit repre-
sentations are required, because most tools only support a limited set of quantum circuit
representations. Every quantum circuit representation comes with certain advantages and
disadvantages. They are important, when deciding which quantum circuit representation to
use for static optimization.

This section introduces the different quantum circuit representations used by this imple-
mentation and discusses their viability for static quantum circuit optimization. Table 8.1
gives a quick overview in that regard, showing whether they fulfill specific important require-
ments for static quantum circuit optimization. The first requirement is that the quantum
circuit representation must be available at run time, so that QuLib can build a circuit in this
representation. While this is technically not required for static circuit optimization, it does
make the development easier, because a lot of functionality will automatically be available
both at run time and compile time. In particular, any optimization passes that operate on
the quantum circuit representation can then also be applied as run time optimization.

Obviously, the quantum circuit representation must be present at compile time, otherwise
no static optimization is possible. This requirement however is not hard to fulfill, because
during compile time arbitrary code can be executed. This is not necessarily the case for
the run time, because adding additional libraries to the run time increases the size and
dependencies of the user program. Keeping the executable size small and dependencies
limited makes both the compilation and installation process faster and easier.

Another very important requirement is that the circuit representation must support
symbolic arguments. During the static optimization, not all values will be known and the
optimizer must be able to deal with variables with unknown values. These variables will
be referred to as symbolic variables, to differentiate them from regular variables. If the
user program contains a variable, it may become a constant value, if the optimizer can
infer its value. In that case, this value of numerical type is simply used as argument for
the quantum circuit representation. This is obviously supported by all quantum circuit
representations. On the other hand, if the optimizer cannot infer the value of a variable,
it must be converted to a symbolic variable that is then used as input argument for the
quantum circuit representation. Ideally, the quantum circuit representation should give as
much information on the relations between symbolic variables. Most importantly, if the same
symbolic variable appears twice, it must know that they have the same value. Additionally,
if a certain symbolic variable is computed as a term of other symbolic variables, this relation

34

8.1. Quantum Circuit Representations

Run Time Compile Time Symbolic Ease of Use
LLVM IR X ✓ ✓ X
OpenQASM 2.0 ✓ ✓ X X
QFR ✓ ✓ X ✓
Custom ✓ ✓ ✓ ✓

Table 8.1.: Overview of the capabilities of the individual quantum circuit representations in
the context of static quantum circuit optimization.

can also be helpful. How these relations can be used for optimization will be shown in
Section 8.3.

Finally, the quantum circuit representation should be easy to use in the context of static
optimization. While this is obviously a subjective criterion, the circuit representation should
have definitions for common gates and contain type-safe functions to add these gates and
retrieve their arguments. Additionally, the surrounding gates must be easily accessible,
because peephole optimization operates on short sequences of gates.

8.1.1. LLVM Intermediate Representation

The LLVM Intermediate Representation (LLVM IR) is the first quantum circuit represen-
tation in our optimization process and calling it a quantum circuit representation does
not serve it justice, because it can do much more. As an intermediate representation it
can describe arbitrary program code. However, it also has no special support for quantum
circuits. As a result, the intermediate representation has to be filtered for instructions
related to quantum circuits. This is done purely based on the function, so that QuLib
functions are interpreted as quantum circuit functions, while all others are not.

An LLVM IR program consists of modules, which contain global variable and function
definitions. The global variable definitions are not interesting for the quantum circuit
optimization, because they are not inherently related to quantum circuit definitions. The
function definitions on the other hand may contain function calls to QuLib functions that
generate a quantum circuit at run time. These function calls need to be processed, so that
our optimizer can find chunks, optimize the partial quantum circuit described by the chunk
and then change the function calls in the LLVM IR, so that they now produce the optimized
quantum circuit at run time.

Each function in the LLVM IR consists of so called basic blocks. A basic block is a list
of instructions that execute sequentially. This property is important, because it means
QuLib function calls within the same basic block will always be executed in a certain order.
All quantum circuit optimization can only happen within a basic block, because there the
optimizer can verify, that the quantum circuit is not read in between and can optimize these
instructions in a way, that the the new instructions generate an equivalent circuit. This
entire process is a bit more involved, because there also exist other instruction types in the
basic blocks and some of them may have side effects such that QuLib function calls before
and after them cannot be assumed to be in the same chunk. This topic is discussed in more
detail in Section 8.2. For now it will be assumed that all QuLib calls from the same basic
block also form a chunk.

35

8. Optimization Pass

Listing 8.1.: QuLib function calls can be found in the LLVM IR by iterating over the basic
block and checking for call instructions that have specific function names. Given
a function call, it is easy to obtain the arguments, their types and whether their
value is known at compile time.

1 for (llvm::Instruction &I : BasicBlock) {
2 if(llvm::isa<llvm::CallInst>(I)) {
3 auto& callInst = llvm::cast<llvm::CallInst>(I);
4 auto calledFunc = callInst.getCalledFunction();
5 if(calledFunc) {
6 std::string functionName = calledFunc->getName().str();
7 if(functionName == "qulib_u") {
8 std::cout << "Found qulib_u call: " << std::endl;
9 for (auto& arg : callInst.args()) {

10 if (auto* CI = llvm::dyn_cast<llvm::ConstantInt>(arg)) {
11 std::cout << "Constant integer argument: ";
12 std::cout << CI->getSExtValue() << std::endl;
13 } else if (auto* CF = llvm::dyn_cast<llvm::ConstantFP>(arg)) {
14 std::cout << "Constant double argument: ";
15 std::cout << CF->getValue().convertToDouble() << std::endl;
16 } else {
17 if (arg->getType()->isIntegerTy()) {
18 std::cout << "Integer variable argument." << std::endl;
19 } else if (arg->getType()->isDoubleTy()) {
20 std::cout << "Double variable argument." << std::endl;
21 } else if(arg->getType()->isPointerTy()) {
22 std::cout << "Pointer variable." << std::endl;
23 } else {
24 std::cout << "Unexpected type." << std::endl;
25 }
26 }
27 }
28 }
29 }
30 }
31 }

A basic block in LLVM can be read by iterating over its instructions. This is best explained
using a basic C++ example code as seen in Listing 8.1. There are many different types of
instructions in LLVM, but the QuLib function calls are all call instructions (llvm::CallInst),
which is why the code checks whether the given instruction is a call instruction in line two.
Since our optimizer needs to treat every QuLib function differently, the function being called
must be determined in line four. As not every function call has an associated function, it is
important to ensure that the function is not null. In the case of library functions like the
QuLib functions, the function always exists, so they will never be skipped by this algorithm.
The exact function can then easily be determined by the function name. The fact that the
QuLib library uses a C header now becomes quite helpful, because C function names are
preserved, whereas C++ function names are not. C++ uses name mangling to implement
some of its features such as function overloading. As a result it cannot be assumed that a
C++ function has the same name in the LLVM IR and the source code. With C functions

36

8.1. Quantum Circuit Representations

however, the function name will always be preserved, so that detecting QuLib functions in
the LLVM IR becomes much easier. The example code then iterates over the arguments and
prints different output depending on the argument type. For QuLib functions, there exist
three important types: Integers to refer to qubit and classical bit indices, doubles as real
valued arguments for gates and finally a pointer to the circuit being modified. There are
special cases for the numerical types, because they might be statically known so that we can
actually print their numerical value. By combining all the available information, specifically
the function name and the function arguments, a full quantum circuit operation can be read
from a call instruction in LLVM IR.

It is also possible to modify the QuLib calls in a basic block and therefore alter the
quantum circuit represented by the LLVM IR. The easiest form of modification is simply
deleting a call instruction. Adding a new instruction is more complicated and is shown
in Listing 8.2. Before a new function can be inserted into the LLVM IR, a lot of setup
is required. As already said, the module contains global variables and functions, so line
2 is simply the containing module of the function that is supposed to be modified. The
context in line 3 is a helper object in LLVM to support multi-threaded modification of
the LLVM IR and can be retrieved from most LLVM objects, including the module. The
builder is an object that makes adding new instructions easier and controls where these new

Listing 8.2.: QuLib function calls can be added to the LLVM IR after some initial setup.
The function insertU adds a single call to the qulib_u function with statically
known arguments to the LLVM IR.

1 // general setup
2 llvm::Module* module = ... ;
3 llvm::LLVMContext& context = ... ;
4 llvm::IRBuilder<>* builder = ... ;
5 llvm::Value* circuit = ... ;
6 llvm::PointerType* circuitPtrType = llvm::PointerType::get(context, 0);
7 llvm::IntegerType* intType = llvm::Type::getInt32Ty(context);
8 llvm::Type* doubleType = llvm::Type::getDoubleTy(context);
9

10 // setup function
11 std::vector<llvm::Type*> uArgTypes(
12 {circuitPtrType, doubleType, doubleType, doubleType, intType});
13 llvm::FunctionType* signature = llvm::FunctionType::get(intType, uArgTypes, false);
14 llvm::FunctionCallee func = module->getOrInsertFunction("qulib_u", signature);
15

16 ...
17

18 void insertU(double theta, double phi, double lambda, int target) {
19 builder->CreateCall(func, llvm::ArrayRef<llvm::Value*>{
20 circuit,
21 llvm::ConstantFP::get(doubleType, theta),
22 llvm::ConstantFP::get(doubleType, phi),
23 llvm::ConstantFP::get(doubleType, lambda),
24 llvm::ConstantInt::get(intType, target)
25 });
26 }

37

8. Optimization Pass

instruction will be inserted. The circuit is the variable in the LLVM IR that will point to
the circuit being modified at run time. Before the function can be added to the LLVM IR,
its signature must be defined, so that LLVM can ensure it is being called with the correct
number and types of arguments. At first, the relevant types must be defined, then a vector
of the argument types can be built. After that, the entire signature is defined using the
return type and the vector of argument types. Finally, the function is retrieved from the
module. In our case, an existing set of QuLib calls will be replaced by a different set of
QuLib calls, so module, context, builder and circuit can easily be obtained based on the
existing set of QuLib calls.

From these code examples, it should be clear that performing quantum circuit optimization
directly on the LLVM IR is not ideal. When reading a potential QuLib call, other instruction
types as well as other functions have to be considered, so that the code becomes bigger and
more complicated through additional type checks, casts, and null checks. While writing new
instructions seems even worse at first sight, the initial setup is only required once or once
per function and inserting the function call can be achieved with very little code. However,
optimization generally requires a lot more reading compared to writing, because all QuLib
function calls have to be analyzed to search for potential optimization opportunities, but
new instructions only have to written if an optimization is applied. Additionally, LLVM
offers little type safety because the types and function signatures are run time objects, so the
types will only be checked when the optimization pass runs. Incorrect function arguments
will then lead to run time errors in the optimizer that will appear as compilation errors to
the user. As a result, performing quantum circuit optimization directly on the LLVM IR
leads to more verbose code and more potential for bugs. Finally, the LLVM IR is generated
by the Clang compiler and therefore only available at compile time. While it is technically
possible to create the LLVM IR at run time as well, this requires a lot of effort and would
add a heavy dependency to the run time and hence the user program. If the LLVM IR is
only available at compile time, optimization methods implemented in the LLVM IR will not
be possible at run time.

With all that in mind, it is better to use LLVM as the first and last step in the optimization
process and use it to read and write the program, while the quantum circuit optimization
itself is performed on a different quantum circuit representation.

8.1.2. OpenQASM 2.0

OpenQASM 2.0 was already introduced in Section 2.3 as a textual representation for quantum
circuits. It is very useful during development, because it is a human readable format and
can be used to manually verify that a quantum circuit is generated correctly.

By far the biggest advantage of OpenQASM 2.0 over many other representation is the
fact that it is well established in quantum computing and supported by many other tools.
For that reason, QuLib returns the generated quantum circuit as OpenQASM 2.0 code, so it
can easily be run by many simulators or quantum computers.

As the OpenQASM 2.0 code is just text, it can easily be generated without requiring
any additional dependencies. Directly performing quantum circuit optimization on the
OpenQASM 2.0 code is not desirable, because it requires a lot of string parsing to retrieve
the arguments of individual gates. These arguments are necessary to decide whether certain
gates cancel each other or can be replaced by another gate. Finally, OpenQASM 2.0 has no

38

8.1. Quantum Circuit Representations

support for symbolic variables, so quantum circuits with unknown argument values cannot
be translated to OpenQASM 2.0.

8.1.3. QFR

The Quantum Functionality Representation (QFR) is a quantum circuit representation
of the Munich Quantum Toolkit and is used as a base for other tools from the Munich
Quantum Toolkit, such as QMAP. QFR is specifically required as input for QMAP in our
implementation, so QFR will be discussed with the usage of QMAP in mind.

QFR represents a quantum circuit as a list of quantum operations and some general data
about the circuit, such as the number of qubits or classical bits. The quantum operations
are usually gates or measurements. It implements a lot of the common gate types and
automatically translates generic gates into more specific ones if applicable. The list-like
structure of the circuit enables easy iteration over the quantum operations. Additionally,
different gate types can be distinguished efficiently using an enumerated type.

All of this makes QFR a good quantum circuit representation for optimization and QMAP
even implements some optimization before and after the mapping is performed. However,
the CX gate is the only two-qubit gate supported by QMAP and more advanced two-qubit
gates must be translated into the CX gate and single qubit gates before the mapping can
be performed. This is not an issue for our implementation, because it uses the CX gate as
the two-qubit basis gate.

Static optimization on the other hand adds some new challenges that QFR is not designed
for. Gate arguments may be variables whose values are not known at compile time. This
requires symbolic variables in the quantum circuit representation. This feature is only
partially supported by QFR and qubit arguments cannot be symbolic variables. As static
optimization requires support for symbolic variables for all gate arguments, this requirement
is marked as not supported in Table 8.1. Additionally, symbolic variables for real valued
arguments is a new feature of QFR and not supported by QMAP at the time of writing.

8.1.4. Custom Quantum Circuit Representation

As all the above quantum circuit representations are not perfect for static optimization,
it makes sense to develop a new representation that fulfills all the requirements for static
optimization of quantum circuits. While it is not as advanced and sophisticated as the other
representations that have been improved over many years, it is specifically designed for
static optimization and hence handles it sufficiently.

Like QFR, this representation is also based on a list of quantum operations, which makes
supporting QuLib function calls very easy. A QuLib function like qulib_u then simply adds
a new quantum operation at the end of the list. The valid quantum operation types for our
quantum representation are quantum gates, measurements and messages. The supported
gates are currently all the gates introduced in Section 2.2, although it is easy to add new
gate types.

One important aspect of our gate class is that single qubit gates inherit from the universal
U gate. This makes writing optimization passes significantly easier, because equivalencies
between individual gates can be performed implicitly. Before optimization is started, all
gates are translated into the most specific equivalent gate. So if a U gate is equivalent to an

39

8. Optimization Pass

Rx gate due to its arguments, it will be replaced by the Rx gate. Then, if the optimizer
requires specifically a Rx gate, it will be able to find one. On the other hand, if the optimizer
requires a U gate, it will also find one, because every Rx gate is a U gate due to inheritance.

Still, the main requirement for our quantum circuit representation is full support for
symbolic variables. There must be symbolic variables for both real and integer valued
variables, so that all gate arguments can be replaced by symbolic ones. To unify the
arguments of gates, a single class is used for both symbolic variables and numeric values,
which is called SymbolOrValue<T> with a type parameter indicating whether it is a real
or integer value. The optimizer might perform arithmetic on the gate arguments itself,
so that a SymbolOrValue<T> must also be able to hold arithmetic expressions consisting of
other SymbolOrValue<T> objects. The different kinds of arithmetic expressions used during
optimization are highly specific, so that not all arithmetic expressions need to be supported.
In fact, arbitrary arithmetic expressions create a problem of equality checking between two
objects of type SymbolOrValue<T>. Consider the terms a · b+ c · a and a · (b+ c). These terms
have a completely different structure, but are equal. As a result, equality checking is not
trivial. If the optimizer fails to recognize equality between complicated expressions, it might
miss out on some optimization opportunities. Fortunately, the optimizer only produces very
basic expressions, so that simpler equality checking is sufficient. In general, the arithmetic
expression can be reduced to a sum of products of a coefficient and a symbolic variable and
finally a single numeric value as offset:

SymbolOrValue<T> := a0 +
N∑

i=1
ai · si (8.1)

Here, ai are numeric values, while si is a symbolic variable. Obviously, this expression
can also be single numeric value for N = 0 or a simple symbolic variable if N = 1, a0 = 0
and a1 = 1. By applying a strict ordering on the addends depending on the symbolic
variable, the expression becomes deterministic and two expressions can easily be checked for
equality. It is important to understand that this expression only affects arithmetic expression
produced by the optimizer, not in the user program. The user can use an arbitrary complex
expression. The return value of this expression will then be a single value in LLVM IR
and can be translated to single symbolic variable. The arithmetic expression only becomes
more complicated, if the optimizer itself does arithmetic. Consider the rotation folding
optimization as explained in Section 3.5. The original two rotations may already both
require a symbolic variable, so by merging them, the optimizer requires an argument that
represents the sum of two symbolic variables.

As the other circuit representations are still necessary as input or output for third party
tools, our optimizer contains translation functionality to convert other representations into
our own and back. This translation is not always possible, because if the quantum circuit
contains symbolic variables for the qubit arguments, it simply cannot be translated to QFR,
as there exists no equivalent QFR quantum circuit.

In the following, the translation between the different representations will be discussed
briefly. The translation involving LLVM IR is more complicated, because the quantum
circuit is only a part of the entire LLVM IR program and the circuit might contain references
to the surrounding LLVM IR code that must be preserved by the translation. This process
is explained in Section 8.2.

40

8.1. Quantum Circuit Representations

Translation to OpenQASM 2.0

The translation from our quantum circuit representation to other representations is imple-
mented using the visitor pattern. The main advantage of the visitor pattern is that the
implementation of the translation can be separated from the implementation of the quantum
circuit representation itself. This is necessary for the translation to the LLVM IR, because
the quantum circuit representation is required both at compile time and run time, while
LLVM is only part of the compile time. This allows the run time to be independent from
LLVM and removes a heavy dependency for the user program.

Using the visitor pattern it is very easy to translate every quantum operation into a
line in the OpenQASM 2.0 code. It is not possible to produce valid OpenQASM 2.0 code
for quantum circuits with symbolic variables. However, a textual representation of the
symbolic variables can still be produced, which creates a human readable quantum circuit
representation. This is obviously not valid OpenQASM 2.0 code, but can be useful for
development and during debugging. If the quantum circuit contains no symbolic variables,
the output is valid OpenQASM 2.0 code and can be used as input for many other quantum
computing tools.

Translation to OpenQASM 2.0 is only required for the qulib_compile and qulib_get_openqasm

functions at run time. As there are no symbolic variables at run time, the produced output
will always be valid OpenQASM 2.0 code.

Translation from OpenQASM 2.0

The translation from OpenQASM 2.0 is implemented using basic string parsing and is mostly
targeted at OpenQASM 2.0 code produced by QFR. This is because the mapping tool
QMAP produces OpenQASM 2.0 output based on the mapped QFR circuit. As a result,
the translation algorithm only needs to supports a subset of the OpenQASM 2.0 language.
The language specification of OpenQASM 2.0 only defines a very limited gate set, namely
the single qubit U gate and the controlled CX gate. Additional gates can be defined similar
to functions in regular programming languages. The so called quantum experience standard
header is a file containing many of the most common gate definitions and is therefore very
useful to avoid having to define these gates yourself. Our translation algorithm does not
consider included files or user defined functions, but it contains translation rules for the
quantum experience standard header. This allows it translate all OpenQASM 2.0 code
produced by QFR and most of the basic OpenQASM 2.0 programs and results in a much
simpler and smaller implementation of the translation algorithm. Additionally, it allows us
to define custom translation rules for gates from the quantum experience standard header,
which can speed up optimization. Rather than translating a Rx gate contained in the
OpenQASM 2.0 code into a U gate as defined by the quantum experience standard header,
it can be directly added to our quantum circuit representation and used for optimization
specifically targeting the Rx gate, such as rotation folding. If the Rx gate was translated to
a U gate, it would first need to be converted back to a Rx gate, before the optimization can
be performed.

Finally, the library ExprTk1 is used to evaluate mathematical expressions that can be
used as real valued gate arguments in OpenQASM 2.0. These expressions can include certain

1https://github.com/ArashPartow/exprtk

41

https://github.com/ArashPartow/exprtk

8. Optimization Pass

constants like π and mathematical functions like trigonometric functions. Note that these
expressions are not symbolic and their numeric value can always be determined. As a result,
the resulting quantum circuit in our representation will not have symbolic variables.

Translation to QFR

The visitor pattern can again be used to easily convert our quantum circuit representation
into a QFR circuit. As QFR supports a wide array of gates, the translation is trivial
and every gate in our representation can usually be converted to the same gate in QFR.
Two-qubit gates are specifically translated to the basis gates U and CX, as other two-qubit
gates are not yet supported by QMAP.

Translation from QFR

A translation from QFR back to our quantum circuit representation is not implemented,
because it is not required. QFR is only used as the input to the QMAP mapping algorithm,
however the output of this mapping process is the OpenQASM 2.0 code, which is why the
translation from OpenQASM 2.0 has been specifically designed for the output from QMAP.
Since QMAP produces the OpenQASM 2.0 code based on an internal QFR circuit, this
is basically the same as translating QFR to our circuit representation indirectly by first
translating QFR to OpenQASM 2.0 and then to our quantum circuit representation.

8.2. Replacing Quantum Circuits in LLVM
This section will explain how chunks as defined in Section 3.1 can be found and replaced

in the LLVM IR. In order to explain the challenges and their solutions, code examples will
be used. Note that the examples given in this section are only crafted to explain how the
optimizer works and their quantum circuits have no practical use.

In the most basic case, the source code is a sequence of QuLib function calls as shown
in Listing 8.3. The optimizer can easily tell, that three quantum gates form a chunk.
Additionally, these function calls are surrounded by qulib_alloc and qulib_compile, so the
optimizer can even realize that this quantum circuit is complete, as described in Section 3.4.

Listing 8.3.: A simple sequence of QuLib calls can be easily identified as a chunk. The
presence of both qulib_alloc and qulib_compile calls allows the optimizer to
verify that this chunk is complete and independent from other chunks.

1 char* f(void* results) {
2 auto circuit = qulib_alloc(1);
3 qulib_u(circuit, 1, 1, 1, 0);
4 qulib_u(circuit, 2, 2, 2, 0);
5 qulib_u(circuit, 3, 3, 3, 0);
6 char* qasm = qulib_compile(circuit, 1, "");
7 qulib_free(circuit);
8 return qasm;
9 }

42

8.2. Replacing Quantum Circuits in LLVM

Listing 8.4.: A condition that leads to optional quantum gates splits the chunk in two,
because the entire quantum circuit depends on a run time condition.

1 char* f(bool condition, void* results) {
2 cCircuit circuit = qulib_alloc(1);
3 qulib_u(circuit, 1, 1, 1, 0);
4 qulib_u(circuit, 2, 2, 2, 0);
5 if(condition) {
6 qulib_u(circuit, 3, 3, 3, 0);
7 qulib_u(circuit, 4, 4, 4, 0);
8 }
9 char* qasm = qulib_compile(circuit, 1, "");

10 qulib_free(circuit);
11 return qasm;
12 }

In most cases the program will be much more complicated, reducing the static knowledge of
the optimizer about the generated quantum circuit. In Listing 8.4, a condition is introduced
that can only be evaluated at run time. Only the first two gates are sure to be added to
the quantum circuit, while the other two gates may or may not be part of the quantum
circuit. As explained in Section 3.1, the optimizer could enumerate all execution paths,
which would be equivalent to optimizing Listing 8.5. However, this does not scale well with
more conditions and does not work with loops, so the chunk is broken up instead.

As a result, the first two gates form a chunk and the last two gates also form one. Neither
of these two chunks contains a complete quantum circuit at compile time. The first chunk
does not form a complete circuit, because an additional chunk may follow at run time. The
second chunk is obviously not complete either, because it is always preceded by the first
chunk.

Listing 8.5.: A condition can be used to decide between two chunks. This leads to more
code if QuLib calls are repeated between the two choices. These repeated gates
need to be optimized in both chunks, leading to longer optimization times.

1 char* f(bool condition, void* results) {
2 cCircuit circuit = qulib_alloc(1);
3 if(condition) {
4 qulib_u(circuit, 1, 1, 1, 0);
5 qulib_u(circuit, 2, 2, 2, 0);
6 qulib_u(circuit, 3, 3, 3, 0);
7 qulib_u(circuit, 4, 4, 4, 0);
8 } else {
9 qulib_u(circuit, 1, 1, 1, 0);

10 qulib_u(circuit, 2, 2, 2, 0);
11 }
12 char* qasm = qulib_compile(circuit, 1, "");
13 qulib_free(circuit);
14 return qasm;
15 }

43

8. Optimization Pass

In general, only QuLib functions in the same basic block can form a chunk. Basic blocks
have already been introduced as sequences of LLVM instructions. To be more specific, a
basic block is a sequence of instructions which always execute as a unit in the same order.
This means, only the first instruction of the basic block can be triggered externally, which
will cause all functions in the basic block to run one after another without interruption until
the last instruction has completed. Suppose, QuLib functions across two basic blocks were
optimized as a chunk. The optimizer could then decide that the last instruction in the first
basic block and the first instruction in the second basic block cancel each other and remove
them. Now if the first basic block runs, but the second one does not, the generated quantum
circuit will be incorrect, because it is missing one gate.

However, basic blocks are not flat lists, but hierarchical data structures. The instructions
inside a basic block can itself contain basic blocks. For example, a basic block with three
instructions might contain a function call, a loop and another function call afterwards. The
loop body is also a basic block, so it may contain many more instructions. The function
called by a call instruction also contains a basic block, adding many more instructions. As a
result, finding all functions that will be called by a basic block is a complex task.

In general, a chunk is a section of a basic block, in which all QuLib calls happen equally
regardless of the execution path chosen at run time. These QuLib function calls can then
be used to build the quantum circuit in our quantum circuit representation at compile
time. There is a single fixed compile time representation, because all QuLib calls happen
equally regardless of the execution path chosen at run time. The quantum circuit is then
optimized and translated back to QuLib function calls, replacing the original function calls.
The requirement for the QuLib calls to happen equally regardless of execution path can be
weakened, if the quantum circuit representation supports this variability. In our case, the
quantum circuit representation allows symbolic variables, so the QuLib calls may have gate
arguments whose values can only be determined at run time.

The requirement for all QuLib calls to happen equally regardless of execution path can
be formulated more easily by defining the QuLib path. If two execution paths do not
differ in terms of the QuLib functions called, they are considered the same QuLib path.
Additionally, QuLib paths consider the quantum circuit they operate on, so if the quantum
circuit argument of two QuLib function calls differs, two QuLib paths are created. The
first QuLib path for the two quantum circuits being the same at run time and the second
for the two quantum circuits being different at run time. This concept is explained using
Listing 8.6 as an example. Clearly, there are four different execution paths for the different
combinations of a and b. The QuLib paths are more complicated. The second condition can
be ignored, because there are no QuLib calls contained in it. The other condition contains
QuLib calls, leading to two initial QuLib paths. However, the QuLib call between the two
conditions uses a different circuit variable. This doubles the number of QuLib paths, because
either the basic block produces a single circuit or two shorter ones. With this definition of
QuLib paths, a chunk can simply be defined as a section in the program with only a single
QuLib path, where the reading QuLib calls are after the writing QuLib calls. As a result,
the writing QuLib calls can be optimized together, knowing the generated circuit will only
ever be read after the last writing QuLib call.

The chunk detection algorithm can be described implicitly, using QuLib paths. One starts
with an empty chunk. New instructions are read in the LLVM IR and added to the chunk
if they are on the same QuLib path. If not, a new chunk is started containing the new

44

8.2. Replacing Quantum Circuits in LLVM

Listing 8.6.: QuLib paths follow a similar idea as execution paths, but only consider the
effect of instructions on quantum circuit generation. There are two conditions,
leading to four execution paths. Only the first condition affects quantum circuit
generation, so there are two QuLib paths initially. However, the QuLib call
between the conditions uses a different circuit variable. At run time this leads
to two different scenarios, where the two quantum circuit variables might point
to the same quantum circuit or not. This distinction doubles the number of
QuLib paths to four. The four circuit sets resulting from the four QuLib paths
are shown as OpenQASM 2.0 gate sequences.

1 void f(cCircuit* circuit1, cCircuit* circuit2) {
2 qulib_u(circuit1, 0, 0, 0, 0);
3 if(a) {
4 qulib_u(circuit1, 1, 1, 1, 0);
5 } else {
6 qulib_cx(circuit1, 0, 1);
7 }
8 qulib_u(circuit2, 2, 2, 2, 0);
9 if(b) {

10 printf("b");
11 } else {
12 printf("!b");
13 }
14 qulib_u(circuit1, 3, 3, 3, 0);
15 }

1 // a == true, circuit1 == circuit2
2 // single circuit:
3 U(0,0,0) q[0];
4 U(1,1,1) q[0];
5 U(2,2,2) q[0];
6 U(3,3,3) q[0];
7 // a == true, circuit1 != circuit2
8 // first circuit:
9 U(0,0,0) q[0];

10 U(1,1,1) q[0];
11 U(3,3,3) q[0];
12 // second circuit:
13 U(2,2,2) q[0];
14 // a == false, circuit1 == circuit2
15 // single circuit:
16 U(0,0,0) q[0];
17 CX q[0], q[1];
18 U(2,2,2) q[0];
19 U(3,3,3) q[0];
20 // a == false, circuit1 != circuit2
21 // first circuit:
22 U(0,0,0) q[0];
23 CX q[0], q[1];
24 U(3,3,3) q[0];
25 // second circuit:
26 U(2,2,2) q[0];

45

8. Optimization Pass

instruction. Since differing quantum circuit arguments always lead to multiple QuLib paths,
they always start a new chunk.

This algorithm is not practical however, because determining QuLib paths is difficult and
not always possible. Due to external libraries, the LLVM IR does not have access to all
functions and cannot determine how many QuLib paths they contain. Function calls to
unknown functions therefore stop the chunk. This is an aspect in which the optimizer could
be improved in the future, because QuLib functions are currently the only external functions
where the optimizer knows how they affect QuLib paths. It is difficult to prove that external
functions do not affect the QuLib paths, as their code is not available in the LLVM IR.
However, one could add an optional unsafe mode that assumes all external functions do
not affect QuLib paths. As long as QuLib functions are not used in external libraries, this
could still be sufficiently safe and a good way to increase possible chunk sizes. Additionally,
a function attribute could be introduced to mark functions containing QuLib functions.
A library using QuLib functions could then use this attribute to tell the optimizer which
functions cannot be assumed to not affect QuLib paths.

Instead, our implementation uses a simplified approach that is designed to work well for
common use cases. The instructions in the LLVM IR are divided into three types. The
first type are instructions with no effect on chunks. These instructions include variable
assignments or binary operators. The next type are QuLib calls, which usually have a
very specific effect on the chunk and will be discussed later in more detail. The last type
are all remaining instructions which are simply assumed to end the chunk. This includes
any function calls that are not QuLib function calls and also all control flow statements,
including loops or conditions. This means, all conditions will end a chunk, even if neither
the then nor the else block contain QuLib calls.

This could be improved by performing a deep search for QuLib calls in the basic blocks
of control flow statements and allow them inside the chunk, if no QuLib calls are found.
However, adding instructions that do not contain QuLib calls to a chunk is only useful, if
they allow further instructions to be added to the same chunk that do contain QuLib calls.
This means, the control flow statement would need to be between two QuLib calls and not
contain QuLib calls itself. This is rather rare, because quantum circuit generating functions
are often concentrated to the same area in the program and unrelated instructions are
rarely between them. Additionally, the basic blocks of control flow statements will generally
contain external function calls at some point, so supporting control flow statements between
QuLib calls only makes sense, if external functions are allowed to be between QuLib calls.

Our implementation implicitly supports internal function calls between QuLib calls by
relying on inlining from opt that is triggered by the Linker Interface. Internal functions
are visible in the LLVM IR and may also be inlined by regular LLVM optimization passes.
Inlining achieves that function calls between QuLib calls are replaced by their function
bodies, potentially increasing the chunk size. The function body will often be QuLib calls,
because more advanced gates are often defined by the user based on QuLib functions and
these functions are naturally more likely to appear at areas in the program where a quantum
circuit is generated. These cases also work very well with the inlining of LLVM and will
increase the size of the chunk, assuming the function body itself could be considered a chunk.
This approach works quite well for the most common use case and does not require exact
advanced analysis and potentially unsafe assumptions about whether a quantum circuit
might be modified by external functions.

46

8.2. Replacing Quantum Circuits in LLVM

Listing 8.7.: The same variable is contained in both QuLib calls, though with different
value. As a result, different symbolic variables must be used in the static circuit
representation.

1 void f_original(cCircuit* circuit, void* results) {
2 double theta = x();
3 qulib_u(circuit, theta, 0, 0, 0);
4 theta++;
5 qulib_u(circuit, theta, 0, 0, 0);
6 }
7

8 void f_ssa(cCircuit* circuit, void* results) {
9 double theta_1 = x();

10 qulib_u(circuit, theta_1, 0, 0, 0);
11 double theta_2 = theta_1 + 1;
12 qulib_u(circuit, theta_2, 0, 0, 0);
13 }
14

15 void f_opt(cCircuit* circuit, void* results) {
16 double theta_1 = x();
17 // merged qulib_u(circuit, theta_1, 0, 0, 0);
18 double theta_2 = theta_1 + 1;
19 // merged qulib_u(circuit, theta_2, 0, 0, 0);
20 qulib_u(circuit, theta_1 + theta_2, 0, 0, 0);
21 }

As already said, certain instructions do not affect the quantum circuit and can be inside
chunks without causing problems. This includes variable assignments. However, allowing
variable assignments between QuLib calls creates another challenge shown by the function
f_original in Listing 8.7. While increasing theta does not lead to multiple QuLib paths and
also does not directly modify the quantum circuit, naively using the two QuLib calls to build
a quantum circuit at compile time will not work, because then the theta argument would be
the same in both gates. Fortunately, LLVM uses a concept called static single assignment,
which means that every variable is only ever assigned once. LLVM automatically enforces
static single assignment when converting the source code to the LLVM IR, but function
f_ssa shows how the source code can be changed to conform to static single assignment.
Suddenly the problems disappear, because the two quantum gates now use completely
separate variables. Coincidentally, the U gate with parameters U(θ, 0, 0) is equivalent to
the Ry(θ) gate. Since this is a rotational gate, consecutive applications can be merged by
adding up the angles. As both QuLib calls can be optimized together, the code can be
optimized to function f_opt. It is important to ensure that the merged QuLib call happens
after all the variable assignments it depends on. The static single assignment of LLVM again
comes in useful. Within a chunk, all QuLib calls can be moved to the end. With static
single assignments, executing a function later cannot change its arguments, because every
variable is only assigned a single value.

Theoretically, the function could still act differently, because an argument could be a
pointer and the referenced value could be altered, indirectly changing the input to the
function. However, it is important to remember that only QuLib calls that add quantum

47

8. Optimization Pass

operations need to be optimized and replaced, so only their arguments could be affected.
These function only have a single pointer parameter, namely the circuit pointer, which is
a pointer to a struct with a void pointer to the quantum circuit object. Theoretically it
is possible to manually modify the void pointer or even the quantum circuit object using
manual memory management, which would break assumptions by the optimizer. While
this is currently no problem, because the chunk would be split at any function call that
could tamper with the struct, this is a general problem when larger chunks are desired and
external functions are allowed between QuLib calls. In the end, modifying the struct or the
quantum circuit without QuLib calls is not intended by QuLib, so undefined behavior is
expected.

The final chunk detection algorithm is given by Algorithm 5. All member variables of
the chunk are initially false or null depending on the type. The core of the algorithm
is the function ProcessInstruction, which returns whether an instruction continues the
current chunk or if a new chunk must be created. Additionally, it updates the chunk’s
information about the quantum circuit generated by it. In particular, instructions writing
to the quantum circuit are stored. The qulib_alloc function adds the number of qubits and
tells the chunk, that it is the beginning of a circuit by setting chunk.allocated to true.
The qulib_compile function sets chunk.compiled to true, telling the chunk that it is the end
of a circuit. The outer function ProcessBasicBlock has a somewhat surprising loop body,
because ProcessInstruction is performed another time, if it fails in the condition. This
is necessary, because the return value of ProcessInstruction depends on the state of the
chunk and creating a new chunk changes its state. More specifically, an instruction might
not be able to continue an existing chunk, but be the first instruction in a new chunk.

The decision when a new chunk starts is more complicated and depends on the differ-
ent instructions. Instructions that definitely do not contain QuLib calls can be ignored
by the optimization and always continue a chunk. As already mentioned, this includes
variable assignments and binary operators, although further analysis of instructions could
be performed to add more instructions to this category. The qulib_simulate function also
belongs to this group, because it does not directly act on the quantum circuit object and
is just a utility function to start the Quantum++ simulator. Instructions that read the
circuit set chunk.read to true, indicating that the chunk may no longer accept any write
operations. This is required, because the entire write operations are optimized together and
the intermediate quantum circuit state may be incorrect compared to the original quantum
circuit, so that read operations may only appear after all write operations. Instructions that
write to the circuit, are therefore not allowed, if chunk.read is true. Additionally, write
instructions must operate on the same circuit as the chunk. If the chunk has no circuit yet,
because it is a new chunk, the write operation is allowed as well and sets the chunk’s circuit
to the circuit being modified by the instruction. The qulib_free function always ends a
chunk, because it can lead to erroneous behavior at run time if a circuit is still being used by
QuLib functions after it is freed. qulib_alloc always starts a new chunk, but the chunk is not
directly created here, resulting in more complicated behavior. The first time this function is
encountered, the chunk is usually not empty and ProcessInstruction returns false to end
the chunk. The outer function then creates a new chunk and invokes ProcessInstruction
again. This time the chunk is empty, so that the qulib_alloc call can initialize the chunk with
its information and return true to continue on this new chunk. Finally, qulib_compile always
ends the chunk, because no further write operations are allowed. While read operations

48

8.2. Replacing Quantum Circuits in LLVM

Algorithm 5: Algorithm to detect chunks in LLVM IR basic blocks. The Pro-
cessInstruction function returns, whether the chunk can continue after the given
instruction and may also add some instructions to the chunk, if the instruction
adds a quantum operation to the quantum circuit. The ProcessBasicBlock function
iterates over a basic block and finds all the chunks in it. Once a chunk is complete,
it is optimized.
1 Function ProcessBasicBlock(basicBlock):
2 chunk = new() for instr : basicBlock do
3 if not ProcessInstruction(chunk, instr) then
4 OptimizeChunk(chunk)
5 chunk = new()
6 ProcessInstruction(chunk, instr)

7 OptimizeChunk(chunk)

8 Function ProcessInstruction(chunk, instr):
9 if DoesNotAffectCircuit(instr) then

10 return true
11 if IsReadOperation(instr) then
12 chunk.read = true
13 return true
14 if IsWriteOperation(instr) then
15 if chunk.read == false and (chunk.circuit == null or instr.circuit ==

chunk.circuit) then
16 AddToChunk(chunk, instr)
17 chunk.circuit = instr.circuit
18 return true
19 else
20 return false

21 if instr.name == "qulib_free" then
22 return false
23 if instr.name == "qulib_alloc" then
24 if chunk.size == 0 then
25 chunk.circuit = instr.circuit
26 chunk.qubits = instr.qubits
27 chunk.allocated = true
28 return true
29 else
30 return false

31 if instr.name == "qulib_compile" then
32 chunk.compiled = true
33 return false

49

8. Optimization Pass

would still be possible, they are not optimized anyway, so they do not have to be part of the
chunk.

The overall sequence of a chunk is now an optional qulib_alloc call, followed by write
operations, followed by read operations with an optional qulib_compile call at the end. And
the qulib_compile call is the only reason, why read operations are even handled specifically
by this algorithm. It would be possible to simply optimize the sequence of write operations
as its own chunk and end the chunk at the first read. The quantum circuit that needs to be
optimized would be the same. However, it is missing the information whether it is the end of
a quantum circuit. By specifically handling read operations, the chunk detection algorithm
is allowed to continue with the chunk and potentially find the qulib_compile call at the end.

A chunk consists now of a sequence of write instructions and some additional information
about the chunk, namely whether it is known to be the start or end of a quantum circuit and
maybe also the number of qubits. The write instructions are the LLVM instructions as they
are contained in the basic block, but they are not contiguous in the basic block, because
other instructions might be between the write instructions. The write instructions are
now translated to our quantum circuit representation using a similar approach as shown in
Listing 8.1 to parse them. Gate arguments are translated into objects of type SymbolOrValue<T>,
which was explained in Subsection 8.1.4. There are no arithmetic expressions yet, because
all arguments in LLVM are of type llvm::Value, which is just a single symbolic variable. In
some cases, the numeric value is even known at compile time and can be passed to our
quantum circuit representation. For values that are symbolic variables, a pointer to the
llvm::Value object is stored inside the SymbolOrValue<T> object, so that the LLVM variable
can be used when the quantum circuit is translated back into LLVM IR.

After that, the quantum circuit is in our quantum circuit representation and can be
optimized, as explained in Section 8.3 and Section 8.4. Once this is done, the quantum
circuit must be translated back into LLVM IR. The optimization might transform the
quantum circuit so much, that it no longer resembles the original one and it is not clear
where the non-QuLib instructions between the original write instructions should now be
placed between the potentially completely different optimized write operations. As already
mentioned, the write operations can be moved to the end of the chunk, because of the static
single assignment of LLVM and the fact, that the quantum circuit only needs to be in a valid
state after the last write operation. The translation itself is then rather easy and similar
to Listing 8.2, although translating SymbolOrValue<T> objects requires some additional steps.
Still, the sum shown in Equation 8.1 can be directly calculated in LLVM IR by using the
llvm::Value objects stored in the symbolic variables inside each SymbolOrValue<T> object.

Finally, the optimizer will add some calls to qulib_message to transfer some information
about the static optimization to the run time. The first message is inserted after every
qulib_alloc call and contains content from the configuration file. This configuration file is
used by the static optimization, but is not directly available at run time, so its content
is included in the program code as a message. By inserting it directly after the quantum
circuit allocation, every circuit will have access to this information at run time. The second
message is inserted before every qulib_compile call and tells the run time to which extent the
quantum circuit was optimized already, so that repeated optimization can be avoided at run
time in some cases. The run time optimization is explained in more detail in Section 8.5.

50

8.3. Optimization of Quantum Gate Sequences

8.3. Optimization of Quantum Gate Sequences

As explained, the chunk is now just a sequence of write instructions and some general
information about the chunk. This general information includes whether the chunk is the
start or the end of a quantum circuit and also the number of qubits, if it is the start of a
quantum circuit. If the chunk is both the start and end of a quantum circuit, it is considered
complete as explained in Section 3.4 and special optimization steps can be performed, which
are explained in Section 8.4. If the chunk is only the end or only the start of a quantum
circuit, there would still be special optimization methods possible, but they have not yet
been implemented.

There are still a lot of optimization steps possible for arbitrary sequences of quantum
gates as explained in Section 3.5 and their implementation will be explained in this section.
The optimization process can be divided into several passes.

The specialization pass converts generic gates into more specific versions, if their arguments
allow it. The optimizer iterates over the quantum gates and looks for generic U gates. Then
for every specialized gate, such as Rx, Ry and Rz, the optimizer checks whether the U
gate is equivalent given its arguments. If that is the case, the gate is replaced by the more
specialized gate. Due to the inheritance in the quantum operation classes, the specialized
gates still inherit from U gates, so that anything that relies on U will still be able to work
with the more specialized version. However, some peephole optimization methods specifically
require the more specialized gates, so that this process is necessary.

The peephole optimization pass includes all the individual peephole optimization techniques
as explained in Section 3.5. These are very easy to implement using our quantum circuit
representation, as usually only the types and arguments of two neighboring quantum
operations need to be considered. An example for the rotation folding of the Rx gate is
shown in Algorithm 6. At first, two consecutive quantum operations are obtained from
the list and cast to the relevant gate type. If they are not the correct gate type, the cast
will return null and the next condition will fail. If both operations are Rx gates, they
must also target the same qubit to be merged. The merge process is easy to write down

Algorithm 6: Implementing a single peephole optimization is extremely simple in
our quantum circuit operation. The gates within the peephole are obtained from
the list and checked for their gate type. If the gate types are correct, the gate
arguments must also be checked. After that, the optimization can be applied.
1 Function RXGateFolding(chunk):
2 for i = 1 to chunk.size - 1 do
3 rCurrent = chunk.operation[i] as RXGate
4 rPrev = chunk.operation[i - 1] as RXGate
5 if rCurrent != null and rPrev != null then
6 if rPrev.target == rCurrent.target then
7 chunk.operation[i] = RXGate(rPrev.theta + rCurrent.theta,

rCurrent.target)
8 chunk.operation[i - 1].delete()

51

8. Optimization Pass

due to our quantum circuit representation and specifically the SymbolOrValue<T> type. This
type supports addition between two arguments, whether they have numeric values or are
symbolic variables. The process of adding, removing or deleting quantum operations in
the list depends on the underlying data structure. In our case, a std::vector is used, so
that the deletion would require adjusting the indices of following quantum operation. To
prevent too frequent index shifts, the regular peephole optimization replaces deleted gates
by special null gates. At the end of the peephole optimization pass, all null gates are
deleted, resulting in much fewer index shifts.

The basis gate pass converts all quantum operations into the basis gates U and CX. This
pass has two purposes. During optimization, the translation into the basis gates can offer
new optimization opportunities for the peephole optimization pass. After the optimization
is completed, all gates are converted to basis gates, so the number of basis gates can be
counted. This number is then compared to the number of basis gates in the original quantum
operation sequence to determine the effectiveness of the entire optimization. The resulting
overall optimization process is shown in Algorithm 7 and relies on repeated application of
the passes. At first, the peephole pass with prior specialization is repeated until it no longer
modifies the chunk. After that, all gates are translated to basis gates and the peephole pass
without prior specialization is repeated until the chunk no longer changes. This is necessary,
as the translation to basis gates might reveal new optimization possibilities for the peephole
pass. The specialization pass is not performed prior to the peephole pass this time, because
it would reverse the translation into basis gates. Finally, all gates are again translated into
basis gates, because the peephole optimization pass could have produced gates that are not
basis gates. This results in the final optimized chunk, containing only basis gates.

Algorithm 7: Overall optimization of a chunk. The process is based on iterative
application of optimization passes until they no longer change the chunk.
1 Function OptimizeChunk(chunk):
2 do
3 SpecializationPass(chunk)
4 PeepholePass(chunk)
5 while chunk was changed
6 BaseGatePass(chunk)
7 do
8 PeepholePass(chunk)
9 while chunk was changed

10 BaseGatePass(chunk)

The translation into basis gate sometimes requires arithmetic operations on the gate
arguments and is the reason why the SymbolOrValue<T> type contains coefficients for symbolic
variables. So far, only rotation folding added two gate arguments together, which can be
implemented without the coefficients as a simple sum of symbolic variables and a numeric
offset. The translation of the CU gate into basis gates is shown in Algorithm 1 and requires
dividing gate arguments by two, negation, subtraction and addition. All of these operations
can be applied to the SymbolOrValue<T> type by performing the same operations on all its
coefficients and the numerical offset.

52

8.4. Optimization of Complete Quantum Circuits

8.4. Optimization of Complete Quantum Circuits

Complete quantum circuits within a chunk allow additional optimization as explained in
Section 3.4. This was not a focus of our implementation and was primarily included to
showcase how both complete quantum circuit optimization and target specific quantum
circuit optimization can be implemented within this optimization framework.

The only implemented optimization that is specific to complete quantum circuits is the
mapping to target architectures with QMAP. As symbolic variables are a rather new addition
to QFR, they are not yet supported by QMAP. This means mapping is only possible if all
gate arguments are known at compile time. However, QMAP is still in active development,
so future support for symbolic variables is likely. The target architecture must obviously be
specified at compile time, so that the quantum circuit can be mapped to it. This is done
inside a configuration file and the target architecture can be left empty to perform no target
specific optimization.

If the target architecture is provided, the chunk is complete and it contains no symbolic
variables, our quantum circuit representation can be translated into QFR as explained
in Subsection 8.1.4 and mapped with QMAP to the target architecture. The resulting
OpenQASM 2.0 code is then translated back into our own quantum circuit representation.
To simplify the task for QMAP, the quantum circuit is optimized as explained in Section 8.3
before it is translated into QFR. As the mapping may significantly alter the quantum circuit,
the regular optimization will be repeated after the mapping process is completed.

8.5. Run Time Optimization

All of the optimization methods also work at run time and can be triggered with qulib_compile.
The only difference is that the quantum circuit is always complete and contains no symbolic
variables, allowing more optimization. Regular optimization and mapping to target architec-
tures can be toggled individually and happens mostly independently from static optimization.
There are some interactions between static optimization and run time optimization that are
realized by messages inserted by the static optimizer with qulib_message.

If a chunk was already mapped at compile time using QMAP, it will not receive any
optimization at run time. This is because QMAP already requires a complete quantum
circuit without symbolic variables, so that no further optimization will be possible at run
time. This is done with the message compiled=-2 before the qulib_compile call, which tells
the run time to perform no optimization or mapping at all.

In that case, the architecture argument of the qulib_compile call would be ignored, because
the configuration file could provide a different architecture than the function argument.
However, not all chunks may be able to be mapped at compile time and it is not clear for
the programmer which quantum circuits will be mapped at compile time. As a result, the
architecture argument of all quantum circuits should be overridden by the configuration file
at compile time, so that the architecture to which a quantum circuit is mapped does not
depend on how much information the optimizer could gather about the quantum circuit at
compile time. So for all circuits that could not be mapped at compile time, the optimizer
will insert the message compiled=-1 before the qulib_compile call, telling the run time to
use the architecture in the configuration file over the function argument. The configuration

53

8. Optimization Pass

file is indirectly available at run time via a message inserted after every qulib_alloc call.
This message contains the content of the configuration file that is required at run time.

In case no architecture is provided in the configuration file, target specific optimization
must still be performed at run time and the architecture argument will be used instead. In
that case, the message compiled=-2 will never appear, because no mapping is possible at
compile time without a target architecture in the configuration file. Then all quantum circuits
will contain the message compiled=-1 and the run time will see that the configuration file
has no architecture and use the function argument instead.

Finally, if no static optimization is performed at all, no messages are inserted and the
architecture argument will always be used. As a result, QuLib will also work without static
optimization and can be used as a regular C library with the regular compilation process.

54

9. CMake Integration

To include our static quantum circuit optimization in a C or C++ program, the compilation
process needs to be adjusted. Obviously, the QuLib library needs to be linked, though this is
not different from other C libraries. Additionally, the Clang compiler needs to be used with
special compile and link flags. The LLVM Clang compiler must be instructed to produce
LLVM bitcode files, which is accomplished by adding -flto to both compile and link flags.
Furthermore, the linker executable used by LLVM Clang must be replaced by our Linker
Interface by setting the link flag -fuse-ld=... to the path of the Linker Interface.

Additionally, the Linker Interface requires some arguments to configure the optimization
process. This includes the target architecture, but also paths to the LLVM tool chain. LLVM
Clang passes arguments to the linker by setting the link flag -Xlinker ..., but this is just
the path to a directory containing configuration files in our case. As compiler commands
can become quite lengthy, this approach reduces all our arguments to a single one and all
configuration can happen inside specific files. The configuration is based on a project file
and a user file. The project file is supposed to be shared between collaborators and may
include settings such as the target architecture that should be the same for all collaborators.
The user file can be used to override the project file and is not supposed to be shared. There,
device specific settings such as the path to the LLVM tool chain can be specified.

Finally, regular optimization is disabled, because it will be triggered manually in the Linker
Interface. This is achieved by the compile flags -O1 -Xclang -disable-llvm-passes.

All of this can be performed manually, though it leads to quite complicated compiler
commands. A build system like CMake may be used to simplify this process. Our implemen-
tation is designed as a relocatable CMake package [Kit23], so that it can easily be installed
to other devices. This will install the Linker Interface, optimization pass, QuLib library and
some CMake files, including a .cmake file, at a specified installation path. The programmer
only has to include this .cmake and has immediate access to the QuLib library and a custom
CMake function that enables static quantum circuit optimization by correctly setting all
link and compile flags of LLVM Clang. Additionally, the programmer must ensure the
LLVM Clang compiler is used by CMake, otherwise no static quantum circuit optimization
will be performed. This also makes it easy to test QuLib without static quantum circuit
optimization by either using another compiler or commenting out the CMake function
that sets the link and compile flags of LLVM Clang. Finally, the static quantum circuit
optimization relies on the LLVM tool chain, which must be installed by the programmer
and its path provided in the configuration file. All other tools described in Chapter 5 are
dependencies of our implementation and only need to be present during the compilation of
our optimizer.

55

10. Implementation Details

Our implementation consists of three main components, namely the library QuLib, the
Linker Interface as an executable and the LLVM optimization pass, which must be a shared
library, so it can be loaded by opt. All of these components share a lot of functionality,
because both QuLib and the optimization pass must operate on different quantum circuit
representations. For this reason, the majority of the quantum circuit logic and many utility
function are separated in a shared library that all components rely on. This library will be
called SharedLib.

However, the LLVM optimization pass is compiled without exceptions and run time type
information (RTTI) [LLV23], so that any headers included by the optimization pass must
follow these requirements, particularly headers from SharedLib. This is problematic, because
many headers will be included due to transitive includes. The QFR library for instance
use exceptions in some of their headers, which can therefore not be included in headers of
SharedLib. The solution is to only include QFR in the source files. However, if QFR is not
part of the header, SharedLib cannot define functions directly operating on QFR data types
and interface functions with custom types must be defined instead. These interface functions
allow all components to indirectly access QFR, without directly including QFR headers.

The lack of RTTI in the LLVM optimization pass means class types defined in headers
of SharedLib will also not have RTTI and dynamic_cast<> will not work. While LLVM
implements its own form of RTTI that can be added to types manually, this is also not
practical, because SharedLib must stay independent from LLVM, so that QuLib and the user
program do not require LLVM. As a result, the quantum operation classes inside SharedLib
implement their own dynamic cast functions, so that casting between gate types is possible.

56

Part III.

Results

57

In the following, the implementation will be evaluated in terms of its effectiveness and
running time. As optimization is possible at compile time and run time, there are four
different scenarios that will be compared. There can be no optimization at all, only compile
time optimization, only run time optimization or optimization at both compile time and
run time.

The evaluation is based on an implementation of Shor’s algorithm [Sho94], which computes
a non-trivial divisor of an integer N . There are certain limitations for the input of Shor’s
algorithm. Obviously, N must be composite, so that a non-trivial divisor exists. Additionally,
N must be odd and must not be the power of an odd prime number. Shor’s algorithm
is asymptotically faster than classical algorithms that perform the same task. However,
current quantum computers are far behind classical ones and do not support large integers
as input to Shor’s algorithm [ASK19]. For these small inputs, the asymptotic running
time is not important, so that classical algorithms outperform Shor’s algorithm. Shor’s
algorithm becomes even slower when no quantum computer is available and the quantum
computation is simulated. As this implementation of Shor’s algorithm is run on the simulator
Quantum++, only small inputs can be tested efficiently. With the input limitations outlined
above, N = 15 is the smallest valid input and our implementation still achieves reasonable
computation times with Quantum++. The next valid input N = 21 on the other hand is
already problematic and can no longer be computed in acceptable time. For this reason, our
implementation was only tested for N = 15.

If a program is implemented only using basis gates, there will be little room for optimization,
if the programmer already generates an optimal sequence of basis gates. However, large
quantum circuits consist of thousands of basis gates, so only using basis gates results in
a long and complicated program. The solution is to define advanced gates that consist
of several basis gates and define the quantum circuit as a combination of basis gates and
advanced gates. QuLib already defines the CU gate as an advanced gate consisting of six
basis gates and the quantum experience standard header of OpenQASM 2.0 contains many
more definitions for advanced gates. Some of these gates have been defined using the QuLib
functions qulib_u and qulib_cu in the implementation of Shor’s algorithm.

As already said, using advanced gates makes the program smaller and easier to understand.
Hence, advanced gates are usually preferred over basis gates. However, using advanced
gates may result in non-optimal quantum circuits in some cases. Inserting an advanced
gate with specific arguments may enable some optimization on the underlying basis gates.
Additionally, the underlying basis gates at the border of two consecutive advanced gates
may be optimized together. Manual optimization is not desired in these cases, because
it requires replacing the advanced gates by many basis gates. In these cases automatic
quantum circuit optimization becomes extremely useful, because it allows writing concise
and simple programs with advanced gates, while still benefiting from optimization on the
underlying basis gates.

58

11. Optimization Correctness

The correctness of our implementation of Shor’s algorithm for N was tested by repeatedly
running the program and simulating the generated quantum circuits with Quantum++
by calling qulib_simulate. In these tests, the implementation was always able to find a
non-trivial divisor of N . Obviously, this is no definitive proof that the implementation is
correct and will always work. However, a program that returns the correct results is not
necessarily required for our use case of optimization. The optimizer does not care whether
the program makes sense. All that matters is that the optimizer produces an optimized
program with the same behavior as the original program. This implementation of Shor’s
algorithm was then optimized with different combinations of compile time and run time
optimization. The optimized program was tested again and found to produce the same
results as the original program.

For N = 15, there are four distinct results from the quantum computation that all are
supposed to have the same chance, while all other results never occur. In general, there
are a total of 28 = 256 possible results, as 8 qubits must be measured. A small change in
probabilities will not be noticeable given the low number of performed tests. Additionally,
repeated program execution can never prove the original and optimized quantum circuit
are equivalent, but can be used to quickly detect if the optimized quantum circuit produces
wrong results.

The correctness of the optimization is checked by testing the original and optimized
quantum circuit for equivalence with the Quantum Circuit Equivalence Checking (QCEC)
tool from the Munich Quantum Toolkit. Similar to QMAP, this tool exists both as a C++
and Python library. While QMAP is directly included in our implementation as a C++
library, QCEC is only required during the evaluation. Therefore, QCEC is used in Python,
which makes it easier to use OpenQASM 2.0 code as input and therefore works well with
the OpenQASM 2.0 code generated by our implementation of Shor’s algorithm. QCEC then
confirms that the OpenQASM 2.0 codes generated by the original and optimized programs
are indeed equivalent.

59

12. Optimization Effectiveness

The effectiveness of the optimizer is measured by comparing the number of basis gates before
and after the optimization. Our implementation of Shor’s algorithm contains 13306 basis
gates for N = 15. However, most of the basis gates are included indirectly by advanced
gates and many gates are added inside loops, so the program is not as large as the number
of basis gates may indicate.

Enabling static quantum circuit optimization brings the number of basis gates down to
8879. Run time optimization on the other hand achieves an even better result of 6742 basis
gates. It is worth noting that this number is reached with and without static quantum circuit
optimization. In fact, performing both static optimization and run time optimization leads
to the same quantum circuit as applying only run time optimization. This is an important
result and shows that the static optimization does not perform a transformation that makes
it difficult for the run time optimization to find all optimization opportunities.

However, this may not always be the case and depends on the optimization methods
that could be applied at compile time. As more advanced peephole optimization techniques
are added, the chance of static optimization weakening run time optimization increases.
Suppose there are instructions a, b, c, d with costs a = 2, b = 2, c = 3, d = 3 and ab can be
optimized to c, ba to d, while bb can be eliminated. Clearly, a chunk containing ab should be
optimized to c to reduce the cost from 2 + 2 = 4 to 3 and similarly, ba should be optimized
to d. However, at run time the chunks might happen after another, resulting in the run
time sequence abba with cost 2 + 2 + 2 + 2 = 8. By removing bb, the cost can be reduced to
2 + 2 = 4, compared to the static optimized sequence of cd with cost 3 + 3 = 6. In this case,
it would be possible to add another optimization from cd to aa. In reality there will be many
more peephole optimizations, so that interactions between all of them are not necessarily
covered and an optimization like cd to aa might not be implemented.

This will not happen with the currently implemented peephole optimization methods,
because they all operate on equal gates and do not insert gates of another type. This means,
only sequences of the same gate can be optimized. Every sequence of equal gates can be
treated individually, because optimization between different gate types is not possible. The
order of optimization within a sequence does not matter either, because every optimization
reduces the number of gates within the sequence by one or two, depending on if the
optimization merges two gates or eliminates two canceling gates.

The static optimization already achieves a quite formidable reduction in basis gates for
Shor’s algorithm and reduces it by around 33%. The run time optimization performs even
better and almost halves the number of basis gates. Obviously, these numbers depend largely
on the implementation and higher level implementations using more advanced gates will
generally offer more room for optimization than sequences of basis gates, because there the
programmer can already perform optimization between nearby gates. This indicates that
quantum circuit optimization will become even more important in the future, as more and
more high level programming will be adopted.

60

13. Optimization Running Time

The previous chapter about reducing the number of basis gates, showed that run time
optimization performs better than compile time optimization, even if compile time opti-
mization is already a significant improvement over no optimization at all. This raises the
question whether compile time optimization should ever be used. The advantage of compile
time optimization over run time optimization is potentially faster run time performance, as
optimization after the quantum circuit generation is avoided.

How important compilation speed is, depends on the specific application. In general,
trading faster run time performance for longer compilation time is desirable, even if the
compilation time increase is much more significant than the performance increase at run time.
Fast compilation speed was not a priority for our implementation, so there are certainly
improvements possible. Table 13.1 shows the times for different parts of the compilation
process. Overall the compilation takes a lot longer with static quantum circuit optimization,
requiring more than 14 seconds compared to less than a second without static quantum
circuit optimization.

The quantum circuit optimization itself is very fast and only takes around 200ms at
compile time. At run time, the quantum circuit optimization showed a lot of variance,
though the average optimization time over 20 runs was 97ms with static quantum circuit
optimization and 179ms without. These results make sense given the number of basis gates
in the quantum circuits before run time optimization. Without static quantum circuit
optimization, 13306 gates need to be optimized at run time. By already performing some
optimization at compile time, only 8879 gates need to be optimized at run time. This shows
that static quantum circuit optimization can improve performance at run time. Another
option is to not perform run time optimization and only rely on static quantum circuit
optimization. The resulting quantum circuit will not be optimal, but the optimization time
is saved.

Name Time in ms
Processing Arguments 468
Merge LLVM Bitcode File (llvm-link) 494
Regular LLVM Optimization O3 (opt) 3796
Custom Optimization Pass (opt) 1172
Regular LLVM Optimization O3 (opt) 3800
Linking 4647

Table 13.1.: Time spent for different parts of the optimization process triggered by the Linker
Interface. Only around 200ms of the custom optimization pass is spent on our
implementation of the optimization pass. It seems most of the time is spent by
opt itself.

61

13. Optimization Running Time

However, static optimization seems not worth it for this implementation. This is mainly
because the quantum circuit simulation with Quantum++ takes far longer than any run
time optimization. As a result, saving up to 200ms at run time will not be noticeable. On
the other hand, the significantly longer compilation time is definitely noticeable.

As quantum computers and simulators become faster, the small run time performance
gained by reducing optimization time might become more significant. Additionally, the
peephole optimization included in this implementation are very basic and there are much
more optimization techniques possible, so that optimization will be slower, but more effective
and it again becomes more important to move some of that optimization time to the compile
time.

62

Part IV.

Conclusion

63

An implementation of static quantum circuit optimization based on the LLVM tool chain
was presented. It was shown how multiple quantum circuit generating functions form a
chunk that can be optimized at compile time. By reusing existing classical optimizations,
such as inlining, the static optimizer can find larger chunks more easily, improving the
effectiveness of the quantum circuit optimization. As the optimizer must be able to detect
quantum circuit generating functions, a specific set of functions must be used for this task
and the optimizer must be specifically designed for these functions. Therefore, the QuLib
library was introduced. By defining a new library, both the library and optimizer can be
designed to collaborate well.

Static quantum circuit optimization requires a specific quantum circuit representation that
can encode variability caused by run time dependent values. It makes sense to implement
this representation to also work at run time, so that QuLib can reuse this representation
and perform run time optimization on it. Peephole optimizations on quantum gates work
well for chunk optimization, as they do not require the entire quantum circuit to be known
and they can easily be implemented on the custom quantum circuit representation. The
usage of LLVM as intermediate representation requires translation algorithms between its
intermediate representation and our quantum circuit representation.

In many practical applications, quantum circuits are defined using advanced gates, as it is
easier for the programmer and results in less lines of code. The optimizer takes care of the
optimization on the basis gate level, so that the resulting quantum circuit still uses a low
number of basis gates. Most of the optimization can already be done at compile time, but
optimization can still be performed at run time to reduce the number of basis gates even
further.

However, there are still many ways in which this implementation can be improved. By
performing more analysis on instructions, larger chunks can be found, resulting in more
optimization opportunities at compile time. In particular, many function calls currently
force a chunk to be split, because the called function could interact with the generated
quantum circuit. If the optimizer could verify, that the called function never interacts with
the quantum circuit, the chunk would not need to be split.

The different optimization methods performed on the quantum circuit representation
are very basic and the effectiveness of the optimizer could be improved by implementing
additional optimization methods. This poses a challenge, because most research on quantum
circuit optimization assumes the circuit is fully known. In static optimization, the optimizer
often has no knowledge about the surrounding gates of a chunk and gate parameters may
also be unknown at compile time.

Finally, more target specific optimization can be added. Different quantum computers
use different gate sets and have different error rates attached to specific basis gates. The
optimizer could use this information to generate optimal gates for the target quantum
computer. Performing quantum circuit mapping at compile time is a difficult task, as
mapping algorithms generally require the entire circuit to be known and more research is
required to find a good strategy for static quantum circuit mapping.

64

Bibliography

[AMM14] Matthew Amy, Dmitri Maslov, and Michele Mosca. Polynomial-Time T-Depth
Optimization of Clifford+T Circuits Via Matroid Partitioning. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 33(10):1476–
1489, 2014.

[AMMR13] M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A Meet-in-the-Middle
Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
32(6):818–830, 2013.

[ASK19] Mirko Amico, Zain H. Saleem, and Muir Kumph. Experimental study of Shor’s
factoring algorithm using the IBM Q Experience. Physical Review A, 100(1),
2019.

[BKM+14] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C.
White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro,
A. Dunsworth, C. Neill, P. O’Malley, P. Roushan, A. Vainsencher, J. Wen-
ner, A. N. Korotkov, A. N. Cleland, and John M. Martinis. Superconducting
quantum circuits at the surface code threshold for fault tolerance. Nature,
508(7497):500–503, 2014.

[Bor26] Max Born. Zur Quantenmechanik der Stovorgnge. Zeitschrift fr Physik,
37(12):863–867, 1926.

[BRSW21] Lukas Burgholzer, Rudy Raymond, Indranil Sengupta, and Robert Wille. Ef-
ficient Construction of Functional Representations for Quantum Algorithms.
2021.

[BW21] Lukas Burgholzer and Robert Wille. Advanced Equivalence Checking for
Quantum Circuits. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 40(9):1810–1824, 2021.

[CBSG] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. Open
Quantum Assembly Language.

[DM16] Olivia Di Matteo and Michele Mosca. Parallelizing quantum circuit synthesis.
Quantum Science and Technology, 1(1):015003, 2016.

[Gam22] Gambetta, Jay. Quantum-centric supercomputing: The next wave of computing,
IBM Research Blog. https://research.ibm.com/blog/next-wave-quantum-
centric-supercomputing, 2022.

65

https://research.ibm.com/blog/next-wave-quantum-centric-supercomputing
https://research.ibm.com/blog/next-wave-quantum-centric-supercomputing

BIBLIOGRAPHY

[Ghe18] Vlad Gheorghiu. Quantum++: A modern C++ quantum computing library.
PloS one, 13(12):e0208073, 2018.

[HHT20] Thomas Häner, Torsten Hoefler, and Matthias Troyer. Assertion-based op-
timization of Quantum programs. Proceedings of the ACM on Programming
Languages, 4(OOPSLA):1–20, 2020.

[Hid19] Jack D. Hidary. Quantum Computing: An Applied Approach. Springer Interna-
tional Publishing, Cham, 2019.

[IHKH22] David Ittah, Thomas Häner, Vadym Kliuchnikov, and Torsten Hoefler. QIRO:
A Static Single Assignment-based Quantum Program Representation for Opti-
mization. ACM Transactions on Quantum Computing, 3(3):1–32, 2022.

[JPK+14] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov,
Frederic T. Chong, and Margaret Martonosi. ScaffCC. In Pedro Trancoso,
Diana Franklin, and Sally A. McKee, editors, Proceedings of the 11th ACM
Conference on Computing Frontiers, pages 1–10, New York, NY, USA, 2014.
ACM.

[JTS+22] Wonho Jang, Koji Terashi, Masahiko Saito, Christian W. Bauer, Benjamin
Nachman, Yutaro Iiyama, Ryunosuke Okubo, and Ryu Sawada. Initial-State De-
pendent Optimization of Controlled Gate Operations with Quantum Computer.
Quantum, 6:798, 2022.

[Kit23] Kitware, Inc. and Contributors. CMake Documentation 3.26.3: cmake-
packages(7): Creating Relocatable Packages. https://cmake.org/cmake/
help/v3.26/manual/cmake-packages.7.html#creating-relocatable-
packages, 2023.

[KM13] Vadym Kliuchnikov and Dmitri Maslov. Optimization of Clifford circuits.
Physical Review A, 88(5), 2013.

[LA04] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004, pages 75–86. IEEE, 2004.

[LAB+21] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis,
Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and
Oleksandr Zinenko. MLIR: Scaling compiler infrastructure for domain specific
computation. In 2021 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pages 2–14, 2021.

[LBZ21] Ji Liu, Luciano Bello, and Huiyang Zhou. Relaxed Peephole Optimization:
A Novel Compiler Optimization for Quantum Circuits. In 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pages
301–314. IEEE, 2021.

[LLV23] LLVM Project. LLVM Coding Standards. https://llvm.org/docs/
CodingStandards.html#do-not-use-rtti-or-exceptions, 2023.

66

https://cmake.org/cmake/help/v3.26/manual/cmake-packages.7.html#creating-relocatable-packages
https://cmake.org/cmake/help/v3.26/manual/cmake-packages.7.html#creating-relocatable-packages
https://cmake.org/cmake/help/v3.26/manual/cmake-packages.7.html#creating-relocatable-packages
https://llvm.org/docs/CodingStandards.html#do-not-use-rtti-or-exceptions
https://llvm.org/docs/CodingStandards.html#do-not-use-rtti-or-exceptions

BIBLIOGRAPHY

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum
information. Cambridge University Press, Cambridge, 1. publ edition, 2000.

[Qis23] Qiskit contributors. Qiskit: An open-source framework for quantum computing,
2023.

[Ros69] Saul Rosen. Electronic Computers: A Historical Survey. ACM Computing
Surveys, 1(1):7–36, 1969.

[SBM06] V. V. Shende, S. S. Bullock, and I. L. Markov. Synthesis of quantum-logic
circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 25(6):1000–1010, 2006.

[SDC+21] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington,
and Ross Duncan. t|ket〉: a retargetable compiler for NISQ devices. Quantum
Science and Technology, 6(1):014003, 2021.

[SEL04] PETER SELINGER. Towards a quantum programming language. Mathematical
Structures in Computer Science, 14(4):527–586, 2004.

[Sho94] P. W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th Annual Symposium on Foundations of Computer
Science, pages 124–134. IEEE Comput. Soc. Press, 1994.

[SHT18] Damian S. Steiger, Thomas Häner, and Matthias Troyer. ProjectQ: an open
source software framework for quantum computing. Quantum, 2:49, 2018.

[SP08] Michal Sedlák and Martin Plesch. Towards optimization of quantum circuits.
Open Physics, 6(1):128–134, 2008.

[SPSD20] R. S. Smith, E. C. Peterson, M. G. Skilbeck, and E. J. Davis. An open-source,
industrial-strength optimizing compiler for quantum programs. Quantum Science
and Technology, 5(4):044001, 2020.

[WB23] Robert Wille and Lukas Burgholzer. MQT QMAP: Efficient Quantum Circuit
Mapping. 2023.

[WBZ19] Robert Wille, Lukas Burgholzer, and Alwin Zulehner. Mapping Quantum
Circuits to IBM QX Architectures Using the Minimal Number of SWAP and H
Operations. 2019.

[Wil11] Colin P. Williams. Explorations in quantum computing. Texts in computer
science. Springer, London and Heidelberg, 2. ed. edition, 2011.

[ZPW19] Alwin Zulehner, Alexandru Paler, and Robert Wille. An Efficient Method-
ology for Mapping Quantum Circuits to the IBM QX Architectures. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
38(7):1226–1236, 2019.

67

Part V.

Appendix

68

List of Figures

2.1. Bloch Sphere . 5
2.2. Quantum Circuit Diagram . 8

3.1. Modified Compilation Process . 22

7.1. Linker Interface Arguments . 33

69

List of Tables

8.1. Quantum Circuit Representations . 35

13.1. Compilation Times . 61

70

List of Algorithms

1. Relation between CX and CU gate. 7

2. Coin Optimization - Simple . 12
3. Coin Optimization - Execution Path Enumeration 12
4. Coin Optimization - Control Flow Splitting 13

5. Chunk Detection - Algorithm . 49
6. Optimization - Rotation Folding RX Gate 51
7. Optimization - Chunk Optimization . 52

71

Listings

2.1. OpenQASM 2.0 Code . 8

3.1. Controlled Gate Optimization . 14
3.2. SWAP Elimination . 15
3.3. Unread Gate Elimination . 16
3.4. Quantum Circuit Mapping . 19

6.1. QuLib - Wrapper Struct . 28

8.1. LLVM IR - Reading Function . 36
8.2. LLVM IR - Writing Function . 37
8.3. Chunk Detection - Simple . 42
8.4. Chunk Detection - Run Time Condition 1 43
8.5. Chunk Detection - Run Time Condition 2 43
8.6. Chunk Detection - QuLib Paths Code . 45
8.7. Chunk Detection - Variable Assignments . 47

72

	Acknowledgements
	Abstract
	Contents
	Introduction
	Theoretical Background
	Quantum Computing
	Qubits
	Quantum Gates
	Quantum Circuits
	Quantum Computers and Architectures
	Hybrid Quantum-Classical Computing

	Static Optimization of Hybrid Quantum-Classical Programs
	Joint Optimization of Quantum Instructions
	Optimization of the Start of a Quantum Circuit
	Optimization of the End of a Quantum Circuit
	Optimization of Complete Quantum Circuits
	Optimization of Quantum Gate Sequences
	Target Specific Optimization

	Implementation
	Related Work
	Description of Tools
	LLVM Tool Chain
	Munich Quantum Toolkit
	Quantum++

	QuLib - Quantum Circuit Library
	Linker Interface
	Optimization Pass
	Quantum Circuit Representations
	LLVM Intermediate Representation
	OpenQASM 2.0
	QFR
	Custom Quantum Circuit Representation

	Replacing Quantum Circuits in LLVM
	Optimization of Quantum Gate Sequences
	Optimization of Complete Quantum Circuits
	Run Time Optimization

	CMake Integration
	Implementation Details

	Results
	Optimization Correctness
	Optimization Effectiveness
	Optimization Running Time

	Conclusion
	Bibliography

	Appendix
	List of Figures
	List of Tables
	List of Algorithms

