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FAKULTÄT FÜR INFORMATIK

Dr. Michael Petter
Winter term 2019



Abstraction and Concurrency
Two fundamental concepts to build larger software are:
abstraction : an object storing certain data and providing certain functionality may be

used without reference to its internals
composition : several objects can be combined to a new object without interference
Both, abstraction and composition are closely related, since the ability to compose
depends on the ability to abstract from details.

Consider an example:
a linked list data structure exposes a fixed set of operations to modify the list structure,
such as push() and forAll()

a set object may internally use the list object and expose a set of operations, including
push()

The insert() operations uses the forAll() operation to check if the element already
exists and uses push() if not.
Wrapping the linked list in a mutex does not help to make the set thread-safe.
 wrap the two calls in insert() in a mutex

but other list operations can still be called use the same mutex
 unlike sequential algorithms, thread-safe algorithms cannot always be composed to
give new thread-safe algorithms
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Transactional Memory [2]
Idea: automatically convert atomic blocks into code that ensures atomic execution of the
statements.

atomic {

// code

if (cond) retry;

atomic {

// more code

}

// code

}

Execute code as transaction:
execute the code of an atomic block
nested atomic blocks act like a single atomic block
check that it runs without conflicts due to accesses from another thread
if another thread interferes through conflicting updates:
I undo the computation done so far
I re-start the transaction
provide a retry keyword similar to the wait of monitors
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Semantics of Transactions
The goal is to use transactions to specify atomic executions.

Transactions are rooted in databases where they have the ACID properties:

atomicity : a transaction completes or seems not to have run
 we call this failure atomicity to distinguish it from atomic executions

consistency : each transaction transforms a consistent state to another consistent state
a consistent state is one in which certain invariants hold
invariants depend on the application

isolation : among each other, transactions do not interfere
 coexisting with non-transactional memory, isolation is not so evident

durability : the effects are permanent (w.r.t. main memoryX)

Definition (Semantics of Transactions)

The result of running concurrent transactions must be identical to one execution of them in
sequence. ( Serialization)
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Consistency During Transactions
Consistency during a transaction.

ACID states how committed transactions behave but not what may happen until a
transaction commits.

a transaction, run on an inconsistent state may continue yielding inconsistent states
 zombie transaction
in the best case, the zombie transaction will be aborted eventually
but transactions may cause havoc when run on inconsistent states
atomic {

int tmp1 = x;

int tmp2 = y;

assert(tmp1-tmp2==0);

}

// preserved invariant: x==y

atomic {

x = 10;

y = 10;

}

! critical for null pointer derefs or divisions by zero, e.g.

Definition (opacity)

A TM system provides opacity if failing transactions are serializable w.r.t. committing
transactions.

 failing transactions still see a consistent view of memory



Weak- and Strong Isolation

Can we mix transactions with code accessing memory non-transactionally?
strong isolation retains order between accesses to TM and non-TM
In weak isolation, guarantees are only given about memory accessed inside atomic

I no conflict detection for non-transactional accesses
I ! standard race problems, e.g.

// Thread 1

atomic {

x = 42;

}

// Thread 2

int tmp = x;

 give programs with races the same semantics as if using a single global lock for all atomic blocks

Definition (SLA)

The single-lock atomicity is a model in which the program executes as if all transactions
acquire a single, program-wide mutual exclusion lock.

 like sequential consistency, SLA is a statement about program equivalence
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Disadvantages of the SLA model
The SLA model is simple but often too strong:

1 SLA has a weaker progress guarantee than a transaction should have
// Thread 1

atomic {

while (true) {};

}

// Thread 2

atomic {

int tmp = x; // x in TM

}
2 SLA correctness is too strong in practice

// Thread 1

data = 1;

atomic {

}

ready = 1;

// Thread 2

atomic {

int tmp = data;

// Thread 1 not in atomic

if (ready) {

// use tmp

}

}
I under the SLA model, atomic {} acts as barrier
I intuitively, the two transactions should be independent rather than synchronize

 need a weaker model for more flexible implementation of strong isolation



Transactional Sequential Consistency
How about a more permissive view of transaction semantics?

TM should not have the blocking behaviour of locks
 the programmer cannot rely on synchronization

Definition (TSC)

The transactional sequential consistency is a model in which the accesses within each
transaction are sequentially consistent.

i

atomic { k = i+j; }
A

j
k

B k=42atomic { k = i+j; }

TSC is weaker: gives strong isolation, but allows parallel execution X
TSC is stronger: accesses within a transaction may not be re-ordered !

 actual implementations use TSC with some race free re-orderings
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Software Transactional Memory



Translation of atomic-Blocks
A TM system must track which shared memory locations are accessed:

convert every read access x from a shared variable to ReadTx(&x)

convert every write access x=e to a shared variable to WriteTx(&x,e)

Convert atomic blocks as follows:

atomic {

// code

}

=⇒

do {

StartTx();

// code with ReadTx and WriteTx

} while (!CommitTx());

translation can be done using a pre-processor
I determining a minimal set of memory accesses that need to be transactional requires a good static

analysis
I idea: translate all accesses to global variables and the heap as TM
I more fine-grained control using manual translation
an actual implementation might provide a retry keyword
I when executing retry, the transaction aborts and re-starts
I the transaction will again wind up at retry unless its read set changes
 block until a variable in the read-set has changed

I similar to condition variables in monitorsX
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A Software TM Implementation

A software TM implementation allocates a transaction descriptor to store data specific to
each atomic block, for instance:

undo-log of all writes which have to be undone if a commit fails
redo-log of all writes which are postponed until a commit
read- and write-set: locations accessed so far
read- and write-version: time stamp when value was accessed

Example:
Consider the TL2 STM (software transactional memory) implementation [1]:

provides opacity: zombie transactions do not see inconsistent state
uses lazy versioning: writes are stored in a redo-log and done on commit
validating conflict detection: accessing a modified address aborts
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Principles of TL2

The idea: obtain a version from the global counter on starting the transaction, the
read-version, and watch out for accesses to newer versions throughout the transaction.

A read ReadTx from a field at offset of object obj aborts,
I when the objects version is younger than the transaction
I when the object is locked at the moment of access

or returns the read value and adds the accessed memory address to the read-set.
WriteTx is simpler: add or update the location in the redo-log.
CommitTx successively
1 picks up locks for each written object
2 increments the global version
3 checks the read objects for being up to date

before writing redo-log entries to memory while updating their version and realasing
their locks
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Properties of TL2

Opacity is guaranteed by aborting on a read accessing an inconsistent value:

write redo-log

StartTx ReadTx WriteTx ReadTx

memory state seems to be consistent

CommitTx

validate read set
increment global clock

Other observations:
read-only transactions just need to check that read versions are consistent (no need to
increment the global clock)
writing values still requires locks
I deadlocks are still possible
I since other transactions can be aborted, one can preempt transactions that are deadlocked
I since lock accesses are generated, computing a lock order up-front might be possible

there might be contention on the global clock



General Challenges when using STM
Executing atomic blocks by repeatedly trying to execute them non-atomically creates new
problems:

a transaction might unnecessarily be aborted
I the granularity of what is locked might be too large
I a TM implementation might impose restrictions:

// Thread 1

atomic { // clock=12

...

int r = ReadTx(&x,0);

} // tx.RV==12 != clock

// Thread 2

atomic {

WriteTx(&x,0) = 42; // clock=13

}

lock-based commits can cause contention
I organize cells that participate in a transaction in one object
I compute a new object as result of a transaction
I atomically replace a pointer to the old object with a pointer to the new object if the old object has not

changed
 idea of the original STM proposal

TM system should figure out which memory locations must be logged
danger of live-locks: transaction B might abort A which might abort B . . .



Integrating Non-TM Resources

Allowing access to other resources than memory inside an atomic block poses problems:
storage management, condition variables, volatile variables, input/output
semantics should be as if atomic implements SLA or TSC semantics

Usual choice is one of the following:
Prohibit It. Certain constructs do not make sense. Use compiler to reject these
programs.
Execute It. I/O operations may only happen in some runs (e.g. file writes usually go to
a buffer). Abort if I/O happens.
Irrevocably Execute It. Universal way to deal with operations that cannot be undone:
enforce that this transaction terminates (possibly before starting) by making all other
transactions conflict.
Integrate It. Re-write code to be transactional: error logging, writing data to a file, . . ..

 currently best to use TM only for memory; check if TM supports irrevocable transactions
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Hardware Transactional Memory
Transactions of a limited size can also be implemented in hardware:

additional hardware to track read- and write-sets
conflict detection is eager using the cache:
I additional hardware makes it cheap to perform conflict detection
I if a cache-line in the read set is invalidated, the transaction aborts
I if a cache-line in the write set must be written-back, the transaction aborts

 limited by fixed hardware resources, a software backup must be provided

Two principal implementation of HTM:
1 Explicit Transactional Memory: each access is marked as transactional

I similar to StartTx, ReadTx, WriteTx, and CommitTx
I requires separate transaction instructions
 a transaction has to be translated differently
! mixing transactional and non-transactional accesses is problematic

2 Implicit Transactional Memory: only the beginning and end of a transaction are marked
I same instructions can be used, hardware interprets them as transactional
I only instructions affecting memory that can be cached can be executed transactionally
I hardware access, OS calls, page table changes, etc. all abort a transaction
 provides strong isolation
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Example for HTM
AMD Advanced Synchronization Facilities (ASF):

defines a logical speculative region
LOCK MOV instructions provide explicit data transfer between normal memory and
speculative region
aimed to implement larger atomic operations

Intel’s TSX in Broadwell/Skylake microarchitecture (since Aug 2014):
implicitely transactional, can use normal instructions within transactions
tracks read/write set using a single transaction bit on cache lines
provides space for a backup of the whole CPU state (registers, ...)
use a simple counter to support nested transactions
may abort at any time due to lack of resources
aborting in an inner transaction means aborting all of them

Intel provides two software interfaces to TM:
1 Restricted Transactional Memory (RTM)
2 Hardware Lock Elision (HLE)
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Restricted Transactional Memory



Implementing RTM using the Cache (Intel)
Supporting Transactional operations:

augment each cache line with an extra bit T
introduce a nesting counter C and a backup register set

CPU

cache

store
buffer

Memory

T

register
Cbank
 additional transaction logic:

xbegin increments C and, if C = 0, backs up registers
and flushes buffer
I subsequent read or write access to a cache line sets T if C > 0
I applying an invalidate message to a cache line with T flag

issues xabort
I observing a read for a modified cache line with T flag issues

xabort

xabort clears all T flags and the store buffer,
invalidates the former TM lines, sets C = 0 and
restores CPU registers
xend decrements C and, if C = 0, clears all T flags,
flushes store buffer
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Restricted Transactional Memory
Provides new instructions xbegin, xend, xabort, and xtest:

xbegin on transaction start skips to the next instruction or on abort
I continues at the given address
I implicitely stores an error code in eax

xend commits the transaction started by the most recent xbegin
xabort aborts the whole transaction with an error code
xtest checks if the processor is executing transactionally

The instruction xbegin is made accessible via library function xbegin():

xbegin()

move eax, 0xFFFFFFFF

xbegin _txnL1

_txnL1:

move retval, eax

if(_xbegin()==_XBEGIN_STARTED) {

// transaction code

_xend();

} else {

// non-transactional fall-back

}

 user must provide fall-back code
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Considerations for the Fall-Back Path

Consider executing the following code concurrently with itself:

int data[100]; // shared

void update(int idx, int value) {

if(_xbegin()==_XBEGIN_STARTED) {

data[idx] += value;

_xend();

} else {

data[idx] += value;

}

}

! Several problems:
the fall-back code may execute racing itself
the fall-back code is not isolated from the transaction

 First idea: ensure that the fall-back path is executed atomically
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Protecting the Fall-Back Path

Use a lock to prevent the transaction from interrupting the fall-back path:
int data[100]; // shared

int mutex;

void update(int idx, int value) {

if(_xbegin()==_XBEGIN_STARTED) {

if (!mutex>0) _xabort();

data[idx] += value;

_xend();

} else {

wait(mutex);

data[idx] += value;

signal(mutex);

}

}

the fall-back code does not execute racing itself X

! the fall-back code isolated from the transaction X
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Protecting the Fall-Back Path

Use a lock to prevent the transaction from interrupting the fall-back path:
int data[100]; // shared

int mutex;

void update(int idx, int value) {

if(_xbegin()==_XBEGIN_STARTED) {
if (!mutex>0) _xabort();
data[idx] += value;

_xend();

} else {

wait(mutex);

data[idx] += value;

signal(mutex);

}

}

the fall-back code does not execute racing itself X
the fall-back code is now isolated from the transaction X



Happened Before Diagram for Transactions
Augment MESI states with extra bit T . CPU A: d:E5 t:E0, CPU B: d:I, tmp/value registers

Thread A
int t = _xbegin();

int tmp = data[idx];

data[idx] = tmp + value;

_xend();

Thread B
_xbegin();

int tmp = data[idx];

data[idx] = tmp + value;

_xend();
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Common Code Pattern for Mutexes
Using HTM in order to implement mutex:

int data[100]; // shared

int mutex;

void update(int idx, int val) {

if(_xbegin()==_XBEGIN_STARTED) {

if (!mutex>0) _xabort();

data[idx] += val;

_xend();

} else {

wait(mutex);

data[idx] += val;

signal(mutex);

}

}

void update(int idx, int val) {

lock(&mutex);

data[idx] += val;

unlock(&mutex);

}

void lock(int* mutex) {

if(_xbegin()==_XBEGIN_STARTED)

{ if (!*mutex>0) _xabort();

else return;

} wait(mutex);

}

void unlock(int* mutex) {

if (!*mutex>0) signal(mutex);

else _xend();

}
critical section may be executed without taking the lock (the lock is elided)
as soon as one thread conflicts, it aborts, takes the lock in the fallback path and
thereby aborts all other transactions that have read mutex
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Hardware Lock Elision



Hardware Lock Elision

Observation: Using RTM to implement lock elision is a common pattern
 provide special handling in hardware: HLE

Idea: Hardware Lock Elision

1 By default defer actual acquisition of the lock
2 Instead rely on HTM to sort out conflicting concurrent accesses
3 Fall back to actual locking only in case of conflicts
4 Support legacy lock code by locally acting as if semaphore value is actually modified

requires annotations for lock instructions:
I instruction that increments the semaphore must be prefixed with xacquire
I instruction setting the semaphore to 0 must be prefixed with xrelease
I these prefixes are ignored on older platforms

for a successful elision, all signal/wait operations of a lock must be annotated



Implementing Lock Elision
Transactional operation:

re-uses infrastructure for Restricted Transactional Memory
add a buffer for elided locks, similar to store buffer

CPU

cache

store
buffer

Memory

T

elided
locks

register Cbank
xacquire of lock ensures shared/exclusive cache line
state with T, issues xbegin and keeps the modified
lock value in elided lock buffer
I r/w access to other cache lines sets T
I applying an invalidate message to a T cache line issues

xabort, analogous for read message to a TM cache line
I a local CPU load from the address of the elided lock

accesses the buffer

on xrelease on the same lock, decrement C and, if
C = 0, clear T flags and elided locks buffer flush the
store buffer
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Transactional Memory: Summary
Transactional memory aims to provide atomic blocks for general code:

frees the user from deciding how to lock data structures
compositional way of communicating concurrently
can be implemented using software (locks, atomic updates) or hardware

It is hard to get the details right:
semantics of explicit HTM and STM transactions quite subtle when mixing with non-TM
(weak vs. strong isolation)
single-lock atomicity vs. transactional sequential consistency semantics
STM not the right tool to synchronize threads without shared variables
TM providing opacity (serializability) requires eager conflict detection or lazy version
management

Pitfalls in implicit HTM:
RTM requires a fall-back path
no progress guarantee
HLE can be implemented in software using RTM
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TM in Practice

Availability of TM Implementations:
GCC can translate accesses in transaction atomic regions into libitm library calls
the library libitm provides different TM implementations:
1 On systems with TSX, it maps atomic blocks to HTM instructions
2 On systems without TSX and for the fallback path, it resorts to STM

C++20 standardizes synchronized/atomic XXX blocks
RTM support slowly introduced to OpenJDK Hotspot monitors

Use of hardware lock elision is limited:
allows to easily convert existing locks
pthread locks in glibc use RTM https://lwn.net/Articles/534758/:
I allows implementation of back-off mechanisms
I HLE only special case of general lock

implementing monitors is challenging
I lock count and thread id may lead to conflicting accesses
I in pthreads: error conditions often not checked anymore

https://lwn.net/Articles/534758/
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Outlook

Several other principles exist for concurrent programming:
1 non-blocking message passing (the actor model)

I a program consists of actors that send messages
I each actor has a queue of incoming messages
I messages can be processed and new messages can be sent
I special filtering of incoming messages
I example: Erlang, many add-ons to existing languages

2 blocking message passing (CSP, π-calculus, join-calculus)
I a process sends a message over a channel and blocks until the recipient accepts it
I channels can be send over channels (π-calculus)
I examples: Occam, Occam-π, Go

3 (immediate) priority ceiling
I declare processes with priority and resources that each process may acquire
I each resource has the maximum (ceiling) priority of all processes that may acquire it
I a process’ priority at run-time increases to the maximum of the priorities of held resources
I the process with the maximum (run-time) priority executes
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