Programming Languages TI.ITI

Dr. Michael Petter, Raphaela Palenta WS 2018/19
Exercise Sheet 10

Assignment 10.1 Traits in Lua

Trait composition + is defined as a symmetric join LI between two maps ¢y, ¢s:

by ifby=_1Vn¢pre()
by if by =1 Vn¢pre(c)
bg lf bl - b2

T otherwise

(Cl + 02)(n) = b1 L b2 = with bz = cl(n)

The following Lua function dispatches lookups for key k from map receiver to the
two maps m1,m2 in an ordered fashion with priority on m1:

function asymmetricDispatch (receiver, k)
local v = receiver.mi[k]
if not v then return receiver.m2[k] end
return v

end

1. Provide a Lua implementation of the function symmetricDispatch(reicever, k),
which implements dispatching of key k based on the symmetric join L.

2. Use this function to implement a function composeTraits(traitl, trait2), which
takes a pair of trait maps as input and creates an object-like map as output, that
delegates its lookups to the traits in symmetric join fashion.

Suggested Solution 10.1
= Traits.lua

Assignment 10.2 Delegation & Prototypes

A Lua interpreter, implemented in Java, uses the following two Java data types to repre-
sent Lua tables and closures (anonymous functions):

interface Table {

Object get(String key); // key's value in the internal hashmap
void put(String key, Object val); // bind key to value
Table getMetatable(); // null <f no metatable
}
interface Closure {
Object execute(Object... params); // interprets this closure
}

The interpreter works on a Lua program’s syntax tree. Implement a Java method

static Object eval(Table table,String key)

1



10

11

13

for the interpreter, which evaluates a Lua sub-expression of the form <table>.key as
occuring e.g. in the following Lua code in line 12:

Account = { accountcounter=0 }

function Account:new()
template = { balance=0 }
setmetatable(template,self)
self. index = self
self.accountcounter = self.accountcounter+1
return template

end

myaccount = Account:new()
print(
myaccount.accountcounter

)

Suggested Solution 10.2

— Evaluate. java

Assignment 10.3 Stream Wrapper Mixin with Prototypes

Consider the following Lua code:

Stream = {}
Stream.__index = Stream
function Stream:write(character) ... end

function Stream:new(object)
setmetatable(object,self)
return object

end
Mutex = {}
Mutex. index = Mutex
function Mutex:lock() ... end
function Mutex:unlock() ... end
function Mutex:new()

object = {}

setmetatable(object,self)
return object
end

1. Create a memory diagram after execution of the code above together with:

mystream = Stream:new({ mutex = Mutex:new() })

2. Extend the program by a creator function. This function should produce a wrapper
table for tables, that were created with Stream:new. More specifically, this wrapper
table should delegate every lookup to the wrapped table, with one exception: in
case, the function write is called, the new table should establish a Mutex-locked
area around a call to the wrapped table’s original write function.



Suggested Solution 10.3

= streams.lua

Assignment 10.4 Prototype Based Design

Plan and implement the datastructures to represent symbolical arithmetical expressions,
composed of the operators 4, —, -, /, constants and variables in Lua. Don’t forget to include
nice ways to specify and evaluate them!

Suggested Solution 10.4
= Exp.lua



