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Why Memory Barriers are not Enough [

Often, multiple memory locations may only be modified exclusively by one thread during a
computation.

@ use barriers to implement automata that ensure mutual exclusion
~~ generalize the re-occurring concept of enforcing mutual exclusion



Why Memory Barriers are not Enough [

Often, multiple memory locations may only be modified exclusively by one thread during a
computation.

@ use barriers to implement automata that ensure mutual exclusion
~~ generalize the re-occurring concept of enforcing mutual exclusion

Needed: interaction with multiple memory locations within a single step:
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Atomic Executions

A concurrent program consists of several threads that share resources:
@ resources can be memory locations or memory mapped I/O
» afile can be modified through a shared handle, e.g.
@ usually invariants must be retained wrt. resources

> e.g. a head and tail pointer must delimit a linked list
> an invariant may span multiple resources
» during an update, the invariant may be temporarily locally broken

~~ multiple resources must be updated together to ensure the invariant
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Atomic Executions i

A concurrent program consists of several threads that share resources:
@ resources can be memory locations or memory mapped I/O
» afile can be modified through a shared handle, e.g.
@ usually invariants must be retained wrt. resources

> e.g. a head and tail pointer must delimit a linked list
> an invariant may span multiple resources
» during an update, the invariant may be temporarily locally broken

~~ multiple resources must be updated together to ensure the invariant

Ideally, a sequence of operations that update shared resources should be atomic
[Harris et al.(2010)Harris, Larus, and Rajwar]. This would ensure that the invariant never
seems to be broken. .

Definition (Atomic Execution)

(4
A computation forms an atomic execution if its effect can only be observed as a single
transformation on the memory.



Overview
We will address the established ways of managing synchronization. The presented
techniques

@ are available on most platforms

@ likely to be found in most existing (concurrent) software

@ provide solutions to common concurrency tasks

@ are the source of common concurrency problems

The techniques are applicable to C, C++ (pthread), Java, C# and other imperative
languages.



Overview U

We will address the established ways of managing synchronization. The presented
techniques

@ are available on most platforms

@ likely to be found in most existing (concurrent) software
@ provide solutions to common concurrency tasks

@ are the source of common concurrency problems

The techniques are applicable to C, C++ (pthread), Java, C# and other imperative
languages.

Learning Outcomes

@ Principle of Atomic Executions

© Wait-Free Algorithms based on Atomic Operations
@ Locks: Mutex, Semaphore, and Monitor

© Deadlocks: Concept and Prevention



Wait-Free Atomic Executions



Wait-Free Updates [

Which operations on a CPU are atomic? (j,k and tmp are registers)

int tmp = i;
i=3j;
j = tmp;

Program 1
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Which operations on a CPU are atomic? (j,k and tmp are registers)

. . int tmp = i;
J =1
i

i i=j;
= i+k; .
J = tmp;

it+;

>

Answer:
@ none by default (even without store and invalidate buffers, why?)
/N The load and store (even i++’s) may be interleaved with a store from another
processor.
All of the programs can be made atomic executions (e.g. on x86):
@ i must be in memory
@ |dea: lock the cache bus for an address for the duration of an instruction
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Wait-Free Updates

Which operations on a CPU are atomic? (j,k and tmp are registers)

Program 1 - int tmp = i;
. J=1; .
1ttt - ] 1=17;
i = i+k; . J
J = tmp;

Answer:
@ none by default (even without store and invalidate buffers, why?)

/N The load and store (even i++’s) may be interleaved with a store from another

processor.
All of the programs can be made atomic executions (e.g. on x86):

@ i must be in memory
@ |dea: lock the cache bus for an address for the duration of an instruction

Program 2 (fetch-and-add)
mov eax,reg_k

lock xadd [addr_il,eax
mov reg_j,eax

lock inc [addr_i] lock xchg [addr_il,reg_j



Wait-Free Bumper-Pointer Allocation [

Garbage collectors often use a bumper pointer to allocated memory:

Bumper Pointer Allocation

char heap[1<<20];
char* firstFree = &heap[0];

charx alloc(int size) {
char* start = firstFree;

firstFree = firstFree + size;

if (start+size>sizeof (heap)) garbage_collect();
return start;

}

@ firstFree points to the first unused byte
@ each allocation reserves the next size bytes in heap



Wait-Free Bumper-Pointer Allocation [

Garbage collectors often use a bumper pointer to allocated memory:

Bumper Pointer Allocation

char heap[1<<20];
char* firstFree = &heap[0];

char* alloc(int size) {
char* start;

asm("lock; xadd %0, %1" :"=r"(start),"=m"(firstFree):
"0" (size) ,"m" (firstFree) :'"memory");

if (start+size>sizeof (heap)) garbage_collect();

return start;

}

@ firstFree points to the first unused byte

@ each allocation reserves the next size bytes in heap
Thread-safe implementation:

@ alloc’s core functionality matches Program 2: fetch-and-add
~~ inline assembler (GCC/AT&T syntax in the example)



Marking Statements as Atomic

Rather than writing assembler: use made-up keyword atomic:

Program 3

I%

. atomic {
3 atomic { . .
atomic { i . int tmp = 1i;
it++; J =1 A=
’ i= i+k; ’

T J tmp;
- }



Marking Statements as Atomic [

Rather than writing assembler: use made-up keyword atomic:

. atomic {
3 atomic { . .
atomic { g = A int tmp = i;
i++; ? i=7;
’ i = i+k; S e
} } j = tmp;
}

The statements in an atomic block execute as atomic execution:

atomic tmp = i; i =3j; j=t
L { tmp ji j = tmp }

o, .



Marking Statements as Atomic [

Rather than writing assembler: use made-up keyword atomic:

. atomic {
3 atomic { . .
atomic { i . int tmp = 1i;
i++; J =1 A=
’ i = i+k; . ’
} } j = tmp;
}

The statements in an atomic block execute as atomic execution:

a‘tomic{tmp=i;i=j;j=

o, .

@ atomic only translatable when a corresponding atomic CPU instruction exist
@ the notion of requesting atomic execution is a general concept



Wait-Free Synchronization [

Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data
@ often, there are instructions that execute an operation conditionally

atomic { atomic { atomic {
r = b; r = b; r = (k==1i);
b = 0; b=1; if (r) 1 = j;
} } +

Operations update a memory cell and return the previous value.

@ the first two operations can be seen as setting a flag b to v € {0, 1} and returning its
previous state.

> the operation implementing programs 4 and 5 is called set-and-test

@ the third case generalizes this to setting a variable i to the value of j, if i’s old value is
equal to k’s.

» the operation implementing program 6 is called compare-and-swap



Wait-Free Synchronization [

Wait-Free algorithms are limited to a single instruction:
@ no control flow possible, no behavioral change depending on data
@ often, there are instructions that execute an operation conditionally

atomic { atomic { atomic {
r = b; r = b; r = (k==1i);
b = 0; b=1; if (r) 1 = j;
} } +

Operations update a memory cell and return the previous value.
@ the first two operations can be seen as setting a flag b to v € {0, 1} and returning its
previous state.
» the operation implementing programs 4 and 5 is called set-and-test

@ the third case generalizes this to setting a variable i to the value of j, if i’s old value is
equal to k’s.

» the operation implementing program 6 is called compare-and-swap
~~ use as building blocks for algorithms that can fail



Lock-Free Algorithms



Lock-Free Algorithms [

If a wait-free implementation is not possible, a lock-free implementation might still be
viable.



Lock-Free Algorithms I

If a wait-free implementation is not possible, a lock-free implementation might still be
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© compute a new value j = f(k)

© update i to j if i = k still holds

@ go to first step if i # k meanwhile
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Lock-Free Algorithms I

If a wait-free implementation is not possible, a lock-free implementation might still be
viable.

Common usage pattern for compare and swap:

@ read the initial value in i into k£ (using memory barriers)
© compute a new value j = f(k)

© update i to j if i = k still holds

@ go to first step if i # k meanwhile

/N note: i = k must imply that no thread has updated i

General recipe for lock-free algorithms

@ given a compare-and-swap operation for n bytes

@ try to group variables for which an invariant must hold into n bytes
@ read these bytes atomically

@ compute a new value

@ perform a compare-and-swap operation on these n bytes

~~ computing new value must be repeatable or pure



Limitations of Wait- and Lock-Free Algorithms

Wait-/Lock-Free algorithms are severely limited in terms of their computation:

@ restricted to the semantics of a single atomic operation
@ set of atomic operations is architecture specific, but often includes

» exchange of a memory cell with a register

» compare-and-swap of a register with a memory cell
» fetch-and-add on integers in memory

» modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand



Limitations of Wait- and Lock-Free Algorithms

Wait-/Lock-Free algorithms are severely limited in terms of their computation:

@ restricted to the semantics of a single atomic operation
@ set of atomic operations is architecture specific, but often includes

» exchange of a memory cell with a register

» compare-and-swap of a register with a memory cell
» fetch-and-add on integers in memory

» modify-and-test on bits in memory

@ provided instructions usually allow only one memory operand

~~ Lock-Free instructions as building blocks for Locks



Locked Atomic Executions



Locks U

P~
T
Definition (Lock) ;

A lock is a data structure that e 3
@ can be acquired and released
@ ensures mutual exclusion: only one thread may hold the lock at a time
@ blocks other threads attempts to acquire while held by a different thread

@ protects a critical section: a piece of code that may produce incorrect results when
entered concurrently from several threads

VAN may deadlock the program



Semaphores and Mutexes
A (counting) semaphore is an integer s with the following operations:

void wait(int *s) {
bool avail;

do {
void signal(int *s) { atomic {
atomic { *s = *s + 1; } avail = *s>0;
} if (avail) (*s)--;
}

} while (l'avail);
}
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A counting semaphore can track how many resources are still available.
@ a thread acquiring a resource executes wait ()
@ if a resource is still available, wait () returns
@ once a thread finishes using a resource, it calls signal () to release



Semaphores and Mutexes
A (counting) semaphore is an integer s with the following operations:

void wait(int *s) {
bool avail;

do {
void signal(int *s) { atomic {
atomic { *s = *s + 1; } avail = *s>0;
} if (avail) (*s)--;
}
} while (l'avail);
}

A counting semaphore can track how many resources are still available.
@ a thread acquiring a resource executes wait ()
@ if a resource is still available, wait () returns
@ once a thread finishes using a resource, it calls signal () to release
Special case: initializing with s = 1 gives a binary semaphore:
@ can be used to block and unblock a thread
@ can be used to protect a single resource
~= in this case the data structure is also called mutex



Implementation of Semaphores
A semaphore does not have to wait busily:

void signal(int #*s) {
atomic { *s = *s + 1; }
wake(s);

3

void wait(int *s) {
bool avail;
do {
atomic {
avail = *s>0;
if (avail) (*s)--;
}
if (lavail) de_schedule(s);
} while (l!avail);
}



Implementation of Semaphores [

A semaphore does not have to wait busily:

void wait(int *s) {
bool avail;

do {
void signal(int *s) { atomic {
atomic { *s = *s + 1; } avail = *s>0;
wake(s); if (avail) (*s)--;
} }

if (lavail) de_schedule(s);
} while (lavail);
}
Busy waiting is avoided:

@ a thread failing to decrease *s executes de_schedule()

@ de_schedule() enters the operating system and inserts the current thread into a queue
of threads that will be woken up when xs becomes non-zero, usually by monitoring
writes to s (~ FUTEX_WAIT)

@ once a thread calls wake (s), the first thread ¢ waiting on s is extracted

@ the operating system lets ¢ return from its call to de_schedule ()



Practical Implementation of Semaphores [

Certain optimisations are possible:

void wait(int *s) {
bool avail;

do {
void signal(int *s) { atomic {
atomic { *s = *s + 1; } avail = *s>0;
wake(s); if (avail) (*s)--;
} }

if (lavail) de_schedule(s);
} while (l'avail);
}
In general, the implementation is more complicated
@ wait () may busy wait for a few iterations
» avoids de-scheduling if the lock is released frequently
> better throughput for semaphores that are held for a short time

@ wake (s) informs the scheduler that s has been written to



Practical Implementation of Semaphores [

Certain optimisations are possible:

void wait(int *s) {
bool avail;

do {
void signal(int *s) { atomic {
atomic { *s = *s + 1; } avail = *s>0;
wake(s); if (avail) (*s)--;
} }

if (lavail) de_schedule(s);
} while (l'avail);
}
In general, the implementation is more complicated
@ wait () may busy wait for a few iterations

» avoids de-scheduling if the lock is released frequently
> better throughput for semaphores that are held for a short time

@ wake (s) informs the scheduler that s has been written to
~~ using a semaphore with a single core reduces to
if (*s) (*s)--; /* critical section */ (*s)++;



Mutexes

One common use of semaphores is to guarantee mutual exclusion.
~~ in this case, a binary semaphore is also called a mutex
e.g. add a lock to the double-ended queue data structure

/N decide what needs protection and what not



Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function
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Monitors: An Automatic, Re-entrant Mutex

Often, a data structure can be made thread-safe by
@ acquiring a lock upon entering a function of the data structure
@ releasing the lock upon exit from this function

Locking each procedure body that accesses a data structure:

@ is a re-occurring pattern, should be generalized

@ becomes problematic in recursive calls: it blocks

E.g. a thread t waits for a data structure to be filled
> t will call pop () and obtain -1

» ¢ then has to call again, until an element is available C AL
~ tis busy waiting and produces contention on the lock & g
Monitor. a mechanism to address these problems:

@ a procedure associated with a monitor acquires a lock on entry and releases it on exit
@ if that lock is already taken by the current thread, proceed

~~ we need a way to release the lock after the return of the last recursive call



Implementation of a Basic Monitor

A monitor contains a semaphore count and the id tid of the occupying thread:
typedef struct monitor mon_t;
struct monitor { int tid; int count; };
void monitor_init(mon_t* m) { memset(m, 0, sizeof(mon_t)); }



Implementation of a Basic Monitor

A monitor contains a semaphore count and the id tid of the occupying thread:

Define monitor_enter and monitor_leave:
@ ensure mutual exclusion of accesses to mon_t

typedef struct monitor mon_t;

struct monitor { int tid; int count; };

void monitor_init(mon_t* m) { memset(m, 0, sizeof(mon_t)); }

@ track how many times we called a monitored procedure recursively
void monitor_enter(mon_t *m) {

bool mine = false;

while (!'mine) {

1}

mine = thread_id()==m->tid;
if (mine) m->count++; else
atomic {
if (m->tid==0) {

m->tid = thread_id();

mine = true; m->count=1;
3}
if (!'mine) de_schedule(&m->tid);

void monitor_leave(mon_t *m) {
m->count--;
if (m->count==0) {
atomic {
m->tid=0;
}
wake (&m->tid) ;
}
}



Condition Variables

v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize:
E.g. a thread t waits for a data structure to be filled:

» ¢ will call pop() and obtain -1
» t then has to call again, until an element is available
~ tis busy waiting and produces contention on the lock
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~ tis busy waiting and produces contention on the lock

Idea: create a condition variable on which to block while waiting:

struct monitor { int tid; int count; int cond; int cond2;...



Condition Variables

v Monitors simplify the construction of thread-safe resources.
Still: Efficiency problem when using resource to synchronize:
E.g. a thread t waits for a data structure to be filled:

» ¢ will call pop() and obtain -1
» t then has to call again, until an element is available
~ tis busy waiting and produces contention on the lock

Idea: create a condition variable on which to block while waiting:
struct monitor { int tid; int count; int cond; int cond2;... };

Define these two functions:
@ wait for the condition to become true
» called while being inside the monitor
» temporarily releases the monitor and blocks
» when signalled, re-acquires the monitor and returns

@ signal waiting threads that they may be able to proceed
» one/all waiting threads that called wait will be woken up, two possibilities:
signal-and-urgent-wait : the signalling thread suspends and continues once the signalled
thread has released the monitor
signal-and-continue the signalling thread continues, any signalled thread enters when the
monitor becomes available



Signal-And-Urgent-Wait Semantics

Requires one queue for each condition ¢ and a suspended queue s:

@ a thread who tries to enter a
monitor is added to queue e if
the monitor is occupied

\ O @ a call to wait on condition a
O O adds thread to the queue a.q

e s @ acall to signal for a adds

thread to queue s (suspended)

signal @ one thread from the a queue is
woken up

@ signal on ais a no-op if a.q is
empty

o if a thread leaves, it wakes up
one thread waiting on s

@ if s is empty, it wakes up one
thread from e

J9)u8

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)
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Signal-And-Urgent-Wait Semantics

Requires one queue for each condition ¢ and a suspended queue s:

@ a thread who tries to enter a
monitor is added to queue e if
the monitor is occupied

\/ O @ a call to wait on condition a

O O adds thread to the queue a.q

s @ acall to signal for a adds
ﬂ thread to queue s (suspended)

J9)u8

signal @ one thread from the a queue is
woken up
@ signal on ais a no-op if a.q is
empty

o if a thread leaves, it wakes up
one thread waiting on s

@ if s is empty, it wakes up one
thread from e

~~ queue s has priority over e

source: http://en.wikipedia.org/wiki/Monitor_(synchronization)
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Signal-And-Continue Semantics

Here, the signal function is usually called notify.

(0]
>
@ "
‘ o @ a call to wait on condition a adds
OO \ notified \ / thread to the queue a.q
O iq O @ a call to notify for ¢ adds one
o)
\ _notified O thread from a.q to e (unless a.q is
ba| ) .,e empty)
aq \\/ @ if a thread leaves, it wakes up one
-~ thread waiting on e
< waita —
notif
< waitb [/ﬂ}:
)
Q
<
@
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Signal-And-Continue Semantics

Here, the signal function is usually called notify.

O
N
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b.q
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=

—~ e/

O \ notified \ /

—i .. O
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N\ \\\\ W
O e

OL (

) \

a.q NV/
- O
< waita ~
N T
| . notif
< waitb N
\ [\ //‘

o}
oY)
<
vy @

@ a call to wait on condition a adds
thread to the queue a.q

@ a call to notify for ¢ adds one
thread from a.q to e (unless a.q is
empty)

@ if a thread leaves, it wakes up one
thread waiting on e

~~ signalled threads compete for the
monitor

@ assuming FIFO ordering on e,
threads who tried to enter between
wait and notify will run first

@ need additional queue s if waiting
threads should have priority
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Implementing Condition Variables [

We implement the simpler signal-and-continue semantics for a single condition variable:
~~ a notified thread is simply woken up and competes for the monitor
void cond_wait(mon_t *m) {

assert (m—->tid==thread_id());

int old_count = m->count;

m->tid = 0;

wait (&m->cond) ;

bool next_to_enter;

do { void cond_notify(mon_t *m) {
atomic { // wake up other threads
next_to_enter = m->tid==0; signal (&m->cond) ;
if (next_to_enter) { }

m->tid = thread_id();
m->count = old_count;
}
}
if (!'next_to_enter) de_schedule(&m->tid);
} while ('next_to_enter);}



A Note on Notify

With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
© notifyAll: wakes up all threads waiting on a condition variable



A Note on Notify

With signal-and-continue semantics, two notify functions exist:

@ notify: wakes up exactly one thread waiting on condition variable
© notifyAll: wakes up all threads waiting on a condition variable

/N an implementation often becomes easier if notify means notify some

~= programmer should assume that thread is not the only one woken up



Monitors with a Single Condition Variable

Monitors with a single condition variable are built into Java and C#
class C {
public synchronized void f£() {
// body of £
}r
is equivalent to
class C {
public void £() {
monitor_enter(this);
<§7¢W§E, // body of f
Ch monitor_leave(this);
© ¥
with Object containing:
private int mon_var;
private int mon_count;
private int cond_var;
source: http://en.wikipedia.org/wiki/Monitor_(synchronization) prOteCted void monitor_enter() ;
protected void monitor_leave();

oAB|

N
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Deadlocks
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Deadlocks with Monitors

Definition (Deadlock)
A deadlock is a situation in which two processes are waiting for the respective other to
finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)
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Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective other to
finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)

Consider this Java class: Sequence leading to a deadlock:

class Foo { @ threads A and B execute a.bar() and

public Foo other = null;

public synchronized void bar() { b.bar ) . .
. if (%) other.bar(); ... @ a.bar () acquires the monitor of a
¥ @ b.bar () acquires the monitor of b
} @ A happens to execute other.bar ()
and two instances: @ A blocks on the monitor of b
Foo a = new Foo(), b = new Foo(Q); @ B happens to execute other . bar ()

a.other = b; b.other
// in parallel:
a.bar() || b.bar(Q);

a;

@ ~ both block indefinitely



Deadlocks with Monitors U

Definition (Deadlock)

A deadlock is a situation in which two processes are waiting for the respective other to
finish, and thus neither ever does.

(The definition generalizes to a set of actions with a cyclic dependency.)

Consider this Java class: Sequence leading to a deadlock:

class Foo { @ threads A and B execute a.bar() and

public Foo other = null;

public synchronized void bar() { b.bar ) . .
. if (%) other.bar(); ... @ a.bar () acquires the monitor of a
¥ @ b.bar () acquires the monitor of b
} @ A happens to execute other.bar ()
and two instances: @ A blocks on the monitor of b
Foo a = new Foo(), b = new Foo(Q); @ B happens to execute other . bar ()

a.other = b; b.other @ ~ both block indefinitely
// in parallel:

a.barO) || b.bar(); How can this situation be avoided?

a;



Treatment of Deadlocks

Observation: Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:

@ mutual exclusion: processes require exclusive access

@ wait for: a process holds resources while waiting for more

© no preemption: resources cannot be taken away form processes
Q circular wait: waiting processes form a cycle
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© no preemption: resources cannot be taken away form processes

Q circular wait: waiting processes form a cycle

The occurrence of deadlocks can be:
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Treatment of Deadlocks

Observation: Deadlocks occur if the following four conditions hold
[Coffman et al.(1971)Coffman, Elphick, and Shoshani]:

@ mutual exclusion: processes require exclusive access

@ wait for: a process holds resources while waiting for more

@ no preemption: resources cannot be taken away form processes

Q circular wait: waiting processes form a cycle

The occurrence of deadlocks can be:

@ ignored: for the lack of better approaches, can be reasonable if deadlocks are rare
@ detection: check within OS for a cycle, requires ability to preempt

© prevention: design programs to be deadlock-free

@ avoidance: use additional information about a program that allows the OS to schedule
threads so that they do not deadlock

~~ prevention is the only safe approach on standard operating systems
@ can be achieved using lock-free algorithms
@ but what about algorithms that require locking?
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Observation: A cycle cannot occur if locks are partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call A(p) C L the lock set at p, i.e. the set of locks that
may be in the “acquired” state at program point p.
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Deadlock Prevention through Partial Order [

Observation: A cycle cannot occur if locks are partially ordered.

Definition (lock sets)

Let L denote the set of locks. We call \(p) C L the lock set at p, i.e. the set of locks that
may be in the “acquired” state at program point p.

We require the transitive closure o™ of a relation o

Definition (transitive closure)

Let o C X x X be a relation. Its transitive closure is o = |, o’ where

0
() = O

Ui+1 = {<$1,$3> | dzo € X . <.%'1,CL'2> c O’i AN <$2,$3> € O'i} UO’i

Each time a lock is acquired, we track the lock set at p:

Definition (lock order)

Define <« C L x L suchthatl <!’ iff I € A(p) and the statement at p is of the form
wait(1’) or monitor_enter(1’). Define the lock order < = <.
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The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)

If there exists no a € L with a < a then the program is free of deadlocks.
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Freedom of Deadlock U

The following holds for a program with mutexes and monitors:

Theorem (freedom of deadlock)
If there exists no a € L with a < a then the program is free of deadlocks.

Suppose a program blocks on semaphores (mutexes) Ls and on monitors L, such that
L=LgULyy.

Theorem (freedom of deadlock for monitors)

IfVa € Ls.a 4 aandVa € Ly,b€ L.a<bAb=< a=a=bthen the program is free of
deadlocks.

Note: the set L contains instances of a lock.

@ the set of lock instances can vary at runtime

@ if we statically want to ensure that deadlocks cannot occur:
» summarize every lock/monitor that may have several instances into one
» a summary lock/monitor @ € L represents several concrete ones
» thus, if @ < a then this might not be a self-cycle

~+ require that a £ a for all summarized monitors a € L,



Inferring locksets and lockset order in practice

/N fix a representation for locksets
~~ in our case: L comprises all lines, where any object is created.

0: Foo a = new Foo(); 8: void bar(this) {

1: Foo b = new Foo(); 9: monitor_enter (this);

2: a.other = b; 10: if (%) {

3: b.other = a; 11:

4: 12: bar (&other) ;

5: 13:

6: bar(&a); || bar(&b); 14 }

7 15: monitor_leave(this);
16: }

[ Lockorder ‘ < ‘ ]




Inferring locksets and lockset order in practice

MNfix a representation for locksets

~~ in our case: L comprises all lines, where any object is created.

0: Foo a = new Foo(Q);
1: Foo b = new Foo();
2: a.other = b;
3: b.other a;
4:
5:
6: bar(&a); || bar(&b);
7:

[ Lockorder ‘ <

8: void bar(this) {

= monitor_enter (this);
10 if (%) {
11:

12: bar (&other) ;

13:

14: }

15: monitor_leave(this);
16: }



Inferring locksets and lockset order in practice [

/N fix a representation for locksets
~~ in our case: L comprises all lines, where any object is created:

this = {&a, &b}

0: Foo a = new Foo(); 8: void bar(this) {

1: Foo b = new Foo(); 9: monitor_enter (this);

2: a.other = b; if () {

3: b.other = a; 11:

4: 12: bar (&other) ;

5: 13:

6: bar(&a); || bar(&b); 14 }

7 15: monitor_leave(this);
16: }

[ Lockorder ‘ < ‘ j
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MNfix a representation for locksets

~~ in our case: L comprises all lines, where any object is created:

this = {&a, &b}

void bar(tHis) {
: monitor_enter (this);

bar (&other) ;

}

monitor_leave(this);

0: Foo a = new Foo(); 8:
1: Foo b = new Foo(); 9:
3: b.other = a; : i
4: 12:
5: 13:
6: bar(&a); || bar(&b); 14:
7 15:
16:
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/N fix a representation for locksets
~~ in our case: L comprises all lines, where any object is created:

this = {&a, &b}
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/N fix a representation for locksets
~~ in our case: L comprises all lines, where any object is created:

this = {&a, &b}

0: Foo a = new Foo(); 8: void bar(this) {

1: Foo b = new Foo(); g monitor_enter (this);
2: a.other = b; A(8) = {1o0,11} 0: if () {

3: b.other = a; 11:

4: 12: bar (&other) ;

5: 13:

6: bar(&a); || bar(&b); 14 } ol = (8w, ]
7 15: mo.

16: }

[ Lockorder ‘ < ‘ j




Inferring locksets and lockset order in practice [

/N fix a representation for locksets
~~ in our case: L comprises all lines, where any object is created:

this = {&a, &b}

0: Foo a = new Foo(); 8: void bar(this) {

1: Foo b = new Foo(); 9: monitor_enter (this);
2: a.other = b; if () {

3: b.other = a; 11:

4: 12: bar (&other) ;

5: 13:

6: bar(&a); || bar(&b); 14 } ol = (8w, ]
7 15: mo.

16: }

[ Lockorder ‘ < ‘ (lo; 11), (I1, lo) J




Avoiding Deadlocks in Practice

/\ What to do when the lock order contains a cycle?

@ determining which locks may be acquired at each program point is undecidable
~~ lock sets are an approximation

@ an array of locks in Lg: lock in increasing array index sequence

e if [ € A\(P) exists I’ < [ is to be acquired
~ change program: release I, acquire I’, then acquire [ again

/N inefficient
@ if a lock set contains a summarized lock a and a is to be acquired, we're stuck



Locks Roundup



Atomic Execution and Locks T

Consider replacing the specific locks with atomic annotations:

stack: removal

void pop() {
Walt (&q—>t);
if.(*) { signal(&q->t); return; }
1f (c) wait(&q->s);

if (c) signal(&q->s);
signal (&g->t);



Atomic Execution and Locks T

Consider replacing the specific locks with atomic annotations:

stack: removal

void pop() {
Walt (&q—>t);
if.(*) { signal(&q->t); return; }
1f (c) wait(&q->s);
1f . (c) signal(&q->s);
signal (&g9->t);

}

@ nested atomic blocks still describe one atomic execution
~~ locks convey additional information over atomic
@ locks cannot easily be recovered from atomic declarations
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@ a single lock could be used to protect all atomic blocks

@ more concurrency is possible by using several locks

@ some statements might modify variables that are never read by other threads ~~ no
lock required

@ statements in one atomic block might access variables in a different order to another
atomic block ~~ deadlock possible with locks implementation

@ creating too many locks can decrease the performance, especially when required to
release locks in \(1) when acquiring !



Outlook

Writing atomic annotations around sequences of statements is a convenient way of
programming.

Idea of mutexes: Implement atomic sections with locks:

@ a single lock could be used to protect all atomic blocks

@ more concurrency is possible by using several locks

@ some statements might modify variables that are never read by other threads ~~ no
lock required

@ statements in one atomic block might access variables in a different order to another
atomic block ~~ deadlock possible with locks implementation

@ creating too many locks can decrease the performance, especially when required to
release locks in \(1) when acquiring !

~> creating locks automatically is non-trivial and, thus, not standard in programming
languages
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@ the ability to use atomic operations
~ Wwe can implement wait-free algorithms
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Concurrency across Languages

In most systems programming languages (C,C++) we have
@ the ability to use atomic operations
~ Wwe can implement wait-free algorithms
In Java, C# and other higher-level languages
@ provide monitors and possibly other concepts
@ often simplify the programming but incur the same problems

| language || barriers | wait-/lock-free | semaphore | mutex | monitor |
C,C++ v v v v (a)
Java,C# - (b) () v v

(a) some pthread implementations allow a reentrant attribute

(b) newer API extensions ( java.util.concurrent.atomic.* and
System.Threading.Interlocked resp.)

(c) simulate semaphores using an object with two synchronized methods




Summary

Classification of concurrency algorithms:
@ wait-free, lock-free, locked
@ next on the agenda: transactional
Wait-free algorithms:
@ never block, always succeed, never deadlock, no starvation
@ very limited in expressivity
Lock-free algorithms:
@ never block, may fail, never deadlock, may starve
@ invariant may only span a few bytes (8 on Intel)
Locking algorithms:
@ can guard arbitrary code
@ can use several locks to enable more fine grained concurrency
@ may deadlock
@ semaphores are not re-entrant, monitors are
~~ use algorithm that is best fit
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