TECHNISCHE UNIVERSITAT MUNCHEN
FAKULTAT FUR INFORMATIK

Programming Languages

Concurrency: Memory Consistency

Dr. Michael Petter
Winter term 2019

i

Thread A

void foo (void) {
a=1;
b =1;

Intuition: the assertion will never fail

Thread B

void bar (void)

while
assert

(b ==
(a==1)

{
) {};

4

Thread A Thread B
void foo (void) { void bar (void) {
a = 1; while (b == 0){};
b =1; assert (a==1);

: the assertion will never fail
/\ Real execution: given enough tries, the assertion may eventually fail

~= in need of defining a Memory Model

Memory Models !

Memory interactions behave differently in presence of
@ multiple concurrent threads
@ data replication in hierarchical and/or distributed memory systems
@ deferred communication of updates

Memory Models are a product of negotiating
@ restrictions of freedom of implementation to guarantee race related properties

@ establishment of freedom of implementation to enable program and machine model
optimizations

~+ Modern Languages include the memory model in their language definition

Strict Consistency)

Motivated by sequential computing, we intuitively implicitely transfer our idea of semantics
of memory accesses to concurrent computation. This leads to our idealistic model Strict
Consistency:

Definition (Strict consistency)

Independently of which process reads or writes, the value from the most recent write to a
location is observable by reads from the respective location immediately after the write
occurs.

Although idealistically desired, practically not existing
/N absolute global time problematic
VAN physically not possible

~~ strict consistency is too strong to be realistic

Abandoning absolute time

Thread A Thread B
void foo (void) { void bar (void) ({
a = 1; while (b == 0) {};
b =1; assert(a == 1);

@ initial state of a and b is 0

@ A writes a before it writes b

@ B should see b go to 1 before executing the assert statement

@ the assert statement should always hold
~~ here correctness means: writinga 1 to a happens beforereadinga1inb
Still, &NY of the following may happen:

foo foo foo

a=1/ b=1/ a=1/ b=1/ a=1/ b=1

mem ! ! mem ! ! mem 4 4

b? b? b? b? b? a? b? b?
bar ,_ . v bar \ \ \ bar N N

~~ ldea: state correctness in terms of what event /718)/ happen before another one

Happend-Before Relation and Diagram

Events in a Distributed System [

A process as a series of events [Lam78]: Given a distributed system of processes
P,Q,R, ..., each process P consists of events ep;, eps,

Events in a Distributed System

A process as a series of events [Lam78]: Given a distributed system of processes
P,Q,R, ..., each process P consists of events ep;, eps,
Example:

P 4471 1__}72 L3 L4

0 91392 g3 g4 .615 16 o7

@ event ep; in process P happened before ep; |

@ if ep; is an event that sends a message to Q then there is some event eg; in Q that
receives this message and ep; happened before eg;

The Happened-Before Relation [

If an event p happened before an event g then p — q.

The Happened-Before Relation [

Definition
If an event p happened before an event g then p — q.

Observe:
@ — is partial (neither p — g or ¢ — p may hold)
@ — isirreflexive (p — p never holds)
@ — istransitive (p —>qgAg—rthenp—r)
@ — is asymmetric (if p — g then =(¢ — p))
~+ the — relation is a strict partial order

Concurrency in Happened-Before Diagrams [
Let a / b abbreviate —(a — b).

Definition
Two distinct events p and g are said to be concurrent if p /4 g and g/ p.

P _ Q! P2 p3 P4

@ p; — 14 in the example
@ p; and g3 are, in fact, concurrent since p; 4 g3 and g3 /4 ps3

Ordering i

Let C be a logical clock i.e.C assigns a globally unique time-stamp C(p) to each event p.

Definition (Clock Condition) v
Function C satisfies the clock condition if for any events p, g “

p—q = C(p)<C(qg)

Ordering i

Let C be a logical clock i.e.C assigns a globally unique time-stamp C(p) to each event p.

Definition (Clock Condition)

Function C satisfies the clock condition if for any events p, g “

p—q = C(p)<C(qg)

For a distributed system the clock condition holds iff:
@ p: and p; are events of P and p; — p; then C(p;) < C(p))

@ p is the sending of a message by process P and g is the reception of this message by
process Q then C(p) < C(q)

Ordering

Let C be a logical clock i.e.C assigns a globally unique time-stamp C(p) to each event p.

Definition (Clock Condition) e
Function C satisfies the clock condition if for any events p, g “

p—q = C(p)<C(qg)

For a distributed system the clock condition holds iff:

@ p: and p; are events of P and p; — p; then C(p;) < C(p))

@ p is the sending of a message by process P and g is the reception of this message by
process Q then C(p) < C(q)

~- a logical clock C that satisfies the clock condition describes a fotal order a < b (with
C(a) < C(b)) that embeds the strict partial order —

Ordering

Let C be a logical clock i.e.C assigns a globally unique time-stamp C(p) to each event p.

Definition (Clock Condition) e
Function C satisfies the clock condition if for any events p, g “

p—q = C(p)<C(qg)

For a distributed system the clock condition holds iff:

@ p: and p; are events of P and p; — p; then C(p;) < C(p))

@ p is the sending of a message by process P and g is the reception of this message by
process Q then C(p) < C(q)

~- a logical clock C that satisfies the clock condition describes a fotal order a < b (with

C(a) < C(b)) that embeds the strict partial order —

The set defined by all C that satisfy the clock condition is exactly the set of executions
possible in the system.
~= use the process model and — to define better consistency model

Defining C Satisfying the Clock Condition

Given:

0 __JaNg 4 ga Jas 46 a1

R Jl =I‘2 "1:1’3 5_-r4

€ P1 | P2 | P3| P4

Cle)
e q1 | 92 | 93 | 94 | 45 | 96 | 47
C(e)

e ri r r3 raq

Cle)

Defining C Satisfying the Clock Condition

Given:

0 __ Jange 43 g4 Ié]s g6 497

: P p2 I p3 | ps
- 1 2 77 12
e q1 | 92 | 93 | 94 | 45 | 96 | 47
C(e) 2 : z 6 |11 |13 | 14
e S0 74
@8 To THo 15

Summing up Happened-Before Relations

We can model concurrency using processes and events:
@ there is a happened-before relation between the events of each process
@ there is a happened-before relation between communicating events
@ happened-before is a strict partial order
@ aclock is a total strict order that embeds the happened-before partial order

Memory Consistency Models based on the Happened-Before
Relation

Happened-Before Based Memory Models

Idea: use happened-before diagrams to model more relaxed memory models.

Given a path through each of the threads of a program:

@ consider the actions of each thread as events of a process
@ use more processes to model memory
> here: one process per variable in memory

@ ~ concisely represent some interleavings

Happened-Before Based Memory Models

Idea: use happened-before diagrams to model more relaxed memory models.

Given a path through each of the threads of a program:

@ consider the actions of each thread as events of a process
@ use more processes to model memory
> here: one process per variable in memory

@ ~ concisely represent some interleavings

~~» We establish a model for Sequential Consistency.

Sequential Consistency

Definition (Sequential Consistency Condition [Lam78 i
The result of any execution is the same as if the memory operations ™)

@ of each individual processor appear in the order specified by its program
@ of all processors joined were executed in some sequential order

Sequential Consistency applied to Multiprocessor Programs:
Given a program with n threads,

@ for fixed event sequences p, pi, ... and p3,p?, ... and pp, pt,
order,
© executions obeying the clock condition on the pj,
@ all executions have the same result
Yet, in other words:
o @ defines the execution path of each thread
@ each execution mentioned in @ is one interleaving of processes

@ @ declares that the result of running the threads with these interleavings is always the
same.

... keeping the program

Working with Sequential Consistency

Sequential Consistency in Multiprocessor Programs:
Given a program with » threads,

@ for fixed event sequences py, p1, ... and p3,p3, ... and pi, pl, . . . keeping the program
order,

@ executions obeying the clock condition on the p},
@ all executions have the same result

Idea for showing that a system is not sequentially consistent:
@ pick a result obtained from a program run on a SC system
@ pick an execution @ and a total ordering of all operations @
@ add extra processes to model other system components
@ the original order @ becomes a partial order —
@ show that total orderings C’ exist for — for which the result differs

Sequential Consistency: Formal Spec [SHW11, p. 25] [

Definition (Sequential Consistency)

@ Memory operations in program order (<) are embedded into the memory order (C)

Op;la] < Op;[b])’ = Op;la] C Op;[b]
© A load’s value is determined by the latest write wrt. memory order

val(Ld;[a]) = val(St;[a] | St;la] :mgx ({stkld] | st[da] C Ldi[a]})

with
@ Op;[a] any memory access to address a by CPU i
@ Ld;[a] aload from address a by CPU i
@ St;[a] a store to address a by CPU i

@ Program order < being specified by the control flow of the programs executed by their associated
CPUs; only orders operations on the same CPU

Weakening the Model)

more concurrency possible, if we model each memory location separately,
i.e. as a different process

foo _ _ foo, . ,
| o | o /
@=1/ b=1/ \a=1 \ b=1/

mem \/

b2 b? b2
bar [[[

Sequential consistency still obeyed:
@ the accesses of foo to a occurs before b
@ the first two read accesses to b are in parallel to a=1

Conclusion: There is no observable change if accesses to different memory locations can
happen in parallel.

Benefits of Sequential Consistency

@ concisely represent all interleavings that are due to variations in timing
@ synchronization using time is uncommon for software

~+ a good model for correct behaviors of concurrent programs

~~ program results besides SC results are undesirable (they contain races)

Benefits of Sequential Consistency [

@ concisely represent all interleavings that are due to variations in timing
@ synchronization using time is uncommon for software

~+ a good model for correct behaviors of concurrent programs

~~ program results besides SC results are undesirable (they contain races)

Realistic model for simple hardware architectures:

@ sequential consistency model suitable for concurrent processors that acquire exclusive
access to memory

@ processors can speed up computation by using caches and still made to maintain
sequential consistency

Benefits of Sequential Consistency [

@ concisely represent all interleavings that are due to variations in timing
@ synchronization using time is uncommon for software

~+ a good model for correct behaviors of concurrent programs

~~ program results besides SC results are undesirable (they contain races)

Realistic model for simple hardware architectures:

@ sequential consistency model suitable for concurrent processors that acquire exclusive
access to memory

@ processors can speed up computation by using caches and still made to maintain
sequential consistency

Not realistic for elaborate hardware with out-of-order stores:

@ what other processors see is determined by complex optimizations to cacheline
management

~~ internal workings of caches

Introducing Caches: The MESI Protocol

Introducing Caches

Idea: each cache line one process

a++
~Ld[a] _ St [a]
A o o P . 7
mem

§ D .

. % S

B Tdral Stial

at+
Observations:

/N naive replication of memory in cache lines creates incoherency

Cache Coherency: Formal Spec [SHW11, p. 14] [

Definition (Cache Coherency)

@ Memory operations in program order (<) are embedded into the memory order (C)
op;[a] < op;[a]” = Op,[d] C op;[a]’
© A load’s value is determined by the latest write wrt. memory order

val(Ld;[a]) = val(Stj[a] | Stj[a] :mgx ({stkld] | st[a] C Ldi[a]})

@ This definition superficially looks close to the definition of SC — except that it covers
only singular memory locations instead of all memory locations accessed in a program

@ Caches and memory can communicate using messaging, following some particular
protocol to establish cache coherency
(~» Cache Coherence Protocol)

The MESI Cache Coherence Protocol: States [PP84] i

Processors use caches to avoid a costly round-trip to RAM for every memory access.
@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memory regions requires bookkeeping about
who has the latest copy

M - E Each cache line is in one of the states M, E, S, I:

1]

The MESI Cache Coherence Protocol: States [PP84] i

Processors use caches to avoid a costly round-trip to RAM for every memory access.
@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memory regions requires bookkeeping about
who has the latest copy

M - E Each cache line is in one of the states M, E, S, I:
[: itis invalid and is ready for re-use

S — I

The MESI Cache Coherence Protocol: States [PP84] i

Processors use caches to avoid a costly round-trip to RAM for every memory access.
@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memory regions requires bookkeeping about
who has the latest copy

M - E Each cache line is in one of the states M, E, S, I:
[: itis invalid and is ready for re-use
: other caches have an identical copy of this cache line, it is
shared

S — I

The MESI Cache Coherence Protocol: States [PP84] i

Processors use caches to avoid a costly round-trip to RAM for every memory access.
@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memory regions requires bookkeeping about
who has the latest copy

M - E Each cache line is in one of the states M, E, S, I:
[: itis invalid and is ready for re-use
: other caches have an identical copy of this cache line, it is
shared

E: the content is in no other cache; it is exclusive to this cache
S - I and can be overwritten without consulting other caches

The MESI Cache Coherence Protocol: States [PP84] i

Processors use caches to avoid a costly round-trip to RAM for every memory access.
@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memory regions requires bookkeeping about
who has the latest copy

M - E Each cache line is in one of the states M, E, S, I:
[: itis invalid and is ready for re-use
: other caches have an identical copy of this cache line, it is
shared
E: the content is in no other cache; it is exclusive to this cache
S - I and can be overwritten without consulting other caches

M : the content is exclusive to this cache and has furthermore
been modified

The MESI Cache Coherence Protocol: States [PP84] i

Processors use caches to avoid a costly round-trip to RAM for every memory access.
@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memory regions requires bookkeeping about
who has the latest copy

M - E Each cache line is in one of the states M, E, S, I:
[: itis invalid and is ready for re-use
: other caches have an identical copy of this cache line, it is
shared
E: the content is in no other cache; it is exclusive to this cache
S - I and can be overwritten without consulting other caches

M : the content is exclusive to this cache and has furthermore
been modified

~~ the global state of cache lines is kept consistent by sending messages

The MESI Cache Coherence Protocol: Messages

Moving data between caches is coordinated by sending messages [McK10]:

@ Read: sent if CPU needs to read from an address

@ Read Response: when in state E or S, response to a Read
message, carries the data for the requested address

@ Invalidate: asks others to evict a cache line M — E
@ Invalidate Acknowledge: reply indicating that a cache line has

been evicted I l x l
@ Read Invalidate: like Read + Invalidate (also called “read with

intend to modify”) . I

@ Writeback: Read Response when in state M, as a side effect
noticing main memory about modifications to the cacheline,
changing sender’s state to S

We mostly consider messages between processors. Upon Read Invalidate, a processor
replies with Read Response/ Writeback before the Invalidate Acknowledge is sent.

i

MESI Example

Consider how the following code might execute:

Thread A Thread B

a =1; // A.1l while (b == 0) {}; // B.1l
b =1; // A.2 assert (a == 1); // B.2

@ in all examples, the initial values of variables are assumed to be 0
@ suppose that a and b reside in different cache lines

@ assume that a cache line is larger than the variable itself
@ we write the content of a cache line as

» Mx: modified, with value x

» Ex: exclusive, with value x

» Sx: shared, with value x

» |:invalid

MESI Example (I)

Thread A

Thread B

a=1; // A.1 while (b == 0) (}; // B.1
b =1; // A.2 assert (a == 1); // B.2
statement CPUA CPUB RAM message
a b a b al|b
A l ! ! ! 010) read invalidate of a from CPU A
! ! ! I 0 0) invalidate ack. of a from CPU B
l ! ! ! o]0) read response of a=0 from RAM
B.1 M1 l ! I 010) read of b from CPU B
M1 ! ! ! 010) read response with b=0 from RAM
B.1 M1 | | EO 0] O
A2 | M1 ! I EO 010 Q read invalidate of b from CPU A
M1 ! ! EO 010) read response of b=0 from CPU B
M1 S0 ! S0 0 0) invalidate ack. of b from CPU B
M1 M1 | | 0] O

i

MESI Example (Il)

Thread B

18
18

a =1; // A.1 while (b == 0) {}; //
b =1; // A.2 assert (a == 1); //
statement CPUA CPUB RAM message
a b a b a b
B.1 M1 M1 l I 0 0 \) read of b from CPU B
M1 M1 ! O 1 O | write back of b=1 from CPU A
B.2 M1 S1 ! St 0 1 \) read of a from CPU B
ML ST | STHEO T) wite back of a=1 from CPU A
S1 S1 S1 S1 1 1
AT STESTHSTEST T 1) invalidate of a from CPU A
St S1 ! S1 1 1) invalidate ack. of a from CPU B
M1 S1 | S1 1 1

1
2

i

MESI Example: Happened Before Model

Idea: each cache line one process, A caches b=0 as E, B caches a=0 as E
a=1 b=1
St[a] St [b]

-

b

0/7@

Ca,
SQ

s

ol

read invalidale ¢~
wrlteback

...-ead

Q

eaq
_read.respo

b

<
O a
N
B

Observations:

@ each memory access must complete before executing next instruction ~~ add edge

MESI Example: Happened Before Model

Idea: each cache line one process, A caches b=0 as E, B caches a=0 as E

Sat: ! Sb t: lb
A o = [a] pd o [b] pd
&b >

i)
ol
®

wrlteback

read invalidale ¢~

...-ead

Observations:

@ each memory access must complete before executing next instruction ~~ add edge

@ second execution of test b==0 stays within cache ~~ no traffic

Summary: MESI Cache Coherence Protocol [

Sequential Consistency:

@ specifies that the system must appear to execute all threads’ loads and stores to all
memory locations in a total order that respects the program order of each thread

@ a characterization of well-behaved programs
@ a model for differing speed of execution

@ for fixed paths through the threads and a total order between accesses to the same
variables: executions can be illustrated by a happened-before diagram with one
process per variable

Cache Coherency:

@ A cache coherent system must appear to execute all threads’ loads and stores to a
single memory location in a total order that respects the program order of each thread

@ MESI cache coherence protocol ensures SC for processors with caches

Introducing Store Buffers: Out-Of-Order Stores

Out-of-Order Execution
VAN performance problem: writes always stall

Thread A Thread B

ilg // A.1 while (b == 0) {}; // B.1
il g // A.2 assert (a == 1); // B.2

a
b

.
®
-]

.Iead

*Tdia
a==

Out-of-Order Execution U

VAN performance problem: writes always stall

Thread A Thread B

a_
b

|
[y
~
~
~
>
=

while (b == 0) {}; // B.1
assert (a == 1); // B.2

Il
-
~
~
~
>
N

~s CPU A should continue ex 1;
T o o =
g = £ 3

Store Buffers

/N Abstract Machine Model: defines semantics of memory accesses

CPUA CPUB))
@ put each store into a store buffer and continue
| 1 execution
store store @ Store buffers apply stores in various orders:
*— *— :
b“ffler buffer > FIFO (Sparc/x86-TSO)
| » unordered (Sparc PSO)
cache cache o /\ program order still needs to be observed locally

I T ' » store buffer snoops read channel and
» on matching address, returns the youngest value in buffer

Memory

TSO Model: Formal Spec [S192] [SHW11, p. 42] [

Definition (Total Store Order)

@ The store order wrt. memory (C) is total

Vab € adir ij ecru (Stila] T st;[b]) v (st;[b] C stifa])
© Stores in program order (<) are embedded into the memory order (C)

Stila] < sti[b] = Sti[a] C St;[b]
© Loads preceding an other operation (wrt. program order <) are embedded into the memory order (C)

Ld;[a] < Op;[b] = Ldi[a] E Op;[b]
@ A load’s value is determined by the latest write as observed by the local CPU

val(Ld;[a]) = val(St;[d] | St;[d] :mélx ({stk[d] | stkla] C Ldi[a]} U {sti[d] | Sti[a] < Ldi[a]}))

Particularly, one ordering property from SC is not guaranteed:
Sti[a] < Ldi[b] # Sti[a] C Ldi[b]

A Local stores may be observed earlier by local loads then from somewhere else!

Happened-Before Model for TSO

Thread A Thread B
a=1; b =1;

printf ("%d",b); printf ("%d",a);

Assume cache A contains: a: SO0, b: S0, cache B contains: a: S0, b: SO

a=1 printf ("%d",Db)
A St la] _Ld[b]
N4 N
storg,; % ;
c‘)b' -

[3

TSO in the Wild: x86 i

The x86 CPU, powering desktops and servers around the world is a common
representative of a TSO Memory Model based CPU.

@ FIFO store buffers keep quite strong consistency properties
@ The major obstacle to Sequential Consistency is

Stila] < Ldi[b] # Sti[a] C Ld;[D]
» modern x86 CPUs provide the mfence instruction
» mfence orders all memory instructions:
op; < mfence() < 0p,/ = Op,; C Op,

@ a fence between write and loads gives sequentially consistent CPU behavior (and is as
slow as a CPU without store buffer)

~= use fences only when necessary

PSO Model: Formal Spec [SI192] [SHW11, p. 58] [

Definition (Partial Store Order)

@ The store order wrt. memory (C) is total

Vab € adar i,j ecru (Stila] T st [b]) V (st;[b] E stifa])
© Fenced stores in program order (<) are embedded into the memory order (C)

Stila] < sfence () < St;[b] = Sti[a] C St;[b]
© Stores to the same address in program order (<) are embedded into the memory order (C)

Stifa] < sti[a]” = sti[a] C sti[a)’
@ Loads preceding another operation (wrt. program order <) are embedded into the memory order (C)

Ldi[a] < op;[b] = Ldi[a] C Op;[b]
© A load’s value is determined by the latest write as observed by the local CPU

val(Ld;[a]) = val(St;[a] | St;[a] =max ({stkla] | stkla] C Ldi[a]} U {stila] | sti[a] < Ld[a]}))
A Now also stores are not guaranteed to be in order any more:

Sti[a] < sti[b] % Stila] C sti[b]

~~ What about sequential consistency for the whole system?

Happened-Before Model for PSO

while (b == 0) {};

a:
assert (a == 1);

1
b =1;

Assume cache A contains: a: S0, b: EO, cache B contains: a: SO0, b: |

a=1
St [a]
o
store % . .
%5 N
a “ K
$h
) 0o O
®
S 2o
S 3
=01
a o >
&b AN
B taral
a==1

Explicit Synchronization: Write Barrier

Overtaking of messages may be desirable and does not need to be prohibited in general.

@ generalized store buffers render programs incorrect that assume sequential
consistency between different CPUs

@ whenever a store in front of another operation in one CPU must be observable in this
order by a different CPU, an explicit write barrier has to be inserted
» a write barrier marks all current store operations in the store buffer
» the next store operation is only executed when all marked stores in the buffer have completed

Happened-Before Model for Write Barriers

Thread A Thread B

a=1;
sfence () ;
b =1;

while (b == 0) {};
assert (a == 1);

Assume cache A contains: a: SO, b: EO, cache B contains: a: SO0, b: |

a=1 mfence () b=1
St [] S_fepce St [b.J
s'tAore «." N ——
Q
Sh
O
N
b 37
B 7 N
d[%] Ldla]

Further weakening the model: O-0-O Reads

Relaxed Memory Order

Communication of cache updates is still costly:

@ a cache-intense computation can fill up store buffers in CPUs
~~ waiting for invalidation acknoledgements may still happen

@ invalidation acknoledgements are delayed on busy caches

CPUA CPUB ~~ immediately acknowledge an invalidation and
I I apply it later
store store @ put each invalidate message into an invalidate
®—buffer ®—buffer Zueue g
! ! @ if a MESI message needs to be sent regarding
cache cache a cache line in the invalidate queue then wait
. Il' _ I_I until the line is invalidated
ma/l?eﬁgte malgelggte /N local loads and stores do not consult the

| | | invalidate queue
~+ What about sequential consistency?

Memory

RMO Model: Formal Spec [S194, p. 290]

i

Definition (Relaxed Memory Order)

@ Fenced memory accesses in program order (<) are embedded into the memory order (C)

Op;[a] < mfence () < Op;[b] = Op;[a] C Op;[b]
© Stores to the same address in program order (<) are embedded into the memory order (C)

op;[a] < st;la]’ = Op;[a] C sti[a)’
@ Operations dependent on a load (wrt. dependence —) are embedded in the memory order (C)
Ld;[a] — Op;[b] = Ldi[a] C Op;[D]

@ A load’s value is determined by the latest write as observed by the local CPU
val(Ld;[a]) = val(St;[a] | Stja] =max ({Sti[a] | Sti[a] C Ldila]} U {Sti[d] | Sti[d] < Ldila]}))

™\ Now we need the notion of dependence

@ Memory access to the same address: Stila] < Ldila] = Sti[d] — Ldi[q]
@ Register reads are dependent on latest register writes:

Ld;[a]”’ =max (Ldi[a)’ | targetreg(1.d;[a)’) = srcreg(Sti[b]) A Ldi[a])” < sti[b]) = Ldifa]” — Sti[b]
@ Stores within branched blocks are dependent on branch conditionals:

(Op;lal < sti[b]) A Op;[a] — condbranch < st;[b] = Op;la] — St;[b]

Happened-Before Model for Invalidate Queues

Thread A Thread B

a=1; .
while (b == 0) {};

sfence () ; rt(a == 1);

b= 1; asse a == g

Assume cache A contains: a: S0, b: EO, cache B contains: a: SO, b: |
1 sfence () kS)El

a =
A St [a] sfence [b]
S Y - A - L
Q2 - 9 2 L L
& b ol b
Ol
= O
©: o
=] e
©! =
Q o
&
Lo b - H : Py °
& FE AN
B ¢ RN . hY
Ld[b] Ldfla]

Explicit Synchronization: Read Barriers [

Read accesses do not consult the invalidate queue.
@ might read an out-of-date value
@ need a way to establish sequential consistency between writes of other processors and
local reads

@ insert an explicit read barrier before the read access

» aread barrier marks all entries in the invalidate queue
» the next read operation is only executed once all marked invalidations have completed

@ aread barrier before each read gives sequentially consistent read behavior (and is as
slow as a system without invalidate queue)

~~ match each write barrier in one process with a read barrier in another process

Happened-Before Model for Read Barriers

Thread A Thread B

while (b == 0) {};

a=1;
sfence () ; lfence();
b = 1; assert (a == 1);

i by
lfence " Ld[a] ™

lfence () a==

Example: The Dekker Algorithm on RMO Systems

Using Memory Barriers: the Dekker Algorithm

Mutual exclusion of two processes with busy waiting.

//flag[] is boolean array; and turn is an integer
flag[0] = false;
flag[l] = false;
turn = 0; // or 1
PO:
flag[0] = true;
while (flag[l] == true)
if (turn != 0) {
flag[0] = false;
while (turn != 0) {

// busy wait
}
flag[0] = true;
}
// critical section
turn =1;
flag[0] = false;

Using Memory Barriers: the Dekker Algorithm

Mutual exclusion of two processes with busy waiting.

//flag[] is boolean array; and turn is an integer
flag[0] = false;
flag[l] = false;
turn = 0; // or 1
PO: Pl:
flag[0] = true; flag[l] = true;
while (flag[l] == true) while (flag[0] == true)
if (turn != 0) { if (turn != 1) {
flag[0] = false; flag[l] = false;
while (turn != 0) { while (turn != 1) {
// busy wait // busy wait
} }
flag[0] = true; flag[l] = true;
} }
// critical section // critical section
turn =1; turn = 0;
flag[0] false; flag[l] = false;

The Idea Behind Dekker

Communication via three variables:
@ flag[i]==true process P; wants to enter its critical section
@ turn==i process P; has priority when both want to enter

PO:
flag[0] = true; .
while (flag[l] == true) |n[#OCGSSFL
if (turn !'= 0) { ° !fPl_,- Fjoes not want to enter, proceed
flag[0] = false; immediately to the critical section

while (turn != 0) {
// busy wait
}
flag[0] = true;
}
// critical section
turn =1;
flag[0] = false;

The Idea Behind Dekker U

Communication via three variables:
@ flag[i]==true process P; wants to enter its critical section
@ turn==i process P; has priority when both want to enter

PO:
flag[0] = true; .
while (flag[l] == true) In process Fi:
if (turn !'= 0) { @ if P,_; does not want to enter, proceed
flag[0] = false; immediately to the critical section
while (turn != 0) { ~» flag[i] is a lock and may be implemented as
// busy wait such

}
flag[0] = true;
}
// critical section
turn =1;
flag[0] = false;

The Idea Behind Dekker U

Communication via three variables:
@ flag[i]==true process P; wants to enter its critical section
@ turn==i process P; has priority when both want to enter

PO:

flag[0] = true; .

while (flag[l] == true) In;#ocessih

if (turn !'= 0) { ° !fPl_,- Fjoes not want to enter, proceed
flag[0] = false; immediately to the critical section
while (turn != 0) { ~» flag[i] is a lock and may be implemented as
// busy wait such

} @ if P;_; also wants to enter, wait for turn to be
flag[0] = true; setto i

}
// critical section
turn =1;
flag[0] = false;

The Idea Behind Dekker U

Communication via three variables:
@ flag[i]==true process P; wants to enter its critical section
@ turn==i process P; has priority when both want to enter

PO:

flag[0] = true; .

while (flag[l] == true) In;#ocessih

if (turn !'= 0) { ° !fPl_,- Fjoes not want to enter, proceed
flag[0] = false; immediately to the critical section
while (turn != 0) { ~» flag[i] is a lock and may be implemented as
// busy wait such

} @ if P;_; also wants to enter, wait for turn to be
flag[0] = true; setto i

}
// critical section
turn =1;
flag[0] = false;

@ while waiting for turn, reset flag[i] to
enable P;_; to progress

Dekker’s Algorithm and RMO

Problem: Dekker’s algorithm requires sequential consistency.
Idea: insert memory barriers between all variables common to both threads.

Dekker’s Algorithm and RMO

Problem: Dekker’s algorithm requires sequential consistency.
Idea: insert memory barriers between all variables common to both threads.

PO:
flag[0] = true;
sfence () ;
while (lfence(), flag[l] == true) @ insert a load memory barrier 1fence ()
if (lfence(), turn != 0) { in front of every read from common
flagle] = Ealses variables
sfence () ;
while (lfence(), turn != 0){
// busy wait

}
flag[0] = true;
sfence () ;
}

// critical section

turn =1;

sfence () ;

flag[0] = false; sfence();

Dekker’s Algorithm and RMO

Problem: Dekker’s algorithm requires sequential consistency.
Idea: insert memory barriers between all variables common to both threads.

PO:
flag[0] = true;
sfence () ;
while (lfence(), flag[l] == true) @ insert a load memory barrier 1fence ()
if (lfence(), turn != 0) { in front of every read from common
flagl0] = false; variables
sfence () ;
while (lfence (), turn != 0){ @ insert a write memory barrier sfence ()
// busy wait after writing a variable that is read in the
} other thread
flag[0] = true;
sfence () ;
}
// critical section
turn =1;
sfence () ;
flag[0] = false; sfence();

Dekker’s Algorithm and RMO

Problem: Dekker’s algorithm requires sequential consistency.
Idea: insert memory barriers between all variables common to both threads.

PO:
flag[0] = true;
sfence () ;

while (lfence(), flag[l] == true) @ insert a load memory barrier 1fence ()
if (lfence(), turn != 0) { in front of every read from common
flagle] = Ealses variables
sfence () ; . . .
while (lfence(), turn != 0){ @ insert a write memory barrier sfence ()
// busy wait after writing a variable that is read in the
} o other thread
flag[0] = true; . . .
enee () - @ the 1fence () of the flrgt |terat.|on of
} each loop may be combined with the
// critical section preceding sfence () to anmfence ()
turn =1;
sfence () ;
flag[0] = false; sfence();

Summary: Relaxed Memory Models [

Highly optimized CPUs may use a relaxed memory model:
@ reads and writes are not synchronized unless requested by the user
@ many kinds of memory barriers exist with subtle differences

~+ ARM, PowerPC, Alpha, ia-64, even x86 (~~ SSE Write Combining)

~~ memory barriers are the “lowest-level” of synchronization

Discussion

Memory barriers reside at the lowest level of synchronization primitives.

Discussion
Memory barriers reside at the lowest level of synchronization primitives.

Where are they useful?
@ when blocking should not de-schedule threads
@ when several processes implement automata and coordinate their transitions via
common synchronized variables
~~ protocol implementations
~+ OS provides synchronization facilities based on memory barriers

Why might they not be appropriate?
@ difficult to get right, best suited for specific well-understood algorithms

@ often synchronization with locks is as fast and easier
@ too many fences are costly if store/invalidate buffers are bottleneck

Memory Models and Compilers
Before Optimization

int x = 0;

for (int i=0;i<100;i++) {
X =1;
printf ("&d", x);

Memory Models and Compilers [

Before Optimization After Optimization

int x = 0;

for (int i=0;i<100;i++) {
X =1;
printf ("&d", x);

int x = 1;

for (int i=0;i<100; i++) {
printf ("%d", x) ;

}

Standard Program Optimizations

comprises loop-invariant code motion and dead store elimination, e.g.

Memory Models and Compilers [

Before Optimization After Optimization

int x = 0;

for (int i=0;i<100;i++) {
X =1;
printf ("&d", x);

int x = 1;

for (int i=0;i<100; i++) {
printf ("%d", x);

}

Standard Program Optimizations

comprises loop-invariant code motion and dead store elimination, e.g.

VAN having another thread executing x = 0; changes observable behaviour depending on
optimizing or not

~~ Compiler also depends on consistency guarantees
~~ Demand for Memory Models on language level

Memory Models and C-Compilers

Keeping semantics |

int x = 0;

for (int i=0;i<100; i++) {
sfence () ;
x = 1;
printf ("&%d", x);

Memory Models and C-Compilers

Keeping semantics | Keeping semantics Il

int x = 0;

for (int i=0;i<100; i++) {
sfence () ;
x = 1;
printf ("&%d", x);

volatile int x = 0;

for (int i=0;i1<100;i++) {
x = 1;
printf ("&%d", x);

}

@ Compilers may also reorder store instructions
@ Write barriers keep the compiler from reordering across

@ The specification of volatile keeps the C-Compiler from reordering memory
accesses to this address

Memory Models and C-Compilers

Keeping semantics | Keeping semantics Il

int x = 0;

for (int i=0;i<100; i++) {
sfence () ;
x = 1;
printf ("&%d", x);

volatile int x = 0;

for (int i=0;i1<100;i++) {
x = 1;
printf ("&%d", x);

}

@ Compilers may also reorder store instructions
@ Write barriers keep the compiler from reordering across

@ The specification of volatile keeps the C-Compiler from reordering memory
accesses to this address

@ Java-Compilers even generate barriers around accesses to volatile variables

Summary

Learning Outcomes

@ Strict Consistency

© Happened-before Relation
© Sequential Consistency
© The MESI Cache Model
@ TSO: FIFO store buffers
© PSO: store buffers

@ RMO: invalidate queues

@ Reestablishing Sequential Consistency with
memory barriers

@ Dekker’s Algorithm for Mutual Exclusion

Future Many-Core Systems: NUMA [

Many-Core Machines’ Read Responses congest the bus

In that case: Intel's MESIF (Forward) to reduce communication overhead.

/N Butin general, Symmetric multi-processing (SMP) has its limits:
@ a memory-intensive computation may cause contention on the bus
@ the speed of the bus is limited since the electrical signal has to travel to all participants

@ point-to-point connections are faster than a bus, but do not provide possibility of
forming consensus

Future Many-Core Systems: NUMA [

Many-Core Machines’ Read Responses congest the bus

In that case: Intel's MESIF (Forward) to reduce communication overhead.

/N Butin general, Symmetric multi-processing (SMP) has its limits:
@ a memory-intensive computation may cause contention on the bus
@ the speed of the bus is limited since the electrical signal has to travel to all participants

@ point-to-point connections are faster than a bus, but do not provide possibility of
forming consensus

~> use a bus locally, use point-to-point links globally: NUMA

Future Many-Core Systems: NUMA [

Many-Core Machines’ Read Responses congest the bus

In that case: Intel's MESIF (Forward) to reduce communication overhead.

/N Butin general, Symmetric multi-processing (SMP) has its limits:
@ a memory-intensive computation may cause contention on the bus
@ the speed of the bus is limited since the electrical signal has to travel to all participants

@ point-to-point connections are faster than a bus, but do not provide possibility of
forming consensus

~> use a bus locally, use point-to-point links globally: NUMA
@ non-uniform memory access partitions the memory amongst CPUs
@ a directory states which CPU holds a memory region

@ Interprocess communication between Cache-Controllers (ccNUMA): onchip on
Opteron or in chipset on Itanium

Overhead of NUMA Systems [

Communication overhead in a NUMA system.
- i i @ Processors in a NUMA system may be fully or
partially connected.
@ The directory of who stores an address is
v partitioned amongst processors.

&22322:1: procesor [o ﬁ.mz A cache miss that cannot be satisfied by the local
L y memory at A:
vl 4 ¥ - @ A sends a retrieve request to processor B owning
T | oo [l e [T, %2 the directory
@ B tells the processor C who holds the content

H @ C sends data (or status) to A and sends
Lagend acknowledge to B

~—p Bi-directional bus . .
t ----- i ¢ < Wieman@ B completes transmission by an acknowledge to A
1]

source: [Int09]

References

>
>

L 2B I N

Intel.
An introduction to the intel quickpath interconnect.
Technical Report 320412, 2009.

Leslie Lamport.
Time, Clocks, and the Ordering of Events in a Distributed System.
Commun. ACM, 21(7):558-565, July 1978.

Paul E. McKenny.
Memory Barriers: a Hardware View for Software Hackers.
Technical report, Linux Technology Center, IBM Beaverton, June 2010.

Mark S. Papamarcos and Janak H. Patel.
A low overhead coherence solution for multiprocessors with private cache memories.
In In Proc. 11th ISCA, pages 348-354, 1984.

Daniel J. Sorin, Mark D. Hill, and David A. Wood.
A Primer on Memory Consistency and Cache Coherence.
Morgan & Claypool Publishers, 1st edition, 2011.

CORPORATE SPARC International, Inc.
The SPARC Architecture Manual: Version 8.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1992.

CORPORATE SPARC International, Inc.
The SPARC Architecture Manual (Version 9).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

Cache Coherence vs. Memory Consistency Models [

@ Sequential Consistency specifies that the system must appear to execute all threads’
loads and stores to all memory locations in a total order that respects the program
order of each thread

@ A cache coherent system must appear to execute all threads’ loads and stores to a
single memory location in a total order that respects the program order of each thread

All discussed memory models (SC, TSO, PSO, RMO) provide cache coherence!

	Motivation
	Memory Consistency
	Happened-Before Relation
	Sequential Consistency
	The MESI Protocol
	Out-of-Order Execution Stores
	Out-of-Order Execution of Loads
	The Dekker Algorithm
	Wrapping Up

