
Programming Languages

Mixins and Traits

TECHNISCHE UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR INFORMATIK

Dr. Michael Petter
Winter 2019/20

What modularization techiques are there besides multiple implementation
inheritance?

Outline
Design Problems

1 Inheritance vs Aggregation
2 (De-)Composition Problems

Inheritance in Detail

1 A Model for single inheritance
2 Inheritance Calculus with Inheritance

Expressions
3 Modeling Mixins

Mixins in Languages

1 Simulating Mixins
2 Native Mixins

Cons of Implementation Inheritance

1 Lack of finegrained Control
2 Inappropriate Hierarchies

A Focus on Traits

1 Separation of Composition and
Modeling

2 Trait Calculus

Traits in Languages

1 (Virtual) Extension Methods
2 Squeak

Reusability ≡ Inheritance?

Codesharing in Object Oriented Systems is often inheritance-centric
Inheritance itself comes in different flavours:
I single inheritance
I multiple inheritance

All flavours of inheritance tackle problems of decomposition and composition

The Adventure Game

Door

LockedDoor
canOpen(Person p)

ShortDoor
canPass(Person p)

ShortLockedDoor
canOpen(Person p)
canPass(Person p)

?

The Adventure Game
Door

Locked
canOpen(Person p)

Short
canPass(Person p)

ShortLockedDoor
canOpen(Person p)
canPass(Person p)

<interface>Doorlike
canPass(Person p)

canOpen(Person p)

! Aggregation & S.-Inheritance

Door must explicitely provide chaining
Doorlike must anticipate wrappers

⇒ Multiple Inheritance X

The Wrapper

SocketStreamFileStream

SynchRW

write()
read()

write()
read()

releaseLock()
acquireLock()

?

! Unclear relations

 Cannot inherit from both in turn with Multiple Inheritance
(Many-to-One instead of One-to-Many Relation)

The Wrapper – Aggregation Solution

Stream

SocketStreamFileStream

SynchRW

write()
read()

write()
read()

write()
read()

write()
read()

releaseLock()
acquireLock() ! Aggregation

Undoes specialization
Needs common ancestor

The Wrapper – Multiple Inheritance Solution

SocketStreamFileStream SynchRW

write()
read()

write()
read()

releaseLock()
acquireLock()

SynchedFileStream

write()
read()

SynchedSocketStream

write()
read()

! Duplication

With multiple inheritance, read/write Code is essentially identical but duplicated for each
particular wrapper

Fragility

SocketStreamFileStream

SynchRW

write()
read()

write()
read()

releaseLock()
acquireLock()

SynchedFileStream SynchedSocketStream

! Inappropriate Hierarchies

Implemented methods (acquireLock/releaseLock) to high

(De-)Composition Problems

All the problems of
Relation
Duplication
Hierarchy

are centered around the question

“How do I distribute functionality over a hierarchy”

 functional (de-)composition

Classes and Methods
The building blocks for classes are

a countable set of method names N
a countable set of method bodies B

Classes map names to elements from the flat lattice B (called bindings), consisting of:
method bodies ∈ B or classes ∈ C
⊥ abstract
> in conflict

and the partial order ⊥ v b v > for each b ∈ B

Definition (Abstract Class ∈ C)

A general function c : N 7→ B is called a class.

Definition (Interface and Class)

A class c is called (with pre beeing the preimage)

interface iff ∀n∈pre(c) . c(n) = ⊥.
abstract class iff ∃n∈pre(c) . c(n) = ⊥.

concrete class iff ∀n∈pre(c) . ⊥ @ c(n) @ >.

⊥

>

n2 m1 m2 c1. . .n1 c2

Computing with Classes and Methods

Definition (Family of classes C)

We call the set of all maps from names to bindings the family of classes C := N 7→ B.

Several possibilites for composing maps C � C:
the symmetric join t, defined componentwise:

(c1 t c2)(n) = b1 t b2 =

b2 if b1 = ⊥ or n /∈ pre(c1)
b1 if b2 = ⊥ or n /∈ pre(c2)
b2 if b1 = b2

> otherwise

where bi = ci(n)

in contrast, the asymmetric join t� , defined componentwise:

(c1 t� c2)(n) =

{
c1(n) if n ∈ pre(c1)
c2(n) otherwise

Example: Smalltalk-Inheritance
Smalltalk inheritance

children’s methods dominate parents’ methods
is the archetype for inheritance in mainstream languages like Java or C#
inheriting smalltalk-style establishes a reference to the parent

Definition (Smalltalk inheritance (.))

Smalltalk inheritance is the binary operator . : C × C 7→ C, definied by
c1 . c2 = {super 7→ c2} t� (c1 t� c2)

Example: Doors

Door = {canPass 7→ ⊥, canOpen 7→ ⊥}

LockedDoor = {canOpen 7→ 0x4204711} . Door

= {super 7→ Door} t� ({canOpen 7→ 0x4204711} t� Door)

= {super 7→ Door, canOpen 7→ 0x4204711, canPass 7→ ⊥}

Excursion: Beta-Inheritance
In Beta-style inheritance

the design goal is to provide security wrt. replacement of a method by a different
method.
methods in parents dominate methods in subclass
the keyword inner explicitely delegates control to the subclass

Definition (Beta inheritance (/))

Beta inheritance is the binary operator / : C × C 7→ C, definied by
c1 / c2 = {inner 7→ c1} t� (c2 t� c1)

Example (equivalent syntax):

class Person {

String name ="Axel Simon";

public String toString(){ return name+inner.toString();};

};

class Graduate extends Person {

public extension String toString(){ return ", Ph.D."; };

};

So what do we really want?

Adventure Game with Code Duplication

Door

LockedDoor
canOpen(Person p)

ShortDoor
canPass(Person p)

ShortLockedDoor
canOpen(Person p)
canPass(Person p)

Adventure Game with Mixins

Door<mixin>Locked

canOpen(Person p)

<mixin>Short

canPass(Person p)

ShortLockedDoor

canOpen(Person p)
canPass(Person p)

mixin

compose

Adventure Game with Mixins

class Door {

boolean canOpen(Person p) { return true; };

boolean canPass(Person p) { return p.size() < 210; };

}

mixin Locked {

boolean canOpen(Person p){

if (!p.hasItem(key)) return false; else return super.canOpen(p);

}

}

mixin Short {

boolean canPass(Person p){

if (p.height()>1) return false; else return super.canPass(p);

}

}

class ShortDoor = Short(Door);

class LockedDoor = Locked(Door);

mixin ShortLocked = Short o Locked;

class ShortLockedDoor = Short(Locked(Door));

class ShortLockedDoor2 = ShortLocked(Door);

Back to the blackboard!

Abstract model for Mixins
A Mixin is a unary second order type expression. In principle it is a curried version of the
Smalltalk-style inheritance operator. In certain languages, programmers can create such
mixin operators:

Definition (Mixin)

The mixin constructor mixin : C 7→ (C 7→ C) is a unary class function, creating a unary
class operator, defined by:

mixin(c) = λx . c . x

! Note: Mixins can also be composed ◦:

Example: Doors

Locked = {canOpen 7→ 0x1234}

Short = {canPass 7→ 0x4711}

Composed = mixin(Short) ◦ (mixin(Locked)) = λx . Short . (Locked . x)

= λx . {super 7→ (Locked . x)} t� ({canOpen 7→ 0x1234, canPass 7→ 0x4711} . x)

Wrapper with Mixins

SocketStreamFileStream

<mixin>SynchRW

write()
read()

write()
read()

releaseLock()
acquireLock()

SynchedFileStream

write()
read()

SynchedSocketStream

mixin

mixin

Mixins for wrappers

avoids duplication of read/write code
keeps specialization
even compatible to single inheritance systems

Mixins on Implementation Level

class Door {

boolean canOpen(Person p)...

boolean canPass(Person p)...

}

mixin Locked {

boolean canOpen(Person p)...

}

mixin Short {

boolean canPass(Person p)...

}

class ShortDoor

= Short(Door);

class ShortLockedDoor

= Short(Locked(Door));

...

ShortDoor d

= new ShortLockedDoor();

canPass()

Short

super

canOpen()

Locked

super

Door

...

...

! non-static super-References
 dynamic dispatching without

precomputed virtual table

Surely multiple inheritance is powerful enough to simulate mixins?

Simulating Mixins in C++

template <class Super>

class SyncRW : public Super {

public: virtual int read(){

acquireLock();

int result = Super::read();

releaseLock();

return result;

};

virtual void write(int n){

acquireLock();

Super::write(n);

releaseLock();

};

// ... acquireLock & releaseLock

};

Simulating Mixins in C++

template <class Super>

class LogOpenClose : public Super {

public: virtual void open(){

Super::open();

log("opened");

};

virtual void close(){

Super::close();

log("closed");

};

protected: virtual void log(char*s) { ... };

};

class MyDocument : public SyncRW<LogOpenClose<Document>> {};

True Mixins vs. C++ Mixins

True Mixins

super natively supported
Composable mixins
Hassle-free simple alternative to multiple
inheritance

C++ Mixins

Mixins reduced to templated
superclasses
Can be seen as coding pattern
C++ Type system not modular

 Mixins have to stay source code

Common properties of Mixins

Linearization is necessary
 Exact sequence of Mixins is relevant

Ok, ok, show me a language with native mixins!

Ruby

class Person

attr_accessor :size

def initialize

@size = 160

end

def hasKey

true

end

end

class Door

def canOpen (p)

true

end

def canPass(person)

person.size < 210

end

end

module Short

def canPass(p)

p.size < 160 and super(p)

end

end

module Locked

def canOpen(p)

p.hasKey() and super(p)

end

end

class ShortLockedDoor < Door

include Short

include Locked

end

p = Person.new

d = ShortLockedDoor.new

puts d.canPass(p)

Ruby
class Door

def canOpen (p)

true

end

def canPass(person)

person.size < 210

end

end

module Short

def canPass(p)

p.size < 160 and super(p)

end

end

module Locked

def canOpen(p)

p.hasKey() and super(p)

end

end

module ShortLocked

include Short

include Locked

end

class Person

attr_accessor :size

def initialize

@size = 160

end

def hasKey

true

end

end

p = Person.new

d = Door.new

d.extend ShortLocked

puts d.canPass(p)

Is Inheritance the Ultimate Principle in Reusability?

Lack of Control

CombatPlaneCameraPlane

MountablePlane

reload(Ammunition)download():pics

equipment
fuel

PoliceDrone

SpyCamera PrecisionGun
shoot() shoot()

equipment
equipment

! Control

Common base classes are shared or duplicated at class level

super as ancestor reference vs. qualified specification
 No fine-grained specification of duplication or sharing

Lack of Control

CombatPlaneCameraPlane

MountablePlane

reload(Ammunition)download():pics

equipment
fuel

PoliceDrone

SpyCamera PrecisionGun
shoot() shoot()

equipment
equipment

! Control

Common base classes are shared or duplicated at class level
super as ancestor reference vs. qualified specification

 No fine-grained specification of duplication or sharing

Inappropriate Hierachies

LinkedList
add(int, Object)

Stack

remove(int)
clear()

push(Object)

pop()
pushMany(Object...)

stackpointer: int

! Inappropriate Hierarchies

High up specified methods turn obsolete, but there is no statically safe way to remove
them

! Liskov Substitution Principle!

Inappropriate Hierachies

LinkedList
add(int, Object)

Stack

remove(int)
clear()

push(Object)

pop()
pushMany(Object...)

stackpointer: int

! Inappropriate Hierarchies

High up specified methods turn obsolete, but there is no statically safe way to remove
them

! Liskov Substitution Principle!

Is Implementation Inheritance even an Anti-Pattern?

Excerpt from the Java 8 API documentation for class Properties:
“Because Properties inherits from Hashtable, the put and putAll methods can
be applied to a Properties object. Their use is strongly discouraged as they allow
the caller to insert entries whose keys or values are not Strings. The setProperty

method should be used instead. If the store or save method is called on a “com-
promised” Properties object that contains a non-String key or value, the call will
fail. . . ”

! Misuse of Implementation Inheritance

Implementation Inheritance itself as a pattern for code reusage is often misused!
 All that is not explicitely prohibited will eventually be done!

Excerpt from the Java 8 API documentation for class Properties:
“Because Properties inherits from Hashtable, the put and putAll methods can
be applied to a Properties object. Their use is strongly discouraged as they allow
the caller to insert entries whose keys or values are not Strings. The setProperty

method should be used instead. If the store or save method is called on a “com-
promised” Properties object that contains a non-String key or value, the call will
fail. . . ”

! Misuse of Implementation Inheritance

Implementation Inheritance itself as a pattern for code reusage is often misused!
 All that is not explicitely prohibited will eventually be done!

The Idea Behind Traits

A lot of the problems originate from the coupling of implementation and modelling
Interfaces seem to be hierarchical
Functionality seems to be modular

! Central idea

Separate object creation from modelling hierarchies and composing functionality.

 Use interfaces to design hierarchical signature propagation
 Use traits as modules for assembling functionality
 Use classes as frames for entities, which can create objects

Traits – Composition
Definition (Trait ∈ T)

A class t is without attributes is called trait.

The trait sum + : T × T 7→ T is the componentwise least upper bound:

(c1 + c2)(n) = b1 t b2 =

b2 if b1 = ⊥ ∨ n /∈ pre(c1)
b1 if b2 = ⊥ ∨ n /∈ pre(c2)
b2 if b1 = b2

> otherwise

with bi = ci(n)

Trait-Expressions also comprise:

exclusion − : T ×N 7→ T : (t− a)(n) =

{
undef if a = n

t(n) otherwise

aliasing [→] : T ×N ×N 7→ T : t[a→ b](n) =

{
t(n) if n 6= a

t(b) if n = a

Traits t can be connected to classes c by the asymmetric join:

(c t� t)(n) =

{
c(n) if n ∈ pre(c)
t(n) otherwise

Usually, this connection is reserved for the last composition level.

Traits – Concepts
Trait composition principles

Flat ordering All traits have the same precedence under +
 explicit disambiguation with aliasing and exclusion

Precedence Under asymmetric join t� , class methods take precedence over trait
methods

Flattening After asymmetric join t� : Non-overridden trait methods have the same
semantics as class methods

! Conflicts . . .

arise if composed traits map methods with identical names to different bodies

Conflict treatment

X Methods can be aliased (→)
X Methods can be excluded (−)
X Class methods override trait methods and sort out conflicts (t�)

Can we augment classical languages by traits?

Extension Methods (C#)

Central Idea:

Uncouple method definitions from class bodies.

Purpose:
retrospectively add methods to complex types
 external definition
especially provide definitions of interface methods
 poor man’s multiple inheritance!

Syntax:

1 Declare a static class with definitions of static methods
2 Explicitely declare first parameter as receiver with modifier this
3 Import the carrier class into scope (if needed)
4 Call extension method in infix form with emphasis on the receiver

public class Person{

public int size = 160;

public bool hasKey() { return true;}

}

public interface Short {}

public interface Locked {}

public static class DoorExtensions {

public static bool canOpen(this Locked leftHand, Person p){

return p.hasKey();

}

public static bool canPass(this Short leftHand, Person p){

return p.size<160;

}

}

public class ShortLockedDoor : Locked,Short {

public static void Main() {

ShortLockedDoor d = new ShortLockedDoor();

Console.WriteLine(d.canOpen(new Person()));

}

}

Extension Methods as Traits

Extension Methods

transparently extend arbitrary types
externally
provide quick relief for plagued
programmers

. . . but not traits

Interface declarations empty, thus kind of
purposeless
Flattening not implemented
Static scope only

Static scope of extension methods causes unexpected errors:

public interface Locked {

public bool canOpen(Person p);

}

public static class DoorExtensions {

public static bool canOpen(this Locked leftHand, Person p){

return p.hasKey();

}

}

Extension Methods as Traits

Extension Methods

transparently extend arbitrary types
externally
provide quick relief for plagued
programmers

. . . but not traits

Interface declarations empty, thus kind of
purposeless
Flattening not implemented
Static scope only

Static scope of extension methods causes unexpected errors:

public interface Locked {

public bool canOpen(Person p);

}

public static class DoorExtensions {

public static bool canOpen(this Locked leftHand, Person p){

return p.hasKey();

}

}

! Extension methods cannot override abstract signatures

Virtual Extension Methods (Java 8)
Java 8 advances one step further:

interface Door {

boolean canOpen(Person p);

boolean canPass(Person p);

}

interface Locked {

default boolean canOpen(Person p) { return p.hasKey(); }

}

interface Short {

default boolean canPass(Person p) { return p.size<160; }

}

public class ShortLockedDoor implements Short, Locked, Door {

}

! Precedence
Still, default methods do not override methods
from abstract classes when composed

Implementation

. . . consists in adding an interface phase to
invokevirtual’s name resolution

Traits as General Composition Mechanism

! Central Idea

Separate class generation from hierarchy specification and functional modelling
1 model hierarchical relations with interfaces
2 compose functionality with traits
3 adapt functionality to interfaces and add state via glue code in classes

Simplified multiple Inheritance without adverse effects

So let’s do the language with real traits?!

Squeak

Smalltalk

Squeak is a smalltalk implementation, extended with a system for traits.

Syntax:
name: param1 and: param2

declares method name with param1 and param2

| ident1 ident2 |

declares Variables ident1 and ident2

ident := expr

assignment
object name:content

sends message name with content to object (≡ call: object.name(content))
.

line terminator
^ expr

return statement

Traits in Squeak

Trait named: #TRStream uses: TPositionableStream

on: aCollection

self collection: aCollection.

self setToStart.

next

^ self atEnd

ifTrue: [nil]

ifFalse: [self collection at: self nextPosition].

Trait named: #TSynch uses: {}

acquireLock

self semaphore wait.

releaseLock

self semaphore signal.

Trait named: #TSyncRStream uses: TSynch+(TRStream@(#readNext -> #next))

next

| read |

self acquireLock.

read := self readNext.

self releaseLock.

^ read.

Disambiguation

Traits vs. Mixins vs. Class-Inheritance

All different kinds of type expressions:
Definition of curried second order type operators + Linearization

Finegrained flat-ordered composition of modules
Definition of (local) partial order on precedence of types wrt. MRO
Combination of principles

Explicitly: Traits differ from Mixins
Traits are applied to a class in parallel, Mixins sequentially
Trait composition is unordered, avoiding linearization effects
Traits do not contain attributes, avoiding state conflicts
With traits, glue code is concentrated in single classes

Disambiguation

Traits vs. Mixins vs. Class-Inheritance

All different kinds of type expressions:
Definition of curried second order type operators + Linearization
Finegrained flat-ordered composition of modules

Definition of (local) partial order on precedence of types wrt. MRO
Combination of principles

Explicitly: Traits differ from Mixins
Traits are applied to a class in parallel, Mixins sequentially
Trait composition is unordered, avoiding linearization effects
Traits do not contain attributes, avoiding state conflicts
With traits, glue code is concentrated in single classes

Disambiguation

Traits vs. Mixins vs. Class-Inheritance

All different kinds of type expressions:
Definition of curried second order type operators + Linearization
Finegrained flat-ordered composition of modules
Definition of (local) partial order on precedence of types wrt. MRO

Combination of principles

Explicitly: Traits differ from Mixins
Traits are applied to a class in parallel, Mixins sequentially
Trait composition is unordered, avoiding linearization effects
Traits do not contain attributes, avoiding state conflicts
With traits, glue code is concentrated in single classes

Disambiguation

Traits vs. Mixins vs. Class-Inheritance

All different kinds of type expressions:
Definition of curried second order type operators + Linearization
Finegrained flat-ordered composition of modules
Definition of (local) partial order on precedence of types wrt. MRO
Combination of principles

Explicitly: Traits differ from Mixins
Traits are applied to a class in parallel, Mixins sequentially
Trait composition is unordered, avoiding linearization effects
Traits do not contain attributes, avoiding state conflicts
With traits, glue code is concentrated in single classes

Lessons learned

Mixins

Mixins as low-effort alternative to multiple inheritance
Mixins lift type expressions to second order type expressions

Traits

Implementation Inheritance based approaches leave room for improvement in
modularity in real world situations
Traits offer fine-grained control of composition of functionality
Native trait languages offer separation of composition of functionality from specification
of interfaces

Further reading...

Gilad Bracha and William Cook.
Mixin-based inheritance.

European conference on object-oriented programming on Object-oriented
programming systems, languages, and applications (OOPSLA/ECOOP), 1990.

James Britt.
Ruby 2.1.5 core reference, December 2014.
URL https://www.ruby-lang.org/en/documentation/.

Stéphane Ducasse, Oscar Nierstrasz, Nathanael Schärli, Roel Wuyts, and Andrew P. Black.
Traits: A mechanism for fine-grained reuse.

ACM Transactions on Programming Languages and Systems (TOPLAS), 2006.

Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen.
Classes and mixins.

Principles of Programming Languages (POPL), 1998.

Brian Goetz.
Interface evolution via virtual extension methods.

JSR 335: Lambda Expressions for the Java Programming Language, 2011.

Anders Hejlsberg, Scott Wiltamuth, and Peter Golde.

C# Language Specification.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.
ISBN 0321154916.

Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew P. Black.
Traits: Composable units of behaviour.

European Conference on Object-Oriented Programming (ECOOP), 2003.

https://www.ruby-lang.org/en/documentation/

	Introduction
	Problems with Inheritance and Composability
	The Adventure Game
	The Wrapper
	Decomposition Problems
	Introducing Mixins
	Modelling Mixins
	Simulating Mixins in C++
	Native Mixins in Ruby

	A Formal Model for Traits
	Traits against the identified problems
	Traits in practice
	Extension Methods
	Virtual Extension Methods
	Traits in Squeak

	Further materials

