
Programming Languages

Concurrency: Memory Consistency

TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Dr. Michael Petter
Winter term 2019

Thread A

void foo(void) {
a = 1;
b = 1;

}

Thread B

void bar(void) {
while (b == 0){};
assert (a==1);

}

Intuition: the assertion will never fail

NN! Real execution: given enough tries, the assertion may eventually fail

 in need of defining a Memory Model

Memory Models

Memory interactions behave differently in presence of
multiple concurrent threads
data replication in hierarchical and/or distributed memory systems
deferred communication of updates

Memory Models are a product of negotiating
restrictions of freedom of implementation to guarantee race related properties
establishment of freedom of implementation to enable program and machine model
optimizations

 Modern Languages include the memory model in their language definition

Strict Consistency

Motivated by sequential computing, we intuitively implicitely transfer our idea of semantics
of memory accesses to concurrent computation. This leads to our idealistic model Strict
Consistency :

Definition (Strict consistency)

Independently of which process reads or writes, the value from the most recent write to a
location is observable by reads from the respective location immediately after the write
occurs.

Although idealistically desired, practically not existing
NN! absolute global time problematic
NN! physically not possible

 strict consistency is too strong to be realistic

Abandoning absolute time
Thread A

void foo(void) {
a = 1;
b = 1;

}

Thread B

void bar(void) {
while (b == 0) {};
assert(a == 1);

}

initial state of a and b is 0

A writes a before it writes b

B should see b go to 1 before executing the assert statement

the assert statement should always hold

 here correctness means: writing a 1 to a happens before reading a 1 in b

Still, any of the following may happen:

a=1
foo

mem

bar
b? b?b?

b=1 a=1
foo

mem

bar
b? a?b?

b=1 a=1
foo

mem

bar
b? a?b?

b=1

b?

 Idea: state correctness in terms of what event may happen before another one

Happend-Before Relation and Diagram

Events in a Distributed System
A process as a series of events [2]: Given a distributed system of processes P,Q,R, . . .,
each process P consists of events •p1, •p2,
Example:

p3p1 p2 p4

q1 q2 q3 q4 q5 q6 q7

r1 r2 r3 r4

P

Q

R

event •pi in process P happened before •pi+1

if •pi is an event that sends a message to Q then there is some event •qj in Q that
receives this message and •pi happened before •qj

The Happened-Before Relation

Definition
If an event p happened before an event q then p→ q.

Observe:
→ is partial (neither p→ q or q→ p may hold)
→ is irreflexive (p→ p never holds)
→ is transitive (p→ q ∧ q→ r then p→ r)
→ is asymmetric (if p→ q then ¬(q→ p))

 the → relation is a strict partial order

Concurrency in Happened-Before Diagrams
Let a 6→ b abbreviate ¬(a→ b).

Definition
Two distinct events p and q are said to be concurrent if p 6→ q and q 6→ p.

p3p1 p2 p4

q1 q2 q3 q4 q5 q6 q7

r1 r2 r3 r4

P

Q

R

p1→ r4 in the example
p3 and q3 are, in fact, concurrent since p3 6→ q3 and q3 6→ p3

Ordering
Let C be a logical clock i.e.C assigns a globally unique time-stamp C(p) to each event p.

Definition (Clock Condition)

Function C satisfies the clock condition if for any events p, q

p→ q =⇒ C(p) < C(q)

For a distributed system the clock condition holds iff:
1 pi and pj are events of P and pi→ pj then C(pi) < C(pj)

2 p is the sending of a message by process P and q is the reception of this message by
process Q then C(p) < C(q)

 a logical clock C that satisfies the clock condition describes a total order a < b (with
C(a) < C(b)) that embeds the strict partial order →
The set defined by all C that satisfy the clock condition is exactly the set of executions
possible in the system.
 use the process model and → to define better consistency model

Defining C Satisfying the Clock Condition
Given:

p3p1 p2 p4

q1 q2 q3 q4 q5 q6 q7

r1 r2 r3 r4

P

Q

R

e p1 p2 p3 p4

C(e) 1 4 7 12
e q1 q2 q3 q4 q5 q6 q7

C(e) 2 3 5 6 11 13 14
e r1 r2 r3 r4

C(e) 8 9 10 15

Summing up Happened-Before Relations

We can model concurrency using processes and events:
there is a happened-before relation between the events of each process
there is a happened-before relation between communicating events
happened-before is a strict partial order
a clock is a total strict order that embeds the happened-before partial order

Memory Consistency Models based on the Happened-Before
Relation

Happened-Before Based Memory Models

Idea: use happened-before diagrams to model more relaxed memory models.

Given a path through each of the threads of a program:
consider the actions of each thread as events of a process
use more processes to model memory
I here: one process per variable in memory

 concisely represent some interleavings

 We establish a model for Sequential Consistency .

Sequential Consistency

Definition (Sequential Consistency Condition [2])
The result of any execution is the same as if the memory operations

of each individual processor appear in the order specified by its program
of all processors joined were executed in some sequential order

Sequential Consistency applied to Multiprocessor Programs:
Given a program with n threads,

1 for fixed event sequences p1
0, p1

1, . . . and p2
0, p2

1, . . . and pn
0, pn

1, . . . keeping the program
order,

2 executions obeying the clock condition on the pi
j,

3 all executions have the same result
Yet, in other words:

1 defines the execution path of each thread
each execution mentioned in 2 is one interleaving of processes

3 declares that the result of running the threads with these interleavings is always the
same.

Working with Sequential Consistency

Sequential Consistency in Multiprocessor Programs:
Given a program with n threads,

1 for fixed event sequences p1
0, p1

1, . . . and p2
0, p2

1, . . . and pn
0, pn

1, . . . keeping the program
order,

2 executions obeying the clock condition on the pi
j,

3 all executions have the same result

Idea for showing that a system is not sequentially consistent:
pick a result obtained from a program run on a SC system
pick an execution 1 and a total ordering of all operations 2

add extra processes to model other system components
the original order 2 becomes a partial order →
show that total orderings C′ exist for → for which the result differs

Sequential Consistency: Formal Spec [5, p. 25]

Definition (Sequential Consistency)

1 Memory operations in program order (≤) are embedded into the memory order (v)

Opi[a] ≤ Opi[b]
′ ⇒ Opi[a] v Opi[b]

′

2 A load’s value is determined by the latest write wrt. memory order

val(Ldi[a]) = val(Stj[a] | Stj[a] =max
v

({Stk[a] | Stk[a] v Ldi[a]})

with

Opi[a] any memory access to address a by CPU i

Ldi[a] a load from address a by CPU i

Sti[a] a store to address a by CPU i

Program order ≤ being specified by the control flow of the programs executed by their associated
CPUs; only orders operations on the same CPU

Weakening the Model
Observation: more concurrency possible, if we model each memory location separately,
i.e. as a different process

a=1
foo

mem

bar
b? b?b?

b=1 a=1
foo

mem

bar
b? a?

b=1

a
b

b?b?

Sequential consistency still obeyed:
the accesses of foo to a occurs before b

the first two read accesses to b are in parallel to a=1

Conclusion: There is no observable change if accesses to different memory locations can
happen in parallel.

Benefits of Sequential Consistency
concisely represent all interleavings that are due to variations in timing
synchronization using time is uncommon for software

 a good model for correct behaviors of concurrent programs
 program results besides SC results are undesirable (they contain races)

Realistic model for simple hardware architectures:

sequential consistency model suitable for concurrent processors that acquire exclusive
access to memory
processors can speed up computation by using caches and still made to maintain
sequential consistency

Not realistic for elaborate hardware with out-of-order stores:

what other processors see is determined by complex optimizations to cacheline
management

 internal workings of caches

Introducing Caches: The MESI Protocol

Introducing Caches
Idea: each cache line one process

a

Ld[a]
A

B

a

Ld[a]

St[a]

St[a]

ca
ch

e
ca

ch
e

mem

a++

a++

Observations:
NN! naive replication of memory in cache lines creates incoherency

Cache Coherency: Formal Spec [5, p. 14]

Definition (Cache Coherency)

1 Memory operations in program order (≤) are embedded into the memory order (v)

Opi[a] ≤ Opi[a]
′ ⇒ Opi[a] v Opi[a]

′

2 A load’s value is determined by the latest write wrt. memory order

val(Ldi[a]) = val(Stj[a] | Stj[a] =max
v

({Stk[a] | Stk[a] v Ldi[a]})

This definition superficially looks close to the definition of SC – except that it covers
only singular memory locations instead of all memory locations accessed in a program
Caches and memory can communicate using messaging, following some particular
protocol to establish cache coherency
(Cache Coherence Protocol)

The MESI Cache Coherence Protocol: States [4]

Processors use caches to avoid a costly round-trip to RAM for every memory access.
programs often access the same memory area repeatedly (e.g. stack)
keeping a local mirror image of certain memory regions requires bookkeeping about
who has the latest copy

M

S

E

I

Each cache line is in one of the states M,E, S, I:
I: it is invalid and is ready for re-use
S: other caches have an identical copy of this cache line, it is

shared
E: the content is in no other cache; it is exclusive to this cache

and can be overwritten without consulting other caches
M: the content is exclusive to this cache and has furthermore

been modified

 the global state of cache lines is kept consistent by sending messages

The MESI Cache Coherence Protocol: Messages

Moving data between caches is coordinated by sending messages [3]:

Read: sent if CPU needs to read from an address
Read Response: when in state E or S, response to a Read
message, carries the data for the requested address
Invalidate: asks others to evict a cache line
Invalidate Acknowledge: reply indicating that a cache line has
been evicted
Read Invalidate: like Read + Invalidate (also called “read with
intend to modify”)
Writeback: Read Response when in state M, as a side effect
noticing main memory about modifications to the cacheline,
changing sender’s state to S

M

S

E

I

We mostly consider messages between processors. Upon Read Invalidate, a processor
replies with Read Response/Writeback before the Invalidate Acknowledge is sent.

MESI Example

Consider how the following code might execute:

Thread A

a = 1; // A.1
b = 1; // A.2

Thread B

while (b == 0) {}; // B.1
assert(a == 1); // B.2

in all examples, the initial values of variables are assumed to be 0
suppose that a and b reside in different cache lines
assume that a cache line is larger than the variable itself
we write the content of a cache line as
I Mx: modified, with value x
I Ex: exclusive, with value x
I Sx: shared, with value x
I I: invalid

MESI Example (I)

Thread A

a = 1; // A.1
b = 1; // A.2

Thread B

while (b == 0) {}; // B.1
assert(a == 1); // B.2

statement CPU A CPU B RAM message
a b a b a b

A.1 I I I I 0 0 read invalidate of a from CPU A
I I I I 0 0 invalidate ack. of a from CPU B
I I I I 0 0 read response of a=0 from RAM

B.1 M 1 I I I 0 0 read of b from CPU B
M 1 I I I 0 0 read response with b=0 from RAM

B.1 M 1 I I E 0 0 0
A.2 M 1 I I E 0 0 0 read invalidate of b from CPU A

M 1 I I E 0 0 0 read response of b=0 from CPU B
M 1 S 0 I S 0 0 0 invalidate ack. of b from CPU B
M 1 M 1 I I 0 0

MESI Example (II)

Thread A

a = 1; // A.1
b = 1; // A.2

Thread B

while (b == 0) {}; // B.1
assert(a == 1); // B.2

statement CPU A CPU B RAM message
a b a b a b

B.1 M 1 M 1 I I 0 0 read of b from CPU B
M 1 M 1 I I 0 0 write back of b=1 from CPU A

B.2 M 1 S 1 I S 1 0 1 read of a from CPU B
M 1 S 1 I S 1 0 1 write back of a=1 from CPU A
S 1 S 1 S 1 S 1 1 1

...
...

...
...

...
...

...
...

A.1 S 1 S 1 S 1 S 1 1 1 invalidate of a from CPU A
S 1 S 1 I S 1 1 1 invalidate ack. of a from CPU B
M 1 S 1 I S 1 1 1

MESI Example: Happened Before Model
Idea: each cache line one process, A caches b=0 as E, B caches a=0 as E

a

St[a]
A

B

b

a
b

Ld[b] Ld[b]

re
ad

in
va

lid
at

e

re
ad

re
sp

on
se

in
va

lid
at

e
ac

k
re

ad

re
ad

re
sp

on
se

in
al

id
at

e
in

va
lid

at
e

ac
k

b=1

Ld[b] Ld[a]

re
ad

w
rit

e
ba

ck

re
ad

w
rit

e
ba

ck

ca
ch

e
ca

ch
e

a=1
St[b]

b==0 b==0 b==0 a==1

Observations:
each memory access must complete before executing next instruction add edge
second execution of test b==0 stays within cache no traffic

Summary: MESI Cache Coherence Protocol

Sequential Consistency:
specifies that the system must appear to execute all threads’ loads and stores to all
memory locations in a total order that respects the program order of each thread
a characterization of well-behaved programs
a model for differing speed of execution
for fixed paths through the threads and a total order between accesses to the same
variables: executions can be illustrated by a happened-before diagram with one
process per variable

Cache Coherency:
A cache coherent system must appear to execute all threads’ loads and stores to a
single memory location in a total order that respects the program order of each thread
MESI cache coherence protocol ensures SC for processors with caches

Introducing Store Buffers: Out-Of-Order Stores

Out-of-Order Execution
NN! performance problem: writes always stall

Thread A

a = 1; // A.1
b = 1; // A.2

Thread B

while (b == 0) {}; // B.1
assert(a == 1); // B.2

a
St[a]A

B

b

a
b

Ld[b] Ld[b]

re
ad

in
va

lid
at

e

re
ad

re
sp

on
se

in
va

lid
at

e
ac

k
re

ad

re
ad

re
sp

on
se

in
al

id
at

e
in

va
lid

at
e

ac
k

b=1

Ld[b] Ld[a]

re
ad

w
rit

e
ba

ck

re
ad

w
rit

e
ba

ck

ca
ch

e
ca

ch
e

a=1
St[b]

b==0 b==0 b==0 a==1

 CPU A should continue executing after a = 1;

Store Buffers

NN! Abstract Machine Model: defines semantics of memory accesses

CPU A CPU B

cache

buffer

cache

Memory

store
buffer
store

put each store into a store buffer and continue
execution
Store buffers apply stores in various orders:
I FIFO (Sparc/x86-TSO)
I unordered (Sparc PSO)

NN! program order still needs to be observed locally
I store buffer snoops read channel and
I on matching address, returns the youngest value in buffer

TSO Model: Formal Spec [6] [5, p. 42]

Definition (Total Store Order)

1 The store order wrt. memory (v) is total

∀a,b ∈ addr i,j ∈CPU (Sti[a] v Stj[b]) ∨ (Stj[b] v Sti[a])
2 Stores in program order (≤) are embedded into the memory order (v)

Sti[a] ≤ Sti[b]⇒ Sti[a] v Sti[b]
3 Loads preceding an other operation (wrt. program order ≤) are embedded into the memory order (v)

Ldi[a] ≤ Opi[b]⇒ Ldi[a] v Opi[b]
4 A load’s value is determined by the latest write as observed by the local CPU

val(Ldi[a]) = val(Stj[a] | Stj[a] =max
v

({Stk[a] | Stk[a] v Ldi[a]} ∪ {Sti[a] | Sti[a] ≤ Ldi[a]}))

Particularly, one ordering property from SC is not guaranteed:

Sti[a] ≤ Ldi[b] 6⇒ Sti[a] v Ldi[b]

NN! Local stores may be observed earlier by local loads then from somewhere else!

Happened-Before Model for TSO
Thread A

a = 1;
printf("%d",b);

Thread B

b = 1;
printf("%d",a);

Assume cache A contains: a: S0, b: S0, cache B contains: a: S0, b: S0

a

St[a]A

B

b

a
b

St[b]

in
va

lid
at

e

in
va

lid
at

e
ac

k

Ld[b]

Ld[b]

ca
ch

e
ca

ch
estorestore

store

in
va

lid
at

e

in
va

lid
at

e
ac

k

b=1 b=1

a=1 printf("%d",b)

TSO in the Wild: x86

The x86 CPU, powering desktops and servers around the world is a common
representative of a TSO Memory Model based CPU.

FIFO store buffers keep quite strong consistency properties
The major obstacle to Sequential Consistency is

Sti[a] ≤ Ldi[b] 6⇒ Sti[a] v Ldi[b]

I modern x86 CPUs provide the mfence instruction
I mfence orders all memory instructions:

Opi ≤ mfence() ≤ Opi
′ ⇒ Opi v Opi

′

a fence between write and loads gives sequentially consistent CPU behavior (and is as
slow as a CPU without store buffer)

 use fences only when necessary

PSO Model: Formal Spec [6] [5, p. 58]
Definition (Partial Store Order)

1 The store order wrt. memory (v) is total

∀a,b ∈ addr i,j ∈CPU (Sti[a] v Stj[b]) ∨ (Stj[b] v Sti[a])
2 Fenced stores in program order (≤) are embedded into the memory order (v)

Sti[a] ≤ sfence() ≤ Sti[b]⇒ Sti[a] v Sti[b]
3 Stores to the same address in program order (≤) are embedded into the memory order (v)

Sti[a] ≤ Sti[a]′ ⇒ Sti[a] v Sti[a]′

4 Loads preceding another operation (wrt. program order ≤) are embedded into the memory order (v)

Ldi[a] ≤ Opi[b]⇒ Ldi[a] v Opi[b]
5 A load’s value is determined by the latest write as observed by the local CPU

val(Ldi[a]) = val(Stj[a] | Stj[a] =max
v

({Stk[a] | Stk[a] v Ldi[a]} ∪ {Sti[a] | Sti[a] ≤ Ldi[a]}))

NN! Now also stores are not guaranteed to be in order any more:

Sti[a] ≤ Sti[b] 6⇒ Sti[a] v Sti[b]

 What about sequential consistency for the whole system?

Happened-Before Model for PSO
Thread A

a = 1;
b = 1;

Thread B

while (b == 0) {};
assert(a == 1);

Assume cache A contains: a: S0, b: E0, cache B contains: a: S0, b: I

a

St[a]A

B

b

a
b

Ld[b]

in
va

lid
at

e

in
va

lid
at

e
ac

k

St[b]

Ld[a]

re
ad

w
rit

e
ba

ck

ca
ch

e
ca

ch
e

store

a=1 b=1

b==0 a==1

Explicit Synchronization: Write Barrier

Overtaking of messages may be desirable and does not need to be prohibited in general.
generalized store buffers render programs incorrect that assume sequential
consistency between different CPUs
whenever a store in front of another operation in one CPU must be observable in this
order by a different CPU, an explicit write barrier has to be inserted
I a write barrier marks all current store operations in the store buffer
I the next store operation is only executed when all marked stores in the buffer have completed

Happened-Before Model for Write Barriers
Thread A

a = 1;
sfence();
b = 1;

Thread B

while (b == 0) {};
assert(a == 1);

Assume cache A contains: a: S0, b: E0, cache B contains: a: S0, b: I

a

St[a]A

B

b

a
b

Ld[b]

in
va

lid
at

e

in
va

lid
at

e
ac

k

St[b]

Ld[a]

re
ad

w
rit

e
ba

ck

ca
ch

e
ca

ch
e

store

re
ad

w
rit

e
ba

ck

sfence
a=1 b=1mfence()

b==0 a==1

Further weakening the model: O-o-O Reads

Relaxed Memory Order
Communication of cache updates is still costly:

a cache-intense computation can fill up store buffers in CPUs
 waiting for invalidation acknoledgements may still happen

invalidation acknoledgements are delayed on busy caches

CPU A CPU B

cache

store

cache

buffer

Memory

queue
invalidate

queue
invalidate

store
buffer

 immediately acknowledge an invalidation and
apply it later
put each invalidate message into an invalidate
queue
if a MESI message needs to be sent regarding
a cache line in the invalidate queue then wait
until the line is invalidated
NN! local loads and stores do not consult the

invalidate queue
 What about sequential consistency?

RMO Model: Formal Spec [7, p. 290]
Definition (Relaxed Memory Order)

1 Fenced memory accesses in program order (≤) are embedded into the memory order (v)

Opi[a] ≤ mfence() ≤ Opi[b]⇒ Opi[a] v Opi[b]
2 Stores to the same address in program order (≤) are embedded into the memory order (v)

Opi[a] ≤ Sti[a]′ ⇒ Opi[a] v Sti[a]′

3 Operations dependent on a load (wrt. dependence →) are embedded in the memory order (v)

Ldi[a]→ Opi[b]⇒ Ldi[a] v Opi[b]
4 A load’s value is determined by the latest write as observed by the local CPU

val(Ldi[a]) = val(Stj[a] | Stj[a] =max
v

({Stk[a] | Stk[a] v Ldi[a]} ∪ {Sti[a] | Sti[a] ≤ Ldi[a]}))

NN! Now we need the notion of dependence → :
Memory access to the same address: Sti[a] ≤ Ldi[a] ⇒ Sti[a]→ Ldi[a]
Register reads are dependent on latest register writes:
Ldi[a]′′ =max

≤
(Ldi[a]′ | targetreg(Ldi[a]′) = srcreg(Sti[b]) ∧ Ldi[a]′ ≤ Sti[b]) ⇒ Ldi[a]′′ → Sti[b]

Stores within branched blocks are dependent on branch conditionals:

(Opi[a] ≤ Sti[b]) ∧ Opi[a]→ condbranch ≤ Sti[b] ⇒ Opi[a]→ Sti[b]

Happened-Before Model for Invalidate Queues
Thread A

a = 1;
sfence();
b = 1;

Thread B

while (b == 0) {};
assert(a == 1);

Assume cache A contains: a: S0, b: E0, cache B contains: a: S0, b: I

a

St[a]A

B

b

a
b

in
va

lid
at

e
ac

k

Ld[a]

in
va

lid
at

e

ca
ch

e
ca

ch
e

St[b]

Ld[b]

re
ad

w
rit

e
ba

ck

sfence

in
va

lid
at

e

st
or

e

a==1b==0

a=1 b=1sfence()

Explicit Synchronization: Read Barriers

Read accesses do not consult the invalidate queue.
might read an out-of-date value
need a way to establish sequential consistency between writes of other processors and
local reads
insert an explicit read barrier before the read access
I a read barrier marks all entries in the invalidate queue
I the next read operation is only executed once all marked invalidations have completed

a read barrier before each read gives sequentially consistent read behavior (and is as
slow as a system without invalidate queue)

 match each write barrier in one process with a read barrier in another process

Happened-Before Model for Read Barriers

Thread A

a = 1;
sfence();
b = 1;

Thread B

while (b == 0) {};
lfence();
assert(a == 1);

a

St[a]A

B

b

a
b

in
va

lid
at

e
ac

k

Ld[a]

in
va

lid
at

e

ca
ch

e
ca

ch
e

St[b]

Ld[b]

re
ad

w
rit

e
ba

ck

sfence

in
va

lid
at

e

st
or

e

lfence

re
ad

w
rit

e
ba

ck

a=1 b=1sfence()

a==1b==0 lfence()

Example: The Dekker Algorithm on RMO Systems

Using Memory Barriers: the Dekker Algorithm
Mutual exclusion of two processes with busy waiting.

//flag[] is boolean array; and turn is an integer
flag[0] = false;
flag[1] = false;
turn = 0; // or 1

P0:
flag[0] = true;
while (flag[1] == true)

if (turn != 0) {
flag[0] = false;
while (turn != 0) {

// busy wait
}
flag[0] = true;

}
// critical section
turn = 1;
flag[0] = false;

P1:
flag[1] = true;
while (flag[0] == true)

if (turn != 1) {
flag[1] = false;
while (turn != 1) {

// busy wait
}
flag[1] = true;

}
// critical section
turn = 0;
flag[1] = false;

The Idea Behind Dekker
Communication via three variables:

flag[i]==true process Pi wants to enter its critical section
turn==i process Pi has priority when both want to enter

P0:
flag[0] = true;
while (flag[1] == true)

if (turn != 0) {
flag[0] = false;
while (turn != 0) {

// busy wait
}
flag[0] = true;

}
// critical section
turn = 1;
flag[0] = false;

In process Pi:
if P1−i does not want to enter, proceed
immediately to the critical section

 flag[i] is a lock and may be implemented as
such
if P1−i also wants to enter, wait for turn to be
set to i

while waiting for turn, reset flag[i] to
enable P1−i to progress

Dekker’s Algorithm and RMO
Problem: Dekker’s algorithm requires sequential consistency.
Idea: insert memory barriers between all variables common to both threads.

P0:
flag[0] = true;
sfence();
while (lfence(), flag[1] == true)

if (lfence(), turn != 0) {
flag[0] = false;
sfence();
while (lfence(), turn != 0){

// busy wait
}
flag[0] = true;
sfence();

}
// critical section
turn = 1;
sfence();
flag[0] = false; sfence();

insert a load memory barrier lfence()
in front of every read from common
variables
insert a write memory barrier sfence()
after writing a variable that is read in the
other thread
the lfence() of the first iteration of
each loop may be combined with the
preceding sfence() to an mfence()

Summary: Relaxed Memory Models

Highly optimized CPUs may use a relaxed memory model :
reads and writes are not synchronized unless requested by the user
many kinds of memory barriers exist with subtle differences

 ARM, PowerPC, Alpha, ia-64, even x86 (SSE Write Combining)

 memory barriers are the “lowest-level” of synchronization

Discussion

Memory barriers reside at the lowest level of synchronization primitives.

Where are they useful?
when blocking should not de-schedule threads
when several processes implement automata and coordinate their transitions via
common synchronized variables

 protocol implementations
 OS provides synchronization facilities based on memory barriers

Why might they not be appropriate?
difficult to get right, best suited for specific well-understood algorithms
often synchronization with locks is as fast and easier
too many fences are costly if store/invalidate buffers are bottleneck

Memory Models and Compilers

Before Optimization

int x = 0;
for (int i=0;i<100;i++){

x = 1;
printf("%d",x);

}

After Optimization

int x = 1;
for (int i=0;i<100;i++){

printf("%d",x);
}

Standard Program Optimizations

comprises loop-invariant code motion and dead store elimination, e.g.

NN! having another thread executing x = 0; changes observable behaviour depending on
optimizing or not

 Compiler also depends on consistency guarantees
 Demand for Memory Models on language level

Memory Models and C-Compilers

Keeping semantics I

int x = 0;
for (int i=0;i<100;i++){

sfence();
x = 1;
printf("%d",x);

}

Keeping semantics II

volatile int x = 0;
for (int i=0;i<100;i++){

x = 1;
printf("%d",x);

}

Compilers may also reorder store instructions
Write barriers keep the compiler from reordering across
The specification of volatile keeps the C-Compiler from reordering memory
accesses to this address
Java-Compilers even generate barriers around accesses to volatile variables

Summary

Learning Outcomes

1 Strict Consistency
2 Happened-before Relation
3 Sequential Consistency
4 The MESI Cache Model
5 TSO: FIFO store buffers
6 PSO: store buffers
7 RMO: invalidate queues
8 Reestablishing Sequential Consistency with

memory barriers
9 Dekker’s Algorithm for Mutual Exclusion

Future Many-Core Systems: NUMA

Many-Core Machines’ Read Responses congest the bus

In that case: Intel’s MESIF (Forward) to reduce communication overhead.

NN! But in general, Symmetric multi-processing (SMP) has its limits:
a memory-intensive computation may cause contention on the bus
the speed of the bus is limited since the electrical signal has to travel to all participants
point-to-point connections are faster than a bus, but do not provide possibility of
forming consensus

 use a bus locally, use point-to-point links globally: NUMA
non-uniform memory access partitions the memory amongst CPUs
a directory states which CPU holds a memory region
Interprocess communication between Cache-Controllers (ccNUMA): onchip on
Opteron or in chipset on Itanium

Overhead of NUMA Systems

Communication overhead in a NUMA system.

8 An Introduction to the Intel® QuickPath Interconnect

With the production of processors based on next-
generation, 45-nm Hi-k Intel® Core™
microarchitecture, the Intel® Xeon® processor
fabric will transition from a DHSI, with the
memory controller in the chipset, to a distributed
shared memory architecture using Intel®
QuickPath Interconnects. This configuration is
shown in Figure 6. With its narrow uni-directional
links based on differential signaling, the Intel®
QuickPath Interconnect is able to achieve
substantially higher signaling rates, thereby
delivering the processor interconnect bandwidth
necessary to meet the demands of future
processor generations.

Figure 6. Intel® QuickPath
Interconnect

Interconnect Overview

The Intel® QuickPath Interconnect is a high-
speed point-to-point interconnect. Though
sometimes classified as a serial bus, it is more
accurately considered a point-to-point link as data
is sent in parallel across multiple lanes and
packets are broken into multiple parallel
transfers. It is a contemporary design that uses

some techniques similar to other point-to-point
interconnects, such as PCI Express* and Fully-
Buffered DIMMs. There are, of course, some
notable differences between these approaches,
which reflect the fact that these interconnects
were designed for different applications. Some of
these similarities and differences will be explored
later in this paper.

Figure 7 shows a schematic of a processor with
external Intel® QuickPath Interconnects. The
processor may have one or more cores. When
multiple cores are present, they may share
caches or have separate caches. The processor
also typically has one or more integrated memory
controllers. Based on the level of scalability
supported in the processor, it may include an
integrated crossbar router and more than one
Intel® QuickPath Interconnect port (a port
contains a pair of uni-directional links).

Figure 7. Block Diagram of Processor
with Intel® QuickPath
Interconnects

Memory
Interface

I/O

Memory
Interface

Memory
Interface

Memory
Interface

chipset

I/O

chipset

processor

processor processor

processor

Legend:
Bi-directional bus
Uni-directional link

core core core

In
te

gr
at

ed
M

em
or

y
C

on
tro

lle
r(s

)

Crossbar Router /
Non-routing

global links interface

Memory
Interface

Processor Cores

Intel®
QuickPath

interconnects

Processors in a NUMA system may be fully or
partially connected.
The directory of who stores an address is
partitioned amongst processors.

A cache miss that cannot be satisfied by the local
memory at A:

A sends a retrieve request to processor B owning
the directory
B tells the processor C who holds the content
C sends data (or status) to A and sends
acknowledge to B

B completes transmission by an acknowledge to A
source: [1]

References

[1] Intel.
An introduction to the intel quickpath interconnect.
Technical Report 320412, 2009.

[2] L. Lamport.
Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM, 21(7):558–565, July 1978.

[3] P. E. McKenny.
Memory Barriers: a Hardware View for Software Hackers.
Technical report, Linux Technology Center, IBM Beaverton, June 2010.

[4] M. S. Papamarcos and J. H. Patel.
A low overhead coherence solution for multiprocessors with private cache memories.
In In Proc. 11th ISCA, pages 348–354, 1984.

[5] D. J. Sorin, M. D. Hill, and D. A. Wood.
A Primer on Memory Consistency and Cache Coherence.
Morgan & Claypool Publishers, 1st edition, 2011.

[6] C. SPARC International, Inc.
The SPARC Architecture Manual: Version 8.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

[7] C. SPARC International, Inc.
The SPARC Architecture Manual (Version 9).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

Cache Coherence vs. Memory Consistency Models

Sequential Consistency specifies that the system must appear to execute all threads’
loads and stores to all memory locations in a total order that respects the program
order of each thread
A cache coherent system must appear to execute all threads’ loads and stores to a
single memory location in a total order that respects the program order of each thread

All discussed memory models (SC, TSO, PSO, RMO) provide cache coherence!

Programming Languages

Concurrency: Atomic Executions, Locks and Monitors

TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Dr. Michael Petter
Winter 2019

Why Memory Barriers are not Enough

Often, multiple memory locations may only be modified exclusively by one thread during a
computation.

use barriers to implement automata that ensure mutual exclusion
 generalize the re-occurring concept of enforcing mutual exclusion

Needed: interaction with multiple memory locations within a single step:

a

a=1,b=1

A

b

Atomic Executions

A concurrent program consists of several threads that share resources:
resources can be memory locations or memory mapped I/O
I a file can be modified through a shared handle, e.g.

usually invariants must be retained wrt. resources
I e.g. a head and tail pointer must delimit a linked list
I an invariant may span multiple resources
I during an update, the invariant may be temporarily locally broken

 multiple resources must be updated together to ensure the invariant

Ideally, a sequence of operations that update shared resources should be atomic [2]. This
would ensure that the invariant never seems to be broken.

Definition (Atomic Execution)

A computation forms an atomic execution if its effect can only be observed as a single
transformation on the memory.

Overview
We will address the established ways of managing synchronization. The presented
techniques

are available on most platforms
likely to be found in most existing (concurrent) software
provide solutions to common concurrency tasks
are the source of common concurrency problems

The techniques are applicable to C, C++ (pthread), Java, C# and other imperative
languages.

Learning Outcomes

1 Principle of Atomic Executions
2 Wait-Free Algorithms based on Atomic Operations
3 Locks: Mutex, Semaphore, and Monitor
4 Deadlocks: Concept and Prevention

Wait-Free Atomic Executions

Wait-Free Updates
Which operations on a CPU are atomic? (j,k and tmp are registers)

Program 1

i++;

Program 2

j = i;

i = i+k;

Program 3

int tmp = i;

i = j;

j = tmp;
Answer:

none by default (even without store and invalidate buffers, why?)
NN! The load and store (even i++’s) may be interleaved with a store from another

processor.
All of the programs can be made atomic executions (e.g. on x86):

i must be in memory
Idea: lock the cache bus for an address for the duration of an instruction

Program 1

lock inc [addr_i]

Program 2 (fetch-and-add)

mov eax,reg_k

lock xadd [addr_i],eax

mov reg_j,eax

Program 3 (atomic-exchange)

lock xchg [addr_i],reg_j

Wait-Free Bumper-Pointer Allocation
Garbage collectors often use a bumper pointer to allocated memory:

Bumper Pointer Allocation

char heap[1<<20];

char* firstFree = &heap[0];

char* alloc(int size) {
char* start;
asm("lock; xadd %0, %1" :"=r"(start),"=m"(firstFree):

"0"(size),"m"(firstFree) :"memory");

if (start+size>sizeof(heap)) garbage_collect();

return start;

}

firstFree points to the first unused byte
each allocation reserves the next size bytes in heap

Thread-safe implementation:
alloc’s core functionality matches Program 2: fetch-and-add

 inline assembler (GCC/AT&T syntax in the example)

Marking Statements as Atomic
Rather than writing assembler: use made-up keyword atomic:

Program 1

atomic {

i++;

}

Program 2

atomic {

j = i;

i = i+k;

}

Program 3

atomic {

int tmp = i;

i = j;

j = tmp;

}

The statements in an atomic block execute as atomic execution:

i

atomic { tmp = i; i = j; j = tmp }
A

j

atomic only translatable when a corresponding atomic CPU instruction exist
the notion of requesting atomic execution is a general concept

Wait-Free Synchronization
Wait-Free algorithms are limited to a single instruction:

no control flow possible, no behavioral change depending on data
often, there are instructions that execute an operation conditionally

Program 4

atomic {

r = b;

b = 0;

}

Program 5

atomic {

r = b;

b = 1;

}

Program 6

atomic {

r = (k==i);

if (r) i = j;

}

Operations update a memory cell and return the previous value.
the first two operations can be seen as setting a flag b to v ∈ {0, 1} and returning its
previous state.
I the operation implementing programs 4 and 5 is called set-and-test
the third case generalizes this to setting a variable i to the value of j, if i’s old value is
equal to k’s.
I the operation implementing program 6 is called compare-and-swap

 use as building blocks for algorithms that can fail

Lock-Free Algorithms

Lock-Free Algorithms
If a wait-free implementation is not possible, a lock-free implementation might still be
viable.
Common usage pattern for compare and swap:

1 read the initial value in i into k (using memory barriers)
2 compute a new value j = f(k)
3 update i to j if i = k still holds
4 go to first step if i 6= k meanwhile

NN! note: i = k must imply that no thread has updated i

General recipe for lock-free algorithms

given a compare-and-swap operation for n bytes
try to group variables for which an invariant must hold into n bytes
read these bytes atomically
compute a new value
perform a compare-and-swap operation on these n bytes

 computing new value must be repeatable or pure

Limitations of Wait- and Lock-Free Algorithms

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
restricted to the semantics of a single atomic operation
set of atomic operations is architecture specific, but often includes
I exchange of a memory cell with a register
I compare-and-swap of a register with a memory cell
I fetch-and-add on integers in memory
I modify-and-test on bits in memory

provided instructions usually allow only one memory operand

 Lock-Free instructions as building blocks for Locks

Locked Atomic Executions

Locks

Definition (Lock)

A lock is a data structure that
can be acquired and released
ensures mutual exclusion: only one thread may hold the lock at a time
blocks other threads attempts to acquire while held by a different thread
protects a critical section: a piece of code that may produce incorrect results when
entered concurrently from several threads

NN! may deadlock the program

Semaphores and Mutexes
A (counting) semaphore is an integer s with the following operations:

void signal(int *s) {

atomic { *s = *s + 1; }

}

void wait(int *s) {

bool avail;

do {

atomic {

avail = *s>0;

if (avail) (*s)--;

}

} while (!avail);

}

A counting semaphore can track how many resources are still available.
a thread acquiring a resource executes wait()

if a resource is still available, wait() returns
once a thread finishes using a resource, it calls signal() to release

Special case: initializing with s = 1 gives a binary semaphore:
can be used to block and unblock a thread
can be used to protect a single resource

 in this case the data structure is also called mutex

Implementation of Semaphores
A semaphore does not have to wait busily:

void signal(int *s) {

atomic { *s = *s + 1; }

wake(s);

}

void wait(int *s) {

bool avail;

do {

atomic {

avail = *s>0;

if (avail) (*s)--;

}

if (!avail) de_schedule(s);

} while (!avail);

}

Busy waiting is avoided:
a thread failing to decrease *s executes de schedule()

de schedule() enters the operating system and inserts the current thread into a queue
of threads that will be woken up when *s becomes non-zero, usually by monitoring
writes to s (FUTEX WAIT)
once a thread calls wake(s), the first thread t waiting on s is extracted
the operating system lets t return from its call to de schedule()

Practical Implementation of Semaphores
Certain optimisations are possible:

void signal(int *s) {

atomic { *s = *s + 1; }

wake(s);

}

void wait(int *s) {

bool avail;

do {

atomic {

avail = *s>0;

if (avail) (*s)--;

}

if (!avail) de_schedule(s);

} while (!avail);

}

In general, the implementation is more complicated
wait() may busy wait for a few iterations
I avoids de-scheduling if the lock is released frequently
I better throughput for semaphores that are held for a short time

wake(s) informs the scheduler that s has been written to
 using a semaphore with a single core reduces to

if (*s) (*s)--; /* critical section */ (*s)++;

Mutexes

One common use of semaphores is to guarantee mutual exclusion.
 in this case, a binary semaphore is also called a mutex

e.g. add a lock to the double-ended queue data structure
NN! decide what needs protection and what not

Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
acquiring a lock upon entering a function of the data structure
releasing the lock upon exit from this function

Locking each procedure body that accesses a data structure:
1 is a re-occurring pattern, should be generalized
2 becomes problematic in recursive calls: it blocks

E.g. a thread t waits for a data structure to be filled
I t will call pop() and obtain -1
I t then has to call again, until an element is available
 t is busy waiting and produces contention on the lockNN!

Monitor : a mechanism to address these problems:
1 a procedure associated with a monitor acquires a lock on entry and releases it on exit
2 if that lock is already taken by the current thread, proceed
 we need a way to release the lock after the return of the last recursive call

Implementation of a Basic Monitor
A monitor contains a semaphore count and the id tid of the occupying thread:

typedef struct monitor mon_t;

struct monitor { int tid; int count; };

void monitor_init(mon_t* m) { memset(m, 0, sizeof(mon_t)); }

Define monitor enter and monitor leave:
ensure mutual exclusion of accesses to mon t

track how many times we called a monitored procedure recursively
void monitor_enter(mon_t *m) {

bool mine = false;

while (!mine) {

mine = thread_id()==m->tid;

if (mine) m->count++; else

atomic {

if (m->tid==0) {

m->tid = thread_id();

mine = true; m->count=1;

} };

if (!mine) de_schedule(&m->tid);

} }

void monitor_leave(mon_t *m) {

m->count--;

if (m->count==0) {

atomic {

m->tid=0;

}

wake(&m->tid);

}

}

Condition Variables
XMonitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize:

E.g. a thread t waits for a data structure to be filled:
I t will call pop() and obtain -1
I t then has to call again, until an element is available
 t is busy waiting and produces contention on the lock

Idea: create a condition variable on which to block while waiting:
struct monitor { int tid; int count; int cond; int cond2;... };

Define these two functions:
1 wait for the condition to become true
I called while being inside the monitor
I temporarily releases the monitor and blocks
I when signalled , re-acquires the monitor and returns

2 signal waiting threads that they may be able to proceed
I one/all waiting threads that called wait will be woken up, two possibilities:

signal-and-urgent-wait : the signalling thread suspends and continues once the signalled thread
has released the monitor

signal-and-continue the signalling thread continues, any signalled thread enters when the monitor
becomes available

Signal-And-Urgent-Wait Semantics
Requires one queue for each condition c and a suspended queue s:

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

a thread who tries to enter a
monitor is added to queue e if
the monitor is occupied
a call to wait on condition a
adds thread to the queue a.q
a call to signal for a adds
thread to queue s (suspended)
one thread from the a queue is
woken up
signal on a is a no-op if a.q is
empty
if a thread leaves, it wakes up
one thread waiting on s
if s is empty, it wakes up one
thread from e

 queue s has priority over e

Signal-And-Continue Semantics
Here, the signal function is usually called notify.

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

a call to wait on condition a adds
thread to the queue a.q
a call to notify for a adds one
thread from a.q to e (unless a.q is
empty)
if a thread leaves, it wakes up one
thread waiting on e

 signalled threads compete for the
monitor

assuming FIFO ordering on e,
threads who tried to enter between
wait and notify will run first
need additional queue s if waiting
threads should have priority

Implementing Condition Variables
We implement the simpler signal-and-continue semantics for a single condition variable:
 a notified thread is simply woken up and competes for the monitor
void cond_wait(mon_t *m) {

assert(m->tid==thread_id());

int old_count = m->count;

m->tid = 0;

wait(&m->cond);

bool next_to_enter;

do {

atomic {

next_to_enter = m->tid==0;

if (next_to_enter) {

m->tid = thread_id();

m->count = old_count;

}

}

if (!next_to_enter) de_schedule(&m->tid);

} while (!next_to_enter);}

void cond_notify(mon_t *m) {

// wake up other threads

signal(&m->cond);

}

A Note on Notify

With signal-and-continue semantics, two notify functions exist:

1 notify: wakes up exactly one thread waiting on condition variable
2 notifyAll: wakes up all threads waiting on a condition variable

NN! an implementation often becomes easier if notify means notify some

 programmer should assume that thread is not the only one woken up

Monitors with a Single Condition Variable
Monitors with a single condition variable are built into Java and C#:

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

class C {

public synchronized void f() {

// body of f

}}

is equivalent to
class C {

public void f() {

monitor_enter(this);

// body of f

monitor_leave(this);

}}

with Object containing:
private int mon_var;

private int mon_count;

private int cond_var;

protected void monitor_enter();

protected void monitor_leave();

Deadlocks

Deadlocks with Monitors
Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective other to
finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
Consider this Java class:
class Foo {

public Foo other = null;

public synchronized void bar() {

... if (*) other.bar(); ...

}

}

and two instances:
Foo a = new Foo(), b = new Foo();

a.other = b; b.other = a;

// in parallel:

a.bar() || b.bar();

Sequence leading to a deadlock:
threads A and B execute a.bar() and
b.bar()

a.bar() acquires the monitor of a
b.bar() acquires the monitor of b
A happens to execute other.bar()

A blocks on the monitor of b
B happens to execute other.bar()

 both block indefinitely
How can this situation be avoided?

Treatment of Deadlocks
Observation: Deadlocks occur if the following four conditions hold [1]:

1 mutual exclusion: processes require exclusive access
2 wait for : a process holds resources while waiting for more
3 no preemption: resources cannot be taken away form processes
4 circular wait : waiting processes form a cycle

The occurrence of deadlocks can be:
1 ignored : for the lack of better approaches, can be reasonable if deadlocks are rare
2 detection: check within OS for a cycle, requires ability to preempt
3 prevention: design programs to be deadlock-free
4 avoidance: use additional information about a program that allows the OS to schedule

threads so that they do not deadlock
 prevention is the only safe approach on standard operating systems

can be achieved using lock-free algorithms
but what about algorithms that require locking?

Deadlock Prevention through Partial Order
Observation: A cycle cannot occur if locks are partially ordered .

Definition (lock sets)

Let L denote the set of locks. We call λ(p) ⊆ L the lock set at p, i.e. the set of locks that
may be in the “acquired” state at program point p.

We require the transitive closure σ+ of a relation σ:

Definition (transitive closure)

Let σ ⊆ X ×X be a relation. Its transitive closure is σ+ =
⋃

i∈N σ
i where

σ0 = σ

σi+1 = {〈x1, x3〉 | ∃x2 ∈ X . 〈x1, x2〉 ∈ σi ∧ 〈x2, x3〉 ∈ σi} ∪ σi

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define C ⊆ L× L such that lC l′ iff l ∈ λ(p) and the statement at p is of the form
wait(l’) or monitor enter(l’). Define the lock order ≺ = C+.

Freedom of Deadlock
The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)

If there exists no a ∈ L with a ≺ a then the program is free of deadlocks.

Suppose a program blocks on semaphores (mutexes) LS and on monitors LM such that
L = LS ∪ LM .

Theorem (freedom of deadlock for monitors)

If ∀a ∈ LS . a 6≺ a and ∀a ∈ LM , b ∈ L . a ≺ b ∧ b ≺ a⇒ a = b then the program is free of
deadlocks.

Note: the set L contains instances of a lock.
the set of lock instances can vary at runtime
if we statically want to ensure that deadlocks cannot occur:
I summarize every lock/monitor that may have several instances into one
I a summary lock/monitor ā ∈ LM represents several concrete ones
I thus, if ā ≺ ā then this might not be a self-cycle
 require that ā 6≺ ā for all summarized monitors ā ∈ LM

Inferring locksets and lockset order in practice

NN! fix a representation for locksets
 in our case: L comprises all lines, where any object is created.

0: Foo a = new Foo(); 8: void bar(this) {
1: Foo b = new Foo(); 9: monitor enter(this);

2: a.other = b; 10: if (∗) {
3: b.other = a; 11: . . .
4: 12: bar(&other);

5: 13: . . .
6: bar(&a); || bar(&b); 14: }
7: 15: monitor leave(this);

16: }

this = {&a,&b}

other = {&a,&b}

λ(8) = {}λ(9) = {l0, l1}λ(11) = {l0, l1}λ(8) = {l0, l1}λ(9) = {l0, l1}

Lockorder C 〈l0, l1〉, 〈l1, l0〉

Avoiding Deadlocks in Practice

NN! What to do when the lock order contains a cycle?
determining which locks may be acquired at each program point is undecidable
 lock sets are an approximation
an array of locks in LS : lock in increasing array index sequence
if l ∈ λ(P) exists l′ ≺ l is to be acquired
 change program: release l, acquire l′, then acquire l again
NN! inefficient
if a lock set contains a summarized lock ā and ā is to be acquired, we’re stuck

Locks Roundup

Atomic Execution and Locks
Consider replacing the specific locks with atomic annotations:

stack: removal

void pop() {

...

wait(&q->t);

...

if (*) { signal(&q->t); return; }

...

if (c) wait(&q->s);

...

if (c) signal(&q->s);

signal(&q->t);

}

nested atomic blocks still describe one atomic execution
 locks convey additional information over atomic

locks cannot easily be recovered from atomic declarations

Outlook

Writing atomic annotations around sequences of statements is a convenient way of
programming.

Idea of mutexes: Implement atomic sections with locks:
a single lock could be used to protect all atomic blocks
more concurrency is possible by using several locks
some statements might modify variables that are never read by other threads no
lock required
statements in one atomic block might access variables in a different order to another
atomic block deadlock possible with locks implementation
creating too many locks can decrease the performance, especially when required to
release locks in λ(l) when acquiring l

 creating locks automatically is non-trivial and, thus, not standard in programming
languages

Concurrency across Languages

In most systems programming languages (C,C++) we have
the ability to use atomic operations

 we can implement wait-free algorithms
In Java, C# and other higher-level languages

provide monitors and possibly other concepts
often simplify the programming but incur the same problems

language barriers wait-/lock-free semaphore mutex monitor

C,C++ X X X X (a)
Java,C# - (b) (c) X X
(a) some pthread implementations allow a reentrant attribute
(b) newer API extensions (java.util.concurrent.atomic.* and

System.Threading.Interlocked resp.)
(c) simulate semaphores using an object with two synchronized methods

Summary
Classification of concurrency algorithms:

wait-free, lock-free, locked
next on the agenda: transactional

Wait-free algorithms:
never block, always succeed, never deadlock, no starvation
very limited in expressivity

Lock-free algorithms:
never block, may fail, never deadlock, may starve
invariant may only span a few bytes (8 on Intel)

Locking algorithms:
can guard arbitrary code
can use several locks to enable more fine grained concurrency
may deadlock
semaphores are not re-entrant, monitors are

 use algorithm that is best fit

References

[1] E. G. Coffman, M. Elphick, and A. Shoshani.
System deadlocks.
ACM Comput. Surv., 3(2):67–78, June 1971.

[2] T. Harris, J. Larus, and R. Rajwar.
Transactional memory, 2nd edition.
Synthesis Lectures on Computer Architecture, 5(1):1–263, 2010.

Programming Languages

Concurrency: Transactions

TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Dr. Michael Petter
Winter term 2019

Abstraction and Concurrency
Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain functionality may be

used without reference to its internals
composition : several objects can be combined to a new object without interference
Both, abstraction and composition are closely related, since the ability to compose
depends on the ability to abstract from details.
Consider an example:

a linked list data structure exposes a fixed set of operations to modify the list structure,
such as push() and forAll()

a set object may internally use the list object and expose a set of operations, including
push()

The insert() operations uses the forAll() operation to check if the element already
exists and uses push() if not.
Wrapping the linked list in a mutex does not help to make the set thread-safe.
 wrap the two calls in insert() in a mutex

but other list operations can still be called use the same mutex
 unlike sequential algorithms, thread-safe algorithms cannot always be composed to
give new thread-safe algorithms

Transactional Memory [2]
Idea: automatically convert atomic blocks into code that ensures atomic execution of the
statements.

atomic {

// code

if (cond) retry;

atomic {

// more code

}

// code

}

Execute code as transaction:
execute the code of an atomic block
nested atomic blocks act like a single atomic block
check that it runs without conflicts due to accesses from another thread
if another thread interferes through conflicting updates:
I undo the computation done so far
I re-start the transaction
provide a retry keyword similar to the wait of monitors

Semantics of Transactions
The goal is to use transactions to specify atomic executions.

Transactions are rooted in databases where they have the ACID properties:
atomicity : a transaction completes or seems not to have run

 we call this failure atomicity to distinguish it from atomic executions
consistency : each transaction transforms a consistent state to another consistent state

a consistent state is one in which certain invariants hold
invariants depend on the application

isolation : among each other, transactions do not interfere
 coexisting with non-transactional memory, isolation is not so evident

durability : the effects are permanent (w.r.t. main memoryX)

Definition (Semantics of Transactions)

The result of running concurrent transactions must be identical to one execution of them in
sequence. (Serialization)

Consistency During Transactions
Consistency during a transaction.

ACID states how committed transactions behave but not what may happen until a
transaction commits.

a transaction, run on an inconsistent state may continue yielding inconsistent states
 zombie transaction
in the best case, the zombie transaction will be aborted eventually
but transactions may cause havoc when run on inconsistent states
atomic {

int tmp1 = x;

int tmp2 = y;

assert(tmp1-tmp2==0);

}

// preserved invariant: x==y

atomic {

x = 10;

y = 10;

}NN! critical for null pointer derefs or divisions by zero, e.g.

Definition (opacity)

A TM system provides opacity if failing transactions are serializable w.r.t. committing
transactions.

 failing transactions still see a consistent view of memory

Weak- and Strong Isolation

Can we mix transactions with code accessing memory non-transactionally?
strong isolation retains order between accesses to TM and non-TM
In weak isolation, guarantees are only given about memory accessed inside atomic
I no conflict detection for non-transactional accesses
INN! standard race problems, e.g.

// Thread 1

atomic {

x = 42;

}

// Thread 2

int tmp = x;

 give programs with races the same semantics as if using a single global lock for all atomic blocks

Definition (SLA)

The single-lock atomicity is a model in which the program executes as if all transactions
acquire a single, program-wide mutual exclusion lock.

 like sequential consistency , SLA is a statement about program equivalence

Disadvantages of the SLA model
The SLA model is simple but often too strong:

1 SLA has a weaker progress guarantee than a transaction should have
// Thread 1

atomic {

while (true) {};

}

// Thread 2

atomic {

int tmp = x; // x in TM

}
2 SLA correctness is too strong in practice

// Thread 1

data = 1;

atomic {

}

ready = 1;

// Thread 2

atomic {

int tmp = data;

// Thread 1 not in atomic

if (ready) {

// use tmp

}

}
I under the SLA model, atomic {} acts as barrier
I intuitively, the two transactions should be independent rather than synchronize

 need a weaker model for more flexible implementation of strong isolation

Transactional Sequential Consistency
How about a more permissive view of transaction semantics?

TM should not have the blocking behaviour of locks
 the programmer cannot rely on synchronization

Definition (TSC)

The transactional sequential consistency is a model in which the accesses within each
transaction are sequentially consistent.

i

atomic { k = i+j; }
A

j
k

B k=42atomic { k = i+j; }

TSC is weaker: gives strong isolation, but allows parallel executionX
TSC is stronger: accesses within a transaction may not be re-orderedNN!

 actual implementations use TSC with some race free re-orderings

Software Transactional Memory

Translation of atomic-Blocks
A TM system must track which shared memory locations are accessed:

convert every read access x from a shared variable to ReadTx(&x)

convert every write access x=e to a shared variable to WriteTx(&x,e)

Convert atomic blocks as follows:

atomic {

// code

}

=⇒
do {

StartTx();

// code with ReadTx and WriteTx

} while (!CommitTx());

translation can be done using a pre-processor
I determining a minimal set of memory accesses that need to be transactional requires a good static

analysis
I idea: translate all accesses to global variables and the heap as TM
I more fine-grained control using manual translation
an actual implementation might provide a retry keyword
I when executing retry, the transaction aborts and re-starts
I the transaction will again wind up at retry unless its read set changes
 block until a variable in the read-set has changed
I similar to condition variables in monitorsX

A Software TM Implementation

A software TM implementation allocates a transaction descriptor to store data specific to
each atomic block, for instance:

undo-log of all writes which have to be undone if a commit fails
redo-log of all writes which are postponed until a commit
read- and write-set : locations accessed so far
read- and write-version: time stamp when value was accessed

Example:
Consider the TL2 STM (software transactional memory) implementation [1]:

provides opacity : zombie transactions do not see inconsistent state
uses lazy versioning: writes are stored in a redo-log and done on commit
validating conflict detection: accessing a modified address aborts

Principles of TL2

The idea: obtain a version from the global counter on starting the transaction, the
read-version, and watch out for accesses to newer versions throughout the transaction.

A read ReadTx from a field at offset of object obj aborts,
I when the objects version is younger than the transaction
I when the object is locked at the moment of access

or returns the read value and adds the accessed memory address to the read-set .
WriteTx is simpler: add or update the location in the redo-log.
CommitTx successively
1 picks up locks for each written object
2 increments the global version
3 checks the read objects for being up to date

before writing redo-log entries to memory while updating their version and realasing
their locks

Properties of TL2

Opacity is guaranteed by aborting on a read accessing an inconsistent value:

write redo-log

StartTx ReadTx WriteTx ReadTx

memory state seems to be consistent

CommitTx

validate read set
increment global clock

Other observations:
read-only transactions just need to check that read versions are consistent (no need to
increment the global clock)
writing values still requires locks
I deadlocks are still possible
I since other transactions can be aborted, one can preempt transactions that are deadlocked
I since lock accesses are generated, computing a lock order up-front might be possible

there might be contention on the global clock

General Challenges when using STM
Executing atomic blocks by repeatedly trying to execute them non-atomically creates new
problems:

a transaction might unnecessarily be aborted
I the granularity of what is locked might be too large
I a TM implementation might impose restrictions:

// Thread 1

atomic { // clock=12

...

int r = ReadTx(&x,0);

} // tx.RV==12 != clock

// Thread 2

atomic {

WriteTx(&x,0) = 42; // clock=13

}

lock-based commits can cause contention
I organize cells that participate in a transaction in one object
I compute a new object as result of a transaction
I atomically replace a pointer to the old object with a pointer to the new object if the old object has not

changed
 idea of the original STM proposal

TM system should figure out which memory locations must be logged
danger of live-locks: transaction B might abort A which might abort B . . .

Integrating Non-TM Resources

Allowing access to other resources than memory inside an atomic block poses problems:
storage management, condition variables, volatile variables, input/output
semantics should be as if atomic implements SLA or TSC semantics

Usual choice is one of the following:
Prohibit It. Certain constructs do not make sense. Use compiler to reject these
programs.
Execute It. I/O operations may only happen in some runs (e.g. file writes usually go to
a buffer). Abort if I/O happens.
Irrevocably Execute It. Universal way to deal with operations that cannot be undone:
enforce that this transaction terminates (possibly before starting) by making all other
transactions conflict.
Integrate It. Re-write code to be transactional: error logging, writing data to a file,

 currently best to use TM only for memory; check if TM supports irrevocable transactions

Hardware Transactional Memory

Hardware Transactional Memory
Transactions of a limited size can also be implemented in hardware:

additional hardware to track read- and write-sets
conflict detection is eager using the cache:
I additional hardware makes it cheap to perform conflict detection
I if a cache-line in the read set is invalidated, the transaction aborts
I if a cache-line in the write set must be written-back, the transaction aborts

 limited by fixed hardware resources, a software backup must be provided
Two principal implementation of HTM:

1 Explicit Transactional Memory: each access is marked as transactional
I similar to StartTx, ReadTx, WriteTx, and CommitTx
I requires separate transaction instructions
 a transaction has to be translated differently
NN! mixing transactional and non-transactional accesses is problematic

2 Implicit Transactional Memory: only the beginning and end of a transaction are marked
I same instructions can be used, hardware interprets them as transactional
I only instructions affecting memory that can be cached can be executed transactionally
I hardware access, OS calls, page table changes, etc. all abort a transaction
 provides strong isolation

Example for HTM
AMD Advanced Synchronization Facilities (ASF):

defines a logical speculative region
LOCK MOV instructions provide explicit data transfer between normal memory and
speculative region
aimed to implement larger atomic operations

Intel’s TSX in Broadwell/Skylake microarchitecture (since Aug 2014):
implicitely transactional , can use normal instructions within transactions
tracks read/write set using a single transaction bit on cache lines
provides space for a backup of the whole CPU state (registers, ...)
use a simple counter to support nested transactions
may abort at any time due to lack of resources
aborting in an inner transaction means aborting all of them

Intel provides two software interfaces to TM:
1 Restricted Transactional Memory (RTM)
2 Hardware Lock Elision (HLE)

Restricted Transactional Memory

Implementing RTM using the Cache (Intel)
Supporting Transactional operations:

augment each cache line with an extra bit T
introduce a nesting counter C and a backup register set

CPU

cache

store
buffer

Memory

T

register
Cbank
 additional transaction logic:

xbegin increments C and, if C = 0, backs up registers
and flushes buffer
I subsequent read or write access to a cache line sets T if C > 0
I applying an invalidate message to a cache line with T flag

issues xabort
I observing a read for a modified cache line with T flag issues

xabort

xabort clears all T flags and the store buffer,
invalidates the former TM lines, sets C = 0 and
restores CPU registers
xend decrements C and, if C = 0, clears all T flags,
flushes store buffer

Restricted Transactional Memory
Provides new instructions xbegin, xend, xabort, and xtest:

xbegin on transaction start skips to the next instruction or on abort
I continues at the given address
I implicitely stores an error code in eax

xend commits the transaction started by the most recent xbegin
xabort aborts the whole transaction with an error code
xtest checks if the processor is executing transactionally

The instruction xbegin is made accessible via library function xbegin():

xbegin()

move eax, 0xFFFFFFFF

xbegin _txnL1

_txnL1:

move retval, eax

if(_xbegin()==_XBEGIN_STARTED) {

// transaction code

_xend();

} else {

// non-transactional fall-back

}

 user must provide fall-back code

Considerations for the Fall-Back Path

Consider executing the following code concurrently with itself:

int data[100]; // shared

void update(int idx, int value) {

if(_xbegin()==_XBEGIN_STARTED) {

data[idx] += value;

_xend();

} else {

data[idx] += value;

}

}

NN! Several problems:
the fall-back code may execute racing itself
the fall-back code is not isolated from the transaction

 First idea: ensure that the fall-back path is executed atomically

Protecting the Fall-Back Path

Use a lock to prevent the transaction from interrupting the fall-back path:
int data[100]; // shared

int mutex;

void update(int idx, int value) {

if(_xbegin()==_XBEGIN_STARTED) {
if (!mutex>0) _xabort();
data[idx] += value;

_xend();

} else {

wait(mutex);

data[idx] += value;

signal(mutex);

}

}

the fall-back code does not execute racing itselfX
the fall-back code is now isolated from the transactionX

Happened Before Diagram for Transactions
Augment MESI states with extra bit T . CPU A: d:E5 t:E0, CPU B: d:I, tmp/value registers

Thread A
int t = _xbegin();

int tmp = data[idx];

data[idx] = tmp + value;

_xend();

Thread B
_xbegin();

int tmp = data[idx];

data[idx] = tmp + value;

_xend();

d

Ld[d]

A

B

d

St[d]

re
ad

re
ad

re
sp

on
se

store

store

in
va

lid
at

e
in

va
lid

at
e

ac
k

Ld[d] St[d]

xend

abort

xbegin

xbegin

t

mem re
ad

re
sp

re
ad

in
v

tmp=data[idx] data[idx]=tmp+valueint t= xbegin()

tmp=data[idx] data[idx]=tmp+value xend()xbegin()

St[t] St[t]

Common Code Pattern for Mutexes
Using HTM in order to implement mutex:

int data[100]; // shared

int mutex;

void update(int idx, int val) {

if(_xbegin()==_XBEGIN_STARTED) {

if (!mutex>0) _xabort();

data[idx] += val;

_xend();

} else {

wait(mutex);

data[idx] += val;

signal(mutex);

}

}

void update(int idx, int val) {

lock(&mutex);

data[idx] += val;

unlock(&mutex);

}

void lock(int* mutex) {

if(_xbegin()==_XBEGIN_STARTED)

{ if (!*mutex>0) _xabort();

else return;

} wait(mutex);

}

void unlock(int* mutex) {

if (!*mutex>0) signal(mutex);

else _xend();

}
critical section may be executed without taking the lock (the lock is elided)
as soon as one thread conflicts, it aborts, takes the lock in the fallback path and
thereby aborts all other transactions that have read mutex

Hardware Lock Elision

Hardware Lock Elision

Observation: Using RTM to implement lock elision is a common pattern
 provide special handling in hardware: HLE

Idea: Hardware Lock Elision

1 By default defer actual acquisition of the lock
2 Instead rely on HTM to sort out conflicting concurrent accesses
3 Fall back to actual locking only in case of conflicts
4 Support legacy lock code by locally acting as if semaphore value is actually modified

requires annotations for lock instructions:
I instruction that increments the semaphore must be prefixed with xacquire
I instruction setting the semaphore to 0 must be prefixed with xrelease
I these prefixes are ignored on older platforms

for a successful elision, all signal/wait operations of a lock must be annotated

Implementing Lock Elision
Transactional operation:

re-uses infrastructure for Restricted Transactional Memory
add a buffer for elided locks, similar to store buffer

CPU

cache

store
buffer

Memory

T

elided
locks

register Cbank
xacquire of lock ensures shared/exclusive cache line
state with T , issues xbegin and keeps the modified
lock value in elided lock buffer
I r/w access to other cache lines sets T
I applying an invalidate message to a T cache line issues

xabort, analogous for read message to a TM cache line
I a local CPU load from the address of the elided lock accesses

the buffer

on xrelease on the same lock, decrement C and, if
C = 0, clear T flags and elided locks buffer flush the
store buffer

Transactional Memory: Summary
Transactional memory aims to provide atomic blocks for general code:

frees the user from deciding how to lock data structures
compositional way of communicating concurrently
can be implemented using software (locks, atomic updates) or hardware

It is hard to get the details right:
semantics of explicit HTM and STM transactions quite subtle when mixing with non-TM
(weak vs. strong isolation)
single-lock atomicity vs. transactional sequential consistency semantics
STM not the right tool to synchronize threads without shared variables
TM providing opacity (serializability) requires eager conflict detection or lazy version
management

Pitfalls in implicit HTM:
RTM requires a fall-back path
no progress guarantee
HLE can be implemented in software using RTM

TM in Practice

Availability of TM Implementations:
GCC can translate accesses in transaction atomic regions into libitm library calls
the library libitm provides different TM implementations:
1 On systems with TSX, it maps atomic blocks to HTM instructions
2 On systems without TSX and for the fallback path, it resorts to STM

C++20 standardizes synchronized/atomic XXX blocks
RTM support slowly introduced to OpenJDK Hotspot monitors

Use of hardware lock elision is limited:
allows to easily convert existing locks
pthread locks in glibc use RTM https://lwn.net/Articles/534758/:
I allows implementation of fallback mechanisms
I HLE only special case of general lock

implementing monitors is challenging
I lock count and thread id may lead to conflicting accesses
I in pthreads: error conditions often not checked anymore

Outlook

Several other principles exist for concurrent programming:
1 non-blocking message passing (the actor model)
I a program consists of actors that send messages
I each actor has a queue of incoming messages
I messages can be processed and new messages can be sent
I special filtering of incoming messages
I example: Erlang, many add-ons to existing languages

2 blocking message passing (CSP, π-calculus, join-calculus)
I a process sends a message over a channel and blocks until the recipient accepts it
I channels can be send over channels (π-calculus)
I examples: Occam, Occam-π, Go

3 (immediate) priority ceiling
I declare processes with priority and resources that each process may acquire
I each resource has the maximum (ceiling) priority of all processes that may acquire it
I a process’ priority at run-time increases to the maximum of the priorities of held resources
I the process with the maximum (run-time) priority executes

References

[1] D. Dice, O. Shalev, and N. Shavit.
Transactional Locking II.
In Distributed Coputing, LNCS, pages 194–208. Springer, Sept. 2006.

[2] T. Harris, J. Larus, and R. Rajwar.
Transactional memory, 2nd edition.
Synthesis Lectures on Computer Architecture, 5(1):1–263, 2010.

Online resources on Intel HTM and GCC’s STM:
1 http://software.intel.com/en-us/blogs/2013/07/25/

fun-with-intel-transactional-synchronization-extensions

2 http://www.realworldtech.com/haswell-tm/4/

3 http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3341.pdf

Programming Languages

Dispatching Method Calls

TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Dr. Michael Petter
Winter Term 2019

Dispatching - Outline
Dispatching

1 Motivation
2 Formal Model
3 Quiz
4 Dispatching from the Inside

Solutions in Single-Dispatching

1 Type introspection
2 Generic interface

Multi-Dispatching

1 Formal Model
2 Multi-Java
3 Multi-dispatching in Perl6
4 Multi-dispatching in Clojure

Section 1

Direct Function Calls

Function Dispatching (ANSI C89)

#include <stdio.h>

void fun(int i) { }

void bar(int i, double j) { }

int main(){

fun(1);

bar(1,1.2);

void (*foo)(int);

foo = fun;

return 0;

}

Section 2

Overloading Function Names

Function Dispatching (ANSI C89)

#include <stdio.h>

void println(int i) { print("%d\n",i); };

void println(float f) { print("%f\n",f); };

int main(){

println(1.2);

println(1);

return 0;

}

NN! Functions with same names but different parameters not legal

NN!

Generic Selection (C11)

generic-selection 7→ Generic(exp, generic-assoclist)
generic-assoclist 7→ (generic-assoc,)∗generic-assoc

generic-assoc 7→ typename : exp | default : exp

Example:
#include <stdio.h>

int main(){

printf(_Generic((1.2),signed int: "%d",float: "%f"), 1.2), printf("\n");

printf(_Generic((1),signed int: "%d",float: "%f"), 1), printf("\n");

return 0;

}

Overloading (Java/C++)

class D {

public static void p(Object o) { System.out.print(o); }

public int f(int i) { p("f(int): "); return i+1; }

public double f(double d) { p("f(double): "); return d+1.3;}

}

public static void main() {

D d = new D();

D.p(d.f(2)+"\n");

D.p(d.f(2.3)+"\n");

}

>$ javac Overloading.java; java Overloading

f(int): 3

f(double): 3.6

Overloading with Inheritance (Java)
class B {

public static void p(Object o) { System.out.print(o); }

public int f(int i) { p("f(int): "); return i+1; }

}

class D extends B {

public double f(double d) { p("f(double): "); return d+1.3;}

}

public static void main() {

D d = new D();

B.p(d.f(2)+"\n");

B.p(d.f(2.3)+"\n");

}

>$ javac Overloading.java; java Overloading

f(int): 3

f(double): 3.6

Overloading with Scopes (C++)
#include<iostream>

using namespace std;

class B { public:

int f(int i) { cout << "f(int): "; return i+1; }

};

class D : public B { public:
using B::f;
double f(double d) { cout << "f(double): "; return d+1.3; }

};

int main() {

D* pd = new D;

cout << pd->f(2) << '\n';

cout << pd->f(2.3) << '\n';

}

>$./overloading

f(double): 3.3

f(double): 3.6

f(int): 3

Overloading Hassles

class D {

public static void p(Object o) { System.out.print(o); }

public int f(int i, double j) { p("f(i,d): "); return i;}

public int f(double i, int j) { p("f(d,i): "); return j;}

}

public static void main() {

D d = new D();

D.p(d.f(2,2)+"\n");

}

>$ javac Overloading.java

Overloading.java:(?): error: reference to f is ambiguous

NN!

Static Methods are Statically Dispatched

Signature

f'(e1,...,en) t0 f(t1 p1,...,tn pn)
dispatches to

handles

determines is applicable to

t0',..., tn'

Function Call Expression

Function to be dispatched

Signature

Function Name

Static Types of Parameters

Return Type

Concrete Method
Provides calling target for a call
signature

f is applicable to f ′ ⇔ f ≤ f ′:

≤ is the subtype relation:

R f(T1, . . . , Tn) ≤ R′f ′(T ′
1, . . . , T

′
n)

=⇒ R ≤ R′ ∧ T ′
i ≤ Ti

Inside the Javac – Predicates
Concept of methods being applicable for arguments:

// true if the given method is applicable to the given arguments

boolean isApplicable(MemberDefinition m, Type args[]) {

// Sanity checks:

Type mType = m.getType();

if (!mType.isType(TC_METHOD)) return false;

Type mArgs[] = mType.getArgumentTypes();

if (args.length != mArgs.length) return false;

for (int i = args.length ; --i >= 0 ;)

if (!isMoreSpecific(args[i], mArgs[i])) return false;

return true;

}

boolean isMoreSpecific(Type moreSpec, Type lessSpec) //... type based specialization

Concept of method signatures being more specific then others:

// true if "more" is in every argument at least as specific as "less"

boolean isMoreSpecific(MemberDefinition more, MemberDefinition less) {

Type moreType = more.getClassDeclaration().getType();

Type lessType = less.getClassDeclaration().getType();

return isMoreSpecific(moreType, lessType) // return type based comparison

&& isApplicable(less, more.getType().getArgumentTypes()); // parameter type based

}

Finding the Most Specific Concrete Method
MemberDefinition matchMethod(Environment env, ClassDefinition accessor,

Identifier methodName, Type[] argumentTypes) throws ... {

// A tentative maximally specific method.

MemberDefinition tentative = null;

// A list of other methods which may be maximally specific too.

List candidateList = null;

// Get all the methods inherited by this class which have the name `methodName'

for (MemberDefinition method : allMethods.lookupName(methodName)) {

// See if this method is applicable.

if (!env.isApplicable(method, argumentTypes)) continue;

// See if this method is accessible.

if ((accessor != null) && (!accessor.canAccess(env, method))) continue;

if ((tentative == null) || (env.isMoreSpecific(method, tentative)))

// `method' becomes our tentative maximally specific match.

tentative = method;

else { // If this method could possibly be another maximally specific

// method, add it to our list of other candidates.

if (!env.isMoreSpecific(tentative,method)) {

if (candidateList == null) candidateList = new ArrayList();

candidateList.add(method);

} } }

if (tentative != null && candidateList != null)

// Find out if our `tentative' match is a uniquely maximally specific.

for (MemberDefinition method : candidateList)

if (!env.isMoreSpecific(tentative, method))

throw new AmbiguousMember(tentative, method);

return tentative;

}

Section 3

Overriding Methods

Object Orientation

=⇒

Associating the first parameter as Receiver of the method, and pulling it out of the
parameters list
Implicitely binding the first parameter to the fixed name this

Emphasizing the Receiver of a Call

In Object Orientation, we see objects associating
strongly with particular procedures, a.k.a. Methods.

class Natural {

int value;

}

void incBy(Natural n,int i) {

n.value += Math.abs(i);

}

...

incBy(nat,42);

class Natural {

int value;

void incBy(int i){

this.value += Math.abs(i);

}

}

...

nat.incBy(42);

Subtyping in Object Orientation
Emphasizing the Receiver ’s Responsibility

An Object Oriented Subtype is supposed to take responsibility for calls
to Methods that are associated with the type, that it specializes.

class Integral {

int i;

void incBy(int delta){

i += delta;

}

}

class Natural extends Integral {

int value;

void incBy(int i){

this.value += Math.abs(i);

}

}

Integral i = new Integral(-5);

i.incBy(42);

Natural n = new Natural(42);

n.incBy(42);

i = n;

i.incBy(42);

NN! In OO, at runtime subtypes can inhabit
statically more general typed variables

 Implicitely call the specialized method!

Methods are dynamically dispatched

Signature

f'(e1,...,en) t0 f(t1 p1,...,tn pn)
dispatches to

handles

determines

Specializer

specialized byis applicable to

t0
*, t1

*t0',..., tn'

Function Call Expression

Call expression to be dispatched.

Signature

Static types of actual parameters.

Concrete Method

Provides calling target for a call
signature

Specializer

Specialized types to be matched at the
call

How can we implement that?

Let’s look at what Java does!

The Java platform as example for state of the art OO systems:
Static Javac-based compiler
Dynamic Hotspot JIT-Compiler/Interpreter

Let’s watch the following code on its way to the CPU:

public static void main(String[] args){

Integral i = new Natural(1);

i.incBy(42);

}

Bytecode

 matchMethod returns the statically most specific signature
 Codegeneration hardcodes invokevirtual with this signature

Code:

0: new #4 // class Natural

3: dup

4: iconst_1

5: invokespecial #5 // Method "<init>":(I)V

8: astore_1

9: aload_1

10: bipush 42

12: invokevirtual #6 // Method Integral.incBy:(I)V

15: return

? What is the semantics of invokevirtual?
 Check the runtime interpreter: Hotspot VM calls resolve method!

Inside the Hotspot VM
void LinkResolver::resolve_method(methodHandle& resolved_method, KlassHandle resolved_klass,

Symbol* method_name, Symbol* method_signature,

KlassHandle current_klass) {

// 1. check if klass is not interface

if (resolved_klass->is_interface()) ;//... throw "Found interface, but class was expected"

// 2. lookup method in resolved klass and its super klasses

lookup_method_in_klasses(resolved_method, resolved_klass, method_name, method_signature);

// calls klass::lookup_method() -> next slide

if (resolved_method.is_null()) { // not found in the class hierarchy

// 3. lookup method in all the interfaces implemented by the resolved klass

lookup_method_in_interfaces(resolved_method, resolved_klass, method_name, method_signature);

if (resolved_method.is_null()) {

// JSR 292: see if this is an implicitly generated method MethodHandle.invoke(*...)

lookup_implicit_method(resolved_method, resolved_klass, method_name, method_signature, current_klass);

}

if (resolved_method.is_null()) { // 4. method lookup failed

// ... throw java_lang_NoSuchMethodError()

} }

// 5. check if method is concrete

if (resolved_method->is_abstract() && !resolved_klass->is_abstract()) {

// ... throw java_lang_AbstractMethodError()

}

// 6. access checks, etc.

}

Inside the Hotspot VM

The method lookup recursively traverses the super class chain:

MethodDesc* klass::lookup_method(Symbol* name, Symbol* signature) {

for (KlassDesc* klas = as_klassOop(); klas != NULL; klas = klass::cast(klas)->super()) {

MethodDesc* method = klass::cast(klass)->find_method(name, signature);

if (method != NULL) return method;

}

return NULL;

}

Inside the Hotspot VM
MethodDesc* klass::find_method(ObjArrayDesc* methods, Symbol* name, Symbol* signature) {

int len = methods->length();

// methods are sorted, so do binary search

int i, l = 0 , h = len - 1;

while (l <= h) {

int mid = (l + h) >> 1;

MethodDesc* m = (MethodDesc*)methods->obj_at(mid);

int res = m->name()->fast_compare(name);

if (res == 0) {

// found matching name; do linear search to find matching signature

// first, quick check for common case

if (m->signature() == signature) return m;

// search downwards through overloaded methods

for (i = mid - 1; i >= l; i--) {

MethodDesc* m = (MethodDesc*)methods->obj_at(i);

if (m->name() != name) break;

if (m->signature() == signature) return m;

}

// search upwards

for (i = mid + 1; i <= h; i++) {

MethodDesc* m = (MethodDesc*)methods->obj_at(i);

if (m->name() != name) break;

if (m->signature() == signature) return m;

}

return NULL; // not found

} else if (res < 0) l = mid + 1;

else h = mid - 1;

}

return NULL;

}

Single-Dispatching: Summary
Compile Time

d

int1

b

b

b

b

if

>

31

d

int0

d

int0

b

b

=

51

d

int2

b

b

=

1 2

a

a

b

b

a

=

1 2

d

int2

Javac

Matches a method call expression statically to
the most specific method signature via
matchMethod(...)

public void incBy(int);

Code:

0: aload_0

1: dup

2: getfield #3 // Field number:I

5: iload_1

6: invokestatic #2 // Method java/lang/Math.abs:(I)I

9: iadd

10: putfield #3 // Field number:I

13: return

public static void main(java.lang.String[]);

Code:

0: new #4 // class Natural

3: dup

4: iconst_1

Runtime
public void incBy(int);

Code:

0: aload_0

1: dup

2: getfield #3 // Field number:I

5: iload_1

6: invokestatic #2 // Method java/lang/Math.abs:(I)I

9: iadd

10: putfield #3 // Field number:I

13: return

public static void main(java.lang.String[]);

Code:

0: new #4 // class Natural

3: dup

4: iconst_1

Hotspot VM

Interprets invokevirtual via
resolve method(...), scanning the
superclass chain with find method(...) for
the statically fixed signature

C

B

A

vptr
C::WhW
B::Wg
A::Wf

vptr

vptr

A::f

C::h

B::g

Example: Sets of Natural Numbers

class Natural {

Natural(int n){ number=Math.abs(n); }

int number;

public boolean equals(Natural n){

return n.number == number;

}

}

...

Set<Natural> set = new HashSet<>();

set.add(new Natural(0));

set.add(new Natural(0));

System.out.println(set);

>$ java Natural

[0,0]

NN! Why? Is HashSet buggy?
 Keep attention to exact signature!

Mini-Quiz: Java Method Dispatching

class A {

public static void p (Object o) { System.out.println(o); }

public void m1 (A a) { p("m1(A) in A"); }

public void m1 () { m1(new B()); }

public void m2 (A a) { p("m2(A) in A"); }

public void m2 () { m2(this); }

}

class B extends A {

public void m1 (B b) { p("m1(B) in B"); }

public void m2 (A a) { p("m2(A) in B"); }

public void m3 () { super.m1(this); }

}

B b = new B(); A a = b; a.m1(b);

m1(A) in A

B b = new B(); B a = b; b.m1(a);

m1(B) in B

B b = new B(); b.m2();

m2(A) in B

B b = new B(); b.m1();

m1(A) in A

B b = new B(); b.m3();

m1(A) in A

Section 4

Multi-Dispatching

Can we expect more than Single-Dispatching?

Mainstream languages support specialization of first parameter:

C++, Java, C#, Smalltalk, Lisp

So how do we solve the equals() problem?

1 introspection?
2 generic programming?
3 double dispatching?

Introspection

class Natural {

Natural(int n) { number=Math.abs(n); }

int number;

public boolean equals(Object n){

if (!(n instanceof Natural)) return false;

return ((Natural)n).number == number;

}

}

...

Set<Natural> set = new HashSet<>();

set.add(new Natural(0));

set.add(new Natural(0));

System.out.println(set);

>$ java Natural

[0]

XWorksNN! but burdens programmer with type safety
NN! and is only available for languages with type introspection

Generic Programming
interface Equalizable<T>{

boolean equals(T other);

}

class Natural implements Equalizable<Natural> {

Natural(int n){ number=Math.abs(n); }

int number;

public boolean equals(Natural n){

return n.number == number;

}

}

...

EqualizableAwareSet<Natural> set = new MyHashSet<>();

set.add(new Natural(0));

set.add(new Natural(0));

System.out.println(set);

NN! needs another Set implementation and...
NN! only works for one overloaded version in super hierarchy

>$ javac Natural.java

Natural.java:2: error: name clash: equals(T) in Equalizable and equals(Object)

in Object have the same erasure, yet neither overrides the other

Double Dispatching

abstract class EqualsDispatcher{

boolean dispatch(Natural) { return false };

boolean dispatch(Object) { return false };

}

class Natural {

Natural(int n){ number=Math.abs(n); }

int number;

public boolean doubleDispatch(EqualsDispatcher ed) {

return ed.dispatch(this);

}

public boolean equals(Object n){

return n.doubleDispatch(

new EqualsDispatcher(){

boolean dispatch(Natural nat) {

return nat.number==number;

}; }

); } }

XWorksNN! but needs Dispatcher to know complete class hierarchies

Formal Model of Multi-Dispatching [7]

Signature

f'(e1,...,en) t0 f(t1 p1,...,tn pn)
dispatches to

handles

determines

Specializer

specialized byis applicable to

t*0, t*1... t*
nt0',..., tn'

Idea
Introduce Specializers for all parameters

How it works

1 Specializers as subtype annotations to parameter types
2 Dispatcher selects Most Specific Concrete Method

Implications of the implementation

Type-Checking

1 Typechecking families of concrete methods introduces checking the existance of
unique most specific methods for all valid visible type tuples.

2 Multiple-Inheritance or interfaces as specializers introduce ambiguities, and thus
induce runtime ambiguity exceptions

Code-Generation

1 Specialized methods generated separately
2 Dispatcher method calls specialized methods
3 Order of the dispatch tests determines the most specialized method

Performance penalty

The runtime-penalty for multi-dispatching is related to the number of parameters of a
multi-method many instanceof tests.

Natural Numbers in Multi-Java [3]

class Natural {

public Natural(int n){ number=Math.abs(n); }

private int number;

public boolean equals(Object@Natural n){

return n.number == number;

}

}

...

Set<Natural> set = new HashSet<>();

set.add(new Natural(0));

set.add(new Natural(0));

System.out.println(set);

>$ java Natural

[0]

XClean Code!

Natural Numbers Behind the Scenes

>$ javap -c Natural

public boolean equals(java.lang.Object);

Code:

0: aload_1

1: instanceof #2; //class Natural

4: ifeq 16

7: aload_0

8: aload_1

9: checkcast #2; //class Natural

12: invokespecial #28; //Method equals$body3$0:(LNatural;)Z

15: ireturn

16: aload_0

17: aload_1

18: invokespecial #31; //Method equals$body3$1:(LObject;)Z

21: ireturn

 Redirection to methods equals$body3$1 and equals$body3$0

Section 5

Natively multidispatching Languages

Perl6
my Cool $foo;

my Cool $bar;

multi fun(Cool $one, Cool $two){

say "Dispatch base"

}

multi fun(Int $one,Str $two){

say "Dispatch 1"

}

multi fun(Str $one,Int $two){

say "Dispatch 2"

}

$foo=1;

$bar="blabla";

fun($foo,$bar);

$foo="bla";

fun($foo,$bar)

Dispatch 1

Dispatch base

Clojure

... is a lisp dialect for the JVM with:
Prefix notation
() – Brackets for lists
:: – Userdefined keyword constructor ::keyword
[] – Vector constructor
fn – Creates a lambda expression
(fn [x y] (+ x y))

derive – Generates hierarchical relationships
(derive ::child ::parent)

defmulti – Creates new generic method
(defmulti name dispatch-fn)

defmethod – Creates new concrete method
(defmethod name dispatch-val &fn-tail)

Principle of Multidispatching in Clojure

(derive ::child ::parent)

(defmulti fun (fn [a b] [a b]))

(defmethod fun [::child ::child] [a b] "child equals")

(defmethod fun [::parent ::parent] [a b] "parent equals")

(pr (fun ::child ::child))

child equals

More Creative dispatching in Clojure

(defn salary [amount]

(cond (< amount 600) ::poor

(>= amount 5000) ::rich

:else ::average))

(defrecord UniPerson [name wage])

(defmulti print (fn [person] (salary (:wage person))))

(defmethod print ::poor [person](str "HiWi " (:name person)))

(defmethod print ::average [person](str "Dr. " (:name person)))

(defmethod print ::rich [person](str "Prof. " (:name person)))

(pr (print (UniPerson. "Petter" 2000)))

(pr (print (UniPerson. "Stefan" 200)))

(pr (print (UniPerson. "Seidl" 16000)))

Dr. Petter

HiWi Stefan

Prof. Seidl

Multidispatching

Con

Counters privileged 1st parameter
Runtime overhead
New exceptions when used with
multi-inheritance
Most Specific Method ambiguous

Pro

Generalization of an
established technique
Directly solves problem
Eliminates boilerplate code
Compatible with modular
compilation/type checking

Other Solutions (extract)

Dylan
Scala

Lessons Learned

Lessons Learned

1 Dynamically dispatched methods are complex interaction of static and dynamic
techniques

2 Single Dispatching as in major OO-Languages
3 Making use of Open Source Compilers
4 Multi Dispatching generalizes single dispatching
5 Multi Dispatching Perl6
6 Multi Dispatching Clojure

Section 6

Further materials

Further reading...

[1] hotspot/src/share/vm/interpreter/linkResolver.cpp.
OpenJDK 7 Hotspot JIT VM.
http://hg.openjdk.java.net/jdk7/jdk7.

[2] jdk/src/share/classes/sun/tools/java/ClassDefinition.java.
OpenJDK 7 Javac.
http://hg.openjdk.java.net/jdk7/jdk7.

[3] C. Clifton, T. Millstein, G. T. Leavens, and C. Chambers.
Multijava: Design rationale, compiler implementation, and applications.
ACM Transactions on Programming Languages and Systems (TOPLAS), May 2006.

[4] J. Gosling, B. Joy, G. Steele, and G. Bracha.
The Java Language Specification, Third Edition.
Addison-Wesley Longman, Amsterdam, 3 edition, June 2005.

[5] S. Halloway.
Programming Clojure.
Pragmatic Bookshelf, 1st edition, 2009.

[6] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley.
The Java Virtual Machine Specification.
Addison-Wesley Professional, Java SE7 edition, 2013.

[7] R. Muschevici, A. Potanin, E. Tempero, and J. Noble.
Multiple dispatch in practice.
23rd ACM SIGPLAN conference on Object-oriented programming systems languages and applications (OOPSLA), September 2008.

Programming Languages

Multiple Inheritance

TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Dr. Michael Petter
Winter term 2019

Outline

Inheritance Principles

1 Interface Inheritance
2 Implementation Inheritance
3 Dispatching implementation choices

C++ Object Heap Layout

1 Basics
2 Single-Inheritance
3 Virtual Methods

C++ Multiple Parents Heap Layout

1 Multiple-Inheritance
2 Virtual Methods
3 Common Parents

Excursion: Linearization

1 Ambiguous common parents
2 Principles of Linearization
3 Linearization algorithms

“Wouldn’t it be nice to inherit from several parents?”

Interface vs. Implementation inheritance

The classic motivation for inheritance is implementation inheritance
Code reusage
Child specializes parents, replacing particular methods with custom ones
Parent acts as library of common behaviours
Implemented in languages like C++ or Lisp

Code sharing in interface inheritance inverts this relation
Behaviour contract
Child provides methods, with signatures predetermined by the parent
Parent acts as generic code frame with room for customization
Implemented in languages like Java or C#

Interface Inheritance

Queue
enqueue(x)

List
...

Stack
push(x)

CircularGraph
insertNodeAt(x,i)

dequeue() pop()

removeNodeAt(x,i)

<<interface>> <<interface>>

Implementation inheritance

Ship

Aircraft Carrier

toot()

strikeAt(x,y)

Airport

shelter(Plane)moveTo(x,y) “So how do we lay out objects in memory anyway?”

Excursion: Brief introduction to LLVM IR
LLVM intermediate representation as reference semantics:

;(recursive) struct definitions

%struct.A = type { i32, %struct.B, i32(i32)* }

%struct.B = type { i64, [10 x [20 x i32]], i8 }

;(stack-) allocation of objects

%a = alloca %struct.A

;adress computation for selection in structure (pointers):

%1 = getelementptr %struct.A* %a, i64 0, i64 2

;load from memory

%2 = load i32(i32)* %1

;indirect call

%retval = call i32 (i32)* %2(i32 42)

Retrieve the memory layout of a compilation unit with:
clang -cc1 -x c++ -v -fdump-record-layouts -emit-llvm source.cpp

Retrieve the IR Code of a compilation unit with:
clang -O1 -S -emit-llvm source.cpp -o IR.llvm

Object layout

class A {

int a; int f(int);

};

class B : public A {

int b; int g(int);

};

class C : public B {

int c; int h(int);

};

...

C c;

c.g(42);

%c = alloca %class.C

%1 = bitcast %class.C* %c to %class.B*

%2 = call i32 @_g(%class.B* %1, i32 42) ; g is statically known

C (=A/B)
int a
int b
int c

C

%class.C = type { %class.B, i32 }

%class.B = type { %class.A, i32 }

%class.A = type { i32 }

Translation of a method body
class A {

int a; int f(int);

};

class B : public A {

int b; int g(int);

};

class C : public B {

int c; int h(int);

};

int B::g(int p) {

return p+b;

};

define i32 @_g(%class.B* %this, i32 %p) {

%1 = getelementptr %class.B* %this, i64 0, i32 1

%2 = load i32* %1

%3 = add i32 %2, %p

ret i32 %3

}

C
int a
int b
int c

%class.C = type { %class.B, i32 }

%class.B = type { %class.A, i32 }

%class.A = type { i32 }

“Now what about polymorphic calls?”

Single-Dispatching implementation choices
Single-Dispatching needs runtime action:

1 Manual search run through the super-chain (Java Interpreter last talk)

call i32 @__dispatch(%class.C* %c,i32 42,i32* "f(int,void)")

2 Caching the dispatch result (Hotspot/JIT)
; caching the recent result value of the __dispatch function

; call i32 @__dispatch(%class.C* %c,i32 42)

assert (%c type %class.D) ; verify objects class presumption

call i32 @_f_from_D(%class.C* %c, i32 42) ; directly call f

3 Precomputing the dispatching result in tables
1 Full 2-dim matrix
2 1-dim Row Displacement Dispatch Tables
3 Virtual Tables

(LLVM/GNU C++,this talk)

f()

A

B

C

D

E

F

g() h() i() j() k() l() m() n()

...

1

1 2

3 4

3 4 5

6 7

8 9 7

2

A B

1 1 2

F

8 9 7

Object layout – virtual methods
class A {

int a; virtual int f(int);

virtual int g(int);

virtual int h(int);

};

class B : public A {

int b; int g(int);

};

class C : public B {

int c; int h(int);

}; ...

C c;

c.g(42);

%c.vptr = bitcast %class.C* %c to i32 (%class.B*, i32)*** ; vtbl

%1 = load (%class.B*, i32)*** %c.vptr ; dereference vptr

%2 = getelementptr %1, i64 1 ; select g()-entry

%3 = load (%class.B*, i32)** %2 ; dereference g()-entry

%4 = call i32 %3(%class.B* %c, i32 42)

C

int a
int b
int c

vptr A::f
B::g
C::h

%class.C = type { %class.B, i32, [4 x i8] }

%class.B = type { [12 x i8], i32 }

%class.A = type { i32 (...)**, i32 }

“So how do we include several parent objects?”

Multiple inheritance class diagram

A
int f(int)

int h(int)

B
int g(int)

int c

int bint a

C

Static Type Casts
class A {

int a; int f(int);

};

class B {

int b; int g(int);

};

class C : public A , public B {

int c; int h(int);

};

...

B* b = new C();

%1 = call i8* @_new(i64 12)

call void @_memset.p0i8.i64(i8* %1, i8 0, i64 12, i32 4, i1 false)

%2 = getelementptr i8* %1, i64 4 ; select B-offset in C

%b = bitcast i8* %2 to %class.B*

NN! implicit casts potentially add a constant to the object pointer.
NN! getelementptr implements ∆B as 4 · i8!

C

int a

int b

int c

B

A } B

%class.C = type { %class.A, %class.B, i32 }

%class.A = type { i32 }

%class.B = type { i32 }

Keeping Calling Conventions

class A {

int a; int f(int);

};

class B {

int b; int g(int);

};

class C : public A , public B {

int c; int h(int);

};

...

C c;

c.g(42);

%c = alloca %class.C

%1 = bitcast %class.C* %c to i8*

%2 = getelementptr i8* %1, i64 4 ; select B-offset in C

%3 = call i32 @_g(%class.B* %2, i32 42) ; g is statically known

C

int a

int b

int c

B

A } B

%class.C = type { %class.A, %class.B, i32 }

%class.A = type { i32 }

%class.B = type { i32 }

Ambiguities

class A { void f(int); };

class B { void f(int); };

class C : public A, public B {};

C* pc;

pc->f(42);

NN! Which method is called?

Solution I: Explicit qualification

pc->A::f(42);

pc->B::f(42);

Solution II: Automagical resolution

Idea: The Compiler introduces a linear order
on the nodes of the inheritance graph

Linearization

In General:
1 Inheritance is a uniform mechanism, and its searches (→ total order) apply identically

for all object fields or methods
2 In the literature, we also find the set of constraints to create a linearization as Method

Resolution Order
3 Linearization is a best-effort approach at best

Principle 1: Inheritance Relation

Defined by parent-child. Example:
C(A,B) =⇒ C −BA ∧ C −BB

Principle 2: Multiplicity Relation

Defined by the succession of multiple
parents. Example: C(A,B) =⇒ A→ B

MRO via DFS

Python: classical python objects (≤ 2.1) use LPDFS!

Python: new python objects (2.2) use LPDFS(DC)!

Leftmost Preorder Depth-First Search

L[A] = ABWC

NN! Principle 1 inheritance is violated

LPDFS with Duplicate Cancellation

L[A] = ABCW

XPrinciple 1 inheritance is fixed

LPDFS with Duplicate Cancellation

L[A] = ABCWV

NN! Principle 2 multiplicity not fulfillable
NN! However B → C =⇒ W → V ??

CB

A

W

A(B,C) B(W) C(W)

CB

A

WV

A(B,C)B(V,W)C(W,V)

MRO via Refined Postorder DFS
Reverse Postorder Rightmost DFS

L[A] = ABFDCEGHW

XLinear extension of inheritance relation

RPRDFS

L[A] = ABCDGEF

NN! But principle 2 multiplicity is violated!

CLOS: uses Refined RPDFS [3]

Refined RPRDFS

L[A] = ABCDEFG

XRefine graph with conflict edge & rerun RPRDFS!

CB

A

W

D EF
G

H

A(B,C) B(F,D) C(E,H)

D(G) E(G) F (W) G(W) H(W)

C

B

A

D E

F G

A(B,C) B(F,G) C(D,E)

D(G) E(F)

MRO via Refined Postorder DFS

Refined RPRDFS

NN! Monotonicity is not guaranteed!

Extension Principle: Monotonicity

If C1 → C2 in C ’s linearization, then C1 → C2

for every linearization of C ’s children.

C

B

A

D E

F G

A(B,C) B(F,G) C(D,E)

D(G) E(F)

L[A] = A B C D E F G =⇒ F → G

L[C] = C D G E F =⇒ G→ F

MRO via C3 Linearization

A linearization L is an attribute L[C] of a class C. Classes B1, . . . , Bn are superclasses to
child class C, defined in the local precedence order C(B1 . . . Bn). Then

L[C] = C ·
⊔

(L[B1], . . . , L[Bn], B1 · . . . ·Bn) | C(B1, . . . , Bn)

L[Object] = Object

with

⊔

i

(Li) =

{
c · (⊔i(Li \ c)) if ∃min k∀j c = head(Lk) /∈ tail(Lj)

NN! fail else

MRO via C3 Linearization

L[G] G
L[F] F
L[E] E · F
L[D] D ·G
L[B] B · F ·G
L[C] C ·D ·G · E · F
L[A] NN! fail

C3 detects and reports a violation of monotonicity with the addition of A(B,C) to the class set.
C3 linearization [1]: is used in Python 3, Perl 6, and Solidity

C

B

A

D E

F G

A(B,C) B(F,G) C(D,E)

D(G) E(F)

Linearization vs. explicit qualification

Linearization

No switch/duplexer code necessary
No explicit naming of qualifiers
Unique super reference
Reduces number of
multi-dispatching conflicts

Qualification

More flexible, fine-grained
Linearization choices may be
awkward or unexpected

Languages with automatic linearization exist

CLOS Common Lisp Object System
Solidity, Python 3 and Perl 6 with C3
Prerequisite for→ Mixins

“And what about dynamic dispatching in Multiple Inheritance?”

Virtual Tables for Multiple Inheritance
class A {

int a; virtual int f(int);

};

class B {

int b; virtual int f(int);

virtual int g(int);

};

class C : public A , public B {

int c; int f(int);

};

...

C c;

B* pb = &c;

pb->f(42);

; B* pb = &c;

%0 = bitcast %class.C* %c to i8* ; type fumbling

%1 = getelementptr i8* %0, i64 16 ; offset of B in C

%2 = bitcast i8* %1 to %class.B* ; get typing right

store %class.B* %2, %class.B** %pb ; store to pb

C

int a

int b

int c

B

A}B vptr

B::g

C::f

%class.C = type { %class.A, [12 x i8], i32 }

%class.A = type { i32 (...)**, i32 }

%class.B = type { i32 (...)**, i32 }

Virtual Tables for Multiple Inheritance
class A {

int a; virtual int f(int);

};

class B {

int b; virtual int f(int);

virtual int g(int);

};

class C : public A , public B {

int c; int f(int);

};

...

C c;

B* pb = &c;

pb->f(42);

; pb->f(42);

%0 = load %class.B** %pb ;load the b-pointer

%1 = bitcast %class.B* %0 to i32 (%class.B*, i32)*** ;cast to vtable

%2 = load i32(%class.B*, i32)*** %1 ;load vptr

%3 = getelementptr i32 (%class.B*, i32)** %2, i64 0 ;select f() entry

%4 = load i32(%class.B*, i32)** %3 ;load function pointer

%5 = call i32 %4(%class.B* %0, i32 42)

C

int a

int b

int c

B

A}B vptr

vptr

C::Bf
B::g

C::f

RTTI
B

0
RTTI

%class.C = type { %class.A, [12 x i8], i32 }

%class.A = type { i32 (...)**, i32 }

%class.B = type { i32 (...)**, i32 }

Basic Virtual Tables (C++-ABI)

A Basic Virtual Table
consists of different parts:

1 offset to top of an enclosing objects memory
representation

2 typeinfo pointer to an RTTI object
(not relevant for us)

3 virtual function pointers for resolving virtual methods

C::Bf
B::g

C::f

RTTI
B

0
RTTI

Virtual tables are composed when multiple inheritance is used
The vptr fields in objects are pointers to their corresponding virtual-subtables
Casting preserves the link between an object and its corresponding virtual-subtable
clang -cc1 -fdump-vtable-layouts -emit-llvm code.cpp yields the vtables of a
compilation unit

Casting Issues
class A { int a; virtual int f(int); };

class B { virtual int f(int); };

class C : public A , public B {

int c; int f(int);

};

C* c = new C();

c->f(42);

B* b = new C();

b->f(42);

NN! this-Pointer for C::f is
expected to point to C

C::f

C::Bf

C::f

RTTI
B

0
RTTI

C::Bf

Thunks

Solution: thunks

. . . are trampoline methods, delegating the virtual method to its original implementation
with an adapted this-reference

define i32 @__f(%class.B* %this, i32 %i) {

%1 = bitcast %class.B* %this to i8*

%2 = getelementptr i8* %1, i64 -16 ; sizeof(A)=16

%3 = bitcast i8* %2 to %class.C*

%4 = call i32 @_f(%class.C* %3, i32 %i)

ret i32 %4

}

 B-in-C-vtable entry for f(int) is the thunk _f(int)

 _f(int) adds a compiletime constant ∆B to this before calling f(int)

 f(int) addresses its locals relative to what it assumes to be a C pointer

“But what if there are common ancestors?”

Common Bases – Duplicated Bases

Standard C++ multiple inheritance conceptually duplicates representations for common
ancestors:

A
int f(int)

B
int f(int)

int c

int bint a

C

int f(int)
int l

L
int f(int)
int l

L

Duplicated Base Classes

class L {

int l; virtual void f(int);

};

class A : public L {

int a; void f(int);

};

class B : public L {

int b; void f(int);

};

class C : public A , public B {

int c;

};

...

C c;

L* pl = &c;

pl->f(42); // where to dispatch?

C* pc = (C*)pl;

L* pl = (B*)&c;

C* pc = (C*)(B*)pl;

C

int a

int b

int c

B

A}B
vptr

vptr B::f

A::f

0

L int l

L
int l

RTTI

RTTI
B

%class.C = type { %class.A, %class.B,

i32, [4 x i8] }

%class.A = type { [12 x i8], i32 }

%class.B = type { [12 x i8], i32 }

%class.L = type { i32 (...)**, i32 }

NN! Ambiguity!

Common Bases – Shared Base Class
Optionally, C++ multiple inheritance enables a shared representation for common
ancestors, creating the diamond pattern:

A
int f(int)

B
int g(int)
int bint a

int f(int)

int w

W

int h(int)
int c

C

int g(int)
int h(int)

virtualvirtual

Shared Base Class
class W {

int w; virtual void f(int);

virtual void g(int);

virtual void h(int);

};

class A : public virtual W {

int a; void f(int);

};

class B : public virtual W {

int b; void g(int);

};

class C : public A, public B {

int c; void h(int);

};

...

C* pc;
pc->B::f(42);

((W*)pc)->h(42);

((B*)pc)->f(42);

C

int a

int b

int c

B

A

vptr
C::WhW int w
B::Wg
A::Wf

vptr

vptr A::f
C::h

B::g
W

B

0
RTTI

RTTI

RTTI

W

W- B

NN! Ambiguities
 e.g. overriding f in A and B
NN! Offsets to virtual base

Dynamic Type Casts

class A : public virtual W {

...

};

class B : public virtual W {

...

};

class C : public A , public B {

...

};

class D : public C,

public B {

...

};

...

C c;

W* pw = &c;
C* pc = dynamic_cast<C*>(pw);

int a

int b

int c

vptr
int w

vptr

vptr

C

int a

int b

int c

B

A

vptrW int w

vptr

vptr

int bB vptr

D int d

W

C

B

A

NN! No guaranteed constant offsets between
virtual bases and subclasses No static casting!
NN! Dynamic casting makes use of offset-to-top

Again: Casting Issues
class W { virtual int f(int); };

class A : virtual W { int a; };

class B : virtual W { int b; };

class C : public A , public B {

int c; int f(int);

};

B* b = new C();

b->f(42);

W* w = new C();

w->f(42);

NN! In a conventional thunk
C::Bf adjusts the
this-pointer with a
statically known constant
to point to C

C::f

C::Wf

C::Bf

RTTI
W

RTTI

C::Wf

? {

B

C::Bf

vptr vptr

Virtual Thunks
class W { ...

virtual void g(int);

};

class A : public virtual W {...};

class B : public virtual W {

int b; void g(int i){ };

};

class C : public A,public B{...};

C c;

W* pw = &c;

pw->g(42);

C

int a

int b

int c

B

A

vptr

C::Wh

W int w

B::Wg
A::Wf

vptr

vptr A::f
C::h

B::g

W

B

0
RTTI

RTTI

RTTI

W

W- B

W- B
W-

W- A

C

define void @__g(%class.B* %this, i32 %i) { ; virtual thunk to B::g

%1 = bitcast %class.B* %this to i8*

%2 = bitcast i8* %1 to i8**

%3 = load i8** %2 ; load W-vtable ptr

%4 = getelementptr i8* %3, i64 -32 ; -32 bytes is g-entry in vcalls

%5 = bitcast i8* %4 to i64*

%6 = load i64* %5 ; load g's vcall offset

%7 = getelementptr i8* %1, i64 %6 ; navigate to vcalloffset+ Wtop

%8 = bitcast i8* %7 to %class.B*

call void @_g(%class.B* %8, i32 %i)

ret void

}

Virtual Tables for Virtual Bases (C++-ABI)

A Virtual Table for a Virtual Subclass

gets a virtual base pointer

A Virtual Table for a Virtual Base
consists of different parts:

1 virtual call offsets per virtual function for
adjusting this dynamically

2 offset to top of an enclosing objects heap
representation

3 typeinfo pointer to an RTTI object (not
relevant for us)

4 virtual function pointers for resolving virtual
methods

A::Wf
B::Wg

B::g

RTTI
W

RTTI

C::Wh

W- A
W- B
W- C

B
W- B

Virtual Base classes have virtual thunks which look up the offset to adjust the this pointer to
the correct value in the virtual table!

Compiler and Runtime Collaboration

Compiler generates:
1 . . . one code block for each method
2 . . . one virtual table for each class-composition, with
I references to the most recent implementations of methods of a unique common signature (single

dispatching)
I sub-tables for the composed subclasses
I static top-of-object and virtual bases offsets per sub-table
I (virtual) thunks as this-adapters per method and subclass if needed

Runtime:
1 At program startup virtual tables are globally created
2 Allocation of memory space for each object followed by constructor calls
3 Constructor stores pointers to virtual table (or fragments) in the objects
4 Method calls transparently call methods statically or from virtual tables, unaware of real

class identity
5 Dynamic casts may use offset-to-top field in objects

Polemics of Multiple Inheritance

Full Multiple Inheritance (FMI)

Removes constraints on parents in
inheritance
More convenient and simple in the
common cases
Occurance of diamond pattern not as
frequent as discussions indicate

Multiple Interface Inheritance (MII)

simpler implementation
Interfaces and aggregation already quite
expressive
Too frequent use of FMI considered as flaw
in the class hierarchy design

Lessons Learned

Lessons Learned

1 Different purposes of inheritance
2 Heap Layouts of hierarchically constructed objects in C++
3 Virtual Table layout
4 LLVM IR representation of object access code
5 Linearization as alternative to explicit disambiguation
6 Pitfalls of Multiple Inheritance

Sidenote for MS VC++

the presented approach is implemented in GNU C++ and LLVM
Microsoft’s MS VC++ approaches multiple inheritance differently
I splits the virtual table into several smaller tables
I keeps a vbptr (virtual base pointer) in the object representation, pointing to the virtual base of a

subclass.

Further reading...

[1] K. Barrett, B. Cassels, P. Haahr, D. Moon, K. Playford, and T. Withington.
A monotonic superclass linearization for dylan.
In Object Oriented Programming Systems, Languages, and Applications, 1996.

[2] CodeSourcery, Compaq, EDG, HP, IBM, Intel, R. Hat, and SGI.
Itanium C++ ABI.
URL: http://www.codesourcery.com/public/cxx-abi.

[3] R. Ducournau and M. Habib.
On some algorithms for multiple inheritance in object-oriented programming.
In Proceedings of the European Conference on Object-Oriented Programming (ECOOP), 1987.

[4] R. Kleckner.
Bringing clang and llvm to visual c++ users.
URL: http://llvm.org/devmtg/2013-11/#talk11.

[5] B. Liskov.
Keynote address – data abstraction and hierarchy.
In Addendum to the proceedings on Object-oriented programming systems, languages and applications, OOPSLA ’87, pages 17–34, 1987.

[6] L. L. R. Manual.
Llvm project.
URL: http://llvm.org/docs/LangRef.html.

[7] R. C. Martin.
The liskov substitution principle.
In C++ Report, 1996.

[8] P. Sabanal and M. Yason.
Reversing c++.
In Black Hat DC, 2007.
URL: https://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf.

[9] B. Stroustrup.
Multiple inheritance for C++.
In Computing Systems, 1999.

Mini Seminars

1 SC=CC in Multicore Architectures with Cache (Meixner/Sorin 2006/2009)
2 Litmus Testing Memory Models: Herdtools 7
3 The Linux Kernel Memory Model
4 A Formal Analysis of the NVIDIA PTX Memory Consistency Model (2019)
5 GPU Concurrency: Weak Behaviours and Programming Assumptions (2015)
6 Transactional Memory Systems other than TSX: IBM Power 8 / BlueGene / zEnterprise
7 Lambda Calculus: Y Combinator and Recursion / SKI Combinator
8 Templates vs. Inheritance

Programming Languages

Mixins and Traits

TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Dr. Michael Petter
Winter 2019/20

What modularization techiques are there besides multiple implementation
inheritance?

Outline
Design Problems

1 Inheritance vs Aggregation
2 (De-)Composition Problems

Inheritance in Detail

1 A Model for single inheritance
2 Inheritance Calculus with Inheritance

Expressions
3 Modeling Mixins

Mixins in Languages

1 Simulating Mixins
2 Native Mixins

Cons of Implementation Inheritance

1 Lack of finegrained Control
2 Inappropriate Hierarchies

A Focus on Traits

1 Separation of Composition and
Modeling

2 Trait Calculus

Traits in Languages

1 (Virtual) Extension Methods
2 Squeak

Reusability ≡ Inheritance?

Codesharing in Object Oriented Systems is often inheritance-centric
Inheritance itself comes in different flavours:
I single inheritance
I multiple inheritance

All flavours of inheritance tackle problems of decomposition and composition

The Adventure Game

Door

LockedDoor
canOpen(Person p)

ShortDoor
canPass(Person p)

ShortLockedDoor
canOpen(Person p)
canPass(Person p)

?

The Adventure Game
Door

Locked
canOpen(Person p)

Short
canPass(Person p)

ShortLockedDoor
canOpen(Person p)
canPass(Person p)

<interface>Doorlike
canPass(Person p)

canOpen(Person p)

NN! Aggregation & S.-Inheritance

Door must explicitely provide chaining
Doorlike must anticipate wrappers

⇒ Multiple InheritanceX

The Wrapper

SocketStreamFileStream

SynchRW

write()
read()

write()
read()

releaseLock()
acquireLock()

?

NN! Unclear relations

 Cannot inherit from both in turn with Multiple Inheritance
(Many-to-One instead of One-to-Many Relation)

The Wrapper – Aggregation Solution

Stream

SocketStreamFileStream

SynchRW

write()
read()

write()
read()

write()
read()

write()
read()

releaseLock()
acquireLock()

NN! Aggregation

Undoes specialization
Needs common ancestor

The Wrapper – Multiple Inheritance Solution

SocketStreamFileStream SynchRW

write()
read()

write()
read()

releaseLock()
acquireLock()

SynchedFileStream

write()
read()

SynchedSocketStream

write()
read()

NN! Duplication

With multiple inheritance, read/write Code is essentially identical but duplicated for each
particular wrapper

Fragility

SocketStreamFileStream

SynchRW

write()
read()

write()
read()

releaseLock()
acquireLock()

SynchedFileStream SynchedSocketStream

NN! Inappropriate Hierarchies

Implemented methods (acquireLock/releaseLock) to high

(De-)Composition Problems

All the problems of
Relation
Duplication
Hierarchy

are centered around the question

“How do I distribute functionality over a hierarchy”

 functional (de-)composition

Classes and Methods
The building blocks for classes are

a countable set of method names N
a countable set of method bodies B

Classes map names to elements from the flat lattice B (called bindings), consisting of:
method bodies ∈ B or classes ∈ C
⊥ abstract
> in conflict

and the partial order ⊥ v b v > for each b ∈ B

Definition (Abstract Class ∈ C)
A general function c : N 7→ B is called a class.

Definition (Interface and Class)

A class c is called (with pre beeing the preimage)

interface iff ∀n∈pre(c) . c(n) = ⊥.
abstract class iff ∃n∈pre(c) . c(n) = ⊥.

concrete class iff ∀n∈pre(c) . ⊥ @ c(n) @ >.

⊥

>

n2 m1 m2 c1. . .n1 c2

Computing with Classes and Methods

Definition (Family of classes C)
We call the set of all maps from names to bindings the family of classes C := N 7→ B.

Several possibilites for composing maps C � C:
the symmetric join t, defined componentwise:

(c1 t c2)(n) = b1 t b2 =





b2 if b1 = ⊥ or n /∈ pre(c1)
b1 if b2 = ⊥ or n /∈ pre(c2)
b2 if b1 = b2

> otherwise

where bi = ci(n)

in contrast, the asymmetric join t� , defined componentwise:

(c1 t� c2)(n) =

{
c1(n) if n ∈ pre(c1)
c2(n) otherwise

Example: Smalltalk-Inheritance
Smalltalk inheritance

children’s methods dominate parents’ methods
is the archetype for inheritance in mainstream languages like Java or C#
inheriting smalltalk-style establishes a reference to the parent

Definition (Smalltalk inheritance (.))

Smalltalk inheritance is the binary operator . : C × C 7→ C, defined by
c1 . c2 = {super 7→ c2} t� (c1 t� c2)

Example: Doors

Door = {canPass 7→ ⊥, canOpen 7→ ⊥}
LockedDoor = {canOpen 7→ 0x4204711} . Door

= {super 7→ Door} t� ({canOpen 7→ 0x4204711} t� Door)

= {super 7→ Door, canOpen 7→ 0x4204711, canPass 7→ ⊥}

Excursion: Beta-Inheritance
In Beta-style inheritance

the design goal is to provide security wrt. replacement of a method by a different
method.
methods in parents dominate methods in subclass
the keyword inner explicitely delegates control to the subclass

Definition (Beta inheritance (/))

Beta inheritance is the binary operator / : C × C 7→ C, defined by
c1 / c2 = {inner 7→ c1} t� (c2 t� c1)

Example (equivalent syntax):

class Person {

String name ="Axel Simon";

public String toString(){ return name+inner.toString();};

};

class Graduate extends Person {

public extension String toString(){ return ", Ph.D."; };

};

So what do we really want?

Adventure Game with Code Duplication

Door

LockedDoor
canOpen(Person p)

ShortDoor
canPass(Person p)

ShortLockedDoor
canOpen(Person p)
canPass(Person p)

Adventure Game with Mixins

Door<mixin>Locked

canOpen(Person p)

<mixin>Short

canPass(Person p)

ShortLockedDoor

canOpen(Person p)
canPass(Person p)

mixin

compose

Adventure Game with Mixins

class Door {

boolean canOpen(Person p) { return true; };

boolean canPass(Person p) { return p.size() < 210; };

}

mixin Locked {

boolean canOpen(Person p){

if (!p.hasItem(key)) return false; else return super.canOpen(p);

}

}

mixin Short {

boolean canPass(Person p){

if (p.height()>1) return false; else return super.canPass(p);

}

}

class ShortDoor = Short(Door);

class LockedDoor = Locked(Door);

mixin ShortLocked = Short o Locked;

class ShortLockedDoor = Short(Locked(Door));

class ShortLockedDoor2 = ShortLocked(Door);

Back to the blackboard!

Abstract model for Mixins
A Mixin is a unary second order type expression. In principle it is a curried version of the
Smalltalk-style inheritance operator. In certain languages, programmers can create such
mixin operators:

Definition (Mixin)

The mixin constructor mixin : C 7→ (C 7→ C) is a unary class function, creating a unary
class operator, defined by:

mixin(c) = λx . c . x

NN! Note: Mixins can also be composed ◦:
Example: Doors

Locked = {canOpen 7→ 0x1234}
Short = {canPass 7→ 0x4711}

Composed = mixin(Short) ◦ (mixin(Locked)) = λx . Short . (Locked . x)

= λx . {super 7→ (Locked . x)} t� ({canOpen 7→ 0x1234, canPass 7→ 0x4711} . x)

Wrapper with Mixins

SocketStreamFileStream

<mixin>SynchRW

write()
read()

write()
read()

releaseLock()
acquireLock()

SynchedFileStream

write()
read()

SynchedSocketStream

mixin

mixin

Mixins for wrappers

avoids duplication of read/write code
keeps specialization
even compatible to single inheritance systems

Mixins on Implementation Level

class Door {

boolean canOpen(Person p)...

boolean canPass(Person p)...

}

mixin Locked {

boolean canOpen(Person p)...

}

mixin Short {

boolean canPass(Person p)...

}

class ShortDoor

= Short(Door);

class ShortLockedDoor

= Short(Locked(Door));

...

ShortDoor d

= new ShortLockedDoor();

canPass()

Short

super

canOpen()

Locked

super

Door

...

...

NN! non-static super-References
 dynamic dispatching without

precomputed virtual table

Surely multiple inheritance is powerful enough to simulate mixins?

Simulating Mixins in C++

template <class Super>

class SyncRW : public Super {

public: virtual int read(){

acquireLock();

int result = Super::read();

releaseLock();

return result;

};

virtual void write(int n){

acquireLock();

Super::write(n);

releaseLock();

};

// ... acquireLock & releaseLock

};

Simulating Mixins in C++

template <class Super>

class LogOpenClose : public Super {

public: virtual void open(){

Super::open();

log("opened");

};

virtual void close(){

Super::close();

log("closed");

};

protected: virtual void log(char*s) { ... };

};

class MyDocument : public SyncRW<LogOpenClose<Document>> {};

True Mixins vs. C++ Mixins

True Mixins

super natively supported
Composable mixins
Hassle-free simple alternative to multiple
inheritance

C++ Mixins

Mixins reduced to templated
superclasses
Can be seen as coding pattern
C++ Type system not modular

 Mixins have to stay source code

Common properties of Mixins

Linearization is necessary
 Exact sequence of Mixins is relevant

Ok, ok, show me a language with native mixins!

Ruby

class Person

attr_accessor :size

def initialize

@size = 160

end

def hasKey

true

end

end

class Door

def canOpen (p)

true

end

def canPass(person)

person.size < 210

end

end

module Short

def canPass(p)

p.size < 160 and super(p)

end

end

module Locked

def canOpen(p)

p.hasKey() and super(p)

end

end

class ShortLockedDoor < Door

include Short

include Locked

end

p = Person.new

d = ShortLockedDoor.new

puts d.canPass(p)

Ruby
class Door

def canOpen (p)

true

end

def canPass(person)

person.size < 210

end

end

module Short

def canPass(p)

p.size < 160 and super(p)

end

end

module Locked

def canOpen(p)

p.hasKey() and super(p)

end

end

module ShortLocked

include Short

include Locked

end

class Person

attr_accessor :size

def initialize

@size = 160

end

def hasKey

true

end

end

p = Person.new

d = Door.new

d.extend ShortLocked

puts d.canPass(p)

Is Inheritance the Ultimate Principle in Reusability?

Lack of Control

CombatPlaneCameraPlane

MountablePlane

reload(Ammunition)download():pics

equipment
fuel

PoliceDrone

SpyCamera PrecisionGun
shoot() shoot()

equipment
equipment

NN! Control

Common base classes are shared or duplicated at class level
super as ancestor reference vs. qualified specification

 No fine-grained specification of duplication or sharing

Inappropriate Hierachies

LinkedList
add(int, Object)

Stack

remove(int)
clear()

push(Object)

pop()
pushMany(Object...)

stackpointer: int

NN! Inappropriate Hierarchies

High up specified methods turn obsolete, but there is no statically safe way to remove
them
NN! Liskov Substitution Principle!

Is Implementation Inheritance even an Anti-Pattern?

Excerpt from the Java 8 API documentation for class Properties:
“Because Properties inherits from Hashtable, the put and putAll methods can
be applied to a Properties object. Their use is strongly discouraged as they allow
the caller to insert entries whose keys or values are not Strings. The setProperty

method should be used instead. If the store or save method is called on a “com-
promised” Properties object that contains a non-String key or value, the call will
fail. . . ”

NN! Misuse of Implementation Inheritance

Implementation Inheritance itself as a pattern for code reusage is often misused!
 All that is not explicitely prohibited will eventually be done!

The Idea Behind Traits

A lot of the problems originate from the coupling of implementation and modelling
Interfaces seem to be hierarchical
Functionality seems to be modular

NN! Central idea

Separate object creation from modelling hierarchies and composing functionality.

 Use interfaces to design hierarchical signature propagation
 Use traits as modules for assembling functionality
 Use classes as frames for entities, which can create objects

Traits – Composition
Definition (Trait ∈ T)

A class t without attributes is called trait .

The trait sum + : T × T 7→ T is the componentwise least upper bound:

(c1 + c2)(n) = b1 t b2 =





b2 if b1 = ⊥ ∨ n /∈ pre(c1)
b1 if b2 = ⊥ ∨ n /∈ pre(c2)
b2 if b1 = b2

> otherwise

with bi = ci(n)

Trait-Expressions also comprise:

exclusion − : T ×N 7→ T : (t− a)(n) =
{

undef if a = n

t(n) otherwise

aliasing [→] : T ×N ×N 7→ T : t[a→ b](n) =

{
t(n) if n 6= a

t(b) if n = a

Traits t can be connected to classes c by the asymmetric join:

(c t� t)(n) =

{
c(n) if n ∈ pre(c)
t(n) otherwise

Usually, this connection is reserved for the last composition level.

Traits – Concepts
Trait composition principles

Flat ordering All traits have the same precedence under +
 explicit disambiguation with aliasing and exclusion

Precedence Under asymmetric join t� , class methods take precedence over trait
methods

Flattening After asymmetric join t� : Non-overridden trait methods have the same
semantics as class methods

NN! Conflicts . . .

arise if composed traits map methods with identical names to different bodies

Conflict treatment

X Methods can be aliased (→)
X Methods can be excluded (−)
X Class methods override trait methods and sort out conflicts (t�)

Can we augment classical languages by traits?

Extension Methods (C#)

Central Idea:

Uncouple method definitions from class bodies.

Purpose:
retrospectively add methods to complex types
 external definition
especially provide definitions of interface methods
 poor man’s multiple inheritance!

Syntax:

1 Declare a static class with definitions of static methods
2 Explicitely declare first parameter as receiver with modifier this
3 Import the carrier class into scope (if needed)
4 Call extension method in infix form with emphasis on the receiver

public class Person{

public int size = 160;

public bool hasKey() { return true;}

}

public interface Short {}

public interface Locked {}

public static class DoorExtensions {

public static bool canOpen(this Locked leftHand, Person p){

return p.hasKey();

}

public static bool canPass(this Short leftHand, Person p){

return p.size<160;

}

}

public class ShortLockedDoor : Locked,Short {

public static void Main() {

ShortLockedDoor d = new ShortLockedDoor();

Console.WriteLine(d.canOpen(new Person()));

}

}

Extension Methods as Traits

Extension Methods

transparently extend arbitrary types
externally
provide quick relief for plagued
programmers

. . . but not traits

Interface declarations empty, thus kind of
purposeless
Flattening not implemented
Static scope only

Static scope of extension methods causes unexpected errors:

public interface Locked {

public bool canOpen(Person p);

}

public static class DoorExtensions {

public static bool canOpen(this Locked leftHand, Person p){

return p.hasKey();

}

}

NN! Extension methods cannot override abstract signatures

Virtual Extension Methods (Java 8)
Java 8 advances one step further:

interface Door {

boolean canOpen(Person p);

boolean canPass(Person p);

}

interface Locked {

default boolean canOpen(Person p) { return p.hasKey(); }

}

interface Short {

default boolean canPass(Person p) { return p.size<160; }

}

public class ShortLockedDoor implements Short, Locked, Door {

}

NN! Precedence
Still, default methods do not override methods
from abstract classes when composed

Implementation

. . . consists in adding an interface phase to
invokevirtual’s name resolution

Traits as General Composition Mechanism

NN! Central Idea

Separate class generation from hierarchy specification and functional modelling
1 model hierarchical relations with interfaces
2 compose functionality with traits
3 adapt functionality to interfaces and add state via glue code in classes

Simplified multiple Inheritance without adverse effects

So let’s do the language with real traits?!

Squeak

Smalltalk

Squeak is a smalltalk implementation, extended with a system for traits.

Syntax:
name: param1 and: param2

declares method name with param1 and param2

| ident1 ident2 |

declares Variables ident1 and ident2

ident := expr

assignment
object name:content

sends message name with content to object (≡ call: object.name(content))
.

line terminator
^ expr

return statement

Traits in Squeak

Trait named: #TRStream uses: TPositionableStream

on: aCollection

self collection: aCollection.

self setToStart.

next

^ self atEnd

ifTrue: [nil]

ifFalse: [self collection at: self nextPosition].

Trait named: #TSynch uses: {}

acquireLock

self semaphore wait.

releaseLock

self semaphore signal.

Trait named: #TSyncRStream uses: TSynch+(TRStream@(#readNext -> #next))

next

| read |

self acquireLock.

read := self readNext.

self releaseLock.

^ read.

Disambiguation

Traits vs. Mixins vs. Class-Inheritance

All different kinds of type expressions:
Definition of curried second order type operators + Linearization
Finegrained flat-ordered composition of modules
Definition of (local) partial order on precedence of types wrt. MRO
Combination of principles

Explicitly: Traits differ from Mixins
Traits are applied to a class in parallel , Mixins sequentially
Trait composition is unordered , avoiding linearization effects
Traits do not contain attributes, avoiding state conflicts
With traits, glue code is concentrated in single classes

Lessons learned

Mixins

Mixins as low-effort alternative to multiple inheritance
Mixins lift type expressions to second order type expressions

Traits

Implementation Inheritance based approaches leave room for improvement in
modularity in real world situations
Traits offer fine-grained control of composition of functionality
Native trait languages offer separation of composition of functionality from specification
of interfaces

Further reading...

[1] G. Bracha and W. Cook.
Mixin-based inheritance.
European conference on object-oriented programming on Object-oriented programming systems, languages, and applications (OOPSLA/ECOOP), 1990.

[2] J. Britt.
Ruby 2.1.5 core reference, Dec. 2014.

[3] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. P. Black.
Traits: A mechanism for fine-grained reuse.
ACM Transactions on Programming Languages and Systems (TOPLAS), 2006.

[4] M. Flatt, S. Krishnamurthi, and M. Felleisen.
Classes and mixins.
Principles of Programming Languages (POPL), 1998.

[5] B. Goetz.
Interface evolution via virtual extension methods.
JSR 335: Lambda Expressions for the Java Programming Language, 2011.

[6] A. Hejlsberg, S. Wiltamuth, and P. Golde.
C# Language Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[7] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black.
Traits: Composable units of behaviour.
European Conference on Object-Oriented Programming (ECOOP), 2003.

Programming Languages

Prototypes

TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Dr. Michael Petter
Winter 2019/20

Outline

Prototype based programming

1 Basic language features
2 Structured data
3 Code reusage
4 Imitating Object Orientation

“Why bother with modelling types for my quick hack?”

Motivation – Polemic

Bothersome features

Specifying types for singletons
Getting generic types right inspite of co- and contra-variance
Subjugate language-imposed inheritance to (mostly) avoid redundancy

Prototype based programming

Start by creating examples
Only very basic concepts
Introduce complexity only by need
Shape language features yourself!

“Let’s go back to basic concepts – Lua”

Basic Language Features

Chunks being sequences of statements.
Global variables implicitely defined

s = 0;

i = 1 -- Single line comment

p = i+s p=42 --[[Multiline

comment --]]

s = l

Basic Types and Values

Dynamical types – no type definitions
Each value carries its type
type() returns a string representation of a value’s type

a = true

type(a) -- boolean

type("42"+0) -- number

type("Petter "..1) -- string

type(type) -- function

type(nil) -- nil

type([[<html><body>pretty long string</body>

</html>

]]) -- string

a = 42

type(a) -- number

Functions for Code

X First class citizens

function prettyprint(title, name, age)

return title.." "..name..", born in "..(2018-age)

end

a = prettyprint

a("Dr.","Petter",42)

prettyprint = function (title, name, age)

return name..", "..title

end

Introducing Structure

only one complex data type
indexing via arbitrary values except nil (Runtime Error)
arbitrary large and dynamically growing/shrinking

a = {} -- create empty table

k = 42

a[k] = 3.14159 -- entry 3.14159 at key 42

a["k"] = k -- entry 42 at key "k"

a[k] = nil -- deleted entry at key 42

print(a.k) -- syntactic sugar for a["k"]

Table Lifecycle

created from scratch
modification is persistent
assignment with reference-semantics
garbage collection

a = {} -- create empty table

a.k = 42

b = a -- b refers to same as a

b["k"] = "k" -- entry "k" at key "k"

print(a.k) -- yields "k"

a = nil

print(b.k) -- still "k"

b = nil

print(b.k) -- nil now

“So far nothing special – let’s compose types”

Table Behaviour
Metatables

are ordinary tables, used as collections of special functions
Naming conventions for special functions
Connect to a table via setmetatable, retrieve via getmetatable

Changes behaviour of tables

meta = {} -- create as plain empty table

function meta.__tostring(person)

return person.prefix .. " " .. person.name

end

a = { prefix="Dr.",name="Petter"} -- create Michael

setmetatable(a,meta) -- install metatable for a

print(a) -- print "Dr. Petter"

Overload operators like add, mul, sub, div, pow, concat, unm

Overload comparators like eq, lt, le

Delegation

NN! reserved key index determines handling of failed name lookups
convention for signature: receiver table and key as parameters
if dispatching to another table Delegation

meta = {}

function meta.__tostring(person)

return person.prefix .. " " .. person.name

end

function meta.__index(tbl, key)

return tbl.prototype[key]

end

job = { prefix="Dr." }

person = { name="Petter",prototype=job } -- create Michael

setmetatable(person,meta) -- install metatable

print(person) -- print "Dr. Petter"

Delegation

person

__index

__tostring 0x7816

__meta

job

__meta nil
name Petter

Dr. prefix
jobprotot.

meta

meta

0x7832

function meta.__tostring(person) -- 0x7816

return person.prefix .. " " .. person.name

end

function meta.__index(tbl, key) -- 0x7832

return tbl.prototype[key]

end

Delegation 2

 Conveniently, index does not need to be a function

meta = {}

function meta.__tostring(person)

return person.prefix .. " " .. person.name

end

job = { prefix="Dr." }

meta.__index = job -- delegate to job

person = { name="Petter" } -- create Michael

setmetatable(person,meta) -- install metatable

print(person) -- print "Dr. Petter"

Delegation 2

person

__index

__tostring 0x7816

__meta

job

__meta nil
name Petter

Dr. prefix

job

meta

meta

function meta.__tostring(person) -- 0x7816

return person.prefix .. " " .. person.name

end

Delegation 3
newindex handles unresolved updates

frequently used to implement protection of objects

meta = {}

function meta.__newindex(tbl,key,val)

if (key == "title" and tbl.name=="Guttenberg") then

error("No title for You, sir!")

else

tbl.data[key]=val

end

end

function meta.__tostring(tbl)

return (tbl.title or "") .. tbl.name

end

person={ data={} } -- create person's data

meta.__index = person.data

setmetatable(person,meta)

person.name = "Guttenberg" -- name KT

person.title = "Dr." -- try to give him Dr.

Object Oriented Programming

NN! so far no concept for multiple objects

Account = { balance=0 }

function Account.withdraw (val)

Account.balance=Account.balance-val

end

function Account.__tostring()

return "Balance is "..Account.balance

end

setmetatable(Account,Account)

Account.withdraw(10)

print(Account)

Introducing Identity
Concept of an object’s own identity via parameter
Programming aware of multiple instances
Share code between instances

function Account.withdraw (acc, val)

acc.balance=acc.balance-val

end

function Account.tostring(acc)

return "Balance is "..acc.balance

end

Account.__index=Account -- share Account's functions

mikes = { balance = 0 }

daves = { balance = 0 }

setmetatable(mikes,Account) -- delegate from mikes to Account

setmetatable(daves,Account) -- del. from daves to Account

Account.withdraw(mikes,10)

mikes.withdraw(mikes,10) -- withdraw independently

mikes:withdraw(10)

print(daves:tostring() .. " " .. mikes:tostring())

Introducing Identity

giro

__index

__tostring 0x7816

__meta

balance 0

Account

Account

Account

withdraw 0x7832

function Account.withdraw (acc, val)

acc.balance=acc.balance-val

end

function Account.tostring(acc)

return "Balance is "..acc.balance

end

Introducing “Classes”
Particular tables used like classes
self table for accessing object-relative attributes
connection via creator function new (like a constructor)

function Account:withdraw (val)

self.balance=self.balance-val

end

function Account:tostring()

return "Balance is "..self.balance

end

function Account:new(template)

template = template or {balance=0} -- initialize

setmetatable(template,{__index=self})-- delegate to Account

getmetatable(template).__tostring = Account.tostring

return template

end

giro = Account:new({balance=10}) -- create instance

giro:withdraw(10)

print(giro)

Inheriting Functionality
Differential description possible in child class style
Easily creating particular singletons

LimitedAccount = { }

setmetatable(LimitedAccount,{__index=Account})

function LimitedAccount:new()

instance = { balance=0,limit=100 }

setmetatable(instance,{__index=self})

end

function LimitedAccount:withdraw(val)

if (self.balance+self.limit < val) then

error("Limit exceeded")

end

Account.withdraw(self,val)

end

specialgiro = LimitedAccount:new()

specialgiro:withdraw(90)

print(specialgiro)

Multiple Inheritance
 Delegation leads to chain-like inheritance

function createClass (parent1,parent2)

local c = {} -- new class, child of p1&p2

setmetatable(c, {__index =

function (t, k) -- search for each name

local v = parent1[k] -- in both parents

if v then return v end

return parent2[k]

end}

)

c.__index = c -- c is prototype of instances

function c:new (o) -- constructor for this class

o = o or {}

setmetatable(o, c) -- c is also metatable

return o

end

return c -- finally return c

end

Multiple Inheritance

Doctor = { postfix="Dr. "}

Researcher = { prefix=" ,Ph.D."}

ResearchingDoctor = createClass(Doctor,Researcher)

axel = ResearchingDoctor:new({ name="Michael Petter" })

print(axel.prefix..axel.name..axel.postfix)

 The special case of dual-inheritance can be extended to comprise multiple inheritance

Implementation of Lua

Datatypes are simple values (Type+union of different flavours)
Tables at low-level fork into Hashmaps with pairs and an integer-indexed array part

typedef struct {

int type_id;

Value v;

} TObject;

typedef union {

void *p;

int b;

lua_number n;

GCObject *gc;

} Value;

Header

100

nil

200
300
nil

"x" 9.2

Further Topics in Lua

Coroutines
Closures
Bytecode & Lua-VM

Lessons Learned

Lessons Learned

1 Abandoning fixed inheritance yields ease/speed in development
2 Also leads to horrible runtime errors
3 Object-orientation and multiple-inheritance as special cases of delegation
4 Minimal featureset eases implementation of compiler/interpreter
5 Room for static analyses to find bugs ahead of time

Further Reading...

[1] R. Ierusalimschy.
Programming in Lua, Third Edition.
Lua.Org, 2013.

[2] R. Ierusalimschy, L. H. de Figueiredo, and W. Celes.
The implementation of lua 5.0.
Journal of Universal Computer Science, 2005.

[3] R. Ierusalimschy, L. H. de Figueiredo, and W. C. Filho.
Lua-an extensible extension language.
Softw., Pract. Exper., 1996.

Programming Languages

Aspect Oriented Programming

TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Dr. Michael Petter
Winter 2019/20

“Is modularity the key principle to organizing software?“

Learning outcomes

1 AOP Motivation and Weaving basics
2 Bundling aspects with static crosscutting
3 Join points, Pointcuts and Advice
4 Composing Pointcut Designators
5 Implementation of Advices and Pointcuts

Motivation

Traditional modules directly correspond to code blocks
Aspects can be thought of seperately but are smeared over modules Tangling of
aspects
Focus on Aspects of Concern

 Aspect Oriented Programming

Aspect Oriented Programming

Express a system’s aspects of concerns cross-cutting modules
Automatically combine separate Aspects with a Weaver into a program

Functional decomposition

Compiler

Aspect oriented decomposition

Aspect
Weaver

System Decomposition in Aspects

Example concerns:
Security
Logging
Error Handling
Validation
Profiling

 AspectJ

Static Crosscutting

Adding External Defintions

inter-type declaration

class Expr {}

class Const extends Expr {

public int val;

public Const(int val) {

this.val=val;

} }

class Add extends Expr {

public Expr l,r;

public Add(Expr l, Expr r) {

this.l=l;this.r=r;

} }

aspect ExprEval {

abstract int Expr.eval();

int Const.eval(){ return val; };

int Add.eval() { return l.eval()

+ r.eval(); }

}

⇒

equivalent code

// aspectj-patched code

abstract class Expr {

abstract int eval();

}

class Const extends Expr {

public int val;

public int eval(){ return val; };

public Const(int val) {

this.val=val;

} }

class Add extends Expr {

public Expr l,r;

public int eval() { return l.eval()

+ r.eval(); }

public Add(Expr l, Expr r) {

this.l=l;this.r=r;

}

}

Dynamic Crosscutting

Join Points

Well-defined points in the control flow of a program

method/constr. call executing the actual method-call statement
method/constr. execution the individual method is executed
field get a field is read
field set a field is set
exception handler execution an exception handler is invoked
class initialization static initializers are run
object initialization dynamic initializers are run

Pointcuts and Designators
Definition (Pointcut)

A pointcut is a set of join points and optionally some of the runtime values when program
execution reaches a refered join point.

Pointcut designators can be defined and named by the programmer:
〈userdef 〉 ::= ‘pointcut’ 〈id〉 ‘(’ 〈idlist〉? ‘)’ ‘:’ 〈expr〉 ‘;’

〈idlist〉 ::= 〈id〉 (‘,’ 〈id〉)*

〈expr〉 ::= ‘!’ 〈expr〉
| 〈expr〉 ‘&&’ 〈expr〉
| 〈expr〉 ‘||’ 〈expr〉
| ‘(’ 〈expr〉 ‘)’
| 〈primitive〉

Example:

pointcut dfs(): execution (void Tree.dfs()) ||

execution (void Leaf.dfs()) ;

Advice

... are method-like constructs, used to define additional behaviour at joinpoints:
before(formal)

after(formal)

after(formal) returning (formal)

after(formal) throwing (formal)

For example:

aspect Doubler {

before(): call(int C.foo(int)) {

System.out.println("About to call foo");

} }

Binding Pointcut Parameters in Advices

Certain pointcut primitives add dependencies on the context:
args(arglist)

This binds identifiers to parameter values for use in in advices.

aspect Doubler {

before(int i): call(int C.foo(int)) && args(i) {

i = i*2;

} }

arglist actually is a flexible expression:

〈arglist〉 ::= (〈arg〉 (‘,’ 〈arg〉)*)?

〈arg〉 ::= 〈identifier〉
| 〈typename〉
| ‘*’
| ‘..’

binds a value to this identifier
filters only this type
matches all types
matches several arguments

Around Advice

Unusual treatment is necessary for
type around(formal)

NN! Here, we need to pinpoint, where the advice is wrapped around the join point – this is
achieved via proceed():

aspect Doubler {

int around(int i): call(int C.foo(int)) && args(i) {

int newi = proceed(i*2);

return newi/2;

} }

Pointcut Designator Primitives

Method Related Designators
call(signature)

execution(signature)

Matches call/execution join points at which the method or constructor called matches the
given signature. The syntax of a method/constructor signature is:

ResultTypeName RecvrTypeName.meth id(ParamTypeName, ...)

NewObjectTypeName.new(ParamTypeName, ...)

NN! Outdated: Adds a lot of joint points for call
https://www.eclipse.org/aspectj/doc/next/

adk15notebook/join-point-signatures.html#

method-call-join-point-signatures

1

... 3

4

y=y*x; x=x+1;

f()

2

f();

...

Method Related Designators
class MyClass{

public String toString() {

return "silly me ";

}

public static void main(String[] args){

MyClass c = new MyClass();

System.out.println(c + c.toString());

} }

aspect CallAspect {

pointcut calltostring() : call (String MyClass.toString());

pointcut exectostring() : execution(String MyClass.toString());

before() : calltostring() || exectostring() {

System.out.println("advice!");

} }

advice!

advice!

advice!

silly me silly me

Field Related Designators

get(fieldqualifier)

set(fieldqualifier)

Matches field get/set join points at which the field accessed matches the signature. The
syntax of a field qualifier is:

FieldTypeName ObjectTypeName.field id

NN! : However, set has an argument which is bound via args:

aspect GuardedSetter {

before(int newval): set(static int MyClass.x) && args(newval) {

if (Math.abs(newval - MyClass.x) > 100)

throw new RuntimeException();

} }

Type based

target(typeorid)

within(typepattern)

withincode(methodpattern)

Matches join points of any kind which
are refering to the receiver of type typeorid

is contained in the class body of type typepattern

is contained within the method defined by methodpattern

Flow and State Based

cflow(arbitrary pointcut)

Matches join points of any kind that occur strictly between entry and exit of each join point
matched by arbitrary pointcut.

if(boolean expression)

Picks join points based on a dynamic property:

aspect GuardedSetter {

before(): if(thisJoinPoint.getKind().equals(METHOD_CALL)) && within(MyClass) {

System.out.println("What an inefficient way to match calls");

} }

1

... 3

4

h(); g();

f()

2

f();

...

5

6

g()

7

8

y=y*x; x=x+1;

h()

h();

Which advice is served first?

Advices are defined in different aspects

If statement declare precedence:A, B; exists, then advice in aspect A has
precedence over advice in aspect B for the same join point.
Otherwise, if aspect A is a subaspect of aspect B, then advice defined in A has
precedence over advice defined in B.
Otherwise, (i.e. if two pieces of advice are defined in two different aspects), it is
undefined which one has precedence.

Advices are defined in the same aspect

If either are after advice, then the one that appears later in the aspect has precedence
over the one that appears earlier.
Otherwise, then the one that appears earlier in the aspect has precedence over the
one that appears later.

Implementation

Implementation

Aspect Weaving:
Pre-processor
During compilation
Post-compile-processor
During Runtime in the Virtual Machine
A combination of the above methods

Woven JVM Code

aspect MyAspect {

pointcut settingconst(): set(int Const.val);

before () : settingconst() {

System.out.println("setter");

} }

Expr one = new Const(1);

one.val = 42;

...

117: aload_1

118: iconst_1

119: dup_x1

120: invokestatic #73 // Method MyAspect.aspectOf:()LMyAspect;

123: invokevirtual #79 // Method MyAspect.ajc$before$MyAspect$2$704a2754:()V

126: putfield #54 // Field Const.val:I

...

Woven JVM Code

aspect MyAspect {

pointcut callingtostring():

call (String Object.toString()) && target(Expr);

before () : callingtostring() {

System.out.println("calling");

} }

Expr one = new Const(1);

Object e = new Add(one,one);

String s = e.toString();

System.out.println(s);

...

72: aload_2

73: instanceof #1 // class Expr; pushes 1 if instance

76: ifeq 85 // jumps to 85 if 0 on stack

79: invokestatic #67 // Method MyAspect.aspectOf:()MyAspect;

82: invokevirtual #70 // Method MyAspect.ajc$before$MyAspect$1$4c1f7c11:()V

85: aload_2

86: invokevirtual #33 // Method java/lang/Object.toString:()Ljava/lang/String;

89: astore_3

...

Poincut Parameters and Around/Proceed
Around clauses often refer to parameters and proceed()!

class C {

int foo(int i) { return 42+i; }

}

aspect Doubler {

int around(int i): call(int *.foo(int)) && args(i) {

int newi = proceed(i*2);

return newi/2;

} }

Now, imagine code like:

public static void main(String[] args){

new C().foo(42);

}

NN! Injecting simple calls will not suffice!

Around/Proceed – via Procedures
Xinjecting advice inplace of original call and outsource to an explicit method –
all of it in JVM, disassembled to equivalent:

// aspectj patched code

public static void main(String[] args){

C c = new C();

foo_aroundBody1Advice(c,42,Doubler.aspectOf(),42,null);

}

private static final int foo_aroundBody0(C c, int i){

return c.foo(i);

}

private static final int foo_aroundBody1Advice

(C c, int i, Doubler d, int j, AroundClosure a){

int temp = 2*i;

int ret = foo_aroundBody0(c,temp);

return ret / 2;

}

Property Based Crosscutting

1

... 3

4

h(); g();

f()

2

f();

...

5

6

g()

7

8

y=y*x; x=x+1;

h()

h();

after(int i) : call(void h()) &&

cflow(call(void f(int)) &&

args(i))

{ ... } ;

Idea 1: Stack based

At each call-match, check
runtime stack for cflow-match
 Naive implementation
 Poor runtime performance

Idea 2: State based

Keep seperate stack of states
 Only modify stack at cflow-relevant pointcuts
 Check stack for emptyness

Even more optimizations in practice
 state-sharing, counters,
 static analysis

Implementation – Summary

Translation scheme implications:
before/after Advice ... ranges from inlined code to distribution into several methods

and closures
Joinpoints ... in the original program that have advices may get explicitely

dispatching wrappers
Dynamic dispatching ... can require a runtime test to correctly interpret certain

joinpoint designators
Flow sensitive pointcuts ... runtime penalty for the naive implementation, optimized

version still costly

Aspect Orientation

Pro

Un-tangling of concerns
Late extension across boundaries of
hierarchies
Aspects provide another level of
abstraction

Contra

Weaving generates runtime overhead
nontransparent control flow and
interactions between aspects
Debugging and Development needs IDE
Support

Further reading...

[1] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták, O. Lhoták,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble.
Optimising aspectj.
SIGPLAN Not., 40(6):117–128, June 2005.

[2] G. Kiczales.
Aspect-oriented programming.
ACM Comput. Surv., 28(4es), 1996.

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold.
An overview of aspectj.
ECOOP 2001 — Object-Oriented Programming, 2072:327–354, 2001.

[4] H. Masuhara, G. Kiczales, and C. Dutchyn.
A compilation and optimization model for aspect-oriented programs.
Compiler Construction, 2622:46–60, 2003.

Programming Languages

Metaprogramming

TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Dr. Michael Petter
Winter 2019/20

“Let’s write a program, which writes a program“

Learning outcomes

1 Compilers and Compiler Tools
2 Preprocessors for syntax rewriting
3 Reflection and Metaclasses
4 Metaobject Protocol
5 Macros

Motivation

Aspect Oriented Programming establishes programmatic refinement of program code
How about establishing support for program refinement in the language concept itself?
Treat program code as data

 Metaprogramming

Metaprogramming

Treat programs as data
Read, analyse or transform (other) programs
Program modifies itself during runtime

Codegeneration Tools

Codegeneration Tools

Compiler Construction

In Compiler Construction, there are a lot of codegeneration tools, that compile DSLs to
target source code. Common examples are lex and bison.

Example: lex:
lex generates a table lookup based implementation of a finite automaton corresponding to
the specified disjunction of regular expressions.

%{ #include <stdio.h>

%}

%% /* Lexical Patterns */

[0-9]+ { printf("integer: %s\n", yytext); }

.|\n { /* ignore */ }

%%

int main(void) {

yylex();

return 0;

}

 generates 1.7k lines of C

Codegeneration via Preprocessor

Compiletime-Codegeneration
String Rewriting Systems

A Text Rewriting System provides a set of grammar-like rules (→Macros) which are meant
to be applied to the target text.

Example: C Preprocessor (CPP)

#define min(X,Y) ((X < Y)? (X) : (Y))

x = min(5,x); // ((5 < x)? (5) : (x))

x = min(++x,y+5); // ((++x < y+5)? (++x) : (y+5))

NN! Nesting, Precedence, Binding, Side effects, Recursion, . . .

Parts of Macro parameters can bind to context operators depending on the precedence
and binding behaviour
Side effects are recomputed for every occurance of the Macro parameter
Any (indirect) recursive replacement stops the rewriting process
Name spaces are not separated, identifiers duplicated

Compiletime-Codegeneration

Example application: Language constructs [3]:

ATOMIC (globallock) {

i--;

i++;

}

#define ATOMIC(lock) \

acquire(&lock);\

{ /* user code */ } \

release(&lock);

NN! We explicitely want to imitate constructs
like while loops, thus we do not want to use
round brackets for code block delimiters

NN! How can we bind the block, following the
ATOMIC to the usercode fragment?

Particularly in a situation like this?

if (i>0)

ATOMIC (mylock) {

i--;

i++;

}

Compiletime-Codegeneration

Prepend code to usercode

if (1)

/* prepended code */

goto body;

else

body:

{/* block following the macro */}

if (1) /* prepended code*/
yes

/* user block */

no

continue

goto

yes

goto

Append code to usercode

if (1)

goto body;

else

while (1)

if (1) {

/* appended code */

break;

}

else body:

{/* block following the macro */}

if (1)

while(1)

if (1)

yes

/* user block */

no

no

yes

yes

goto

continue

break

no

/*appended code*/

yes

break

Compiletime-Codegeneration

All in one

if (1) {

/* prepended code */

goto body;

} else

while (1)

if (1) {

/* appended code */

break;

}

else body:

{ /* block following the expanded macro */ }

Compiletime-Codegeneration

#define concat_(a, b) a##b

#define label(prefix, lnum) concat_(prefix,lnum)

#define ATOMIC (lock) \

if (1) { \

acquire(&lock); \

goto label(body,__LINE__); \

} else \

while (1) \

if (1) { \

release(&lock); \

break; \

} \

else \

label(body,__LINE__):

NN! Reusability

labels have to be created dynamically in order for the macro to be reusable (→ LINE)

Homoiconic Metaprogramming

Homoiconic Programming

Homoiconicity

In a homoiconic language, the primary representation of programs is also a data structure
in a primitive type of the language itself.

data is code
code is data

Metaclasses and Metaobject Protocol
(Hygienic) Macros

Reflection

Reflective Metaprogramming

Type introspection

A language with Type introspection enables to examine the type of an object at runtime.

Example: Java instanceof

public boolean equals(Object o){

if (!(o instanceof Natural)) return false;

return ((Natural)o).value == this.value;

}

Reflective Metaprogramming
Metaclasses (→ code is data)

Example: Java Reflection / Metaclass java.lang.Class

static void fun(String param){

Object incognito = Class.forName(param).newInstance();

Class meta = incognito.getClass(); // obtain Metaobject

Field[] fields = meta.getDeclaredFields();

for(Field f : fields){

Class t = f.getType();

Object v = f.get(o);

if(t == boolean.class && Boolean.FALSE.equals(v))

// found default value

else if(t.isPrimitive() && ((Number) v).doubleValue() == 0)

// found default value

else if(!t.isPrimitive() && v == null)

// found default value

} }

Metaobject Protocol

Metaobject Protocol
Metaobject Protocol (MOP [1])

Example: Lisp’s CLOS metaobject protocol

... offers an interface to manipulate the underlying implementation of CLOS to adapt the
system to the programmer’s liking in aspects of

creation of classes and objects
creation of new properties and methods
causing inheritance relations between classes
creation generic method definitions
creation of method implementations
creation of specializers (→ overwriting, multimethods)
configuration of standard method combination (→ before,after,around,
call-next-method)
simple or custom method combinators (→ +,append,max,. . .)
addition of documentation

Hygienic Macros

Homoiconic Runtime-Metaprogramming

Clojure! [2]

Clojure programs are represented after parsing in form of symbolic expressions
(S-Expressions), consisting of nested trees:

S-Expressions

S-Expressions are either
an atom
an expression of the form (x.y) with x, y being S-Expressions

Remark: Established shortcut notation for lists:

(x1 x2 x3) ≡ (x1 . (x2 . (x3 . ())))

Homoiconic Runtime-Metaprogramming
Special Forms

Special forms differ in the way that they are interpreted by the clojure runtime from the
standard evaluation rules.

Language Implementation Idea: reduce every expression to special forms:

(def symbol doc? init?)

(do expr*)

(if test then else?)

(let [binding*] expr*)

(eval form) ; evaluates the datastructure form

(quote form) ; yields the unevaluated form

(var symbol)

(fn name? ([params*] expr*)+)

(loop [binding*] expr*)

(recur expr*) ; rebinds and jumps to loop or fn

;...

Homoiconic Runtime-Metaprogramming

Macros
Macros are configurable syntax/parse tree transformations.

Language Implementation Idea: define advanced language features in macros, based
very few special forms or other macros.

Example: While loop:

(macroexpand '(while a b))

; => (loop* [] (clojure.core/when a b (recur)))

(macroexpand '(when a b))

;=> (if a (do b))

Homoiconic Runtime-Metaprogramming
Macros can be written by the programmer in form of S-Expressions:

(defmacro infix

"converting infix to prefix"

[infixed]

(list (second infixed) (first infixed) (last infixed)))

...producing

(infix (1 + 1))

; => 2

(macroexpand '(infix (a + b)))

; => (+ a b)

NN! Quoting

Macros and functions are directly interpreted, if not quoted via

(quote keyword) ; or equivalently:

'keyword

; => keyword

Homoiconic Runtime-Metaprogramming

 why bother?

(defmacro fac1 [n]

(if (= n 0)

1

(list '* n (list 'fac1 (- n 1)

))))

(fac1 4)

; => 24

...produces

(macroexpand '(fac1 4))

; => (* 4 (fac1 3))

(macroexpand-all '(fac1 4))

; => (* 4 (* 3 (* 2 (* 1 1))))

(defn fac2 [n]

(if (= n 0)

1

(* n (fac2 (- n 1)

))))

(fac2 4)

; => 24

Homoiconic Runtime-Metaprogramming

NN! Macros vs. Functions

Macros as static AST Transformations, vs. Functions as runtime control flow
manipulations
Macros replicate parameter forms, vs. Functions evaluate parameters once

 Macro parameters are uninterpreted, not necessarily valid expressions, vs. Functions
parameters need to be valid expressions

Homoiconic Runtime-Metaprogramming

NN! Macro Hygiene

Shadowing of variables may be an issue in macros, and can be avoided by generated
symbols!

(def variable 42)

(macro mac [&stufftodo] `(let [variable 4711] ~@stufftodo))

(mac (println variable))

; => can't let qualified name: variable

(macro mac [&stufftodo] `(let [variable# 4711] ~@stufftodo))

 Symbol generation to avoid namespace collisions!

Further reading...

[1] R. P. Gabriel.
Gregor kiczales, jim des rivières, and daniel g. bobrow, the art of the metaobject
protocol.
Artif. Intell., 61(2):331–342, 1993.

[2] D. Higginbotham.
Clojure for the Brave and True: Learn the Ultimate Language and Become a Better
Programmer.
No Starch Press, San Francisco, CA, USA, 1st edition, 2015.

[3] S. Tatham.
Metaprogramming custom control structures in C.
https://www.chiark.greenend.org.uk/~sgtatham/mp/, 2012.
[Online; accessed 07-Feb-2018].

Programming Languages

From Gotos to Continuations

TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Dr. Michael Petter
Winter 2019

“It’s all about the program counter!“

Plain Old C goto Magic

void myProcedure()

{

int *a = malloc(sizeof(int)*15);

...

for (int i=0;i<15;i++)

for (int j=0;j<15;j++)

if (a[i]-a[j] == 0) goto exit;

exit:

free a;

return;

}

NN! gotos are scoped procedure-locally

Stack-Backward Control Flow

Stack Traversal with longjmp

performing control flow jumps across procedure boundaries is the domain of
setjmp/longjmp (FreeBSD [4])

setjmp

;... signal blocking ...

movq %rdi,%rcx

movq 0(%rsp),%rdx ; return address

movq %rdx, 0(%rcx)

movq %rbx, 8(%rcx)

movq %rsp,16(%rcx)

movq %rbp,24(%rcx)

movq %r12,32(%rcx)

movq %r13,40(%rcx)

movq %r14,48(%rcx)

movq %r15,56(%rcx)

;... dealing with SSE / FPU

xorq %rax,%rax

ret

longjmp

;... signal blocking / dealing with SSE Registers....

movq %rsi,%rax ; 2nd param -> return value

movq 0(%rdx),%rcx

movq 8(%rdx),%rbx

movq 16(%rdx),%rsp

movq 24(%rdx),%rbp

movq 32(%rdx),%r12

movq 40(%rdx),%r13

movq 48(%rdx),%r14

movq 56(%rdx),%r15

fldcw 64(%rdx)

testq %rax,%rax

jnz 1f

incq %rax

1: movq %rcx,0(%rsp) ; setjmp's return address

ret

control transfer by manipulating stackpointer and instruction pointer
 stack traversal only viable to enclosing stack frames, i.e. up the call hierarchy

Stack Traversal with longjmp

int foo() {

do {

jmp_buf context;

switch(setjmp(context)) { // TRY

case 0: {

printf("Main body\n");

fun(&context, 0);

printf("Not reachable\n");

}

break;

case 1: { // CATCH 1

printf("Caught 1!\n");

}

break;

case 2: { // CATCH 2

printf("Caught 2!\n");

}

}

} while(0);

}

int fun(jmp_buf *error_handler, int number) {

if (number>=0)

return fun(error_handler,number-1);

longjmp(*error_handler, 1); // THROW

}

Stack Traversal with longjmp

...

main()

foo()

fun()

fun()

error handler

error handler

NN! heap objects might leak, after discarding several stack
frames

Exceptions and Stack Unwinding [3]

#include <iostream>

using namespace std;

int foo(int p){

if (p>3) throw "Error!";

else return foo(p+1);

}

int main(){

try {

return foo(1);

} catch(const char* s){

cerr << " Caught\n";

}

}

...

main()

foo()

foo()

throw/catch

throw/catch

X The compiler appends after the method’s body
a table of exceptions this method can catch
and a cleanup table

1 The unwinder checks for each function in the
stack which exceptions can be caught.
I No catch for exception is found std::terminate
I Otherwise, the unwinder restarts on the top of the stack.

2 Again, the unwinder goes through the stack to
perform a cleanup for this method. A so called
 personality routine will check the cleanup table
on the current method.
I To run cleanup actions, it swaps to the current stack frame. This

will run the destructor for each object allocated at the current
scope.

I Reaching the frame in the stack that can handle the exception,
the unwinder jumps into the proper catch statement.

Same-Level Control Flow

Stack Switching with makecontext and swapcontext [9]

makecontext

void makecontext(ucontext_t *ucp,

void (*func)(), int argc, ...);

For preparation, the caller must
I obtained a fresh context from a call to getcontext()
I allocate a new stack for this context and assign its

address to ucp->uc stack
I define a successor context and assign its address to

ucp->uc link

makecontext() modifies the context pointed to by ucp

On activation (using swapcontext()) the function func is
called, and passed the argc many arguments of int type.

When func returns, the successor context is activated. If
the successor context pointer is NULL, the thread exits.

swapcontext

int swapcontext(ucontext_t *oucp,const ucontext_t *ucp);

swapcontext() saves the current context in oucp, and then
activates ucp.

 When successful, swapcontext() does not return. (But we
may return later, in case oucp is activated, in which case it
looks like swapcontext() returns 0.) On error,
swapcontext() returns -1.

Stack Switching with makecontext and swapcontext
interleaved functions

#include <ucontext.h>

#include <stdio.h>

#include <stdlib.h>

static ucontext_t ctx_m, ctx_f1, ctx_f2;

#define handle_error(msg) \

do { perror(msg); exit(EXIT_FAILURE); } while (0)

static void f1(void) {

printf("f1: started\n");

printf("f1 --swapcontext--> f2\n");

if (swapcontext(&ctx_f1, &ctx_f2) == -1) handle_error("swap");

printf("f1: returning\n");

}

static void f2(void) {

printf("f2: started\n");

printf("f2 --swapcontext--> f1\n");

if (swapcontext(&ctx_f2, &ctx_f1) == -1) handle_error("swap");

printf("f2: returning\n");

}

startup platform

int main(int argc, char *argv[]) {

char f1_stack[16384];

char f2_stack[16384];

if (getcontext(&ctx_f1) == -1) handle_error("getcontext");

ctx_f1.uc_stack.ss_sp = f1_stack;

ctx_f1.uc_stack.ss_size = sizeof(f1_stack);

ctx_f1.uc_link = &ctx_m;

makecontext(&ctx_f1, f1, 0);

if (getcontext(&ctx_f2) == -1) handle_error("getcontext");

ctx_f2.uc_stack.ss_sp = f2_stack;

ctx_f2.uc_stack.ss_size = sizeof(f2_stack);

/* f2's successor context is f1(), unless argc > 1 */

ctx_f2.uc_link = (argc > 1) ? NULL : &ctx_f1;

makecontext(&ctx_f2, f2, 0);

printf("main --swapcontext--> f2\n");

if (swapcontext(&ctx_m, &ctx_f2) == -1) handle_error("swap");

printf("main: exiting\n");

exit(EXIT_SUCCESS);

}

main --swapcontext--> f2

f2: started

f2 --swapcontext--> f1

f1: started

f1 --swapcontext--> f2

f2: returning

f1: returning

main: exiting

Stack Switching with makecontext and swapcontext

...

main()

f1() f2()

ctx f1 ctx f2
ctx f2

ctx f1

NN! stack frame for subcontext
size has to be known
has to be allocated manually
has to be allocated by parent frame
NN! scheduling on termination depending on
definition of a successor context

Stackless Coroutines

EcmaScript 6+:

var genFn = function*(){

var i = 0;

while(true){

yield i++;

}

};

var gen = genFn();

while (true){

var result = gen.next().value;

}

Stackless Coroutines

...

main()

foo() coro()

bar()baz()

baw()

create/call

callreturn

yield
resume

callreturn
return

Stackful Coroutines

Lua:

function send (x)

coroutine.yield(x)

end

local producer = coroutine.create(

function ()

while true do

send(io.read())

end

end)

Stackful Coroutines

...

main()

foo() coro()

bar()

baz()

baw()

createyield

resumereturn

Generic Control Over the Program Counter
Continuations in Haskell

Abstracting Contexts

3 + 5*2 -1

3 + [5*2] -1

3 + [.] -1

isolate the context of an expression within surronding
expression, i.e. 5*2
make the context a first level language construct

 Continuations (Reynolds 1993[7])

Their counterpart
is represented by already computed subexpressions
is applicable to Continuations, yielding the final result

 Suspended Computations

Continuation Passing Style (CPS) [8]
Transforming a function f::a->b into a CPS function f'::a->((b->c)->c) :
f'(k)

computes f(k) using only CPS styled functions and
returns a function which, given a continuation cont::b->c returns cont(f(k)).
 suspended computation (::(b->c)->c)

Direct style

square :: Int -> Int

square x = x * x

add :: Int -> Int -> Int

add x y = x + y

pythagoras :: Int -> Int -> Int

pythagoras x y = add (square x) (square y)

⇒

Continuation Passing Style

square_cps :: Int -> ((Int -> r) -> r)

square_cps x = \k -> k ((*) x x)

add_cps :: Int -> Int -> ((Int -> r) -> r)

add_cps x y = \k -> k ((+) x y)

pyth_cps :: Int -> Int -> ((Int -> r) -> r)

pyth_cps x y = \k ->

square_cps x (\x_squared ->

square_cps y (\y_squared ->

add_cps x_squared y_squared (k)))

Continuation Passing Style (CPS)

Higher order functions, that receive CPS styled functions as parameters

Direct style

trip :: (a -> a) -> a -> a

trip f x = f (f (f x))

Function Parameter Signature:
(a->b)

⇒

Continuation Passing Style

trip_cps :: (a -> ((a -> r) -> r)) -> a -> ((a -> r) -> r)

trip_cps f_cps x = \k ->

f_cps x (\fx ->

f_cps fx (\ffx ->

f_cps ffx (k)))

CPS Function Parameter Signature:
(a->((b->r)->r))

Depending on how you where raised as a programmer (functional vs. iterative), this
might look horrible to you –NN! is it even efficient at all?

Tail Call Optimization
Steele 1977 [6]

main :: IO

main = do

print (foo(5))

foo :: Int -> Int

foo f = bar(10)

bar :: Int -> Int

bar b = baz(100)

baz :: Int -> Int

baz z = 100 + 100

...

main()

foo()

bar()

baz()

...

main()

foo()bar()baz()

main :: IO

main = do

print (foo(5))

foo :: Int -> Int

foo f = 100+100

Potentially generate new closure
Reuse the existing stackframe
Potentially shift actual parameters on stack
Jump to called function

Composing Code by Continuations

Provide a function compose, that
takes a suspended computation s::(a->r)->r

takes a function in CPS style f::a->((b->r)->r)

returns a composition of f to s, in form of another suspended computation
::(b->r)->r

applying a CPS function to a suspended computation

compose :: ((a -> r) -> r) -> (a -> ((b -> r) -> r)) -> ((b -> r) -> r)

compose s f = \k -> s (\x -> f x (k))

The Cont Type Constructor

Data Constructor Cont represents suspended computations as a polymorphic Haskell data
type, along with the functions:
 cont :: ((a -> r) -> r) -> Cont r a creating a suspended computation
 runCont :: Cont r a -> (a -> r) -> r computes the suspended computation

with a given final function

Step by step introduce Cont into compose

compose' :: Cont r a -> (a -> Cont r b) -> Cont r b

compose' s f = cont (\k -> runCont s (\x -> runCont (f x) (k)))

m

Monadic bind: (>>=) :: Monad m => m a -> (a -> m b) -> m b

 Can we constrain Cont r to a Monad?

Excursion: Monads

Essentials of Monads (Wadler 92 [10])
A monad is a type class for arbitrary type constructors, defining at least a function
called return, and a combinator function called bind or >>=
class Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

Syntactic sugar: do-notation; allows to write monadic computations in a pseudo-imperative
style

mothersPaternalGrandfather s =

mother s >>= (\m ->

father m >>= (\gf ->

father gf))

⇒
mothersPaternalGrandfather s = do

m <- mother s

gf <- father m

father gf

Continuation Passing Style Monad

the Cont Monad

instance Monad (Cont r) where

return x = cont (\k -> k x)

s >>= f = cont (\k -> runCont s (\x -> runCont (f x) k))

Continuation Passing Style

add_cps :: Int -> Int -> ((Int -> r) -> r)

add_cps x y = \k -> k (add x y)

square_cps :: Int -> ((Int -> r) -> r)

square_cps x = \k -> k (square x)

pyth_cps :: Int -> Int -> ((Int -> r) -> r)

pyth_cps x y = \k ->

square_cps x (\x_squared ->

square_cps y (\y_squared ->

add_cps x_squared y_squared (k)))

Cont Monad Style

add_cont :: Int -> Int -> Cont r Int

add_cont x y = return (add x y)

square_cont :: Int -> Cont r Int

square_cont x = return (square x)

pythagoras_cont :: Int -> Int -> Cont r Int

pythagoras_cont x y = do

x_squared <- square_cont x

y_squared <- square_cont y

add_cont x_squared y_squared

Call with Current Continuation
First implementation in Scheme

call/cc takes as an argument an abstraction and passes to the abstraction another
abstraction, that takes the role of a continuation. When this continuation abstraction
is applied, it sends its argument to the continuation of the call/cc.

Clinger et. al 1986[2]

callcc in CPS

callCC :: ((a -> Cont r b) -> Cont r a) -> Cont r a

callCC f = cont (\h -> runCont (f (\a -> cont (_ -> h a)) h))

callCC' :: ((a->((b->r)->r)) -> ((a->r)->r)) -> ((a->r)->r)

callCC' f = (\h ->

f (\a -> (_ -> h a)) h

)

function parameter f is directly called by callcc with parameter h which
I serves as direct continuation for f
I is executable via a function call expression passed to f via some function parameter ignoring the

continuation when called

Example: Control Structures with Call/CC

Loops with callcc

import Control.Monad.Trans.Class

import Control.Monad.Trans.Cont

main = flip runContT return $ do

lift $ putStrLn "A"
(k, num) <- callCC (\c -> let f x = c (f, x)

in return (f, 0))

lift $ putStrLn "B"

lift $ putStrLn "C"

if num < 5

then k (num + 1) >> return ()

else lift $ print num

A

B

C

B

C

B

C

B

C

B

C

B

C

5

Getting access to continuations may need a little monad trickery (lifting to Cont Monad)
callCC now grants access to continuations (in this case One-Shot /Escape Continuation like exceptions)
Continuations in Haskell via callCC are Multi-Shot Continuations

Implementation of Continuations [5]

main = flip runContT return $ do

lift $ putStrLn "A"

c <- callCC (\k ->

let f _ = k (f)

in return (f))

lift $ putStrLn "B"

let b = _ -> c() in b ()

Continuations, returned from callcc may
escape the current context /function frame
calling continuations restarts execution at
the original callcc site and function frame
Multi-Shot Continuations may return to
the same callcc site multiple times
NN! traditional stack based frame

management discards and overwrites old
function frames

...

main()

let ... in b()

putStrLn(”B”)

c ← callCC(...)

putStrLn(”B”)

c ← callCC(...)

\ → c()

putStrLn(”A”)let ... in return f

Roundup

Applications of call/cc

Standard Control Structures
Exception Handling
Coroutines
Backtracking
. . .

Lessons Learned

1 Simple Gotos
2 Longjumps
3 Set-/Swapcontext
4 Exception Handling
5 Stackful/-less Coroutines
6 Single-/Multishot Continuations

Further Topics

<3 + [.]> * 5

y = \f -> (\x -> f (x x)) (\x -> f (x x))

s = \f -> (\g -> (\x -> f x (g x)))

k = \x -> (\y -> x)

i = \x -> x

Delimited/Partial Continuations [1]
Y Combinator
SKI Calculus

References
[1] K. Asai and O. Kiselyov.

Introduction to programming with shift and reset.
In ACM SIGPLAN Continuation Workshop, 2011.

[2] W. Clinger, D. P. Friedman, and M. Wand.
A Scheme for a Higher-Level Semantic Algebra, page 237–250.
Cambridge University Press, USA, 1986.

[3] Compaq, EDG, HP, IBM, Intel, Red Hat, and SGI.
Itanium C++ ABI: Exception Handling.
https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html.

[4] FreeBSD.
setjmp implementation.
https://github.com/freebsd/freebsd/blob/master/lib/libc/amd64/gen/setjmp.S.

[5] R. Hieb, R. K. Dybvig, and C. Bruggeman.
Representing control in the presence of first-class continuations.
In B. N. Fischer, editor, Proceedings of the ACM SIGPLAN’90 Conference on Programming Language Design and Implementation (PLDI), White Plains, New York, USA, June 20-22,
1990, pages 66–77. ACM, 1990.

[6] G. L. S. Jr.
Debunking the ”expensive procedure call” myth or, procedure call implementations considered harmful or, LAMBDA: the ultimate GOTO.
In J. S. Ketchel, H. Z. Kriloff, H. B. Burner, P. E. Crockett, R. G. Herriot, G. B. Houston, and C. S. Kitto, editors, Proceedings of the 1977 annual conference, ACM ’77, Seattle,
Washington, USA, October 16-19, 1977, pages 153–162. ACM, 1977.

[7] J. C. Reynolds.
The discoveries of continuations.
Lisp and Symbolic Computation, 6(3-4):233–248, 1993.

[8] G. J. Sussman and G. L. Steele Jr.
Ai memo no. 349 december 1975.
contract, 14(75-C):0643.
http://www.laputan.org/pub/papers/aim-349.pdf.

[9] The IEEE and The Open Group.
The Open Group Base Specifications Issue 6 – IEEE Std 1003.1, 2004 Edition.
IEEE, New York, NY, USA, 2004.
https://pubs.opengroup.org/onlinepubs/009695399/functions/makecontext.html.

[10] P. Wadler.
The essence of functional programming.
In Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’92, page 1–14, New York, NY, USA, 1992. Association for
Computing Machinery.
https://page.mi.fu-berlin.de/scravy/realworldhaskell/materialien/the-essence-of-functional-programming.pdf.

