
Programming Languages

Dr. Michael Petter, Raphaela Palenta WS 2018/19
Exercise Sheet 11

Assignment 11.1 Tracing
Write an ascpect that logs method calls and returns as well as field accesses of objects. Test
your implementation with a small program that creates an object with some fields. Call a
method on this object. This method should in fact then call some other method. Report
whether a method returned regularly or by throwing an exception. Add indentation to
your logging output such that your output looks e.g. like this

Entering void TestClass.f()
Entering void TestClass.g()
Entering void TestClass.h()
int TestClass.pub is accessed

Method void TestClass.h() returned
Method void TestClass.g() returned

Method void TestClass.f() returned

Suggested Solution 11.1
⇒ TestLogging.java

Assignment 11.2 Default Implementation for Interfaces
Aspects can be used to provide default implementations for interfaces. Consider the fol-
lowing example of an interface.

interface Sortable {
public int compare(Object other);

public boolean equalTo(Object other);

public boolean greaterThan(Object other);

public boolean lessThan(Object other);
}

Implement the three methods equalTo(Object other), greaterThan(Object other)
and lessThan(Object other) using the method compare(Object other) in an aspect
DefaultSortableAspect. Provide a class Sort implements Sortable representing an
integer number. Therefore give an implementation for the method compare(Object other)
and test your implementation.

Suggested Solution 11.2
⇒ Sort.java

1



Assignment 11.3 Access restriction
Write some aspects for fine-grained access restrictions. Test your implementation with
two “toy” classes.

1. Write an aspect that ensures that objects of class A can only be created within
methods of class B.

2. Write an aspect that ensured that there is no write access to non-private fields.

3. Write an aspect to make a field “object-private” i.e., it may only be accessed from
within the same object, not from other objects (of the same class).

Suggested Solution 11.3
⇒ LittleAOP.java (+ A.java, B.java)

2


