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Thread A

void foo(void) {
a = 1;
b = 1;

}

Thread B

void bar(void) {
while (b == 0){};
assert (a==1);

}

Intuition: the assertion will never fail

! Real execution: given enough tries, the assertion may eventually fail

 in need of defining a Memory Model
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Memory Models

Memory interactions behave differently in presence of
multiple concurrent threads
data replication in hierarchical and/or distributed memory systems
deferred communication of updates

Memory Models are a product of negotiating
restrictions of freedom of implementation to guarantee race related properties
establishment of freedom of implementation to enable program and machine model
optimizations

 Modern Languages include the memory model in their language definition



Strict Consistency

Motivated by sequential computing, we intuitively implicitely transfer our idea of semantics
of memory accesses to concurrent computation. This leads to our idealistic model Strict
Consistency:

Definition (Strict consistency)

Independently of which process reads or writes, the value from the most recent write to a
location is observable by reads from the respective location immediately after the write
occurs.

Although idealistically desired, practically not existing
! absolute global time problematic
! physically not possible

 strict consistency is too strong to be realistic



Abandoning absolute time
Thread A

void foo(void) {
a = 1;
b = 1;

}

Thread B

void bar(void) {
while (b == 0) {};
assert(a == 1);

}

initial state of a and b is 0

A writes a before it writes b

B should see b go to 1 before executing the assert statement

the assert statement should always hold

 here correctness means: writing a 1 to a happens before reading a 1 in b

Still, any of the following may happen:

a=1
foo

mem

bar
b? b?b?

b=1 a=1
foo

mem

bar
b? a?b?

b=1 a=1
foo

mem

bar
b? a?b?

b=1

b?

 Idea: state correctness in terms of what event may happen before another one



Happend-Before Relation and Diagram



Events in a Distributed System
A process as a series of events [Lam78]: Given a distributed system of processes
P,Q,R, . . ., each process P consists of events •p1, •p2, . . ..

Example:

p3p1 p2 p4

q1 q2 q3 q4 q5 q6 q7

r1 r2 r3 r4

P

Q

R

event •pi in process P happened before •pi+1

if •pi is an event that sends a message to Q then there is some event •qj in Q that
receives this message and •pi happened before •qj
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The Happened-Before Relation

Definition
If an event p happened before an event q then p→ q.

Observe:
→ is partial (neither p→ q or q→ p may hold)
→ is irreflexive (p→ p never holds)
→ is transitive (p→ q ∧ q→ r then p→ r)
→ is asymmetric (if p→ q then ¬(q→ p))

 the → relation is a strict partial order
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Concurrency in Happened-Before Diagrams
Let a 6→ b abbreviate ¬(a→ b).

Definition
Two distinct events p and q are said to be concurrent if p 6→ q and q 6→ p.

p3p1 p2 p4

q1 q2 q3 q4 q5 q6 q7

r1 r2 r3 r4

P

Q

R

p1→ r4 in the example
p3 and q3 are, in fact, concurrent since p3 6→ q3 and q3 6→ p3



Ordering
Let C be a logical clock i.e.C assigns a globally unique time-stamp C(p) to each event p.

Definition (Clock Condition)

Function C satisfies the clock condition if for any events p, q

p→ q =⇒ C(p) < C(q)

For a distributed system the clock condition holds iff:
1 pi and pj are events of P and pi→ pj then C(pi) < C(pj)

2 p is the sending of a message by process P and q is the reception of this message by
process Q then C(p) < C(q)

 a logical clock C that satisfies the clock condition describes a total order a < b (with
C(a) < C(b)) that embeds the strict partial order →
The set defined by all C that satisfy the clock condition is exactly the set of executions
possible in the system.
 use the process model and → to define better consistency model
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Defining C Satisfying the Clock Condition
Given:

p3p1 p2 p4

q1 q2 q3 q4 q5 q6 q7

r1 r2 r3 r4

P

Q

R

e p1 p2 p3 p4

C(e)

1 4 7 12

e q1 q2 q3 q4 q5 q6 q7

C(e)

2 3 5 6 11 13 14

e r1 r2 r3 r4

C(e)

8 9 10 15



Defining C Satisfying the Clock Condition
Given:

p3p1 p2 p4

q1 q2 q3 q4 q5 q6 q7

r1 r2 r3 r4

P

Q

R

e p1 p2 p3 p4

C(e) 1 4 7 12
e q1 q2 q3 q4 q5 q6 q7

C(e) 2 3 5 6 11 13 14
e r1 r2 r3 r4

C(e) 8 9 10 15



Summing up Happened-Before Relations

We can model concurrency using processes and events:
there is a happened-before relation between the events of each process
there is a happened-before relation between communicating events
happened-before is a strict partial order
a clock is a total strict order that embeds the happened-before partial order



Memory Consistency Models based on the Happened-Before
Relation



Happened-Before Based Memory Models

Idea: use happened-before diagrams to model more relaxed memory models.

Given a path through each of the threads of a program:
consider the actions of each thread as events of a process
use more processes to model memory
I here: one process per variable in memory

 concisely represent some interleavings

 We establish a model for Sequential Consistency.



Happened-Before Based Memory Models

Idea: use happened-before diagrams to model more relaxed memory models.

Given a path through each of the threads of a program:
consider the actions of each thread as events of a process
use more processes to model memory
I here: one process per variable in memory

 concisely represent some interleavings

 We establish a model for Sequential Consistency.



Sequential Consistency

Definition (Sequential Consistency Condition [Lam78])
The result of any execution is the same as if the memory operations

of each individual processor appear in the order specified by its program
of all processors joined were executed in some sequential order

Sequential Consistency applied to Multiprocessor Programs:
Given a program with n threads,

1 for fixed event sequences p1
0, p1

1, . . . and p2
0, p2

1, . . . and pn
0, pn

1, . . . keeping the program
order,

2 executions obeying the clock condition on the pi
j,

3 all executions have the same result
Yet, in other words:

1 defines the execution path of each thread
each execution mentioned in 2 is one interleaving of processes

3 declares that the result of running the threads with these interleavings is always the
same.



Working with Sequential Consistency

Sequential Consistency in Multiprocessor Programs:
Given a program with n threads,

1 for fixed event sequences p1
0, p1

1, . . . and p2
0, p2

1, . . . and pn
0, pn

1, . . . keeping the program
order,

2 executions obeying the clock condition on the pi
j,

3 all executions have the same result

Idea for showing that a system is not sequentially consistent:
pick a result obtained from a program run on a SC system
pick an execution 1 and a total ordering of all operations 2

add extra processes to model other system components
the original order 2 becomes a partial order →
show that total orderings C′ exist for → for which the result differs



Sequential Consistency: Formal Spec [SHW11, p. 25]

Definition (Sequential Consistency)

1 Memory operations in program order ( ≤ ) are embedded into the memory order ( v )

Opi[a] ≤ Opi[b]
′ ⇒ Opi[a] v Opi[b]

′

2 A load’s value is determined by the latest write wrt. memory order

val(Ldi[a]) = val(Stj[a] | Stj[a] =max
v

({Stk[a] | Stk[a] v Ldi[a]})

with

Opi[a] any memory access to address a by CPU i

Ldi[a] a load from address a by CPU i

Sti[a] a store to address a by CPU i

Program order ≤ being specified by the control flow of the programs executed by their associated
CPUs; only orders operations on the same CPU



Weakening the Model
Observation: more concurrency possible, if we model each memory location separately,
i.e. as a different process

a=1
foo

mem

bar
b? b?b?

b=1 a=1
foo

mem

bar
b? a?

b=1

a
b

b?b?

Sequential consistency still obeyed:
the accesses of foo to a occurs before b

the first two read accesses to b are in parallel to a=1

Conclusion: There is no observable change if accesses to different memory locations can
happen in parallel.



Benefits of Sequential Consistency
concisely represent all interleavings that are due to variations in timing
synchronization using time is uncommon for software

 a good model for correct behaviors of concurrent programs
 program results besides SC results are undesirable (they contain races)

Realistic model for simple hardware architectures:

sequential consistency model suitable for concurrent processors that acquire exclusive
access to memory
processors can speed up computation by using caches and still made to maintain
sequential consistency

Not realistic for elaborate hardware with out-of-order stores:

what other processors see is determined by complex optimizations to cacheline
management

 internal workings of caches



Benefits of Sequential Consistency
concisely represent all interleavings that are due to variations in timing
synchronization using time is uncommon for software

 a good model for correct behaviors of concurrent programs
 program results besides SC results are undesirable (they contain races)

Realistic model for simple hardware architectures:

sequential consistency model suitable for concurrent processors that acquire exclusive
access to memory
processors can speed up computation by using caches and still made to maintain
sequential consistency

Not realistic for elaborate hardware with out-of-order stores:

what other processors see is determined by complex optimizations to cacheline
management

 internal workings of caches



Benefits of Sequential Consistency
concisely represent all interleavings that are due to variations in timing
synchronization using time is uncommon for software

 a good model for correct behaviors of concurrent programs
 program results besides SC results are undesirable (they contain races)

Realistic model for simple hardware architectures:

sequential consistency model suitable for concurrent processors that acquire exclusive
access to memory
processors can speed up computation by using caches and still made to maintain
sequential consistency

Not realistic for elaborate hardware with out-of-order stores:

what other processors see is determined by complex optimizations to cacheline
management

 internal workings of caches



Introducing Caches: The MESI Protocol



Introducing Caches
Idea: each cache line one process

a

Ld[a]
A

B

a

Ld[a]

St[a]

St[a]

ca
ch

e
ca

ch
e

mem

a++

a++

Observations:
! naive replication of memory in cache lines creates incoherency



Cache Coherency: Formal Spec [SHW11, p. 14]

Definition (Cache Coherency)

1 Memory operations in program order ( ≤ ) are embedded into the memory order ( v )

Opi[a] ≤ Opi[a]
′ ⇒ Opi[a] v Opi[a]

′

2 A load’s value is determined by the latest write wrt. memory order

val(Ldi[a]) = val(Stj[a] | Stj[a] =max
v

({Stk[a] | Stk[a] v Ldi[a]})

This definition superficially looks close to the definition of SC – except that it covers
only singular memory locations instead of all memory locations accessed in a program
Caches and memory can communicate using messaging, following some particular
protocol to establish cache coherency
( Cache Coherence Protocol)



The MESI Cache Coherence Protocol: States [PP84]

Processors use caches to avoid a costly round-trip to RAM for every memory access.
programs often access the same memory area repeatedly (e.g. stack)
keeping a local mirror image of certain memory regions requires bookkeeping about
who has the latest copy

M

S

E

I

Each cache line is in one of the states M,E, S, I:

I: it is invalid and is ready for re-use
S: other caches have an identical copy of this cache line, it is

shared
E: the content is in no other cache; it is exclusive to this cache

and can be overwritten without consulting other caches
M: the content is exclusive to this cache and has furthermore

been modified

 the global state of cache lines is kept consistent by sending messages
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The MESI Cache Coherence Protocol: Messages

Moving data between caches is coordinated by sending messages [McK10]:

Read: sent if CPU needs to read from an address
Read Response: when in state E or S, response to a Read
message, carries the data for the requested address
Invalidate: asks others to evict a cache line
Invalidate Acknowledge: reply indicating that a cache line has
been evicted
Read Invalidate: like Read + Invalidate (also called “read with
intend to modify”)
Writeback: Read Response when in state M, as a side effect
noticing main memory about modifications to the cacheline,
changing sender’s state to S

M

S

E

I

We mostly consider messages between processors. Upon Read Invalidate, a processor
replies with Read Response/Writeback before the Invalidate Acknowledge is sent.



MESI Example

Consider how the following code might execute:

Thread A

a = 1; // A.1
b = 1; // A.2

Thread B

while (b == 0) {}; // B.1
assert(a == 1); // B.2

in all examples, the initial values of variables are assumed to be 0
suppose that a and b reside in different cache lines
assume that a cache line is larger than the variable itself
we write the content of a cache line as
I Mx: modified, with value x
I Ex: exclusive, with value x
I Sx: shared, with value x
I I: invalid



MESI Example (I)

Thread A

a = 1; // A.1
b = 1; // A.2

Thread B

while (b == 0) {}; // B.1
assert(a == 1); // B.2

statement CPU A CPU B RAM message
a b a b a b

A.1 I I I I 0 0 read invalidate of a from CPU A
I I I I 0 0 invalidate ack. of a from CPU B
I I I I 0 0 read response of a=0 from RAM

B.1 M 1 I I I 0 0 read of b from CPU B
M 1 I I I 0 0 read response with b=0 from RAM

B.1 M 1 I I E 0 0 0
A.2 M 1 I I E 0 0 0 read invalidate of b from CPU A

M 1 I I E 0 0 0 read response of b=0 from CPU B
M 1 S 0 I S 0 0 0 invalidate ack. of b from CPU B
M 1 M 1 I I 0 0



MESI Example (II)

Thread A

a = 1; // A.1
b = 1; // A.2

Thread B

while (b == 0) {}; // B.1
assert(a == 1); // B.2

statement CPU A CPU B RAM message
a b a b a b

B.1 M 1 M 1 I I 0 0 read of b from CPU B
M 1 M 1 I I 0 0 write back of b=1 from CPU A

B.2 M 1 S 1 I S 1 0 1 read of a from CPU B
M 1 S 1 I S 1 0 1 write back of a=1 from CPU A
S 1 S 1 S 1 S 1 1 1

...
...

...
...

...
...

...
...

A.1 S 1 S 1 S 1 S 1 1 1 invalidate of a from CPU A
S 1 S 1 I S 1 1 1 invalidate ack. of a from CPU B
M 1 S 1 I S 1 1 1



MESI Example: Happened Before Model
Idea: each cache line one process, A caches b=0 as E, B caches a=0 as E

a

St[a]
A

B

b

a
b

Ld[b] Ld[b]
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b=1

Ld[b] Ld[a]
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w
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e
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ck
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w
rit

e
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ck

ca
ch

e
ca

ch
e

a=1
St[b]

b==0 b==0 b==0 a==1

Observations:
each memory access must complete before executing next instruction add edge

second execution of test b==0 stays within cache no traffic
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Summary: MESI Cache Coherence Protocol

Sequential Consistency:
specifies that the system must appear to execute all threads’ loads and stores to all
memory locations in a total order that respects the program order of each thread
a characterization of well-behaved programs
a model for differing speed of execution
for fixed paths through the threads and a total order between accesses to the same
variables: executions can be illustrated by a happened-before diagram with one
process per variable

Cache Coherency:
A cache coherent system must appear to execute all threads’ loads and stores to a
single memory location in a total order that respects the program order of each thread
MESI cache coherence protocol ensures SC for processors with caches



Introducing Store Buffers: Out-Of-Order Stores



Out-of-Order Execution
! performance problem: writes always stall

Thread A

a = 1; // A.1
b = 1; // A.2

Thread B

while (b == 0) {}; // B.1
assert(a == 1); // B.2
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b==0 b==0 b==0 a==1

 CPU A should continue executing after a = 1;
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Store Buffers

! Abstract Machine Model: defines semantics of memory accesses

CPU A CPU B

cache

buffer

cache

Memory

store
buffer
store

put each store into a store buffer and continue
execution
Store buffers apply stores in various orders:
I FIFO (Sparc/x86-TSO)
I unordered (Sparc PSO)

! program order still needs to be observed locally
I store buffer snoops read channel and
I on matching address, returns the youngest value in buffer



TSO Model: Formal Spec [SI92] [SHW11, p. 42]

Definition (Total Store Order)

1 The store order wrt. memory ( v ) is total

∀a,b ∈ addr i,j ∈CPU (Sti[a] v Stj[b]) ∨ (Stj[b] v Sti[a])
2 Stores in program order ( ≤ ) are embedded into the memory order ( v )

Sti[a] ≤ Sti[b]⇒ Sti[a] v Sti[b]
3 Loads preceding an other operation (wrt. program order ≤ ) are embedded into the memory order ( v )

Ldi[a] ≤ Opi[b]⇒ Ldi[a] v Opi[b]
4 A load’s value is determined by the latest write as observed by the local CPU

val(Ldi[a]) = val(Stj[a] | Stj[a] =max
v

({Stk[a] | Stk[a] v Ldi[a]} ∪ {Sti[a] | Sti[a] ≤ Ldi[a]}))

Particularly, one ordering property from SC is not guaranteed:

Sti[a] ≤ Ldi[b] 6⇒ Sti[a] v Ldi[b]

! Local stores may be observed earlier by local loads then from somewhere else!



Happened-Before Model for TSO
Thread A

a = 1;
printf("%d",b);

Thread B

b = 1;
printf("%d",a);

Assume cache A contains: a: S0, b: S0, cache B contains: a: S0, b: S0
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TSO in the Wild: x86

The x86 CPU, powering desktops and servers around the world is a common
representative of a TSO Memory Model based CPU.

FIFO store buffers keep quite strong consistency properties
The major obstacle to Sequential Consistency is

Sti[a] ≤ Ldi[b] 6⇒ Sti[a] v Ldi[b]

I modern x86 CPUs provide the mfence instruction
I mfence orders all memory instructions:

Opi ≤ mfence() ≤ Opi
′ ⇒ Opi v Opi

′

a fence between write and loads gives sequentially consistent CPU behavior (and is as
slow as a CPU without store buffer)

 use fences only when necessary



PSO Model: Formal Spec [SI92] [SHW11, p. 58]
Definition (Partial Store Order)

1 The store order wrt. memory ( v ) is total

∀a,b ∈ addr i,j ∈CPU (Sti[a] v Stj[b]) ∨ (Stj[b] v Sti[a])
2 Fenced stores in program order ( ≤ ) are embedded into the memory order ( v )

Sti[a] ≤ sfence() ≤ Sti[b]⇒ Sti[a] v Sti[b]
3 Stores to the same address in program order ( ≤ ) are embedded into the memory order ( v )

Sti[a] ≤ Sti[a]′ ⇒ Sti[a] v Sti[a]′

4 Loads preceding another operation (wrt. program order ≤ ) are embedded into the memory order ( v )

Ldi[a] ≤ Opi[b]⇒ Ldi[a] v Opi[b]
5 A load’s value is determined by the latest write as observed by the local CPU

val(Ldi[a]) = val(Stj[a] | Stj[a] =max
v

({Stk[a] | Stk[a] v Ldi[a]} ∪ {Sti[a] | Sti[a] ≤ Ldi[a]}))

! Now also stores are not guaranteed to be in order any more:

Sti[a] ≤ Sti[b] 6⇒ Sti[a] v Sti[b]

 What about sequential consistency for the whole system?



Happened-Before Model for PSO
Thread A

a = 1;
b = 1;

Thread B

while (b == 0) {};
assert(a == 1);

Assume cache A contains: a: S0, b: E0, cache B contains: a: S0, b: I
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Explicit Synchronization: Write Barrier

Overtaking of messages may be desirable and does not need to be prohibited in general.
generalized store buffers render programs incorrect that assume sequential
consistency between different CPUs
whenever a store in front of another operation in one CPU must be observable in this
order by a different CPU, an explicit write barrier has to be inserted
I a write barrier marks all current store operations in the store buffer
I the next store operation is only executed when all marked stores in the buffer have completed



Happened-Before Model for Write Barriers
Thread A

a = 1;
sfence();
b = 1;

Thread B

while (b == 0) {};
assert(a == 1);

Assume cache A contains: a: S0, b: E0, cache B contains: a: S0, b: I
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Further weakening the model: O-o-O Reads



Relaxed Memory Order
Communication of cache updates is still costly:

a cache-intense computation can fill up store buffers in CPUs
 waiting for invalidation acknoledgements may still happen

invalidation acknoledgements are delayed on busy caches

CPU A CPU B

cache

store

cache

buffer

Memory

queue
invalidate

queue
invalidate

store
buffer

 immediately acknowledge an invalidation and
apply it later
put each invalidate message into an invalidate
queue
if a MESI message needs to be sent regarding
a cache line in the invalidate queue then wait
until the line is invalidated

! local loads and stores do not consult the
invalidate queue

 What about sequential consistency?



RMO Model: Formal Spec [SI94, p. 290]
Definition (Relaxed Memory Order)

1 Fenced memory accesses in program order ( ≤ ) are embedded into the memory order ( v )

Opi[a] ≤ mfence() ≤ Opi[b]⇒ Opi[a] v Opi[b]
2 Stores to the same address in program order ( ≤ ) are embedded into the memory order ( v )

Opi[a] ≤ Sti[a]′ ⇒ Opi[a] v Sti[a]′

3 Operations dependent on a load (wrt. dependence → ) are embedded in the memory order ( v )

Ldi[a]→ Opi[b]⇒ Ldi[a] v Opi[b]
4 A load’s value is determined by the latest write as observed by the local CPU

val(Ldi[a]) = val(Stj[a] | Stj[a] =max
v

({Stk[a] | Stk[a] v Ldi[a]} ∪ {Sti[a] | Sti[a] ≤ Ldi[a]}))

! Now we need the notion of dependence → :
Memory access to the same address: Sti[a] ≤ Ldi[a] ⇒ Sti[a]→ Ldi[a]
Register reads are dependent on latest register writes:
Ldi[a]′′ =max

≤
(Ldi[a]′ | targetreg(Ldi[a]′) = srcreg(Sti[b]) ∧ Ldi[a]′ ≤ Sti[b]) ⇒ Ldi[a]′′ → Sti[b]

Stores within branched blocks are dependent on branch conditionals:

(Opi[a] ≤ Sti[b]) ∧ Opi[a]→ condbranch ≤ Sti[b] ⇒ Opi[a]→ Sti[b]



Happened-Before Model for Invalidate Queues
Thread A

a = 1;
sfence();
b = 1;

Thread B

while (b == 0) {};
assert(a == 1);

Assume cache A contains: a: S0, b: E0, cache B contains: a: S0, b: I
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Explicit Synchronization: Read Barriers

Read accesses do not consult the invalidate queue.
might read an out-of-date value
need a way to establish sequential consistency between writes of other processors and
local reads
insert an explicit read barrier before the read access
I a read barrier marks all entries in the invalidate queue
I the next read operation is only executed once all marked invalidations have completed

a read barrier before each read gives sequentially consistent read behavior (and is as
slow as a system without invalidate queue)

 match each write barrier in one process with a read barrier in another process



Happened-Before Model for Read Barriers

Thread A

a = 1;
sfence();
b = 1;

Thread B

while (b == 0) {};
lfence();
assert(a == 1);
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Example: The Dekker Algorithm on RMO Systems



Using Memory Barriers: the Dekker Algorithm
Mutual exclusion of two processes with busy waiting.

//flag[] is boolean array; and turn is an integer
flag[0] = false;
flag[1] = false;
turn = 0; // or 1

P0:
flag[0] = true;
while (flag[1] == true)
if (turn != 0) {

flag[0] = false;
while (turn != 0) {
// busy wait

}
flag[0] = true;

}
// critical section
turn = 1;
flag[0] = false;

P1:
flag[1] = true;
while (flag[0] == true)
if (turn != 1) {

flag[1] = false;
while (turn != 1) {

// busy wait
}
flag[1] = true;

}
// critical section
turn = 0;
flag[1] = false;
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The Idea Behind Dekker
Communication via three variables:

flag[i]==true process Pi wants to enter its critical section
turn==i process Pi has priority when both want to enter

P0:
flag[0] = true;
while (flag[1] == true)

if (turn != 0) {
flag[0] = false;
while (turn != 0) {
// busy wait

}
flag[0] = true;

}
// critical section
turn = 1;
flag[0] = false;

In process Pi:
if P1−i does not want to enter, proceed
immediately to the critical section

 flag[i] is a lock and may be implemented as
such
if P1−i also wants to enter, wait for turn to be
set to i

while waiting for turn, reset flag[i] to
enable P1−i to progress
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Dekker’s Algorithm and RMO
Problem: Dekker’s algorithm requires sequential consistency.
Idea: insert memory barriers between all variables common to both threads.

P0:
flag[0] = true;
sfence();
while (lfence(), flag[1] == true)
if (lfence(), turn != 0) {

flag[0] = false;
sfence();
while (lfence(), turn != 0){
// busy wait

}
flag[0] = true;
sfence();

}
// critical section
turn = 1;
sfence();
flag[0] = false; sfence();

insert a load memory barrier lfence()
in front of every read from common
variables
insert a write memory barrier sfence()
after writing a variable that is read in the
other thread
the lfence() of the first iteration of
each loop may be combined with the
preceding sfence() to an mfence()
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Summary: Relaxed Memory Models

Highly optimized CPUs may use a relaxed memory model:
reads and writes are not synchronized unless requested by the user
many kinds of memory barriers exist with subtle differences

 ARM, PowerPC, Alpha, ia-64, even x86 ( SSE Write Combining)

 memory barriers are the “lowest-level” of synchronization



Discussion

Memory barriers reside at the lowest level of synchronization primitives.

Where are they useful?
when blocking should not de-schedule threads
when several processes implement automata and coordinate their transitions via
common synchronized variables

 protocol implementations
 OS provides synchronization facilities based on memory barriers

Why might they not be appropriate?
difficult to get right, best suited for specific well-understood algorithms
often synchronization with locks is as fast and easier
too many fences are costly if store/invalidate buffers are bottleneck
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Memory Models and Compilers

Before Optimization

int x = 0;
for (int i=0;i<100;i++){

x = 1;
printf("%d",x);

}

After Optimization

int x = 1;
for (int i=0;i<100;i++){

printf("%d",x);
}

Standard Program Optimizations

comprises loop-invariant code motion and dead store elimination, e.g.

! having another thread executing x = 0; changes observable behaviour depending on
optimizing or not

 Compiler also depends on consistency guarantees
 Demand for Memory Models on language level
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Memory Models and C-Compilers

Keeping semantics I

int x = 0;
for (int i=0;i<100;i++){

sfence();
x = 1;
printf("%d",x);

}

Keeping semantics II

volatile int x = 0;
for (int i=0;i<100;i++){

x = 1;
printf("%d",x);

}

Compilers may also reorder store instructions
Write barriers keep the compiler from reordering across
The specification of volatile keeps the C-Compiler from reordering memory
accesses to this address
Java-Compilers even generate barriers around accesses to volatile variables
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Summary

Learning Outcomes

1 Strict Consistency
2 Happened-before Relation
3 Sequential Consistency
4 The MESI Cache Model
5 TSO: FIFO store buffers
6 PSO: store buffers
7 RMO: invalidate queues
8 Reestablishing Sequential Consistency with

memory barriers
9 Dekker’s Algorithm for Mutual Exclusion



Future Many-Core Systems: NUMA

Many-Core Machines’ Read Responses congest the bus

In that case: Intel’s MESIF (Forward) to reduce communication overhead.

! But in general, Symmetric multi-processing (SMP) has its limits:
a memory-intensive computation may cause contention on the bus
the speed of the bus is limited since the electrical signal has to travel to all participants
point-to-point connections are faster than a bus, but do not provide possibility of
forming consensus

 use a bus locally, use point-to-point links globally: NUMA
non-uniform memory access partitions the memory amongst CPUs
a directory states which CPU holds a memory region
Interprocess communication between Cache-Controllers (ccNUMA): onchip on
Opteron or in chipset on Itanium
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Overhead of NUMA Systems

Communication overhead in a NUMA system.

8 An Introduction to the Intel® QuickPath Interconnect

With the production of processors based on next-
generation, 45-nm Hi-k Intel® Core™ 
microarchitecture, the Intel® Xeon® processor 
fabric will transition from a DHSI, with the 
memory controller in the chipset, to a distributed 
shared memory architecture using Intel® 
QuickPath Interconnects. This configuration is 
shown in Figure 6. With its narrow uni-directional 
links based on differential signaling, the Intel® 
QuickPath Interconnect is able to achieve 
substantially higher signaling rates, thereby 
delivering the processor interconnect bandwidth 
necessary to meet the demands of future 
processor generations. 

Figure 6. Intel® QuickPath 
Interconnect

Interconnect Overview

The Intel® QuickPath Interconnect is a high-
speed point-to-point interconnect. Though 
sometimes classified as a serial bus, it is more 
accurately considered a point-to-point link as data 
is sent in parallel across multiple lanes and 
packets are broken into multiple parallel 
transfers. It is a contemporary design that uses 

some techniques similar to other point-to-point 
interconnects, such as PCI Express* and Fully-
Buffered DIMMs. There are, of course, some 
notable differences between these approaches, 
which reflect the fact that these interconnects 
were designed for different applications. Some of 
these similarities and differences will be explored 
later in this paper.

Figure 7 shows a schematic of a processor with 
external Intel® QuickPath Interconnects. The 
processor may have one or more cores. When 
multiple cores are present, they may share 
caches or have separate caches. The processor 
also typically has one or more integrated memory 
controllers. Based on the level of scalability 
supported in the processor, it may include an 
integrated crossbar router and more than one 
Intel® QuickPath Interconnect port (a port 
contains a pair of uni-directional links).

Figure 7. Block Diagram of Processor 
with Intel® QuickPath 
Interconnects
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Processors in a NUMA system may be fully or
partially connected.
The directory of who stores an address is
partitioned amongst processors.

A cache miss that cannot be satisfied by the local
memory at A:

A sends a retrieve request to processor B owning
the directory
B tells the processor C who holds the content
C sends data (or status) to A and sends
acknowledge to B

B completes transmission by an acknowledge to A
source: [Int09]
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Cache Coherence vs. Memory Consistency Models

Sequential Consistency specifies that the system must appear to execute all threads’
loads and stores to all memory locations in a total order that respects the program
order of each thread
A cache coherent system must appear to execute all threads’ loads and stores to a
single memory location in a total order that respects the program order of each thread

All discussed memory models (SC, TSO, PSO, RMO) provide cache coherence!
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