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Why Memory Barriers are not Enough

Often, multiple memory locations may only be modified exclusively by one thread during a
computation.

use barriers to implement automata that ensure mutual exclusion
 generalize the re-occurring concept of enforcing mutual exclusion

Needed: interaction with multiple memory locations within a single step:

a

a=1,b=1

A

b
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Atomic Executions
A concurrent program consists of several threads that share resources:

resources can be memory locations or memory mapped I/O
I a file can be modified through a shared handle, e.g.

usually invariants must be retained wrt. resources
I e.g. a head and tail pointer must delimit a linked list
I an invariant may span multiple resources
I during an update, the invariant may be temporarily locally broken

 multiple resources must be updated together to ensure the invariant

Ideally, a sequence of operations that update shared resources should be atomic
[Harris et al.(2010)Harris, Larus, and Rajwar]. This would ensure that the invariant never
seems to be broken.

Definition (Atomic Execution)

A computation forms an atomic execution if its effect can only be observed as a single
transformation on the memory.
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Overview
We will address the established ways of managing synchronization. The presented
techniques

are available on most platforms
likely to be found in most existing (concurrent) software
provide solutions to common concurrency tasks
are the source of common concurrency problems

The techniques are applicable to C, C++ (pthread), Java, C# and other imperative
languages.

Learning Outcomes

1 Principle of Atomic Executions
2 Wait-Free Algorithms based on Atomic Operations
3 Locks: Mutex, Semaphore, and Monitor
4 Deadlocks: Concept and Prevention
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Wait-Free Atomic Executions



Wait-Free Updates
Which operations on a CPU are atomic? (j,k and tmp are registers)

Program 1

i++;

Program 2

j = i;

i = i+k;

Program 3

int tmp = i;

i = j;

j = tmp;

Answer:
none by default (even without store and invalidate buffers, why? )

! The load and store (even i++’s) may be interleaved with a store from another
processor.

All of the programs can be made atomic executions (e.g. on x86):
i must be in memory
Idea: lock the cache bus for an address for the duration of an instruction

Program 1

lock inc [addr_i]

Program 2 (fetch-and-add)

mov eax,reg_k

lock xadd [addr_i],eax

mov reg_j,eax

Program 3 (atomic-exchange)

lock xchg [addr_i],reg_j
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Wait-Free Bumper-Pointer Allocation
Garbage collectors often use a bumper pointer to allocated memory:

Bumper Pointer Allocation

char heap[1<<20];

char* firstFree = &heap[0];

char* alloc(int size) {
char* start = firstFree;
firstFree = firstFree + size;

if (start+size>sizeof(heap)) garbage_collect();

return start;

}

firstFree points to the first unused byte
each allocation reserves the next size bytes in heap

Thread-safe implementation:
alloc’s core functionality matches Program 2: fetch-and-add

 inline assembler (GCC/AT&T syntax in the example)
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Marking Statements as Atomic
Rather than writing assembler: use made-up keyword atomic:

Program 1

atomic {

i++;

}

Program 2

atomic {

j = i;

i = i+k;

}

Program 3

atomic {

int tmp = i;

i = j;

j = tmp;

}

The statements in an atomic block execute as atomic execution:

i

atomic { tmp = i; i = j; j = tmp }
A

j

atomic only translatable when a corresponding atomic CPU instruction exist
the notion of requesting atomic execution is a general concept
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Wait-Free Synchronization
Wait-Free algorithms are limited to a single instruction:

no control flow possible, no behavioral change depending on data
often, there are instructions that execute an operation conditionally

Program 4

atomic {

r = b;

b = 0;

}

Program 5

atomic {

r = b;

b = 1;

}

Program 6

atomic {

r = (k==i);

if (r) i = j;

}

Operations update a memory cell and return the previous value.
the first two operations can be seen as setting a flag b to v ∈ {0, 1} and returning its
previous state.
I the operation implementing programs 4 and 5 is called set-and-test
the third case generalizes this to setting a variable i to the value of j, if i’s old value is
equal to k’s.
I the operation implementing program 6 is called compare-and-swap

 use as building blocks for algorithms that can fail
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Lock-Free Algorithms
If a wait-free implementation is not possible, a lock-free implementation might still be
viable.

Common usage pattern for compare and swap:
1 read the initial value in i into k (using memory barriers)
2 compute a new value j = f(k)
3 update i to j if i = k still holds
4 go to first step if i 6= k meanwhile

! note: i = k must imply that no thread has updated i

General recipe for lock-free algorithms

given a compare-and-swap operation for n bytes
try to group variables for which an invariant must hold into n bytes
read these bytes atomically
compute a new value
perform a compare-and-swap operation on these n bytes

 computing new value must be repeatable or pure
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Limitations of Wait- and Lock-Free Algorithms

Wait-/Lock-Free algorithms are severely limited in terms of their computation:
restricted to the semantics of a single atomic operation
set of atomic operations is architecture specific, but often includes
I exchange of a memory cell with a register
I compare-and-swap of a register with a memory cell
I fetch-and-add on integers in memory
I modify-and-test on bits in memory

provided instructions usually allow only one memory operand

 Lock-Free instructions as building blocks for Locks
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Locks

Definition (Lock)

A lock is a data structure that
can be acquired and released
ensures mutual exclusion: only one thread may hold the lock at a time
blocks other threads attempts to acquire while held by a different thread
protects a critical section: a piece of code that may produce incorrect results when
entered concurrently from several threads

! may deadlock the program



Semaphores and Mutexes
A (counting) semaphore is an integer s with the following operations:

void signal(int *s) {

atomic { *s = *s + 1; }

}

void wait(int *s) {

bool avail;

do {

atomic {

avail = *s>0;

if (avail) (*s)--;

}

} while (!avail);

}

A counting semaphore can track how many resources are still available.
a thread acquiring a resource executes wait()

if a resource is still available, wait() returns
once a thread finishes using a resource, it calls signal() to release

Special case: initializing with s = 1 gives a binary semaphore:
can be used to block and unblock a thread
can be used to protect a single resource

 in this case the data structure is also called mutex
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Implementation of Semaphores
A semaphore does not have to wait busily:

void signal(int *s) {

atomic { *s = *s + 1; }

wake(s);

}

void wait(int *s) {

bool avail;

do {

atomic {

avail = *s>0;

if (avail) (*s)--;

}

if (!avail) de_schedule(s);

} while (!avail);

}

Busy waiting is avoided:
a thread failing to decrease *s executes de schedule()

de schedule() enters the operating system and inserts the current thread into a queue
of threads that will be woken up when *s becomes non-zero, usually by monitoring
writes to s ( FUTEX WAIT )
once a thread calls wake(s), the first thread t waiting on s is extracted
the operating system lets t return from its call to de schedule()
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Practical Implementation of Semaphores
Certain optimisations are possible:

void signal(int *s) {

atomic { *s = *s + 1; }

wake(s);

}

void wait(int *s) {

bool avail;

do {

atomic {

avail = *s>0;

if (avail) (*s)--;

}

if (!avail) de_schedule(s);

} while (!avail);

}

In general, the implementation is more complicated
wait() may busy wait for a few iterations
I avoids de-scheduling if the lock is released frequently
I better throughput for semaphores that are held for a short time

wake(s) informs the scheduler that s has been written to

 using a semaphore with a single core reduces to
if (*s) (*s)--; /* critical section */ (*s)++;
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Mutexes

One common use of semaphores is to guarantee mutual exclusion.
 in this case, a binary semaphore is also called a mutex

e.g. add a lock to the double-ended queue data structure
! decide what needs protection and what not



Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
acquiring a lock upon entering a function of the data structure
releasing the lock upon exit from this function

Locking each procedure body that accesses a data structure:
1 is a re-occurring pattern, should be generalized
2 becomes problematic in recursive calls: it blocks

E.g. a thread t waits for a data structure to be filled
I t will call pop() and obtain -1
I t then has to call again, until an element is available

 t is busy waiting and produces contention on the lock !

Monitor: a mechanism to address these problems:
1 a procedure associated with a monitor acquires a lock on entry and releases it on exit
2 if that lock is already taken by the current thread, proceed
 we need a way to release the lock after the return of the last recursive call
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Implementation of a Basic Monitor
A monitor contains a semaphore count and the id tid of the occupying thread:

typedef struct monitor mon_t;

struct monitor { int tid; int count; };

void monitor_init(mon_t* m) { memset(m, 0, sizeof(mon_t)); }

Define monitor enter and monitor leave:
ensure mutual exclusion of accesses to mon t

track how many times we called a monitored procedure recursively
void monitor_enter(mon_t *m) {

bool mine = false;

while (!mine) {

mine = thread_id()==m->tid;

if (mine) m->count++; else

atomic {

if (m->tid==0) {

m->tid = thread_id();

mine = true; m->count=1;

} };

if (!mine) de_schedule(&m->tid);

} }

void monitor_leave(mon_t *m) {

m->count--;

if (m->count==0) {

atomic {

m->tid=0;

}

wake(&m->tid);

}

}
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Condition Variables
XMonitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize:

E.g. a thread t waits for a data structure to be filled:
I t will call pop() and obtain -1
I t then has to call again, until an element is available
 t is busy waiting and produces contention on the lock

Idea: create a condition variable on which to block while waiting:
struct monitor { int tid; int count; int cond; int cond2;... };

Define these two functions:
1 wait for the condition to become true

I called while being inside the monitor
I temporarily releases the monitor and blocks
I when signalled, re-acquires the monitor and returns

2 signal waiting threads that they may be able to proceed
I one/all waiting threads that called wait will be woken up, two possibilities:

signal-and-urgent-wait : the signalling thread suspends and continues once the signalled
thread has released the monitor

signal-and-continue the signalling thread continues, any signalled thread enters when the
monitor becomes available
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Idea: create a condition variable on which to block while waiting:
struct monitor { int tid; int count; int cond; int cond2;... };

Define these two functions:
1 wait for the condition to become true

I called while being inside the monitor
I temporarily releases the monitor and blocks
I when signalled, re-acquires the monitor and returns

2 signal waiting threads that they may be able to proceed
I one/all waiting threads that called wait will be woken up, two possibilities:

signal-and-urgent-wait : the signalling thread suspends and continues once the signalled
thread has released the monitor

signal-and-continue the signalling thread continues, any signalled thread enters when the
monitor becomes available
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Signal-And-Urgent-Wait Semantics
Requires one queue for each condition c and a suspended queue s:

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

a thread who tries to enter a
monitor is added to queue e if
the monitor is occupied
a call to wait on condition a
adds thread to the queue a.q
a call to signal for a adds
thread to queue s (suspended)
one thread from the a queue is
woken up
signal on a is a no-op if a.q is
empty
if a thread leaves, it wakes up
one thread waiting on s
if s is empty, it wakes up one
thread from e

 queue s has priority over e

http://en.wikipedia.org/wiki/Monitor_(synchronization)
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Signal-And-Continue Semantics
Here, the signal function is usually called notify.

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

a call to wait on condition a adds
thread to the queue a.q
a call to notify for a adds one
thread from a.q to e (unless a.q is
empty)
if a thread leaves, it wakes up one
thread waiting on e

 signalled threads compete for the
monitor

assuming FIFO ordering on e,
threads who tried to enter between
wait and notify will run first
need additional queue s if waiting
threads should have priority

http://en.wikipedia.org/wiki/Monitor_(synchronization)
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Implementing Condition Variables
We implement the simpler signal-and-continue semantics for a single condition variable:
 a notified thread is simply woken up and competes for the monitor
void cond_wait(mon_t *m) {

assert(m->tid==thread_id());

int old_count = m->count;

m->tid = 0;

wait(&m->cond);

bool next_to_enter;

do {

atomic {

next_to_enter = m->tid==0;

if (next_to_enter) {

m->tid = thread_id();

m->count = old_count;

}

}

if (!next_to_enter) de_schedule(&m->tid);

} while (!next_to_enter);}

void cond_notify(mon_t *m) {

// wake up other threads

signal(&m->cond);

}



A Note on Notify

With signal-and-continue semantics, two notify functions exist:

1 notify: wakes up exactly one thread waiting on condition variable
2 notifyAll: wakes up all threads waiting on a condition variable

! an implementation often becomes easier if notify means notify some

 programmer should assume that thread is not the only one woken up
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Monitors with a Single Condition Variable
Monitors with a single condition variable are built into Java and C#:

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)

class C {

public synchronized void f() {

// body of f

}}

is equivalent to
class C {

public void f() {

monitor_enter(this);

// body of f

monitor_leave(this);

}}

with Object containing:
private int mon_var;

private int mon_count;

private int cond_var;

protected void monitor_enter();

protected void monitor_leave();

http://en.wikipedia.org/wiki/Monitor_(synchronization)


Deadlocks



Deadlocks with Monitors
Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective other to
finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)

Consider this Java class:
class Foo {

public Foo other = null;

public synchronized void bar() {

... if (*) other.bar(); ...

}

}

and two instances:
Foo a = new Foo(), b = new Foo();

a.other = b; b.other = a;

// in parallel:

a.bar() || b.bar();

Sequence leading to a deadlock:
threads A and B execute a.bar() and
b.bar()

a.bar() acquires the monitor of a
b.bar() acquires the monitor of b
A happens to execute other.bar()

A blocks on the monitor of b
B happens to execute other.bar()

 both block indefinitely
How can this situation be avoided?
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Treatment of Deadlocks
Observation: Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:

1 mutual exclusion: processes require exclusive access
2 wait for: a process holds resources while waiting for more
3 no preemption: resources cannot be taken away form processes
4 circular wait: waiting processes form a cycle

The occurrence of deadlocks can be:
1 ignored: for the lack of better approaches, can be reasonable if deadlocks are rare
2 detection: check within OS for a cycle, requires ability to preempt
3 prevention: design programs to be deadlock-free
4 avoidance: use additional information about a program that allows the OS to schedule

threads so that they do not deadlock
 prevention is the only safe approach on standard operating systems

can be achieved using lock-free algorithms
but what about algorithms that require locking?
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Deadlock Prevention through Partial Order
Observation: A cycle cannot occur if locks are partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call λ(p) ⊆ L the lock set at p, i.e. the set of locks that
may be in the “acquired” state at program point p.

We require the transitive closure σ+ of a relation σ:

Definition (transitive closure)

Let σ ⊆ X ×X be a relation. Its transitive closure is σ+ =
⋃

i∈N σ
i where

σ0 = σ

σi+1 = {〈x1, x3〉 | ∃x2 ∈ X . 〈x1, x2〉 ∈ σi ∧ 〈x2, x3〉 ∈ σi} ∪ σi

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define C ⊆ L× L such that lC l′ iff l ∈ λ(p) and the statement at p is of the form
wait(l’) or monitor enter(l’). Define the lock order ≺ = C+.
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Freedom of Deadlock
The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)

If there exists no a ∈ L with a ≺ a then the program is free of deadlocks.

Suppose a program blocks on semaphores (mutexes) LS and on monitors LM such that
L = LS ∪ LM .

Theorem (freedom of deadlock for monitors)

If ∀a ∈ LS . a 6≺ a and ∀a ∈ LM , b ∈ L . a ≺ b ∧ b ≺ a⇒ a = b then the program is free of
deadlocks.

Note: the set L contains instances of a lock.
the set of lock instances can vary at runtime
if we statically want to ensure that deadlocks cannot occur:
I summarize every lock/monitor that may have several instances into one
I a summary lock/monitor ā ∈ LM represents several concrete ones
I thus, if ā ≺ ā then this might not be a self-cycle
 require that ā 6≺ ā for all summarized monitors ā ∈ LM
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Inferring locksets and lockset order in practice
! fix a representation for locksets
 in our case: L comprises all lines, where any object is created.

0: Foo a = new Foo(); 8: void bar(this) {
1: Foo b = new Foo(); 9: monitor enter(this);

2: a.other = b; 10: if (∗) {
3: b.other = a; 11: . . .
4: 12: bar(&other);

5: 13: . . .
6: bar(&a); || bar(&b); 14: }
7: 15: monitor leave(this);

16: }

Lockorder C
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Avoiding Deadlocks in Practice

! What to do when the lock order contains a cycle?
determining which locks may be acquired at each program point is undecidable
 lock sets are an approximation
an array of locks in LS : lock in increasing array index sequence
if l ∈ λ(P ) exists l′ ≺ l is to be acquired
 change program: release l, acquire l′, then acquire l again

! inefficient
if a lock set contains a summarized lock ā and ā is to be acquired, we’re stuck



Locks Roundup



Atomic Execution and Locks
Consider replacing the specific locks with atomic annotations:

stack: removal

void pop() {

...

wait(&q->t);

...

if (*) { signal(&q->t); return; }

...

if (c) wait(&q->s);

...

if (c) signal(&q->s);

signal(&q->t);

}

nested atomic blocks still describe one atomic execution
 locks convey additional information over atomic

locks cannot easily be recovered from atomic declarations
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Outlook

Writing atomic annotations around sequences of statements is a convenient way of
programming.

Idea of mutexes: Implement atomic sections with locks:
a single lock could be used to protect all atomic blocks
more concurrency is possible by using several locks
some statements might modify variables that are never read by other threads no
lock required
statements in one atomic block might access variables in a different order to another
atomic block deadlock possible with locks implementation
creating too many locks can decrease the performance, especially when required to
release locks in λ(l) when acquiring l

 creating locks automatically is non-trivial and, thus, not standard in programming
languages
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Concurrency across Languages

In most systems programming languages (C,C++) we have
the ability to use atomic operations

 we can implement wait-free algorithms

In Java, C# and other higher-level languages
provide monitors and possibly other concepts
often simplify the programming but incur the same problems

language barriers wait-/lock-free semaphore mutex monitor

C,C++ X X X X (a)
Java,C# - (b) (c) X X

(a) some pthread implementations allow a reentrant attribute
(b) newer API extensions ( java.util.concurrent.atomic.* and

System.Threading.Interlocked resp.)
(c) simulate semaphores using an object with two synchronized methods



Concurrency across Languages

In most systems programming languages (C,C++) we have
the ability to use atomic operations

 we can implement wait-free algorithms
In Java, C# and other higher-level languages

provide monitors and possibly other concepts
often simplify the programming but incur the same problems

language barriers wait-/lock-free semaphore mutex monitor

C,C++ X X X X (a)
Java,C# - (b) (c) X X

(a) some pthread implementations allow a reentrant attribute
(b) newer API extensions ( java.util.concurrent.atomic.* and

System.Threading.Interlocked resp.)
(c) simulate semaphores using an object with two synchronized methods



Concurrency across Languages

In most systems programming languages (C,C++) we have
the ability to use atomic operations

 we can implement wait-free algorithms
In Java, C# and other higher-level languages

provide monitors and possibly other concepts
often simplify the programming but incur the same problems

language barriers wait-/lock-free semaphore mutex monitor

C,C++ X X X X (a)
Java,C# - (b) (c) X X

(a) some pthread implementations allow a reentrant attribute
(b) newer API extensions ( java.util.concurrent.atomic.* and

System.Threading.Interlocked resp.)
(c) simulate semaphores using an object with two synchronized methods



Summary
Classification of concurrency algorithms:

wait-free, lock-free, locked
next on the agenda: transactional

Wait-free algorithms:
never block, always succeed, never deadlock, no starvation
very limited in expressivity

Lock-free algorithms:
never block, may fail, never deadlock, may starve
invariant may only span a few bytes (8 on Intel)

Locking algorithms:
can guard arbitrary code
can use several locks to enable more fine grained concurrency
may deadlock
semaphores are not re-entrant, monitors are

 use algorithm that is best fit
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