TECHNISCHE UNIVERSITAT MUNCHEN
FAKULTAT FUR INFORMATIK

Programming Languages

Metaprogramming

Dr. Michael Petter
Winter 2019/20

i

“Let’s write a program, which writes a program*

Learning outcomes

@ Compilers and Compiler Tools

@ Preprocessors for syntax rewriting
© Reflection and Metaclasses

© Metaobject Protocol

@ Macros

Motivation U

@ Aspect Oriented Programming establishes programmatic refinement of program code
@ How about establishing support for program refinement in the language concept itself?
@ Treat program code as data

~> Metaprogramming

Motivation U

@ Aspect Oriented Programming establishes programmatic refinement of program code
@ How about establishing support for program refinement in the language concept itself?
@ Treat program code as data

~> Metaprogramming

Metaprogramming

@ Treat programs as data
@ Read, analyse or transform (other) programs
@ Program modifies itself during runtime

Codegeneration Tools

Codegeneration Tools

Compiler Construction

In Compiler Construction, there are a lot of codegeneration tools, that compile DSLs to
target source code. Common examples are lex and bison.

Example: lex:

lex generates a table lookup based implementation of a finite automaton corresponding to
the specified disjunction of regular expressions.

%{ #include <stdio.h>

h}
hh /* Lexical Patterns */
[0-9]+ { printf("integer: %s\n", yytext); }
-I\n { /* ignore */ }
hh
int main(void) {
yylex();
return 0O;
¥

~~ generates 1.7k lines of C

Codegeneration via Preprocessor

Compiletime-Codegeneration i

String Rewriting Systems

A Text Rewriting System provides a set of grammar-like rules (—Macros) which are meant
to be applied to the target text.

Example: C Preprocessor (CPP)

#define min(X,Y) ((X <Y)7 (X) : (V))
x = min(5,x); // ((5<x)? (5B) : (x))
min(++x,y+5); // ((++x < y+5)? (++x) : (y+5))

X

Compiletime-Codegeneration

String Rewriting Systems

A Text Rewriting System provides a set of grammar-like rules (—Macros) which are meant
to be applied to the target text.

Example: C Preprocessor (CPP)

#define min(X,Y) ((X <Y)7 (X) : (YV))
x = min(5,x); // ((5<x)? (B) : (x))
x = min(++x,y+b); // ((++x < y+5)? (++x) : (y+5))

A Nesting, Precedence, Binding, Side effects, Recursion, ...

@ Parts of Macro parameters can bind to context operators depending on the precedence
and binding behaviour

@ Side effects are recomputed for every occurance of the Macro parameter

@ Any (indirect) recursive replacement stops the rewriting process

@ Name spaces are not separated, identifiers duplicated

Compiletime-Codegeneration

Example application: Language constructs I:

ATOMIC (globallock) {
i--;

#define ATOMIC(lock) \
acquire (&lock) ;\
{ /* user code */ } \
release (&lock) ;

A\ We explicitely want to imitate constructs
like while loops, thus we do not want to use
round brackets for code block delimiters

Compiletime-Codegeneration

Example application: Language constructs I:

ATOMIC (globallock) {
i--;

#define ATOMIC(lock) \
acquire(&lock) ;\
{ /* user code */ } \
release (&lock) ;

/\ We explicitely want to imitate constructs
like while loops, thus we do not want to use
round brackets for code block delimiters

/\ How can we bind the block, following the
ATOMIC to the usercode fragment?

Particularly in a situation like this?
if (i>0)

ATOMIC (mylock) {
i--;

Compiletime-Codegeneration

Prepend code to usercode

if (1)
/* prepended code */
goto body;
else
body:
{/* block following the macro */}

yes

|

/* user block */

i

Compiletime-Codegeneration

Prepend code to usercode

if (1)
/* prepended code */
goto body;
else
body:
{/* block following the macro */}

yes
/* prepended code*/

nel goto

/* user block */ |4——

i

continue

Compiletime-Codegeneration

Append code to usercode
Prepend code to usercode

if (1)
if (1) goto body;
else
/* prepended code */ while (1)
goto body; if (1) {
else /* appended code */
body: break;
{/* block following the macro */} s
else body:

{/* block following the macro */}

yes
/* prepended code*/
|

goto

/* user block */ |4———

continue

i

Compiletime-Codegeneration

Append code to usercode
Prepend code to usercode

if (1)
if (1) goto body;
else
/* prepended code */ while (1)
goto body; if (1) {
else /* appended code */
body : break;
{/* block following the macro */} ¥
else body:
{/* block following the macro */}
yes
‘—o /* prepended code*/
nel goto
/* user block */ |4——

continue breat

i

Compiletime-Codegeneration

All in one

if (1) {
/* prepended code */
goto body;
} else
while (1)
if (1 {
/* appended code */
break;
}
else body:
{ /* block following the expanded macro */ }

Compiletime-Codegeneration

#define concat_(a, b) a#i#b
#define label(prefix, lnum) concat_(prefix,lnum)
#define ATOMIC (lock) \
if (1) {
acquire(&lock) ;
goto label(body,__LINE__);
} else
while (1)
if (1) {
release(&lock) ;
break;
}
else
label (body, __LINE__):

P

A Reusability

labels have to be created dynamically in order for the macro to be reusable (— __ LINE_)

Homoiconic Metaprogramming

Homoiconic Programming

Homoiconicity

In a homoiconic language, the primary representation of programs is also a data structure
in a primitive type of the language itself.

data is code
code is data

@ Metaclasses and Metaobject Protocol
@ (Hygienic) Macros

Reflection

Reflective Metaprogramming

Type introspection

A language with Type introspection enables to examine the type of an object at runtime.

Example: Java instanceof

public boolean equals(Object o){
if (!'(o instanceof Natural)) return false;
return ((Natural)o).value == this.value;

3

Reflective Metaprogramming

Metaclasses (— code is data)

Example: Java Reflection / Metaclass java.lang.Class

static void fun(String param){
Object incognito = Class.forName(param).newInstance();
Class meta = incognito.getClass(); // obtain Metaobject
Field[] fields = meta.getDeclaredFields();
for(Field £ : fields){

T3

Class t = f.getType();

Object v = f.get(o);

if (t == boolean.class && Boolean.FALSE.equals(v))

// found default value

else if(t.isPrimitive() && ((Number) v).doubleValue() == 0)
// found default value

else if(!'t.isPrimitive() && v == null)

// found default value

Metaobject Protocol

Metaobject Protocol
Metaobject Protocol (MOP ['])

Example: Lisp’'s CLOS metaobject protocol

... offers an interface to manipulate the underlying implementation of CLOS to adapt the
system to the programmer’s liking in aspects of

@ creation of classes and objects

@ creation of new properties and methods

@ causing inheritance relations between classes

@ creation generic method definitions

@ creation of method implementations

@ creation of specializers (— overwriting, multimethods)

@ configuration of standard method combination (— before,after,around,
call-next-method)

@ simple or custom method combinators (— +,append,max,...)

@ addition of documentation

Hygienic Macros

Homoiconic Runtime-Metaprogramming U

Clojure! [

Clojure programs are represented after parsing in form of symbolic expressions
(S-Expressions), consisting of nested trees:

S-Expressions

S-Expressions are either
@ an atom
@ an expression of the form (z.y) with z, y being S-Expressions

Established shortcut notation for lists:

(acl T2 .’173) = (.131 . (:EQ . (:1:3 . ())))

Homoiconic Runtime-Metaprogramming U

Special Forms

Special forms differ in the way that they are interpreted by the clojure runtime from the
standard evaluation rules.

Language Implementation Idea: reduce every expression to special forms:

(def symbol doc? init?)

(do expr*)

(if test then else?)

(let [binding*] expr*)

(eval form) ; evaluates the datastructure form
(quote form) ; yields the unevaluated form

(var symbol)

(fn name? ([params*] expr*)+)

(loop [binding*] exprx*)

(recur expr#*) ; rebinds and jumps to loop or fn

3 e e e

Homoiconic Runtime-Metaprogramming U

Macros are configurable syntax/parse tree transformations.

Language Implementation Idea: define advanced language features in macros, based
very few special forms or other macros.

Example: While loop:

(macroexpand '(while a b))
; => (loop* [] (clojure.core/when a b (recur)))

(macroexpand '(when a b))
;=> (if a (do b))

Homoiconic Runtime-Metaprogramming
Macros can be written by the programmer in form of S-Expressions:

(defmacro infix
"converting infix to prefix"
[infixed]
(list (second infixed) (first infixed) (last infixed)))

...producing

(infix (1 + 1))

; => 2

(macroexpand '(infix (a + b)))
; => (+ ab)

A Quoting

Macros and functions are directly interpreted, if not quoted via

(quote keyword) ; or equivalently:
'keyword
; => keyword

Homoiconic Runtime-Metaprogramming

(defmacro facl [n] (defn fac2 [n]
(if (= n 0) (if (= n 0)
1 1
(list '* n (list 'facl (- n 1) (* n (fac2 (- n 1)
M))

(facl 4) (fac2 4)
; => 24 ; => 24
...produces

(macroexpand '(facl 4))
; => (x 4 (facl 3))

(macroexpand-all '(facl 4))
3 => (¢4 (x 3 (2 (x11))))

~~ why bother?

Homoiconic Runtime-Metaprogramming U

A Macros vs. Functions

@ Macros as static AST Transformations, vs. Functions as runtime control flow
manipulations

@ Macros replicate parameter forms, vs. Functions evaluate parameters once

~~ Macro parameters are uninterpreted, not necessarily valid expressions, vs. Functions
parameters need to be valid expressions

Homoiconic Runtime-Metaprogramming U

A Macro Hygiene

Shadowing of variables may be an issue in macros, and can be avoided by generated
symbols!

(def variable 42)

(macro mac [&stufftodo] ~(let [variable 4711] ~@stufftodo))
(mac (println variable))

; => can't let qualified name: variable

(macro mac [&stufftodo] ~(let [variable# 4711] ~@stufftodo))

~~» Symbol generation to avoid namespace collisions!

Further reading...

[1] R. P. Gabriel.
Gregor kiczales, jim des rivieres, and daniel g. bobrow, the art of the metaobject
protocol.
Artif. Intell., 61(2):331-342, 1993.

[2] D. Higginbotham.
Clojure for the Brave and True: Learn the Ultimate Language and Become a Better

Programmer.
No Starch Press, San Francisco, CA, USA, 1st edition, 2015.

[3] S. Tatham.

Metaprogramming custom control structures in C.

https://www.chiark.greenend.org.uk/~sgtatham/mp/, 2012.
[Online; accessed 07-Feb-2018].

https://www.chiark.greenend.org.uk/~sgtatham/mp/

	Introduction
	Further materials

