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Thread A

void foo (void) {
a=1;
b =1;

Intuition: the assertion will never fail

Thread B

void bar (void)

while
assert

(b ==
(a==1)

{
) {};

4



Thread A Thread B
void foo (void) { void bar (void) {
a = 1; while (b == 0){};
b =1; assert (a==1);

: the assertion will never fail
/\ Real execution: given enough tries, the assertion may eventually fail

~= in need of defining a Memory Model



Memory Models !

Memory interactions behave differently in presence of
@ multiple concurrent threads
@ data replication in hierarchical and/or distributed memory systems
@ deferred communication of updates

Memory Models are a product of negotiating
@ restrictions of freedom of implementation to guarantee race related properties

@ establishment of freedom of implementation to enable program and machine model
optimizations

~+ Modern Languages include the memory model in their language definition



Strict Consistency )

Motivated by sequential computing, we intuitively implicitely transfer our idea of semantics
of memory accesses to concurrent computation. This leads to our idealistic model Strict
Consistency:

Definition (Strict consistency)

Independently of which process reads or writes, the value from the most recent write to a
location is observable by reads from the respective location immediately after the write
occurs.

Although idealistically desired, practically not existing
/N absolute global time problematic
VAN physically not possible

~~ strict consistency is too strong to be realistic



Abandoning absolute time

Thread A Thread B
void foo (void) { void bar (void) ({
a = 1; while (b == 0) {};
b =1; assert(a == 1);

@ initial state of a and b is 0

@ A writes a before it writes b

@ B should see b go to 1 before executing the assert statement

@ the assert statement should always hold
~~ here correctness means: writinga 1 to a happens beforereadinga1inb
Still, &NY of the following may happen:

foo foo foo

a=1/ b=1/ a=1/ b=1/ a=1/ b=1

mem ! ! mem ! ! mem 4 4

b? b? b? b? b? a? b? b?
bar ,_ . v bar \ \ \ bar N N

~~ ldea: state correctness in terms of what event /718)/ happen before another one



Happend-Before Relation and Diagram



Events in a Distributed System [

A process as a series of events [Lam78]: Given a distributed system of processes
P,Q,R, ..., each process P consists of events ep;, eps, .. ..



Events in a Distributed System

A process as a series of events [Lam78]: Given a distributed system of processes
P,Q,R, ..., each process P consists of events ep;, eps, .. ..
Example:

P 4471 1__}72 L3 L4

0 91392 g3 g4 .615 16 o7

@ event ep; in process P happened before ep; |

@ if ep; is an event that sends a message to Q then there is some event eg; in Q that
receives this message and ep; happened before eg;



The Happened-Before Relation [

If an event p happened before an event g then p — q.



The Happened-Before Relation [

Definition
If an event p happened before an event g then p — q.

Observe:
@ — is partial (neither p — g or ¢ — p may hold)
@ — isirreflexive (p — p never holds)
@ — istransitive (p —>qgAg—rthenp—r)
@ — is asymmetric (if p — g then =(¢ — p))
~+ the — relation is a strict partial order



Concurrency in Happened-Before Diagrams [
Let a / b abbreviate —(a — b).

Definition
Two distinct events p and g are said to be concurrent if p /4 g and g/ p.

P _ Q! P2 p3 P4

@ p; — 14 in the example
@ p; and g3 are, in fact, concurrent since p; 4 g3 and g3 /4 ps3



Ordering i

Let C be a logical clock i.e.C assigns a globally unique time-stamp C(p) to each event p.

Definition (Clock Condition) v
Function C satisfies the clock condition if for any events p, g “

p—q = C(p)<C(qg)
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Let C be a logical clock i.e.C assigns a globally unique time-stamp C(p) to each event p.

Definition (Clock Condition)

Function C satisfies the clock condition if for any events p, g “
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For a distributed system the clock condition holds iff:
@ p: and p; are events of P and p; — p; then C(p;) < C(p))

@ p is the sending of a message by process P and g is the reception of this message by
process Q then C(p) < C(q)
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Ordering

Let C be a logical clock i.e.C assigns a globally unique time-stamp C(p) to each event p.

Definition (Clock Condition) e
Function C satisfies the clock condition if for any events p, g “

p—q = C(p)<C(qg)

For a distributed system the clock condition holds iff:

@ p: and p; are events of P and p; — p; then C(p;) < C(p))

@ p is the sending of a message by process P and g is the reception of this message by
process Q then C(p) < C(q)

~- a logical clock C that satisfies the clock condition describes a fotal order a < b (with

C(a) < C(b)) that embeds the strict partial order —

The set defined by all C that satisfy the clock condition is exactly the set of executions
possible in the system.
~= use the process model and — to define better consistency model



Defining C Satisfying the Clock Condition

Given:

0 __JaNg 4 ga Jas 46 a1

R Jl =I‘2 "1:1’3 5_-r4

€ P1 | P2 | P3| P4

Cle)
e q1 | 92 | 93 | 94 | 45 | 96 | 47
C(e)

e ri r r3 raq

Cle)




Defining C Satisfying the Clock Condition

Given:

0 __ Jange 43 g4 Ié]s g6 497

: P p2 I p3 | ps
- 1 2 77 12
e q1 | 92 | 93 | 94 | 45 | 96 | 47
C(e) 2 : z 6 |11 |13 | 14
e S0 74
@8 To THo 15




Summing up Happened-Before Relations

We can model concurrency using processes and events:
@ there is a happened-before relation between the events of each process
@ there is a happened-before relation between communicating events
@ happened-before is a strict partial order
@ aclock is a total strict order that embeds the happened-before partial order



Memory Consistency Models based on the Happened-Before
Relation



Happened-Before Based Memory Models

Idea: use happened-before diagrams to model more relaxed memory models.

Given a path through each of the threads of a program:

@ consider the actions of each thread as events of a process
@ use more processes to model memory
> here: one process per variable in memory

@ ~ concisely represent some interleavings



Happened-Before Based Memory Models

Idea: use happened-before diagrams to model more relaxed memory models.

Given a path through each of the threads of a program:

@ consider the actions of each thread as events of a process
@ use more processes to model memory
> here: one process per variable in memory

@ ~ concisely represent some interleavings

~~» We establish a model for Sequential Consistency.



Sequential Consistency

Definition (Sequential Consistency Condition [Lam78 i
The result of any execution is the same as if the memory operations ™)

@ of each individual processor appear in the order specified by its program
@ of all processors joined were executed in some sequential order

Sequential Consistency applied to Multiprocessor Programs:
Given a program with n threads,

@ for fixed event sequences p, pi, ... and p3,p?, ... and pp, pt,
order,
© executions obeying the clock condition on the pj,
@ all executions have the same result
Yet, in other words:
o @ defines the execution path of each thread
@ each execution mentioned in @ is one interleaving of processes

@ @ declares that the result of running the threads with these interleavings is always the
same.

... keeping the program



Working with Sequential Consistency

Sequential Consistency in Multiprocessor Programs:
Given a program with » threads,

@ for fixed event sequences py, p1, ... and p3,p3, ... and pi, pl, . . . keeping the program
order,

@ executions obeying the clock condition on the p},
@ all executions have the same result

Idea for showing that a system is not sequentially consistent:
@ pick a result obtained from a program run on a SC system
@ pick an execution @ and a total ordering of all operations @
@ add extra processes to model other system components
@ the original order @ becomes a partial order —
@ show that total orderings C’ exist for — for which the result differs



Sequential Consistency: Formal Spec [SHW11, p. 25] [

Definition (Sequential Consistency)

@ Memory operations in program order ( < ) are embedded into the memory order ( C )

Op;la] < Op;[b])’ = Op;la] C Op;[b]
© A load’s value is determined by the latest write wrt. memory order

val(Ld;[a]) = val(St;[a] | St;la] :mgx ({stkld] | st[da] C Ldi[a]})

with
@ Op;[a] any memory access to address a by CPU i
@ Ld;[a] aload from address a by CPU i
@ St;[a] a store to address a by CPU i

@ Program order < being specified by the control flow of the programs executed by their associated
CPUs; only orders operations on the same CPU



Weakening the Model )

more concurrency possible, if we model each memory location separately,
i.e. as a different process

foo _ _ foo, . ,
| o | o /
@=1/ b=1/ \a=1  \ b=1/

mem \/

b2 b? b2
bar [ [ [

Sequential consistency still obeyed:
@ the accesses of foo to a occurs before b
@ the first two read accesses to b are in parallel to a=1

Conclusion: There is no observable change if accesses to different memory locations can
happen in parallel.



Benefits of Sequential Consistency

@ concisely represent all interleavings that are due to variations in timing
@ synchronization using time is uncommon for software

~+ a good model for correct behaviors of concurrent programs

~~ program results besides SC results are undesirable (they contain races)
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@ sequential consistency model suitable for concurrent processors that acquire exclusive
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@ processors can speed up computation by using caches and still made to maintain
sequential consistency



Benefits of Sequential Consistency [

@ concisely represent all interleavings that are due to variations in timing
@ synchronization using time is uncommon for software

~+ a good model for correct behaviors of concurrent programs

~~ program results besides SC results are undesirable (they contain races)

Realistic model for simple hardware architectures:

@ sequential consistency model suitable for concurrent processors that acquire exclusive
access to memory

@ processors can speed up computation by using caches and still made to maintain
sequential consistency

Not realistic for elaborate hardware with out-of-order stores:

@ what other processors see is determined by complex optimizations to cacheline
management

~~ internal workings of caches



Introducing Caches: The MESI Protocol



Introducing Caches

Idea: each cache line one process

a++
~Ld[a] _ St [a]
A o o P . 7
mem

§ D .

. % S

B Tdral Stial

at+
Observations:

/N naive replication of memory in cache lines creates incoherency



Cache Coherency: Formal Spec [SHW11, p. 14] [

Definition (Cache Coherency)

@ Memory operations in program order ( < ) are embedded into the memory order ( C )
op;[a] < op;[a]” = Op,[d] C op;[a]’
© A load’s value is determined by the latest write wrt. memory order

val(Ld;[a]) = val(Stj[a] | Stj[a] :mgx ({stkld] | st[a] C Ldi[a]})

@ This definition superficially looks close to the definition of SC — except that it covers
only singular memory locations instead of all memory locations accessed in a program

@ Caches and memory can communicate using messaging, following some particular
protocol to establish cache coherency
(~» Cache Coherence Protocol)



The MESI Cache Coherence Protocol: States [PP84] i

Processors use caches to avoid a costly round-trip to RAM for every memory access.
@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memory regions requires bookkeeping about
who has the latest copy

M - E Each cache line is in one of the states M, E, S, I:

1]
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Processors use caches to avoid a costly round-trip to RAM for every memory access.
@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memory regions requires bookkeeping about
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The MESI Cache Coherence Protocol: States [PP84] i

Processors use caches to avoid a costly round-trip to RAM for every memory access.
@ programs often access the same memory area repeatedly (e.g. stack)

@ keeping a local mirror image of certain memory regions requires bookkeeping about
who has the latest copy

M - E Each cache line is in one of the states M, E, S, I:
[: itis invalid and is ready for re-use
: other caches have an identical copy of this cache line, it is
shared
E: the content is in no other cache; it is exclusive to this cache
S - I and can be overwritten without consulting other caches

M : the content is exclusive to this cache and has furthermore
been modified

~~ the global state of cache lines is kept consistent by sending messages



The MESI Cache Coherence Protocol: Messages

Moving data between caches is coordinated by sending messages [McK10]:

@ Read: sent if CPU needs to read from an address

@ Read Response: when in state E or S, response to a Read
message, carries the data for the requested address

@ Invalidate: asks others to evict a cache line M — E
@ Invalidate Acknowledge: reply indicating that a cache line has

been evicted I l x l
@ Read Invalidate: like Read + Invalidate (also called “read with

intend to modify”) . I

@ Writeback: Read Response when in state M, as a side effect
noticing main memory about modifications to the cacheline,
changing sender’s state to S

We mostly consider messages between processors. Upon Read Invalidate, a processor
replies with Read Response/ Writeback before the Invalidate Acknowledge is sent.

i



MESI Example

Consider how the following code might execute:

Thread A Thread B

a =1; // A.1l while (b == 0) {}; // B.1l
b =1; // A.2 assert (a == 1); // B.2

@ in all examples, the initial values of variables are assumed to be 0
@ suppose that a and b reside in different cache lines

@ assume that a cache line is larger than the variable itself
@ we write the content of a cache line as

» Mx: modified, with value x

» Ex: exclusive, with value x

» Sx: shared, with value x

» |:invalid



MESI Example (I)

Thread A

Thread B

a=1; // A.1 while (b == 0) (}; // B.1
b =1; // A.2 assert (a == 1); // B.2
statement CPUA CPUB RAM message
a b a b al|b
A l ! ! ! 010 ) read invalidate of a from CPU A
! ! ! I 0 0 ) invalidate ack. of a from CPU B
l ! ! ! o]0 ) read response of a=0 from RAM
B.1 M1 l ! I 010 ) read of b from CPU B
M1 ! ! ! 010 ) read response with b=0 from RAM
B.1 M1 | | EO 0] O
A2 | M1 ! I EO 010 Q read invalidate of b from CPU A
M1 ! ! EO 010 ) read response of b=0 from CPU B
M1 S0 ! S0 0 0 ) invalidate ack. of b from CPU B
M1 M1 | | 0] O

i



MESI Example (Il)

Thread B

18
18

a =1; // A.1 while (b == 0) {}; //
b =1; // A.2 assert (a == 1); //
statement CPUA CPUB RAM message
a b a b a b
B.1 M1 M1 l I 0 0 \) read of b from CPU B
M1 M1 ! O 1 O | write back of b=1 from CPU A
B.2 M1 S1 ! St 0 1 \) read of a from CPU B
ML ST | STHEO T ) wite back of a=1 from CPU A
S1 S1 S1 S1 1 1
AT STESTHSTEST T 1) invalidate of a from CPU A
St S1 ! S1 1 1 ) invalidate ack. of a from CPU B
M1 S1 | S1 1 1

1
2

i



MESI Example: Happened Before Model

Idea: each cache line one process, A caches b=0 as E, B caches a=0 as E
a=1 b=1
St[a] St [b]

-

b

0/7@

Ca,
SQ

s

ol

read invalidale ¢~
wrlteback

...-ead

Q

eaq
_read.respo

b

<
O a
N
B

Observations:

@ each memory access must complete before executing next instruction ~~ add edge



MESI Example: Happened Before Model

Idea: each cache line one process, A caches b=0 as E, B caches a=0 as E

Sat: ! Sb t: lb
A o = [a] pd o [b] pd
&b >

i )
ol
®

wrlteback

read invalidale ¢~

...-ead

Observations:

@ each memory access must complete before executing next instruction ~~ add edge

@ second execution of test b==0 stays within cache ~~ no traffic



Summary: MESI Cache Coherence Protocol [

Sequential Consistency:

@ specifies that the system must appear to execute all threads’ loads and stores to all
memory locations in a total order that respects the program order of each thread

@ a characterization of well-behaved programs
@ a model for differing speed of execution

@ for fixed paths through the threads and a total order between accesses to the same
variables: executions can be illustrated by a happened-before diagram with one
process per variable

Cache Coherency:

@ A cache coherent system must appear to execute all threads’ loads and stores to a
single memory location in a total order that respects the program order of each thread

@ MESI cache coherence protocol ensures SC for processors with caches



Introducing Store Buffers: Out-Of-Order Stores



Out-of-Order Execution
VAN performance problem: writes always stall

Thread A Thread B

ilg // A.1 while (b == 0) {}; // B.1
il g // A.2 assert (a == 1); // B.2

a
b

.
®
- ]

.Iead

*Tdia
a==




Out-of-Order Execution U

VAN performance problem: writes always stall

Thread A Thread B

a_
b

|
[y
~
~
~
>
=

while (b == 0) {}; // B.1
assert (a == 1); // B.2

Il
-
~
~
~
>
N

~s CPU A should continue ex 1;
T o o =
g = £ 3




Store Buffers

/N Abstract Machine Model: defines semantics of memory accesses

CPUA CPUB ) )
@ put each store into a store buffer and continue
| 1 execution
store store @ Store buffers apply stores in various orders:
*— *— :
b“ffler buffer > FIFO (Sparc/x86-TSO)
| » unordered (Sparc PSO)
cache cache o /\ program order still needs to be observed locally

I T ' » store buffer snoops read channel and
» on matching address, returns the youngest value in buffer

Memory




TSO Model: Formal Spec [S192] [SHW11, p. 42] [

Definition (Total Store Order)

@ The store order wrt. memory ( C ) is total

Vab € adir ij ecru (Stila] T st;[b]) v (st;[b] C stifa])
© Stores in program order ( < ) are embedded into the memory order ( C )

Stila] < sti[b] = Sti[a] C St;[b]
© Loads preceding an other operation (wrt. program order < ) are embedded into the memory order ( C )

Ld;[a] < Op;[b] = Ldi[a] E Op;[b]
@ A load’s value is determined by the latest write as observed by the local CPU

val(Ld;[a]) = val(St;[d] | St;[d] :mélx ({stk[d] | stkla] C Ldi[a]} U {sti[d] | Sti[a] < Ldi[a]}))

Particularly, one ordering property from SC is not guaranteed:
Sti[a] < Ldi[b] # Sti[a] C Ldi[b]

A Local stores may be observed earlier by local loads then from somewhere else!



Happened-Before Model for TSO

Thread A Thread B
a=1; b =1;

printf ("%d",b); printf ("%d",a);

Assume cache A contains: a: SO0, b: S0, cache B contains: a: S0, b: SO

a=1 printf ("%d",Db)
A St la] _Ld[b]
N4 N
storg,; % ;
c‘)b' -

[ 3




TSO in the Wild: x86 i

The x86 CPU, powering desktops and servers around the world is a common
representative of a TSO Memory Model based CPU.

@ FIFO store buffers keep quite strong consistency properties
@ The major obstacle to Sequential Consistency is

Stila] < Ldi[b] #  Sti[a] C Ld;[D]
» modern x86 CPUs provide the mfence instruction
» mfence orders all memory instructions:
op; < mfence() < 0p,/ = Op,; C Op,

@ a fence between write and loads gives sequentially consistent CPU behavior (and is as
slow as a CPU without store buffer)

~= use fences only when necessary



PSO Model: Formal Spec [SI192] [SHW11, p. 58] [

Definition (Partial Store Order)

@ The store order wrt. memory ( C ) is total

Vab € adar i,j ecru (Stila] T st [b]) V (st;[b] E stifa])
© Fenced stores in program order ( < ) are embedded into the memory order ( C )

Stila] < sfence () < St;[b] = Sti[a] C St;[b]
© Stores to the same address in program order ( < ) are embedded into the memory order ( C )

Stifa] < sti[a]” = sti[a] C sti[a)’
@ Loads preceding another operation (wrt. program order < ) are embedded into the memory order ( C )

Ldi[a] < op;[b] = Ldi[a] C Op;[b]
© A load’s value is determined by the latest write as observed by the local CPU

val(Ld;[a]) = val(St;[a] | St;[a] =max ({stkla] | stkla] C Ldi[a]} U {stila] | sti[a] < Ld[a]}))
A Now also stores are not guaranteed to be in order any more:

Sti[a] < sti[b] % Stila] C sti[b]

~~ What about sequential consistency for the whole system?



Happened-Before Model for PSO

while (b == 0) {};

a:
assert (a == 1);

1
b =1;

Assume cache A contains: a: S0, b: EO, cache B contains: a: SO0, b: |

a=1
St [a]
o
store % . .
%5 N
a “ K
$h
) 0o O
®
S 2o
S 3
=01
a o >
&b AN
B taral
a==1




Explicit Synchronization: Write Barrier

Overtaking of messages may be desirable and does not need to be prohibited in general.

@ generalized store buffers render programs incorrect that assume sequential
consistency between different CPUs

@ whenever a store in front of another operation in one CPU must be observable in this
order by a different CPU, an explicit write barrier has to be inserted
» a write barrier marks all current store operations in the store buffer
» the next store operation is only executed when all marked stores in the buffer have completed



Happened-Before Model for Write Barriers

Thread A Thread B

a=1;
sfence () ;
b =1;

while (b == 0) {};
assert (a == 1);

Assume cache A contains: a: SO, b: EO, cache B contains: a: SO0, b: |

a=1 mfence () b=1
St [ ] S_fepce St [b.J
s'tAore «." N ——
Q
Sh
O
N
b 37
B 7 N
d[%] Ldla]



Further weakening the model: O-0-O Reads



Relaxed Memory Order

Communication of cache updates is still costly:

@ a cache-intense computation can fill up store buffers in CPUs
~~ waiting for invalidation acknoledgements may still happen

@ invalidation acknoledgements are delayed on busy caches

CPUA CPUB ~~ immediately acknowledge an invalidation and
I I apply it later
store store @ put each invalidate message into an invalidate
®—buffer ®—buffer Zueue g
! ! @ if a MESI message needs to be sent regarding
cache cache a cache line in the invalidate queue then wait
. Il' _ I_I until the line is invalidated
ma/l?eﬁgte malgelggte /N local loads and stores do not consult the

| | | invalidate queue
~+ What about sequential consistency?

Memory




RMO Model: Formal Spec [S194, p. 290]

i

Definition (Relaxed Memory Order)

@ Fenced memory accesses in program order ( < ) are embedded into the memory order ( C )

Op;[a] < mfence () < Op;[b] = Op;[a] C Op;[b]
© Stores to the same address in program order ( < ) are embedded into the memory order ( C )

op;[a] < st;la]’ = Op;[a] C sti[a)’
@ Operations dependent on a load (wrt. dependence — ) are embedded in the memory order ( C )
Ld;[a] — Op;[b] = Ldi[a] C Op;[D]

@ A load’s value is determined by the latest write as observed by the local CPU
val(Ld;[a]) = val(St;[a] | Stja] =max ({Sti[a] | Sti[a] C Ldila]} U {Sti[d] | Sti[d] < Ldila]}))

™\ Now we need the notion of dependence

@ Memory access to the same address: Stila] < Ldila] = Sti[d] — Ldi[q]
@ Register reads are dependent on latest register writes:

Ld;[a]”’ =max (Ldi[a)’ | targetreg(1.d;[a)’) = srcreg(Sti[b]) A Ldi[a])” < sti[b]) = Ldifa]” — Sti[b]
@ Stores within branched blocks are dependent on branch conditionals:

(Op;lal < sti[b]) A Op;[a] — condbranch < st;[b] = Op;la] — St;[b]



Happened-Before Model for Invalidate Queues

Thread A Thread B

a=1; .
while (b == 0) {};

sfence () ; rt(a == 1);

b= 1; asse a == g

Assume cache A contains: a: S0, b: EO, cache B contains: a: SO, b: |
1 sfence () kS)El

a =
A St [a] sfence [b]
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Explicit Synchronization: Read Barriers [

Read accesses do not consult the invalidate queue.
@ might read an out-of-date value
@ need a way to establish sequential consistency between writes of other processors and
local reads

@ insert an explicit read barrier before the read access

» aread barrier marks all entries in the invalidate queue
» the next read operation is only executed once all marked invalidations have completed

@ aread barrier before each read gives sequentially consistent read behavior (and is as
slow as a system without invalidate queue)

~~ match each write barrier in one process with a read barrier in another process



Happened-Before Model for Read Barriers

Thread A Thread B

while (b == 0) {};

a=1;
sfence () ; lfence();
b = 1; assert (a == 1);

i by
lfence " Ld[a] ™

lfence () a==




Example: The Dekker Algorithm on RMO Systems



Using Memory Barriers: the Dekker Algorithm

Mutual exclusion of two processes with busy waiting.

//flag[] is boolean array; and turn is an integer
flag[0] = false;
flag[l] = false;
turn = 0; // or 1
PO:
flag[0] = true;
while (flag[l] == true)
if (turn != 0) {
flag[0] = false;
while (turn != 0) {

// busy wait
}
flag[0] = true;
}
// critical section
turn =1;
flag[0] = false;



Using Memory Barriers: the Dekker Algorithm

Mutual exclusion of two processes with busy waiting.

//flag[] is boolean array; and turn is an integer
flag[0] = false;
flag[l] = false;
turn = 0; // or 1
PO: Pl:
flag[0] = true; flag[l] = true;
while (flag[l] == true) while (flag[0] == true)
if (turn != 0) { if (turn != 1) {
flag[0] = false; flag[l] = false;
while (turn != 0) { while (turn != 1) {
// busy wait // busy wait
} }
flag[0] = true; flag[l] = true;
} }
// critical section // critical section
turn =1; turn = 0;
flag[0] false; flag[l] = false;



The Idea Behind Dekker

Communication via three variables:
@ flag[i]==true process P; wants to enter its critical section
@ turn==i process P; has priority when both want to enter

PO:
flag[0] = true; .
while (flag[l] == true) |n[#OCGSSFL
if (turn !'= 0) { ° !fPl_,- Fjoes not want to enter, proceed
flag[0] = false; immediately to the critical section

while (turn != 0) {
// busy wait
}
flag[0] = true;
}
// critical section
turn =1;
flag[0] = false;
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while (turn != 0) { ~» flag[i] is a lock and may be implemented as
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}
// critical section
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The Idea Behind Dekker U

Communication via three variables:
@ flag[i]==true process P; wants to enter its critical section
@ turn==i process P; has priority when both want to enter

PO:

flag[0] = true; .

while (flag[l] == true) In;#ocessih

if (turn !'= 0) { ° !fPl_,- Fjoes not want to enter, proceed
flag[0] = false; immediately to the critical section
while (turn != 0) { ~» flag[i] is a lock and may be implemented as
// busy wait such

} @ if P;_; also wants to enter, wait for turn to be
flag[0] = true; setto i

}
// critical section
turn =1;
flag[0] = false;

@ while waiting for turn, reset flag[i] to
enable P;_; to progress



Dekker’s Algorithm and RMO

Problem: Dekker’s algorithm requires sequential consistency.
Idea: insert memory barriers between all variables common to both threads.



Dekker’s Algorithm and RMO

Problem: Dekker’s algorithm requires sequential consistency.
Idea: insert memory barriers between all variables common to both threads.

PO:
flag[0] = true;
sfence () ;
while (lfence(), flag[l] == true) @ insert a load memory barrier 1fence ()
if (lfence(), turn != 0) { in front of every read from common
flagle] = Ealses variables
sfence () ;
while (lfence(), turn != 0){
// busy wait

}
flag[0] = true;
sfence () ;
}

// critical section

turn =1;

sfence () ;

flag[0] = false; sfence();



Dekker’s Algorithm and RMO

Problem: Dekker’s algorithm requires sequential consistency.
Idea: insert memory barriers between all variables common to both threads.

PO:
flag[0] = true;
sfence () ;
while (lfence(), flag[l] == true) @ insert a load memory barrier 1fence ()
if (lfence(), turn != 0) { in front of every read from common
flagl0] = false; variables
sfence () ;
while (lfence (), turn != 0){ @ insert a write memory barrier sfence ()
// busy wait after writing a variable that is read in the
} other thread
flag[0] = true;
sfence () ;
}
// critical section
turn =1;
sfence () ;
flag[0] = false; sfence();



Dekker’s Algorithm and RMO

Problem: Dekker’s algorithm requires sequential consistency.
Idea: insert memory barriers between all variables common to both threads.

PO:
flag[0] = true;
sfence () ;

while (lfence(), flag[l] == true) @ insert a load memory barrier 1fence ()
if (lfence(), turn != 0) { in front of every read from common
flagle] = Ealses variables
sfence () ; . . .
while (lfence(), turn != 0){ @ insert a write memory barrier sfence ()
// busy wait after writing a variable that is read in the
} o other thread
flag[0] = true; . . .
enee () - @ the 1fence () of the flrgt |terat.|on of
} each loop may be combined with the
// critical section preceding sfence () to anmfence ()
turn =1;
sfence () ;
flag[0] = false; sfence();



Summary: Relaxed Memory Models [

Highly optimized CPUs may use a relaxed memory model:
@ reads and writes are not synchronized unless requested by the user
@ many kinds of memory barriers exist with subtle differences

~+ ARM, PowerPC, Alpha, ia-64, even x86 (~~ SSE Write Combining)

~~ memory barriers are the “lowest-level” of synchronization
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Memory barriers reside at the lowest level of synchronization primitives.



Discussion
Memory barriers reside at the lowest level of synchronization primitives.

Where are they useful?
@ when blocking should not de-schedule threads
@ when several processes implement automata and coordinate their transitions via
common synchronized variables
~~ protocol implementations
~+ OS provides synchronization facilities based on memory barriers

Why might they not be appropriate?
@ difficult to get right, best suited for specific well-understood algorithms

@ often synchronization with locks is as fast and easier
@ too many fences are costly if store/invalidate buffers are bottleneck



Memory Models and Compilers
Before Optimization

int x = 0;

for (int i=0;i<100;i++) {
X =1;
printf ("&d", x);



Memory Models and Compilers [

Before Optimization After Optimization

int x = 0;

for (int i=0;i<100;i++) {
X =1;
printf ("&d", x);

int x = 1;

for (int i=0;i<100; i++) {
printf ("%d", x) ;

}

Standard Program Optimizations

comprises loop-invariant code motion and dead store elimination, e.g.



Memory Models and Compilers [

Before Optimization After Optimization

int x = 0;

for (int i=0;i<100;i++) {
X =1;
printf ("&d", x);

int x = 1;

for (int i=0;i<100; i++) {
printf ("%d", x);

}

Standard Program Optimizations

comprises loop-invariant code motion and dead store elimination, e.g.

VAN having another thread executing x = 0; changes observable behaviour depending on
optimizing or not

~~ Compiler also depends on consistency guarantees
~~ Demand for Memory Models on language level



Memory Models and C-Compilers

Keeping semantics |

int x = 0;

for (int i=0;i<100; i++) {
sfence () ;
x = 1;
printf ("&%d", x);



Memory Models and C-Compilers

Keeping semantics | Keeping semantics Il

int x = 0;

for (int i=0;i<100; i++) {
sfence () ;
x = 1;
printf ("&%d", x);

volatile int x = 0;

for (int i=0;i1<100;i++) {
x = 1;
printf ("&%d", x);

}

@ Compilers may also reorder store instructions
@ Write barriers keep the compiler from reordering across

@ The specification of volatile keeps the C-Compiler from reordering memory
accesses to this address



Memory Models and C-Compilers

Keeping semantics | Keeping semantics Il

int x = 0;

for (int i=0;i<100; i++) {
sfence () ;
x = 1;
printf ("&%d", x);

volatile int x = 0;

for (int i=0;i1<100;i++) {
x = 1;
printf ("&%d", x);

}

@ Compilers may also reorder store instructions
@ Write barriers keep the compiler from reordering across

@ The specification of volatile keeps the C-Compiler from reordering memory
accesses to this address

@ Java-Compilers even generate barriers around accesses to volatile variables



Summary

Learning Outcomes

@ Strict Consistency

© Happened-before Relation
© Sequential Consistency
© The MESI Cache Model
@ TSO: FIFO store buffers
© PSO: store buffers

@ RMO: invalidate queues

@ Reestablishing Sequential Consistency with
memory barriers

@ Dekker’s Algorithm for Mutual Exclusion



Future Many-Core Systems: NUMA [

Many-Core Machines’ Read Responses congest the bus

In that case: Intel's MESIF (Forward) to reduce communication overhead.

/N Butin general, Symmetric multi-processing (SMP) has its limits:
@ a memory-intensive computation may cause contention on the bus
@ the speed of the bus is limited since the electrical signal has to travel to all participants

@ point-to-point connections are faster than a bus, but do not provide possibility of
forming consensus
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Future Many-Core Systems: NUMA [

Many-Core Machines’ Read Responses congest the bus

In that case: Intel's MESIF (Forward) to reduce communication overhead.

/N Butin general, Symmetric multi-processing (SMP) has its limits:
@ a memory-intensive computation may cause contention on the bus
@ the speed of the bus is limited since the electrical signal has to travel to all participants

@ point-to-point connections are faster than a bus, but do not provide possibility of
forming consensus

~> use a bus locally, use point-to-point links globally: NUMA
@ non-uniform memory access partitions the memory amongst CPUs
@ a directory states which CPU holds a memory region

@ Interprocess communication between Cache-Controllers (ccNUMA): onchip on
Opteron or in chipset on Itanium



Overhead of NUMA Systems [

Communication overhead in a NUMA system.
- i i @ Processors in a NUMA system may be fully or
partially connected.
@ The directory of who stores an address is
v partitioned amongst processors.

&22322:1: procesor [ o ﬁ.mz A cache miss that cannot be satisfied by the local
L y memory at A:
vl 4 ¥ - @ A sends a retrieve request to processor B owning
T | oo [l e [ T, %2 the directory
@ B tells the processor C who holds the content

H @ C sends data (or status) to A and sends
Lagend acknowledge to B

~—p Bi-directional bus . .
t ----- i ¢ < Wieman@ B completes transmission by an acknowledge to A
1]

source: [Int09]
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Cache Coherence vs. Memory Consistency Models [

@ Sequential Consistency specifies that the system must appear to execute all threads’
loads and stores to all memory locations in a total order that respects the program
order of each thread

@ A cache coherent system must appear to execute all threads’ loads and stores to a
single memory location in a total order that respects the program order of each thread

All discussed memory models (SC, TSO, PSO, RMO) provide cache coherence!
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