
Helmut Seidl

Program Optimization

TU München

Winter 2019/20

1

Organization

Dates: Lecture: Wednesday, 10:15-11:45

Thursday, 10:15-11:45

Tutorial: Anastasiia Izycheva

Material: slides

Moodle

Program Analysis and Transformation

Springer, 2012

Grades: • voluntary assignments

• written exam

2

0 Introduction

Observation 1 Intuitive programs often are inefficient.

Example
void swap (int i, int j) {

int t;

if (a[i] > a[j]) {

t = a[j];

a[j] = a[i];

a[i] = t;

}

}

3

Inefficiencies

• Addresses a[i], a[j] are computed three times

• Values a[i], a[j] are loaded twice

Improvement

• Use a pointer to traverse the array a;

• store the values of a[i], a[j]!

4

void swap (int *p, int *q) {

int t, ai, aj;

ai = *p; aj = *q;

if (ai > aj) {

t = aj;

*q = ai;

*p = t; // t can also be

} // eliminated!

}

5

Observation 2

Higher programming languages (even C) abstract from hardware

and efficiency.

It is up to the compiler to adapt intuitively written program to

hardware.

Examples

. . . Filling of delay slots;

. . . Utilization of special instructions;

. . . Re-organization of memory accesses for better cache

behavior;

. . . Removal of (useless) overflow/range checks.

6

Observation 3

Programm-Improvements need not always be correct !

Example

y = f() + f(); ==⇒ y = 2 * f();

Idea: Save second evaluation of f() ...

Problem: The second evaluation may return a result different

from the first; (e.g., because f() reads from the in-

put)

7

Observation 3

Programm-Improvements need not always be correct !

Example

y = f() + f(); ==⇒ y = 2 * f();

Idea: Save the second evaluation of f() ???

Problem: The second evaluation may return a result different

from the first; (e.g., because f() reads from the in-

put

8

Consequences

=⇒ Optimizations have assumptions.

=⇒ The assumption must be:

• formalized,

• checked !

=⇒ It must be proven that the optimization is correct, i.e.,

preserves the semantics !!!

9

Observation 4

Optimization techniques depend on the programming language:

→ which inefficiencies occur;

→ how analyzable programs are;

→ how difficult/impossible it is to prove correctness ...

Example Java

10

Unavoidable Inefficiencies

∗ Array-bound checks;

∗ Dynamic method invocation;

∗ Bombastic object organization ...

Analyzability

+ no pointer arithmetic;

+ no pointer into the stack;

− dynamic class loading;

− reflection, exceptions, threads, ...

11

Correctness proofs

+ more or less well-defined semantics;

− features, features, features;

− libraries with changing behavior ...

12

... in this course:

a simple imperative programming language with

• variables // registers

• R = e; // assignments

• R =M [e]; // loads

• M [e1] = e2; // stores

• if (e) s1 else s2 // conditional branching

• goto L; // no loops

13

Remark

• For the beginning, we omit procedures ...

• External procedures are taken into account through a

statement f() for an unknown procedure f .

==⇒ intra-procedural

==⇒ kind of an intermediate language in which (almost)

everything can be translated.

Example swap()

14

0 : A1 = A0 + 1 ∗ i; // A0 == &a

1 : R1 = M [A1]; // R1 == a[i]

2 : A2 = A0 + 1 ∗ j;

3 : R2 = M [A2]; // R2 == a[j]

4 : if (R1 > R2) {

5 : A3 = A0 + 1 ∗ j;

6 : t = M [A3];

7 : A4 = A0 + 1 ∗ j;

8 : A5 = A0 + 1 ∗ i;

9 : R3 = M [A5];

10 : M [A4] = R3;

11 : A6 = A0 + 1 ∗ i;

12 : M [A6] = t;

}

15

Optimization 1: 1 ∗R ==⇒ R

Optimization 2: Reuse of subexpressions

A1 == A5 == A6

A2 == A3 == A4

M [A1] ==M [A5]

M [A2] ==M [A3]

R1 == R3

16

By this, we obtain:

A1 = A0 + i;

R1 = M [A1];

A2 = A0 + j;

R2 = M [A2];

if (R1 > R2) {

t = R2;

M [A2] = R1;

M [A1] = t;

}

17

Optimization 3: Contraction of chains of assignments

Gain

before after

+ 6 2

∗ 6 0

load 4 2

store 2 2

> 1 1

= 6 2

18

1 Removing superfluous computations

1.1 Repeated computations

Idea

If the same value is computed repeatedly, then

→ store it after the first computation;

→ replace every further computation through a look-up!

==⇒ Availability of expressions

==⇒ Memoization

19

Problem: Identify repeated computations!

Example

z = 1;

y = M [17];

A : x1 = y + z ;

. . .

B : x2 = y + z ;

20

Remark

B is a repeated computation of the value of y + z , if:

(1) A is always executed before B; and

(2) y and z at B have the same values as at A.

==⇒ We need:

→ an operational semantics;

→ a method which identifies at least some repeated

computations ...

21

Background 1: An Operational Semantics

we choose a small-step operational approach.

Programs are represented as control-flow graphs.

In the example:

start

stop

A1 = A0 + 1 ∗ i;

R1 = M [A1];

A2 = A0 + 1 ∗ j;

R2 = M [A2];

A3 = A0 + 1 ∗ j;

Pos (R1 > R2)Neg (R1 > R2)

22

Thereby, represent:

vertex program point

start programm start

stop program exit

edge step of computation

Edge Labelings:

Test : Pos (e) or Neg (e)

Assignment : R = e;

Load : R =M [e];

Store : M [e1] = e2;

Nop : ;

23

Thereby, represent:

vertex program point

start programm start

stop program exit

edge step of computation

Edge Labelings:

Test : Pos (e) or Neg (e)

Assignment : R = e;

Load : R =M [e];

Store : M [e1] = e2;

Nop : ;

24

Computations follow paths.

Computations transform the current state

s = (ρ, µ)

where:

ρ : Vars → int contents of registers

µ : N→ int contents of storage

Every edge k = (u, lab, v) defines a partial transformation

[[k]] = [[lab]]

of the state:

25

[[;]] (ρ, µ) = (ρ, µ)

[[Pos (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ 6= 0

[[Neg (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ = 0

// [[e]] : evaluation of the expression e, z.B.

// [[x+ y]] {x 7→ 7, y 7→ −1} = 6

// [[!(x == 4)]] {x 7→ 5} = 1

[[R = e;]] (ρ, µ) = (ρ⊕ {R 7→ [[e]] ρ} , mu)

// where “⊕” modifies a mapping at a given argument

26

[[;]] (ρ, µ) = (ρ, µ)

[[Pos (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ 6= 0

[[Neg (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ = 0

// [[e]] : evaluation of the expression e, e.g.

// [[x+ y]] {x 7→ 7, y 7→ −1} = 6

// [[!(x == 4)]] {x 7→ 5} = 1

[[R = e;]] (ρ, µ) = (ρ⊕ {R 7→ [[e]] ρ} , µ)

// where “⊕” modifies a mapping at a given argument

27

[[;]] (ρ, µ) = (ρ, µ)

[[Pos (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ 6= 0

[[Neg (e)]] (ρ, µ) = (ρ, µ) if [[e]] ρ = 0

// [[e]] : evaluation of the expression e, e.g.

// [[x+ y]] {x 7→ 7, y 7→ −1} = 6

// [[!(x == 4)]] {x 7→ 5} = 1

[[R = e;]] (ρ, µ) = (ρ⊕ {R 7→ [[e]] ρ} , µ)

// where “⊕” modifies a mapping at a given argument

28

[[R =M [e];]] (ρ, µ) = (ρ⊕ {R 7→ µ([[e]] ρ))} , µ)

[[M [e1] = e2;]] (ρ, µ) = (ρ, µ⊕ {[[e1]] ρ 7→ [[e2]] ρ})

Example

[[x = x+ 1;]] ({x 7→ 5}, µ) = (ρ, µ) where:

ρ = {x 7→ 5} ⊕ {x 7→ [[x+ 1]] {x 7→ 5}}

= {x 7→ 5} ⊕ {x 7→ 6}

= {x 7→ 6}

29

A path π = k1k2 . . . km is a computation for the state s if:

s ∈ def ([[km]] ◦ . . . ◦ [[k1]])

The result of the computation is:

[[π]] s = ([[km]] ◦ . . . ◦ [[k1]]) s

Application

Assume that we have computed the value of x+ y at program point

u:

u v
x+y

π

We perform a computation along path π and reach v where we

evaluate again x+ y ...

30

Idea

If x and y have not been modified in π, then evaluation of x+ y at v

must return the same value as evaluation at u !

We can check this property at every edge in π ...

More generally:

Assume that the values of the expressions A = {e1, . . . , er} are

available at u.

Every edge k transforms this set into a set [[k]]♯A of

expressions whose values are available after execution of k ...

31

Idea

If x and y have not been modified in π, then evaluation of x+ y at v

must return the same value as evaluation at u !

We can check this property at every edge in π ...

More generally:

Assume that the values of the expressions A = {e1, . . . , er} are

available at u.

Every edge k transforms this set into a set [[k]]♯A of

expressions whose values are available after execution of k ...

32

Idea

If x and y have not been modified in π, then evaluation of x+ y at v

must return the same value as evaluation at u !

We can check this property at every edge in π ...

More generally:

Assume that the values of the expressions A = {e1, . . . , er} are

available at u.

Every edge k transforms this set into a set [[k]]♯A of

expressions whose values are available after execution of k ...

33

... which transformations can be composed to the effect of a path

π = k1 . . . kr:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on

the label lab, i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯A = A

[[Pos(e)]]♯A = [[Neg(e)]]♯A = A ∪ {e}

[[x = e;]]♯A = (A ∪ {e})\ itExprx where

Exprx all expressions which contain x

34

... which transformations can be composed to the effect of a path

π = k1 . . . kr:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on

the label lab, i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯A = A

[[Pos(e)]]♯A = [[Neg(e)]]♯A = A ∪ {e}

[[x = e;]]♯A = (A ∪ {e})\Exprx where

Exprx all expressions which contain x

35

... which transformations can be composed to the effect of a path

π = k1 . . . kr:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on

the label lab, i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯A = A

[[Pos(e)]]♯A = [[Neg(e)]]♯A = A ∪ {e}

[[x = e;]]♯A = (A ∪ {e})\Exprx where

Exprx all expressions which contain x

36

[[x =M [e];]]♯A = (A ∪ {e})\Exprx

[[M [e1] = e2;]]
♯A = A ∪ {e1, e2}

37

[[x =M [e];]]♯A = (A ∪ {e})\Exprx

[[M [e1] = e2;]]
♯A = A ∪ {e1, e2}

By that, every path can be analyzed.

A given program may admit several paths.

For any given input, another path may be chosen ...

38

[[x =M [e];]]♯A = (A ∪ {e})\Exprx

[[M [e1] = e2;]]
♯A = A ∪ {e1, e2}

By that, every path can be analyzed.

A given program may admit several paths.

For any given input, another path may be chosen ...

==⇒ We require the set:

A[v] =
⋂

{[[π]]♯∅ | π : start →∗ v}

39

Concretely:

→ We consider all paths π which reach v.

→ For every path π, we determine the set of expressions which

are available along π.

→ Initially at program start, nothing is available

→ We compute the intersection ==⇒ safe information

How do we exploit this information ???

40

Concretely:

→ We consider all paths π which reach v.

→ For every path π, we determine the set of expressions which

are available along π.

→ Initially at program start, nothing is available

→ We compute the intersection ==⇒ safe information

How do we exploit this information ???

41

Transformation 1.1

We provide novel registers Te as storage for the e:

v

u

v

u

Te = e;

x = Te;

x = e;

42

Transformation 1.1

We provide novel registers Te as storage for the e:

v

u

u

v v

Pos (e)

v

u

v

u

Te = e;

x = Te;

Neg (e)

x = e;

Te = e;

v

Pos (Te)Neg (Te)

43

... analogously for R =M [e]; and M [e1] = e2;.

Transformation 1.2

If e is available at program point u, then e need not be re-evaluated:

u u

Te = e; ;

e ∈ A[u]

We replace the assignment with Nop.

44

Example:

x = y + 3;

x = 7;

z = y + 3;

x = 7;

z = y + 3;

x = y + 3;

45

Example:

x = y + 3;

x = 7;

z = y + 3;

x = 7;

T = y + 3;

x = T ;

T = y + 3;

z = T ;

46

Example:

x = y + 3;

x = 7;

z = y + 3;

x = 7;

z = T ;

T = y + 3;

x = T ;

T = y + 3;

{y + 3}

{y + 3}

{y + 3}

{y + 3}

{y + 3}

47

Example:

x = y + 3;

x = 7;

z = y + 3;

x = 7;

T = y + 3;

x = T ;

;

z = T ;

{y + 3}

{y + 3}

{y + 3}

{y + 3}

{y + 3}

48

Correctness: (Idea)

Transformation 1.1 preserves the semantics and A[u] for all

program points u — at least for the original program points and

variables !

Assume π : start →∗ u is the path taken by a computation.

If e ∈ A[u], then also e ∈ [[π]]♯ ∅.

Therefore, π can be decomposed into:

start u1 u2 u
π1 π2k

with the following properties:

49

• The expression e is evaluated at the edge k;

• The expression e is not removed from the set of available

expressions at any edge in π2, i.e., no variable of e receives a

new value.

50

• The expression e is evaluated at the edge k;

• The expression e is not removed from the set of available

expressions at any edge in π2, i.e., no variable of e receives a

new value.

==⇒

The register Te contains the value of e whenever u is reached.

51

Caveat

Transformation 1.1 is only meaningful for assignments x = e;

where:

→ x 6∈ Vars(e);

→ e 6∈ Vars;

→ the evaluation of e is non-trivial.

52

Question

How can we compute A[u] for every program point u ??

Idea

We collect all restrictions to the values of A[u] into a system of

constraints:

A[start] ⊆ ∅

A[v] ⊆ [[k]]♯ (A[u]) k = (u, _, v) edge

53

Question

How can we compute A[u] for every program point u ??

Idea:

We collect all restrictions to the values of A[u] into a system of

constraints:

A[start] ⊆ ∅

A[v] ⊆ [[k]]♯ (A[u]) k = (u, _, v) edge

54

Wanted

• a maximally large solution (??)

• an algorithm which computes this ...

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

55

Wanted

• a maximally large solution (??)

• an algorithm which computes this ...

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

56

Wanted

• a maximally large solution (??)

• an algorithm which computes this ...

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expry

A[1] ⊆ A[4]

57

Wanted

• a maximally large solution (??)

• an algorithm which computes this ...

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expry

A[1] ⊆ A[4]

A[2] ⊆ A[1] ∪ {x > 1}

58

Wanted

• a maximally large solution (??)

• an algorithm which computes this ...

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expry

A[1] ⊆ A[4]

A[2] ⊆ A[1] ∪ {x > 1}

A[3] ⊆ (A[2] ∪ {x ∗ y})\Expry

59

Wanted

• a maximally large solution (??)

• an algorithm which computes this ...

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expry

A[1] ⊆ A[4]

A[2] ⊆ A[1] ∪ {x > 1}

A[3] ⊆ (A[2] ∪ {x ∗ y})\Expry

A[4] ⊆ (A[3] ∪ {x− 1})\Exprx

60

Wanted

• a maximally large solution (??)

• an algorithm which computes this ...

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

A[0] ⊆ ∅

A[1] ⊆ (A[0] ∪ {1})\Expry

A[1] ⊆ A[4]

A[2] ⊆ A[1] ∪ {x > 1}

A[3] ⊆ (A[2] ∪ {x ∗ y})\Expry

A[4] ⊆ (A[3] ∪ {x− 1})\Exprx

A[5] ⊆ A[1] ∪ {x > 1}

61

Wanted

• a maximally large solution (??)

• an algorithm which computes this ...

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

Solution:

A[0] = ∅

A[1] = {1}

A[2] = {1, x > 1}

A[3] = {1, x > 1}

A[4] = {1}

A[5] = {1, x > 1}

62

Observation

• The possible values for A[u] form a complete lattice:

D = 2Expr with B1 ⊑ B2 iff B1 ⊇ B2

• The functions [[k]]♯ : D→ D are monotonic, i.e.,

[[k]]♯(B1) ⊑ [[k]]♯(B2) whenever B1 ⊑ B2

63

Observation

• The possible values for A[u] form a complete lattice:

D = 2Expr with B1 ⊑ B2 iff B1 ⊇ B2

• The functions [[k]]♯ : D→ D are monotonic, i.e.,

[[k]]♯(B1) ⊑ [[k]]♯(B2) whenever B1 ⊑ B2

64

Background 2: Complete Lattices

A set D together with a relation ⊑ ⊆ D× D is a partial order if

for all a, b, c ∈ D,

a ⊑ a reflexivity

a ⊑ b ∧ b ⊑ a =⇒ a = b anti−symmetry

a ⊑ b ∧ b ⊑ c =⇒ a ⊑ c transitivity

Examples

1. D = 2{a,b,c} with the relation “⊆” :

a, b, c

a, b a, c b, c

a b c

65

2. Z with the relation “=” :

210-1-2

3. Z with the relation “≤” :

0
-1

1
2

4. Z⊥ = Z ∪ {⊥} with the ordering:

210-1-2

⊥

66

d ∈ D is called upper bound for X ⊆ D if

x ⊑ d for all x ∈ X

d is called least upper bound (lub) if

1. d is an upper bound and

2. d ⊑ y for every upper bound y of X.

Caveat

• has no upper bound!

• has the upper bounds

67

d ∈ D is called upper bound for X ⊆ D if

x ⊑ d for all x ∈ X

d is called least upper bound (lub) if

1. d is an upper bound and

2. d ⊑ y for every upper bound y of X.

Caveat

• has no upper bound!

• has the upper bounds

68

d ∈ D is called upper bound for X ⊆ D if

x ⊑ d for all x ∈ X

d is called least upper bound (lub) if

1. d is an upper bound and

2. d ⊑ y for every upper bound y of X.

Caveat

• {0, 2, 4, . . .} ⊆ Z has no upper bound!

• {0, 2, 4} ⊆ Z has the upper bounds 4, 5, 6, . . .

69

A complete lattice (cl) D is a partial ordering where every

subset X ⊆ D has a least upper bound
⊔

X ∈ D .

Remark

Every complete lattice has

→ a least element ⊥ =
⊔

∅ ∈ D;

→ a greatest element ⊤ =
⊔

D ∈ D.

70

Examples

1. D = 2{a,b,c} is a cl.

2. D = Z with “=” is not.

3. D = Z with “≤” is neither.

4. D = Z⊥ is also not.

5. With an extra element ⊤, we obtain the flat lattice

Z⊤
⊥ = Z ∪ {⊥,⊤} :

210-1-2

⊥

⊤

71

We have:

Theorem

If D is a complete lattice, then every subset X ⊆ D has a

greatest lower bound

⊔

X.

Proof

Construct U = {u ∈ D | ∀ x ∈ X : u ⊑ x}.

// the set of all lower bounds of X

Set: g :=
⊔

U

Claim: g =

⊔

X

72

We have:

Theorem

If D is a complete lattice, then every subset X ⊆ D has a

greatest lower bound

⊔

X.

Proof

Construct U = {u ∈ D | ∀ x ∈ X : u ⊑ x}.

// the set of all lower bounds of X

Set: g :=
⊔

U

Claim: g =

⊔

X

73

We have:

Theorem

If D is a complete lattice, then every subset X ⊆ D has a

greatest lower bound

⊔

X.

Proof

Construct U = {u ∈ D | ∀ x ∈ X : u ⊑ x}.

// the set of all lower bounds of X

Set: g :=
⊔

U

Claim: g =

⊔

X

74

(1) g is a lower bound of X :

Assume x ∈ X. Then:

u ⊑ x for all u ∈ U

==⇒ x is an upper bound of U

==⇒ g ⊑ x

(2) g is the greatest lower bound of X :

Assume u is a lower bound of X. Then:

u ∈ U

==⇒ u ⊑ g

75

(1) g is a lower bound of X :

Assume x ∈ X. Then:

u ⊑ x for all u ∈ U

==⇒ x is an upper bound of U

==⇒ g ⊑ x

(2) g is the greatest lower bound of X :

Assume u is a lower bound of X. Then:

u ∈ U

==⇒ u ⊑ g

76

77

78

79

We are looking for solutions for systems of constraints of the form:

xi ⊒ fi(x1, . . . , xn) (∗)

80

We are looking for solutions for systems of constraints of the form:

xi ⊒ fi(x1, . . . , xn) (∗)

where:

xi unknown here: A[u]

D values here: 2Expr

⊑ ⊆ D× D ordering relation here: ⊇

fi: D
n → D constraint here: ...

Constraint for A[v] :

A[v] ⊆
⋂

{[[k]]♯ (A[u]) | k = (u, _, v) edge}

Because:

x ⊒ d1 ∧ . . . ∧ x ⊒ dk iff x ⊒
⊔

{d1, . . . , dk}

81

We are looking for solutions for systems of constraints of the form:

xi ⊒ fi(x1, . . . , xn) (∗)

where:

xi unknown here: A[u]

D values here: 2Expr

⊑ ⊆ D× D ordering relation here: ⊇

fi: D
n → D constraint here: ...

Constraint for A[v] (v 6= start):

A[v] ⊆
⋂

{[[k]]♯ (A[u]) | k = (u, _, v) edge}

Because:

x ⊒ d1 ∧ . . . ∧ x ⊒ dk iff x ⊒
⊔

{d1, . . . , dk}

82

We are looking for solutions for systems of constraints of the form:

xi ⊒ fi(x1, . . . , xn) (∗)

where:

xi unknown here: A[u]

D values here: 2Expr

⊑ ⊆ D× D ordering relation here: ⊇

fi: D
n → D constraint here: ...

Constraint for A[v] (v 6= start):

A[v] ⊆
⋂

{[[k]]♯ (A[u]) | k = (u, _, v) edge}

Because:

x ⊒ d1 ∧ . . . ∧ x ⊒ dk iff x ⊒
⊔

{d1, . . . , dk}

83

A mapping f : D1 → D2 is called monotonic, if f(a) ⊑ f(b) for

all a ⊑ b.

84

A mapping f : D1 → D2 is called monotonic, if f(a) ⊑ f(b) for

all a ⊑ b.

Examples

(1) D1 = D2 = 2U for a set U and f x = (x ∩ a) ∪ b.

Obviously, every such f is monotonic.

85

A mapping f : D1 → D2 is called monotonic, if f(a) ⊑ f(b) for

all a ⊑ b.

Examples

(1) D1 = D2 = 2U for a set U and f x = (x ∩ a) ∪ b.

Obviously, every such f is monotonic.

(2) D1 = D2 = Z (with the ordering “≤”). Then:

• incx = x+ 1 is monotonic.

• dec x = x− 1 is monotonic.

textbullet

86

A mapping f : D1 → D2 is called monotonic, if f(a) ⊑ f(b) for

all a ⊑ b.

Examples

(1) D1 = D2 = 2U for a set U and f x = (x ∩ a) ∪ b.

Obviously, every such f is monotonic.

(2) D1 = D2 = Z (with the ordering “≤”). Then:

• incx = x+ 1 is monotonic.

• dec x = x− 1 is monotonic.

• inv x = −x is not monotonic.

87

Theorem

If f1 : D1 → D2 and f2 : D2 → D3 are monotonic, then also

f2 ◦ f1 : D1 → D3.

88

Theorem

If f1 : D1 → D2 and f2 : D2 → D3 are monotonic, then also

f2 ◦ f1 : D1 → D3.

Theorem

If D2 is a complete lattice, then the set [D1 → D2] of

monotonic functions f : D1 → D2 is also a complete lattice

where

f ⊑ g iff f x ⊑ g x for all x ∈ D1

89

Theorem

If f1 : D1 → D2 and f2 : D2 → D3 are monotonic, then also

f2 ◦ f1 : D1 → D3.

Theorem

If D2 is a complete lattice, then the set [D1 → D2] of

monotonic functions f : D1 → D2 is also a complete lattice

where

f ⊑ g iff f x ⊑ g x for all x ∈ D1

In particular for F ⊆ [D1 → D2],

⊔

F = f with f x =
⊔

{g x | g ∈ F}

90

For functions fi x = ai ∩ x ∪ bi, the operations “◦”, “⊔” and “⊓”

can be explicitly defined by:

(f2 ◦ f1) x = a1 ∩ a2 ∩ x ∪ a2 ∩ b1 ∪ b2

(f1 ⊔ f2) x = (a1 ∪ a2) ∩ x ∪ b1 ∪ b2

(f1 ⊓ f2) x = (a1 ∪ b1) ∩ (a2 ∪ b2) ∩ x ∪ b1 ∩ b2

91

Wanted: minimally small solution for:

xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

where all fi : D
n → D are monotonic.

92

Wanted: minimally small solution for:

xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

where all fi : D
n → D are monotonic.

Idea

• Consider F : Dn → Dn where

F (x1, . . . , xn) = (y1, . . . , yn) with yi = fi(x1, . . . , xn).

93

Wanted: minimally small solution for:

xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

where all fi : D
n → D are monotonic.

Idea

• Consider F : Dn → Dn where

F (x1, . . . , xn) = (y1, . . . , yn) with yi = fi(x1, . . . , xn).

• If all fi are monotonic, then also F .

94

Wanted: minimally small solution for:

xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

where all fi : D
n → D are monotonic.

Idea

• Consider F : Dn → Dn where

F (x1, . . . , xn) = (y1, . . . , yn) with yi = fi(x1, . . . , xn).

• If all fi are monotonic, then also F .

• We successively approximate a solution. We construct:

⊥, F ⊥, F 2⊥, F 3⊥, . . .

Hope: We eventually reach a solution ... ???

95

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

96

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

The Iteration:

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} ditto

x2 ∅ ∅ ∅ {a} ditto

x3 ∅ {c} {a, c} {a, c} ditto

97

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

The Iteration:

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} ditto

x2 ∅ ∅ ∅ {a} ditto

x3 ∅ {c} {a, c} {a, c} ditto

98

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

The Iteration:

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} ditto

x2 ∅ ∅ ∅ {a} ditto

x3 ∅ {c} {a, c} {a, c} ditto

99

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

The Iteration:

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} ditto

x2 ∅ ∅ ∅ {a}

x3 ∅ {c} {a, c} {a, c}

100

Example: D = 2{a,b,c}, ⊑ = ⊆

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

The Iteration:

0 1 2 3 4

x1 ∅ {a} {a, c} {a, c} ditto

x2 ∅ ∅ ∅ {a}

x3 ∅ {c} {a, c} {a, c}

101

Theorem

• ⊥, F ⊥, F 2⊥, . . . form an ascending chain :

⊥ ⊑ F ⊥ ⊑ F 2⊥ ⊑ . . .

• If F k⊥ = F k+1⊥ , a solution is obtained which is the least

one.

• If all ascending chains are finite, such a k always exists.

102

Theorem

• ⊥, F ⊥, F 2⊥, . . . form an ascending chain :

⊥ ⊑ F ⊥ ⊑ F 2⊥ ⊑ . . .

• If F k⊥ = F k+1⊥ , a solution is obtained which is the least

one.

• If all ascending chains are finite, such a k always exists.

Proof

The first claim follows by complete induction:

Foundation: F 0⊥ = ⊥ ⊑ F 1⊥.

103

Step: Assume F i−1⊥ ⊑ F i⊥ . Then

F i⊥ = F (F i−1⊥) ⊑ F (F i⊥) = F i+1⊥

since F monotonic.

104

Step: Assume F i−1⊥ ⊑ F i⊥ . Then

F i⊥ = F (F i−1⊥) ⊑ F (F i⊥) = F i+1⊥

since F monotonic.

Conclusion

If D is finite, a solution can be found which is definitely the least.

Question

3. What, if D is not finite ???

105

Theorem Knaster – Tarski

Assume D is a complete lattice. Then every monotonic function

f : D→ D has a least fixpoint d0 ∈ D.

Let P = {d ∈ D | f d ⊑ d}.

Then d0 = ⊔

P .

106

107

Theorem Knaster – Tarski

Assume D is a complete lattice. Then every monotonic function

f : D→ D has a least fixpoint d0 ∈ D.

Let P = {d ∈ D | f d ⊑ d}.

Then d0 = ⊔

P .

Proof

(1) d0 ∈ P :

108

Theorem Knaster – Tarski

Assume D is a complete lattice. Then every monotonic function

f : D→ D has a least fixpoint d0 ∈ D.

Let P = {d ∈ D | f d ⊑ d}.

Then d0 = ⊔

P .

Proof

(1) d0 ∈ P :

f d0 ⊑ f d ⊑ d for all d ∈ P

==⇒ f d0 is a lower bound of P

==⇒ f d0 ⊑ d0 since d0 = ⊔

P

==⇒ d0 ∈ P

109

(2) f d0 = d0 :

110

(2) f d0 = d0 :

f d0 ⊑ d0 by (1)

==⇒ f(f d0) ⊑ f d0 by monotonicity of f

==⇒ f d0 ∈ P

==⇒ d0 ⊑ f d0 and the claim follows.

111

(2) f d0 = d0 :

f d0 ⊑ d0 by (1)

==⇒ f(f d0) ⊑ f d0 by monotonicity of f

==⇒ f d0 ∈ P

==⇒ d0 ⊑ f d0 and the claim follows.

(3) d0 is least fixpoint:

112

(2) f d0 = d0 :

f d0 ⊑ d0 by (1)

==⇒ f(f d0) ⊑ f d0 by monotonicity of f

==⇒ f d0 ∈ P

==⇒ d0 ⊑ f d0 and the claim follows.

(3) d0 is least fixpoint:

f d1 = d1 ⊑ d1 an other fixpoint

==⇒ d1 ∈ P

==⇒ d0 ⊑ d1

113

Remark

The least fixpoint d0 is in P and a lower bound.

==⇒ d0 is the least value x with x ⊒ f x

114

Remark

The least fixpoint d0 is in P and a lower bound.

==⇒ d0 is the least value x with x ⊒ f x

Application

Assume xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

is a system of constraints where all fi : D
n → D are monotonic.

115

Remark

The least fixpoint d0 is in P and a lower bound.

==⇒ d0 is the least value x with x ⊒ f x

Application

Assume xi ⊒ fi(x1, . . . , xn), i = 1, . . . , n (∗)

is a system of constraints where all fi : D
n → D are monotonic.

==⇒ least solution of(∗) == least fixpoint of F .

116

Example 1 D = 2U , f x = x ∩ a ∪ b

117

Example 1 D = 2U , f x = x ∩ a ∪ b

f fk⊥ fk⊤

0 ∅ U

118

Example 1 D = 2U , f x = x ∩ a ∪ b

f fk⊥ fk⊤

0 ∅ U

1 b a ∪ b

119

Example 1 D = 2U , f x = x ∩ a ∪ b

f fk⊥ fk⊤

0 ∅ U

1 b a ∪ b

2 b a ∪ b

120

Example 1 D = 2U , f x = x ∩ a ∪ b

f fk⊥ fk⊤

0 ∅ U

1 b a ∪ b

2 b a ∪ b

Example 2 D = N ∪ {∞}

Assume f x = x+ 1. Then

f i⊥ = f i 0 = i ⊏ i+ 1 = f i+1⊥

121

Example 1 D = 2U , f x = x ∩ a ∪ b

f fk⊥ fk⊤

0 ∅ U

1 b a ∪ b

2 b a ∪ b

Example 2 D = N ∪ {∞}

Assume f x = x+ 1. Then

f i⊥ = f i 0 = i ⊏ i+ 1 = f i+1⊥

==⇒ Ordinary iteration will never reach a fixpoint !

==⇒ Sometimes, transfinite iteration is needed.

122

Conclusion

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides.

123

Conclusion

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides.

Caveat Naive fixpoint iteration is rather inefficient.

124

Conclusion

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides.

Caveat Naive fixpoint iteration is rather inefficient.

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

0

1

2

3

4

5

125

Conclusion

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides.

Caveat Naive fixpoint iteration is rather inefficient.

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1

0 ∅

1 {1, x > 1, x − 1}

2 Expr

3 {1, x > 1, x − 1}

4 {1}

5 Expr

126

Conclusion

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides.

Caveat Naive fixpoint iteration is rather inefficient.

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2

0 ∅ ∅

1 {1, x > 1, x − 1} {1}

2 Expr {1, x > 1, x − 1}

3 {1, x > 1, x − 1} {1, x > 1, x − 1}

4 {1} {1}

5 Expr {1, x > 1, x − 1}

127

Conclusion

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides.

Caveat Naive fixpoint iteration is rather inefficient.

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2 3

0 ∅ ∅ ∅

1 {1, x > 1, x − 1} {1} {1}

2 Expr {1, x > 1, x − 1} {1, x > 1}

3 {1, x > 1, x − 1} {1, x > 1, x − 1} {1, x > 1, x − 1}

4 {1} {1} {1}

5 Expr {1, x > 1, x − 1} {1, x > 1}

128

Conclusion

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides.

Caveat Naive fixpoint iteration is rather inefficient.

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2 3 4

0 ∅ ∅ ∅ ∅

1 {1, x > 1, x − 1} {1} {1} {1}

2 Expr {1, x > 1, x − 1} {1, x > 1} {1, x > 1}

3 {1, x > 1, x − 1} {1, x > 1, x − 1} {1, x > 1, x − 1} {1, x > 1}

4 {1} {1} {1} {1}

5 Expr {1, x > 1, x − 1} {1, x > 1} {1, x > 1}

129

Conclusion

Systems of inequations can be solved through fixpoint iteration,

i.e., by repeated evaluation of right-hand sides.

Caveat Naive fixpoint iteration is rather inefficient.

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2 3 4 5

0 ∅ ∅ ∅ ∅

1 {1, x > 1, x − 1} {1} {1} {1}

2 Expr {1, x > 1, x − 1} {1, x > 1} {1, x > 1}

3 {1, x > 1, x − 1} {1, x > 1, x − 1} {1, x > 1, x − 1} {1, x > 1} ditto

4 {1} {1} {1} {1}

5 Expr {1, x > 1, x − 1} {1, x > 1} {1, x > 1}

130

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the

current values of unknowns.

131

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the

current values of unknowns.

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

0

1

2

3

4

5

132

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the

current values of unknowns.

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1

0 ∅

1 {1}

2 {1, x > 1}

3 {1, x > 1}

4 {1}

5 {1, x > 1}

133

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the

current values of unknowns.

Example

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

1 2

0 ∅

1 {1}

2 {1, x > 1}

3 {1, x > 1} ditto

4 {1}

5 {1, x > 1}

134

The code for Round Robin Iteration in Java looks as follows:

for (i = 1; i ≤ n; i++) xi = ⊥;

do {

finished = true;

for (i = 1; i ≤ n; i++) {

new = fi(x1, . . . , xn);

if (!(xi ⊒ new)) {

finished = false;

xi = xi ⊔ new ;

}

}

} while (!finished);

135

Correctness

Assume y
(d)
i is the dth component of F d ⊥.

Assume x
(d)
i is the value of xi after the dth RR-iteration.

136

Correctness

Assume y
(d)
i is the dth component of F d ⊥.

Assume x
(d)
i is the value of xi after the dth RR-iteration.

One proves:

(1) y
(d)
i ⊑ x

(d)
i .

137

Correctness

Assume y
(d)
i is the dth component of F d ⊥.

Assume x
(d)
i is the value of xi after the dth RR-iteration.

One proves:

(1) y
(d)
i ⊑ x

(d)
i .

(2) x
(d)
i ⊑ zi for every solution (z1, . . . , zn).

138

Correctness

Assume y
(d)
i is the dth component of F d ⊥.

Assume x
(d)
i is the value of xi after the dth RR-iteration.

One proves:

(1) y
(d)
i ⊑ x

(d)
i .

(2) x
(d)
i ⊑ zi for every solution (z1, . . . , zn).

(3) If RR-iteration terminates after d rounds, then

(x
(d)
1 , . . . , x

(d)
n) is a solution.

139

Caveat

The efficiency of RR-iteration depends on the ordering of the

unknowns !!!

140

Caveat

The efficiency of RR-iteration depends on the ordering of the

unknowns !!!

Good:

→ u before v, if u→∗ v;

→ entry condition before loop body.

141

Caveat

The efficiency of RR-iteration depends on the ordering of the

unknowns !!!

Good:

→ u before v, if u→∗ v;

→ entry condition before loop body.

Bad:

e.g., post-order DFS of the CFG, starting at start.

142

Good:

3

2

4

5

0

1

y = 1;

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

Bad:

0

5

4

3

2

1

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1;

143

Inefficient Round Robin Iteration

0

5

4

3

2

1

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1;

0

1

2

3

4

5

144

Inefficient Round Robin Iteration

0

5

4

3

2

1

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1; 1

0 Expr

1 {1}

2 {1, x − 1, x > 1}

3 Expr

4 {1}

5 ∅

145

Inefficient Round Robin Iteration

0

5

4

3

2

1

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1; 1 2

0 Expr {1, x > 1}

1 {1} {1}

2 {1, x − 1, x > 1} {1, x − 1, x > 1}

3 Expr {1, x > 1}

4 {1} {1}

5 ∅ ∅

146

Inefficient Round Robin Iteration

0

5

4

3

2

1

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1; 1 2 3

0 Expr {1, x > 1} {1, x > 1}

1 {1} {1} {1}

2 {1, x − 1, x > 1} {1, x − 1, x > 1} {1, x > 1}

3 Expr {1, x > 1} {1, x > 1}

4 {1} {1} {1}

5 ∅ ∅ ∅

147

Inefficient Round Robin Iteration

0

5

4

3

2

1

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

y = 1; 1 2 3 4

0 Expr {1, x > 1} {1, x > 1}

1 {1} {1} {1}

2 {1, x − 1, x > 1} {1, x − 1, x > 1} {1, x > 1} ditto

3 Expr {1, x > 1} {1, x > 1}

4 {1} {1} {1}

5 ∅ ∅ ∅

==⇒ significantly less efficient !

148

... end of background on: Complete Lattices

149

... end of background on: Complete Lattices

Final Question

Why is a (or the least) solution of the constraint system useful ???

150

... end of background on: Complete Lattices

Final Question

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice D, consider systems:

I[start] ⊒ d0

I[v] ⊒ [[k]]♯ (I[u]) k = (u, _, v) edge

where d0 ∈ D and all [[k]]♯ : D→ D are monotonic ...

151

... end of background on: Complete Lattices

Final Question

Why is a (or the least) solution of the constraint system useful ???

For a complete lattice D, consider systems:

I[start] ⊒ d0

I[v] ⊒ [[k]]♯ (I[u]) k = (u, _, v) edge

where d0 ∈ D and all [[k]]♯ : D→ D are monotonic ...

==⇒ Monotonic Analysis Framework

152

Wanted: MOP (Merge Over all Paths)

I∗[v] =
⊔

{[[π]]♯ d0 | π : start →∗ v}

153

Wanted: MOP (Merge Over all Paths)

I∗[v] =
⊔

{[[π]]♯ d0 | π : start →∗ v}

Theorem Kam, Ullman 1975

Assume I is a solution of the constraint system. Then:

I[v] ⊒ I∗[v] for every v

154

Jeffrey D. Ullman, Stanford

155

Wanted: MOP (Merge Over all Paths)

I∗[v] =
⊔

{[[π]]♯ d0 | π : start →∗ v}

Theorem Kam, Ullman 1975

Assume I is a solution of the constraint system. Then:

I[v] ⊒ I∗[v] for every v

In particular: I[v] ⊒ [[π]]♯ d0 for every π : start →∗ v

156

Proof: Induction on the length of π.

157

Proof: Induction on the length of π.

Foundation: π = ǫ (empty path)

158

Proof: Induction on the length of π.

Foundation: π = ǫ (empty path)

Then:

[[π]]♯ d0 = [[ǫ]]♯ d0 = d0 ⊑ I[start]

159

Proof: Induction on the length of π.

Foundation: π = ǫ (empty path)

Then:

[[π]]♯ d0 = [[ǫ]]♯ d0 = d0 ⊑ I[start]

Step: π = π′k for k = (u, _, v) edge.

160

Proof: Induction on the length of π.

Foundation: π = ǫ (empty path)

Then:

[[π]]♯ d0 = [[ǫ]]♯ d0 = d0 ⊑ I[start]

Step: π = π′k for k = (u, _, v) edge.

Then:

[[π′]]♯ d0 ⊑ I[u] by I.H. for π′

==⇒ [[π]]♯ d0 = [[k]]♯ ([[π′]]♯ d0)

⊑ [[k]]♯ (I[u]) since [[k]]♯ monotonic

⊑ I[v] since I solution

161

Disappointment

Are solutions of the constraint system just upper bounds ???

162

Disappointment

Are solutions of the constraint system just upper bounds ???

Answer

In general: yes

163

Disappointment

Are solutions of the constraint system just upper bounds ???

Answer

In general: yes

With the notable exception when all functions [[k]]♯ are

distributive ...

164

The function f : D1 → D2 is called

• distributive, if f (
⊔

X) =
⊔

{f x | x ∈ X} for all ∅ 6= X ⊆ D;

• strict, if f ⊥ = ⊥.

• totally distributive, if f is distributive and strict.

165

The function f : D1 → D2 is called

• distributive, if f (
⊔

X) =
⊔

{f x | x ∈ X} for all ∅ 6= X ⊆ D;

• strict, if f ⊥ = ⊥.

• totally distributive, if f is distributive and strict.

Examples

• f x = x ∩ a ∪ b for a, b ⊆ U .

166

The function f : D1 → D2 is called

• distributive, if f (
⊔

X) =
⊔

{f x | x ∈ X} for all ∅ 6= X ⊆ D;

• strict, if f ⊥ = ⊥.

• totally distributive, if f is distributive and strict.

Examples

• f x = x ∩ a ∪ b for a, b ⊆ U .

Strictness: f ∅ = a ∩ ∅ ∪ b = b = ∅ whenever b = ∅

167

The function f : D1 → D2 is called

• distributive, if f (
⊔

X) =
⊔

{f x | x ∈ X} for all ∅ 6= X ⊆ D;

• strict, if f ⊥ = ⊥.

• totally distributive, if f is distributive and strict.

Examples

• f x = x ∩ a ∪ b for a, b ⊆ U .

Strictness: f ∅ = a ∩ ∅ ∪ b = b = ∅ whenever b = ∅

Distributivity:

f (x1 ∪ x2) = a ∩ (x1 ∪ x2) ∪ b

= a ∩ x1 ∪ a ∩ x2 ∪ b

= f x1 ∪ f x2

168

• D1 = D2 = N ∪ {∞}, incx = x+ 1

169

• D1 = D2 = N ∪ {∞}, incx = x+ 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥

170

• D1 = D2 = N ∪ {∞}, incx = x+ 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥

Distributivity: f (
⊔

X) =
⊔

{x+ 1 | x ∈ X} for

∅ 6= X

171

• D1 = D2 = N ∪ {∞}, incx = x+ 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥

Distributivity: f (
⊔

X) =
⊔

{x+ 1 | x ∈ X} for

∅ 6= X

• D1 = (N ∪ {∞})2, D2 = N ∪ {∞}, f(x1, x2) = x1 + x2

172

• D1 = D2 = N ∪ {∞}, incx = x+ 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥

Distributivity: f (
⊔

X) =
⊔

{x+ 1 | x ∈ X} for

∅ 6= X

• D1 = (N ∪ {∞})2, D2 = N ∪ {∞}, f(x1, x2) = x1 + x2 :

Strictness: f ⊥ = 0 + 0 = 0

173

• D1 = D2 = N ∪ {∞}, incx = x+ 1

Strictness: f ⊥ = inc 0 = 1 6= ⊥

Distributivity: f (
⊔

X) =
⊔

{x+ 1 | x ∈ X} for

∅ 6= X

• D1 = (N ∪ {∞})2, D2 = N ∪ {∞}, f(x1, x2) = x1 + x2 :

Strictness: f ⊥ = 0 + 0 = 0

Distributivity:

f ((1, 4) ⊔ (4, 1)) = f (4, 4) = 8

6= 5 = f (1, 4) ⊔ f (4, 1)

174

Remark

If f : D1 → D2 is distributive, then also monotonic.

175

Remark

If f : D1 → D2 is distributive, then also monotonic.

Obviously: a ⊑ b iff a ⊔ b = b.

176

Remark

If f : D1 → D2 is distributive, then also monotonic.

Obviously: a ⊑ b iff a ⊔ b = b.

From that follows:

f b = f (a ⊔ b)

= f a ⊔ f b

==⇒ f a ⊑ f b

177

Assumption: all v are reachable from start .

178

Assumption: all v are reachable from start .

Then:

Theorem Kildall 1972

If all effects of edges [[k]]♯ are distributive, then: I∗[v] = I[v]

for all v .

179

Gary A. Kildall (1942-1994).

Has developed the operating system CP/M and GUIs for PCs.

180

Assumption: all v are reachable from start .

Then:

Theorem Kildall 1972

If all effects of edges [[k]]♯ are distributive, then: I∗[v] = I[v]

for all v .

181

Assumption: all v are reachable from start .

Then:

Theorem Kildall 1972

If all effects of edges [[k]]♯ are distributive, then: I∗[v] = I[v]

for all v .

Proof

It suffices to prove that I∗ is a solution!

For this, we show that I∗ satisfies all constraints.

182

(1) We prove for start :

I∗[start] =
⊔

{[[π]]♯ d0 | π : start →∗ start}

⊒ [[ǫ]]♯ d0

⊒ d0

183

(1) We prove for start :

I∗[start] =
⊔

{[[π]]♯ d0 | π : start →∗ start}

⊒ [[ǫ]]♯ d0

⊒ d0

(2) For every k = (u, _, v) we prove:

I∗[v] =
⊔

{[[π]]♯ d0 | π : start →∗ v}

⊒
⊔

{[[π′k]]♯ d0 | π
′ : start →∗ u}

=
⊔

{[[k]]♯ ([[π′]]♯ d0) | π
′ : start →∗ u}

= [[k]]♯ (
⊔

{[[π′]]♯ d0 | π
′ : start →∗ u})

= [[k]]♯ (I∗[u])

since {π′ | π′ : start →∗ u} is non-empty.

184

Caveat

• Reachability of all program points cannot be abandoned!

Consider:

0 1 2
inc7

where D = N ∪ {∞}

185

Caveat

• Reachability of all program points cannot be abandoned!

Consider:

0 1 2
inc7

where D = N ∪ {∞}

Then:

I[2] = inc 0 = 1

I∗[2] =
⊔

∅ = 0

186

Caveat

• Reachability of all program points cannot be abandoned!

Consider:

0 1 2
inc7

where D = N ∪ {∞}

Then:

I[2] = inc 0 = 1

I∗[2] =
⊔

∅ = 0

• Unreachable program points can always be thrown away.

187

Summary and Application

→ The effects of edges of the analysis of availability of

expressions are distributive:

(a ∪ (x1 ∩ x2))\b = ((a ∪ x1) ∩ (a ∪ x2))\b

= ((a ∪ x1)\b) ∩ ((a ∪ x2)\b)

188

Summary and Application

→ The effects of edges of the analysis of availability of

expressions are distributive:

(a ∪ (x1 ∩ x2))\b = ((a ∪ x1) ∩ (a ∪ x2))\b

= ((a ∪ x1)\b) ∩ ((a ∪ x2)\b)

→ If all effects of edges are distributive, then the MOP can be

computed by means of the constraint system and

RR-iteration.

189

Summary and Application

→ The effects of edges of the analysis of availability of

expressions are distributive:

(a ∪ (x1 ∩ x2))\b = ((a ∪ x1) ∩ (a ∪ x2))\b

= ((a ∪ x1)\b) ∩ ((a ∪ x2)\b)

→ If all effects of edges are distributive, then the MOP can be

computed by means of the constraint system and

RR-iteration.

→ If not all effects of edges are distributive, then RR-iteration

for the constraint system at least returns a safe upper bound

to the MOP.

190

1.2 Removing Assignments to Dead Variables

Example

1 : x = y + 2;

2 : y = 5;

3 : x = y + 3;

The value of x at program points 1, 2 is over-written before it

can be used.

Therefore, we call the variable x dead at these program points.

191

Remark

→ Assignments to dead variables can be removed !

→ Such inefficiencies may originate from other transformations.

192

Remark

→ Assignments to dead variables can be removed !

→ Such inefficiencies may originate from other transformations.

Formal Definition

The variable x is called live at u along the path π starting

at u relative to a set X of variables either:

if x ∈ X and π does not contain a definition of x; or:

if π can be decomposed into: π = π1 k π2 such that:

• k is a use of x ; and

• π1 does not contain a definition of x.

193

u
π1 k

Thereby, the set of all defined or used variables at an edge

k = (_, lab, _) is defined by:

lab used defined

; ∅ ∅

Pos (e) Vars (e) ∅

Neg (e) Vars (e) ∅

x = e; Vars (e) {x}

x =M [e]; Vars (e) {x}

M [e1] = e2; Vars (e1) ∪ Vars (e2) ∅

194

A variable x which is not live at u along π (relative to X)

is called dead at u along π (relative to X).

Example

10 2 3

x = y + 2; y = 5; x = y + 3;

where X = ∅. Then we observe:

live dead

0 {y} {x}

1 ∅ {x, y}

2 {y} {x}

3 ∅ {x, y}

195

The variable x is live at u (relative to X) if x is live at u

along some path to the exit (relative to X). Otherwise, x is

called dead at u (relative to X).

196

The variable x is live at u (relative to X) if x is live at u

along some path to the exit (relative to X). Otherwise, x is

called dead at u (relative to X).

Question

How can the sets of all dead/live variables be computed for every

u ???

197

The variable x is live at u (relative to X) if x is live at u

along some path to the exit (relative to X). Otherwise, x is

called dead at u (relative to X).

Question

How can the sets of all dead/live variables be computed for every

u ???

Idea

For every edge k = (u, _, v) , define a function [[k]]♯ which

transforms the set of variables which are live at v into the set of

variables which are live at u ...

198

Let L = 2Vars .

For k = (_, lab, _) , define [[k]]♯ = [[lab]]♯ by:

[[;]]♯ L = L

[[Pos(e)]]♯ L = [[Neg(e)]]♯ L = L ∪ Vars(e)

[[x = e;]]♯ L = (L\{x}) ∪ Vars(e)

[[x =M [e];]]♯ L = (L\{x}) ∪ Vars(e)

[[M [e1] = e2;]]
♯ L = L ∪ Vars(e1) ∪ Vars(e2)

199

Let L = 2Vars .

For k = (_, lab, _) , define [[k]]♯ = [[lab]]♯ by:

[[;]]♯ L = L

[[Pos(e)]]♯ L = [[Neg(e)]]♯ L = L ∪ Vars(e)

[[x = e;]]♯ L = (L\{x}) ∪ Vars(e)

[[x =M [e];]]♯ L = (L\{x}) ∪ Vars(e)

[[M [e1] = e2;]]
♯ L = L ∪ Vars(e1) ∪ Vars(e2)

[[k]]♯ can again be composed to the effects of [[π]]♯ of paths

π = k1 . . . kr by:

[[π]]♯ = [[k1]]
♯ ◦ . . . ◦ [[kr]]

♯

200

We verify that these definitions are meaningful ...

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

201

We verify that these definitions are meaningful ...

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

∅

202

We verify that these definitions are meaningful ...

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

∅{x, y}

203

We verify that these definitions are meaningful ...

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

∅{x, y}{y}

204

We verify that these definitions are meaningful ...

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

∅{x, y}{y}∅

205

We verify that these definitions are meaningful ...

4 5321

M [y] = x;x = y + 2;y = 5;x = y + 2;

∅{x, y}{y}∅{y}

206

The set of variables which are live at u then is given by:

L∗[u] =
⋃

{[[π]]♯X | π : u→∗ stop}

... literally:

• The paths start in u.

==⇒ As partial ordering for L we use ⊑ = ⊆ .

• The set of variables which are live at program exit is given by

the set X.

207

Transformation 2

;

v v

x = e;

x 6∈ L∗[v]

;

v v

x 6∈ L∗[v]

x =M [e];

208

Correctness Proof

→ Correctness of the effects of edges: If L is the set of

variables which are live at the exit of the path π , then

[[π]]♯ L is the set of variables which are live at the beginning

of π.

→ Correctness of the transformation along a path: If the value

of a variable is accessed, this variable is necessarily live.

The value of dead variables thus is irrelevant.

→ Correctness of the transformation: In any execution of the

transformed programs, the live variables always receive the

same values.

209

Computation of the sets L∗[u] :

(1) Collecting constraints:

L[stop] ⊇ X

L[u] ⊇ [[k]]♯ (L[v]) k = (u, _, v) edge

(2) Solving the constraint system by means of RR iteration.

Since L is finite, the iteration will terminate.

(3) If the exit is (formally) reachable from every program

point, then the smallest solution L of the constraint

system equals L∗ since all [[k]]♯ are distributive.

210

Computation of the sets L∗[u] :

(1) Collecting constraints:

L[stop] ⊇ X

L[u] ⊇ [[k]]♯ (L[v]) k = (u, _, v) edge

(2) Solving the constraint system by means of RR iteration.

Since L is finite, the iteration will terminate.

(3) If the exit is (formally) reachable from every program

point, then the smallest solution L of the constraint

system equals L∗ since all [[k]]♯ are distributive.

Caveat: The information is propagated backwards !!!

211

Example

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

x =M [I];

0

M [R] = y;

L[0] ⊇ (L[1]\{x}) ∪ {I}

L[1] ⊇ L[2]\{y}

L[2] ⊇ (L[6] ∪ {x}) ∪ (L[3] ∪ {x})

L[3] ⊇ (L[4]\{y}) ∪ {x, y}

L[4] ⊇ (L[5]\{x}) ∪ {x}

L[5] ⊇ L[2]

L[6] ⊇ L[7] ∪ {y,R}

L[7] ⊇ ∅

212

Example

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

x =M [I];

0

M [R] = y;

1 2

7 ∅

6 {y,R}

2 {x, y, R} ditto

5 {x, y, R}

4 {x, y, R}

3 {x, y, R}

1 {x,R}

0 {I, R}

213

The left-hand side of no assignment is dead.

Caveat

Removal of assignments to dead variables may kill further

variables:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

214

The left-hand side of no assignment is dead.

Caveat

Removal of assignments to dead variables may kill further

variables:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

y,R

215

The left-hand side of no assignment is dead.

Caveat

Removal of assignments to dead variables may kill further

variables:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

y,R

x, y, R

216

The left-hand side of no assignment is dead.

Caveat

Removal of assignments to dead variables may kill further

variables:

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

y,R

∅

y,R

x, y, R

217

The left-hand side of no assignment is dead.

Caveat

Removal of assignments to dead variables may kill further

variables:

2

3

1

4

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

y,R

∅

y,R

x, y, R

x = y + 1;

;

M [R] = y;

218

The left-hand side of no assignment is dead.

Caveat

Removal of assignments to dead variables may kill further

variables:

2

3

1

4

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

y,R

∅

y,R

x, y, R

x = y + 1;

;

M [R] = y;

y,R

∅

y,R

y,R

219

The left-hand side of no assignment is dead.

Caveat

Removal of assignments to dead variables may kill further

variables:

2

3

1

4

2

3

1

4

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

y,R

∅

y,R

x, y, R

x = y + 1;

;

M [R] = y;

y,R

∅

y,R

y,R

;

;

M [R] = y;

220

Re-analyzing the program is inconvenient !

Idea: Analyze true liveness!

x is called truly live at u along a path π (relative to X), either

if x ∈ X , π does not contain a definition of x; or

if π can be decomposed into π = π1 k π2 such that:

• k is a true use of x relative to π2;

• π1 does not contain any definition of x.

221

u v
kπ2

The set of truely used variables at an edge k = (_, lab, v) is

defined as:

lab truely used

; ∅

Pos (e) Vars (e)

Neg (e) Vars (e)

x = e; Vars (e) (∗)

x =M [e]; Vars (e) (∗)

M [e1] = e2; Vars(e1) ∪ Vars(e2)

(∗) – given that x is truely live at v w.r.t. π2.

222

Example

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

223

Example

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

y,R

224

Example

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

∅

y,R

y,R

225

Example

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

y,R

∅

y,R

y,R

226

Example

2

3

1

4

2

3

1

4

x = y + 1;

z = 2 ∗ x;

M [R] = y;

;

;

M [R] = y;

y,R

∅

y,R

y,R

227

The Effects of Edges

[[;]]♯ L = L

[[Pos(e)]]♯ L = [[Neg(e)]]♯ L = L ∪ Vars(e)

[[x = e;]]♯ L = (L\{x}) ∪ (x ∈ L) ?Vars(e) : ∅

[[x =M [e];]]♯ L = (L\{x}) ∪ Vars(e)

[[M [e1] = e2;]]
♯ L = L ∪ Vars(e1) ∪ Vars(e2)

228

The Effects of Edges

[[;]]♯ L = L

[[Pos(e)]]♯ L = [[Neg(e)]]♯ L = L ∪ Vars(e)

[[x = e;]]♯ L = (L\{x}) ∪ (x ∈ L) ?Vars(e) : ∅

[[x =M [e];]]♯ L = (L\{x}) ∪ (x ∈ L) ?Vars(e) : ∅

[[M [e1] = e2;]]
♯ L = L ∪ Vars(e1) ∪ Vars(e2)

229

Remark

• The effects of edges for truely live variables are more

complicated than for live variables.

• Nonetheless, they are distributive !!

230

Remark

• The effects of edges for truely live variables are more

complicated than for live variables.

• Nonetheless, they are distributive !!

To see this, consider for D = 2U , f y = (u ∈ y) ? b : ∅ We

verify:

f (y1 ∪ y2) = (u ∈ y1 ∪ y2) ? b : ∅

= (u ∈ y1 ∨ u ∈ y2) ? b : ∅

= (u ∈ y1) ? b : ∅ ∪ (u ∈ y2) ? b : ∅

= f y1 ∪ f y2

231

Remark

• The effects of edges for truely live variables are more

complicated than for live variables.

• Nonetheless, they are distributive !!

To see this, consider for D = 2U , f y = (u ∈ y) ? b : ∅ We

verify:

f (y1 ∪ y2) = (u ∈ y1 ∪ y2) ? b : ∅

= (u ∈ y1 ∨ u ∈ y2) ? b : ∅

= (u ∈ y1) ? b : ∅ ∪ (u ∈ y2) ? b : ∅

= f y1 ∪ f y2

==⇒ the constraint system yields the MOP.

232

• True liveness detects more superfluous assignments than

repeated liveness !!!

True Liveness

x = x− 1;

;

233

• True liveness detects more superfluous assignments than

repeated liveness !!!

True Liveness

x = x− 1;

;

∅

{x}

234

• True liveness detects more superfluous assignments than

repeated liveness !!!

True Liveness

x = x− 1;

;

∅

∅

235

1.3 Removing Superfluous Moves

Example

2

3

1

4

T = x+ 1;

y = T ;

M [R] = y;

This variable-variable assignment is obviously useless.

236

1.3 Removing Superfluous Moves

Example

2

3

1

4

T = x+ 1;

y = T ;

M [R] = y;

This variable-variable assignment is obviously useless.

Instead of y, we could also store T !

237

1.3 Removing Superfluous Moves

Example

2

3

1

4

2

3

1

4

T = x+ 1;

y = T ;

M [R] = y;

T = x+ 1;

y = T ;

M [R] = T ;

This variable-variable assignment is obviously useless.

Instead of y, we could also store T !

238

1.3 Removing Superfluous Moves

Example

2

3

1

4

2

3

1

4

T = x+ 1;

y = T ;

M [R] = y;

T = x+ 1;

y = T ;

M [R] = T ;

Advantage: Now, y has become dead.

239

1.3 Removing Superfluous Moves

Example

2

3

1

4

2

3

1

4

2

3

1

4

T = x+ 1;

y = T ;

M [R] = y;

T = x+ 1;

y = T ;

M [R] = T ;

T = x+ 1;

;

M [R] = T ;

Advantage: Now, y has become dead.

240

Idea

For each expression, we record the variable which currently

contains its value.

We use: V = (Expr \ Vars)→ 2Vars ...

241

Idea

For each expression, we record the variable which currently

contains its value.

We use: V = (Expr \ Vars)→ 2Vars and define:

[[;]]♯ V = V

[[Pos(e)]]♯ V e′ = [[Neg(e)]]♯ V e′ =

{

∅ if e′ = e

V e′ otherwise

. . .

242

[[x = c;]]♯ V e′ =

{

(V c) ∪ {x} if e′ = c

(V e′)\{x} otherwise

[[x = y;]]♯ V e =

{

(V e) ∪ {x} if y ∈ V e

(V e)\{x} otherwise

[[x = e;]]♯ V e′ =

{

{x} if e′ = e

(V e′)\{x} otherwise

[[x =M [c];]]♯ V e′ = (V e′)\{x}

[[x =M [y];]]♯ V e′ = (V e′)\{x}

[[x =M [e];]]♯ V e′ =

{

∅ if e′ = e

(V e′)\{x} otherwise

// analogously for the diverse stores

243

In the Example

2

3

1

4

T = x+ 1;

y = T ;

M [R] = y;

{x+ 1 7→ {T}}

{x+ 1 7→ {y, T}}

{x+ 1 7→ {y, T}}

∅

244

In the Example

2

3

1

4

T = x+ 1;

y = T ;

M [R] = y;

{x+ 1 7→ {T}}

{x+ 1 7→ {y, T}}

{x+ 1 7→ {y, T}}

∅

→ We propagate information in forward direction.

At start , V0 e = ∅ for all e;

→ ⊑ ⊆ V× V is defined by:

V1 ⊑ V2 iff V1 e ⊇ V2 e for all e

245

Observation

The new effects of edges are distributive:

To show this, we consider the functions:

(1) fx
1 V e = (V e)\{x}

(2) f e,a
2 V = V ⊕ {e 7→ a}}

(3) fx,y
3 V e = (y ∈ V e) ? (V e ∪ {x}) : ((V e)\{x})

Obviously, we have:

[[x = e;]]♯ = f
e,{x}
2 ◦ fx

1

[[x = y;]]♯ = fx,y
3

[[x =M [e];]]♯ = f e,∅
2 ◦ f

x
1

By closure under composition, the assertion follows.

246

(1) For f V e = (V e)\{x}, we have:

f (V1 ⊔ V2) e = ((V1 ⊔ V2) e)\{x}

= ((V1 e) ∩ (V2 e))\{x}

= ((V1 e)\{x}) ∩ ((V2 e)\{x})

= (f V1 e) ∩ (f V2 e)

= (f V1 ⊔ f V2) e

247

(2) For f V = V ⊕ {e 7→ a}, we have:

f (V1 ⊔ V2) e
′ = ((V1 ⊔ V2)⊕ {e 7→ a}) e′

= (V1 ⊔ V2) e
′

= (f V1 ⊔ f V2) e
′ given that e 6= e′

f (V1 ⊔ V2) e = ((V1 ⊔ V2)⊕ {e 7→ a}) e

= a

= ((V1 ⊕ {e 7→ a}) e) ∩ ((V2 ⊕ {e 7→ a}) e)

= (f V1 ⊔ f V2) e

248

(3) For f V e = (y ∈ V e) ? (V e ∪ {x}) : ((V e)\{x}), we have:

f (V1 ⊔ V2) e = (((V1 ⊔ V2) e)\{x}) ∪ (y ∈ (V1 ⊔ V2) e) ? {x} : ∅

= ((V1 e ∩ V2 e)\{x}) ∪ (y ∈ (V1 e ∩ V2 e)) ? {x} : ∅

= ((V1 e ∩ V2 e)\{x}) ∪

((y ∈V1 e) ? {x} : ∅) ∩ ((y ∈V2 e) ? {x} : ∅)

= (((V1 e)\{x}) ∪ (y ∈V1 e) ? {x} : ∅) ∩

(((V2 e)\{x}) ∪ (y ∈V2 e) ? {x} : ∅)

= (f V1 ⊔ f V2) e

249

We conclude:

→ Solving the constraint system returns the MOP solution.

→ Let V denote this solution.

If x ∈ V [u] e , then x at u contains the value of e —

which we have stored in Te

==⇒

the access to x can be replaced by the access to Te.

For V ∈ V , let V − denote the variable substitution with:

V − x =

{

Te if x ∈ V e

x otherwise

if V e ∩ V e′ = ∅ for e 6= e′ . Otherwise: V − x = x.

250

Transformation 3

u u

Pos (e) Pos (σ(e))

σ = V [u]−

... analogously for edges with Neg (e)

x = e;

u uσ = V [u]−

x = σ(e);

251

Transformation 3 (cont.)

u uσ = V [u]−

x =M [e]; x =M [σ(e)];

u uσ = V [u]−

M [e1] = e2; M [σ(e1)] = σ(e2);

252

Procedure as a whole:

(1) Availability of expressions: T1

+ removes arithmetic operations

– inserts superfluous moves

(2) Values of variables: T3

+ creates dead variables

(3) (true) liveness of variables: T2

+ removes assignments to dead variables

253

Example: a[7]--;

B1 = M [A1];

A1 = A + 7;

B2 = B1 − 1;

A2 = A + 7;

M [A2] = B2; T1 = A + 7;

A2 = T1;

M [A2] = B2;

B2 = T2;

T2 = B1 − 1;

B1 = M [A1];

A1 = T1;

T1 = A + 7;

T1.1

254

Example: a[7]--;

B1 = M [A1];

A1 = A + 7;

B2 = B1 − 1;

A2 = A + 7;

M [A2] = B2; T1 = A + 7;

A2 = T1;

M [A2] = B2;

B2 = T2;

T2 = B1 − 1;

B1 = M [A1];

A1 = T1;

T1 = A + 7;

;

A2 = T1;

M [A2] = B2;

B2 = T2;

T2 = B1 − 1;

B1 = M [A1];

A1 = T1;

T1 = A + 7;

T1.1 T1.2

255

Example (cont.): a[7]--;

;

A2 = T1;

M [A2] = B2;

B2 = T2;

T2 = B1 − 1;

B1 = M [A1];

A1 = T1;

T1 = A + 7;

A2 = T1;

B2 = T2;

T2 = B1 − 1;

T1 = A + 7;

;

A1 = T1;

B1 = M [T1];

M [T1] = T2;

T3

256

Example (cont.): a[7]--;

;

A2 = T1;

M [A2] = B2;

B2 = T2;

T2 = B1 − 1;

B1 = M [A1];

A1 = T1;

T1 = A + 7;

;

;

M [T1] = T2;

;

T2 = B1 − 1;

B1 = M [T1];

;

T1 = A + 7;

A2 = T1;

B2 = T2;

T2 = B1 − 1;

T1 = A + 7;

;

A1 = T1;

B1 = M [T1];

M [T1] = T2;

T3 T2

257

1.4 Constant Propagation

Idea

Execute as much of the code at compile-time as possible!

Example

x = 7;

if (x > 0)

M [A] = B;

2

1

3

4

5

x = 7;

Pos (x > 0)

M [A] = B;

Neg (x > 0)

;

258

Obviously, x has always the value 7.

Thus, the memory access is always executed.

Goal

2

1

3

4

5

x = 7;

Pos (x > 0)

M [A] = B;

Neg (x > 0)

;

259

Obviously, x has always the value 7.

Thus, the memory access is always executed.

Goal

2

1

3

4

5

2

1

3

4

5

;

M [A] = B;

;

;x = 7;

Pos (x > 0)

M [A] = B;

Neg (x > 0)

;

260

Generalization: Partial Evaluation

Neil D. Jones, DIKU, Copenhagen

261

Idea

Design an analysis which for every u,

• determines the values which variables definitely have;

• tells whether u can be reached at all.

262

Idea

Design an analysis which for every u,

• determines the values which variables definitely have;

• tells whether u can be reached at all.

The complete lattice is constructed in two steps.

(1) The potential values of variables:

Z⊤ = Z ∪ {⊤} with x ⊑ y iff y = ⊤ or x = y

210-1-2

⊤

263

Caveat: Z⊤ is not a complete lattice in itself.

(2) D = (Vars → Z⊤)⊥ = (Vars → Z⊤) ∪ {⊥}

// ⊥ denotes: “not reachable”.

with D1 ⊑ D2 iff ⊥ = D1 or

D1 x ⊑ D2 x (x ∈ Vars)

Remark: D is a complete lattice.

264

Caveat: Z⊤ is not a complete lattice in itself.

(2) D = (Vars → Z⊤)⊥ = (Vars → Z⊤) ∪ {⊥}

// ⊥ denotes: “not reachable”.

with D1 ⊑ D2 iff ⊥ = D1 or

D1 x ⊑ D2 x (x ∈ Vars)

Remark: D is a complete lattice.

Consider X ⊆ D . W.l.o.g., ⊥ 6∈ X .

Then X ⊆ Vars → Z⊤ .

If X = ∅ , then
⊔

X = ⊥ ∈ D.

265

If X 6= ∅ , then
⊔

X = D with

Dx =
⊔

{f x | f ∈ X}

=

{

z if f x = z (f ∈ X)

⊤ otherwise

266

If X 6= ∅ , then
⊔

X = D with

Dx =
⊔

{f x | f ∈ X}

=

{

z if f x = z (f ∈ X)

⊤ otherwise

For every edge k = (_, lab, _) , construct an effect function

[[k]]♯ = [[lab]]♯ : D→ D which simulates the concrete computation.

Obviously, [[lab]]♯⊥ = ⊥ for all lab.

Now let ⊥ 6= D ∈ Vars → Z⊤.

267

Idea

• We use D to determine the values of expressions.

268

Idea

• We use D to determine the values of expressions.

• For some sub-expressions, we obtain ⊤.

269

Idea

• We use D to determine the values of expressions.

• For some sub-expressions, we obtain ⊤.

==⇒

We must replace the concrete operators ✷ by abstract

operators ✷
♯ which can handle ⊤ :

a✷♯ b =

{

⊤ if a = ⊤ or b = ⊤

a✷ b otherwise

270

Idea

• We use D to determine the values of expressions.

• For some sub-expressions, we obtain ⊤.

==⇒

We must replace the concrete operators ✷ by abstract

operators ✷
♯ which can handle ⊤ :

a✷♯ b =

{

⊤ if a = ⊤ or b = ⊤

a✷ b otherwise

• The abstract operators allow to define an abstract evaluation

of expressions:

[[e]]♯ : (Vars → Z⊤)→ Z⊤

271

Abstract evaluation of expressions is like the concrete evaluation

— but with abstract values and operators. Here:

[[c]]♯D = c

[[e1 ✷ e2]]
♯D = [[e1]]

♯D✷
♯ [[e2]]

♯D

... analogously for unary operators.

272

Abstract evaluation of expressions is like the concrete evaluation

— but with abstract values and operators. Here:

[[c]]♯D = c

[[e1 ✷ e2]]
♯D = [[e1]]

♯D✷
♯ [[e2]]

♯D

... analogously for unary operators.

Example: D = {x 7→ 2, y 7→ ⊤}

[[x+ 7]]♯D = [[x]]♯D +♯ [[7]]♯D

= 2 +♯ 7

= 9

[[x− y]]♯D = 2 −♯ ⊤

= ⊤

273

Thus, we obtain the following effects of edges [[lab]]♯ :

[[;]]♯ D = D

[[Pos (e)]]♯D =

{

⊥ if 0 = [[e]]♯D

D otherwise

[[Neg (e)]]♯D =

{

D if 0 ⊑ [[e]]♯D

⊥ otherwise

[[x = e;]]♯D = D ⊕ {x 7→ [[e]]♯D}

[[x =M [e];]]♯D = D ⊕ {x 7→ ⊤}

[[M [e1] = e2;]]
♯D = D

... whenever D 6= ⊥.

274

At start, we have D⊤ = {x 7→ ⊤ | x ∈ Vars} .

Example

2

1

3

4

5

x = 7;

Pos (x > 0)

M [A] = B;

Neg (x > 0)

;

275

At start, we have D⊤ = {x 7→ ⊤ | x ∈ Vars} .

Example

2

1

3

4

5

x = 7;

Pos (x > 0)

M [A] = B;

Neg (x > 0)

;

1 {x 7→ ⊤}

2 {x 7→ 7}

3 {x 7→ 7}

4 {x 7→ 7}

5 ⊥ ⊔ {x 7→ 7} = {x 7→ 7}

276

The abstract effects of edges [[k]]♯ are again composed to the

effects of paths π = k1 . . . kr by:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯ : D→ D

Idea for Correctness: Abstract Interpretation

Cousot, Cousot 1977

277

Patrick Cousot, ENS, Paris

278

The abstract effects of edges [[k]]♯ are again composed to the

effects of paths π = k1 . . . kr by:

[[π]]♯ = [[kr]]
♯ ◦ . . . ◦ [[k1]]

♯ : D→ D

Idea for Correctness: Abstract Interpretation

Cousot, Cousot 1977

Establish a description relation ∆ between the concrete values

and their descriptions with:

x∆ a1 ∧ a1 ⊑ a2 ==⇒ x∆ a2

Concretization: γ a = {x | x∆ a}

// returns the set of described values.

279

(1) Values: ∆ ⊆ Z× Z⊤

z∆ a iff z = a ∨ a = ⊤

Concretization:

γ a =

{

{a} if a ⊏ ⊤

Z if a = ⊤

280

(1) Values: ∆ ⊆ Z× Z⊤

z∆ a iff z = a ∨ a = ⊤

Concretization:

γ a =

{

{a} if a ⊏ ⊤

Z if a = ⊤

(2) Variable Assignments: ∆ ⊆ (Vars → Z)× (Vars → Z⊤)⊥

ρ ∆ D iff D 6= ⊥ ∧ ρ x ∆ Dx (x ∈ Vars)

Concretization:

γ D =

{

∅ if D = ⊥

{ρ | ∀ x : (ρ x) ∆ (Dx)} otherwise

281

Example: {x 7→ 1, y 7→ −7} ∆ {x 7→ ⊤, y 7→ −7}

(3) States:

∆ ⊆ ((Vars → Z)× (N→ Z))× (Vars → Z⊤)⊥

(ρ, µ) ∆ D iff ρ ∆ D

Concretization:

γ D =

{

∅ if D = ⊥

{(ρ, µ) | ρ ∆ D} otherwise

282

We show:

(∗) If s ∆ D and [[π]] s is defined, then:

([[π]] s) ∆ ([[π]]♯D)

s

D D1

s1

∆ ∆

[[π]]

[[π]]♯

283

(∗) The abstract semantics simulates the concrete semantics.

In particular:

[[π]] s ∈ γ ([[π]]♯D)

284

(∗) The abstract semantics simulates the concrete semantics.

In particular:

[[π]] s ∈ γ ([[π]]♯D)

In practice, this means, e.g., that D1 x = −7 implies:

ρ′ x = −7 for all ρ′ ∈ γ D1

==⇒ ρ1 x = −7 for (ρ1, _) = [[π]] s

285

To prove (∗), we show for every edge k :

(∗∗)

s

D D1

s1

∆ ∆

[[k]]

[[k]]♯

Then (∗) follows by induction.

286

To prove (∗∗), we show for every expression e :

(∗ ∗ ∗) ([[e]] ρ) ∆ ([[e]]♯D) whenever ρ ∆ D

287

To prove (∗∗), we show for every expression e :

(∗ ∗ ∗) ([[e]] ρ) ∆ ([[e]]♯D) whenever ρ ∆ D

To prove (∗ ∗ ∗), we show for every operator ✷ :

(x✷ y) ∆ (x♯ ✷♯ y♯) whenever x ∆ x♯ ∧ y ∆ y♯

288

To prove (∗∗), we show for every expression e :

(∗ ∗ ∗) ([[e]] ρ) ∆ ([[e]]♯D) whenever ρ ∆ D

To prove (∗ ∗ ∗), we show for every operator ✷ :

(x✷ y) ∆ (x♯ ✷♯ y♯) whenever x ∆ x♯ ∧ y ∆ y♯

This precisely was how we have defined the operators ✷
♯.

289

Now, (∗∗) is proved by case distinction on the edge labels lab .

Let s = (ρ, µ) ∆ D . In particular, ⊥ 6= D : Vars → Z⊤

Case x = e; :

ρ1 = ρ⊕ {x 7→ [[e]] ρ} µ1 = µ

D1 = D ⊕ {x 7→ [[e]]♯D}

==⇒ (ρ1, µ1) ∆ D1

290

Case x =M [e]; :

ρ1 = ρ⊕ {x 7→ µ ([[e]]♯ρ)} µ1 = µ

D1 = D ⊕ {x 7→ ⊤}

==⇒ (ρ1, µ1) ∆ D1

Case M [e1] = e2; :

ρ1 = ρ µ1 = µ⊕ {[[e1]]
♯ρ 7→ [[e2]]

♯ρ}

D1 = D

==⇒ (ρ1, µ1) ∆ D1

291

Case Neg(e) : (ρ1, µ1) = s where:

0 = [[e]] ρ

∆ [[e]]♯D

==⇒ 0 ⊑ [[e]]♯D

==⇒ ⊥ 6= D1 = D

==⇒ (ρ1, µ1) ∆ D1

292

Case Pos(e) : (ρ1, µ1) = s where:

0 6= [[e]] ρ

∆ [[e]]♯D

==⇒ 0 6= [[e]]♯D

==⇒ ⊥ 6= D1 = D

==⇒ (ρ1, µ1) ∆ D1

293

We conclude: The assertion (∗) is true.

The MOP-Solution:

D∗[v] =
⊔

{[[π]]♯ D⊤ | π : start →∗ v}

where D⊤ x = ⊤ (x ∈ Vars) .

294

We conclude: The assertion (∗) is true.

The MOP-Solution:

D∗[v] =
⊔

{[[π]]♯ D⊤ | π : start →∗ v}

where D⊤ x = ⊤ (x ∈ Vars) .

By (∗), we have for all initial states s and all program

executions π which reach v :

([[π]] s) ∆ (D∗[v])

295

We conclude: The assertion (∗) is true.

The MOP-Solution

D∗[v] =
⊔

{[[π]]♯ D⊤ | π : start →∗ v}

where D⊤ x = ⊤ (x ∈ Vars) .

By (∗), we have for all initial states s and all program

executions π which reach v :

([[π]] s) ∆ (D∗[v])

In order to approximate the MOP, we use our constraint system ...

296

Example

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

0

M [R] = y;

x = 10;

297

Example

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

0

M [R] = y;

x = 10;
1

x y

0 ⊤ ⊤

1 10 ⊤

2 10 1

3 10 1

4 10 10

5 9 10

6 ⊥

7 ⊥

298

Example

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

0

M [R] = y;

x = 10;
1 2

x y x y

0 ⊤ ⊤ ⊤ ⊤

1 10 ⊤ 10 ⊤

2 10 1 ⊤ ⊤

3 10 1 ⊤ ⊤

4 10 10 ⊤ ⊤

5 9 10 ⊤ ⊤

6 ⊥ ⊤ ⊤

7 ⊥ ⊤ ⊤

299

Example

7
x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

y = 1;

1

0

M [R] = y;

x = 10;
1 2 3

x y x y x y

0 ⊤ ⊤ ⊤ ⊤

1 10 ⊤ 10 ⊤

2 10 1 ⊤ ⊤

3 10 1 ⊤ ⊤

4 10 10 ⊤ ⊤ ditto

5 9 10 ⊤ ⊤

6 ⊥ ⊤ ⊤

7 ⊥ ⊤ ⊤

300

Conclusion

Although we compute with concrete values, we fail to compute

everything ...

The fixpoint iteration, at least, is guaranteed to terminate:

For n program points and m variables, we maximally need:

n · (m+ 1) rounds.

Caveat

The effects of edge are not distributive !!!

301

Counter Example: f = [[x = x+ y;]]♯

Let D1 = {x 7→ 2, y 7→ 3}

D2 = {x 7→ 3, y 7→ 2}

Then f D1 ⊔ f D2 = {x 7→ 5, y 7→ 3} ⊔ {x 7→ 5, y 7→ 2}

= {x 7→ 5, y 7→ ⊤}

6= {x 7→ ⊤, y 7→ ⊤}

= f {x 7→ ⊤, y 7→ ⊤}

= f (D1 ⊔D2)

302

We conclude:

The least solution D of the constraint system in general yields

only an upper approximation of the MOP, i.e.,

D∗[v] ⊑ D[v]

303

We conclude:

The least solution D of the constraint system in general yields

only an upper approximation of the MOP, i.e.,

D∗[v] ⊑ D[v]

As an upper approximation, D[v] nonetheless describes the

result of every program execution π which reaches v :

([[π]] (ρ, µ)) ∆ (D[v])

whenever [[π]] (ρ, µ) is defined.

304

Transformation 4: Removal of Dead Code

D[u] = ⊥

u

u

lab

[[lab]]♯(D[u]) = ⊥ u

305

Transformation 4 (cont.): Removal of Dead Code

u u

Neg (e) ;

[[e]]♯D = 0

⊥ 6= D[u] = D

u u

;Pos (e)

[[e]]♯D 6∈ {0,⊤}

⊥ 6= D[u] = D

306

Transformation 4 (cont.): Simplified Expressions

u u

⊥ 6= D[u] = D

x = c;

[[e]]♯D = c

x = e;

307

Extensions

• Instead of complete right-hand sides, also subexpressions

could be simplified:

x+ (3 ∗ y)
{x 7→⊤,y 7→5}
=========⇒ x+ 15

... and further simplifications be applied, e.g.:

x ∗ 0 ==⇒ 0

x ∗ 1 ==⇒ x

x+ 0 ==⇒ x

x− 0 ==⇒ x

. . .

308

• So far, the information of conditions has not yet be optimally

exploited:

if (x == 7)

y = x+ 3;

Even if the value of x before the if statement is unknown,

we at least know that x definitely has the value 7 —

whenever the then-part is entered.

Therefore, we can define:

[[Pos (x == e)]]♯D =















D if [[x == e]]♯D = 1

⊥ if [[x == e]]♯D = 0

D1 otherwise

where

D1 = D ⊕ {x 7→ (Dx ⊓ [[e]]♯D)}

309

The effect of an edge labeled Neg (x 6= e) is analogous.

Our Example

0

1

2

3
;

Pos (x == 7)

y = x+ 3;

Neg (x == 7)

310

The effect of an edge labeled Neg (x 6= e) is analogous.

Our Example

0

1

2

3
;

Pos (x == 7)

y = x+ 3;

Neg (x == 7)

x 7→ ⊤

x 7→ 7

x 7→ 7

x 7→ ⊤

311

The effect of an edge labeled Neg (x 6= e) is analogous.

Our Example

0

1

2

3

0

1

2

3
;

Pos (x == 7)

y = x+ 3;

Neg (x == 7)

;

Pos (x == 7)

y = 10;

Neg (x == 7)

312

1.5 Interval Analysis

Observation

• Programmers often use global constants for switching

debugging code on/off.

==⇒

Constant propagation is useful !

• In general, precise values of variables will be unknown —

perhaps, however, a tight interval !!!

313

Example

for (i = 0; i < 42; i++)

if (0 ≤ i ∧ i < 42){

A1 = A+ i;

M [A1] = i;

}

// A start address of an array

// if the array-bound check

The inner check is superfluous.

314

Idea 1

Determine for every variable x an (as tight as possible) interval

of possible values:

I = {[l, u] | l ∈ Z ∪ {−∞}, u ∈ Z ∪ {+∞}, l ≤ u}

Partial Ordering:

[l1, u1] ⊑ [l2, u2] iff l2 ≤ l1 ∧ u1 ≤ u2

l1 u1

l2 u2

315

Thus:

[l1, u1] ⊔ [l2, u2] = [l1 ⊓ l2, u1 ⊔ u2]

[l1, u1] ⊓ [l2, u2] = [l1 ⊔ l2, u1 ⊓ u2] whenever (l1 ⊔ l2) ≤ (u1 ⊓u2)

l1 u1

l2 u2

316

Thus:

[l1, u1] ⊔ [l2, u2] = [l1 ⊓ l2, u1 ⊔ u2]

[l1, u1] ⊓ [l2, u2] = [l1 ⊔ l2, u1 ⊓ u2] whenever (l1 ⊔ l2) ≤ (u1 ⊓ u2)

l1 u1

l2 u2

317

Caveat

→ I is not a complete lattice !

→ I has infinite ascending chains, e.g.,

[0, 0] ⊏ [0, 1] ⊏ [−1, 1] ⊏ [−1, 2] ⊏ . . .

318

Caveat

→ I is not a complete lattice !

→ I has infinite ascending chains, e.g.,

[0, 0] ⊏ [0, 1] ⊏ [−1, 1] ⊏ [−1, 2] ⊏ . . .

Description Relation:

z ∆ [l, u] iff l ≤ z ≤ u

Concretization:

γ [l, u] = {z ∈ Z | l ≤ z ≤ u}

319

Example

γ [0, 7] = {0, . . . , 7}

γ [0,∞] = {0, 1, 2, . . .}

Computing with intervals: Interval Arithmetic

Addition:

[l1, u1] +
♯ [l2, u2] = [l1 + l2, u1 + u2] where

−∞+ _ = −∞

+∞+ _ = +∞

// −∞+∞ cannot occur !

320

Negation:

−♯ [l, u] = [−u,−l]

Multiplication:

[l1, u1] ∗
♯ [l2, u2] = [a, b] where

a = l1l2 ⊓ l1u2 ⊓ u1l2 ⊓ u1u2

b = l1l2 ⊔ l1u2 ⊔ u1l2 ⊔ u1u2

Example

[0, 2] ∗♯ [3, 4] = [0, 8]

[−1, 2] ∗♯ [3, 4] = [−4, 8]

[−1, 2] ∗♯ [−3, 4] = [−6, 8]

[−1, 2] ∗♯ [−4,−3] = [−8, 4]

321

Division: [l1, u1] /
♯ [l2, u2] = [a, b]

• If 0 is not contained in the interval of the denominator,

then:

a = l1/l2 ⊓ l1/u2 ⊓ u1/l2 ⊓ u1/u2

b = l1/l2 ⊔ l1/u2 ⊔ u1/l2 ⊔ u1/u2

• If: l2 ≤ 0 ≤ u2 , we define:

[a, b] = [−∞,+∞]

322

Equality:

[l1, u1] ==♯ [l2, u2] =















[1, 1] if l1 = u1 = l2 = u2

[0, 0] if u1 < l2 ∨ u2 < l1

[0, 1] otherwise

323

Equality:

[l1, u1] ==♯ [l2, u2] =















[1, 1] if l1 = u1 = l2 = u2

[0, 0] if u1 < l2 ∨ u2 < l1

[0, 1] otherwise

Example

[42, 42]==♯[42, 42] = [1, 1]

[0, 7]==♯ [0, 7] = [0, 1]

[1, 2]==♯ [3, 4] = [0, 0]

324

Less:

[l1, u1] <
♯ [l2, u2] =















[1, 1] if u1 < l2

[0, 0] if u2 ≤ l1

[0, 1] otherwise

325

Less:

[l1, u1] <
♯ [l2, u2] =















[1, 1] if u1 < l2

[0, 0] if u2 ≤ l1

[0, 1] otherwise

Example

[1, 2] <♯ [9, 42] = [1, 1]

[0, 7] <♯ [0, 7] = [0, 1]

[3, 4] <♯ [1, 2] = [0, 0]

326

By means of I we construct the complete lattice:

DI = (Vars → I)⊥

Description Relation:

ρ ∆ D iff D 6= ⊥ ∧ ∀ x ∈ Vars : (ρ x) ∆ (D x)

The abstract evaluation of expressions is defined analogously to

constant propagation. We have:

([[e]] ρ) ∆ ([[e]]♯ D) whenever ρ ∆ D

327

The Effects of Edges:

[[;]]♯ D = D

[[x = e;]]♯D = D ⊕ {x 7→ [[e]]♯D}

[[x =M [e];]]♯D = D ⊕ {x 7→ ⊤}

[[M [e1] = e2;]]
♯D = D

[[Pos (e)]]♯D =

{

⊥ if [0, 0] = [[e]]♯D

D otherwise

[[Neg (e)]]♯D =

{

D if [0, 0] ⊑ [[e]]♯D

⊥ otherwise

... given that D 6= ⊥.

328

Better Exploitation of Conditions

[[Pos (e)]]♯D =

{

⊥ if [0, 0] = [[e]]♯D

D1 otherwise

where :

D1 =















D ⊕ {x 7→ (Dx) ⊓ ([[e1]]
♯D)} if e ≡ x== e1

D ⊕ {x 7→ (Dx) ⊓ [−∞, u]} if e ≡ x ≤ e1, [[e1]]
♯D = [_, u]

D ⊕ {x 7→ (Dx) ⊓ [l,∞]} if e ≡ x ≥ e1, [[e1]]
♯D = [l, _]

329

Better Exploitation of Conditions (cont.)

[[Neg (e)]]♯D =

{

⊥ if [0, 0] 6⊑ [[e]]♯D

D1 otherwise

where :

D1 =















D ⊕ {x 7→ (Dx) ⊓ ([[e1]]
♯D)} if e ≡ x 6= e1

D ⊕ {x 7→ (Dx) ⊓ [−∞, u]} if e ≡ x > e1, [[e1]]
♯D = [_, u]

D ⊕ {x 7→ (Dx) ⊓ [l,∞]} if e ≡ x < e1, [[e1]]
♯D = [l, _]

330

Example

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

i

l u

0 −∞ +∞

1 0 42

2 0 41

3 0 41

4 0 41

5 0 41

6 1 42

7 ⊥

8 42 42

331

Problem

→ The solution can be computed with RR-iteration —

after about 42 rounds !

→ On some programs, iteration may never terminate ...

Idea 1 Widening

• Accelerate the iteration — at the prize of imprecision.

• Allow only a bounded number of modifications of values !!!

... in the Example

• dis-allow updates of interval bounds in Z ...

==⇒ a maximal chain:

[3, 17] ⊏ [3,+∞] ⊏ [−∞,+∞]

332

Formalization of the Approach

Let xi ⊒ fi (x1, . . . , xn) , i = 1, . . . , n (1)

denote a system of constraints over D where the fi are not

necessarily monotonic.

Nonetheless, an accumulating iteration can be defined. Consider

the system of equations:

xi = xi ⊔ fi (x1, . . . , xn) , i = 1, . . . , n (2)

We obviously have:

(a) x is a solution of (1) iff x is a solution of (2).

(b) The function G : Dn → Dn with

G (x1, . . . , xn) = (y1, . . . , yn) , yi = xi ⊔ fi (x1, . . . , xn)

is increasing, i.e., x ⊑ Gx for all x ∈ Dn .

333

(c) The sequence Gk⊥ , k ≥ 0, is an ascending chain:

⊥ ⊑ G⊥ ⊑ . . . ⊑ Gk⊥ ⊑ . . .

(d) If Gk⊥ = Gk+1⊥ = y , then y is a solution of (1).

(e) If D has infinite strictly ascending chains, then (d) is not

yet sufficient ...

but: we could consider the modified system of equations:

xi = xi ⊔– fi(x1, . . . , xn) , i = 1, . . . , n (3)

for a binary operation widening:

⊔– : D2 → D with v1 ⊔ v2 ⊑ v1 ⊔– v2

(RR)-iteration for (3) still will compute a solution of (1).

334

... for Interval Analysis:

• The complete lattice is: DI = (Vars → I)⊥

• the widening ⊔– is defined by:

⊥⊔– D = D⊔– ⊥ = D and for D1 6= ⊥ 6= D2:

(D1 ⊔– D2) x = (D1 x)⊔– (D2 x) where

[l1, u1]⊔– [l2, u2] = [l, u] with

l =

{

l1 if l1 ≤ l2

−∞ otherwise

u =

{

u1 if u1 ≥ u2

+∞ otherwise

==⇒ ⊔– is not commutative !!!

335

Example

[0, 2]⊔– [1, 2] = [0, 2]

[1, 2]⊔– [0, 2] = [−∞, 2]

[1, 5]⊔– [3, 7] = [1,+∞]

→ Widening returns larger values more quickly.

→ It should be constructed in such a way that termination of

iteration is guaranteed.

→ For interval analysis, widening bounds the number of

iterations by:

#points · (1 + 2 ·#Vars)

336

Conclusion

• In order to determine a solution of (1) over a complete

lattice with infinite ascending chains, we define a suitable

widening and then solve (3).

• Caveat The construction of suitable widenings is a dark art

!!!

Often ⊔– is chosen dynamically during iteration such that

→ the abstract values do not get too complicated;

→ the number of updates remains bounded ...

337

Our Example

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

1

l u

0 −∞ +∞

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 1 1

7 ⊥

8 ⊥

338

Our Example

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

1 2 3

l u l u l u

0 −∞ +∞ −∞ +∞

1 0 0 0 +∞

2 0 0 0 +∞

3 0 0 0 +∞

4 0 0 0 +∞ ditto

5 0 0 0 +∞

6 1 1 1 +∞

7 ⊥ 42 +∞

8 ⊥ 42 +∞

339

... obviously, the result is disappointing !

Idea 2

In fact, acceleration with ⊔– need only be applied at sufficiently

many places!

A set I is a loop separator, if every loop contains at least one

point from I.

If we apply widening only at program points from such a set I ,

then RR-iteration still terminates !!!

340

In our Example

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

I1 = {1} or:

I2 = {2} or:

I3 = {3}

341

The Analysis with I = {1} :

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

1 2 3

l u l u l u

0 −∞ +∞ −∞ +∞

1 0 0 0 +∞

2 0 0 0 41

3 0 0 0 41

4 0 0 0 41 ditto

5 0 0 0 41

6 1 1 1 42

7 ⊥ ⊥

8 ⊥ 42 +∞

342

The Analysis with I = {2} :

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

1 2 3 4

l u l u l u

0 −∞ +∞ −∞ +∞ −∞ +∞

1 0 0 0 1 0 42

2 0 0 0 +∞ 0 +∞

3 0 0 0 41 0 41

4 0 0 0 41 0 41 ditto

5 0 0 0 41 0 41

6 1 1 1 42 1 42

7 ⊥ 42 +∞ 42 +∞

8 ⊥ ⊥ 42 42

343

Discussion

• Both runs of the analysis determine interesting information.

• The run with I = {2} proves that always i = 42 after

leaving the loop.

• Only the run with I = {1} finds, however, that the outer

check makes the inner check superfluous !

How can we find a suitable loop separator I ???

344

Idea 3: Narrowing

Let x denote any solution of (1) , i.e.,

xi ⊒ fi x , i = 1, . . . , n

Then for monotonic fi ,

x ⊒ F x ⊒ F 2 x ⊒ . . . ⊒ F k x ⊒ . . .

// Narrowing Iteration

345

Idea 3: Narrowing

Let x denote any solution of (1) , i.e.,

xi ⊒ fi x , i = 1, . . . , n

Then for monotonic fi ,

x ⊒ F x ⊒ F 2 x ⊒ . . . ⊒ F k x ⊒ . . .

// Narrowing Iteration

Every tuple F k x is a solution of (1).

==⇒

Termination is no problem anymore:

we stop whenever we want !

// The same also holds for RR-iteration.

346

Narrowing Iteration in the Example

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

0

l u

0 −∞ +∞

1 0 +∞

2 0 +∞

3 0 +∞

4 0 +∞

5 0 +∞

6 1 +∞

7 42 +∞

8 42 +∞

347

Narrowing Iteration in the Example

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

0 1

l u l u

0 −∞ +∞ −∞ +∞

1 0 +∞ 0 +∞

2 0 +∞ 0 41

3 0 +∞ 0 41

4 0 +∞ 0 41

5 0 +∞ 0 41

6 1 +∞ 1 42

7 42 +∞ ⊥

8 42 +∞ 42 +∞

348

Narrowing Iteration in the Example

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

0 1 2

l u l u l u

0 −∞ +∞ −∞ +∞ −∞ +∞

1 0 +∞ 0 +∞ 0 42

2 0 +∞ 0 41 0 41

3 0 +∞ 0 41 0 41

4 0 +∞ 0 41 0 41

5 0 +∞ 0 41 0 41

6 1 +∞ 1 42 1 42

7 42 +∞ ⊥ ⊥

8 42 +∞ 42 +∞ 42 42

349

Discussion

→ We start with a safe approximation.

→ We find that the inner check is redundant.

→ We find that at exit from the loop, always i = 42.

→ It was not necessary to construct an optimal loop separator !

Final Question

Do we have to accept that narrowing may not terminate ???

350

4. Idea: Accelerated Narrowing

Assume that we have a solution x = (x1, . . . , xn) of the system

of constraints:

xi ⊒ fi (x1, . . . , xn) , i = 1, . . . , n (1)

Then consider the system of equations:

xi = xi ⊓ fi (x1, . . . , xn) , i = 1, . . . , n (4)

Obviously, we have for monotonic fi : Hk x = F k x.

where H (x1, . . . , xn) = (y1, . . . , yn) , yi = xi ⊓ fi (x1, . . . , xn).

In (4) , we replace ⊓ durch by the novel operator ⊓–

where:

a1 ⊓ a2 ⊑ a1 ⊓– a2 ⊑ a1

351

... for Interval Analysis

We preserve finite interval bounds.

Therefore, ⊥⊓– D = D⊓– ⊥ = ⊥ and for D1 6= ⊥ 6= D2:

(D1 ⊓– D2) x = (D1 x)⊓– (D2 x) where

[l1, u1]⊓– [l2, u2] = [l, u] with

l =

{

l2 if l1 = −∞

l1 otherwise

u =

{

u2 if u1 =∞

u1 otherwise

==⇒ ⊓– is not commutative !!!

352

Accelerated Narrowing in the Example

0

1

7

8

6

5

4

i = 0;

Pos(i < 42)

Neg(0 ≤ i < 42)

i = i+ 1;

Neg(i < 42)

M [A1] = i;

A1 = A+ i;

2

3

Pos(0 ≤ i < 42)

0 1 2

l u l u l u

0 −∞ +∞ −∞ +∞ −∞ +∞

1 0 +∞ 0 +∞ 0 42

2 0 +∞ 0 41 0 41

3 0 +∞ 0 41 0 41

4 0 +∞ 0 41 0 41

5 0 +∞ 0 41 0 41

6 1 +∞ 1 42 1 42

7 42 +∞ ⊥ ⊥

8 42 +∞ 42 +∞ 42 42

353

Discussion

→ Caveat: Widening also returns for non-monotonic fi a

solution. Narrowing is only applicable to monotonic fi !!

→ In the example, accelerated narrowing already returns the

optimal result.

→ If the operator ⊓– only allows for finitely many

improvements of values, we may execute narrowing until

stabilization.

→ In case of interval analysis these are at most:

#points · (1 + 2 ·#Vars)

354

1.6 Pointer Analysis

Questions

→ Are two addresses possibly equal? May Alias

→ Are two addresses definitively equal? Must Alias

==⇒ Alias Analysis

355

1.6 Pointer Analysis

Questions

→ Are two addresses possibly equal? May Alias

→ Are two addresses definitively equal? Must Alias

==⇒ Alias Analysis

356

The analyses so far without alias information

(1) Available Expressions:

• Extend the set Expr of expressions by occurring loads

M [e] .

• Extend the Effects of Edges:

[[x = e;]]♯A = (A ∪ {e})\Exprx

[[x =M [e];]]♯A = (A ∪ {e,M [e]})\Exprx

[[M [e1] = e2;]]
♯A = (A ∪ {e1, e2})\Loads

357

(2) Values of Variables:

• Extend the set Expr of expressions by occurring loads

M [e] .

• Extend the Effects of Edges:

[[x =M [e];]]♯ V e′ =















{x} if e′ =M [e]

∅ if e′ = e

V e′\{x} otherwise

[[M [e1] = e2;]]
♯ V e′ =

{

∅ if e′ ∈ {e1, e2}

V e′ otherwise

358

(3) Constant Propagation:

• Extend the abstract state by an abstract store M

• Execute accesses to known memory locations!

[[x =M [e];]]♯ (D,M) =















(D ⊕ {x 7→M a},M) if

[[e]]♯D = a⊏⊤

(D ⊕ {x 7→ ⊤},M) otherwise

[[M [e1] = e2;]]
♯ (D,M) =















(D,M ⊕ {a 7→ [[e2]]
♯D}) if

[[e1]]
♯D = a⊏⊤

(D,⊤) otherwise where

⊤ a = ⊤ (a ∈ N)

359

Problems

• Addresses are from N.

There are no infinite strictly ascending chains, but ...

• Exact addresses at compile-time are rarely known.

• At the same program point, typically different addresses are

accessed ...

• Storing at an unknown address destroys all information M.

==⇒ constant propagation fails

==⇒ memory accesses/pointers kill precision

360

Simplification

• We consider pointers to the beginning of blocks A which

allow indexed accesses A[i].

• We ignore well-typedness of the blocks.

• New statements:

x = new(); // allocation of a new block

y = x[e]; // indexed read access to a block

x[e1] = e2; // indexed write access to a block

• Blocks are possibly infinite.

• For simplicity, all pointers point to the beginning of a block.

361

Simple Example

x = new();

y = new();

x[0] = y;

y[1] = 7;
y[1] = 7;

x[0] = y;

1

y = new();

2

3

4

0

x = new();

362

The Semantics

y

x

363

The Semantics

y

x
1

0

364

The Semantics

y

x

0

1

0

1

365

The Semantics

y

x

0

1

0

1

366

The Semantics

y

x

7

0

1

0

1

367

More Complex Example

r = Null;

while (t 6= Null) {

h = t;

t = t[0];

h[0] = r;

r = h;

}

r = Null;

Pos(t 6= Null)Neg(t 6= Null)

7

r = h;

3

4

5

6

2

h = t;

1

0

t = t[0];

h[0] = r;

368

Concrete Semantics

A store consists of a finite collection of blocks.

After h new-operations we obtain:

Addrh = {ref a | 0 ≤ a < h} // addresses

Valh = Addrh ∪ Z // values

Storeh = (Addrh × N0)→ Valh // store

Stateh = (Vars → Valh)× Storeh // states

For simplicity, we set: 0 = Null

369

Let (ρ, µ) ∈ Stateh . Then we obtain for the new edges:

[[x = new();]] (ρ, µ) = (ρ⊕ {x 7→ ref h},

µ⊕ {(ref h, i) 7→ 0 | i ∈ N0})

[[x = y[e];]] (ρ, µ) = (ρ⊕ {x 7→ µ (ρ y, [[e]] ρ)}, µ)

[[y[e1] = e2;]] (ρ, µ) = (ρ, µ⊕ {(ρ y, [[e1]] ρ) 7→ [[e2]] ρ})

370

Caveat

This semantics is too detailled in that it computes with absolute

Addresses. Accordingly, the two programs:

x = new();

y = new();

y = new();

x = new();

are not considered as equivalent !!?

Possible Solution

Define equivalence only up to permutation of addresses !

371

Alias Analysis 1. Idea

• Distinguish finitely many classes of blocks.

• Collect all addresses of a block into one set!

• Use sets of addresses as abstract values!

==⇒ Points-to-Analysis

Addr♯ = Edges // creation edges

Val♯ = 2Addr
♯

// abstract values

Store♯ = Addr ♯ → Val ♯ // abstract store

State♯ = (Vars → Val ♯)× Store♯ // abstract states

// complete lattice !!!

372

... in the Simple Example

y[1] = 7;

x[0] = y;

1

y = new();

2

3

4

0

x = new();
x y (0, 1)

0 ∅ ∅ ∅

1 {(0, 1)} ∅ ∅

2 {(0, 1)} {(1, 2)} ∅

3 {(0, 1)} {(1, 2)} {(1, 2)}

4 {(0, 1)} {(1, 2)} {(1, 2)}

373

The Effects of Edges

[[(_, ;, _)]]♯ (D,M) = (D,M)

[[(_,Pos(e), _)]]♯ (D,M) = (D,M)

[[(_, x = y;, _)]]♯ (D,M) = (D ⊕ {x 7→ D y},M)

[[(_, x = e;, _)]]♯ (D,M) = (D ⊕ {x 7→ ∅},M) , e 6∈ Vars

[[(u, x = new();, v)]]♯ (D,M) = (D ⊕ {x 7→ {(u, v)}},M)

[[(_, x = y[e];, _)]]♯ (D,M) = (D ⊕ {x 7→
⋃

{M(f) | f ∈ D y}},M)

[[(_, y[e1] = x;, _)]]♯ (D,M) = (D,M ⊕ {f 7→ (M f ∪Dx) | f ∈ D y})

374

Caveat

• The value Null has been ignored. Dereferencing of Null

or negative indices are not detected.

• Destructive updates are only possible for variables, not for

blocks in storage!

==⇒ no information, if not all block entries are initialized

before use.

• The effects now depend on the edge itself.

The analysis cannot be proven correct w.r.t. the reference

semantics.

In order to prove correctness, we first instrument the concrete

semantics with extra information which records where a block

has been created.

375

• ...

• We compute possible points-to information.

• From that, we can extract may-alias information.

• The analysis can be rather expensive — without finding very

much.

• Separate information for each program point can perhaps be

abandoned ??

376

Alias Analysis 2. Idea

Compute for each variable and address a value which safely

approximates the values at every program point simultaneously !

... in the Simple Example

y[1] = 7;

x[0] = y;

1

y = new();

2

3

4

0

x = new();

x {(0, 1)}

y {(1, 2)}

(0, 1) {(1, 2)}

(1, 2) ∅

377

Each edge (u, lab, v) gives rise to constraints:

lab Constraint

x = y; P [x] ⊇ P [y]

x = new(); P [x] ⊇ {(u, v)}

x = y[e]; P [x] ⊇
⋃

{P [f] | f ∈ P [y]}

y[e1] = x; P [f] ⊇ (f ∈ P [y]) ?P [x] : ∅

for all f ∈ Addr ♯

Other edges have no effect.

378

Discussion

• The resulting constraint system has size O(k · n) for k

abstract addresses and n edges.

• The number of necessary iterations is O(k(̇k +#Vars)) ...

• The computed information is perhaps still too zu precise !!?

• In order to prove correctness of a solution s♯ ∈ States ♯ we

show:

s s1

s♯

[[k]]

∆ ∆

379

Alias Analysis 3. Idea

Determine one equivalence relation ≡ on variables x and

memory accesses y[] with s1≡ s2 whenever s1, s2 may

contain the same address at some u1, u2

... in the Simple Example

y[1] = 7;

x[0] = y;

1

y = new();

2

3

4

0

x = new();

≡ = {{x},

{y, x[]},

{y[]}}

380

Discussion

→ We compute a single information fo the whole program.

→ The computation of this information maintains partitions

π = {P1, . . . , Pm}.

→ Individual sets Pi are identified by means of

representatives pi ∈ Pi.

→ The operations on a partition π are:

find (π, p) = pi if p ∈ Pi

// returns the representative

union (π, pi1 , pi2) = {Pi1 ∪ Pi2} ∪ {Pj | i1 6= j 6= i2}

// unions the represented classes

381

→ If x1, x2 ∈ Vars are equivalent, then also x1[] and

x2[] must be equivalent.

→ If Pi ∩Vars 6= ∅ , then we choose pi ∈ Vars . Then we can

apply union recursively :

union∗ (π, q1, q2) = let pi1 = find (π, q1)

pi2 = find (π, q2)

in if pi1 == pi2 then π

else let π = union (π, pi1 , pi2)

in if pi1 , pi2 ∈ Vars then

union∗ (π, pi1 [], pi2 [])

else π

382

The analysis iterates over all edges once:

π = {{x}, {x[]} | x ∈ Vars};

forall k = (_, lab, _) do π = [[lab]]♯ π;

where:

[[x = y;]]♯ π = union∗ (π, x, y)

[[x = y[e];]]♯ π = union∗ (π, x, y[])

[[y[e] = x;]]♯ π = union∗ (π, x, y[])

[[lab]]♯ π = π otherwise

383

... in the Simple Example

y[1] = 7;

x[0] = y;

1

y = new();

2

3

4

0

x = new(); {{x}, {y}, {x[]}, {y[]}}

(0, 1) {{x}, {y}, {x[]}, {y[]}}

(1, 2) {{x}, {y}, {x[]}, {y[]}}

(2, 3) {{x}, {y, x[]} , {y[]}}

(3, 4) {{x}, {y, x[]}, {y[]}}

384

... in the More Complex Example

r = Null;

Pos(t 6= Null)Neg(t 6= Null)

7

r = h;

3

4

5

6

2

h = t;

1

0

t = t[0];

h[0] = r;

{{h}, {r}, {t}, {h[]}, {t[]}}

(2, 3) { {h, t} , {r}, {h[], t[]} }

(3, 4) { {h, t, h[], t[]} , {r}}

(4, 5) { {h, t, r, h[], t[]} }

(5, 6) {{h, t, r, h[], t[]}}

385

Caveat

In order to find something, we must assume that variables /

addresses always receive a value before they are accessed.

Complexity

we have:

O(# edges +#Vars) calls of union∗

O(# edges +#Vars) calls of find

O(#Vars) calls of union

==⇒ We require efficient Union-Find data-structure ...

386

Idea

Represent partition of U as directed forest:

• For u ∈ U a reference F [u] to the father is maintained;

• Roots are elements u with F [u] = u .

Single trees represent equivalence classes.

Their roots are their representatives ...

387

0 1 2 3 6 74 50 1 2 3 6 74 5

1 1 3 1 4 7 5 7

0

1

3

2

4 7

5

6

→ find (π, u) follows the father references.

→ union (π, u1, u2) re-directs the father reference of one ui ...

388

0 1 2 3 6 74 50 1 2 3 6 74 5

1 1 3 1 4 7 5 7

0

1

3

2

4 7

5

6

389

0 1 2 3 6 74 50 1 2 3 6 74 5

0

1

3

2

4

7

1 1 3 1 7 7 5 7

5

6

390

The Costs

union : O(1)

find : O(depth(π))

Strategy to Avoid Deep Trees

• Put the smaller tree below the bigger !

• Use find to compress paths ...

391

0 1 2 3 6 74 50 1 2 3 6 74 5

1 1 3 1 4 7 5 7

0

1

3

2

4 7

5

6

392

0 1 2 3 6 74 50 1 2 3 6 74 5

0

1

3

2

4

7

1 1 3 1 7 7 5 7

5

6

393

3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 7 7 5 3

1

394

3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 7 7 5 3

1

395

3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 7 7 5 3

1

396

3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 7 7 5 3

1

397

3

4

7

5

2

60

0 1 2 3 6 74 50 1 2 3 6 74 5

5 1 3 1 1 7 1 1

1

398

Robert Endre Tarjan, Princeton

399

Remark

• By this data-structure, n union- und m find operations

require time O(n+m · α(n, n))

// α the inverse Ackermann-function.

• For our application, we only must modify union such that

roots are from Vars whenever possible.

• This modification does not increase the asymptotic run-time.

Summary

The analysis is extremely fast — but may not find very much.

400

Background 3: Fixpoint Algorithms

Consider: xi ⊒ fi (x1, . . . , xn) , i = 1, . . . , n

Observation

RR-Iteration is inefficient:

→ We require a complete round in order to detect termination.

→ If in some round, the value of just one unknown is changed,

then we still re-compute all.

→ The practical run-time depends on the ordering on the

variables.

401

Idea: Worklist Iteration

If an unknown xi changes its value, we re-compute all

unknowns which depend on xi . Technically, we require:

→ the lists Dep fi of unknowns which are accessed during

evaluation of fi. From that, we compute the lists:

I[xi] = {xj | xi ∈ Dep fj}

i.e., a list of all xj which depend on the value of xi ;

→ the values D[xi] of the xi where initially D[xi] = ⊥ ;

→ a list W of all unknowns whose value must be

recomputed ...

402

The Algorithm

W = [x1, . . . , xn];

while (W 6= []) {

xi = extractW ;

t = fi eval;

if (t 6⊑ D[xi]) {

D[xi] = D[xi] ⊔ t;

W = append I[xi] W ;

}

}

where : eval xj = D[xj]

403

Example

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

I

x1 {x3}

x2 ∅

x3 {x1, x2}

D[x1] D[x2] D[x3] W

∅ ∅ ∅ x1 , x2, x3

{a} ∅ ∅ x2 , x3

{a} ∅ ∅ x3

{a} ∅ {a, c} x1 , x2

{a, c} ∅ {a, c} x3 , x2

{a, c} ∅ {a, c} x2

{a, c} {a} {a, c} ∅

404

Example

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

I

x1 {x3}

x2 ∅

x3 {x1, x2}

D[x1] D[x2] D[x3] W

∅ ∅ ∅ x1 , x2, x3

{a} ∅ ∅ x2 , x3

{a} ∅ ∅ x3

{a} ∅ {a, c} x1 , x2

{a, c} ∅ {a, c} x3 , x2

{a, c} ∅ {a, c} x2

{a, c} {a} {a, c} []

405

Theorem

Let xi ⊒ fi (x1, . . . , xn) , i = 1, . . . , n denote a constraint

system over the complete lattice D of height h > 0 .

(1) The algorithm terminates after at most h ·N evaluations

of right-hand sides where

N =
n

∑

i=1

(1 + # (Dep fi)) // size of the system

(2) The algorithm returns a solution.

If all fi are monotonic, it returns the least one.

406

Proof

Ad (1):

Every unknown xi may change its value at most h times.

Each time, the list I[xi] is added to W .

Thus, the total number of evaluations is:

≤ n+
∑n

i=1(h ·#(I[xi]))

= n+ h ·
∑n

i=1 #(I[xi])

= n+ h ·
∑n

i=1 #(Dep fi)

≤ h ·
∑n

i=1(1 + # (Dep fi))

= h ·N

407

Ad (2):

We only consider the assertion for monotonic fi .

Let D0 denote the least solution. We show:

• D0[xi] ⊒ D[xi] (all the time)

• D[xi] 6⊒ fi eval ==⇒ xi ∈ W (at exit of the loop body)

• On termination, the algo returns a solution

408

Discussion

• In the example, fewer evaluations of right-hand sides are

required than for RR-iteration.

• The algo also works for non-monotonic fi.

• For monotonic fi, the algo can be simplified:

D[xi] = D[xi] ⊔ t; ==⇒ t

• In presence of widening, we replace:

D[xi] = D[xi] ⊔ t; ==⇒ D[xi] = D[xi]⊔– t;

• In presence of Narrowing, we replace:

D[xi] = D[xi] ⊔ t; ==⇒ D[xi] = D[xi]⊓– t;

... and update the test to t ⊏ D[xi].

409

Caveat

• The algorithm relies on explicit dependencies among the

unknowns.

So far in our applications, these were obvious. This need not

always be the case !

• We need some strategy for extract which determines the

next unknown to be evaluated.

• It would be ingenious if we always evaluated first and then

accessed the result ...

==⇒ recursive evaluation ...

410

Idea

→ If during evaluation of fi , an unknown xj is accessed,

xj is first solved recursively. Then xi is added to I[xj].

eval xi xj = solvexj;

I[xj] = I[xj] ∪ {xi};

D[xj];

→ In order to prevent recursion to descend infinitely, a set

Stable of unknown is maintained for which solve just

looks up their values.

Initially, Stable = ∅ ...

411

The Function solve

solve xi = if (xi 6∈ Stable) {

Stable = Stable ∪ {xi};

t = fi (eval xi);

if (t 6⊑ D[xi]) {

D[xi] = D[xi] ⊔ t;

W = I[xi]; I[xi] = ∅;

Stable = Stable\W ;

app solve W ;

}

}

412

Helmut Seidl, TU München

413

Example

Consider our standard example:

x1 ⊇ {a} ∪ x3

x2 ⊇ x3 ∩ {a, b}

x3 ⊇ x1 ∪ {c}

A trace of the fixpoint algorithm then looks as follows:

414

solve x2 eval x2 x3 solve x3 eval x3 x1 solve x1 eval x1 x3 solve x3

stable!

I[x3] = {x1}

⇒ ∅

D[x1] = {a}

I[x1] = {x3}

⇒ {a}

D[x3] = {a, c}

I[x3] = ∅

solve x1 eval x1 x3 solve x3

stable!

I[x3] = {x1}

⇒ {a, c}

D[x1] = {a, c}

I[x1] = ∅

solve x3 eval x3 x1 solve x1

stable!

I[x1] = {x3}

⇒ {a, c}

ok

I[x3] = {x1, x2}

⇒ {a, c}

D[x2] = {a}

415

→ Evaluation starts with an interesting unknown xi (e.g., the

value at stop)

→ Then automatically all unknowns are evaluated which

influence xi.

→ The number of evaluations is often smaller than during

worklist iteration.

→ The algorithm is more complex but does not rely on

pre-computation of variable dependencies.

→ It also works if variable dependencies during iteration

change !!!

==⇒ interprocedural analysis

416

Caveat II

• The recursive algorithm may not evaluate right-hand sides

atomicly.

• Evaluations of right-hand sides may be continued which have

been started with out-dated data. ==⇒ in some cases, it

may fail to determine the least solution !?!

Idea

• Identify outdated computations ...

• Abort !!

417

Idea (cont.)

→ Record when evaluation of a variable has started by means

of a set Called.

→ Whenever during evaluation of a rhs fi, we detect that no

longer xi ∈ Called , we abort ...

eval xi xj = solvexj;

if (xi 6∈ Called) raise Abort;

I[xj] = I[xj] ∪ {xi};

D[xj];

→ Initially, Called = ∅ ...

418

The new Function solve

solve xi = if (xi 6∈ Stable) {

Stable = Stable ∪ {xi};Called = Called ∪ {xi};

t = try fi (eval xi)

with Abort→ D[xi];

Called = Called\{xi};

if (t 6⊑ D[xi]) {

D[xi] = D[xi] ⊔ t;

W = I[xi]; I[xi] = ∅;

Stable = Stable\W ;

app solve W ;

} }

419

Aleks Karbyshev, TU München

420

1.7 Eliminating Partial Redundancies

Example

1

0

3

7

6

5

2 4

x = M [a]; y1 = x+ 1;

y2 = x+ 1;

M [x] = y1 + y2;

// x+ 1 is evaluated on every path ...

// on one path, however, even twice.

421

Goal

1

0

3

7

6

5

2 4

1

0

3

7

6

5

2 4

y1 = x+ 1;

y2 = x+ 1;

x =M [a];

M [x] = y1 + y2;

T = x+ 1;x =M [a];

M [x] = y1 + T ;

T = x+ 1;

;

y1 = T ;

422

Idea

(1) Insert assignments Te = e; such that e is available at all

points where the value of e is required.

(2) Thereby spare program points where e either is already

available or will definitely be computed in future.

Expressions with the latter property are called very busy.

(3) Replace the original evaluations of e by accesses to the

variable Te.

==⇒ we require a novel analysis ...

423

An expression e is called busy along a path π , if the

expression e is evaluated before any of the variables

x ∈ Vars(e) is overwritten.

// backward analysis!

e is called very busy at u , if e is busy along every path

π : u→∗ stop .

424

An expression e is called busy along a path π , if the

expression e is evaluated before any of the variables

x ∈ Vars(e) is overwriten.

// backward analysis!

e is called very busy at u , if e is busy along every path

π : u→∗ stop .

Accordingly, we require:

B[u] =
⋂

{[[π]]♯ ∅ | π : u→∗ stop}

where for π = k1 . . . km :

[[π]]♯ = [[k1]]
♯ ◦ . . . ◦ [[km]]

♯

425

Our complete lattice is given by:

B = 2Expr\Vars with ⊑ = ⊇

The effect [[k]]♯ of an edge k = (u, lab, v) only depends on

lab , i.e., [[k]]♯ = [[lab]]♯ where:

[[;]]♯B = B

[[Pos(e)]]♯B = [[Neg(e)]]♯B = B ∪ {e}

[[x = e;]]♯B = (B\Exprx) ∪ {e}

[[x =M [e];]]♯B = (B\Exprx) ∪ {e}

[[M [e1] = e2;]]
♯B = B ∪ {e1, e2}

426

These effects are all distributive. Thus, the least solution of the

constraint system yields precisely the MOP — given that stop is

reachable from every program point.

Example

1

0

3

7

6

5

2 4

x = M [a]; y1 = x+ 1;

y2 = x+ 1;

M [x] = y1 + y2;

7 ∅

6 {y1 + y2}

5 {x+ 1}

4 {x+ 1}

3 {x+ 1}

2 {x+ 1}

1 ∅

0 ∅

427

A point u is called safe for e , if e ∈ A[u] ∪ B[u] , i.e., e is

either available or very busy.

Idea

• We insert computations of e such that e becomes

available at all safe program points.

• We insert Te = e; after every edge (u, lab, v) with

e ∈ B[v]\[[lab]]♯A(A[u] ∪ B[u])

428

Transformation 5.1

v

u

v v

v

u

lab

Te = e; (e ∈ B[v])

Te = e;

lab

(e ∈ B[v]\[[lab]]♯A (A[u] ∪ B[u]))

429

Transformation 5.2

uu

x = e; x = Te;

// analogously for the other uses of e

// at old edges of the program.

430

Bernhard Steffen, Dortmund Jens Knoop, Wien

431

In the Example

1

0

3

7

6

5

2 4

x = M [a]; y1 = x+ 1;

y2 = x+ 1;

M [x] = y1 + y2;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {x+ 1}

3 ∅ {x+ 1}

4 {x+ 1} {x+ 1}

5 ∅ {x+ 1}

6 {x+ 1} {y1 + y2}

7 {x+ 1, y1 + y2} ∅

432

In the Example

1

0

3

7

6

5

2 4

x = M [a]; y1 = x+ 1;

y2 = x+ 1;

M [x] = y1 + y2;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {x+ 1}

3 ∅ {x+ 1}

4 {x+ 1} {x+ 1}

5 ∅ {x+ 1}

6 {x+ 1} {y1 + y2}

7 {x+ 1, y1 + y2} ∅

433

Im Example

0

2

1

3

4

7

6

5

x = M [a];

T = x+ 1;

T = x+ 1;

y1 = T ;

y2 = T ;

M [x] = y1 + y2;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {x+ 1}

3 ∅ {x+ 1}

4 {x+ 1} {x+ 1}

5 ∅ {x+ 1}

6 {x+ 1} {y1 + y2}

7 {x+ 1, y1 + y2} ∅

434

Correctness

Let π denote a path reaching v after which a computation of

an edge with e follows.

Then there is a maximal suffix of π such that for every edge

k = (u, lab, u′) in the suffix:

e ∈ [[lab]]♯A(A[u] ∪ B[u])

B

v

A ∨B A ∨B A ∨BA ∨B

435

Correctness

Let π denote a path reaching v after which a computation of

an edge with e follows.

Then there is a maximal suffix of π such that for every edge

k = (u, lab, u′) in the suffix:

e ∈ [[lab]]♯A(A[u] ∪ B[u])

In particular, no variable in e receives a new value.

Then Te = e; is inserted before the suffix.

T = e;

A A A A A

v

436

We conclude

• Whenever the value of e is required, e is available.

==⇒ correctness of the transformation

• Every T = e; which is inserted into a path corresponds to an

e which is replaced with T .

==⇒ non-degradation of the efficiency

437

1.8 Application: Loop-invariant Code

Example

for (i = 0; i < n; i++)

a[i] = b+ 3;

// The expression b+ 3 is recomputed in every iteration.

// This should be avoided !

438

The Control-flow Graph

3

2

4

5

7

6

0

1

i = 0;

Neg(i < n) Pos(i < n)

y = b+ 3;

A1 = A+ i;

i = i+ 1;

M [A1] = y;

439

Caveat T = b+ 3; may not be placed before the loop :

3

4

5

7

6

2

1

0

i = 0;

Neg(i < n) Pos(i < n)

A1 = A+ i;

i = i+ 1;

T = b+ 3;

y = T ;

M [A1] = y;

==⇒ There is no decent place for T = b+ 3;.

440

Idea Transform into a do-while-loop ...

3

2

4

5

0

1

i = 0;

67

Pos(i < n)

A1 = A+ i;

i = i+ 1;

Neg(i < n)

Neg(i < n) Pos(i < n)

y = b+ 3;

M [A1] = y;

441

... now there is a place for T = e;.

3

2

4

5

67

0

1

i = 0;

A1 = A+ i;

i = i+ 1;

Neg(i < n) Pos(i < n)

Neg(i < n)

Pos(i < n)

T = b+ 3;

y = T ;

M [A1] = y;

442

Application of T5 (PRE) :

3

2

4

5

0

1

i = 0;

67

Pos(i < n)

A1 = A+ i;

i = i+ 1;

Neg(i < n)

Neg(i < n) Pos(i < n)

y = b+ 3;

M [A1] = y;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {b+ 3}

3 {b+ 3} ∅

4 {b+ 3} ∅

5 {b+ 3} ∅

6 {b+ 3} ∅

7 ∅ ∅

443

Application of T5 (PRE) :

3

2

4

5

0

1

i = 0;

67

Pos(i < n)

A1 = A+ i;

i = i+ 1;

Neg(i < n)

Neg(i < n) Pos(i < n)

y = b+ 3;

M [A1] = y;

A B

0 ∅ ∅

1 ∅ ∅

2 ∅ {b+ 3}

3 {b+ 3} ∅

4 {b+ 3} ∅

5 {b+ 3} ∅

6 {b+ 3} ∅

7 ∅ ∅

444

Conclusion

• Elimination of partial redundancies may move loop-invariant

code out of the loop.

• This only works properly for do-while-loops !

• To optimize other loops, we transform them into

do-while-loops before-hand:

while (b) stmt ==⇒ if (b)

do stmt

while (b);

==⇒ Loop Rotation

445

Problem

If we do not have the source program at hand, we must

re-construct potential loop headers

==⇒ Pre-dominators

u pre-dominates v , if every path π : start →∗ v contains u.

We write: u⇒ v .

“⇒” is reflexive, transitive and anti-symmetric.

446

Computation

We collect the nodes along paths by means of the analysis:

P = 2Nodes , ⊑ = ⊇

[[(_, _, v)]]♯ P = P ∪ {v}

Then the set P [v] of pre-dominators is given by:

P [v] =
⋂

{[[π]]♯ {start} | π : start →∗ v}

447

Since [[k]]♯ are distributive, the P [v] can computed by means

of fixpoint iteration ...

Example

3

2

4

5

0

1

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

448

The partial ordering “⇒” in the example:

3

2

4

0

1

5

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

449

Apparently, the result is a tree.

In fact, we have:

Theorem

Every node v has at most one immediate pre-dominator.

Proof

Assume:

there are u1 6= u2 which immediately pre-dominate v.

If u1 ⇒ u2 then u1 not immediate.

Consequently, u1, u2 are incomparable.

450

Now for every π : start →∗ v :

π = π1 π2 with π1 : start →
∗ u1

π2 : u1 →
∗ v

If, however, u1, u2 are incomparable, then there is path:

start →∗ v avoiding u2 :

start u1

u2
u2

v

451

Now for every π : start →∗ v :

π = π1 π2 with π1 : start →
∗ u1

π2 : u1 →
∗ v

If, however, u1, u2 are incomparable, then there is path:

start →∗ v avoiding u2 :

start u1

u2u2

v

452

Observation

The loop head of a while-loop pre-dominates every node in the

body.

A back edge from the exit u to the loop head v can be

identified through

v ∈ P [u]

Accordingly, we define:

453

Transformation 6

u

v

uu2 u2

lab

Pos (e)Neg (e)

v

lab

Pos (e)Neg (e)

Neg (e) Pos (e)

u2, v ∈ P[u]

u1 6∈ P[u]

u1 u1

We duplicate the entry check to all back edges.

454

... in the Example

3

2

4

5

7

0

1

i = 0;

6

Neg(i < n) Pos(i < n)

A1 = A+ i;

i = i+ 1;

y = b+ 3;

M [A1] = y;

455

... in the Example

3

2

4

5

7

0

1

i = 0;

6

Neg(i < n) Pos(i < n)

A1 = A+ i;

0, 1

0, 1, 2

0, 1, 2, 3, 4

0, 1, 2, 3

0, 1, 7

0

0, 1, 2, 3, 4, 5

0, 1, 2, 3, 4, 5, 6

i = i+ 1;

y = b+ 3;

M [A1] = y;

456

... in the Example

3

2

4

5

7

0

1

i = 0;

6

Neg(i < n) Pos(i < n)

A1 = A+ i;

0, 1

0, 1, 2

0, 1, 2, 3, 4

0, 1, 2, 3

0, 1, 7

0

0, 1, 2, 3, 4, 5

0, 1, 2, 3, 4, 5, 6

i = i+ 1;

M [A1] = y;

y = b+ 3;

457

... in the Example

3

2

4

5

7

0

1

i = 0;

6

Neg(i < n) Pos(i < n)

y = b+ 3;

A1 = A+ i;

0, 1

0, 1, 2

0, 1, 2, 3, 4

0, 1, 2, 3

0, 1, 7

0

0, 1, 2, 3, 4, 5

0, 1, 2, 3, 4, 5, 6

i = i+ 1;

Pos(i < n)Neg(i < n)

M [A1] = y;

458

Caveat

There are unusual loops which cannot be rotated:

3

2

0

4

1

3

2

0

1

4

Pre-dominators:

459

... but also common ones which cannot be rotated:

3

2

4

5

0

1

3

2

4

0

1

5

Here, the complete block between back edge and conditional jump

should be duplicated.

460

... but also common ones which cannot be rotated:

3

2

4

5

0

1

3

2

4

0

1

5

Here, the complete block between back edge and conditional jump

should be duplicated.

461

... but also common ones which cannot be rotated:

3

2

4

5

0

1

5

3

2

4

1

0

Here, the complete block between back edge and conditional jump

should be duplicated.

462

1.9 Eliminating Partially Dead Code

Example

0

1

2

3

4

T = x+ 1;

M [x] = T ;

x+ 1 need only be computed along one path.

463

Idea

0

1

2

3

4

0

1

2

3

4

T = x+ 1;

M [x] = T ; M [x] = T ;

T = x+ 1;

464

Problem

• The definition x = e; (x 6∈ Varse) may only be moved to

an edge where e is safe.

• The definition must still be available for uses of x.

==⇒

We define an analysis which maximally delays computations:

[[;]]♯D = D

[[x = e;]]♯D =

{

D\(Usee ∪ Def x) ∪ {x = e;} if x 6∈ Varse

D\(Usee ∪ Def x) if x ∈ Varse

465

... where:

Usee = {y = e′; | y ∈ Varse}

Def x = {y = e′; | y ≡ x ∨ x ∈ Varse′}

466

... where:

Usee = {y = e′; | y ∈ Varse}

Def x = {y = e′; | y ≡ x ∨ x ∈ Varse′}

For the remaining edges, we define:

[[x =M [e];]]♯D = D\(Usee ∪ Def x)

[[M [e1] = e2;]]
♯D = D\(Usee1 ∪ Usee2)

[[Pos(e)]]♯D = [[Neg(e)]]♯D = D\Usee

467

Caveat

We may move y = e; beyond a join only if y = e; can be

delayed along all joining edges:

0

1

2

3

4

T = x+ 1;

x =M [T];

Here, T = x+ 1; cannot be moved beyond 1 !!!

468

We conclude:

• The partial ordering of the lattice for delayability is given by

“⊇”.

• At program start: D0 = ∅.

Therefore, the sets D[u] of at u delayable assignments

can be computed by solving a system of constraints.

• We delay only assignments a where a a has the same

effect as a alone.

• The extra insertions render the original assignments as

assignments to dead variables ...

469

Transformation 7

v

u

lab lab

v

u

a ∈ D[u]\[[lab]]♯(D[u])

a ∈ [[lab]]♯(D[u])\D[v]

470

v1 v2

uu

v1 v2

Pos(e)Neg(e)

u

Pos(e)Neg(e)

a ∈ D[u]\[[Pos(e)]]♯(D[u])

a ∈ [[Neg(e)]]♯(D[u])\D[v1] a ∈ [[Pos(e)]]♯(D[u])\D[v2]

Remark

Transformation T7 is only meaningful, if we subsequently

eliminate assignments to dead variables by means of

transformation T2.

In the example, the partially dead code is eliminated:

471

0

1

2

3

4

T = x+ 1;

M [x] = T ;

D

0 ∅

1 {T = x+ 1;}

2 {T = x+ 1;}

3 ∅

4 ∅

472

0

1

4

2

3

M [x] = T ;

T = x+ 1;T = x+ 1;

T = x+ 1;
D

0 ∅

1 {T = x+ 1;}

2 {T = x+ 1;}

3 ∅

4 ∅

473

0

1

4

2

3

M [x] = T ;

T = x+ 1;

;

;

L

0 {x}

1 {x}

2 {x}

2′ {x, T}

3 ∅

4 ∅

474

Remarks

• After T7 , all original assignments y = e; with y 6∈ Varse

are assignments to dead variables and thus can always be

eliminated.

• By this, it can be proven that the transformation is guaranteed

to be non-degradating efficiency of the code.

• Similar to the elimination of partial redundancies, the

transformation can be repeated.

475

Conclusion

→ The design of a meaningful optimization is non-trivial.

→ Many transformations are advantageous only in connection

with other optimizations !

→ The ordering of applied optimizations matters !!

→ Some optimizations can be iterated !!!

476

... a meaningful ordering:

T4 Constant Propagation

Interval Analysis

Alias Analysis

T6 Loop Rotation

T1, T3, T2 Available Expressions

T2 Dead Variables

T7, T2 Partially Dead Code

T5, T3, T2 Partially Redundant Code

477

2 Replacing Expensive Operations by

Cheaper Ones

2.1 Reduction of Strength

(1) Evaluation of Polynomials

f (x) = an · x
n + an−1 · x

n−1 + . . .+ a1 · x+ a0

Multiplications Additions

naive 1
2
n(n+ 1) n

re-use 2n− 1 n

Horner-Scheme n n

478

Idea

f (x) = (. . . ((an · x+ an−1) · x+ an−2) . . .) · x+ a0

(2) Tabulation of a polynomial f(x) of degree n :

→ To recompute f(x) for every argument x is too expensive.

→ Luckily, the n-th differences are constant !!!

479

Example: f(x) = 3x3 − 5x2 + 4x+ 13

n f(n) ∆ ∆2 ∆3

0 13 2 8 18

1 15 10 26

2 25 36

3 61

4 . . .

Here, the n-th difference is always

∆n
h(f) = n! · an · h

n (h step width)

480

Costs

• n times evaluation of f ;

• 1
2
· (n− 1) · n subtractions to determine the ∆k ;

• n additions for every further value.

==⇒

Number of multiplications only depends on n.

481

Simple Case: f (x) = a1 · x+ a0

• ... naturally occurs in many numerical loops.

• The first differences are already constant:

f (x+ h)− f (x) = a1 · h

• Instead of the sequence: yi = f (x0 + i · h) , i ≥ 0

we compute: y0 = f (x0) , ∆ = a1 · h

yi = yi−1 +∆ , i > 0

482

Example

for (i = i0; i < n; i = i+ h) {

A = A0 + b · i;

M [A] = . . . ;

}

2

0

1

5

6

3

4

i = i0;

Pos(i < n)Neg(i < n)

A = A0 + b · i;

i = i+ h;

M [A] = . . . ;

483

... or, after loop rotation:

i = i0;

if (i < n) do {

A = A0 + b · i;

M [A] = . . . ;

i = i+ h;

} while (i < n);

2

0

5

6

3

4

1
Pos(i < n)Neg(i < n)

i = i0;

A = A0 + b · i;

i = i+ h;

M [A] = . . . ;

Neg(i < n) Pos(i < n)

484

... and reduction of strength:

i = i0;

if (i < n) {

∆ = b · h;

A = A0 + b · i0;

do {

M [A] = . . . ;

i = i+ h;

A = A+∆;

} while (i < n);

}

2

5

6

3

4

0

1

Neg(i < n) Pos(i < n)

i = i0;

Neg(i < n)

Pos(i < n)

M [A] = . . . ;

i = i+ h;

A = A+∆;

∆ = b · h;

A = A0 + b · i;

485

Caveat

• The values b, h, A0 must not change their values during

the loop.

• i, A may be modified at exactly one position in the loop.

• One may try to eliminate the variable i altogether :

→ i may not be used else-where.

→ The initialization must be transformed into:

A = A0 + b · i0 .

→ The loop condition i < n must be transformed into:

A < N for N = A0 + b · n .

→ b must always be different from zero !!!

486

Approach

Identify

. . . loops;

. . . iteration variables;

. . . constants;

. . . the matching use structures.

487

Loops:

... are identified through the node v with back edge (_, _, v).

For the sub-graph Gv of the cfg on {w | v ⇒ w}, we define:

Loop[v] = {w | w →∗ v in Gv}

488

Example

3

2

4

5

0

1

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

489

Example

3

2

4

0

1

5

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

490

Example

0

1

2

3

4

5

P

0 {0}

1 {0, 1}

2 {0, 1, 2}

3 {0, 1, 2, 3}

4 {0, 1, 2, 3, 4}

5 {0, 1, 5}

491

We are interested in edges which during each iteration are

executed exactly once:

u

v

This property can be expressed by means of the pre-dominator

relation ...

492

Assume that (u, _, v) is the back edge.

Then edges k = (u1, _, v1) could be selected such that:

• v pre-dominates u1;

• u1 pre-dominates v1;

• v1 predominates u

and is not contained in an inner loop.

493

Assume that (u, _, v) is the back edge.

Then edges k = (u1, _, v1) could be selected such that:

• v pre-dominates u1;

• u1 pre-dominates v1;

• v1 predominates u.

and is not contained in an inner loop.

On the level of source programs, this is trivial:

do { s1 . . . sk

} while (e);

The desired assignments must be among the si without

preceeding jumps.

494

Iteration Variable

i is an iteration variable if the only definition of i inside the loop

occurs at an edge which separates the body and is of the form:

i = i+ h;

for some loop constant h.

A loop constant is simply a constant (e.g., 42), or slightly more

libaral, an expression which only depends on variables which are

not modified during the loop.

495

(3) Differences for Sets

Consider the fixpoint computation:

x = ∅;

for (t = F x; t 6⊆ x; t = F x;)

x = x ∪ t;

If F is distributive, it could be replaced by:

x = ∅;

for (∆ = F x; ∆ 6= ∅; ∆ = (F ∆) \ x;)

x = x ∪∆;

The function F must only be computed for the smaller sets ∆

semi-naive iteration

496

Instead of the sequence: ∅ ⊆ F (∅) ⊆ F 2 (∅) ⊆ . . .

we compute: ∆1 ∪ ∆2 ∪ . . .

where: ∆i+1 = F (F i(∅))\F i(∅)

= F (∆i)\(∆1 ∪ . . . ∪∆i) with ∆0 = ∅

Assume that the costs of F x is 1 + #x .

Then the costs may sum up to:

naive 1 + 2 + . . .+ n+ n = 1
2
n(n+ 3)

semi-naive 2n

where n is the cardinality of the result.

==⇒ A linear factor is saved.

497

2.2 Peephole Optimization

Idea

• Slide a small window over the program.

• Optimize agressively inside the window, i.e.,

→ Eliminate redundancies!

→ Replace expensive operations inside the window by

cheaper ones!

498

Examples

y =M [x]; x = x+ 1; ==⇒ y =M [x++];

// given that there is a specific post-increment instruction

z = y − a+ a; ==⇒ z = y;

// algebraic simplifications

x = x; ==⇒ ;

x = 0; ==⇒ x = x⊕ x;

x = 2 · x; ==⇒ x = x+ x;

499

Important Subproblem: nop-Optimization

v

u

;

lab

v

u

lab

→ If (v1, ;, v) is an edge, v1 has no further out-going

edge.

→ Consequently, we can identify v1 and v .

→ The ordering of the identifications does not matter.

500

Implementation

• We construct a function next : Nodes → Nodes with:

next u =

{

next v if (u, ;, v) edge

u otherwise

Caveat: This definition is only recursive if there are ;-loops.

• We replace every edge:

(u, lab, v) ==⇒ (u, lab, next v)

... whenever lab 6= ;

• All ;-edges are removed.

501

Example

3

2

4

5

6

1

7

0

;

;

next 1 = 1

next 3 = 4

next 5 = 6

502

Example

2

4

6

1

7

0

3

5

next 1 = 1

next 3 = 4

next 5 = 6

503

2. Subproblem: Linearization

After optimization, the CFG must again be brought into a linear

arrangement of instructions.

Caveat

Not every linearization is equally efficient !!!

504

Example

0

1

2

3

4

Pos (e1)Neg (e1)

Pos (e2)

Neg (e2)

0:

1: if (e1) goto 2;

4: halt

2: body

3: if (e2) goto 4;

goto 1;

Bad: The loop body is jumped into.

505

Example

0

1

2

3

4

Pos (e1)Neg (e1)

Pos (e2)

Neg (e2)

0:

1: if (!e1) goto 4;

2: body

3: if (!e2) goto 1;

4: halt

goto

// better cache behavior

506

Idea

• Assign to each node a temperature!

• always jumps to

(1) nodes which have already been handled;

(2) colder nodes.

• Temperature ≈ nesting-depth

For the computation, we use the pre-dominator tree and strongly

connected components ...

507

... in the Example:

0

1

2

3

4

Pos (e1)Neg (e1)

Pos (e2)

Neg (e2)

1

2

3

0

4

The sub-tree with back edge is hotter ...

508

... in the Example:

0

1

2

3

4

Pos (e1)Neg (e1)

Pos (e2)

Neg (e2)

1

1

1

0

0

1

2

3

0

4

509

More Complicated Example

1

2

0

7

3

4

5

6

3

4

5

6

0

1

27

510

More Complicated Example

1

2

0

7

3

4

5

6

3

4

5

6

0

1

27

511

More Complicated Example

1

2

0

7

3

4

5

6

2

1

3

4

5

6

0

1

27

Loop[3]

Loop[1]

512

Our definition of Loop implies that (detected) loops are

necessarily nested.

It is also meaningful for do-while-loops with breaks ...

1

2

0

3

4

5

0

1

4 532

513

Our definition of Loop implies that (detected) loops are

necessarily nested.

It is also meaningful for do-while-loops with breaks ...

1

2

0

3

4

5

0

1

4 532

2

1

514

Summary: The Approach

(1) For every node, determine a temperature;

(2) Pre-order-DFS over the CFG;

→ If an edge leads to a node we already have

generated code for, then we insert a jump.

→ If a node has two successors with different

temperature, then we insert a jump to the colder of

the two.

→ If both successors are equally warm, then it does not

matter.

515

2.3 Procedures

We extend our mini-programming language by procedures without

parameters and procedure calls.

For that, we introduce a new statement:

f();

Every procedure f has a definition:

f () { stmt∗ }

Additionally, we distinguish between global and local variables.

Program execution starts with the call of a procedure main () .

516

Example

int a, ret;

main () {

a = 3;

f();

M [17] = ret;

ret = 0;

}

f () {

int b;

if (a ≤ 1) {ret = 1;goto exit; }

b = a;

a = b− 1;

f();

ret = b · ret;

exit :

}

Such programs can be represented by a set of CFGs: one for

each procedure ...

517

... in the Example:

0

2

1

3

4

5

6

7

8

9

10

11

main()

a = 3;

f();

M [17] = ret;

ret = 0;

ret = 1;

f ()

Neg (a ≤ 1) Pos (a ≤ 1)

b = a;

ret = b ∗ ret;

f();

a = b− 1;

518

In order to optimize such programs, we require an extended

operational semantics.

Program executions are no longer paths, but forests:

f();

g1(); g2();

519

... in the Example:

43210

9 118765

9 118765

5 10 11

f()

f()

f()

520

The function [[.]] is extended to computation forests: w :

[[w]] : (Vars → Z)× (N→ Z)→ (Vars → Z)× (N→ Z)

For a call k = (u, f();, v) we must:

• determine the initial values for the locals:

enter ρ = {x 7→ 0 | x ∈ Locals} ⊕ (ρ|Globals)

• ... combine the new values for the globals with the old values

for the locals:

combine (ρ1, ρ2) = (ρ1|Locals)⊕ (ρ2|Globals)

• ... evaluate the computation forest inbetween:

[[k 〈w〉]] (ρ, µ) = let (ρ1, µ1) = [[w]] (enter ρ, µ)

in (combine (ρ, ρ1), µ1)

521

Caveat

• In general, [[w]] is only partially defined.

• Dedicated global/local variables ai, bi, ret can be used to

simulate specific calling conventions.

• The standard operational semantics relies on configurations

which maintain a call stack.

• Computation forests are better suited for the construction of

analyses and correctness proofs.

• It is an awkward (but useful) exercise to prove the

equivalence of the two approaches ...

522

Configurations

configuration == stack × store

store == globals × (N→ Z)

globals == (Globals → Z)

stack == frame · frame∗

frame == point × locals

locals == (Locals → Z)

A frame specifies the local state of computation inside a

procedure call.

The leftmost frame corresponds to the current call.

523

Computation steps refer to the current call.

The novel kinds of steps:

call k = (u, f ();, v) :

((u, ρ) · σ, 〈γ, µ〉) =⇒ ((uf , {x→ 0 | x ∈ Locals}) · (v, ρ) · σ, 〈γ, µ〉)

uf entry point of f

return:

((rf , _) · σ, 〈γ, µ〉) =⇒ (σ, 〈γ, µ〉)

rf return point of f

524

The call stack explicitly implements the DFS traversal through the

computation forest.

... in the Example:

1

525

The call stack explicitly implements the DFS traversal through the

computation forest.

... in the Example:

2

5 b 7→ 0

526

The call stack explicitly implements the DFS traversal through the

computation forest.

... in the Example:

2

7 b 7→ 3

527

The call stack explicitly implements the DFS traversal through the

computation forest.

... in the Example:

2

5

9 b 7→ 3

b 7→ 0

528

The call stack explicitly implements the DFS traversal through the

computation forest.

... in the Example:

2

9

7

b 7→ 3

b 7→ 2

529

The call stack explicitly implements the DFS traversal through the

computation forest.

... in the Example:

2

5

9

9 b 7→ 3

b 7→ 2

b 7→ 0

530

The call stack explicitly implements the DFS traversal through the

computation forest.

... in the Example:

2

9

9

11

b 7→ 2

b 7→ 3

b 7→ 0

531

The call stack explicitly implements the DFS traversal through the

computation forest.

... in the Example:

2

9

9

b 7→ 3

b 7→ 2

532

The call stack explicitly implements the DFS traversal through the

computation forest.

... in the Example:

2

9

11

b 7→ 3

b 7→ 2

533

The call stack explicitly implements the DFS traversal through the

computation forest.

... in the Example:

2

9 b 7→ 3

534

The call stack explicitly implements the DFS traversal through the

computation forest.

... in the Example:

2

11 b 7→ 3

535

The call stack explicitly implements the DFS traversal through the

computation forest.

... in the Example:

2

536

This operational semantics is quite realistic.

Costs for a Procedure Call

Before entering the body: • Creating a stack frame;

• assigning of the parameters;

• Saving the registers;

• Saving the return address;

• Jump to the body.

At procedure exit: • Freeing the stack frame.

• Restoring the registers.

• Passing of the result.

• Return behind the call.

==⇒ ... quite expensive !!!

537

1. Idea: Inlining

Copy the procedure body at every call site !!!

Example

abs () {

a2 = −a1;

max ();

}

max () {

if (a1 < a2) { ret = a2; goto _exit ; }

ret = a1;

_exit :

}

538

... yields:

abs () {

a2 = −a1;

if (a1 < a2) { ret = a2; goto _exit ; }

ret = a1;

_exit :

}

539

Problems

• The copied block may modify the locals of the calling

procedure ???

• More general: Multiple use of local variable names may lead

to errors.

• Multiple calls of a procedure may lead to code duplication.

• How can we handle recursion ???

540

Detection of Recursion

We construct the call-graph of the program.

In the Examples:

main f

abs max

541

Call-Graph

• The nodes are the procedures.

• An edge connexts g with h , whenever the body of g

contains a call of h .

Strategies for Inlining

• Just copy leaf-procedures, i.e., procedures without further

calls.

• Copy all non-recursive procedures!

... here, we consider just leaf-procedures.

542

Transformation 9

u

v

v

u

xf = 0; (x ∈ Locals)

;

f();

copy

of f

543

Remark

• The Nop-edge can be eliminated if the stop-node of f has

no out-going edges ...

• The xf are the copies of the locals of the procedure f .

• According to our semantics of procedure calls, these must be

initialized with 0.

544

2. Idea: Elimination of Tail Recursion

f () { int b;

if (a2 ≤ 1) { ret = a1; goto _exit ; }

b = a1 · a2;

a2 = a2 − 1;

a1 = b;

f ();

_exit :

}

After the procedure call, nothing in the body remains to be done.

==⇒ We may directly jump to the beginning.

... after having reset the locals to 0.

545

... this yields in the Example:

f () { int b;

_f : if (a2 ≤ 1) { ret = a1; goto _exit ; }

b = a1 · a2;

a2 = a2 − 1;

a1 = b;

b = 0; goto _f ;

_exit :

}

// It works, since we have ruled out references to variables!

546

Transformation 11

v

u

f() :v

u

f();

f() :

x = 0; (x ∈ Locals)

547

Caveat

→ This optimization is crucial for programming languages

without iteration constructs !!!

→ Duplication of code is not necessary.

→ No variable renaming is necessary.

→ The optimization may also be profitable for non-recursive tail

calls.

→ The corresponding code may contain jumps from the body

of one procedure into the body of another ???

548

Background 4: Interprocedural Analysis

So far, we can analyze each procedure separately.

→ The costs are moderate.

→ The methods also work in presence of separate compilation.

→ At procedure calls, we must assume the worst case.

→ Constant propagation only works for local constants.

Question

How can recursive programs be analyzed ???

549

Example: Constant Propagation

main() { int t;

t = 0;

if (t) M [17] = 3;

a1 = t;

work ();

ret = 1− ret;

}

work() {

if (a1) work();

ret = a1;

}

550

Example: Constant Propagation

7

8

0

4

5

1

2

3

6

ret = 1− ret;

work();

9

10

main()

t = 0;

Pos (t)Neg (t)

M [17] = 3;

a1 = t;

work();

Neg (a1) Pos (a1)

ret = a1;

work ()

551

Example: Constant Propagation

70

4

5

1

3

9

10

6

ret = 1;

main()

t = 0;

2

work0();

work0 ()

8

ret = 0;

a1 = 0;

552

(1) Functional Approach

Let D denote a complete lattice of (abstract) states.

Idea

Represent the effect of f() by a function:

[[f]]♯ : D→ D

553

Micha Sharir, Tel Aviv University Amir Pnueli, Weizmann Institute

554

In order to determine the effect of a call edge k = (u, f ();, v) we

require abstract functions:

enter♯ : D→ D

combine♯ : D2 → D

Then we define:

[[k]]♯ D = combine♯ (D, [[f]]♯ (enter♯ D))

555

... for Constant Propagation:

D = (Vars → Z⊤)⊥

enter♯ D =

{

⊥ if D = ⊥

D|Globals ⊕ {x 7→ 0 | x ∈ Locals} otherwise

combine♯ (D1, D2) =

{

⊥ if D1 = ⊥ ∨D2 = ⊥

D1|Locals ⊕D2|Globals otherwise

556

The effects [[f]]♯ then can be determined by a system of

constraints over the complete lattice D→ D :

[[v]]♯ ⊒ Id v entry point

[[v]]♯ ⊒ [[k]]♯ ◦ [[u]]♯ k = (u, _, v) edge

[[f]]♯ ⊒ [[stopf]]
♯ stopf end point of f

[[v]]♯ : D→ D describes the effect of all prefixes of computation

forests w of a procedure which lead from the entry point to v.

557

Problems

• How can we represent functions f : D→ D ???

• If #D =∞ , then D→ D has infinite strictly increasing

chains.

Simplification: Copy-Constants

→ Conditions are interpreted as ;.

→ Only assignments x = e; with e ∈ Vars ∪ Z are treated

exactly.

558

Observation

→ The effects of assignments are:

[[x = e;]]♯ D =















D ⊕ {x 7→ c} if e = c ∈ Z

D ⊕ {x 7→ (D y)} if e = y ∈ Vars

D ⊕ {x 7→ ⊤} otherwise

→ Let V denote the (finite !!!) set of constant right-hand

sides. Then variables may only take values from V⊤.

→ The occurring effects can be taken from

Df → Df with Df = (Vars → V⊤)⊥

→ The complete lattice is huge, but finite !!!

559

Improvement

→ Not all functions from Df → Df will occur.

→ All occurring functions λD.⊥ 6= M are of the form:

M = {x 7→ (bx ⊔
⊔

y∈Ix
y) | x ∈ Vars} where:

M D = {x 7→ (bx ⊔
⊔

y∈Ix
D y) | x ∈ Vars} für D 6= ⊥

→ Let M denote the set of all these functions. Then for

M1,M2 ∈M (M1 6= λD. ⊥ 6=M2) :

(M1 ⊔M2) x = (M1 x) ⊔ (M2 x)

→ For k = #Vars , M has height O(k2).

560

Improvement (Cont.)

→ Also, composition can be directly implemented:

(M1 ◦M2) x = b′ ⊔
⊔

y∈I′ y with

b′ = b ⊔
⊔

z∈I bz

I ′ =
⋃

z∈I Iz where

M1 x = b ⊔
⊔

y∈I y

M2 z = bz ⊔
⊔

y∈Iz
y

→ The effects of assignments then are:

[[x = e;]]♯ =















IdVars ⊕ {x 7→ c} if e = c ∈ Z

IdVars ⊕ {x 7→ y} if e = y ∈ Vars

IdVars ⊕ {x 7→ ⊤} otherwise

561

... in the Example:

[[t = 0;]]♯ = {a1 7→ a1, ret 7→ ret, t 7→ 0 }

[[a1 = t;]]♯ = { a1 7→ t , ret 7→ ret, t 7→ t}

In order to implement the analysis, we additionally must construct

the effect of a call k = (_, f ();, _) from the effect of a procedure

f :

[[k]]♯ = H ([[f]]♯) where:

H (M) = Id|Locals ⊕ (M ◦ enter♯)|Globals

enter♯ x =

{

x if x ∈ Globals

0 otherwise

562

... in the Example:

If [[work]]♯ = {a1 7→ a1, ret 7→ a1, t 7→ t}

then H [[work]]♯ = Id{t} ⊕ {a1 7→ a1, ret 7→ a1}

= {a1 7→ a1, ret 7→ a1, t 7→ t}

Now we can perform fixpoint iteration ...

563

7

8

work();

9

10

Neg (a1) Pos (a1)

ret = a1;

work ()

1

7 {a1 7→ a1, ret 7→ ret, t 7→ t}

9 {a1 7→ a1, ret 7→ ret, t 7→ t}

10 {a1 7→ a1, ret 7→ a1, t 7→ t}

8 {a1 7→ a1, ret 7→ ret, t 7→ t}

[[(8, . . ., 9)]]♯ ◦ [[8]]♯ = {a1 7→ a1, ret 7→ a1, t 7→ t} ◦

{a1 7→ a1, ret 7→ ret, t 7→ t}

= {a1 7→ a1, ret 7→ a1, t 7→ t}

564

7

8

work();

9

10

Neg (a1) Pos (a1)

ret = a1;

work ()

2

7 {a1 7→ a1, ret 7→ ret, t 7→ t}

9 {a1 7→ a1, ret 7→ a1 ⊔ ret, t 7→ t}

10 {a1 7→ a1, ret 7→ a1, t 7→ t}

8 {a1 7→ a1, ret 7→ ret, t 7→ t}

[[(8, . . ., 9)]]♯ ◦ [[8]]♯ = {a1 7→ a1, ret 7→ a1, t 7→ t} ◦

{a1 7→ a1, ret 7→ ret, t 7→ t}

= {a1 7→ a1, ret 7→ a1, t 7→ t}

565

If we know the effects of procedure calls, we can put up a

constraint system for determining the abstract state when reaching

a program point:

R[main] ⊒ enter♯ d0

R[f] ⊒ enter♯ (R[u]) k = (u, f ();, _) call

R[v] ⊒ R[f] v entry point of f

R[v] ⊒ [[k]]♯ (R[u]) k = (u, _, v) edge

566

... in the Example:

0

4

5

1

2

3

6

ret = 1− ret;

main()

t = 0;

Pos (t)Neg (t)

M [17] = 3;

a1 = t;

work();

0 {a1 7→ ⊤, ret 7→ ⊤, t 7→ 0}

1 {a1 7→ ⊤, ret 7→ ⊤, t 7→ 0}

2 {a1 7→ ⊤, ret 7→ ⊤, t 7→ 0}

3 {a1 7→ ⊤, ret 7→ ⊤, t 7→ 0}

4 {a1 7→ 0, ret 7→ ⊤, t 7→ 0}

5 {a1 7→ 0, ret 7→ 0, t 7→ 0}

6 {a1 7→ 0, ret 7→ ⊤, t 7→ 0}

567

Discussion

• At least copy-constants can be determined interprocedurally.

• For that, we had to ignore conditions and complex

assignments.

• In the second phase, however, we could have been more

precise.

• The extra abstractions were necessary for two reasons:

(1) The set of occurring transformers M ⊆ D→ D

must be finite;

(2) The functions M ∈M must be efficiently

implementable.

• The second condition can, sometimes, be abandoned ...

568

Observation Sharir/Pnueli, Cousot

→ Often, procedures are only called for few distinct abstract

arguments.

→ Each procedure need only to be analyzed for these.

→ Put up a constraint system:

[[v, a]]♯ ⊒ a v entry point

[[v, a]]♯ ⊒ combine♯ ([[u, a]]♯, [[f, enter♯ [[u, a]]♯]]♯)

(u, f ();, v) call

[[v, a]]♯ ⊒ [[lab]]♯ [[u, a]]♯ k = (u, lab, v) edge

[[f, a]]♯ ⊒ [[stopf , a]]
♯ stopf end point of f

// [[v, a]]♯ == value for the argument a .

569

Discussion

• This constraint system may be huge.

• We do not want to solve it completely!!!

• It is sufficient to compute the correct values for all calls which

occur, i.e., which are necessary to determine the value

[[main(), a0]]
♯ ==⇒ We apply our local fixpoint algorithm !

• The fixpoint algo provides us also with the set of actual

parameters a ∈ D for which procedures are (possibly) called

and all abstract values at their program points for each of

these calls.

570

... in the Example:

Let us try a full constant propagation ...

0

4

5

1

2

3

6

ret = 1 − ret;

7

8

work();

9

10

main()

t = 0;

Pos (t)Neg (t)

M [17] = 3;

a1 = t;

work();

Pos (a1)

ret = a1;

work ()

Neg (a1)

a1 ret a1 ret

0 ⊤ ⊤ ⊤ ⊤

1 ⊤ ⊤ ⊤ ⊤

2 ⊤ ⊤ ⊥

3 ⊤ ⊤ ⊤ ⊤

4 ⊤ ⊤ 0 ⊤

7 0 ⊤ 0 ⊤

8 0 ⊤ ⊥

9 0 ⊤ 0 ⊤

10 0 ⊤ 0 0

5 ⊤ ⊤ 0 0

main() ⊤ ⊤ 0 1

571

Discussion

• In the Example, the analysis terminates quickly.

• If D has finite height, the analysis terminates if each

procedure is only analyzed for finitely many arguments.

• Analogous analysis algorithms have proved very effective for

the analysis of Prolog.

• Together with a points-to analysis and propagation of

negative constant information, this algorithm is the heart of a

very successful race analyzer for C with Posix threads.

572

(2) The Call-String Approach

Idea

→ Compute the set of all reachable call stacks!

→ In general, this is infinite.

→ Only treat stacks up to a fixed depth d precisely! From

longer stacks, we only keep the upper prefix of length d.

→ Important special case: d = 0.

==⇒ Just track the current stack frame ...

573

... in the Example:

7

8

0

4

5

1

2

3

6

ret = 1− ret;

work();

9

10

main()

t = 0;

Pos (t)Neg (t)

M [17] = 3;

a1 = t;

work();

Neg (a1) Pos (a1)

ret = a1;

work ()

574

... in the Example:

7

8

0

4

5

1

2

3

6

10

9

ret = a1;

main()

t = 0;

Pos (t)Neg (t)

ret = 1− ret;

combine

enter

enter

M [17] = 3;

a1 = t;

work ()

Neg (a1) Pos (a1)

combine

575

The conditions for 5, 7, 10 , e.g., are:

R[5] ⊒ combine♯ (R[4],R[10])

R[7] ⊒ enter♯ (R[4])

R[7] ⊒ enter♯ (R[8])

R[9] ⊒ combine♯ (R[8],R[10])

Caveat

The resulting super-graph contains obviously impossible paths ...

576

... in the Example this is:

7

8

0

4

5

1

2

3

6

10

9

ret = a1;

main()

t = 0;

Pos (t)Neg (t)

ret = 1− ret;

combine

enter

enter

M [17] = 3;

a1 = t;

work ()

Neg (a1) Pos (a1)

combine

577

... in the Example this is:

7

8

0

4

5

1

2

3

6

10

9

ret = a1;

main()

t = 0;

Pos (t)Neg (t)

ret = 1− ret;

combine

enter

enter

M [17] = 3;

a1 = t;

work ()

Neg (a1) Pos (a1)

combine

578

Note:

→ In the example, we find the same results:

more paths render the results less precise.

In particular, we provide for each procedure the result just

for one (possibly very boring) argument.

→ The analysis terminates — whenever D has no infinite

strictly ascending chains.

→ The correctness is easily shown w.r.t. the operational

semantics with call stacks.

→ For the correctness of the functional approach, the

semantics with computation forests is better suited.

579

3 Exploiting Hardware Features

Question: How can we optimally use:

... Registers

... Pipelines

... Caches

... Processors ???

580

3.1 Registers

Example

x =M [A];

y = x+ 1;

if (y) {

z = x · x;

M [A] = z;

} else {

t = −y · y;

M [A] = t;

} 8

1

2

3

64

5 7

z = x · x;

Neg (y) Pos (y)

M [A] = t; M [A] = z;

t = −y · y;

y = x+ 1; ;

x = M [A];

581

The program uses 5 variables ...

Problem

What if the program uses more variables than there are registers.

Idea

Use one register for several variables.

In the example, e.g., one for x, t, z ...

582

x =M [A];

y = x+ 1;

if (y) {

z = x · x;

M [A] = z;

} else {

t = −y · y;

M [A] = t;

} 8

1

2

3

64

5 7

z = x · x;

Neg (y) Pos (y)

M [A] = t; M [A] = z;

t = −y · y;

y = x+ 1; ;

x = M [A];

583

R =M [A];

y = R+ 1;

if (y) {

R = R ·R;

M [A] = R;

} else {

R = −y · y;

M [A] = R;

} 8

1

2

3

64

5 7

Neg (y) Pos (y)

R = −y · y;

M [A] = R; M [A] = R;

R = M [A];

y = R+ 1;

R = R ·R;

584

Caveat

This is only possible if the live ranges do not overlap.

The (true) live range of x is defined by:

L[x] = {u | x ∈ L[u]}

... in the Example:

585

8

1

2

3

64

5 7

z = x · x;

Neg (y) Pos (y)

M [A] = t; M [A] = z;

t = −y · y;

y = x+ 1; ;

x = M [A];

L

8 ∅

7 {A, z}

6 {A, x}

5 {A, t}

4 {A, y}

3 {A, x, y}

2 {A, x}

1 {A}

0 ∅

586

8

1

2

3

64

5 7

z = x · x;

Neg (y) Pos (y)

M [A] = t; M [A] = z;

t = −y · y;

zt

x

y

x = M [A];

y = x+ 1;

L

8 ∅

7 {A, z}

6 {A, x}

5 {A, t}

4 {A, y}

3 {A, x, y}

2 {A, x}

1 {A}

0 {A}

587

8

1

2

3

64

5 7

z = x · x;

Neg (y) Pos (y)

M [A] = t; M [A] = z;

t = −y · y;

zt

x

y

x = M [A];

y = x+ 1;

Live Ranges:

A {0, . . . , 7}

x {2, 3, 6}

y {2, 4}

t {5}

z {7}

588

In order to determine sets of compatible variables, we construct the

Interference Graph I = (Vars , EI) where:

EI = {{x, y} | x 6= y,L[x] ∩ L[y] 6= ∅}

EI has an edge for x 6= y iff x, y are jointly live at some

program point.

... in the Example:

589

8

1

2

3

64

5 7

z = x · x;

Neg (y) Pos (y)

M [A] = t; M [A] = z;

t = −y · y;

zt

x

y

x = M [A];

y = x+ 1;

Interference Graph:

A

t z

y x

590

Variables which are not connected with an edge can be assigned

to the same register.

A

t z

y x

Color == Register

591

Variables which are not connected with an edge can be assigned

to the same register.

A

t z

y x

Color == Register

592

Sviatoslav Sergeevich Lavrov,

Russian Academy of Sciences (1962)

593

Gregory J. Chaitin, University of Maine (1981)

594

Abstract Problem

Given: Undirected Graph (V,E) .

Wanted: Minimal coloring, i.e., mapping c : V → N with

(1) c(u) 6= c(v) for {u, v} ∈ E;

(2)
⊔

{c(u) | u ∈ V } minimal!

• In the example, 3 colors suffice. But:

• In general, the minimal coloring is not unique.

• It is NP-complete to determine whether there is a coloring

with at most k colors.

==⇒

We must rely on heuristics or special cases.

595

Greedy Heuristics

• Start somewhere with color 1;

• Next choose the smallest color which is different from the

colors of all already colored neighbors;

• If a node is colored, color all neighbors which not yet have

colors;

• Deal with one component after the other ...

596

... more concretely:

forall (v ∈ V) c[v] = 0;

forall (v ∈ V) color (v);

void color (v) {

if (c[v] 6= 0) return;

neighbors = {u ∈ V | {u, v} ∈ E};

c[v] =

⊔

{k > 0 | ∀ u ∈ neighbors : k 6= c(u)};

forall (u ∈ neighbors)

if (c(u) == 0) color (u);

}

The new color can be easily determined once the neighbors are

sorted according to their colors.

597

Discussion

→ Essentially, this is a Pre-order DFS.

→ In theory, the result may arbitrarily far from the optimum

→ ... in practice, it may not be as bad.

→ ... Anecdote: different variants have been patented !!!

598

Discussion

→ Essentially, this is a Pre-order DFS.

→ In theory, the result may arbitrarily far from the optimum

→ ... in practice, it may not be as bad.

→ ... Anecdote: different variants have been patented !!!

The algorithm works the better the smaller life ranges are ...

Idea: Life Range Splitting

599

Special Case: Basic Blocks

L

x, y, z

A1 = x+ y; x, z

M [A1] = z; x

x = x+ 1; x

z =M [A1]; x, z

t =M [x]; x, z, t

A2 = x+ t; x, z, t

M [A2] = z; x, t

y =M [x]; y, t

M [y] = t;

x

t

z y

600

Special Case: Basic Blocks

L

x, y, z

A1 = x+ y; x, z

M [A1] = z; x

x = x+ 1; x

z =M [A1]; x, z

t =M [x]; x, z, t

A2 = x+ t; x, z, t

M [A2] = z; x, t

y =M [x]; y, t

M [y] = t;

x

t

z y

601

The live ranges of x, y and z can be split:

L

x, y, z

A1 = x+ y; x, z

M [A1] = z; x

x1 = x+ 1; x1

z1 =M [A1]; x1, z1

t =M [x1]; x1, z1, t

A2 = x1 + t; x1, z1, t

M [A2] = z1; x1, t

y1 =M [x1]; y1, t

M [y1] = t;

x

z y

t

x1

y1z1

602

The live ranges of x and z can be split:

L

x, y, z

A1 = x+ y; x, z

M [A1] = z; x

x1 = x+ 1; x1

z1 =M [A1]; x1, z1

t =M [x1]; x1, z1, t

A2 = x1 + t; x1, z1, t

M [A2] = z1; x1, t

y1 =M [x1]; y1, t

M [y1] = t;

x

z y

t

x1

z1 y1

603

Interference graphs for minimal live ranges on basic blocks are

known as interval graphs:

vertex === interval

edge === joint vertex

604

The covering number of a vertex is given by the number of incident

intervals.

Theorem

maximal covering number

=== size of the maximal clique

=== minimally necessary number of colors

Graphs with this property (for every sub-graph) are called perfect ...

A minimal coloring can be found in polynomial time.

605

Idea

→ Conceptually iterate over the vertices 0, . . . ,m− 1 !

→ Maintain a list of currently free colors.

→ If an interval starts, allocate the next free color.

→ If an interval ends, free its color.

This results in the following algorithm:

606

free = [1, . . . , k];

for (i = 0; i < m; i++) {

init[i] = []; exit[i] = [];

}

forall (I = [u, v] ∈ Intervals) {

init[u] = (I :: init[u]); exit[v] = (I :: exit[v]);

}

for (i = 0; i < m; i++) {

forall (I ∈ init[i]) {

color[I] = hd free; free = tl free;

}

forall (I ∈ exit[i]) free = color[I] :: free;

}

607

Discussion

→ For arbitrary programs, we thus may apply some heuristics

for graph coloring ...

→ If the number of real register does not suffice, the remaining

variables are spilled into a fixed area on the stack.

→ Generally, variables from inner loops are preferably held in

registers ==⇒ color variables at hot program points first!

→ For basic blocks we have succeeded to derive an optimal

register allocation.

The number of required registers could even be determined

before-hand !

→ This works only once live ranges have been split.

→ Splitting of live ranges for full programs results programs in

static single assignment form ...

608

Discussion

• Every live variable should be defined at most once ??

• Every live variable should have at most one definition ?

• All definitions of the same variable should have a common

end point !!!

==⇒ Static Single Assignment Form

609

Example

while (x < y) {

if (x > 7) {

y = x;

break;

}

x = x+ 1;

}
7

4

2

1

3
Neg(x < y)

y = x;

x = x+ 1;

Pos(x > 7)

Pos(x < y)

Neg(x > 7)

610

How to arrive at SSA Form

Step 0:

Before every every join point insert edges for parallel

assignments. Initially, the parallel assignment is empty.

If the node v is the start point of the program, we add auxiliary

edges whenever there are further ingoing edges into v:

The Transformation SSA, Step 0

vv

u1

uk

u1

uk

l1

lk

l1

lk

where k ≥ 2.

611

Moreover, program start is interpreted as (the end point of) a

definition of every variable x.

The Transformation SSA, Step 0 (cont.)

vv

uk

u1

uk

u1

l1

lklk

l1

where k ≥ 1.

612

... Our Example

7

4

2

1

3
Neg(x < y)

y = x;

x = x+ 1;

Pos(x > 7)

Pos(x < y)

Neg(x > 7)

==⇒

7

4

2 3

5

81

0

6

Neg(x < y)
x = x+ 1;

Pos(x > 7)

y = x;

Pos(x < y)

Neg(x > 7)

613

Step 1:

Transform the program such that each program point v is

reached by at most one definition of a variable x which is

live at v.

Step 2:

Introduce a separate copy xh for every occurrence of a

definition of a variable x !

Replace every use of x with the use of the reaching copy xh ...

614

Implementing Step 1

• Determine for every program point the set of reaching

definitions.

• Assumption

All incoming edges of a join point v are labeled with the same

parallel assignment x = x | x ∈ Lv for some set Lv.

Initially, Lv = ∅ for all v.

• If the join point v is reached by more than one definition

for the same variable x which is live at program point v ,

insert x into Lv, i.e., add definitions x = x; at the end of

each incoming edge of v.

615

Example Reaching Definitions

7

4

2 3

5

81

0

6

Neg(x < y)
x = x+ 1;

Pos(x > 7)

y = x;

Pos(x < y)

Neg(x > 7)

ψ1

ψ7

ψ7

ψ1

R

0 〈x, 0〉, 〈y, 0〉

1 〈x, 0〉, 〈x, 8〉, 〈y, 0〉

2 〈x, 0〉, 〈x, 8〉, 〈y, 0〉

3 〈x, 0〉, 〈x, 8〉, 〈y, 0〉

4 〈x, 0〉, 〈x, 8〉, 〈y, 0〉

5 〈x, 0〉, 〈x, 8〉, 〈y, 5〉

6 〈x, 0〉, 〈x, 8〉, 〈y, 0〉

7 〈x, 0〉, 〈x, 8〉, 〈y, 0〉, 〈y, 5〉

8 〈x, 8〉, 〈y, 0〉

Accordingly, we set ψ1 ≡ x = x and ψ7 ≡ x = x | y = y

616

Reaching Definitions

The complete lattice R for this analysis is given by:

R = 2Defs

where

Defs = Vars × Nodes Defs(x) = {x} × Nodes

Then:

[[(_, x = r;, v)]]♯R = R\Defs(x) ∪ {〈x, v〉}

[[(_, x = x | x ∈ L, v)]]♯R = R\
⋃

x∈LDefs(x) ∪ {〈x, v〉 | x ∈ L}

The ordering on R is given by subset inclusion ⊆ where the

value at program start is given by R0 = {〈x, start〉 | x ∈ Vars}.

617

The Transformation SSA, Step 1

vv

ψ

ψ
u1

uk uk

u1

where k ≥ 2.

The label ψ of the new in-going edges for v is given by:

ψ ≡ {x = x | x ∈ L[v],#(R[v] ∩ Defs(x)) > 1}

618

Discussion

• Recall: program start is interpreted as (the end point of) a

definition of every variable x.

• At some edges, parallel definitions ψ are introduced !

• Some of them may be useless.

619

Discussion

• Recall: program start is interpreted as (the end point of) a

definition of every variable x.

• At some edges, parallel definitions ψ are introduced !

• Some of them may be useless.

Improvement

• We introduce assignments x = x before v only if the sets

of reaching definitions for x at incoming edges of v differ !

• This introduction is repeated until every v is reached by

exactly one definition for each variable live at v.

620

... in Our Example

7

4

2

1

3
Neg(x < y)

y = x;

x = x+ 1;

Pos(x > 7)

Pos(x < y)

Neg(x > 7)

==⇒

7

4

2 3

5

81

0

6

Neg(x < y)
x = x+ 1;

Pos(x > 7)

y = x;

Pos(x < y)

Neg(x > 7)

x = x;

y = y;

y = y;

x = x;

621

Theorem

Assume that every program point in the controlflow graph is

reachable from start and that every left-hand side of a definition

is live. Then:

1. The algorithm for inserting definitions x = x terminates after

at most m+ 1 rounds were m is the number of program

points with more than one in-going edges.

2. After termination, for every program point u, the set R[u] has

exactly one definition for every variable x which is live at u.

622

Discussion

The efficiency crucially depends on the number of iterations. If the

cfg is well-structured, it terminates already after one iteration !

623

Discussion

The efficiency crucially depends on the number of iterations. If the

cfg is well-structured, it terminates already after one iteration !

A well-structured cfg can be reduced to a single vertex or edge by:

v0

v1

v0

v1

v v

624

Discussion

The efficiency crucially depends on the number of iterations. If the

cfg is well-structured, it terminates already after one iteration !

A well-structured cfg can be reduced to a single vertex or edge by:

v0

v1

v0

v1

v v

v0

u

v1 v1

v0

625

Discussion (cont.)

• Reducible cfgs are not the exception — but the rule.

• In Java, reducibility is only violated by loops with

breaks/continues.

• If the insertion of definitions does not terminate after k

iterations, we may immediately terminate the procedure by

inserting definitions x = x before all nodes which are

reached by more than one definition of x.

Assume now that every program point u is reached by exactly

one definition for each variable which is live at u ...

626

The Transformation SSA, Step 2

Each edge (u, lab, v) is replaced with (u, Tv,φ[lab], v) where

φx = xu′ if 〈x, u′〉 ∈ R[u] and:

Tv,φ[;] = ;

Tv,φ[Neg(e)] = Neg(φ(e))

Tv,φ[Pos(e)] = Pos(φ(e))

Tv,φ[x = e] = xv = φ(e)

Tv,φ[x =M [e]] = xv =M [φ(e)]

Tv,φ[M [e1] = e2] = M [φ(e1)] = φ(e2)]

Tv,φ[{x = x | x ∈ L}] = {xv = φ(x) | x ∈ L}

627

Remark

The multiple assignments:

pa = x(1)v = x(1)v1
| . . . | x(k)v = x(k)vk

in the last row are thought to be executed in parallel, i.e.,

[[pa]] (ρ, µ) = (ρ⊕ {x(i)v 7→ ρ(x(i)vi) | i = 1, . . . , k}, µ)

628

Example

7

1

x = x− 1;

y = x ∗ y;

Pos(x > 1)Neg(x > 1)

36

4

5

2

0

M [R] = y;

y = 1;

x =M [I];

ψψ

ψ = x = x | y = y

629

Example

7

1

36

4

5

2

0
x1 =M [I];

y1 = 1;

Pos(x3 > 1)Neg(x3 > 1)

x2 = x3 − 1;

M [R] = y3;

ψ1 ψ2

y2 = x3 ∗ y3;

ψ1 = x3 = x1 | y3 = y1

ψ2 = x3 = x2 | y3 = y2

630

Theorem

Assume that every program point is reachable from start and

the program is in SSA form without assignments to dead variables.

Let λ denote the maximal number of simultaneously live

variables and G the interference graph of the program variables.

Then:

λ = ω(G) = χ(G)

where ω(G), χ(G) are the maximal size of a clique in G and the

minimal number of colors for G, respectively.

A minimal coloring of G, i.e., an optimal register allocation can be

found in polynomial time.

631

Discussion

• By the theorem, the number λ of required registers can be

easily computed.

• Thus variables which are to be spilled to memory, can be

determined ahead of the subsequent assignment of registers.

• Thus we may, e.g., insist on keeping iteration variables from

inner loops.

632

Discussion

• By the theorem, the number λ of required registers can be

easily computed.

• Thus variables which are to be spilled to memory, can be

determined ahead of the subsequent assignment of registers.

• Thus here, we may, e.g., insist on keeping iteration variables

from inner loops.

• Clearly, always λ ≤ ω(G) ≤ χ(G).

Therefore, it suffices to color the interference graph with λ

colors.

• Instead, we provide an algorithm which directly operates on

the cfg ...

633

Observation

• Live ranges of variables in programs in SSA form behave

similar to live ranges in basic blocks.

• Consider some dfs spanning tree T of the cfg with root

start.

• For each variable x, the live range L[x] forms a tree

fragment of T .

• A tree fragment is a subtree from which some subtrees have

been removed ...

634

Example

7

36

4

5

2

1

0

x = x− 1;

Neg(x > 1)

x =M [i];

y = 1;

y = x ∗ y;M [a] = y;

Pos(x > 1)
3

4

5

6

2

1

0

7

635

Discussion

• Although the example program is not in SSA form, all live

ranges still form tree fragments.

• The intersection of tree fragments is again a tree fragment !

• A set C of tree fragments forms a clique iff their intersection is

non-empty !!!

• The greedy algorithm will find an optimal coloring ...

636

Proof of the Intersection Property

(1) Assume I1 ∩ I2 6= ∅ and vi is the root of Ii. Then:

v1 ∈ I2 or v2 ∈ I1

(2) Let C denote a clique of tree fragments.

Then there is an enumeration C = {I1, . . . , Ir} with roots

v1,. . . ,vr such that

vi ∈ Ij for all j ≤ i

In particular, vr ∈ Ii for all i.

637

The Greedy Algorithm

forall (u ∈ Nodes) visited [u] = false;

forall (x ∈ L[start]) Γ(x) = extract(free);

alloc(start);

void alloc (Node u) {

visited [u] = true;

forall ((lab, v) ∈ edges [u])

if (¬visited [v]) {

forall (x ∈ L[u]\L[v]) insert(free,Γ(x));

forall (x ∈ L[v]\L[u]) Γ(x) = extract(free);

alloc (v);

}

}

638

Example

8

1

2

3

64

5 7

Neg (y) Pos (y)

z = x · x;

M [A] = z;

t = −y · y;

M [A] = t;

y = x+ 1;

x = M [A];

639

Example

8

1

2

3

64

5 7

Neg (y) Pos (y)

z = x · x;

M [A] = z;

t = −y · y;

M [A] = t;

y = x+ 1;

x = M [A];

8

1

2

3

64

5 7

Pos (R2)

M [A] = R1;

Neg (R2)

R1 = −R2 ·R2;

M [A] = R1;

R1 = R1 ·R1

R1 = M [A];

R2 = R1 + 1;

640

Remark

• Intersection graphs for tree fragments are also known as

chordal graphs ...

• A chordal graph is an undirected graph where every cycle

with more than three nodes contains a cord.

• Chordal graphs are another sub-class of perfect graphs.

• Cheap register allocation comes at a price:

when transforming into SSA form, we have introduced parallel

register-register moves.

641

Problem

The parallel register assignment:

ψ1 = R1 = R2 | R2 = R1

is meant to exchange the registers R1 and R2.

There are at least two ways of implementing this exchange ...

642

Problem

The parallel register assignment:

ψ1 = R1 = R2 | R2 = R1

is meant to exchange the registers R1 and R2.

There are at least two ways of implementing this exchange ...

(1) Using an auxiliary register:

R = R1;

R1 = R2;

R2 = R;

643

(2) XOR:

R1 = R1 ⊕R2;

R2 = R1 ⊕R2;

R1 = R1 ⊕R2;

644

(2) XOR:

R1 = R1 ⊕R2;

R2 = R1 ⊕R2;

R1 = R1 ⊕R2;

But what about cyclic shifts such as:

ψk = R1 = R2 | . . . | Rk−1 = Rk | Rk = R1

for k > 2 ??

645

(2) XOR:

R1 = R1 ⊕R2;

R2 = R1 ⊕R2;

R1 = R1 ⊕R2;

But what about cyclic shifts such as:

ψk = R1 = R2 | . . . | Rk−1 = Rk | Rk = R1

for k > 2 ??

Then at most k − 1 swaps of two registers are needed:

ψk = R1 ↔ R2;

. . .

Rk−1 ↔ Rk;

646

Next complicated case: Permutations

• Every permutation can be decomposed into a set of disjoint

shifts.

• Any permutation of n registers with r shifts can be realized by

n− r swaps ...

647

Next complicated case: Permutations

• Every permutation can be decomposed into a set of disjoint

shifts.

• Any permutation of n registers with r shifts can be realized by

n− r swaps ...

Example

ψ = R1 = R2 | R2 = R5 | R3 = R4 | R4 = R3 | R5 = R1

consists of the cycles (R1, R2, R5) and (R3, R4). Therefore:

ψ = R1 ↔ R2;

R2 ↔ R5;

R3 ↔ R4;

648

The general case

• Every register receives its value at most once.

• The assignment therefore can be decomposed into a

permutation together with tree-like assignments (directed

towards the leaves) ...

Example

ψ = R1 = R2 | R2 = R4 | R3 = R5 | R5 = R3

The parallel assignment realizes the linear register moves for

R1, R2 and R4 together with the cyclic shift for R3 and R5:

ψ = R1 = R2;

R2 = R4;

R3 ↔ R5;

649

Interprocedural Register Allocation

→ For every local variable, there is an entry in the stack frame.

→ Before calling a function, the locals must be saved into the

stack frame and be restored after the call.

→ Sometimes there is hardware support.

Then the call is transparent for all registers.

→ If it is our responsibility to save and restore, we may ...

• save only registers which are over-written;

• restore overwritten registers only.

→ Alternatively, we save only registers which are still live after

the call — and then possibly into different registers ==⇒

reduction of life ranges

650

3.2 Instruction Level Parallelism

Modern processors do not execute one instruction after the other

strictly sequentially.

Here, we consider two approaches:

(1) VLIW (Very Large Instruction Words)

(2) Pipelining

651

VLIW

One instruction simultaneously executes up to k (e.g., 4)

elementary Instructions.

Pipelining

Instruction execution may overlap.

Example

w = (R1 = R2 +R3 | D = D1 ∗D2 | R3 =M [R4])

652

Caveat

• Instructions occupy hardware ressources.

• Instructions may access the same busses/registers ==⇒

hazards

• Results of an instruction may be available only after some

delay.

• During execution, different parts of the hardware are involved:

Fetch Decode Execute Write

• During Execute and Write different internal

registers/busses/alus may be used.

653

We conclude:

Distributing the instruction sequence into sequences of words is

amenable to various constraints ...

In the following, we ignore the phases Fetch und Decode.

Examples for Constraints

(1) at most one load/store per word;

(2) at most one jump;

(3) at most one write into the same register.

654

Example Timing:
Floating-point Operation 3

Load/Store 2

Integer Arithmetic 1

Timing Diagram:

���
���
���

���
���
���

5 −1 2 0.3

R1 R2 R3 D

17.4

49

1

0

1

2

3

R3 is over-written, after the addition has fetched 2.

655

If a register is accessed simultaneously (here: R3), a strategy of

conflict solving is required ...

Conflicts

Read-Read: A register is simultaneously read.

==⇒ in general, unproblematic.

Read-Write: A register is simultaneously read and written.

Conflict Resolution:

• ... ruled out!

• Read is delayed (stalls), until write has terminated!

• Read before write returns old value!

656

Write-Write: A register is simultaneously written to.

==⇒ in general, unproblematic.

Conflict Resolutions:

• ... ruled out!

In Our Examples ...

• simultaneous read is permitted;

• read before write;

• write/write is ruled out;

• no stalls are injected.

We first consider basic blocks, i.e., linear sequences of

assignments ...

657

Idea: Data Dependence Graph

Vertices Instructions

Edges Dependencies

Example

(1) x = x+ 1;

(2) y =M [A];

(3) t = z;

(4) z =M [A+ x];

(5) t = y + z;

658

Possible Dependencies

Definition → Use // Reaching Definitions

Use → Definition // ???

Definition → Definition // Reaching Definitions

Reaching Definitions:

Determine for each u which definitions may reach ==⇒ can

be determined by means of a system of constraints.

659

... in the Example:

3

4

1

2

6

5

x = x+ 1;

y =M [A];

t = z;

z =M [A+ x];

t = y + z;

R

1 {〈x, 1〉, 〈y, 1〉, 〈z, 1〉, 〈t, 1〉}

2 {〈x, 2〉, 〈y, 1〉, 〈z, 1〉, 〈t, 1〉}

3 {〈x, 2〉, 〈y, 3〉, 〈z, 1〉, 〈t, 1〉}

4 {〈x, 2〉, 〈y, 3〉, 〈z, 1〉, 〈t, 4〉}

5 {〈x, 2〉, 〈y, 3〉, 〈z, 5〉, 〈t, 4〉}

6 {〈x, 2〉, 〈y, 3〉, 〈z, 5〉, 〈t, 6〉}

660

Let Ui, Di denote the sets of variables which are used or

defined at the edge outgoing from ui . Then:

(u1, u2) ∈ DD if u1 ∈ R[u2] ∧D1 ∩D2 6= ∅

(u1, u2) ∈ DU if u1 ∈ R[u2] ∧D1 ∩ U2 6= ∅

... in the Example:

Def Use

1 x = x+ 1; {x} {x}

2 y =M [A]; {y} {A}

3 t = z; {t} {z}

4 z =M [A+ x]; {z} {A, x}

5 t = y + z; {t} {y, z}

DU

DU DD

DU UD

DDDD DD DD

1 2 3

4

5

t = z;

z = M [A+ x];

t = y + z;

x = x+ 1; y = M [A];

•

661

Let Ui, Di denote the sets of variables which are used or

defined at the edge outgoing from ui . Then:

(u1, u2) ∈ DU if u1 ∈ R[u2] ∧D1 ∩ U2 6= ∅

... in the Example:

Def Use

1 x1 = x+ 1; {x1} {x}

2 y =M [A]; {y} {A}

3 t = z; {t} {z}

4 z1 =M [A+ x1]; {z1} {A, x1}

5 t1 = y + z1; {t1} {y, z1}

DU

DU

DU

DU DU DUDU

1 2 3

4

5

t = z;

z1 =M [A+ x1];

t1 = y + z1;

x1 = x+ 1; y =M [A];

•

662

The UD-edge (3, 4) has been inserted to exclude that z is

over-written before use.

In the next step, each instruction is annotated with its (required

ressources, in particular, its) execution time.

Our goal is a maximally parallel correct sequence of words.

For that, we maintain the current system state:

Σ : Vars → N

Σ(x) =̂ expected delay until x is available

Initially:

Σ(x) = 0

As an invariant, we guarantee on entry of the basic block, that all

operations are terminated.

663

Then the slots of the word sequence are successively filled:

• We start with the minimal nodes in the dependence graph.

• If we fail to fill all slots of a word, we insert ; .

• After every inserted instruction, we re-compute Σ .

Caveat

→ The execution of two VLIWs can overlap !!!

→ Determining an optimal sequence, is NP-hard ...

664

Example: Word width k = 2

Word State

1 2 x y z t

0 0 0 0

x = x+ 1 y =M [A] 0 1 0 0

t = z z =M [A+ x] 0 0 1 0

0 0 0 0

t = y + z 0 0 0 0

In each cycle, the execution of a new word is triggered.

The state just records the number of cycles still to be waited for the

result.

665

Remark

• If instructions put constraints on future selection, we also

record these in Σ .

• Overall, we still distinuish just finitely many system states.

• The computation of the effect of a VLIW onto Σ can be

compiled into a finite automaton !!!

• This automaton, though, could be quite huge.

• The challenge of making choices still remains.

• Basic blocks usually are not very large

==⇒ opportunities for parallelization are limited.

666

Extension 1: Acyclic Code

if (x > 1) {

y =M [A];

z = x− 1;

} else {

y =M [A+ 1];

z = x− 1;

}

y = y + 1;

The dependence graph must be enriched with extra

control-dependencies ...

667

DUDU

Pos Neg
z = x− 1;

y =M [A];

y = y + 1;

x > 1

y =M [A+ 1];

•

The statement z = x− 1; is executed with the same arguments

in both branches and does not modify any of the remaining

variables.

We could have moved it before the if anyway.

668

The following code could be generated:

z = x− 1 if (!(x > 0)) goto A

y =M [A]

goto B

A : y =M [A+ 1]

B : y = y + 1

At every jump target, we guarantee the invariant.

669

If we allow several (known) states on entry of a sub-block, we can

generate code which complies with all of these.

... in the Example:

z = x− 1 if (!(x > 0)) goto A

y =M [A] goto B

A : y =M [A+ 1]

B :

y = y + 1

670

If this parallelism is not yet sufficient, we could try to speculatively

execute possibly useful tasks ...

For that, we require:

• an idea which alternative is executed more frequently;

• the wrong execution may not end in a catastrophy, i.e.,

run-time errors such as, e.g., division by 0;

• the wrong execution must allow roll-back (e.g., by delaying a

commit) or may not have any observational effects ...

671

... in the Example:

z = x− 1 y =M [A] if (x > 0) goto B

y =M [A+ 1]

B :

y = y + 1

In the case x ≤ 0 we have y =M [A] executed in advance.

This value, however, is overwritten in the next step ...

In general:

x = e; has no observable effect in a branch if x is dead in this

branch.

672

Extension 2: Unrolling of Loops

We may unrole important, i.e., inner loops several times:

PosNeg Pos

Pos
Neg

Neg

673

Now it is clear which side of tests to prefer:

the side which stays within the unroled body of the loop.

Caveat

• The different instances of the body are translated relative to

possibly different initial states.

• The code behind the loop must be correct relative to the exit

state corresponding to every jump out of the loop!

674

Example

for (x = 0; x < n; x++)

M [A+ x] = z;

1

0

2

3

4

5

x = 0;

Neg (x < n) Pos (x < n)

M [A+ x] = z;

x = x+ 1;

Duplication of the body yields:

675

for (x = 0; x < n; x++) {

M [A+ x] = z;

x = x+ 1;

if (!(x < n)) break;

M [A+ x] = z;

}
8

1

0

2

3

4

6

7

5

x = 0;

Neg (x < n) Pos (x < n)

M [A+ x] = z;

x = x+ 1;

Pos (x < n)Neg (x < n)

M [A+ x] = z;

x = x+ 1;

676

It would be better to remove x = x+ 1; together with the test in

the middle — since these serialize execution of the copies !!

This is possible if x+ 1 is substituted for x in the second copy,

the condition is transformed and compensation code is added:

for (x = 0; x+ 1 < n; x = x+ 2) {

M [A+ x] = z;

M [A+ x+ 1] = z;

}

if (x < n) {

M [A+ x] = z;

x = x+ 1;

}

2

4

6

0

3

5

1

M [A+ x] = z;

x = x+ 2;

M [A+ x] = z;

x = x+ 1;

x = 0;

M [A+ x+ 1] = z;

Neg (x+ 1 < n) Pos (x+ 1 < n)

Pos (x < n)Neg (x < n)

677

Discussion

• Elimination of the intermediate test together with the the

fusion of all increments at the end reveals that the different

loop iterations are in fact independent.

• Nonetheless, we do not gain much since we only allow one

store per word.

• If right-hand sides, however, are more complex, we can

interleave their evaluation with the stores.

678

Extension 3

Sometimes, one loop alone does not provide enough opportunities

for parallelization.

... but perhaps two successively in a row ...

Example

for (x = 0; x < n; x++) {

R1 = B[x];

S1 = C[x];

T1 = R1 + S1;

A[x] = T1;

}

for (x = 0; x < n; x++) {

R2 = B[x];

S2 = C[x];

T2 = R2 − S2;

C[x] = T2;

}

679

In order to fuse two loops into one, we require that:

• the iteration schemes coincide;

• the two loops access different data.

In case of individual variables, this can easily be verified.

This is more difficult in presence of arrays.

Taking the source program into account, accesses to distinct

statically allocated arrays can be identified.

An analysis of accesses to the same array is significantly more

difficult ...

680

Assume that the blocks A, B, C are distinct.

Then we can combine the two loops into:

for (x = 0; x < n; x++) {

R1 = B[x];

S1 = C[x];

T1 = R1 + S1;

A[x] = T1;

R2 = B[x];

S2 = C[x];

T2 = R2 − S2;

C[x] = T2;

}

681

The first loop may in iteration x not read data which the second

loop writes to in iterations < x .

The second loop may in iteration x not read data which the first

loop writes to in iterations > x .

If the index expressions of jointly accessed arrays are linear, the

given constraints can be verified through integer linear

programming ...

i ≥ 0

i ≤ x− 1

xwrite = i

xread = x

xread = xwrite

// xread read access to C by 1st loop

// xwrite write access to C by 2nd loop

... obviously has no solution.

682

General Form:

s ≥ t1

t2 ≥ s

y1 = s1

y2 = s2

y1 = y2

for linear expressions s, t1, t2, s1, s2 over i and the iteration

variables.

This can be simplified to:

0 ≤ s− t1 0 ≤ t2 − s 0 = s1 − s2

What should we do with it ???

683

Simple Case:

The two inequations have no solution over Q.

Then they also have no solution over Z.

... in Our Example:

x = i

0 ≤ i = x

0 ≤ x− 1− i = −1

The second inequation has no solution.

684

One Variable:

The inequations where x occurs positive, provide lower

bounds.

The inequations where x occurs negative, provide upper

bounds.

If G,L are the greatest lower and the least upper bound,

respectively, then all (integer) solution are in the interval [G,L].

Example

0 ≤ 13− 7 · x

0 ≤ −1 + 5 · x
⇐⇒

x ≤ 13
7

x ≥ 1
5

The only integer solution of the system is x = 1.

685

Discussion

• Solutions only matter within the bounds to the iteration

variables.

• Every integer solution there provides a conflict.

• Fusion of loops is possible if no conflicts occur.

• The given special case suffices to solve the case one variable

over Z.

• The number of variables in the inequations corresponds to the

nesting-depth of for-loops ==⇒ in general, is quite small.

686

Discussion

• Integer Linear Programming (ILP) can decide satisfiability of a

finite set of equations/inequations over Z of the form:

n
∑

i=1

ai · xi = b bzw.

n
∑

i=1

ai · xi ≥ b , ai ∈ Z

• Moreover, a (linear) cost function can be optimized.

• Warning: The decision problem is in general, already

NP-hard !!!

• Notwithstanding that, surprisingly efficient implementations

exist.

• Not just loop fusion, but also other re-organizations of loops

yield ILP problems ...

687

Background 5: Presburger Arithmetic

Many problems in computer science can be formulated without

multiplication.

Let us first consider two simple special cases ...

1. Linear Equations

2x + 3y = 24

x − y + 5z = 3

688

Question

• Is there a solution over Q ?

• Is there a solution over Z ?

• Is there a solution over N ?

Let us reconsider the equations:

2x + 3y = 24

x − y + 5z = 3

689

Answers

• Is there a solution over Q ? Yes

• Is there a solution over Z ? No

• Is there a solution over N ? No

Complexity

• Is there a solution over Q ? Polynomial

• Is there a solution over Z ? Polynomial

• Is there a solution over N ? NP-hard

690

Solution Method for Integers

Observation 1

a1x1 + . . .+ akxk = b (∀ i : ai 6= 0)

has a solution iff

gcd{a1, . . . , ak} | b

691

Example

5y − 10z = 18

has no solution over Z.

Observation 2

Adding a multiple of one equation to another does not change the

set of solutions.

692

Example

5y − 10z = 18

has no solution over Z.

Observation 2

Adding a multiple of one equation to another does not change the

set of solutions.

693

Example

2x + 3y = 24

x − y + 5z = 3

==⇒

5y − 10z = 18

x − y + 5z = 3

694

Example

2x + 3y = 24

x − y + 5z = 3

==⇒

5y − 10z = 18

x − y + 5z = 3

695

Observation 3

Adding multiples of columns to another column is an invertible

transformation which we keep track of in a separate matrix ...

1 0 0 5y − 10z = 18

0 1 0 x − y + 5z = 3

0 0 1

==⇒

1 0 0 5y = 18

0 1 2 x − y + 3z = 3

0 0 1

696

Observation 3

Adding multiples of columns to another column is an invertible

transformation which we keep track of in a separate matrix ...

1 0 0 5y = 18

0 1 2 x − y + 3z = 3

0 0 1

==⇒

1 0 −3 5y = 18

0 1 2 x − y = 3

0 0 1

==⇒ triangular form !!

697

Observation 4

• A special solution of a triangular system can be directly read

off.

• All solutions of a homogeneous triangular system can be

directly read off.

• All solutions of the original system can be recovered from the

solutions of the triangular system by means of the

accumulated transformation matrix.

698

Example

1 0 −3 5y = 15

0 1 2 x − y = 3

0 0 1

One special solution:

[6, 3, 0]⊤

All solutions of the homogeneous system are spanned by:

[0, 0, 1]⊤

699

Solving over N

• ... is of major practical importance;

• ... has led to the development of many new techniques;

• ... easily allows to encode NP-hard problems;

• ... remains difficult if just three variables are allowed per

equation.

700

2. One Polynomial Special Case

x ≥ y + 5

19 ≥ x

y ≥ 13

y ≥ x− 7

• There are at most 2 variables per in-equation;

• no scaling factors.

701

Idea: Represent the system by a graph:

x y

5

−7

13

19

702

The in-equations are satisfiable iff

• the weight of every cycle are at most 0;

• the weights of paths reaching x are bounded by the weights of

edges from x into the sink.

==⇒

Apply Bellman-Ford algorithm!

703

x y

5

−7

13

19

704

x y

5

−7

13

19

705

x y

≤ 05−7

5

−7

13

19

706

y

5

−7

13

19

x

707

y

13+5 ≤ 19

5

−7

13

19

x

708

The in-equations are satisfiable iff

• the weight of every cycle are at most 0;

• the weights of paths reaching x are bounded by the weights of

edges from x into the sink.

==⇒

Apply Bellman-Ford algorithm!

709

3. A General Solution Method

Idea: Fourier-Motzkin Elimination

• Successively remove individual variables x !

• All in-equations with positive occurrences of x yield lower

bounds.

• All in-equations with negative occurrences of x yield

upper bounds.

• All lower bounds must be at most as big as all upper bounds.

710

Jean Baptiste Joseph Fourier, 1768–1830

711

Example

9 ≤ 4x1 + x2 (1)

4 ≤ x1 + 2x2 (2)

0 ≤ 2x1 − x2 (3)

6 ≤ x1 + 6x2 (4)

−11 ≤ −x1 − 2x2 (5)

−17 ≤ −6x1 + 2x2 (6)

−4 ≤ −x2 (7)

1

2

3

1 2 3 4 5

4

5

1

2

3

6

5
7

712

For x1 we obtain:

9 ≤ 4x1 + x2 (1)

4 ≤ x1 + 2x2 (2)

0 ≤ 2x1 − x2 (3)

6 ≤ x1 + 6x2 (4)

−11 ≤ −x1 − 2x2 (5)

−17 ≤ −6x1 + 2x2 (6)

−4 ≤ −x2 (7)

9
4
− 1

4
x2 ≤ x1 (1)

4− 2x2 ≤ x1 (2)

1
2
x2 ≤ x1 (3)

6− 6x2 ≤ x1 (4)

x1 ≤ 11− 2x2 (5)

x1 ≤ 17
6
+ 1

3
x2 (6)

−4 ≤ −x2 (7)

If such an x1 exists, all lower bounds must be bounded by all upper

bounds, i.e.,

713

9
4
− 1

4
x2 ≤ 11− 2x2 (1, 5)

9
4
− 1

4
x2 ≤

17
6
+ 1

3
x2 (1, 6)

4− 2x2 ≤ 11− 2x2 (2, 5)

4− 2x2 ≤
17
6
+ 1

3
x2 (2, 6)

1
2
x2 ≤ 11− 2x2 (3, 5)

1
2
x2 ≤

17
6
+ 1

3
x2 (3, 6)

6− 6x2 ≤ 11− 2x2 (4, 5)

6− 6x2 ≤
17
6
+ 1

3
x2 (4, 6)

−4 ≤ −x2 (7)

or

−35 ≤ −7x2 (1, 5)

− 7
12
≤ 7

12
x2 (1, 6)

−7 ≤ 0 (2, 5)

7
6
≤ 7

3
x2 (2, 6)

−22 ≤ −5x2 (3, 5)

−17
6
≤ −1

6
x2 (3, 6)

−5 ≤ 4x2 (4, 5)

19
6
≤ 19

3
x2 (4, 6)

−4 ≤ −x2 (7)

This is the one-variable case which we can solve exactly:

714

9
4
− 1

4
x2 ≤ 11− 2x2 (1, 5)

9
4
− 1

4
x2 ≤

17
6
+ 1

3
x2 (1, 6)

4− 2x2 ≤ 11− 2x2 (2, 5)

4− 2x2 ≤
17
6
+ 1

3
x2 (2, 6)

1
2
x2 ≤ 11− 2x2 (3, 5)

1
2
x2 ≤

17
6
+ 1

3
x2 (3, 6)

6− 6x2 ≤ 11− 2x2 (4, 5)

6− 6x2 ≤
17
6
+ 1

3
x2 (4, 6)

−4 ≤ −x2 (7)

or

−5 ≤ −x2 (1, 5)

−1 ≤ x2 (1, 6)

−7 ≤ 0 (2, 5)

1
2
≤ x2 (2, 6)

−22
5
≤ −x2 (3, 5)

−17 ≤ −x2 (3, 6)

−5
4
≤ x2 (4, 5)

1
2
≤ x2 (4, 6)

−4 ≤ −x2 (7)

This is the one-variable case which we can solve exactly:

715

max {−1, 1
2
,−5

4
, 1
2
} ≤ x2 ≤ min {5, 22

5
, 17, 4 }

From which we conclude: x2 ∈ [1
2
, 4].

In General:

• The original system has a solution over Q iff the system after

elimination of one variable has a solution over Q.

• Every elimination step may square the number of

in-equations ==⇒ exponential run-time.

• It can be modified such that it also decides satisfiability over

Z ==⇒ Omega Test

716

William Worthington Pugh, Jr.

University of Maryland, College Park

717

Idea

• We successively remove variables. Thereby we omit division

...

• If x only occurs with coefficient ±1, we apply

Fourier-Motzkin elimination.

• Otherwise, we provide a bound for a positive multiple of x ...

Consider, e.g., (1) and (6) :

6 · x1 ≤ 17 + 2x2

9− x2 ≤ 4 · x1

718

W.l.o.g., we only consider strict in-equations:

6 · x1 < 18 + 2x2

8− x2 < 4 · x1

... where we always divide by gcds:

3 · x1 < 9 + x2

8− x2 < 4 · x1

This implies:

3 · (8− x2) < 4 · (9 + x2)

719

We thereby obtain:

• If one derived in-equation is unsatisfiable, then also the

overall system.

• If all derived in-equations are satisfiable, then there is a

solution which, however, need not be integer.

• An integer solution is guaranteed to exist if there is sufficient

separation between lower and upper bound ...

• Assume α < a · x b · x < β .

Then it should hold that:

b · α < a · β

and moreover:

a · b < a · β − b · α

720

... in the Example:

12 < 4 · (9 + x2)− 3 · (8− x2)

or:

12 < 12 + 7x2

or:

0 < x2

In the example, also these strengthened in-equations are

satisfiable

==⇒ the system has a solution over Z.

721

Discussion

• If the strengthened in-equations are satisfiable, then also the

original system. The reverse implication may be wrong !

• In the case where some upper and lower bound is not

sufficiently separated, we have:

a · β ≤ b · α + a · b

or:

b · α < ab · x < b · α + a · b

Division with b yields:

α < a · x < α + a

==⇒ α + i = a · x for some i ∈ {1, . . . , a− 1}

==⇒ (α + a− 1)/a = x !!!

722

Discussion (cont.)

→ Fourier-Motzkin Elimination is not the best method for

rational systems of in-equations.

→ The Omega test is necessarily exponential.

If the system is solvable, the test generally terminates

rapidly.

It may have problems with unsolvable systems.

→ Also for ILP, there are other/smarter algorithms ...

→ For programming language problems, however, it seems to

behave quite well.

723

4. Generalization to a Logic

Disjunction

(x− 2y = 15 ∧ x+ y = 7) ∨

(x+ y = 6 ∧ 3x+ z = −8)

Quantors:

∃ x : z − 2x = 42 ∧ z + x = 19

==⇒ Presburger Arithmetic

724

4. Generalization to a Logic

Disjunction:

(x− 2y = 15 ∧ x+ y = 7) ∨

(x+ y = 6 ∧ 3x+ z = −8)

Quantors:

∃ x : z − 2x = 42 ∧ z + x = 19

==⇒ Presburger Arithmetic

725

Mojzesz Presburger, 1904–1943 (?)

726

Presburger Arithmetic == full arithmetic

without multiplication

Arithmetik : highly undecidable

even incomplete

==⇒ Hilbert’s 10th Problem

==⇒ Gödel’s Theorem

727

Presburger Arithmetic == full arithmetic

without multiplication

Arithmetic : highly undecidable

even incomplete

==⇒ Hilbert’s 10th Problem

==⇒ Gödel’s Theorem

728

Presburger Arithmetic == full arithmetic

without multiplication

Arithmetic : highly undecidable

even incomplete

==⇒ Hilbert’s 10th Problem

==⇒ Gödel’s Theorem

729

Presburger Formulas over N:

φ ::= x+ y = z | x = n |

φ1 ∧ φ2 | ¬φ |

∃ x : φ

Goal: Satisfiability

Find values for the free variables in N such that φ holds ...

730

Presburger Formulas over N:

φ ::= x+ y = z | x = n |

φ1 ∧ φ2 | ¬φ |

∃ x : φ

Goal: PSAT

Find values for the free variables in N such that φ holds ...

731

Idea: Code the values of the variables as Words

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

732

Idea: Code the values of the variables as Words

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

733

Idea: Code the values of the variables as Words

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

734

Idea: Code the values of the variables as Words

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

735

Idea: Code the values of the variables as Words

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

736

Idea: Code the values of the variables as Words

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

737

Idea: Code the values of the variables as Words

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

738

Idea: Code the values of the variables as Words

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

739

Idea: Code the values of the variables as Words

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

740

Idea: Code the values of the variables as Words

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

741

Observation

The set of satisfying variable assignments is regular !

742

Observation

The set of satisfying variable assignments is regular !

φ1 ∧ φ2 ==⇒ L(φ1) ∩ L(φ2) (Intersection)

¬φ ==⇒ Σ+\L(φ) (Complement)

∃ x : φ ==⇒ πx(L(φ)) (Projection)

743

Projecting away the x-component:

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

744

Projecting away the x-component:

1

1

1

0

1 1 1

111

1 1 1

1

10 0 0

0 0

0

0000

0 0

0

0

00

0 0

t

x

y

z

213

42

89

17

745

Caveat

• Our representation of numbers is not unique: 011101 should

be accepted iff some word from 011101 · 0∗ is accepted!

• This property is preserved by union, intersection and

complement.

• It is lost by projection !!!

==⇒ The automaton for projection must be enriched such that

the property is re-established !!

746

Automata for Basic Predicates

0 1 2 3

x = 5

0
1 10

747

Automata for Basic Predicates

0 100 11

0

00

x+x = y

10

01

10

748

Automata for Basic Predicates

0 1
111
010
100

000
011
101

0

000
011
101

x+y = z

110

001

110

749

Results

Ferrante, Rackoff,1973 : PSAT ≤ DSPACE(22
c·n

)

Fischer, Rabin,1974 : PSAT ≥ NTIME(22
c·n

)

750

Results

Ferrante, Rackoff,1973 : PSAT ≤ DSPACE(22
c·n

)

Fischer, Rabin,1974 : PSAT ≥ NTIME(22
c·n

)

751

3.3 Improving the Memory Layout

Goal

• Better utilization of caches

==⇒ reduction of the number of cache misses

• Reduction of allocation/de-allocation costs

==⇒ replacing heap allocation by stack allocation

==⇒ support to free superfluous heap objects

• Reduction of access costs

==⇒ short-circuiting indirection chains (Unboxing)

752

1. Cache Optimization

Idea: local memory access

• Loading from memory fetches not just one byte but fills a

complete cache line.

• Access to neighbored cells become cheaper.

• If all data of an inner loop fits into the cache, the iteration

becomes maximally memory-efficient ...

753

Possible Solutions

→ Reorganize the data accesses !

→ Reorganize the data !

Such optimizations can be made fully automatic only for arrays.

Example

for (j = 1; j < n; j++)

for (i = 1; i < m; i++)

a[i][j] = a[i− 1][j − 1] + a[i][j];

754

==⇒ At first, always iterate over the rows!

==⇒ Exchange the ordering of the iterations:

for (i = 1; i < m; i++)

for (j = 1; j < n; j++)

a[i][j] = a[i− 1][j − 1] + a[i][j];

When is this permitted???

755

Iteration Scheme: before:

756

Iteration Scheme: after:

757

Iteration Scheme: allowed dependencies:

758

In our case, we must check that the following equation systems

have no solution:

Write Read

(i1, j1) = (i2 − 1, j2 − 1)

i1 ≤ i2

j2 ≤ j1 − 1

(i1, j1) = (i2 − 1, j2 − 1)

i2 ≤ i1 − 1

j1 ≤ j2

// missed writes

implies: j2 ≤ j2 − 2 Hurra!

// surplus writes

implies: i2 ≤ i2 − 2 Hurra!

// (i1, j1) indices in original version

// (i2, j2) indices in transformed version

759

Example: Matrix-Matrix Multiplication

for (i = 0; i < N ; i++)

for (j = 0; j < M ; j++)

for (k = 0; k < K; k++)

c[i][j] = c[i][j] + a[i][k] · b[k][j];

Over b[][] the iteration is columnwise.

760

1 2 3 4

1

2

3

4

30

761

Exchange the two inner loops

for (i = 0; i < N ; i++)

for (k = 0; k < K; k++)

for (j = 0; j < M ; j++)

c[i][j] = c[i][j] + a[i][k] · b[k][j];

Is this permitted ???

762

1 32 4

1 2 3 4 1 4 9 16

763

Discussion

• Correctness follows as before.

• A similar idea can also be used for the implementation of

multiplication for row compressed matrices.

• Sometimes, the program must be massaged such that the

transformation becomes applicable.

• Matrix-matrix multiplication perhaps requires initialization of

the result matrix first ...

764

for (i = 0; i < N ; i++)

for (j = 0; j < M ; j++) {

c[i][j] = 0;

for (k = 0; k < K; k++)

c[i][j] = c[i][j] + a[i][k] · b[k][j];

}

• Now, the two iterations can no longer be exchanged.

• The iteration over j, however, can be duplicated ...

765

for (i = 0; i < N ; i++) {

for (j = 0; j < M ; j++) c[i][j] = 0;

for (j = 0; j < M ; j++)

for (k = 0; k < K; k++)

c[i][j] = c[i][j] + a[i][k] · b[k][j];

}

Correctness

==⇒ The read entries (here: no) may not be modified in the

remaining body of the loop !!!

==⇒ The ordering of the write accesses to a memory cell may

not be changed.

766

We obtain:

for (i = 0; i < N ; i++) {

for (j = 0; j < M ; j++) c[i][j] = 0;

for (k = 0; k < K; k++)

for (j = 0; j < M ; j++)

c[i][j] = c[i][j] + a[i][k] · b[k][j];

}

Discussion

• Instead of fusing several loops, we now have distributed the

loops.

• Accordingly, conditionals may be moved out of the loop

==⇒ if-distribution ...

767

Caveat

Instead of using this transformation, the inner loop could also be

optimized as follows:

for (i = 0; i < N ; i++)

for (j = 0; j < M ; j++) {

t = 0;

for (k = 0; k < K; k++)

t = t+ a[i][k] · b[k][j];

c[i][j] = t;

}

768

Idea

If we find heavily used array elements a[e1] . . . [er] whose index

expressions stay constant within the inner loop, we could instead

also provide auxiliary registers.

Caveat

The latter optimization prohibits the former and vice versa ...

769

Discussion

• so far, the optimizations are concerned with iterations over

arrays.

• Cache-aware organization of other data-structures is

possible, but in general not fully automatic ...

Example: Stacks

1 2 3 4

l

770

Advantage

+ The implementation is simple.

+ The operations push / pop require constant time.

+ The data-structure may grow arbitrarily.

Disadvantage

− The individual list objects may be arbitrarily dispersed over

the memory.

771

Alternative

a

sp

1 2 3 4

s

Advantage

+ The implementation is also simple.

+ The operations push / pop still require constant time.

+ The data are consequtively allocated; stack oscillations are

typically small

==⇒ better Cache behavior !!!

772

Disadvantage

− The data-structure is bounded.

Improvement

• If the array is full, replace it with another of double size !!!

• If the array drops empty to a quarter, halve the array again !!!

==⇒ The extra amortized costs are constant.

==⇒ The implementation is no longer so trivial.

773

Discussion

→ The same idea also works for queues.

→ Other data-structures are attempted to organize blockwise.

Problem: how can accesses be organized such that they

refer mostly to the same block ???

==⇒ Algorithms for external data

774

2. Stack Allocation instead of Heap Allocation

Problem

• Programming languages such as Java allocate all

data-structures in the heap — even if they are only used

within the current method.

• If no reference to these data survives the call, we want to

allocate these on the stack.

==⇒ Escape Analysis

775

Idea

Determine points-to information.

Determine if a created object is possibly reachable from the out

side ...

Example: Our Pointer Language

x = new();

y = new();

x[A] = y;

z = y;

ret = z;

... could be a possible method body.

776

Accessible from the outside world are memory blocks which:

• are assigned to a global variable such as ret; or

• are reachable from global variables.

... in the Example:

x = new();

y = new();

x[A] = y;

z = y;

ret = z ;

777

Accessible from the outside world are memory blocks which:

• are assigned to a global variable such as ret; or

• are reachable from global variables.

... in the Example:

x = new();

y = new();

x[A] = y;

z = y ;

ret = z ;

778

Accessible from the outside world are memory blocks which:

• are assigned to a global variable such as ret; or

• are reachable from global variables.

... in the Example:

x = new();

y = new() ;

x[A] = y;

z = y ;

ret = z ;

779

Accessible from the outside world are memory blocks which:

• are assigned to a global variable such as ret; or

• are reachable from global variables.

... in the Example:

x = new();

y = new() ;

x[A] = y;

z = y ;

ret = z ;

780

We conclude:

• The objects which have been allocated by the first new()

may never escape.

• They can be allocated on the stack.

Caveat

This is only meaningful if only few such objects are allocated

during a method call.

If a local new() occurs within a loop, we still may allocate the

objects in the heap.

781

Extension: Procedures

• We require an interprocedural points-to analysis.

• We know the whole program, we can, e.g., merge the

control-flow graphs of all procedures into one and compute

the points-to information for this.

• Caveat: If we always use the same global variables

y1, y2, . . . for (the simulation of) parameter passing, the

computed information is necessarily imprecise.

• If the whole program is not known, we must assume that each

reference which is known to a procedure escapes.

782

3.4 Wrap-Up

We have considered various optimizations for improving hardware

utilization.

Arrangement of the Optimizations:

• First, global restructuring of procedures/functions and of

loops for better memory behavior.

• Then local restructuring for better utilization of the instruction

set and the processor parallelism.

• Then register allocation and finally,

• Peephole optimization for the final kick ...

783

Procedures: Tail Recursion + Inlining

SSA

Stack Allocation

Loops: Iteration Reordering

→ if-Distribution

→ for-Distribution

Value Caching

Bodies: Instruction Scheduling with

→ Loop Unrolling

→ Loop Fusion

Instructions: Register Allocation

Instruction Selection

Peephole Optimization

784

4 Optimization of Functional Programs

Example

let rec fac x = if x ≤ 1 then 1

else x · fac (x− 1)

• There are no basic blocks.

• There are no loops.

• Virtually all functions are recursive!

785

Strategies for Optimization

==⇒ Improve specific inefficiencies such as:

• Pattern matching

• Lazy evaluation (if supported)

• Indirections — Unboxing / Escape Analysis

• Intermediate data-structures — Deforestation

==⇒ Detect and/or generate loops with basic blocks!

• Tail recursion

• Inlining

• let-Floating

Then apply general optimization techniques

... e.g., by translation into C.

786

Warning

Novel analysis techniques are needed to collect information about

functional programs.

Example: Inlining

let max (x, y) = if x > y then x

else y

let abs z = max (z,−z)

As result of the optimization we expect ...

787

let max (x, y) = if x > y then x

else y

let abs z = let x = z

in let y = −z

in if x > y then x

else y

Discussion

For the beginning, max is just a name. We must find out which

value it takes at run-time

==⇒ Value Analysis required !!

788

Nevin Heintze in the Australian team

of the Prolog-Programming-Contest, 1998

789

The complete picture:

790

4.1 A Simple Functional Language

For simplicity, we consider:

e ::= b | (e1, . . . , ek) | c e1 . . . ek | funx→ e

| (e1 e2) | (✷1 e) | (e1 ✷2 e2) |

let x1 = e1 in e0 |

match e0 with p1 → e1 | . . . | pk → ek

p ::= b | x | c x1 . . . xk | (x1, . . . , xk)

t ::= let rec x1 = e1 and . . . and xk = ek in e

where b is a constant, x is a variable, c is a

(data-)constructor and ✷i are i-ary operators.

791

Discussion

• let rec only occurs on top-level.

• Functions are always unary. Instead, there are explicit tuples.

• if-expressions and case distinction in function definitions is

reduced to match-expressions.

• In case distinctions, we allow just simple patterns.

==⇒ Complex patterns must be decomposed ...

• let-definitions correspond to basic blocks.

• Type-annotations at variables, patterns or expressions could

provide further useful information

— which we ignore.

792

... in the Example:

A definition of max may look as follows:

let max = fun x→ match x with (x1, x2) → (

match x1 < x2

with True → x2

| False → x1

)

793

Accordingly, we have for abs :

let abs = fun x→ let z = (x,−x)

in max z

4.2 A Simple Value Analysis

Idea

For every subexpression e we collect the set [[e]]♯ of possible

values of e ...

794

Let V denote the set of occurring (classes of) constants,

functions as well as applications of constructors and operators. As

our lattice, we choose:

V = 2V

As usual, we put up a constraint system:

• If e is a value, i.e., of the form: b, c e1 . . . ek, (e1, . . . , ek),

an operator application or funx → e we generate the

constraint:

[[e]]♯ ⊇ {e}

• If e ≡ (e1 e2) and f ≡ fun x → e′, then

[[e]]♯ ⊇ (f ∈ [[e1]]
♯) ? [[e′]]♯ : ∅

[[x]]♯ ⊇ (f ∈ [[e1]]
♯) ? [[e2]]

♯ : ∅

...

795

• If e ≡ let x1 = e1 in e0, then we generate:

[[x1]]
♯ ⊇ [[e1]]

♯

[[e]]♯ ⊇ [[e0]]
♯

• Analogously for t ≡ letrec x1 = e1 . . . xk = ek in e0:

[[xi]]
♯ ⊇ [[ei]]

♯

[[t]]♯ ⊇ [[e0]]
♯

796

• int-values returned by operators are described by the

unevaluated expression;

Operator applications might return Boolean values or other

basic values. Therefore, we do replace tests for basic values

by non-deterministic choice ...

• Assume e ≡match e0 with p1 → e1 | . . . | pk → ek .

Then we generate for pi ≡ b (basic value),

[[e]]♯ ⊇ [[ei]]
♯

...

797

• If pi ≡ c y1 . . . yk and v ≡ c e′1 . . . e
′
k is a value, then

[[e]]♯ ⊇ (v ∈ [[e0]]
♯) ? [[ei]]

♯ : ∅

[[yj]]
♯ ⊇ (v ∈ [[e0]]

♯) ? [[e′j]]
♯ : ∅

If pi ≡ (y1, . . . , yk) and v ≡ (e′1, . . . , e
′
k) is a value, then

[[e]]♯ ⊇ (v ∈ [[e0]]
♯) ? [[ei]]

♯ : ∅

[[yj]]
♯ ⊇ (v ∈ [[e0]]

♯) ? [[e′j]]
♯ : ∅

If pi ≡ y , then

[[e]]♯ ⊇ [[ei]]
♯

[[y]]♯ ⊇ [[e0]]
♯

798

Example The app-Function

Consider the concatenation of two lists. In Ocaml, we would write:

let rec app = fun x → match x with

[] → fun y → y

| h :: t → fun y → h :: app t y

in app [1; 2] [3]

The analysis then results in:

[[app]]♯ = {funx →match . . .}

[[x]]♯ = {[1; 2], [2], []}

[[match . . .]]♯ = {fun y → y, fun y → h :: app t y}

[[y]]♯ = {[3]}

. . .

799

. . .

[[h]]♯ = {1, 2}

[[t]]♯ = {[2], []}

[[app t]]♯ =

[[app [1; 2]]]♯ = {fun y → y, fun y → h :: app t y}

[[app t y]]♯ =

[[app [1; 2] [3]]]♯ = {[3], h :: app t y}

Values c e1 . . . ek, (e1, . . . , ek) or operator applications e1✷e2
now are interpreted as recursive calls c [[e1]]

♯ . . . [[ek]]
♯,

([[e1]]
♯, . . . , [[ek]]

♯) or [[e1]]
♯
✷[[e2]]

♯, respectively.

==⇒ regular tree grammar

800

... in the Example:

We obtain for A = [[app t y]]♯ :

A → [3] | [[h]]♯ ::A

[[h]]♯ → 1 | 2

Let L(e) denote the set of terms derivable from [[e]]♯ w.r.t. the

regular tree grammar. Thus, e.g.,

L(h) = {1, 2}

L(app t y) = {[a1; . . . , ar; 3] | r ≥ 0, ai ∈ {1, 2}}

801

4.3 An Operational Semantics

Idea

We construct a Big-Step operational semantics which evaluates

expressions w.r.t. an environment.

Values are of the form:

v ::= b | c v1 . . . ck | (v1, . . . , vk) | (funx → e, η)

Examples for Values

c 1

[1; 2] = :: 1 (:: 2 [])

(funx→ x::y, {y 7→ [5]})

802

Expressions are evaluated w.r.t. an environment

η : Vars → Values.

The Big-Step operational semantics provides rules to infer the

value to which an expression is evaluated w.r.t. a given

environment, i.e., deals with statements of the form:

(e, η) =⇒ v

Values
(b, η) =⇒ b

(funx → e, η) =⇒ (funx → e, η)

(e1, η)=⇒ v1 . . . (ek, η)=⇒ vk

(c e1 . . . ek, η) =⇒ c v1 . . . vk

Operator applications are treated analogously!

803

(e1, η) =⇒ v1 . . . (ek, η) =⇒ vk

((e1, . . . , ek), η) =⇒ (v1, . . . , vk)

Global Definition

let rec . . . x = e . . . in . . .

(e, ∅) =⇒ v

(x, η) =⇒ v

804

Function Application

(e1, η) =⇒ (fun x → e, η1)

(e2, η) =⇒ v2

(e, η1 ⊕ {x 7→ v2}) =⇒ v3

(e1 e2, η) =⇒ v3

805

Case Distinction 1

(e, η) =⇒ b

(ei, η) =⇒ v

(match e with p1 → e1 | . . . | pk → ek, η) =⇒ v

if pi ≡ b is the first pattern which matches b.

806

Case Distinction 2

(e, η) =⇒ c v1 . . . vk

(ei, η ⊕ {z1 7→ v1, . . . , zk 7→ vk}) =⇒ v

(match e with p1 → e1 | . . . | pk → ek, η) =⇒ v

if pi ≡ c z1 . . . zk is the first pattern which matches c v1 . . . vk.

807

Case Distinction 3

(e, η) =⇒ (v1, . . . , vk)

(ei, η ⊕ {y1 7→ v1, . . . , y1 7→ vk}) =⇒ v

(match e with p1 → e1 | . . . | pk → ek, η) =⇒ v

if pi ≡ (y1, . . . , yk) is the first pattern which matches

(v1, . . . , vk).

808

Case Distinction 4

(e, η) =⇒ v′

(ei, η ⊕ {x 7→ v′}) =⇒ v

(match e with p1 → e1 | . . . | pk → ek, η) =⇒ v

if pi ≡ x is the first pattern which matches v′.

809

Local Definitions

(e1, η) =⇒ v1

(e0, η ⊕ {x1 7→ v1}) =⇒ v0

(let x1 = e1 in e0, η) =⇒ v0

Variables

(x, η) ==⇒ η(x)

810

Correctness of the Analysis

For every (e, η) occurring in a proof for the program, it should

hold:

• If η (x) = v , then [v] ∆ L(x).

• If (e, η) ==⇒ v , then [v] ∆ L(e) ...

• where [v] is the stripped expression corresponding to v, i.e.,

obtained by removing all environments, and

• v∆L iff v ∈ L or L has an expression v′ which evaluates to v.

Conclusion

L(e) returns a superset of the values to which e is evaluated.

811

4.4 Application: Inlining

Problem

• global variables. The program:

let x = 1

in let f = let x = 2

in fun y → y + x

in f x

812

• ... computes something else than:

let x = 1

in let f = let x = 2

in fun y → y + x

in let y = x

in y + x

• recursive functions. In the definition:

foo = fun y → foo y

foo should better not be substituted.

813

Idea 1

→ First, we introduce unique variable names.

→ Then, we only substitute functions which are staticly within

the scope of the same global variables as the application.

→ For every expression, we determine all function definitions

with this property.

814

Let D = D[e] denote the set of definitions which staticly arrive at

e.

•• If e ≡ let x1 = e1 in e0 then:

D[e1] = D

D[e0] = D ∪ {x1}

•• If e ≡ funx → e1 then:

D[e1] = D ∪ {x}

•• Similarly, for e ≡ match . . . c x1 . . . xk → ei . . .,

D[ei] = D ∪ {x1, . . . , xk}

815

In all other cases, D is propagated to the sub-expressions

unchanged.

... in the Example:

let x = 1

in let f = let x1 = 2

in fun y → y + x1

in f x

... the application f x is not in the scope of x1

==⇒ we first duplicate the definition of x1 :

816

... in the Example:

let x = 1

in let x1 = 2

in let f = let x1 = 2

in fun y → y + x1

in f x

==⇒ the inner definition becomes redundant !!!

817

... in the Example:

let x = 1

in let x1 = 2

in let f = fun y → y + x1

in f x

==⇒ now we can apply inlining :

818

... in the Example:

let x = 1

in let x1 = 2

in let f = fun y → y + x1

in let y = x

in y + x1

Removing variable-variable-assignments, we arrive at:

819

... in the Example:

let x = 1

in let x1 = 2

in let f = fun y → y + x1

in x+ x1

820

Idea 2

→ We apply our value analysis.

→ We ignore global variables.

→ We only substitute functions without free variables.

Example: The map-Function

let rec f = fun x → x · x

and map = fun g → fun x → match x

with [] → []

| x::xs → g x ::map g xs

in map f list

821

• The actual parameter f in the application map g is

always fun x → x · x.

• Therefore, map g can be specialized to a new function h

defined by:

h = let g = fun x → x · x

in fun x → match x

with [] → []

| x::xs → g x :: map g xs

822

The inner occurrence of map g can be replaced with h

==⇒ fold-Transformation.

h = let g = fun x → x · x

in fun x → match x

with [] → []

| x::xs → g x :: h xs

823

Inlining the function g yields:

h = let g = fun x → x · x

in fun x → match x

with [] → []

| x::xs → (let x = x

in x ∗ x) :: h xs

824

Removing useless definitions and variable-variable assignments

yields:

h = fun x → match x

with [] → []

| x::xs → x ∗ x :: h xs

825

4.5 Deforestation

• Functional programmers love to collect intermediate results in

lists which are processed by higher-order functions.

• Examples of such higher-order functions are:

map = fun f → fun l → match l with [] → []

| x::xs → f x :: map f xs)

826

filter = fun p → fun l → match l with [] → []

| x::xs → if p x then x :: filter p xs

else filter p xs)

foldl = fun f → fun a → fun l → match l with [] → a

| x::xs → foldl f (f a x) xs)

827

id = fun x → x

comp = fun f → fun g → fun x → f (g x)

comp1 = fun f → fun g → fun x1 → fun x2 →

f (g x1) x2

comp2 = fun f → fun g → fun x1 → fun x2 →

f x1 (g x2)

828

Example

sum = foldl (+) 0

length = let f = map (fun x→ 1)

in comp sum f

dev = fun l → let s1 = sum l in

let n = length l in

let mean = s1/n in

let l1 = map (fun x→ x−mean) l in

let l2 = map (fun x→ x · x) l1 in

let s2 = sum l2 in

s2/n

829

Observations

• Explicit recursion does no longer occur!

• The implementation creates unnecessary intermediate

data-structures!

length could also be implemented as:

length = let f = fun a → fun x → a+ 1

in foldl f 0

• This implementation avoids to create intermediate lists !!!

830

Phil Wadler, Edinburgh

831

Simplification Rules

comp id f = comp f id = f

comp1 f id = comp2 f id = f

map id = id

comp (map f) (map g) = map (comp f g)

comp (foldl f a) (map g) = foldl (comp2 f g) a

832

Simplification Rules

comp id f = comp f id = f

comp1 f id = comp2 f id = f

map id = id

comp (map f) (map g) = map (comp f g)

comp (foldl f a) (map g) = foldl (comp2 f g) a

comp (filter p1) (filter p2) = filter (funx → if p2 x then p1 x

else false)

comp (foldl f a) (filter p) = let h = fun a→ fun x→ if p x then f a x

else a

in foldl h a

833

Caveat

Function compositions also could occur as nested function calls ...

idx = x

map id l = l

map f (map g l) = map (comp f g) l

foldl f a (map g l) = foldl (comp2 f g) a l

filter p1 (filter p2 l) = filter (funx → p1 x ∧ p2 x) l

foldl f a (filter p l) = let h = fun a→ fun x→ if p x then f a x

else a

in foldl h a l

834

Example, optimized:

sum = foldl (+) 0

length = let f = comp2 (+) (fun x→ 1)

in foldl f 0

dev = fun l → let s1 = sum l in

let n = length l in

let mean = s1/n in

let f = comp (fun x→ x · x)

(fun x→ x−mean) in

let g = comp2 (+) f in

let s2 = foldl g 0 l in

s2/n

835

Remarks

• All intermediate lists have disappeared.

• Only foldl remain — i.e., loops.

• Compositions of functions can be further simplified in the next

step by Inlining.

• Inside dev, we then obtain:

g = fun a → fun x → let x1 = x−mean in

let x2 = x1 · x1 in

a+ x2

• The result is a sequence of let-definitions !!!

836

Extension: Tabulation

If the list has been created by tabulation of a function, the creation

of the list sometimes can be avoided ...

tabulate′ = fun j → fun f → fun n →

if j ≥ n then []

else (f j) :: tabulate′ (j + 1) f n

tabulate = tabulate′ 0

837

Then we have:

comp (map f) (tabulate g) = tabulate (comp f g)

comp (foldl f a) (tabulate g) = loop (comp2 f g) a

where

loop′ = fun j → fun f → fun a → fun n →

if j ≥ n then a

else loop′ (j + 1) f (f a j)) n

loop = loop′ 0

838

Extension (2): List Reversals

Sometimes, the ordering of lists or arguments is reversed:

rev′ = fun a → fun l →

match l with [] → a

| x :: xs → rev′ (x :: a) xs

rev = rev′ []

comp rev rev = id

swap = fun f → fun x → fun y → f y x

comp swap swap = id

839

foldr f a = comp (foldl (swap f) a) rev

Discussion

• The standard implementation of foldr is not tail-recursive.

• The last equation decomposes a foldr into two tail-recursive

functions — at the price that an intermediate list is created.

• Therefore, the standard implementation is probably faster.

• Sometimes, the operation rev can also be optimized away ...

840

We have:

comp rev (map f) = comp (map f) rev

comp rev (filter p) = comp (filter p) rev

comp rev (tabulate f) = rev_tabulate f

Here, rev_tabulate tabulates in reverse ordering. This function has

properties quite analogous to tabulate:

comp (map f) (rev_tabulate g) = rev_tabulate (comp2 f g)

comp (foldl f a) (rev_tabulate g) = rev_loop (comp2 f g) a

841

Extension (3): Dependencies on the Index

• Correctness is proven by induction on the lengthes of

occurring lists.

• Similar composition results also hold for transformations

which take the current indices into account:

mapi′ = fun i → fun f → fun l → match l with [] → []

| x :: xs → f i x :: mapi′ (i+ 1) f xs

mapi = mapi′ 0

842

Analogously, there is index-dependent accumulation:

foldli′ = fun i → fun f → fun a → fun l →

match l with [] → a

| x :: xs → foldli′ (i+ 1) f (f i a x) xs

foldli = foldli′ 0

For composition, we must take care that always the same indices

are used. This is achieved by:

843

compi = fun f → fun g → fun i → fun x → f i (g i x)

compi1 = fun f → fun g → fun i → fun x1 → fun x2 →

f i (g i x1) x2

compi2 = fun f → fun g → fun i → fun x1 → fun x2 →

f i x1 (g i x2)

cmp1 = fun f → fun g → fun i → fun x1 → fun x2 →

f i x1 (g x2)

cmp2 = fun f → fun g → fun i → fun x1 → fun x2 →

f x1 (g i x2)

844

Then

comp (mapi f) (map g) = mapi (comp2 f g)

comp (map f) (mapi g) = mapi (comp f g)

comp (mapi f) (mapi g) = mapi (compi f g)

comp (foldli f a) (map g) = foldli (cmp1 f g) a

comp (foldl f a) (mapi g) = foldli (cmp2 f g) a

comp (foldli f a) (mapi g) = foldli (compi2 f g) a

comp (foldli f a) (tabulate g) = let h = fun a → fun i →

f i a (g i)

in loop h a

845

Discussion

• Warning: index-dependent transformations may not

commute with rev or filter.

• All our rules can only be applied if the functions id, map, mapi,

foldl, foldli, filter, rev, tabulate, rev_tabulate, loop, rev_loop, ...

are provided by a standard library: Only then the algebraic

properties can be guaranteed !!!

• Similar simplification rules can be derived for any kind of

tree-like data-structure tree α .

• These also provide operations map, mapi and foldl, foldli with

corresponding rules.

• Further opportunities are opened up by functions to_list and

from_list ...

846

Example

type tree α = Leaf | Node α (tree α) (tree α)

map = fun f → fun t → match t with Leaf → Leaf

| Node x l r → let l′ = map f l

r′ = map f r

in Node (f x) l′ r′

foldl = fun f → fun a → fun t → match t with Leaf → a

| Node x l r → let a′ = foldl f a l

in foldl f (f a′ x) r

847

to_list′ = fun a → fun t → match t with Leaf → a

| Node x t1 t2 → let a′ = to_list′ a t2

in to_list′ (x :: a′) t1

to_list = to_list′ []

from_list = fun l → match l

with [] → Leaf

| x :: xs → Node x Leaf (from_list xs)

848

Caveat

Not every natural equation is valid:

comp to_list from_list = id

comp from_list to_list 6= id

comp to_list (map f) = comp (map f) to_list

comp from_list (map f) = comp (map f) from_list

comp (foldl f a) to_list = foldl f a

comp (foldl f a) from_list = foldl f a

849

In this case, there is even a rev:

rev = fun t →

match t with Leaf → Leaf

| Node x t1 t2 → let s1 = rev t1

s2 = rev t2

in Node x s2 s1

comp to_list rev = comp rev to_list

comp from_list rev 6= comp rev from_list

850

4.6 CBN vs. CBV: Strictness Analysis

Problem

• Programming languages such as Haskell evaluate

expressions for let-defined variables and actual parameters

not before their values are accessed.

• This allows for an elegant treatment of (possibly) infinite lists

of which only small initial segments are required for

computing the result.

• Delaying evaluation by default incures, though, a non-trivial

overhead ...

851

Example

from = fun n → n :: from (n+ 1)

take = fun k → fun s → if k ≤ 0 then []

else match s with [] → []

| x :: xs → x :: take (k − 1) xs

852

Then CBN yields

take 5 (from 0) = [0, 1, 2, 3, 4]

— whereas evaluation with CBV does not terminate !!!

853

Then CBN yields

take 5 (from 0) = [0, 1, 2, 3, 4]

— whereas evaluation with CBV does not terminate !!!

On the other hand, for CBN, tail-recursive functions may require

non-constant space ???

fac2 = fun x → fun a → if x ≤ 0 then a

else fac2 (x− 1) (a · x)

854

Discussion

• The multiplications are collected in the accumulating

parameter through nested closures.

• Only when the value of a call fac2 x 1 is accessed, this

dynamic data structure is evaluated.

• Instead, the accumulating parameter should have been

passed directly by-value !!!

• This is the goal of the following optimization ...

855

Simplification

• At first, we rule out data structures, higher-order functions,

and local function definitions.

• We introduce an unary operator # which forces the

evaluation of a variable.

• Goal of the transformation is to place # at as many places as

possible ...

856

Simplification

• At first, we rule out data structures, higher-order functions,

and local function definitions.

• We introduce an unary operator # which forces the

evaluation of a variable.

• Goal of the transformation is to place # at as many places as

possible ...

e ::= c | x | e1 ✷2 e2 | ✷1 e | f e1 . . . ek | if e0 then e1 else e2

| let r1 = e1 in e

r ::= x | #x

d ::= f x1 . . . xk = e

p ::= letrec and d1 . . . and dn in e

857

Idea

• Describe a k-ary function

f : int→ . . .→ int

by a function

[[f]]♯ : B→ . . .→ B

• 0 means: evaluation does definitely not terminate.

• 1 means: evaluation may terminate.

• [[f]]♯ 0 = 0 means: If the function call returns a value, then

the evaluation of the argument must have terminated and

returned a value.

==⇒ f is strict.

858

Alan Mycroft, Cambridge

859

Idea (cont.)

• We determine the abstract semantics of all functions.

• For that, we put up a system of equations ...

Auxiliary Function

[[e]]♯ : (Vars → B)→ B

[[c]]♯ ρ = 1

[[x]]♯ ρ = ρ x

[[✷1 e]]
♯ ρ = [[e]]♯ ρ

[[e1 ✷2 e2]]
♯ ρ = [[e1]]

♯ ρ ∧ [[e2]]
♯ ρ

[[if e0 then e1 else e2]]
♯ ρ = [[e0]]

♯ ρ ∧ ([[e1]]
♯ ρ ∨ [[e2]]

♯ ρ)

[[f e1 . . . ek]]
♯ ρ = [[f]]♯ ([[e1]]

♯ ρ) . . . ([[ek]]
♯ ρ)

. . .

860

[[let x1 = e1 in e]]
♯ ρ = [[e]]♯ (ρ⊕ {x1 7→ [[e1]]

♯ ρ})

[[let #x1 = e1 in e]]
♯ ρ = ([[e1]]

♯ ρ) ∧ ([[e]]♯ (ρ⊕ {x1 7→ 1}))

System of Equations

[[fi]]
♯b1 . . . bk = [[ei]]

♯ {xj 7→ bj | j = 1, . . . , k}, i = 1, . . . , n, b1, . . . , bk ∈ B

• The unkowns of the system of equations are the functions

[[fi]]
♯ or the individual entries [[fi]]

♯b1 . . . bk in the value table.

• All right-hand sides are monotonic!

• Consequently, there is a least solution.

• The complete lattice B→ . . .→ B has height O(2k).

861

Example

For fac2, we obtain:

[[fac2]]♯ b1 b2 = b1 ∧ (b2∨

[[fac2]]♯ b1 (b1 ∧ b2))

Fixpoint iteration yields:

0 funx→ fun a→ 0

1 funx→ fun a→ x ∧ a

2 funx→ fun a→ x ∧ a

862

We conclude:

• The function fac2 is strict in both arguments, i.e., if evaluation

terminates, then also the evaluation of its arguments.

• Accordingly, we transform:

fac2 = fun x → fun a → if x ≤ 0 then a

else let # x′ = x− 1

a′ = x · a

in fac2 x′ a′

863

Correctness of the Analysis

• The system of equations is an abstract denotational

semantics.

• The denotational semantics characterizes the meaning of

functions as least solution of the corresponding equations for

the concrete semantics.

• For values, the denotational semantics relies on the complete

partial ordering Z⊥.

• For complete partial orderings, Kleene’s fixpoint theorem is

applicable.

• As description relation ∆ we use:

⊥ ∆ 0 and z ∆ 1 for z ∈ Z⊥

864

Extension: Data Structures

• Functions may vary in the parts which they require from a

data structure ...

hd = fun l → match l with x :: xs → x

• hd only accesses the first element of a list.

• length only accesses the backbone of its argument.

• rev forces the evaluation of the complete argument — given

that the result is required completely ...

865

Extension of the Syntax

We additionally consider expression of the form:

e ::= . . . | [] | e1 :: e2 |match e0 with [] → e1 | x :: xs → e2

| (e1, e2) |match e0 with (x1, x2) → e1

Top Strictness

• We assume that the program is well-typed.

• We are only interested in top constructors.

• Again, we model this property with (monotonic) Boolean

functions.

• For int-values, this coincides with strictness.

• We extend [[e]]♯ ρ with rules for case-distinction ...

866

[[match e0 with [] → e1 | x :: xs → e2]]
♯ ρ =

[[e0]]
♯ ρ∧ ([[e1]]

♯ ρ∨ [[e2]]
♯ (ρ⊕ {x, xs 7→ 1}))

[[match e0 with (x1, x2) → e1]]
♯ ρ =

[[e0]]
♯ ρ ∧ [[e1]]

♯ (ρ⊕ {x1, x2 7→ 1})

[[[]]]♯ ρ = [[e1 :: e2]]
♯ ρ = [[(e1, e2)]]

♯ ρ = 1

• The rules for match are analogous to those for if.

• In case of ::, we know nothing about the values beneath the

constructor; therefore {x, xs 7→ 1}.

• We check our analysis on the function app ...

867

Example

app = fun x → fun y → match x with [] → y

| x :: xs → x :: app xs y

Abstract interpretation yields the system of equations:

[[app]]♯ b1 b2 = b1 ∧ (b2 ∨ 1)

= b1

We conclude that we may conclude for sure only for the first

argument that its top constructor is required.

868

Total Strictness

Assume that the result of the function application is totally required.

Which arguments then are also totally required ?

We again refer to Boolean functions ...

[[match e0 with [] → e1 | x, :: xs → e2]]
♯ ρ = let b = [[e0]]

♯ ρ in

b∧ [[e1]]
♯ ρ∨ [[e2]]

♯ (ρ⊕ {x 7→ b, xs 7→ 1}) ∨ [[e2]]
♯ (ρ⊕ {x 7→ 1, xs 7→ b})

[[match e0 with (x1, x2) → e1]]
♯ ρ = let b = [[e0]]

♯ ρ in

[[e1]]
♯ (ρ⊕ {x1 7→ 1, x2 7→ b}) ∨ [[e1]]

♯ (ρ⊕ {x1 7→ b, x2 7→ 1})

[[[]]]♯ ρ = 1

[[e1 :: e2]]
♯ ρ = [[e1]]

♯ ρ ∧ [[e2]]
♯ ρ

[[(e1, e2)]]
♯ ρ = [[e1]]

♯ ρ ∧ [[e2]]
♯ ρ

869

Discussion

• The rules for constructor applications have changed.

• Also the treatment of match now involves the components z

and x1, x2.

• Again, we check the approach for the function app.

Example

Abstract interpretation yields the system of equations:

[[app]]♯ b1 b2 = b1 ∧ b2 ∨ b1 ∧ [[app]]♯ 1 b2 ∨ 1 ∧ [[app]]♯ b1 b2

= b1 ∧ b2 ∨ b1 ∧ [[app]]♯ 1 b2 ∨ [[app]]♯ b1 b2

870

This results in the following fixpoint iteration:

0 funx→ fun y → 0

1 funx→ fun y → x ∧ y

2 funx→ fun y → x ∧ y

We deduce that both arguments are definitely totally required if the

result is totally required.

Caveat

Whether or not the result is totally required, depends on the

context of the function call!

In such a context, a specialized function may be called ...

871

app# = fun x → fun y → let #x′ = x and #y′ = y in

match ′x with [] → y′

| x :: xs → let # r = x :: app# xs y

in r

Discussion

• Both strictness analyses employ the same complete lattice.

• Results and application, though, are quite different.

• Thereby, we use the following description relations:

Top Strictness : ⊥ ∆ 0

Total Strictness : z ∆ 0 if ⊥ occurs in z.

• Both analyses can also be combined to an a joint analysis ...

872

Combined Strictness Analysis

• We use the complete lattice:

T = {0 ⊏ 1 ⊏ 2}

• The description relation is given by:

⊥ ∆ 0 z ∆ 1 (z contains ⊥) z ∆ 2 (z value)

• The lattice is more informative, the functions, though, are no

longer as efficiently representable, e.g., through Boolean

expressions.

• We require the auxiliary functions:

(i ⊑ x); y =

{

y if i ⊑ x

0 otherwise

873

The Combined Evaluation Function

[[match e0 with [] → e1 | x :: xs → e2]]
♯ ρ = let b = [[e0]]

♯ ρ in

(2⊑ b) ; [[e1]]
♯ ρ ⊔

(1⊑ b) ; ([[e2]]
♯ (ρ⊕ {x 7→ 2, xs 7→ b})

⊔ [[e2]]
♯ (ρ⊕ {x 7→ b, xs 7→ 2}))

[[match e0 with (x1, x2) → e1]]
♯ ρ = let b = [[e0]]

♯ ρ in

(1⊑ b) ; ([[e1]]
♯ (ρ⊕ {x1 7→ 2, x2 7→ b})

⊔ [[e1]]
♯ (ρ⊕ {x1 7→ b, x2 7→ 2}))

[[[]]]♯ ρ = 2

[[e1:: e2]]
♯ ρ =

[[(e1, e2)]]
♯ ρ = 1 ⊔ ([[e1]]

♯ ρ ⊓ [[e2]]
♯ ρ)

874

Example

For our beloved function app, we obtain:

[[app]]♯ d1 d2 = (2⊑ d1) ; d2 ⊔

(1⊑ d1) ; (1 ⊔ [[app]]♯ d1 d2 ⊔ d1 ⊓ [[app]]
♯ 2 d2)

= (2⊑ d1) ; d2 ⊔

(1⊑ d1) ; 1 ⊔

(1⊑ d1) ; [[app]]
♯ d1 d2 ⊔

d1 ⊓ [[app]]
♯ 2 d2

this results in the fixpoint computation:

875

0 funx→ fun y → 0

1 funx→ fun y → (2⊑ x); y ⊔ (1⊑ x); 1

2 funx→ fun y → (2⊑ x); y ⊔ (1⊑ x); 1

We conclude

• that both arguments are totally required if the result is totally

required; and

• that the root of the first argument is required if the root of the

result is required.

Remark

The analysis can be easily generalized such that it guarantees

evaluation up to a depth d .

876

Further Directions

• Our Approach is also applicable to other data structures.

• In principle, also higher-order (monomorphic) functions can

be analyzed in this way.

• Then, however, we require higher-order abstract functions —

of which there are many.

• Such functions therefore are approximated by:

fun x1 → . . . fun xr → ⊤

• For some known higher-order functions such as map, foldl,

loop, ... only unary or binary functional arguments are

required — of which there are sufficiently few.

877

5 Optimization of Logic Programs

We only consider the mini language PuP (“Pure Prolog”). In

particular, we do not consider:

• arithmetic;

• the cut-operator.

• Self-modification by means of assert and retract.

878

Example

bigger(X, Y) ← X = elephant , Y = horse

bigger(X, Y) ← X = horse, Y = donkey

bigger(X, Y) ← X = donkey , Y = dog

bigger(X, Y) ← X = donkey , Y = monkey

is_bigger(X, Y) ← bigger(X, Y)

is_bigger(X, Y) ← bigger(X,Z), is_bigger(Z, Y)

← is_bigger(elephant , dog)

879

A more realistic Example

app(X, Y, Z) ← X = [], Y = Z

app(X, Y, Z) ← X = [H|X ′], Z = [H|Z ′], app(X ′, Y, Z ′)

← app(X, [Y, c], [a, b, Z])

Remark

[] === the atom empty list

[H|Z] === binary constructor application

[a, b, Z] === abbreviation for: [a|[b|[Z|[]]]]

880

A more realistic Example

app(X, Y, Z) ← X = [], Y = Z

app(X, Y, Z) ← X = [H|X ′], Z = [H|Z ′], app(X ′, Y, Z ′)

← app(X, [Y, c], [a, b, Z])

Remark

[] === the atom empty list

[H|Z] === binary constructor application

[a, b, Z] === Abbreviation for: [a|[b|[Z|[]]]]

881

Accordingly, a program p is constructed as follows:

t ::= a | X | _ | f(t1, . . . , tn)

g ::= p(t1, . . . , tk) | X = t

c ::= p(X1, . . . , Xk)← g1, . . . , gr

q ::= ← g1, . . . , gr

p ::= c1 . . . cmq

• A term t either is an atom, a (possibly anonymous) variable or

a constructor application.

• A goal g either is a literal, i.e., a predicate call, or a unification.

• A clause c consists of a head p(X1, . . . , Xk) together with

body consisting of a sequence of goals.

• A program consists of a sequence of clauses together with a

sequence of goals as query.

882

Procedural View of PuP-Programs

literal === procedure call

predicate === procedure

definition === body

term === value

unification === basic computation step

binding of variables === side effect

Caveat: Predicate calls ...

• do not return results!

• modify the caller solely through side effects

• may fail. Then, the following definition is tried ==⇒

backtracking

883

Inefficiencies

Backtracking: • The matching alternative must be searched

for ==⇒ Indexing

• Since a successful call may still fail later, the stack can

only be cleared if there are no pending alternatives.

Unification: • The translation possibly must switch between

build and check several times.

• In case of unification with a variable, an Occur Check

must be performed.

Type Checking: • Since Prolog is untyped, it must be

checked at run-time whether or not a term is of the

desired form.

• Otherwise, ugly errors could show up.

884

Some Optimizations

• Replacing last calls with jumps;

• Compile-time type inference;

• Identification of deterministic predicates ...

Example

app(X, Y, Z) ← X = [], Y = Z

app(X, Y, Z) ← X = [H|X ′], Z = [H|Z ′], app(X ′, Y, Z ′)

← app([a, b], [Y, c], Z)

885

Observation

• In PuP, functions must be simulated through predicates.

• These then have designated input- and output parameters.

• Input parameters are those which are instantiated with a

variable-free term whenever the predicate is called.

These are also called ground.

• In the example, the first parameter of app is an input

parameter.

• Unification with such a parameter can be implemented as

pattern matching !

• Then we see that app in fact is deterministic !!!

886

5.1 Groundness Analysis

A variable X is called ground w.r.t. a program execution π starting

program entry and entering a program point v, if X is bound to a

variable-free term.

Goal

• Find all variables which are ground whenever a particular

program point is reached !

• Find all arguments of a predicate which are ground whenever

the predicate is called !

887

Idea

• Describe groundness by values from B:

1 == variable-free term;

0 == term which contains variables.

• A set of variable assignments is described by Boolean

functions.

X ↔ Y == X is ground iff Y is ground.

X ∧ Y == X and Y are ground.

888

Idea (cont.)

• The constant function 0 denotes an unreachable program

point.

• Occurring sets of variable assignments are closed under

substitution.

This means that for every occurring function φ 6= 0,

φ(1, . . . , 1) = 1

These functions are called positive.

• The set of all positive functions is called Pos.

Ordering: φ1 ⊑ φ2 if φ1 ⇒ φ2.

• In particular, the least element is 0.

889

Example

X ↔ Y

X ∨ Y X → YY → X

1

X Y

0

X ∧ Y

01, 1110, 11

11

00, 10, 11 00, 01, 1101, 10, 11

00, 11

00, 01, 10, 11

890

Remarks

• Not all positive functions are monotonic !!!

• For k variables, there are 22
k−1 + 1 many functions.

• The height of the complete lattice is 2k.

• We construct an interprocedural analysis which for every

predicate p determines a (monotonic) transformation

[[p]]♯ : Pos→ Pos

• For every clause, p(X1, . . . , Xk)⇐ g1, . . . , gn we obtain the

constraint:

[[p]]♯ ψ ⊒ ∃Xk+1, . . . , Xm. [[gn]]
♯ (. . . ([[g1]]

♯ ψ) . . .)

// m number of clause variables

891

Abstract Unification

[[X = t]]♯ψ = ψ ∧ (X ↔ X1 ∧ . . . ∧Xr)

if Vars(t) = {X1, . . . , Xr}.

Abstract Literal

[[q(s1, . . . , sk)]]
♯ψ = combine♯s1,...,sk(ψ, [[q]]

♯ (enter♯s1,...,skψ))

// analogous to procedure call !!

892

Thereby

enter♯s1,...,skψ = ren (∃X1, . . . , Xm. [[X̄1 = s1, . . . , X̄k = sk]]
♯ψ)

combine♯s1,...,sk(ψ, ψ1) = ∃ X̄1, . . . , X̄r. ψ ∧ [[X̄1 = s1, . . . , X̄k = sk]]
♯(renψ1)

where

∃X.φ = φ[0/X]∨φ[1/X]

renφ = φ[X1/X̄1, . . . , Xk/X̄k]

renφ = φ[X̄1/X1, . . . , X̄r/Xr]

893

Example

app(X, Y, Z) ← X = [], Y = Z

app(X, Y, Z) ← X = [H|X ′], Z = [H|Z ′], app(X ′, Y, Z ′)

Then

[[app]]♯(X) ⊒ X ∧ (Y ↔ Z)

[[app]]♯(X) ⊒ let ψ = X ∧H ∧X ′ ∧ (Z ↔ Z ′)

in ∃H,X ′, Z ′. combine♯... (ψ, [[app]]
♯(enter♯...(ψ)))

where for ψ = X ∧H ∧X ′ ∧ (Z ↔ Z ′):

enter♯...(ψ) = X

combine♯...(ψ,X ∧ (Y ↔ Z)) = (X ∧H ∧X ′ ∧ (Z ↔ Z ′) ∧ (Y ↔ Z ′)

894

Example (Cont.)

Furthermore,

[[app]]♯(Z) ⊒ X ∧ Y ∧ Z

[[app]]♯(Z) ⊒ let ψ = H ∧ Z ∧ Z ′ ∧ (X ↔ X ′)

in ∃H,X ′, Z ′. combine♯... (ψ, [[app]]
♯(enter♯...(ψ)))

where for ψ = Z ∧H ∧ Z ′ ∧ (X ↔ X ′):

enter♯...(ψ) = Z

combine♯...(ψ,X ∧ Y ∧ Z) = X ∧H ∧X ′ ∧ Y ∧ Z ∧ Z ′

Fixpoint iteration therefore yields:

[[app]]♯ (X) = X ∧ (Y ↔ Z) [[app]]♯ (Z) = X ∧ Y ∧ Z

895

Discussion

• Exhaustive tabulation of the transformation [[app]]♯ is not

feasible.

• Therefore, we rely on demand-driven fixpoint iteration !

• The evaluation starts with the evaluation of the query g, i.e.,

with the evaluation of [[g]]♯ 1.

• The set of inspected fixpoint variables [[p]]♯ ψ yields a

description of all possible calls.

• For an efficient representation of functions ψ ∈ Pos we

rely on binary decision diagrams (BDDs).

896

Background 6: Binary Decision Diagrams

Idea (1)

• Choose an ordering x1, . . . , xk on the arguments ...

• Represent the function f : B→ . . .→ B by [f]0 where:

[b]k = b

[f]i−1 = fun xi → if xi then [f 1]i

else [f 0]i

Example f x1 x2 x3 = x1 ∧ (x2 ↔ x3)

897

... yields the tree:

x3x3 x3x3

x2x2

x1

898

Idea (2)

• Decision trees are exponentially large ...

• Often, however, many sub-trees are isomorphic !!

• Isomorphic sub-trees need to be represented only once ...

x2x2

x1

x3 x3 x3

899

Idea (3)

• Nodes whose test is irrelevant, can also be abandoned ...

x2

x1

x3 x3

900

Discussion

• This representation of the Boolean function f is unique !

==⇒

Equality of functions is efficiently decidable !!

• For the representation to be useful, it should support the basic

operations: ∧,∨,¬,⇒, ∃ xj ...

[b1 ∧ b2]k = b1 ∧ b2

[f ∧ g]i−1 = fun xi → if xi then [f 1 ∧ g 1]i

else [f 0 ∧ g 0]i

// analogous for the remaining operators

901

[∃ xj. f]i−1 = fun xi → if xi then [∃ xj. f 1]i

else [∃ xj. f 0]i if i < j

[∃ xj. f]j−1 = [f 0 ∨ f 1]j

• Operations are executed bottom-up.

• Root nodes of already constructed sub-graphs are stored in a

unique-table

==⇒

Isomorphy can be tested in constant time !

• The operations thus are polynomial in the size of the input

BDDs.

902

Discussion

• Originally, BDDs have been developped for circuit verification.

• Today, they are also applied to the verification of software ...

• A system state is encoded by a sequence of bits.

• A BDD then describes the set of all reachable system states.

• Caveat: Repeated application of Boolean operations may

increase the size dramatically !

• The variable ordering may have a dramatic impact ...

903

Example: (x1 ↔ x2) ∧ (x3 ↔ x4)

x1

x2

x3

x2 x2 x2

x3

x1

x3

x2x2

x4x4 x4 x4

904

Discussion (2)

• In general, consider the function:

(x1 ↔ x2) ∧ . . . ∧ (x2n−1 ↔ x2n)

W.r.t. the variable ordering:

x1 < x2 < . . . < x2n

the BDD has 3n internal nodes.

W.r.t. the variable ordering:

x1 < x3 < . . . < x2n−1 < x2 < x4 < . . . < x2n

the BDD has more than 2n internal nodes !!

• A similar result holds for the implementation of Addition through

BDDs.

905

Discussion (3)

• Not all Boolean functions have small BDDs ...

• Difficult functions:

✷ multiplication;

✷ indirect addressing ...

==⇒ data-intensive programs cannot be analyzed in this way !

906

Perspectives: Further Properties of
Programs

Freeness: Is Xi possibly/always unbound ?

==⇒

If Xi is always unbound, no indexing for Xi is required.

If Xi is never unbound, indexing for Xi is complete.

Pair Sharing: Are Xi, Xj possibly bound to terms ti, tj with

Vars(ti) ∩ Vars(tj) 6= ∅ ?

==⇒

Literals without sharing can be executed in parallel.

Remark:

Both analyses may profit from Groundness !

907

5.2 Types for Prolog

Example

nat(X) ← X = 0

nat(X) ← X = s(Y), nat(Y)

nat_list(X) ← X = []

nat_list(X) ← X = [H|T], nat(H), nat_list(T)

908

Discussion

• In Prolog, a type is a set of ground terms with a simple

description.

• There is no common agreement what simple means.

• One possibility are (non-deterministic) finite tree automata or

normal Horn clauses:

nat_list([H|T]) ← nat(H), nat_list(T) normal

bin(node(T, T)) ← bin(T) nicht normal

tree(node(T1, T2)) ← tree(T1), tree(T2) normal

909

Comparison

Normal clauses Tree automaton

unary predicate state

normal clause transition

constructor in the head input symbol

body pre-condition

General Form

p(a(X1, . . . , Xk)) ← p1(X1), . . . , pk(Xk)

p(X) ←

p(b) ←

910

Properties

• Types then are in fact regular tree languages.

• Types are closed under intersection:

〈p, q〉(a(X1, . . . , Xk)) ← 〈p1, q1〉(X1), . . . , 〈pk, qk〉(Xk) if

p(a(X1, . . . , Xk)) ← p1(X1), . . . , pk(Xk) and

q(a(X1, . . . , Xk)) ← q1(X1), . . . , qk(Xk)

• Types are also closed under union.

• Queries p(X) and p(t) can be decided in polynomial time

but:

• ... only in presence of tabulation !

• Or the program is topdown deterministic ...

911

Example: Topdown vs. Bottom-up

p(a(X1, X2)) ← p1(X1), p2(X2)

p(a(X1, X2)) ← p2(X1), p1(X2)

p1(b) ←

p2(c) ←

... is bottom-up, but not topdown deterministic.

There is no topdown deterministic program for this type !

==⇒

Topdown deterministic types are closed under intersection, but not

under union !!!

912

For a set T of terms, we define the set Π(T) of paths in

terms from T :

Π(T) =
⋃

{Π(t) | t ∈ T}

Π(b) = {b}

Π(a(t1, . . . , tk)) = {ajw | w ∈ Π(tj)} (k > 0)

// for new unary constructors aj

Example

T = {a(b, c), a(c, b)}

Π(T) = {a1b, a2c, a1c, a2b}

913

Vice versa from a set P of paths, a set Π−(P) of terms can

be recovered:

Π−(P) = {t | Π(t) ⊆ P}

Example (Cont.)

P = {a1b, a2c, a1c, a2b}

Π−(P) = {a(b, b), a(b, c), a(c, b), a(c, c)}

The set has become larger !!

914

Theorem

Assume that T is a regular set of terms. Then:

• Π(T) is regular.

• T ⊆ Π−(Π(T)).

• T = Π−(Π(T)) iff T is topdown deterministic.

• Π−(Π(T)) is the smallest superset of T which is topdown

deterministic.

Consequence

If we are interested in topdown deterministic types, it suffices to

determine the set of paths in terms !!!

915

Example (Cont.)

add(X, Y, Z) ← X = 0, nat(Y), Y = Z

add(X, Y, Z) ← nat(X), X = s(X ′), Z = s(Z ′), add(X ′, Y, Z ′)

mult(X, Y, Z) ← X = 0, nat(Y), Z = 0

mult(X, Y, Z) ← nat(X), X = s(X ′),mult(X ′, Y, Z ′), add(Z ′, Y, Z)

Question

Which run-time checks are necessary?

916

Idea

• Approximate the semantics of predicates by means of

topdown-deterministic regular tree languages !

• Alternatively: Approximate the set of paths in the

semantics of predicates by regular word languages !

Idea

• All predicates p/k, k > 0, are split into predicates

p1/1, . . . , pk/1.

917

Semantics

Let C denote a set of clauses.

The set [[p]]C is the set of tuples of ground terms (s1, . . . , sk), for

which p(s1, . . . , sk) is provable.

[[p]]C (p predicate) thus is the smallest collection of sets of tuples

for which:

σ(t) ∈ [[p]]C when ever ∀ i. σ(ti) ∈ [[pi]]C

for clauses p(t)← p1(t1), . . . , pn(tn) ∈ C and ground

substitutions σ.

918

Approximation of Paths

Every clause

p(t1, . . . , tk) ← α

is approximated by the clauses:

pj(w) ←
∧

Π(α) where

Π(g1, . . . , gm) = Π(g1) ∪ . . . ∪ Π(gm)

Π(q(s1, . . . , sn)) = {qi(w) | w ∈ Π(si)}

(j = 1, . . . , k, w ∈ Π(tj)).

Example

add(0, Y, Y) ← nat(Y)

add(s(X), Y, s(Z)) ← add(X, Y, Z)

919

yields

add1(0) ← nat1(Y)

add2(Y) ← nat1(Y)

add3(Y) ← nat1(Y)

add1(s1X) ← add1(X), add2(Y),

add3(Z)

add2(Y) ← add1(X), add2(Y),

add3(Z)

add3(s1 Z) ← add1(X), add2(Y),

add3(Z)

920

Discussion

• Every literal has at most one occurrence of a variable.

• The literals qj(wjY) where the variable Y does not

occur in the head, represent tests:

If there is a w with wjw ∈ [[qj]]C♯ for all such j, then we can

cancel these literals.

If there is no such w, then we can cancel the clause ...

... in the Example:

The literals:

add1(X), add2(Y), add3(Z)

are all satisfiable.

921

We conclude:

add1(0) ←

add2(Y) ← nat1(Y)

add3(Y) ← nat1(Y)

add1(s1X) ← add1(X)

add2(Y) ← add2(Y)

add3(s1 Z) ← add3(Z)

922

We conclude:

add1(0) ←

add2(Y) ← nat1(Y)

add3(Y) ← nat1(Y)

add1(s1X) ← add1(X)

add3(s1 Z) ← add3(Z)

923

We verify:

Theorem

Assume that C is a set of clauses.

Let C♯ denote the corresponding set of clauses for the paths.

Then for all predicates p/k:

Π([[p]]C) ⊆ [[p1]]C♯ ∪ . . . ∪ [[pk]]C♯

Proof

Induction on the approximations of the respective fixpoints.

924

A set of clauses with unary predicates and unary constructors is

called Alternating Pushdown System (APS).

Theorem

• Every APS is equivalent to a simple APS of the form:

p(aX) ← p1(X), . . . , pr(X)

p(X) ←

p(b) ←

p() ←

925

• Every APS is equivalent to a normal APS of the form:

p(aX) ← p1(X)

p(X) ←

p(b) ←

p() ←

926

Step 1: Removal of complicated heads:

For w = a(1) . . . a(m) (m > 1) we replace

p(wX) ← rhs with:

p(a(1)X) ← p2(X)

p2(a
(2)X) ← p3(X)

. . .

pm−1(a
(m−1)X) ← pm(X)

pm(a
(m)X) ← rhs

// pj all new

927

Step 1 (Cont.): Removal of complicated heads:

For w = a(1) . . . a(m)b (m > 0) we replace

p(w) ← rhs with

p(a(1)X) ← p2(X)

p2(a
(2)X) ← p3(X)

. . .

pm−1(a
(m−1)X) ← pm(X)

pm(a
(m)X) ← pm+1(X)

pm+1(b) ← rhs

// pj all new

928

Step 2: Splitting

We separate independent parts of pre-conditions into auxiliary

predicates:

head ← rest , p1(w1X), . . . , pm(wmX)

(X does not occur in head , rest)

is replaced with

head ← rest , q()

q() ← p1(w1X), . . . , pm(wmX)

for a new predicate q/0.

929

Step 3: Simplification

We add simpler derived clauses:

head ← p(aw), rest

p(aX) ← p1(X), . . . , pr(X)

implies

head ← p1(w), . . . , pr(w), rest

p(X) ← p1(X), . . . , pm(X)

pi(aX) ← pi1(X), . . . , piri(X)

implies

p(aX) ← p11(X), . . . , pmrm(X)

p(X) ← p1(X), . . . , pm(X)

pi(b) ← implies

p(b) ←
930

Step 3 (Cont.): Simplification

head ← p(w), rest , p(X)← implies

head ← rest

head ← p(b), rest , p(b)← implies

head ← rest

head ← p(), rest , p()← implies

head ← rest

p() ← p1(X), . . . , pm(X), pi(b)← implies

p() ←

p() ← p1(X), . . . , pm(X), pi(aX)← pi1(X), . . . , piri(X) implies

p() ← p11(X), . . . , pmrm(X)

931

Example

add1(X) ← add0(X)

add0(0) ←

add1(X) ← add1(X)

add1(s1X) ← add1(X)

... results in the new clause:

add1(0) ←

932

Theorem

Assume that C is a finite set of clauses for which steps 1 and 2

have been executed and which then has been saturated according

to step 3.

Assume that C0 ⊆ C is the subset of simple clauses of C. Then

for all occurring predicates p,

[[p]]C0 = [[p]]C

Proof

Induction on the depth of terms in [[p]]C.

933

... in the Example:

For add1(X) we obtain the following clauses:

add1(0) ←

add1(s1X) ← add1(X)

These clauses are already normal.

934

Transforming into Normal Clauses

Introduce new predicates for conjunctions of predicates.

Assume that A = {p1, . . . , pm}. Then:

[A](b)← whenever pi(b)← for all i.

[A](aX)← [B](X) whenever B = {pij | i = 1, . . . ,m} for

pi(aX)← pi1(X), . . . , piri(X)

935

Last Step: Transformation into a Type

• First, the automaton is determinized ...

936

Last Step: Transformation into a Type

• First, the automaton is determinized ...

• Then transitions for the components of constructors a:

p(aj X)← p(j)(X)

are joined into a transition for a:

p(a(X1, . . . , Xk))← p(1)(X1), . . . , p
(k)(Xk)

• Finally, the predicates pj for the components of the predicate

p/k are joined to a transition:

p(X1, . . . , Xk)← p1(X1), . . . , pk(Xk)

937

In the Example we find:

add(X, Y, Z) ← add1(X), nat(Y), q′(Z) where

q′(0) ←

q′(sX) ← q′(X)

q′ = {nat, add2}

938

In the Example we find:

add(X, Y, Z) ← add1(X), nat(Y), q′(Z) where

q′(0) ←

q′(sX) ← q′(X)

q′ = {nat, add2}

The types add1, q
′, nat are all equivalent.

939

Discussion

• For type-checking, it suffices to check for every predicate p/k

that

[[pi]]C♯ ⊆ Π(Ti)

• Since the Ti are topdown deterministic, we have a

deterministic automaton for Π(Ti).

• Therefore, we can easily construct a DFA for the complement

Π(Ti) !!

• Then we check whether

[[pi]]C♯ ∩ Π(Ti) = ∅

==⇒ this saves us determinization.

940

Caveat

• The emptiness problem for APS is DEXPTIME-complete !

• In many cases, though, our method terminates quickly.

941

Caveat

• The emptiness problem for APS is DEXPTIME-complete !

• In many cases, though, our method terminates quickly.

• Inferred types can also be used to understand legacy code.

• Then, however, they are only useful if they are not too

complicated !

• Our type inference provides very precise information.

• In practical applications, further widenings are applied to

accelerate the analysis, e.g., by reducing the number of

occurring sets.

942

5.3 Goal-directed Type Inference

Prolog programs explore predicates only insofar as they contribute

to answer a query.

Example: append

app([], Y, Y) ←

app([H|T], Y, [H|Z]) ← app(T, Y, Z)

← app([1, 2], [3], Z)

... results in

943

The APS-Approximation

app1([|]1(H)) ← app1(T), app2(Y), app3(Z).

app1([|]2(T)) ← app1(T), app2(Y), app3(Z).

app2(Y) ← app1(T), app2(Y), app3(Z).

app3([|]1(H)) ← app1(T), app2(Y), app3(Z).

app3([|]2(Z)) ← app1(T), app2(Y), app3(Z).

app1([]) ←

app2(X) ←

app3(X)) ←

← app1([|]1(1)), app1([|]2([|]1(2))), app1([|]2([|]2([]))),

app2([|]1(3)), app2([|]2([])), app3(X)

944

Ignoring the query, we find via normalization:

app2(X) ←

app3(X) ←

app1([]) ←

app1([|]2X) ← q0(X)

app1([|]2X) ← q1(X)

app1([|]2X) ← q2(X)

app1([|]1X) ←

q0([]) ←

q1([|]2X) ← q0(X)

q1([|]2X) ← q1(X)

q1([|]2X) ← q2(X)

q2([|]1X) ←

945

Discussion

• The second and third argument can be arbitrary.

• The first argument is a list where nothing is known about the

elements.

• Ignoring the query, this result is the best we can hope for.

• Better results can be obtained if additionally call patterns are

tracked !

==⇒ Magic Set Transformation

946

Magic Sets

• For every predicate p/k, we introduce a new predicate calledp/k

with the clauses

calledp(t) ← for the query ← p(t)

•

calledpi(ti) ← calledp(t), p1(t1), . . . , pi−1(ti−1)

p(t) ← calledp(t), p1(t1), . . . , pm(tm)

for every clause:

p(t)← p1(t1), . . . , pm(tm)

947

Example: append (Cont.)

app([], Y, Y) ← called([], Y, Y)

app([H|T], Y, [H|Z]) ← called([H|T], Y, [H|Z]),

app(T, Y, Z)

called(T, Y, Z) ← called([H|T], Y, [H|Z])

called([1, 2], [3], Z) ←

948

The APS-Approximation

app1([]) ← called1([]), called2(X), called3(X)

app2(X) ← called1([]), called2(X), called3(X)

app3(X) ← called1([]), called2(X), called3(X)

app1([|]1H) ← called1([|]1H), called1([|]2T), called2(Y), called3([|]1H), called3([|]2Z),

app1(T), app2(Y), app3(Z)

app1([|]2T) ← called1([|]1H), called1([|]2T), called2(Y), called3([|]1H), called3([|]2Z),

app1(T), app2(Y), app3(Z)

app2(Y) ← called1([|]1H), called1([|]2T), called2(Y), called3([|]1H), called3([|]2Z),

app1(T), app2(Y), app3(Z)

app3([|]1H) ← called1([|]1H), called1([|]2T), called2(Y), called3([|]1H), called3([|]2Z),

app1(T), app2(Y), app3(Z)

app3([|]2Z) ← called1([|]1H), called1([|]2T), called2(Y), called3([|]1H), called3([|]2Z),

app1(T), app2(Y), app3(Z)

949

. . .

called1(T) ← called1([|]1H), called1([|]2T), called2(Y), called3([|]1H), called3([|]2Z)

called2(Y) ← called1([|]1H), called1([|]2T), called2(Y), called3([|]1H), called3([|]2Z)

called3(Z) ← called1([|]1H), called1([|]2T), called2(Y), called3([|]1H), called3([|]2Z)

called1([|]11) ←

called1([|]2([|]12) ←

called1([|]2[|]2[]) ←

called2([|]13) ←

called2([|]2[]) ←

called3(X) ←

950

The Normalized APS-Approximation (Cont.)

app1([|]1X) ← q1(X)

app1([|]1X) ← q2(X)

app1([]) ←

app1([|]2X) ← q4(X)

app1([|]2X) ← q0(X)

app1([|]2X) ← q5(X)

app2([|]1X) ← q3(X)

app2([|]2X) ← q0(X)

app3([|]1X) ← q1(X)

app3([|]1X) ← q2(X)

app3([|]1X) ← q3(X)

app3([|]2X) ← q0(X)

app3([|]2X) ← q4(X)

app3([|]2X) ← q6(X)

app3([|]2X) ← q7(X)

app3([|]2X) ← q8(X)

q0([]) ←

q1(1) ←

q2(2) ←

q3(3) ←

q4([|]2X) ← q0(X)

q5([|]1X) ← q2(X)

q6([|]1X) ← q3(X)

q7([|]1X) ← q1(X)

q7([|]1X) ← q2(X)

q8([|]2X) ← q4(X)

q8([|]2X) ← q7(X)

q8([|]2X) ← q8(X)

q8([|]2X) ← q6(X)

951

Discussion

• The result now is amazingly precise !!

• The correct values for the second parameter is inferred.

• For the result parameter, a list containing 1,2 and 3 is inferred.

• It only fails to infer that this list is finite and of length 3.

952

Perspective: Normal Horn Clauses

• Prolog may no longer be the sexiest programming language ..

• Horn clauses, though, are very well suited for the

specification of analysis problems.

• It is a separate problem then to solve the stated analysis

problem.

• If the least solution cannot be computed exactly, approximate

solutions may at least yield approximative answers ...

Example: Cryptographic Protocols

953

Rules for the Exchange of Messages

{Nb}pub(Bob)

{Na,Nb}pub(Alice)

{Alice,Na}pub(Bob)

Alice Bob

Properties to be verified

secrecy, authenticity, ...

954

The Dolev-Yao Model

• Messages are terms:
Representation

{m}k encrypt(m, k)

〈m1,m2〉 pair(m1,m2)

==⇒ Distinct terms represent distinct messages

==⇒ perfect cryptography. Therefore, we have:

{m}k = {m
′}k′ iff m = m′ and k = k′

• The attacker has full control over the network:

All messages are exchanged with the attacker.

955

Example: The Needham-Schroeder Protocol

1. A −→ B : {a, na}kb

2. B −→ A : {na, nb}ka

3. A −→ B : {nb}kb

Abstraction

• Unbounded number of sessions !!

• Nonces are not necessarily fresh ??

956

Idea

Characterize the knowledge of the attacker by means of Horn

clauses ...

1. A −→ B : {a, na}kb known({a, na}kb) ←

2. B −→ A : {na, nb}ka known({X,nb}ka)← known({a,X}kb)

3. A −→ B : {nb}kb known({X}kb)← known({na, X}ka)

Secrecy of Nb : ← known(nb).

957

Discussion

• We have abstracted all nonces with finitely many.

• Less restrictive (though still correct) abstractions are still

possible ...

1. A −→ B : {a, na}kb . . .

2. B −→ A : {na, nb}ka known({X,nb(X)}ka)← known({a,X}kb)

3. A −→ B : {nb}kb . . .

The fresh nonce is a function of the received nonce.

Blanchet 2001

958

Further capabilities of the attacker

known({X}Y) ← known(X), known(Y)

// The attacker can encode

known(〈X, Y 〉) ← known(X), known(Y)

// The attacker can construct pairs

known(X) ← known({X}Y), known(Y)

// The attacker can decode

known(X) ← known(〈X, Y 〉)

known(Y) ← known(〈X, Y 〉)

// The attacker can project

959

Discussion

• Type inference for Prolog computed a regular abstraction of

the set of paths of the denotational semantics.

• Sometimes, this is too imprecise!

• Instead, we now approximate the denotational semantics

directly ...

• This, however, can be quite expensive

==⇒ not well suited for compilers

==⇒ in general, much more precise

960

Simplification

We only consider clauses whose heads are of the form:

p(f(X1, . . . , Xk)) or p(b) or p(X1, . . . , Xk)

Such clauses are called H1.

Theorem

• Every finite set of H1-clauses is equivalent to a finite set of

simple H1-clauses of the form:

p(f(X1, . . . , Xk)) ← p1(Xi1), . . . , pr(Xi1)

p(X1, . . . , Xk) ← p1(Xi1), . . . , pr(Xi1)

p(b) ←

• ... or even to a finite set of normal H1-clauses.

961

Idea

We successively introduce simpler clauses until the complicated

ones become superfluous ...

Rule 1: Splitting

We separate independent parts from the pre-conditions:

head ← rest , p1(X), . . . , pm(X)

(X does not occur in head , rest)

is replaced with

head ← rest , q()

q() ← p1(X), . . . , pm(X)

for a new predicate q/0.

962

Rule 2 Simplification

We introduce simpler derived clauses:

head ← p(f(t1, . . . , tk)), rest

p(f(X1, . . . , Xk)) ← p1(Xi1), . . . , pr(Xir)

implies

head ← p1(ti1), . . . , pr(tir), rest

head ← p(t1, . . . , tk), rest

p(X1, . . . , Xk) ← p1(Xi1), . . . , pr(Xir)

implies

head ← p1(ti1), . . . , pr(tir), rest

963

Rule 3 (Cont.): Simplification

p(X) ← p1(X), . . . , pm(X)

pi(f(X1, . . . , Xk)) ← pi1(Xi1), . . . , piri(Xiri)

implies

p(f(X1, . . . , Xk))) ← p11(X11), . . . , pmrm(Xmrm)

head ← p(b), rest

p(b) ← implies

head ← rest

964

Rule 4: Guard Simplification

p() ← p1(X), . . . , pm(X)

pi(f(X1, . . . , Xk)) ← pi1(Xi1), . . . , piri(Xiri)

implies

p() ← p11(X11), . . . , pmrm(Xmrm)

p() ← p1(X), . . . , pm(X)

pi(b) ← implies

p() ←

965

Theorem

Assume that C is a finite set of clauses which is closed under

splitting and simplification and guard simplification.

Let C0 ⊆ C denote the subset of simple clauses of C. Then for

all occurring predicates p,

[[p]]C0 = [[p]]C

Proof

Induction on the depth of terms in tuples of [[p]]C.

966

Transformation into normal clauses

Introduce fresh predicates for conjunctions of unary predicates.

Assume A = {p1, . . . , pm}. Then:

[A](b) ← whenever pi(b)← for all i.

[A](f(X1, . . . , Xk)) ← [B1](X1), . . . , [Bk](Xk)

whenever Bi = {pjl | Xijl = Xi} for

pj(f(X1, . . . , Xk))← pj1(Xij1), . . . , pjrj(Xijrj
)

967

Caveat

• The emptiness problem for Horn clauses in H1 is

DEXPTIME-complete !

• In many cases, our method still terminates quickly

• Not all Horn clauses are in H1 !

==⇒ an approximation technique is required ...

968

Approximation of Horn Clauses

Step 1

Simplification of pre-conditions by splitting, simplification and guard

simplification (as before)

Step 2

Introduction of copies of variables X. Every copy receives all

literals of X as pre-condition.

p(f(X,X)) ← q(X) yields :

p(f(X,X ′)) ← q(X), q(X ′)

969

Step 3

Introduction of an auxiliary predicate for every non-variable

subterm of the head.

p(f(g(X, Y), Z)) ← q1(X), q2(Y), q3(Z) yields :

p1(g(X, Y)) ← q1(X), q2(Y), q3(Z)

p(f(H,Z)) ← p1(H), q1(X), q2(Y), q3(Z)

970

